JP7063408B1 - Liquid phase peptide production method - Google Patents

Liquid phase peptide production method Download PDF

Info

Publication number
JP7063408B1
JP7063408B1 JP2021111125A JP2021111125A JP7063408B1 JP 7063408 B1 JP7063408 B1 JP 7063408B1 JP 2021111125 A JP2021111125 A JP 2021111125A JP 2021111125 A JP2021111125 A JP 2021111125A JP 7063408 B1 JP7063408 B1 JP 7063408B1
Authority
JP
Japan
Prior art keywords
group
stag
amino acid
trt
amino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021111125A
Other languages
Japanese (ja)
Other versions
JP2023007947A (en
Inventor
圭崇 根本
真也 矢野
利裕 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Medical Co Ltd
Original Assignee
Sekisui Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Medical Co Ltd filed Critical Sekisui Medical Co Ltd
Priority to JP2021111125A priority Critical patent/JP7063408B1/en
Application granted granted Critical
Publication of JP7063408B1 publication Critical patent/JP7063408B1/en
Publication of JP2023007947A publication Critical patent/JP2023007947A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

【課題】液相ペプチド合成用担体を用いるペプチド製造法において、アミノ酸活性エステルを液相処理により除去を可能とする液相ペプチド製造法を提供すること。【解決手段】次の工程a~dを含むことを特徴とする液相ペプチド製造方法。a.有機溶媒を含む溶媒中で、液相ペプチド合成用担体が結合したアミノ酸、ペプチド又はアミノ酸アミドと、アミノ保護基でアミノ基が保護されたアミノ酸又はペプチドとを縮合させる工程、b.縮合反応後の反応液に、アミノスルホン酸類、アミノ硫酸類、アミノホスホン酸類、アミノリン酸類及びアミノアルコール類から選ばれるアミノ酸活性エステルスカベンジャーを添加する工程、c.反応液中の前記アミノ保護基でアミノ基が保護された化合物のアミノ保護基を脱離する工程、d.反応液に水溶液を添加した後、分液して、液相ペプチド合成用担体が結合したアミノ酸、ペプチド又はアミノ酸アミドと、前記アミノ保護基が脱離したアミノ酸又はペプチドとの縮合体を含有する有機溶媒層を得る工程。【選択図】なしPROBLEM TO BE SOLVED: To provide a liquid phase peptide production method capable of removing an amino acid active ester by liquid phase treatment in a peptide production method using a carrier for liquid phase peptide synthesis. A liquid phase peptide production method comprising the following steps a to d. a. A step of condensing an amino acid, peptide or amino acid amide to which a carrier for liquid phase peptide synthesis is bound and an amino acid or peptide whose amino group is protected by an amino-protecting group in a solvent containing an organic solvent, b. A step of adding an amino acid active ester scavenger selected from aminosulfonic acids, aminosulfates, aminophosphonic acids, aminophosphates and aminoalcohols to the reaction solution after the condensation reaction, c. The step of removing the amino-protecting group of the compound in which the amino-protecting group is protected by the amino-protecting group in the reaction solution, d. After adding the aqueous solution to the reaction solution, the solution is separated to contain a condensate of the amino acid, peptide or amino acid amide to which the carrier for liquid phase peptide synthesis is bound and the amino acid or peptide from which the amino-protecting group has been removed. A step of obtaining a solvent layer. [Selection diagram] None

Description

特許法第30条第2項適用 (1)令和3年6月8日「Molecules 2021, 26(12), 3497」(https://doi.org/10.3390/molecules26123497)にて公開した。Application of Article 30, Paragraph 2 of the Patent Act (1) Published in "Molecules 2021, 26 (12), 3497" (https://doi.org/10.339/molecules26123497) on June 8, 3rd year of Reiwa. ..

本発明は、液相におけるペプチド製造方法に関する。 The present invention relates to a method for producing a peptide in a liquid phase.

ペプチドの製造技術には、固相ペプチド合成法と液相ペプチド合成法とがあるが、医薬品等として用いられるペプチドを製造するには、大量生産に向いている液相ペプチド合成法が広く採用されている。そして、最近、保護アミノ酸や保護ペプチドの有機溶媒への溶解性を大きく向上させる化合物である液相ペプチド合成用担体(Tag)が報告されている(特許文献1~14)。 Peptide production techniques include solid phase peptide synthesis methods and liquid phase peptide synthesis methods, but liquid phase peptide synthesis methods suitable for mass production are widely adopted for producing peptides used as pharmaceuticals and the like. ing. Recently, carriers (Tags) for synthesizing liquid phase peptides, which are compounds that greatly improve the solubility of protected amino acids and protected peptides in organic solvents, have been reported (Patent Documents 1 to 14).

液相ペプチド合成では、アミノ酸残基の欠落を防ぐために過剰のアミノ酸及び縮合剤を使用することから、ペプチド伸長反応においてアミノ酸縮合反応時にアミノ酸活性エステルが残存し、残存したアミノ酸活性エステルが次のアミノ酸伸長反応時においても反応してしまい、望まない「ダブルヒット体」が生成し、目的物の収率や純度が低下することが問題となっている。 In liquid phase peptide synthesis, an excess of amino acids and a condensing agent are used to prevent the loss of amino acid residues. Therefore, in the peptide extension reaction, an amino acid active ester remains during the amino acid condensation reaction, and the remaining amino acid active ester is the next amino acid. The reaction also occurs during the elongation reaction, and an unwanted "double hit" is generated, which causes a problem that the yield and purity of the target product are lowered.

このアミノ酸活性エステルの除去手段として、アルカリ水でアミノ酸活性エステルを加水分解する方法(特許文献15)、縮合反応時に炭素数1~14のアルキルアミン、芳香族アミン、ヒドロキルアミンを添加してクエンチした後、副生物を固液分離する方法(特許文献16)が報告されている。また、縮合反応後の反応液に2価の水溶性アミンを添加し、脱保護工程後の反応液に酸を添加して中和し、さらに酸性水溶液を添加して洗浄することにより、アミノ酸活性エステルとジベンゾフルベン(DBF)の双方を除去する方法(特許文献17)が報告されている。なお、DBFは、アミノ基の保護基であるFmoc基を脱保護する際に生じる副生成物である。 As a means for removing the amino acid active ester, a method of hydrolyzing the amino acid active ester with alkaline water (Patent Document 15), an alkylamine having 1 to 14 carbon atoms, an aromatic amine, and a hydroquilamine were added and quenched during the condensation reaction. Later, a method for solid-liquid separation of by-products (Patent Document 16) has been reported. In addition, amino acid activity is achieved by adding a divalent water-soluble amine to the reaction solution after the condensation reaction, adding an acid to the reaction solution after the deprotection step to neutralize it, and further adding an acidic aqueous solution for washing. A method for removing both ester and dibenzofulven (DBF) has been reported (Patent Document 17). DBF is a by-product produced when deprotecting the Fmoc group, which is a protecting group for amino groups.

特許第5113118号公報Japanese Patent No. 5113118 特許第5929756号公報Japanese Patent No. 5929756 特許第6092513号公報Japanese Patent No. 6092513 特許第5768712号公報Japanese Patent No. 5768712 特許第5803674号公報Japanese Patent No. 5803674 特許第6116782号公報Japanese Patent No. 6116782 特許第6201076号公報Japanese Patent No. 620176 特許第6283774号公報Japanese Patent No. 6283774 特許第6283775号公報Japanese Patent No. 6283775 特許第6322350号公報Japanese Patent No. 6322350 特許第6393857号公報Japanese Patent No. 6393857 特許第6531235号公報Japanese Patent No. 6531235 国際公開第2020/175472号International Publication No. 2020/175472 国際公開第2020/175473号International Publication No. 2020/175473 国際公開第2007/099656号International Publication No. 2007/099656 国際公開第2016/140232号International Publication No. 2016/140232 特許第6703668号公報Japanese Patent No. 67036668

しかしながら、特許文献15、16に記載のアミノ酸活性エステルの除去方法では、固液分離手段が必要であり、ワンポット合成には適用できない。また、特許文献17記載の方法においては、酸性条件下での分液が必要であることから、アミノ酸活性エステルと生成物であるペプチドとの分液不良が起こりやすいという問題があった。
本発明の課題は、液相ペプチド合成用担体を用いるペプチド製造法において、アミノ酸活性エステルを液相処理により除去することを可能とする液相ペプチド製造法を提供することにある。
However, the methods for removing amino acid active esters described in Patent Documents 15 and 16 require solid-liquid separation means and cannot be applied to one-pot synthesis. Further, in the method described in Patent Document 17, since liquid separation under acidic conditions is required, there is a problem that liquid separation failure between the amino acid active ester and the peptide as a product is likely to occur.
An object of the present invention is to provide a liquid phase peptide production method capable of removing an amino acid active ester by a liquid phase treatment in a peptide production method using a carrier for liquid phase peptide synthesis.

そこで本発明者は、有機溶媒を含む溶媒中で、液相ペプチド合成用担体が結合したアミノ酸、ペプチド又はアミノ酸アミドと、アミノ保護基でアミノ基が保護されたアミノ酸又はペプチドとを縮合させた後に、縮合せずに残存するアミノ酸活性エステルのスカベンジャーとして、アミノスルホン酸類、アミノ硫酸類、アミノホスホン酸類、アミノリン酸類及びアミノアルコール類から選ばれる化合物を用いることにより、系内を酸性条件とすることなく、アミノ酸活性エステルの除去が可能となることを見出し、従来法における固液分離や分液不良という問題点を解決し、本発明の完成に至った。 Therefore, the present inventor condenses an amino acid, a peptide or an amino acid amide to which a carrier for liquid phase peptide synthesis is bound and an amino acid or a peptide whose amino group is protected by an amino-protecting group in a solvent containing an organic solvent. By using a compound selected from aminosulfonic acids, aminosulfates, aminophosphonic acids, aminophosphates and aminoalcohols as a scavenger for the amino acid active ester that remains without condensation, the system is not subject to acidic conditions. , It has been found that the amino acid active ester can be removed, and the problems of solid-liquid separation and poor liquid separation in the conventional method have been solved, and the present invention has been completed.

すなわち、本発明は、次の発明[1]~[6]を提供するものである。
[1]次の工程a~dを含むことを特徴とする液相ペプチド製造方法。
a.有機溶媒を含む溶媒中で、液相ペプチド合成用担体が結合したアミノ酸、ペプチド又はアミノ酸アミドと、アミノ保護基でアミノ基が保護されたアミノ酸又はペプチドとを縮合させる工程、
b.縮合反応後の反応液に、アミノスルホン酸類、アミノ硫酸類、アミノホスホン酸類、アミノリン酸類及びアミノアルコール類から選ばれるアミノ酸活性エステルスカベンジャーを添加する工程、
c.反応液中の前記アミノ保護基でアミノ基が保護された化合物のアミノ保護基を脱離する工程、
d.反応液に水溶液を添加した後、分液して、液相ペプチド合成用担体が結合したアミノ酸、ペプチド又はアミノ酸アミドと、前記アミノ保護基が脱離したアミノ酸又はペプチドとの縮合体を含有する有機溶媒層を得る工程。
[2]前記アミノ酸活性エステルスカベンジャーが、次の一般式(1)で表されるアミノスルホン酸類及びアミノ硫酸類、
That is, the present invention provides the following inventions [1] to [6].
[1] A method for producing a liquid phase peptide, which comprises the following steps a to d.
a. A step of condensing an amino acid, peptide or amino acid amide to which a carrier for liquid phase peptide synthesis is bound and an amino acid or peptide whose amino group is protected by an amino protecting group in a solvent containing an organic solvent.
b. A step of adding an amino acid active ester scavenger selected from aminosulfonic acids, aminosulfates, aminophosphonic acids, aminophosphates and aminoalcohols to the reaction solution after the condensation reaction.
c. The step of removing the amino-protecting group of the compound whose amino-protecting group is protected by the amino-protecting group in the reaction solution.
d. After adding the aqueous solution to the reaction solution, the solution is separated to contain a condensate of the amino acid, peptide or amino acid amide to which the carrier for liquid phase peptide synthesis is bound and the amino acid or peptide from which the amino protecting group has been removed. A step of obtaining a solvent layer.
[2] The amino acid active ester scavenger is an aminosulfonic acid or aminosulfuric acid represented by the following general formula (1).

Figure 0007063408000001
Figure 0007063408000001

(R1は炭素数1~10の2価の有機基を示し、X1は単結合又は酸素原子を示す)
一般式(2)で表されるアミノホスホン酸類及びアミノリン酸類、並びに
(R 1 indicates a divalent organic group having 1 to 10 carbon atoms, and X 1 indicates a single bond or an oxygen atom)
Aminophosphonic acids and aminophosphates represented by the general formula (2), and

Figure 0007063408000002
Figure 0007063408000002

(R2は炭素数1~10の2価の有機基を示し、X2は単結合又は酸素原子を示す)
一般式(3)で表されるアミノアルコール類から選ばれる化合物である[1]記載の液相ペプチド製造方法。
(R 2 indicates a divalent organic group having 1 to 10 carbon atoms, and X 2 indicates a single bond or an oxygen atom)
The liquid phase peptide production method according to [1], which is a compound selected from amino alcohols represented by the general formula (3).

Figure 0007063408000003
Figure 0007063408000003

(nは0~20の整数を示し、R3、R4はそれぞれ独立して水素原子、メチル基、エチル基、又はヒドロキシメチル基を示す)
[3]前記アミノ酸活性エステルスカベンジャーが、次の一般式(1a)で表されるアミノスルホン酸類、
(N indicates an integer from 0 to 20, and R 3 and R 4 independently indicate a hydrogen atom, a methyl group, an ethyl group, or a hydroxymethyl group).
[3] Amino sulfonic acids represented by the following general formula (1a), wherein the amino acid active ester scavenger is represented by the following general formula (1a).

Figure 0007063408000004
Figure 0007063408000004

(R1は炭素数1~10の2価の有機基を示す)
一般式(2)で表されるアミノホスホン酸類及びアミノリン酸類、並びに
(R 1 indicates a divalent organic group having 1 to 10 carbon atoms)
Aminophosphonic acids and aminophosphates represented by the general formula (2), and

Figure 0007063408000005
Figure 0007063408000005

(R2は炭素数1~10の2価の有機基を示し、X2は単結合又は酸素原子を示す)
一般式(3)で表されるアミノアルコール類から選ばれる化合物である[1]記載の液相ペプチド製造方法。
(R 2 indicates a divalent organic group having 1 to 10 carbon atoms, and X 2 indicates a single bond or an oxygen atom)
The liquid phase peptide production method according to [1], which is a compound selected from amino alcohols represented by the general formula (3).

Figure 0007063408000006
Figure 0007063408000006

(nは0~20の整数を示し、R3、R4はそれぞれ独立して水素原子、メチル基、エチル基、又はヒドロキシメチル基を示す)
[4]前記アミノ保護基が、Fmоc基、Bоc基、Cbz基及びAc基から選ばれる保護基である[1]~[3]記載の液相ペプチド製造方法。
[5]前記液相ペプチド合成用担体が、アミノ酸、ペプチド又はアミノ酸アミドに直接又はリンカーを介して結合して、それらを有機溶媒に溶解性で水に不溶性にする化合物である[1]~[4]のいずれかに記載の液相ペプチド製造方法。
[6]前記液相ペプチド合成用担体が、下記式(I):
(N indicates an integer from 0 to 20, and R 3 and R 4 independently indicate a hydrogen atom, a methyl group, an ethyl group, or a hydroxymethyl group).
[4] The liquid phase peptide production method according to [1] to [3], wherein the amino protecting group is a protecting group selected from an Fmоc group, a Bоc group, a Cbz group and an Ac group.
[5] The liquid phase peptide synthesis carrier is a compound that binds to an amino acid, peptide or amino acid amide directly or via a linker to make them soluble in an organic solvent and insoluble in water [1] to [ 4] The liquid phase peptide production method according to any one of.
[6] The carrier for liquid phase peptide synthesis has the following formula (I):

Figure 0007063408000007
Figure 0007063408000007

[式中、
環Aはヘテロ原子を含んでいてもよく、多環性でもよいC4~18の芳香環を示し;
11は、水素原子であるか、又は環Aがベンゼン環でRbが下記式(a)で表される基である場合には、R14と一緒になって単結合を示して、環A及び環Bと共にフルオレン環を形成するか、又は酸素原子を介して環A及び環Bと共にキサンテン環を形成してもよく;
p個のXは、それぞれ独立して-O-、-S-、-C(=O)O-、-C(=O)NH-又は-NR17-(R17は水素原子、アルキル基又はアラルキル基を示す。)を示し;
p個のR12は、それぞれ独立して酸素原子を介してシリル基又は脂肪族炭化水素基で置換されていてもよい脂肪族炭化水素基を有する有機基を示し;
q個のR13は、それぞれ独立して水素原子であるか、又は酸素原子を介してシリル基若しくは脂肪族炭化水素基で置換されていてもよい脂肪族炭化水素基を有する有機基を示し;
p、qは、それぞれ0~3の整数かつp+qが1以上4以下を示し;
環Aは、p個のXR12に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、及びハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよく;
Raは、水素原子、又はハロゲン原子により置換されていてもよい芳香族環を示し;
Rbは、水素原子、又は式(a):
[During the ceremony,
Ring A shows an aromatic ring of C4-18 which may contain a heteroatom and may be polycyclic;
When R 11 is a hydrogen atom or ring A is a benzene ring and Rb is a group represented by the following formula (a), it shows a single bond together with R 14 and shows ring A. And a fluorene ring may be formed with ring B, or a xanthene ring may be formed with rings A and B via an oxygen atom;
The p Xs are independently -O-, -S-, -C (= O) O-, -C (= O) NH- or -NR 17- (R 17 is a hydrogen atom, an alkyl group or Indicates an aralkyl group.) Indicates;
The p R 12s represent organic groups having an aliphatic hydrocarbon group which may be independently substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom;
The q R 13s represent organic groups each independently having an aliphatic hydrocarbon group, which may be a hydrogen atom independently or may be substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom;
p and q are integers of 0 to 3 and p + q is 1 or more and 4 or less, respectively;
Ring A is a group consisting of a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom, in addition to p XR 12 . May have substituents selected from;
Ra represents an aromatic ring that may be substituted with a hydrogen atom or a halogen atom;
Rb is a hydrogen atom, or formula (a) :.

Figure 0007063408000008
Figure 0007063408000008

(式中、*は結合位置を示し;
r、sは、それぞれ0~3の整数かつr+sが4以下を示し;
r個のZは、それぞれ独立して-O-、-S-、-C(=O)O-、-C(=O)NH-又は-NR18-(R18は水素原子、アルキル基又はアラルキル基を示す。)を示し;
r個のR15は、独立して酸素原子を介してシリル基又は脂肪族炭化水素基で置換されていてもよい脂肪族炭化水素基を有する有機基を示し;
s個のR16は、それぞれ独立して酸素原子を介してシリル基又は脂肪族炭化水素基で置換されていてもよい脂肪族炭化水素基を有する有機基を示し;
14は、水素原子を示すか、R11と一緒になって単結合を示して、環A及び環Bと共にフルオレン環を形成するか,又は酸素原子を介して環A及び環Bと共にキサンテン環を形成してもよく;
環Bは、r個のZR15に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、及びハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよい。)で表される基を示し;
Yは、ヒドロキシ基、NHR19(R19は水素原子、アルキル基又はアラルキル基を示す。)又はハロゲン原子を示す。]
で表される化合物である[1]~[4]のいずれかに記載の液相ペプチド製造方法。
(In the formula, * indicates the bond position;
r and s are integers of 0 to 3 and r + s is 4 or less, respectively;
The r Zs are independently -O-, -S-, -C (= O) O-, -C (= O) NH- or -NR 18- (R 18 is a hydrogen atom, an alkyl group or Indicates an aralkyl group.) Indicates;
The r R 15s represent organic groups having an aliphatic hydrocarbon group which may be independently substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom;
The s R 16s represent organic groups having an aliphatic hydrocarbon group which may be independently substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom;
R 14 either exhibits a hydrogen atom or exhibits a single bond with R 11 to form a fluorene ring with rings A and B, or a xanthene ring with rings A and B via an oxygen atom. May form;
Ring B is a group consisting of a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom, in addition to r ZR 15 . It may have a substituent selected from. ) Indicates a group;
Y represents a hydroxy group, NHR 19 (R 19 indicates a hydrogen atom, an alkyl group or an aralkyl group) or a halogen atom. ]
The liquid phase peptide production method according to any one of [1] to [4], which is a compound represented by.

本発明によれば、有機溶媒を含む溶媒中で、液相ペプチド合成用担体が結合したアミノ酸、ペプチド又はアミノ酸アミドと、アミノ保護基でアミノ基が保護されたアミノ酸又はペプチドとを縮合させた後に、残存するアミノ酸活性エステルのスカベンジャーとして、アミノスルホン酸類、アミノ硫酸類、アミノホスホン酸類、アミノリン酸類及びアミノアルコール類から選ばれる化合物を用いれば、系内を酸性条件とすることなく、アミノ酸活性エステルの除去が可能となることを見出し、従来法における固液分離や分液不良という問題点を解消した。
これにより、ペプチドの液相製造をワンポットで効率よく行うことが可能になった。
According to the present invention, after condensing an amino acid, a peptide or an amino acid amide to which a carrier for liquid phase peptide synthesis is bound and an amino acid or a peptide whose amino group is protected by an amino-protecting group in a solvent containing an organic solvent. If a compound selected from aminosulfonic acids, aminosulfates, aminophosphonic acids, aminophosphates and aminoalcohols is used as a scavenger for the remaining amino acid active ester, the amino acid active ester can be used without making the inside of the system acidic. We found that it could be removed, and solved the problems of solid-liquid separation and poor liquid separation in the conventional method.
This has made it possible to efficiently produce the liquid phase of the peptide in one pot.

本発明のペプチド製造法は、有機溶媒を含む溶媒中で、液相ペプチド合成用担体が結合したアミノ酸、ペプチド又はアミノ酸アミドと、アミノ保護基でアミノ基が保護されたアミノ酸又はペプチドとを縮合させる、液相ペプチド製造法である。 In the peptide production method of the present invention, an amino acid, a peptide or an amino acid amide to which a carrier for liquid phase peptide synthesis is bound is condensed with an amino acid or a peptide whose amino group is protected by an amino-protecting group in a solvent containing an organic solvent. , A liquid phase peptide production method.

用いられる液相ペプチド合成用担体は、アミノ酸、ペプチド又はアミノ酸アミドを保護して、当該保護されたアミノ酸、ペプチド又はアミノ酸アミドを有機溶媒に可溶化する担体である。
このような液相ペプチド合成用担体としては、例えば前記特許文献1-14に記載の化合物が挙げられる。好ましい液相ペプチド合成用担体としては、下記式(I)で表される化合物が挙げられる。
The carrier for liquid phase peptide synthesis used is a carrier that protects an amino acid, peptide or amino acid amide and solubilizes the protected amino acid, peptide or amino acid amide in an organic solvent.
Examples of such a carrier for liquid phase peptide synthesis include the compounds described in Patent Document 1-14. Preferred liquid phase peptide synthesis carriers include compounds represented by the following formula (I).

Figure 0007063408000009
Figure 0007063408000009

[式中、
環Aはヘテロ原子を含んでいてもよく、多環性でもよいC4~18の芳香環を示し;
11は、水素原子であるか、又は環Aがベンゼン環でRbが下記式(a)で表される基である場合には、R14と一緒になって単結合を示して、環A及び環Bと共にフルオレン環を形成するか、又は酸素原子を介して環A及び環Bと共にキサンテン環を形成してもよく;
p個のXは、それぞれ独立して-O-、-S-、-C(=O)O-、-C(=O)NH-又は-NR17-(R17は水素原子、アルキル基又はアラルキル基を示す。)を示し;
p個のR12は、それぞれ独立して酸素原子を介してシリル基又は脂肪族炭化水素基で置換されていてもよい脂肪族炭化水素基を有する有機基を示し;
q個のR13は、それぞれ独立して水素原子であるか、又は酸素原子を介してシリル基若しくは脂肪族炭化水素基で置換されていてもよい脂肪族炭化水素基を有する有機基を示し;
p、qは、それぞれ0~3の整数かつp+qが1以上4以下を示し;
環Aは、p個のXR12に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、及びハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよく;
Raは、水素原子、又はハロゲン原子により置換されていてもよい芳香族環を示し;
Rbは、水素原子、又は式(a):
[During the ceremony,
Ring A shows an aromatic ring of C4-18 which may contain a heteroatom and may be polycyclic;
When R 11 is a hydrogen atom or ring A is a benzene ring and Rb is a group represented by the following formula (a), it shows a single bond together with R 14 and shows ring A. And a fluorene ring may be formed with ring B, or a xanthene ring may be formed with rings A and B via an oxygen atom;
The p Xs are independently -O-, -S-, -C (= O) O-, -C (= O) NH- or -NR 17- (R 17 is a hydrogen atom, an alkyl group or Indicates an aralkyl group.) Indicates;
The p R 12s represent organic groups having an aliphatic hydrocarbon group which may be independently substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom;
The q R 13s represent organic groups each independently having an aliphatic hydrocarbon group, which may be a hydrogen atom independently or may be substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom;
p and q are integers of 0 to 3 and p + q is 1 or more and 4 or less, respectively;
Ring A is a group consisting of a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom, in addition to p XR 12 . May have substituents selected from;
Ra represents an aromatic ring that may be substituted with a hydrogen atom or a halogen atom;
Rb is a hydrogen atom, or formula (a) :.

Figure 0007063408000010
Figure 0007063408000010

(式中、*は結合位置を示し;
r、sは、それぞれ0~3の整数かつr+sが4以下を示し;
r個のZは、それぞれ独立して-O-、-S-、-C(=O)O-、-C(=O)NH-又は-NR18-(R18は水素原子、アルキル基又はアラルキル基を示す。)を示し;
r個のR15は、独立して酸素原子を介してシリル基又は脂肪族炭化水素基で置換されていてもよい脂肪族炭化水素基を有する有機基を示し;
s個のR16は、それぞれ独立して酸素原子を介してシリル基又は脂肪族炭化水素基で置換されていてもよい脂肪族炭化水素基を有する有機基を示し;
14は、水素原子を示すか、R11と一緒になって単結合を示して、環A及び環Bと共にフルオレン環を形成するか,又は酸素原子を介して環A及び環Bと共にキサンテン環を形成してもよく;
環Bは、r個のZR15に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、及びハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよい。)で表される基を示し;
Yは、ヒドロキシ基、NHR19(R19は水素原子、アルキル基又はアラルキル基を示す。)又はハロゲン原子を示す。]
(In the formula, * indicates the bond position;
r and s are integers of 0 to 3 and r + s is 4 or less, respectively;
The r Zs are independently -O-, -S-, -C (= O) O-, -C (= O) NH- or -NR 18- (R 18 is a hydrogen atom, an alkyl group or Indicates an aralkyl group.) Indicates;
The r R 15s represent organic groups having an aliphatic hydrocarbon group which may be independently substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom;
The s R 16s represent organic groups having an aliphatic hydrocarbon group which may be independently substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom;
R 14 either exhibits a hydrogen atom or exhibits a single bond with R 11 to form a fluorene ring with rings A and B, or a xanthene ring with rings A and B via an oxygen atom. May form;
Ring B is a group consisting of a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom, in addition to r ZR 15 . It may have a substituent selected from. ) Indicates a group;
Y represents a hydroxy group, NHR 19 (R 19 indicates a hydrogen atom, an alkyl group or an aralkyl group) or a halogen atom. ]

式(I)中の環Aは、ヘテロ原子を含んでいてもよく、単環性でも、多環性でもよいC4~18の芳香環を示す。当該芳香環としては、C6~18の芳香族炭化水素環、及びC4~10の芳香族複素環が挙げられる。
具体的なC6~18の芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、テトラセン環、インダン環、インデン環、フルオレン環、ビフェニル環などが挙げられる。このうち、ベンゼン環、ナフタレン環、フェナントレン環、フルオレン環がより好ましい。
C4~10の芳香族複素環としては、ヘテロ原子として窒素原子、酸素原子及び硫黄原子から選ばれる1~3個を含む5員環~10員環の芳香族複素環が好ましく、具体的には、ピロール環、フラン環、チオフェン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、カルバゾール環、ピラゾール環、インダゾール環、イミダゾール環、ピリジン環、キノリン環、イソキノリン環などが挙げられる。このうち、ヘテロ原子として窒素原子、酸素原子及び硫黄原子から選ばれる1~3個を含む5員環~8員環の芳香族複素環が好ましく、ピロール環、フラン環、チオフェン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、カルバゾール環、ピラゾール環、インダゾール環がより好ましい。
Ring A in formula (I) may contain a heteroatom and represents an aromatic ring of C4-18 which may be monocyclic or polycyclic. Examples of the aromatic ring include an aromatic hydrocarbon ring of C6 to 18 and an aromatic heterocycle of C4 to 10.
Specific examples of the C6-18 aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a triphenylene ring, a tetracene ring, an indane ring, an indene ring, a fluorene ring, and a biphenyl ring. Of these, a benzene ring, a naphthalene ring, a phenanthrene ring, and a fluorene ring are more preferable.
As the aromatic heterocycle of C4 to 10, a 5-membered to 10-membered aromatic heterocycle containing 1 to 3 selected from a nitrogen atom, an oxygen atom and a sulfur atom as a heteroatom is preferable, and specifically, a 5-membered ring to a 10-membered aromatic ring is preferable. , Pyrol ring, furan ring, thiophene ring, indole ring, benzofuran ring, benzothiophene ring, carbazole ring, pyrazole ring, indazole ring, imidazole ring, pyridine ring, quinoline ring, isoquinoline ring and the like. Of these, a 5-membered to 8-membered aromatic heterocycle containing 1 to 3 selected from a nitrogen atom, an oxygen atom and a sulfur atom as the heteroatom is preferable, and a pyrazole ring, a furan ring, a thiophene ring, an indole ring, etc. A benzofuran ring, a benzothiophene ring, a carbazole ring, a pyrazole ring, and an indazole ring are more preferable.

11は、水素原子を示すか、又は環Aがベンゼン環でRbが前記式(a)で表される基である場合には、R14と一緒になって単結合を示して、環A及び環Bと共にフルオレン環を形成するか、又は酸素原子を介して環A及び環Bと共にキサンテン環を形成してもよい。R11とR14が一緒になって形成してもよい環としては、フルオレン環又はキサンテン環が好ましい。 R 11 represents a hydrogen atom, or when ring A is a benzene ring and Rb is a group represented by the above formula (a), it shows a single bond together with R 14 and shows ring A. And a fluorene ring may be formed with the ring B, or a xanthene ring may be formed with the ring A and the ring B via an oxygen atom. As the ring in which R 11 and R 14 may be formed together, a fluorene ring or a xanthene ring is preferable.

p個のXは、それぞれ独立して-O-、-S-、-C(=O)O-、-C(=O)NH-又は-NR17-(R17は水素原子、アルキル基又はアラルキル基を示す。)を示す。
ここで、R17としては、水素原子、C1~10のアルキル基又はC7~20のアラルキル基が好ましい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などの直鎖又は分岐鎖のC1~10のアルキル基が挙げられる。
アラルキル基としては、C7~16アラルキル基、例えば、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルプロピル基、ナフチルメチル基、1-ナフチルエチル基などが挙げられる。
The p Xs are independently -O-, -S-, -C (= O) O-, -C (= O) NH- or -NR 17- (R 17 is a hydrogen atom, an alkyl group or It indicates an aralkyl group.).
Here, as R 17 , a hydrogen atom, an alkyl group of C1 to 10 or an aralkyl group of C7 to 20 is preferable. Alkyl groups include linear or branched C1 to such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group and hexyl group. Examples include 10 alkyl groups.
Examples of the aralkyl group include a C7 to 16 aralkyl group, for example, a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylpropyl group, a naphthylmethyl group, a 1-naphthylethyl group and the like.

p個のR12は、それぞれ独立して酸素原子を介してシリル基又は脂肪族炭化水素基で置換されていてもよい脂肪族炭化水素基を有する有機基を示す。
q個のR13は、それぞれ独立して水素原子であるか、又は酸素原子を介してシリル基若しくは脂肪族炭化水素基で置換されていてもよい脂肪族炭化水素基を有する有機基を示す。
p、qは、それぞれ0~3の整数かつp+qが1以上4以下を示す。
The p R 12s represent organic groups having an aliphatic hydrocarbon group which may be independently substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom.
The q R 13s represent organic groups each independently having an aliphatic hydrocarbon group which may be a hydrogen atom or may be substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom.
p and q are integers of 0 to 3 and p + q is 1 or more and 4 or less, respectively.

本明細書において、脂肪族炭化水素基を有する有機基とは、その分子構造中に脂肪族炭化水素基を有する一価の有機基である。当該脂肪族炭化水素基を有する有機基中の脂肪族炭化水素基の部位は、特に限定されず、末端に存在してもよく、それ以外の部位に存在してもよい。
当該有機基中に存在する脂肪族炭化水素基とは、直鎖、分岐状若しくは環状の飽和又は不飽和の脂肪族炭化水素基であり、有機溶媒溶解性の点から、C5以上の脂肪族炭化水素基が好ましく、C5~30の脂肪族炭化水素基がより好ましく、C8~30の脂肪族炭化水素基がさらに好ましい。当該脂肪族炭化水素基の具体例としては、アルキル基、シクロアルキル基、アルケニル基、アルキニル基等が挙げられるが、特にアルキル基、シクロアルキル基、アルケニル基が好ましく、アルキル基がより好ましい。さらに、C5~30の直鎖又は分岐鎖のアルキル基、C3~8のシクロアルキル基、C5~30の直鎖又は分岐鎖のアルケニル基が好ましく、C5~30の直鎖又は分岐鎖のアルキル基、C3~8のシクロアルキル基がより好ましく、C5~30の直鎖又は分岐鎖のアルキル基がさらに好ましく、C8~30の直鎖又は分岐鎖のアルキル基がよりさらに好ましい。
In the present specification, the organic group having an aliphatic hydrocarbon group is a monovalent organic group having an aliphatic hydrocarbon group in its molecular structure. The site of the aliphatic hydrocarbon group in the organic group having the aliphatic hydrocarbon group is not particularly limited, and may be present at the terminal or at any other site.
The aliphatic hydrocarbon group present in the organic group is a linear, branched or cyclic saturated or unsaturated aliphatic hydrocarbon group, and is C5 or higher aliphatic hydrocarbon from the viewpoint of organic solvent solubility. Hydrogen groups are preferred, C5-30 aliphatic hydrocarbon groups are more preferred, and C8-30 aliphatic hydrocarbon groups are even more preferred. Specific examples of the aliphatic hydrocarbon group include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group and the like, but an alkyl group, a cycloalkyl group and an alkenyl group are particularly preferable, and an alkyl group is more preferable. Further, a linear or branched alkyl group of C5 to 30, a cycloalkyl group of C3 to 8, a linear or branched alkenyl group of C5 to 30, is preferable, and a linear or branched alkyl group of C5 to 30 is preferable. , C3-8 cycloalkyl groups are more preferred, C5-30 linear or branched alkyl groups are even more preferred, and C8-30 linear or branched alkyl groups are even more preferred.

アルキル基の具体例としては、炭素数1~30のアルキル基が挙げられ、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ラウリル基、トリデシル基、ミリスチル基、セチル基、ステアリル基、アラキル基、べへニル基、テトラコサニル基、ヘキサコサニル基、イソステアリル基などの一価の基、それらから誘導される二価の基、各種ステロイド基から水酸基などを除外した基が挙げられる。
アルケニル基としては、ビニル基、1-プロぺニル基、アリル基、イソプロペニル基、ブテニル基、イソブテニル基、オレイル基などの一価の基、それらから誘導される二価の基が挙げられる。
アルキニル基としては、エチニル基、プロパルギル基、1-プロピニル基などが挙げられる。
Specific examples of the alkyl group include an alkyl group having 1 to 30 carbon atoms, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, and a pentyl group. , Hexyl group, octyl group, decyl group, lauryl group, tridecyl group, myristyl group, cetyl group, stearyl group, araquil group, behenyl group, tetracosanyl group, hexacosanyl group, isostearyl group and other monovalent groups, they Examples thereof include a divalent group derived from, and a group obtained by excluding hydroxyl groups from various steroid groups.
Examples of the alkenyl group include a monovalent group such as a vinyl group, a 1-propenyl group, an allyl group, an isopropenyl group, a butenyl group, an isobutenyl group and an oleyl group, and a divalent group derived from them.
Examples of the alkynyl group include an ethynyl group, a propargyl group, a 1-propynyl group and the like.

上記の脂肪族炭化水素基には、酸素原子を介してシリル基又は脂肪族炭化水素基が置換していてもよい。
脂肪族炭化水素基に酸素原子を介して置換し得るシリル基としては、炭素数1~6の直鎖又は分岐鎖のアルキル基及び置換基を有していてもよいアリール基から選ばれる3個が置換したシリル基が好ましい。従って、前記脂肪族炭化水素基には、炭素数1~6の直鎖又は分岐鎖のアルキル基及び置換基を有していてもよいアリール基から選ばれる3個が置換したシリルオキシ基が置換していてもよい。ここで、置換基を有していてもよいアリール基としては、フェニル基、ナフチル基などが挙げられる。
好ましい酸素原子を介して置換するシリル基としては、炭素数1~6の直鎖又は分岐鎖のアルキル基が3個置換したシリルオキシ基であり、より好ましくは炭素数1~4の直鎖又は分岐鎖のアルキル基が3個置換したシリルオキシ基である。シリルオキシ基に置換する3個のアルキル基又はアリール基は、同一でも異なっていてもよい。なお、当該シリルオキシ基は、前記脂肪族炭化水素基に1~3個置換しているのが好ましい。
The above aliphatic hydrocarbon group may be substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom.
The silyl group capable of substituting the aliphatic hydrocarbon group via the oxygen atom is three selected from a linear or branched alkyl group having 1 to 6 carbon atoms and an aryl group which may have a substituent. A silyl group substituted with is preferable. Therefore, the aliphatic hydrocarbon group is substituted with a silyloxy group substituted with three selected from a linear or branched alkyl group having 1 to 6 carbon atoms and an aryl group which may have a substituent. May be. Here, examples of the aryl group which may have a substituent include a phenyl group and a naphthyl group.
The silyl group substituted via a preferable oxygen atom is a silyloxy group substituted with three linear or branched alkyl groups having 1 to 6 carbon atoms, and more preferably a linear or branched silyl group having 1 to 4 carbon atoms. It is a silyloxy group in which three alkyl groups in the chain are substituted. The three alkyl or aryl groups substituted with the silyloxy group may be the same or different. The silyloxy group is preferably substituted with 1 to 3 aliphatic hydrocarbon groups.

脂肪族炭化水素基に酸素原子を介して置換し得る脂肪族炭化水素基としては、炭素数1~6の直鎖又は分岐鎖のアルコキシ基、炭素数2~6のアルケニルオキシ基、炭素数3~6のシクロアルキルオキシ基などの一価の基、それらから誘導される二価の基などが挙げられる。 Examples of the aliphatic hydrocarbon group capable of substituting the aliphatic hydrocarbon group via an oxygen atom include a linear or branched alkoxy group having 1 to 6 carbon atoms, an alkenyloxy group having 2 to 6 carbon atoms, and 3 carbon atoms. Examples thereof include monovalent groups such as cycloalkyloxy groups of up to 6 and divalent groups derived from them.

p、qは、それぞれ0~3の整数かつp+qが1以上4以下を示す。ここで、pは、1~4が好ましく、1~3がより好ましく、1~2がさらに好ましい。 p and q are integers of 0 to 3 and p + q is 1 or more and 4 or less, respectively. Here, p is preferably 1 to 4, more preferably 1 to 3, and even more preferably 1 to 2.

環Aは、p個のXR12に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、及びハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよい。
ハロゲン原子としては、塩素原子、フッ素原子、臭素原子、ヨウ素原子が挙げられる。ハロゲン原子で置換されていてもよいC1-6アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ジクロロメチル基、トリクロロメチル基、トリフルオロメチル基などが挙げられる。ハロゲン原子で置換されていてもよいC1-6アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基、トリクロロメトキシ基、トリフルオロメトキシ基などが挙げられる。
Ring A is a group consisting of a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom, in addition to p XR 12 . It may have a substituent selected from.
Examples of the halogen atom include a chlorine atom, a fluorine atom, a bromine atom and an iodine atom. Examples of the C1-6 alkyl group that may be substituted with a halogen atom include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group and a hexyl group. , Dichloromethyl group, trichloromethyl group, trifluoromethyl group and the like. Examples of the C1-6 alkoxy group which may be substituted with a halogen atom include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butyloxy group, an isobutyloxy group, a sec-butyloxy group, a tert-butyloxy group and a trichloromethoxy. Examples include a group and a trifluoromethoxy group.

Raは、水素原子、又はハロゲン原子により置換されていてもよい芳香族環を示す。
ここで、芳香族環としては、C6~18の芳香族炭化水素環、及びC4~10の芳香族複素環が挙げられる。
具体的なC6~18の芳香族炭化水素環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、トリフェニレン環、テトラセン環、インダン環、インデン環、フルオレン環、ビフェニル環などが挙げられる。このうち、ベンゼン環、ナフタレン環、フェナントレン環、フルオレン環がより好ましい。
C4~10の芳香族複素環としては、ヘテロ原子として窒素原子、酸素原子及び硫黄原子から選ばれる1~3個を含む5員環~10員環の複素環が好ましく、具体的には、ピロール環、フラン環、チオフェン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、カルバゾール環、ピラゾール環、インダゾール環、イミダゾール環、ピリジン環、キノリン環、イソキノリン環などが挙げられる。このうち、ヘテロ原子として窒素原子、酸素原子及び硫黄原子から選ばれる1~3個を含む5員環~8員環の複素環が好ましく、ピロール環、フラン環、チオフェン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、カルバゾール環、ピラゾール環、インダゾール環がより好ましい。
Raの芳香族環には、1~3個のハロゲン原子が置換していてもよい。
Ra represents an aromatic ring that may be substituted with a hydrogen atom or a halogen atom.
Here, examples of the aromatic ring include an aromatic hydrocarbon ring of C6 to 18 and an aromatic heterocycle of C4 to 10.
Specific examples of the C6-18 aromatic hydrocarbon ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a triphenylene ring, a tetracene ring, an indane ring, an indene ring, a fluorene ring, and a biphenyl ring. Of these, a benzene ring, a naphthalene ring, a phenanthrene ring, and a fluorene ring are more preferable.
The aromatic heterocycle of C4 to 10 is preferably a 5-membered to 10-membered heterocycle containing 1 to 3 selected from a nitrogen atom, an oxygen atom and a sulfur atom as the heteroatom, and specifically, pyrrole. Examples thereof include a ring, a furan ring, a thiophene ring, an indole ring, a benzofuran ring, a benzothiophene ring, a carbazole ring, a pyrazole ring, an indazole ring, an imidazole ring, a pyridine ring, a quinoline ring, and an isoquinoline ring. Of these, a 5-membered to 8-membered heterocycle containing 1 to 3 selected from a nitrogen atom, an oxygen atom and a sulfur atom is preferable as the heteroatom, and a pyrrole ring, a furan ring, a thiophene ring, an indole ring and a benzofuran ring are preferable. , Benzothiophene ring, carbazole ring, pyrazole ring, indole ring are more preferable.
The aromatic ring of Ra may be substituted with 1 to 3 halogen atoms.

Rbは、水素原子、又は前記式(a)で表される基を示す。
式(a)中のr、sは、それぞれ0~3の整数かつr+sが0~4を示す。
rは、0~4が好ましく、1~3がより好ましく、1~2がさらに好ましい。
Rb represents a hydrogen atom or a group represented by the above formula (a).
R and s in the formula (a) are integers of 0 to 3 and r + s is 0 to 4, respectively.
r is preferably 0 to 4, more preferably 1 to 3, and even more preferably 1 to 2.

r個のZは、それぞれ独立して-O-、-S-、-C(=O)O-、-C(=O)NH-又は-NR18-(R18は水素原子、アルキル基又はアラルキル基を示す。)を示す。
ここで、R18としては、水素原子、C1~10のアルキル基又はC7~20のアラルキル基が好ましい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などが挙げられる。
アラルキル基としては、C7~16アラルキル基、例えば、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルプロピル基、ナフチルメチル基、1-ナフチルエチル基などが挙げられる。
The r Zs are independently -O-, -S-, -C (= O) O-, -C (= O) NH- or -NR 18- (R 18 is a hydrogen atom, an alkyl group or It indicates an aralkyl group.).
Here, as R 18 , a hydrogen atom, an alkyl group of C1 to 10 or an aralkyl group of C7 to 20 is preferable. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group and a hexyl group.
Examples of the aralkyl group include a C7 to 16 aralkyl group, for example, a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylpropyl group, a naphthylmethyl group, a 1-naphthylethyl group and the like.

r個のR15は、独立して酸素原子を介してシリル基又は脂肪族炭化水素基で置換されていてもよい脂肪族炭化水素基を有する有機基を示し;
s個のR16は、それぞれ独立して酸素原子を介してシリル基又は脂肪族炭化水素基で置換されていてもよい脂肪族炭化水素基を有する有機基を示す。
15及びR16で表される酸素原子を介してシリル基又は脂肪族炭化水素基で置換されていてもよい脂肪族炭化水素基を有する有機基は、前記のR12及びR13と同じものが挙げられ、前記のR12及びR13と同じものが好ましい。
The r R 15s represent organic groups having an aliphatic hydrocarbon group which may be independently substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom;
The s R 16s represent organic groups having an aliphatic hydrocarbon group which may be independently substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom.
The organic group having an aliphatic hydrocarbon group which may be substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom represented by R 15 and R 16 is the same as that of R 12 and R 13 described above. The same as R 12 and R 13 described above is preferable.

14は、水素原子を示すか、R11と一緒になって単結合を示して、環A及び環Bと共にフルオレン環を形成するか,又は酸素原子を介して環A及び環Bと共にキサンテン環を形成してもよい。 R 14 either exhibits a hydrogen atom or exhibits a single bond with R 11 to form a fluorene ring with rings A and B, or a xanthene ring with rings A and B via an oxygen atom. May be formed.

環Bは、r個のZR15に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、及びハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよい。
ハロゲン原子としては、塩素原子、フッ素原子、臭素原子、ヨウ素原子が挙げられる。ハロゲン原子で置換されていてもよいC1-6アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ジクロロメチル基、トリクロロメチル基、トリフルオロメチル基などが挙げられる。ハロゲン原子で置換されていてもよいC1-6アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基、トリクロロメトキシ基、トリフルオロメトキシ基などが挙げられる。
Ring B is a group consisting of a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom, in addition to r ZR 15 . It may have a substituent selected from.
Examples of the halogen atom include a chlorine atom, a fluorine atom, a bromine atom and an iodine atom. Examples of the C1-6 alkyl group that may be substituted with a halogen atom include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group and a hexyl group. , Dichloromethyl group, trichloromethyl group, trifluoromethyl group and the like. Examples of the C1-6 alkoxy group which may be substituted with a halogen atom include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butyloxy group, an isobutyloxy group, a sec-butyloxy group, a tert-butyloxy group and a trichloromethoxy. Examples include a group and a trifluoromethoxy group.

Yは、ヒドロキシ基、NHR19(R19は水素原子、アルキル基又はアラルキル基を示す。)又はハロゲン原子を示す。
ここで、R19としては、水素原子、C1~10のアルキル基又はC7~20のアラルキル基が好ましい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などが挙げられる。
アラルキル基としては、C7~16アラルキル基、例えば、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルプロピル基、ナフチルメチル基、1-ナフチルエチル基などが挙げられる。
Y represents a hydroxy group, NHR 19 (R 19 indicates a hydrogen atom, an alkyl group or an aralkyl group) or a halogen atom.
Here, as R 19 , a hydrogen atom, an alkyl group of C1 to 10 or an aralkyl group of C7 to 20 is preferable. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a pentyl group and a hexyl group.
Examples of the aralkyl group include a C7 to 16 aralkyl group, for example, a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylpropyl group, a naphthylmethyl group, a 1-naphthylethyl group and the like.

本発明の製造法に用いられる原料の一つである、液相ペプチド合成用担体が結合したアミノ酸又は液相ペプチド合成用担体が結合したペプチドとは、アミノ酸又はペプチドの反応性基の一つが前記の液相ペプチド合成用担体と結合しており、少なくとも一つのアミノ基が反応性の状態であるアミノ酸又はペプチドをいう。好ましくは、アミノ酸又はペプチドのカルボキシル基が前記の液相ペプチド合成用担体と結合し、一方、アミノ基は保護されておらず反応性であるものである。液相ペプチド合成用担体が結合したアミノ酸アミドとは、アミノ酸アミドの少なくとも一つのアミド基が前記の液相ペプチド合成用担体と結合しており、少なくとも一つのアミノ基は保護されておらず反応性であるアミノ酸アミドをいう。
なお、液相ペプチド合成用担体が結合したアミノ酸、ペプチド又はアミノ酸アミドが、水酸基、アミノ基、グアニジル基、カルボキシル基、チオール基、インドール基、イミダゾール基等の反応性に富む官能基を有する場合、これらの官能基にペプチド合成で用いられる一般的な保護基が導入されていてもよく、反応終了後に、必要に応じて保護基を脱離、除去することで目的化合物を得ることができる。その場合の水酸基の保護基としてはtBu基、Trt基、Bz基、アセチル基、シリル基等が挙げられ、アミノ基の保護基としては、Boc基、Fmoc基、Cbz基、Trt基、Mmt基、ivDde基等が挙げられ、グアニジル基の保護基としては、Pbf基、Pmc基、ニトロ基等が挙げられ、カルボキシル基の保護基としてはtBu基、メチル基、エチル基、Bz基等が挙げられ、チオール基の保護基としては、Trt基、Acm基、tBu基、S-tBu基等が挙げられ、インドール基の保護基としては、Boc基等が挙げられ、イミダゾール基の保護基としては、Boc基、Bom基、Bum基、Trt基等を挙げることができる。
An amino acid to which a carrier for synthesizing a liquid phase peptide or a peptide to which a carrier for synthesizing a liquid phase peptide is bound, which is one of the raw materials used in the production method of the present invention, is one of the reactive groups of the amino acid or the peptide. An amino acid or peptide that is bound to a carrier for synthesizing a liquid phase peptide and has at least one amino group in a reactive state. Preferably, the carboxyl group of the amino acid or peptide binds to the carrier for liquid phase peptide synthesis, while the amino group is unprotected and reactive. The amino acid amide to which the carrier for synthesizing the liquid phase peptide is bound is that at least one amide group of the amino acid amide is bound to the carrier for synthesizing the liquid phase peptide, and at least one amino group is unprotected and reactive. Amino acid amide.
When the amino acid, peptide or amino acid amide to which the carrier for liquid phase peptide synthesis is bound has a highly reactive functional group such as a hydroxyl group, an amino group, a guanidyl group, a carboxyl group, a thiol group, an indol group and an imidazole group. A general protective group used in peptide synthesis may be introduced into these functional groups, and the target compound can be obtained by removing and removing the protective group as necessary after the reaction is completed. Examples of the hydroxyl group protective group include a tBu group, a Trt group, a Bz group, an acetyl group, a silyl group and the like, and examples of the amino group protective group include a Boc group, an Fmoc group, a Cbz group, a Trt group and an Mmt group. , IvDde group and the like, examples of the guanidyl group protecting group include Pbf group, Pmc group, nitro group and the like, and examples of the carboxyl group protecting group include tBu group, methyl group, ethyl group, Bz group and the like. Examples of the thiol group protective group include a Trt group, an Acm group, a tBu group, an S—tBu group and the like, and examples of the indol group protection group include a Boc group and the like, and examples of the imidazole group protection group include a Boc group and the like. , Boc group, Bom group, Bum group, Trt group and the like.

前記の液相ペプチド合成用担体が結合したアミノ酸、ペプチド又はアミノ酸アミドは、液相ペプチド合成用担体をTHF等の有機溶媒に溶解し、例えばBoc保護アミノ酸、ペプチド又はアミノ酸アミド及び縮合剤、例えば、N,N’-ジイソプロピルカルボジイミド(DIPCI)を添加して縮合を行い、アミノ酸、ペプチド又はアミノ酸アミドのカルボキシル基に液相ペプチド合成用担体が結合した中間体であるN-Boc-液相合成用担体保護アミノ酸、ペプチド又はアミノ酸アミドを製造できる。 The amino acid, peptide or amino acid amide to which the liquid phase peptide synthesis carrier is bound dissolves the liquid phase peptide synthesis carrier in an organic solvent such as THF, and for example, a Boc-protected amino acid, peptide or amino acid amide and a condensing agent, for example. N, N'-diisopropylcarbodiimide (DIPCI) is added to perform condensation, and an N-Boc-liquid phase synthesis carrier, which is an intermediate in which a liquid phase peptide synthesis carrier is bound to the carboxyl group of an amino acid, peptide or amino acid amide. Protected amino acids, peptides or amino acid amides can be produced.

また、液相ペプチド合成用担体は、前記アミノ酸又はぺプチドのカルボキシル基にリンカーを介して結合させることもできる。
ここでいうリンカーとは、リンカーの一方が、前記アミノ酸又はペプチドのカルボキシル基と結合し、他方が液相ペプチド合成用担体と結合する2つの反応基をもつ有機基である。好ましいリンカーは、分子量が約2000以下(好ましくは約1500以下、より好ましくは約1000以下)の有機基であって、反応基として、同じでも異なってもよく、アミノ基、カルボキシル基、及びハロメチル基からなる群より選ばれる少なくとも2つの基を分子内にもつ化合物である。リンカーとして、例えば、以下の化合物を挙げることができる。
Further, the carrier for liquid phase peptide synthesis can also be bound to the carboxyl group of the amino acid or peptide via a linker.
The term "linker" as used herein is an organic group having two reactive groups, one of which binds to the carboxyl group of the amino acid or peptide and the other of which binds to a carrier for liquid phase peptide synthesis. A preferred linker is an organic group having a molecular weight of about 2000 or less (preferably about 1500 or less, more preferably about 1000 or less), and the reactive groups may be the same or different, as well as an amino group, a carboxyl group, and a halomethyl group. It is a compound having at least two groups in the molecule selected from the group consisting of. Examples of the linker include the following compounds.

Figure 0007063408000011
Figure 0007063408000011

Figure 0007063408000012
(式中、Yは1~6、好ましくは1~4の整数である)。
Figure 0007063408000012
(In the formula, Y is an integer of 1 to 6, preferably 1 to 4).

Figure 0007063408000013
(式中、Xはハロゲン原子、好ましくは塩素又は臭素である)。
Figure 0007063408000013
(In the formula, X is a halogen atom, preferably chlorine or bromine).

Figure 0007063408000014
(式中、Zは2~40、好ましくは2~35、より好ましくは、2~28の整数である)。
(上記リンカーの構造式は、側鎖官能基等に結合する前の状態かつ液相ペプチド合成用担体と結合する前の状態を示す)。
Figure 0007063408000014
(In the formula, Z is an integer of 2 to 40, preferably 2 to 35, more preferably 2 to 28).
(The structural formula of the linker indicates a state before binding to a side chain functional group or the like and a state before binding to a carrier for liquid phase peptide synthesis).

もう一方の原料である、アミノ保護基でアミノ基が保護されたアミノ酸又はペプチドとは、アミノ酸又はペプチドのアミノ基がアミノ保護基で保護されており、一方、カルボキシル基は保護されておらず反応性であるアミノ酸又はペプチドを意味する。アミノ酸又はペプチドが1以上のアミノ基を有する場合は、少なくとも一つのアミノ基がアミノ保護基で保護されていれば良い。
アミノ保護基としては、Fmоc基、Bоc基、Cbz基、Ac基などが挙げられ、このうち塩基性条件で脱保護できるFmоc基がより好ましい。
なお、アミノ保護基でアミノ基が保護されたアミノ酸又はペプチドが、水酸基、アミノ基、グアニジル基、カルボキシル基、チオール基、インドール基、イミダゾール基等の反応性に富む官能基を有する場合、これらの官能基にペプチド合成で用いられる一般的な保護基が導入されていてもよく、反応終了後の任意の時点で、必要に応じて保護基を除去することで目的化合物を得ることができる。
水酸基の保護基としてはtBu基、Trt基、Bz基、アセチル基、シリル基等が挙げられ、アミノ基の保護基としては、Boc基、Fmoc基、Cbz基、Trt基、Mmt基、ivDde基等が挙げられ、グアニジル基の保護基としては、Pbf基、Pmc基、ニトロ基等が挙げられ、カルボキシル基の保護基としてはtBu基、メチル基、エチル基、Bz基等が挙げられ、チオール基の保護基としては、Trt基、Acm基、tBu基、S-tBu基等が挙げられ、インドール基の保護基としては、Boc基等が挙げられ、イミダゾール基の保護基としては、Boc基、Bom基、Bum基、Trt基等を挙げることができる。
The other raw material, an amino acid or peptide whose amino group is protected by an amino-protecting group, is a reaction in which the amino group of the amino acid or peptide is protected by an amino-protecting group, while the carboxyl group is not protected. Means an amino acid or peptide that is of sex. When an amino acid or peptide has one or more amino groups, it is sufficient that at least one amino group is protected by an amino protecting group.
Examples of the amino-protecting group include an Fmоc group, a Bоc group, a Cbz group, an Ac group and the like, and among these, the Fmоc group that can be deprotected under basic conditions is more preferable.
When the amino acid or peptide whose amino group is protected by the amino-protecting group has a highly reactive functional group such as a hydroxyl group, an amino group, a guanidyl group, a carboxyl group, a thiol group, an indol group and an imidazole group, these A general protective group used in peptide synthesis may be introduced into the functional group, and the target compound can be obtained by removing the protective group as necessary at any time after the reaction is completed.
Examples of the protecting group of the hydroxyl group include a tBu group, a Trt group, a Bz group, an acetyl group and a silyl group, and examples of the protecting group of the amino group include a Boc group, an Fmoc group, a Cbz group, a Trt group, an Mmt group and an ivDde group. Examples of the guanidyl group protective group include a Pbf group, a Pmc group, a nitro group and the like, and examples of the carboxyl group protective group include a tBu group, a methyl group, an ethyl group, a Bz group and the like, and thiol. Examples of the protective group of the group include a Trt group, an Acm group, a tBu group, an S—tBu group and the like, examples of the protective group of the indol group include a Boc group and the like, and examples of the protective group of the imidazole group include a Boc group. , Bom group, Bum group, Trt group and the like.

アミノ保護基でアミノ基が保護されたアミノ酸又はペプチドは、例えば、アミノ保護基でアミノ基を保護したいアミノ酸又はペプチドに、例えばTHFなどの溶媒中でクロロギ酸9-フルオレニルメチルエステルを縮合剤の存在下に反応させることにより、製造することができる。 The amino acid or peptide whose amino group is protected by an amino-protecting group is, for example, an amino acid or peptide whose amino group is to be protected by an amino-protecting group, and a condensing agent of chlorogenic acid 9-fluorenylmethyl ester in a solvent such as THF. It can be produced by reacting in the presence of.

本発明の工程aは前記の原料を縮合させる工程であり、工程aに用いられる反応溶媒は有機溶媒を含む溶媒である。本発明で用いる前記の液相ペプチド合成用担体でアミノ酸、ペプチド又はアミノ酸アミドを保護すれば、当該液相ペプチド合成用担体が結合したアミノ酸、ペプチド又はアミノ酸アミドは、有機溶媒に溶解するようになるため、液相ペプチド合成が可能となる。
そのような有機溶媒としては、例えば、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、シクロヘキサン、シクロペンチルメチルエーテル(CPME)、メチル-tert-ブチルエーテル(MTBE)、2-メチルTHF、4-メチルテトラヒドロピラン(4-メチルTHP)、酢酸イソプロピル、クロロホルム、ジクロロメタン、N-メチルピロリドンを挙げることができ、好ましくは、THF、DMF、シクロヘキサン、CPME,MTBE、2-メチルTHF、4-メチルTHP、酢酸イソプロピル、N-メチルピロリドンである。さらに、上記溶媒の2種以上の混合溶媒でもよい。
The step a of the present invention is a step of condensing the raw materials, and the reaction solvent used in the step a is a solvent containing an organic solvent. If the amino acid, peptide or amino acid amide is protected by the above-mentioned liquid phase peptide synthesis carrier used in the present invention, the amino acid, peptide or amino acid amide bound to the liquid phase peptide synthesis carrier will be dissolved in an organic solvent. Therefore, liquid phase peptide synthesis becomes possible.
Such organic solvents include, for example, tetrahydrofuran (THF), dimethylformamide (DMF), cyclohexane, cyclopentyl methyl ether (CPME), methyl-tert-butyl ether (MTBE), 2-methylTHF, 4-methyltetrahydropyran ( 4-Methyl THP), isopropyl acetate, chloroform, dichloromethane, N-methylpyrrolidone can be mentioned, preferably THF, DMF, cyclohexane, CPME, MTBE, 2-methyl THF, 4-methylTHP, isopropylacetate, N. -Methylpyrrolidone. Further, a mixed solvent of two or more kinds of the above solvents may be used.

縮合反応は、前記有機溶媒を含む溶媒中で、前記液相ペプチド合成用担体が結合したアミノ酸、ペプチド又はアミノ酸アミド(以下、液相ペプチド合成用担体結合ペプチドと略する)と、前記アミノ保護基でアミノ基が保護されたアミノ酸又はペプチド(以下、アミノ基保護アミノ酸と略する)と、縮合剤とを混合することにより行うことができる。 The condensation reaction involves an amino acid, a peptide or an amino acid amide (hereinafter abbreviated as a carrier-binding peptide for liquid phase peptide synthesis) to which the carrier for liquid phase peptide synthesis is bound in a solvent containing the organic solvent, and the amino protective group. It can be carried out by mixing an amino acid or peptide having an amino group protected in (hereinafter, abbreviated as amino group protected amino acid) and a condensing agent.

液相ペプチド合成用担体結合ペプチドに対する、アミノ基保護アミノ酸の使用量は、液相ペプチド合成用担体結合ペプチドに対して、通常1.01~4当量、好ましくは1.03~3当量、より好ましくは1.05~2当量、さらに好ましくは1.1~1.5当量である。本発明のペプチド製造法では、未反応のアミノ酸の活性エステルをその後に添加するスカベンジャーで捕捉して不活性化することができる。そのため、過剰のアミノ基保護アミノ酸を用いても、残存の問題が生じない。 The amount of the amino group-protected amino acid used for the carrier-binding peptide for liquid phase peptide synthesis is usually 1.01 to 4 equivalents, preferably 1.03 to 3 equivalents, more preferably with respect to the carrier-bound peptide for liquid phase peptide synthesis. Is 1.05 to 2 equivalents, more preferably 1.1 to 1.5 equivalents. In the peptide production method of the present invention, the active ester of an unreacted amino acid can be captured and inactivated by a scavenger added thereafter. Therefore, even if an excess of amino group-protected amino acids is used, the problem of residual does not occur.

縮合剤としては、ペプチド合成において一般的に用いられる縮合剤を、本発明においても用いることができる、例えば、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホニウムクロリド(DMT-MM)、O-(ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート(HBTU)、O-(7-アザベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート(HATU)、O-(6-クロロベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート(HBTU(6-Cl))、O-(ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムテトラフルオロボレート(TBTU)、O-(6-クロロベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムテトラフルオロボレート(TCTU)、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩(COMU)、ジイソプロピルカルボジイミド(DIPCI)、ジシクロヘキシルカルボジイミド(DCC)、及び1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(WSC)を挙げることができる。好ましくは、DMT-MM、HBTU、HATU、又はCOMUである。縮合剤の使用量は、液相ペプチド合成用担体結合ペプチドに対して、好ましくは1~4当量、より好ましくは1~2当量、さらに好ましくは1.05~1.3当量である。 As the condensing agent, a condensing agent generally used in peptide synthesis can also be used in the present invention, for example, 4- (4,6-dimethoxy-1,3,5-triazine-2-yl)-. 4-Methylmorphonium chloride (DMT-MM), O- (benzotriazole-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU), O- (7-azabenzo) Triazole-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (HATU), O- (6-chlorobenzotriazole-1-yl) -1,1,3,3-tetramethyl Uronium hexafluorophosphate (HBTU (6-Cl)), O- (benzotriazole-1-yl) -1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), O- (6-chloro Benzotriazole-1-yl) -1,1,3,3-tetramethyluronium tetrafluoroborate (TCTU), (1-cyano-2-ethoxy-2-oxoethylideneaminooxy) dimethylamino-morpholino-carbodinium Hexafluorophosphate (COMU), diisopropylcarbodiimide (DIPCI), dicyclohexylcarbodiimide (DCC), and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (WSC) can be mentioned. Preferably, it is DMT-MM, HBTU, HATU, or COMU. The amount of the condensing agent used is preferably 1 to 4 equivalents, more preferably 1 to 2 equivalents, still more preferably 1.05 to 1.3 equivalents, relative to the carrier-binding peptide for liquid phase peptide synthesis.

縮合工程において、反応を促進し、ラセミ化などの副反応を抑制するために、好ましくは、活性化剤が添加される。ここで活性化剤とは、縮合剤との共存化で、アミノ酸を、対応する活性エステル、対称酸無水物などに導いて、ペプチド結合(アミド結合)を形成させやすくする試薬である。活性化剤としては、ペプチド合成において一般的に用いられる活性化剤を用いることができる。例えば、1-ヒドロキシベンゾトリアゾール(HOBt)、1-ヒドロキシ-1H-1,2,3-トリアゾールカルボン酸エチル(HOCt)、1-ヒドロキシ-7-アザベンゾトリアゾール(HOAt)、3-ヒドロキシ-4-ケトベンゾトリアジン(HOOBt)、N-ヒドロキシコハク酸イミド(HOSu)、N-ヒドロキシフタルイミド(HOPht)、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミド(HONb)、ペンタフルオロフェノール、シアノ(ヒドロキシイミノ)酢酸エチル(Oxyma)等を挙げることができる。好ましくは、HOBt、HOOBt、HOCt、HOAt、HONb、HOSu、Oxymaである。活性化剤の使用量は、液相ペプチド合成用担体結合ペプチドに対して、好ましくは1~4当量、より好ましくは1~2当量、さらに好ましくは1.05~1.3当量である。 In the condensation step, an activator is preferably added in order to promote the reaction and suppress side reactions such as racemization. Here, the activator is a reagent that, when coexistent with a condensing agent, leads an amino acid to a corresponding active ester, symmetric acid anhydride, or the like to facilitate the formation of a peptide bond (amide bond). As the activator, an activator generally used in peptide synthesis can be used. For example, 1-hydroxybenzotriazole (HOBt), 1-hydroxy-1H-1,2,3-triazole ethyl carboxylate (HOCt), 1-hydroxy-7-azabenzotriazole (HOAt), 3-hydroxy-4- Ketobenzotriazine (HOOBt), N-hydroxysuccinimide (HOSu), N-hydroxyphthalimide (HOPht), N-hydroxy-5-norbornen-2,3-dicarboxyimide (HONb), pentafluorophenol, cyano ( Hydroxyimino) ethyl acetate (Oxyma) and the like can be mentioned. Preferred are HOBt, HOOBt, HOCt, HOAt, HONb, HOSu, and Oxyma. The amount of the activator used is preferably 1 to 4 equivalents, more preferably 1 to 2 equivalents, still more preferably 1.05 to 1.3 equivalents, relative to the carrier-binding peptide for liquid phase peptide synthesis.

前記溶媒の使用量は、液相ぺプチド合成用担体結合ペプチド等を溶解した濃度が、好ましくは0.1mM~1Mとなる量であり、より好ましくは1mM~0.5Mとなる量である。
反応温度は、ペプチド合成において一般的に用いられる温度、例えば、-20~40℃が好ましく、より好ましくは0~30℃である。反応時間(1サイクルの時間)は、通常0.5~30時間である。
The amount of the solvent used is such that the concentration in which the carrier-binding peptide for liquid phase peptide synthesis is dissolved is preferably 0.1 mM to 1 M, and more preferably 1 mM to 0.5 M.
The reaction temperature is preferably a temperature generally used in peptide synthesis, for example, −20 to 40 ° C., more preferably 0 to 30 ° C. The reaction time (time for one cycle) is usually 0.5 to 30 hours.

工程bは、縮合反応後の反応液に、アミノスルホン酸類、アミノ硫酸類、アミノホスホン酸類、アミノリン酸類及びアミノアルコール類から選ばれるアミノ酸活性エステルスカベンジャーを添加する工程である。
この工程は、縮合反応で副生するアミノ酸活性エステルをスカベンジする工程であり、当該スカベンジャーとしてアミノスルホン酸類、アミノ硫酸類、アミノホスホン酸類、アミノリン酸類及びアミノアルコール類から選ばれる化合物を用いることを特徴とする。これらの化合物をスカベンジャーとして用いることにより、系内を酸性条件とすることなく、アミノ酸活性エステルを捕捉、除去できる。
Step b is a step of adding an amino acid active ester scavenger selected from aminosulfonic acids, aminosulfates, aminophosphonic acids, aminophosphates and aminoalcohols to the reaction solution after the condensation reaction.
This step is a step of scavenging the amino acid active ester produced as a by-product in the condensation reaction, and is characterized by using a compound selected from aminosulfonic acids, aminosulfates, aminophosphonic acids, aminophosphates and aminoalcohols as the scavenger. And. By using these compounds as scavengers, amino acid active esters can be captured and removed without making the system acidic.

当該アミノ酸活性エステルスカベンジャーとしては、次の一般式(1)で表されるアミノスルホン酸類及びアミノ硫酸類; Examples of the amino acid active ester scavenger include aminosulfonic acids and aminosulfuric acids represented by the following general formula (1);

Figure 0007063408000015
Figure 0007063408000015

(R1は炭素数1~10の2価の有機基を示し、X1は単結合又は酸素原子を示す)
一般式(2)で表されるアミノホスホン酸類及びアミノリン酸類;
(R 1 indicates a divalent organic group having 1 to 10 carbon atoms, and X 1 indicates a single bond or an oxygen atom)
Aminophosphonic acids and aminophosphates represented by the general formula (2);

Figure 0007063408000016
Figure 0007063408000016

(R2は炭素数1~10の2価の有機基を示し、X2は単結合又は酸素原子を示す)
一般式(3)で表されるアミノアルコール類が好ましい。
(R 2 indicates a divalent organic group having 1 to 10 carbon atoms, and X 2 indicates a single bond or an oxygen atom)
Amino alcohols represented by the general formula (3) are preferable.

Figure 0007063408000017
Figure 0007063408000017

(nは0~20の整数を示し、R3、R4はそれぞれ独立して水素原子、メチル基、エチル基、又はヒドロキシメチル基を示す) (N indicates an integer from 0 to 20, and R 3 and R 4 independently indicate a hydrogen atom, a methyl group, an ethyl group, or a hydroxymethyl group).

一般式(1)中のR1及び一般式(2)のR2は、独立して、炭素数1~10の2価の有機基であり、好ましくは、炭素数1~10の直鎖又は分岐鎖のアルキレン基、炭素数6~10のアリーレン基が挙げられる。具体的には、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ブチレン基、ペンタメチレン基、フェニレン基、ナフチレン基などが挙げられる。
このうち、これらの化合物の溶解性の点から、炭素数1~6の直鎖又は分岐鎖のアルキレン基、炭素数6~8のアリーレン基がより好ましく、炭素数1~6の直鎖又は分岐際のアルキレン基がさらに好ましく、炭素数1~5の直鎖又は分岐鎖のアルキレン基がよりさらに好ましく、炭素数1~3の直鎖アルキレン基がさらに好ましく、炭素数1又は2の直鎖アルキレン基が最も好ましい。
一般式(1)において、X1が単結合の場合はアミノスルホン酸類であり、X1が酸素原子の場合はアミノ硫酸類である。
一般式(2)において、X2が単結合の場合はアミノホスホン酸類であり、X2が酸素原子の場合はアミノリン酸類である。
R 1 in the general formula (1) and R 2 in the general formula (2) are independently divalent organic groups having 1 to 10 carbon atoms, preferably linear or linear groups having 1 to 10 carbon atoms. Examples thereof include an alkylene group of a branched chain and an arylene group having 6 to 10 carbon atoms. Specific examples thereof include a methylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a butylene group, a pentamethylene group, a phenylene group and a naphthylene group.
Of these, from the viewpoint of solubility of these compounds, a linear or branched alkylene group having 1 to 6 carbon atoms and an arylene group having 6 to 8 carbon atoms are more preferable, and a linear or branched group having 1 to 6 carbon atoms is more preferable. The alkylene group is more preferable, the linear or branched alkylene group having 1 to 5 carbon atoms is more preferable, the linear alkylene group having 1 to 3 carbon atoms is further preferable, and the linear alkylene group having 1 or 2 carbon atoms is more preferable. The group is most preferred.
In the general formula (1), when X 1 is a single bond, it is an aminosulfonic acid, and when X 1 is an oxygen atom, it is an aminosulfate.
In the general formula (2), when X 2 is a single bond, it is an aminophosphonic acid, and when X 2 is an oxygen atom, it is an aminophosphoric acid.

一般式(3)中のnは、0~20の整数を示す。このうちnは、0又は2~20が好ましく、0又は2~6がより好ましく、0又は2~4がさらに好ましい。一般式(3)中のR3、R4は、水素原子またはヒドロキシルメチル基が好ましい。 N in the general formula (3) represents an integer of 0 to 20. Of these, n is preferably 0 or 2 to 20, more preferably 0 or 2 to 6, and even more preferably 0 or 2 to 4. As R 3 and R 4 in the general formula (3), a hydrogen atom or a hydroxylmethyl group is preferable.

工程bにおける本発明のスカベンジャーの添加量は、理論上残存する活性アミノ酸エステル1当量に対して、好ましくは1~10当量、より好ましくは1~6当量、さらに好ましくは1~4当量である。本発明のスカベンジャーの添加量が少なすぎると、アミノ酸活性エステルのスカベンジ(捕捉)が不充分となり、残存したアミノ酸活性エステルと工程dで生成したアミノ基が反応するダブルヒットが起こり、純度、収率を低下させる。一方、多すぎると、同時に脱アミノ保護基反応が進行し、残存しているアミノ酸活性エステルが、アミノ保護基の脱離により再生したアミノ基と反応するダブルヒットが起こり、純度、収率を低下させる。 The amount of the scavenger of the present invention added in step b is preferably 1 to 10 equivalents, more preferably 1 to 6 equivalents, still more preferably 1 to 4 equivalents, relative to 1 equivalent of the theoretically remaining active amino acid ester. If the amount of the scavenger added in the present invention is too small, the scavenging (capture) of the amino acid active ester becomes insufficient, and a double hit occurs in which the remaining amino acid active ester reacts with the amino group generated in step d, resulting in purity and yield. To reduce. On the other hand, if the amount is too large, the deaminoprotecting group reaction proceeds at the same time, and the remaining amino acid active ester reacts with the regenerated amino group due to the desorption of the aminoprotecting group, resulting in a double hit, which lowers the purity and yield. Let me.

また、工程bの別の態様として、以下を挙げることができる。
工程bの別の態様は、縮合反応後の反応液に、アミノスルホン酸類、アミノホスホン酸類、アミノリン酸類及びアミノアルコール類から選ばれるアミノ酸活性エステルスカベンジャーを添加する工程である。
この工程は、縮合反応で副生するアミノ酸活性エステルをスカベンジする工程であり、当該スカベンジャーとしてアミノスルホン酸類、アミノホスホン酸類、アミノリン酸類及びアミノアルコール類から選ばれる化合物を用いることを特徴とする。これらの化合物をスカベンジャーとして用いることにより、系内を酸性条件とすることなく、アミノ酸活性エステルが除去でき、固液分離や分液不良を解消した。
Further, as another aspect of the step b, the following can be mentioned.
Another aspect of step b is a step of adding an amino acid active ester scavenger selected from aminosulfonic acids, aminophosphonic acids, aminophosphates and aminoalcohols to the reaction solution after the condensation reaction.
This step is a step of scavenging the amino acid active ester produced as a by-product in the condensation reaction, and is characterized by using a compound selected from aminosulfonic acids, aminophosphonic acids, aminophosphates and aminoalcohols as the scavenger. By using these compounds as scavengers, amino acid active esters could be removed without making the system acidic, and solid-liquid separation and liquid separation defects were eliminated.

当該アミノ酸活性エステルスカベンジャーとしては、次の一般式(1a)で表されるアミノスルホン酸類; The amino acid active ester scavenger includes aminosulfonic acids represented by the following general formula (1a);

Figure 0007063408000018
Figure 0007063408000018

(R1は炭素数1~10の2価の有機基を示す)
一般式(2)で表されるアミノホスホン酸類及びアミノリン酸類;
(R 1 indicates a divalent organic group having 1 to 10 carbon atoms)
Aminophosphonic acids and aminophosphates represented by the general formula (2);

Figure 0007063408000019
Figure 0007063408000019

(R2は炭素数1~10の2価の有機基を示し、X2は単結合又は酸素原子を示す)
一般式(3)で表されるアミノアルコール類が好ましい。
(R 2 indicates a divalent organic group having 1 to 10 carbon atoms, and X 2 indicates a single bond or an oxygen atom)
Amino alcohols represented by the general formula (3) are preferable.

Figure 0007063408000020
Figure 0007063408000020

(nは0~20の整数を示し、R3、R4はそれぞれ独立して水素原子、メチル基、エチル基、又はヒドロキシメチル基を示す) (N indicates an integer from 0 to 20, and R 3 and R 4 independently indicate a hydrogen atom, a methyl group, an ethyl group, or a hydroxymethyl group).

一般式(1a)中のR1及び一般式(2)のR2は、独立して、炭素数1~10の2価の有機基であり、好ましくは、炭素数1~10の直鎖又は分岐鎖のアルキレン基、炭素数6~10のアリーレン基が挙げられる。具体的には、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ブチレン基、ペンタメチレン基、フェニレン基、ナフチレン基などが挙げられる。
このうち、これらの化合物の溶解性の点から、炭素数1~6の直鎖又は分岐鎖のアルキレン基、炭素数6~8のアリーレン基がより好ましく、炭素数1~6の直鎖又は分岐際のアルキレン基がさらに好ましく、炭素数1~5の直鎖又は分岐鎖のアルキレン基がよりさらに好ましく、炭素数1~3の直鎖アルキレン基がさらに好ましく、炭素数1又は2の直鎖アルキレン基が最も好ましい。
一般式(1a)の化合物はアミノスルホン酸類である。
一般式(2)において、X2が単結合の場合はアミノホスホン酸類であり、X2が酸素原子の場合はアミノリン酸類である。
R 1 in the general formula (1a) and R 2 in the general formula (2) are independently divalent organic groups having 1 to 10 carbon atoms, preferably linear or linear groups having 1 to 10 carbon atoms. Examples thereof include an alkylene group of a branched chain and an arylene group having 6 to 10 carbon atoms. Specific examples thereof include a methylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a butylene group, a pentamethylene group, a phenylene group and a naphthylene group.
Of these, from the viewpoint of solubility of these compounds, a linear or branched alkylene group having 1 to 6 carbon atoms and an arylene group having 6 to 8 carbon atoms are more preferable, and a linear or branched group having 1 to 6 carbon atoms is more preferable. The alkylene group is more preferable, the linear or branched alkylene group having 1 to 5 carbon atoms is more preferable, the linear alkylene group having 1 to 3 carbon atoms is further preferable, and the linear alkylene group having 1 or 2 carbon atoms is more preferable. The group is most preferred.
The compound of the general formula (1a) is an aminosulfonic acid.
In the general formula (2), when X 2 is a single bond, it is an aminophosphonic acid, and when X 2 is an oxygen atom, it is an aminophosphoric acid.

一般式(3)中のnは、0~20の整数を示す。このうちnは、0又は2~20が好ましく、0又は2~6がより好ましく、0又は2~4がさらに好ましい。一般式(3)中のR3、R4は、水素原子またはヒドロキシルメチル基が好ましい。 N in the general formula (3) represents an integer of 0 to 20. Of these, n is preferably 0 or 2 to 20, more preferably 0 or 2 to 6, and even more preferably 0 or 2 to 4. As R 3 and R 4 in the general formula (3), a hydrogen atom or a hydroxylmethyl group is preferable.

工程bにおける本発明のスカベンジャーの添加量は、理論上残存する活性アミノ酸エステル1当量に対して、好ましくは1~10当量、より好ましくは1~6当量、さらに好ましくは1~4当量である。本発明のスカベンジャーの添加量が少なすぎると、アミノ酸活性エステルのスカベンジ(捕捉)が不充分となり、残存したアミノ酸活性エステルと工程cで生成したアミノ基が反応するダブルヒットが起こり、純度、収率を低下させる。一方、多すぎると、同時に脱アミノ保護基反応が進行し、残存しているアミノ酸活性エステルが、アミノ保護基の脱離により再生したアミノ基と反応するダブルヒットが起こり、純度、収率を低下させる。 The amount of the scavenger of the present invention added in step b is preferably 1 to 10 equivalents, more preferably 1 to 6 equivalents, still more preferably 1 to 4 equivalents, relative to 1 equivalent of the theoretically remaining active amino acid ester. If the amount of the scavenger added in the present invention is too small, the scavenging (capture) of the amino acid active ester becomes insufficient, and a double hit occurs in which the remaining amino acid active ester reacts with the amino group generated in step c, resulting in purity and yield. To reduce. On the other hand, if the amount is too large, the deaminoprotecting group reaction proceeds at the same time, and the remaining amino acid active ester reacts with the regenerated amino group due to the desorption of the aminoprotecting group, resulting in a double hit, which lowers the purity and yield. Let me.

工程cは、反応液中の前記アミノ保護基でアミノ基が保護された化合物のアミノ保護基を脱離する工程である。
当該アミノ保護基の脱離工程は、アミノ保護基の種類により相違する。例えば、アミノ保護基がFmoc基の場合は反応液を塩基性条件とすればよい。アミノ保護基がBoc基の場合は反応液を酸性条件とすればよい。アミノ保護基がCbz基の場合は接触還元すればよい。アミノ保護基がAc基の場合は、強酸又は強塩基条件で脱保護すればよい。このうち、ワンポット液相合成とするには、アミノ保護基をFmoc基とするのがより好ましい。
Step c is a step of removing the amino-protecting group of the compound whose amino-protecting group is protected by the amino-protecting group in the reaction solution.
The step of removing the amino-protecting group differs depending on the type of the amino-protecting group. For example, when the amino protecting group is an Fmoc group, the reaction solution may be used as a basic condition. When the amino-protecting group is a Boc group, the reaction solution may be subjected to acidic conditions. When the amino protecting group is a Cbz group, catalytic reduction may be performed. When the amino-protecting group is an Ac group, it may be deprotected under strong acid or strong base conditions. Of these, for one-pot liquid phase synthesis, it is more preferable to use an amino protecting group as an Fmoc group.

アミノ保護基がFmoc基の場合のアミノ保護基の脱離工程について説明する。
Fmoc脱離工程は、反応液を塩基性にできればよいが、アミン化合物、例えば、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)、1,4-ジアザビシクロ[2.2.2]-オクタン(DABCO)、トリエチルアミン、トリブチルアミンなどの3級アミン類;1-メチルピペラジン、4-アミノピペリジン、ジエチレントリアミン、トリアミノエチルアミン、1-エチルピペラジン、N,N-ジメチルエチレンジアミン、エチレンジアミン、ピぺリジン、ピペラジンなどの1級又は2級のアミノ基を少なくとも1つ持つ2価以上の水溶性アミン類を用いることができる。好ましくは、DBU、ピぺリジン、1-メチルピペラジン、4-アミノピペリジン、ジエチレントリアミンであり、より好ましくは、DBU、ピぺリジン、1-メチルピペラジンである。さらに好ましくはDBUである。
工程cにおいて添加するアミン化合物の当量は、系に存在するFmoc基の量に対して、1~30当量、好ましくは4~20当量、より好ましくは4~10当量である。
The step of removing the amino-protecting group when the amino-protecting group is an Fmoc group will be described.
The Fmoc desorption step may be such that the reaction solution can be basic, but amine compounds such as 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), 1,5-diazabicyclo [4.3]. .0] -5-nonen (DBN), 1,4-diazabicyclo [2.2.2] -octane (DABCO), triethylamine, tributylamine and other tertiary amines; 1-methylpiperazine, 4-aminopiperidine, Use divalent or higher water-soluble amines having at least one primary or secondary amino group such as diethylenetriamine, triaminoethylamine, 1-ethylpiperazine, N, N-dimethylethylenediamine, ethylenediamine, piperidine, piperazine. be able to. DBU, piperidine, 1-methylpiperazine, 4-aminopiperidine and diethylenetriamine are preferable, and DBU, piperidine and 1-methylpiperazine are more preferable. More preferably, it is DBU.
The equivalent of the amine compound added in step c is 1 to 30 equivalents, preferably 4 to 20 equivalents, more preferably 4 to 10 equivalents, relative to the amount of Fmoc groups present in the system.

また、前記アミン化合物に加えて、脱Fmoc反応により生じるDBF(ジベンゾフルベン)のトラッピング剤を添加するのが好ましい。ここで用いられるDBFのトラッピング剤としては、メルカプト化合物が挙げられる。用いることができるメルカプト化合物としては、メルカプト基を有し、DBFと反応した化合物が水溶性を示すものであれば特に限定されないが、例えばメルカプト脂肪酸又はそのアルカリ金属塩、下記の一般式(4)又は(5) Further, in addition to the amine compound, it is preferable to add a trapping agent of DBF (dibenzofulvene) generated by the de-Fmoc reaction. Examples of the DBF trapping agent used here include mercapto compounds. The mercapto compound that can be used is not particularly limited as long as it has a mercapto group and the compound that has reacted with DBF exhibits water solubility, but for example, a mercapto fatty acid or an alkali metal salt thereof, the following general formula (4). Or (5)

Figure 0007063408000021
Figure 0007063408000021

(式中、L1及びL2は、それぞれ2価の有機基を示し、Mは水素原子又はアルカリ金属を示す)
で表される化合物が挙げられる。
(In the formula, L1 and L2 each represent a divalent organic group, and M represents a hydrogen atom or an alkali metal).
Examples thereof include compounds represented by.

メルカプト脂肪酸又はそのアルカリ金属塩としては、メルカプトC1~20脂肪酸又はそのアルカリ金属塩が好ましく、メルカプトC1~6脂肪酸又はそのアルカリ金属塩がより好ましい。
一般式(4)又は(5)中L1及びL2は、それぞれ2価の有機基を示す。当該2価の有機基としては、炭素数1~10の2価の有機基が好ましく、より好ましくは、メルカプト基を有していてもよい炭素数1~10の直鎖又は分岐鎖のアルキレン基、メルカプト基を有していてもよい炭素数6~10のアリーレン基、メルカプト基を有していてもよい炭素数4~9のヘテロアリーレン基が挙げられる。具体的には、メチレン基、エチレン基、トリメチレン基、プロピレン基、メルカプトトリメチレン基、メルカプトプロピレン基、テトラメチレン基、ブチレン基、ペンタメチレン基、フェニレン基、ナフチレン基、インドール基、ベンズイミダゾール基、キノリル基、イソキノリン基などが挙げられる。
Mは水素原子又はアルカリ金属を示す。具体的には、水素原子、ナトリウム、カリウムが挙げられる。
具体的には、メルカプトメタンスルホン酸ナトリウム、2-メルカプトエタンスルホン酸ナトリウム、2-メルカプトエタンスルホン酸、3-メルカプトプロパンスルホン酸ナトリウム、1,3-ジメルカプトプロパンスルホン酸、2-メルカプトベンズイミダゾール-5-スルホン酸ナトリウム、メルカプトメタンホスホン酸ナトリウム、メルカプトエタンホスホン酸、3-メルカプトプロパンホスホン酸ナトリウム、1,3-ジメルカプトプロパンホスホン酸ナトリウムなどが挙げられる。
As the mercapto fatty acid or the alkali metal salt thereof, mercapto C1-20 fatty acid or the alkali metal salt thereof is preferable, and mercapto C1-6 fatty acid or the alkali metal salt thereof is more preferable.
L1 and L2 in the general formula (4) or (5) represent divalent organic groups, respectively. As the divalent organic group, a divalent organic group having 1 to 10 carbon atoms is preferable, and more preferably, a linear or branched alkylene group having 1 to 10 carbon atoms which may have a mercapto group. Examples thereof include an arylene group having 6 to 10 carbon atoms which may have a mercapto group and a heteroarylene group having 4 to 9 carbon atoms which may have a mercapto group. Specifically, methylene group, ethylene group, trimethylene group, propylene group, mercaptotrimethylene group, mercaptopropylene group, tetramethylene group, butylene group, pentamethylene group, phenylene group, naphthylene group, indol group, benzimidazole group, Examples thereof include a quinolyl group and an isoquinolin group.
M represents a hydrogen atom or an alkali metal. Specific examples include a hydrogen atom, sodium and potassium.
Specifically, sodium mercaptomethane sulfonate, sodium 2-mercaptoethanesulfonate, 2-mercaptoethanesulfonic acid, sodium 3-mercaptopropanesulfonic acid, 1,3-dimercaptopropanesulfonic acid, 2-mercaptobenzimidazole- Examples thereof include sodium 5-sulfonic acid, sodium mercaptomethanephosphonate, mercaptoethanephosphonic acid, sodium 3-mercaptopropanephosphonate, and sodium 1,3-dimercaptopropanephosphonate.

メルカプト化合物の添加量は、理論上副生するDBFの量に対して1~30当量が好ましく、1~10当量がより好ましく、1~5当量がさらに好ましい。
前記アミン化合物とメルカプト化合物は、同時に添加してもよく、メルカプト化合物、次いでアミン化合物の順に添加してもよく、塩基を加えFmoc基を除去したのちにメルカプト化合物を加えてもよい。
Fmoc脱離工程は、-20~40℃の温度で、5分~5時間行えばよい。
The amount of the mercapto compound added is theoretically preferably 1 to 30 equivalents, more preferably 1 to 10 equivalents, still more preferably 1 to 5 equivalents, relative to the amount of DBF produced as a by-product.
The amine compound and the mercapto compound may be added at the same time, or may be added in the order of the mercapto compound and then the amine compound, or the mercapto compound may be added after adding a base to remove the Fmoc group.
The Fmoc desorption step may be carried out at a temperature of −20 to 40 ° C. for 5 minutes to 5 hours.

工程dは、反応液に水溶液を添加した後、分液して、液相ペプチド合成用担体が結合したアミノ酸、ペプチド又はアミノ酸アミドと、前記アミノ保護基が脱離したアミノ酸又はペプチドとの縮合体を含有する有機溶媒層を得る工程である。
工程cの反応液に水溶液を添加した後、水層と有機溶媒層を分液する。
水層には、アミノ保護基が脱離したアミノ酸又はペプチドと活性エステルスカベンジャーとの縮合体と、DBF-トラッピング剤付加体が含まれる。すなわち、アミノ保護基が脱離したアミノ酸又はペプチドと活性エステルスカベンジャーとの縮合体は、工程dの水溶液の添加だけで、容易に水層に抽出される。
一方、有機溶媒層には、液相ペプチド合成用担体が結合したアミノ酸、ペプチド又はアミノ酸アミドと、前記アミノ保護基が脱離したアミノ酸又はペプチドとの縮合体が含まれる。
ここで、用いられる水溶液としては、水、又は中性付近のpHを有する水溶液が挙げられる。具体的には、水、塩化ナトリウム水溶液、炭酸ナトリウム水溶液、炭酸カリウム水溶液、リン酸水素二ナトリウム水溶液、リン酸三ナトリウム水溶液、炭酸水素ナトリウム水溶液、炭酸水素カリウム水溶液、リン酸水素二カリウム水溶液、リン酸三カリウム水溶液等が挙げられる。
In step d, after adding an aqueous solution to the reaction solution, the solution is separated to form a condensate of an amino acid, peptide or amino acid amide to which a carrier for liquid phase peptide synthesis is bound and an amino acid or peptide from which the amino protecting group has been removed. This is a step of obtaining an organic solvent layer containing.
After adding the aqueous solution to the reaction solution in step c, the aqueous layer and the organic solvent layer are separated.
The aqueous layer contains a condensate of an amino acid or peptide from which the amino-protecting group has been eliminated and an active ester scavenger, and a DBF-trapping agent adduct. That is, the condensate of the amino acid or peptide from which the amino-protecting group has been removed and the active ester scavenger can be easily extracted into the aqueous layer only by adding the aqueous solution in step d.
On the other hand, the organic solvent layer contains a condensate of an amino acid, a peptide or an amino acid amide to which a carrier for liquid phase peptide synthesis is bound, and an amino acid or a peptide from which the amino protecting group has been removed.
Here, examples of the aqueous solution used include water and an aqueous solution having a pH near neutrality. Specifically, water, sodium chloride aqueous solution, sodium carbonate aqueous solution, potassium carbonate aqueous solution, disodium hydrogen phosphate aqueous solution, trisodium phosphate aqueous solution, sodium hydrogen carbonate aqueous solution, potassium hydrogen carbonate aqueous solution, dipotassium hydrogen phosphate aqueous solution, phosphorus. Examples thereof include a tripotassium acid aqueous solution.

このように、本発明の工程a~dによれば、単に水溶液を添加して分液するだけで、酸性水溶液を使用する必要がないので、アミノ酸活性エステルと生成物であるペプチドとの分液不良が起こることがない。また、固液分離を必要としないので、ペプチドの液相製造において、単離操作を行うことなく、次工程のペプチド伸長反応を行えるためワンポット合成が可能になる。前記した一連の工程は、マイクロフロー技術を用いて実施しても良い。マイクロフロー技術を用いたペプチド合成技術については、例えばNature Communications 7, Article number:13491(2016)に記載がある。また、得られた有機溶媒層は、さらに任意のアミノ酸との縮合反応に利用できる。 As described above, according to the steps a to d of the present invention, it is not necessary to use an acidic aqueous solution by simply adding an aqueous solution and separating the liquids. Therefore, the liquid separation between the amino acid active ester and the peptide as a product is required. No defects occur. In addition, since solid-liquid separation is not required, one-pot synthesis is possible because the peptide extension reaction in the next step can be performed without performing an isolation operation in the liquid phase production of the peptide. The series of steps described above may be carried out using microflow techniques. The peptide synthesis technique using the microflow technique is described in, for example, Nature Communications 7, Article number: 13491 (2016). Further, the obtained organic solvent layer can be further used for a condensation reaction with any amino acid.

次に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。
なお、液相ペプチド合成用担体として、以下に示す化合物を使用した。
・TIPS2-OH(C11)型ベンジル化合物(積水メディカル社製)(以下、B-STagと記すことがある)。但し、TIPSは、トリイソプロピルシリル基を示す。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
The following compounds were used as the carrier for liquid phase peptide synthesis.
-TIPS2-OH (C11) type benzyl compound (manufactured by Sekisui Medical Co., Ltd.) (hereinafter, may be referred to as B-Stag). However, TIPS represents a triisopropylsilyl group.

Figure 0007063408000022
Figure 0007063408000022

・TIPS2-OH(C11)型ジフェニルメタン化合物(積水メディカル社製)(以下、D-STagと記すことがある)。但し、TIPSは、トリイソプロピルシリル基を示す。 -TIPS2-OH (C11) type diphenylmethane compound (manufactured by Sekisui Medical Co., Ltd.) (hereinafter, may be referred to as D-Stag). However, TIPS represents a triisopropylsilyl group.

Figure 0007063408000023
Figure 0007063408000023

Fmoc-NH-(D-STag)は、上記D-STagのアミノ基がFmoc基で保護された化合物である。
・TIPS2-OH(C11)型キサンテン化合物(積水メディカル社製)(以下、X-STagと記すことがある)。但し、TIPSは、トリイソプロピルシリル基を示す。
Fmoc-NH- (D-Stag) is a compound in which the amino group of D-Stag is protected by an Fmoc group.
-TIPS2-OH (C11) type xanthene compound (manufactured by Sekisui Medical Co., Ltd.) (hereinafter, may be referred to as X-Stag). However, TIPS indicates a triisopropylsilyl group.

Figure 0007063408000024
Figure 0007063408000024

Fmoc-NH-(X-STag)は、上記X-STagのアミノ基がFmoc基で保護された化合物である。
また、以下の実施例では、B-STagがFmoc保護tBu保護グルタミン酸(Fmoc-Glu(OtBu)-OH)と結合した化合物を、Fmoc-Glu(OtBu)-O-(B-STag)と表記し、下記の構造を示すものとする。Fmoc-Glu(OtBu)-OHに限らず、他のアミノ酸と結合した場合も、これに準ずる表記とする。
Fmoc-NH- (X-Stag) is a compound in which the amino group of X-Stag is protected by an Fmoc group.
Further, in the following examples, the compound in which B-Stag is bound to Fmoc-protected tBu-protected glutamic acid (Fmoc-Glu (OtBu) -OH) is referred to as Fmoc-Glu (OtBu) -O- (B-Stag). , The following structure shall be shown. Not limited to Fmoc-Glu (OtBu) -OH, the notation conforms to this when bound to other amino acids.

Figure 0007063408000025
Figure 0007063408000025

また、D-STagがFmoc保護tBu保護スレオニン(Fmoc-Thr(tBu)-OH)と結合した化合物を、Fmoc-Thr(tBu)-NH-(D-STag)と表記し、これは下記の構造を示すものとする。スレオニンに限らず、他のアミノ酸と結合した場合も、これに準ずる表記とする。 Further, a compound in which D-STAg is bound to Fmoc-protected tBu-protected threonine (Fmoc-Thr (tBu) -OH) is referred to as Fmoc-Thr (tBu) -NH- (D-Stag), which has the following structure. Shall indicate. Not limited to threonine, when combined with other amino acids, the notation is based on this.

Figure 0007063408000026
Figure 0007063408000026

また、X-STagがFmoc保護フェニルアラニン(Fmoc-Phe-OH)と結合した化合物をFmoc-Phe-NH-(X-STag)と表記し、これは下記の構造を示すものとする。フェニルアラニンに限らず、他のアミノ酸と結合した場合も、これに準ずる表記とする。 Further, a compound in which X-Stag is bound to Fmoc-protected phenylalanine (Fmoc-Phe-OH) is referred to as Fmoc-Phe-NH- (X-Stag), which has the following structure. Not limited to phenylalanine, when combined with other amino acids, the notation is based on this.

Figure 0007063408000027
Figure 0007063408000027

実施例1
アミノ酸活性エステルとスカベンジャーの縮合物の、水洗浄による除去率に関する検討
スカベンジャーとして、タウリン(実施例1-1)、2-AEHS(硫酸水素2-アミノエチル:2-アミノエチル硫酸)(実施例1-2)又はAEAE(2-(2-アミノエチルアミノ)エタノール)(比較例1)のいずれかを使用し、以下の検討を実施した。なお、タウリンは0.6Mの水溶液として、2-AEHSは0.25MのDMSO溶液として添加した。
CPME 7mL、DMF 3mLの混合溶液に、Fmoc-Cys(Trt)-OH 0.88g(1.5mmol)、COMU 0.64g(1.5mmol)、Oxyma 0.64g(4.5mmol)、DIPEA 1.55g(12.0mmol)を加え、室温で30分撹拌した。スカベンジャーを1.8mmol添加し、室温で15分攪拌した後、本液をHPLCにて分析し、アミノ酸活性エステルとスカベンジャーの縮合物の量を検証した。続いて、DBU 0.69g(4.5mmol)を加え、30分撹拌し、本液をHPLCにて分析した後に(分析(1))、1N塩酸4.5mLを加え、分液した。得られた有機層をHPLCにて分析し(分析(2))、アミノ酸活性エステルとスカベンジャーの縮合物の水層への除去率、すなわち洗浄性を検証した。結果を表1に示した。
Example 1
Examination of removal rate of condensate of amino acid active ester and scavenger by washing with water Taurine (Example 1-1), 2-AEHS (2-aminoethyl hydrogensulfate: 2-aminoethyl sulfate) (Example 1) as scavengers. The following studies were carried out using either -2) or AEAE (2- (2-aminoethylamino) ethanol) (Comparative Example 1). Taurine was added as a 0.6 M aqueous solution, and 2-AEHS was added as a 0.25 M DMSO solution.
In a mixed solution of CPME 7 mL and DMF 3 mL, Fmoc-Cys (Trt) -OH 0.88 g (1.5 mmol), COMU 0.64 g (1.5 mmol), Oxyma 0.64 g (4.5 mmol), DIPEA 1. 55 g (12.0 mmol) was added, and the mixture was stirred at room temperature for 30 minutes. After adding 1.8 mmol of scavenger and stirring at room temperature for 15 minutes, this solution was analyzed by HPLC to verify the amount of condensate of amino acid active ester and scavenger. Subsequently, 0.69 g (4.5 mmol) of DBU was added, and the mixture was stirred for 30 minutes. After analyzing this solution by HPLC (analysis (1)), 4.5 mL of 1N hydrochloric acid was added and the solution was separated. The obtained organic layer was analyzed by HPLC (analysis (2)), and the removal rate of the condensate of the amino acid active ester and the scavenger into the aqueous layer, that is, the detergency was verified. The results are shown in Table 1.

HPLC分析条件
カラム:MonoBisカラム 3.2×150mm 低圧タイプ、メソポア径11mm、ODS・エンドキャップ(株式会社京都モノテック、製品番号32150L11ODS)
移動相A:0.1%ギ酸含有5%イソプロパノール―5%イソプロピルエーテル水溶液
移動相B:0.1%ギ酸含有85%イソプロパノール―5%イソプロピルエーテル水溶液
流速:1.0mL/min
カラム温度:60℃
検出波長:215nm
グラジエント条件:5%B(0分)→5%B(1分)→100%B(11分)→100%B(16分)→5%B(17分)→5%B(20分)
HPLC analysis condition column: MonoBis column 3.2 × 150mm low pressure type, mesopore diameter 11mm, ODS / end cap (Kyoto Monotech Co., Ltd., product number 32150L11ODS)
Mobile phase A: 0.1% formic acid-containing 5% isopropanol-5% isopropyl ether aqueous solution Mobile phase B: 0.1% formic acid-containing 85% isopropanol-5% isopropyl ether aqueous solution Flow velocity: 1.0 mL / min
Column temperature: 60 ° C
Detection wavelength: 215 nm
Radiant conditions: 5% B (0 minutes) → 5% B (1 minute) → 100% B (11 minutes) → 100% B (16 minutes) → 5% B (17 minutes) → 5% B (20 minutes)

Figure 0007063408000028
Figure 0007063408000028

アミノ酸活性エステルとスカベンジャーの縮合物の除去率は、分析(1)におけるアミノ酸活性エステルとスカベンジャーの縮合物のHPLCピーク面積Aと、分析(2)におけるアミノ酸活性エステルとスカベンジャーの縮合物のHPLCピーク面積Bより算出した。
除去率={(A-B)/A}×100(%)
除去率が高いほど、Fmoc-Cys(Trt)-OHの活性エステルとスカベンジャーの縮合物が水層に除去されやすく、有用なスカベンジャーであると言える。
The removal rate of the amino acid active ester and scavenger condensate is determined by the HPLC peak area A of the amino acid active ester and scavenger condensate in analysis (1) and the HPLC peak area of the amino acid active ester and scavenger condensate in analysis (2). Calculated from B.
Removal rate = {(AB) / A} x 100 (%)
The higher the removal rate, the easier it is for the condensate of the active ester of Fmoc-Cys (Trt) -OH and the scavenger to be removed in the aqueous layer, and it can be said that the scavenger is useful.

表1より、スカベンジャーとして実施例1-1のタウリン、実施例1-2の2-AEHSを用いた場合は、Fmoc-Cys(Trt)-OHの活性エステルとスカベンジャーの縮合体を全て水層に除去することができた。これは、比較例1のAEAEを用いた場合の34%と比較すると極めて良好な結果であった。なお、AEAEは2価の水溶性アミンであり、2価の水溶性アミンは特許文献17でスカベンジャーとして有用とされている化合物である。 From Table 1, when taurine of Example 1-1 and 2-AEHS of Example 1-2 were used as the scavenger, the condensed product of the active ester of Fmoc-Cys (Trt) -OH and the scavenger was all put into the aqueous layer. I was able to remove it. This was an extremely good result as compared with 34% when AEAE of Comparative Example 1 was used. AEAE is a divalent water-soluble amine, and the divalent water-soluble amine is a compound which is useful as a scavenger in Patent Document 17.

実施例2
X-STagに対して3.0当量のFmoc保護フェニルアラニン(Fmoc-Phe-OH)を添加し、3段階に分けてペプチド鎖を伸長する反応において、スカベンジャーを使用しなかった場合(比較例2)、スカベンジャーとしてタウリンを使用した場合(実施例2)のH―Phe―Phe-Phe-NH2の合成結果を比較した。なお、タウリンは0.6Mの水溶液として添加した。
Example 2
When 3.0 equivalents of Fmoc-protected phenylalanine (Fmoc-Phe-OH) was added to X-Stag and no scavenger was used in the reaction of extending the peptide chain in three steps (Comparative Example 2). , The synthesis results of H-Phe-Phe-Phe-NH 2 when taurine was used as a scavenger (Example 2) were compared. Taurine was added as a 0.6 M aqueous solution.

1)H―Phe-NH-(X-STag)の合成
X-STag 0.44g(0.5mmol)をCPME 7mL、DMF 3mLに溶解し、Fmoc-Phe―OH 0.58g(1.5mmol)、COMU 0.64(1.5mmol)、Oxyma 0.21g(1.5mmol)、DIPEA 0.26g(2.0mmol)を加え、室温で1時間撹拌した。X-STagが生成物のFmoc-Phe-NH-(X-STag)に対し5%以下になったことを確認後、スカベンジャーを添加する場合は2.0mmol分を加え、室温で15分撹拌した。Fmoc-Phe-OHの活性エステルがスカベンジャーと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-プロパンスルホン酸ナトリウム0.54g(3.0mmol)(1.2mol/LとなるようDMSOに溶解)を添加し、DBU 0.88g(5.8mmol)を加え、30分撹拌した。Fmoc-Phe-NH-(X-STag)が生成物のH-Phe-NH-(X-STag)に対し5%以下になったことを確認後、1N 塩酸3.4mLを滴下し、室温まで昇温し、分液した。得られた有機層に50%リン酸水素二カリウム水溶液6.7mL、DMSO 0.18mL、DMF 0.18mLを加え、分液した。得られた有機層にFmoc-Phe-OHの活性エステルがスカベンジャーと縮合した化合物がないことを確認し、有機層を濃縮したのち、残渣にCPME 7mLを加え、H―Phe―NH―(X-STag)を含むCPME溶液を得た。
1) Synthesis of H-Phe-NH- (X-STAg) 0.44 g (0.5 mmol) of X-STAg was dissolved in 7 mL of CPME and 3 mL of DMF, and Fmoc-Phe-OH 0.58 g (1.5 mmol), COMU 0.64 (1.5 mmol), Oxyma 0.21 g (1.5 mmol) and DIPEA 0.26 g (2.0 mmol) were added, and the mixture was stirred at room temperature for 1 hour. After confirming that X-Stag was 5% or less of the product Fmoc-Phe-NH- (X-Stag), 2.0 mmol was added when scavenger was added, and the mixture was stirred at room temperature for 15 minutes. .. After confirming the compound in which the active ester of Fmoc-Phe-OH was condensed with the scavenger, the mixture was cooled to 0 ° C. and 0.54 g (3.0 mmol) (1.2 mol / L) of sodium 2-mercapto-1-propanesulfonate. (Dissolved in DMSO) was added, 0.88 g (5.8 mmol) of DBU was added, and the mixture was stirred for 30 minutes. After confirming that Fmoc-Phe-NH- (X-Stag) was 5% or less of the product H-Phe-NH- (X-Stag), 3.4 mL of 1N hydrochloric acid was added dropwise to room temperature. The temperature was raised and the liquid was separated. To the obtained organic layer, 6.7 mL of a 50% aqueous dipotassium hydrogen phosphate solution, 0.18 mL of DMSO and 0.18 mL of DMF were added, and the liquids were separated. It was confirmed that there was no compound in which the active ester of Fmoc-Phe-OH was condensed with the scavenger in the obtained organic layer, and after concentrating the organic layer, 7 mL of CPME was added to the residue, and H-Phe-NH- (X-). A CPME solution containing STag) was obtained.

2)同様に、H―Phe―Phe-NH―(X-STag)、H―Phe―Phe―Phe-NH―(X-STag)の合成を実施した。得られたH―Phe―Phe―Phe-NH―(X-STag)のCPME溶液を減圧下で濃縮し、得られた固体を室温で減圧乾燥し、H―Phe―Phe―Phe-NH―(X-STag)を得た。 2) Similarly, H-Phe-Phe-NH- (X-Stag) and H-Phe-Phe-Phe-NH- (X-Stag) were synthesized. The CPME solution of the obtained H-Phe-Phe-Phe-NH- (X-Stag) was concentrated under reduced pressure, and the obtained solid was dried under reduced pressure at room temperature to obtain H-Phe-Phe-Phe-NH- (. X-Stag) was obtained.

3)H―Phe―Phe―Phe-NH2の合成
各条件で得られたH―Phe―Phe―Phe-NH―(X-STag)に、トリフルオロ酢酸、水、トリイソプロピルシラン、3,6-ジオキサ-1,8-オクタンジチオールの92.5/2.5/2.5/2.5混合液を、H―Phe―Phe―Phe-NH―(X-STag)の濃度が50mMとなるよう添加し、室温で1時間撹拌した。反応溶液を0℃に冷却し、H―Phe―Phe―Phe-NH―(X-STag)の90%(v/w)のMTBEをゆっくりと滴下し、沈澱物を濾取した。ろ取した沈殿物を、H―Phe―Phe―Phe-NH―(X-STag)に対して68.4%(v/w)のMTBEで3回洗浄行った後、沈澱物を減圧下で乾燥し、H―Phe―Phe―Phe-NH2を得た。
得られたH―Phe―Phe―Phe-NH2の純度をHPLCで測定した。結果を表2に示した。HPLC分析条件は、実施例1と同一である。
3) Synthesis of H-Phe-Phe-Phe-NH 2 Trifluoroacetic acid, water, triisopropylsilane, 3,6 were added to H-Phe-Phe-Phe-NH- (X-Stag) obtained under each condition. A 92.5 / 2.5 / 2.5 / 2.5 mixture of -dioxa-1,8-octanedithiol has a concentration of H-Phe-Phe-Phe-NH- (X-Stag) of 50 mM. And stirred at room temperature for 1 hour. The reaction solution was cooled to 0 ° C., 90% (v / w) of MTBE of H-Phe-Phe-Phe-NH- (X-Stag) was slowly added dropwise, and the precipitate was collected by filtration. The collected precipitate was washed 3 times with 68.4% (v / w) MTBE against H-Phe-Phe-Phe-NH- (X-Stag), and then the precipitate was washed under reduced pressure. It was dried to obtain H-Phe-Phe-Phe-NH 2 .
The purity of the obtained H-Phe-Phe-Phe-NH 2 was measured by HPLC. The results are shown in Table 2. The HPLC analysis conditions are the same as in Example 1.

Figure 0007063408000029
Figure 0007063408000029

スカベンジャーを使用しなかった比較例2の場合、目的物であるH―Phe―Phe―Phe-NH2の純度は62.8%であり、ダブルヒット体であるH―Phe―Phe―Phe-Phe-NH2や、トリプルヒット体であるH―Phe―Phe―Phe―Phe-Phe-NH2の混入が確認された。一方、スカベンジャーとしてタウリンを使用した場合(実施例2)、目的物の純度は88.5%と、比較例2よりも高くなった。上記成績から、タウリンがアミノ酸活性エステルのスカベンジャーとして有用であることが示された。 In the case of Comparative Example 2 in which no scavenger was used, the purity of the target product, H-Phe-Phe-Phe-NH 2 , was 62.8%, and the double-hit H-Phe-Phe-Phe-Phe. It was confirmed that -NH 2 and H-Phe-Phe-Phe-Phe-Phe-NH 2 which are triple hits were mixed. On the other hand, when taurine was used as a scavenger (Example 2), the purity of the target product was 88.5%, which was higher than that of Comparative Example 2. From the above results, it was shown that taurine is useful as a scavenger for amino acid active esters.

実施例3
H-Asp-Ala―Asn-Cys-Glu-OHの合成
1)H-Glu(OtBu)-O-(B-STag)の合成
B-STag 2.40g(3.0mmol)をCPME6mL、THF9mLに溶解し、Fmoc-Glu(OtBu)-OH 3.21g(7.5mmol)、WSCI・HCl 1.44g(7.5mmol)、4-ジメチルアミノピリジン36.8mg(0.3mmol)を加え、室温で2時間撹拌した。B-STagが生成物のFmoc-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、タウリン0.94g(7.5mmol)、DMSO 38mLを加え、室温で30分撹拌した。Fmoc-Glu(OtBu)-OHの活性エステルがスカベンジャーとして用いたタウリンと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム1.42g(8.6mmol)を添加し、DBU5.1mL(34mmol)を加え、20分撹拌した。Fmoc-Glu(OtBu)-O-(B-STag)が生成物のH-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、5%炭酸ナトリウム水溶液75mLを滴下し、室温まで昇温し、分液した。得られた有機層に20%食塩水17mL、5%炭酸ナトリウム水溶液6mL、DMF 1.2mLを加え、分液した。得られた有機層にFmoc-Glu(OtBu)-OHの活性エステルがスカベンジャーとして用いたタウリンと縮合した化合物がないことを確認し、有機層を濃縮したのち、残渣にCPME27mL加え、H-Glu(OtBu)-O-(B-STag)を含むCPME溶液を得た。
Example 3
Synthesis of H-Asp-Ala-Asn-Cys-Glu-OH 1) Synthesis of H-Glu (OtBu) -O- (B-Stag) 2.40 g (3.0 mmol) of B-Stag was dissolved in 6 mL of CPME and 9 mL of THF. Then, add 3.21 g (7.5 mmol) of Fmoc-Glu (OtBu) -OH, 1.44 g (7.5 mmol) of WSCI / HCl, and 36.8 mg (0.3 mmol) of 4-dimethylaminopyridine, and add 2 at room temperature. Stir for hours. After confirming that B-STAg was 5% or less of the product Fmoc-Glu (OtBu) -O- (B-STAg), 0.94 g (7.5 mmol) of taurine and 38 mL of DMSO were added, and room temperature was reached. Was stirred for 30 minutes. After confirming the compound in which the active ester of Fmoc-Glu (OtBu) -OH was condensed with taurine used as a scavenger, the mixture was cooled to 0 ° C. and 1.42 g (8.6 mmol) of sodium 2-mercapto-1-ethanesulfonate. Was added, 5.1 mL (34 mmol) of DBU was added, and the mixture was stirred for 20 minutes. After confirming that Fmoc-Glu (OtBu) -O- (B-Stag) was 5% or less of the product H-Glu (OtBu) -O- (B-Stag), a 5% sodium carbonate aqueous solution was used. 75 mL was added dropwise, the temperature was raised to room temperature, and the liquid was separated. 17 mL of 20% saline solution and 6 mL of 5% sodium carbonate aqueous solution and 1.2 mL of DMF were added to the obtained organic layer, and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Glu (OtBu) -OH was condensed with taurine used as a scavenger, and after concentrating the organic layer, 27 mL of CPME was added to the residue, and H-Glu ( A CPME solution containing OtBu) -O- (B-Stag) was obtained.

2)H-Cys(Trt)-Glu(OtBu)-O-(B-STag)の合成
上記のH-Glu(OtBu)-O-(B-STag)を含むCPME溶液にDMF7mL、Fmoc-Cys(Trt)-OH 2.38g(4.1mmol)、COMU 1.67g(3.9mmol)、DIEPA 2.1mLを加え、室温で2時間撹拌した。H-Glu(OtBu)-O-(B-STag)が生成物のFmoc-Cys(Trt)-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、タウリン0.55g(3.9mmol)、DMSO 16mLを加え、室温で2時間撹拌した。Fmoc-Cys(Trt)-OHの活性エステルがスカベンジャーとして用いたタウリンと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム1.19g(3.9mmol)を添加し、DBU2.7mL(18mmol)を加え、20分撹拌した。Fmoc-Cys(Trt)-Glu(OtBu)-O-(B-STag)が生成物のH-Cys(Trt)-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、1M硫酸水溶液9.6mLを滴下したのち、5%炭酸ナトリウム水溶液60mLを加え、室温まで昇温し、分液した。得られた有機層に20%食塩水38mL、5%炭酸ナトリウム水溶液13mL、DMF 2.7mLを加え、分液した。得られた有機層にFmoc-Cys(Trt)-OHの活性エステルがスカベンジャーとして用いたタウリンと縮合した化合物がないことを確認し、H-Cys(Trt)-Glu(OtBu)-O-(B-STag)を含むCPME溶液を得た。
2) Synthesis of H-Cys (Trt) -Glu (OtBu) -O- (B-Stag) 7 mL of DMF, Fmoc-Cys ( 2.38 g (4.1 mmol) of Trt) -OH, 1.67 g (3.9 mmol) of COMU, and 2.1 mL of DIEPA were added, and the mixture was stirred at room temperature for 2 hours. After confirming that H-Glu (OtBu) -O- (B-Stag) was 5% or less of the product Fmoc-Cys (Trt) -Glu (OtBu) -O- (B-Stag), 0.55 g (3.9 mmol) of taurine and 16 mL of DMSO were added, and the mixture was stirred at room temperature for 2 hours. After confirming the compound in which the active ester of Fmoc-Cys (Trt) -OH was condensed with taurine used as a scavenger, the mixture was cooled to 0 ° C., and 1.19 g (3.9 mmol) of sodium 2-mercapto-1-ethanesulfonate was used. Was added, 2.7 mL (18 mmol) of DBU was added, and the mixture was stirred for 20 minutes. Fmoc-Cys (Trt) -Glu (OtBu) -O- (B-Stag) was 5% or less of the product H-Cys (Trt) -Glu (OtBu) -O- (B-Stag). After confirming that, 9.6 mL of a 1 M sulfuric acid aqueous solution was added dropwise, 60 mL of a 5% sodium carbonate aqueous solution was added, the temperature was raised to room temperature, and the liquid was separated. 38 mL of 20% saline solution and 13 mL of 5% sodium carbonate aqueous solution and 2.7 mL of DMF were added to the obtained organic layer, and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Cys (Trt) -OH was condensed with taurine used as a scavenger, and H-Cys (Trt) -Glu (OtBu) -O- (B) was confirmed. -A CPME solution containing STag) was obtained.

3)H-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)の合成
上記のH-Cys(Trt)-Glu(OtBu)-O-(B-STag)を含むCPME溶液にCPME2mL、DMF7mL、Fmoc-Asn(Trt)-OH 2.43g(4.1mmol)、COMU 1.67g(3.9mmol)、DIEPA 2.1mLを加え、室温で2時間撹拌した。H-Cys(Trt)-Glu(OtBu)-O-(B-STag)が生成物のFmoc-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、タウリン0.55g(3.9mmol)、DMSO 16mLを加え、室温で40分撹拌した。Fmoc-Asn(Trt)-OHの活性エステルがスカベンジャーとして用いたタウリンと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム1.19g(3.9mmol)を添加し、DBU2.7mL(18mmol)を加え、1時間撹拌した。Fmoc-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)が生成物のH-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、5%炭酸ナトリウム水溶液60mLを滴下し、室温まで昇温し、分液した。得られた有機層に20%食塩水38mL、5%炭酸ナトリウム水溶液13mL、DMF 2.7mLを加え、分液した。得られた有機層にFmoc-Asn(Trt)-OHの活性エステルがスカベンジャーとして用いたタウリンと縮合した化合物がないことを確認し、H-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)を含むCPME溶液を得た。
3) Synthesis of H-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) The above H-Cys (Trt) -Glu (OtBu) -O- (B-Stag) was used. To the CPME solution containing, CPME 2 mL, DMF 7 mL, Fmoc-Asn (Trt) -OH 2.43 g (4.1 mmol), COMU 1.67 g (3.9 mmol), and DIEPA 2.1 mL were added, and the mixture was stirred at room temperature for 2 hours. H-Cys (Trt) -Glu (OtBu) -O- (B-Stag) is 5 for the product Fmoc-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag). After confirming that the content was less than%, 0.55 g (3.9 mmol) of taurine and 16 mL of DMSO were added, and the mixture was stirred at room temperature for 40 minutes. After confirming the compound in which the active ester of Fmoc-Asn (Trt) -OH was condensed with taurine used as a scavenger, the mixture was cooled to 0 ° C., and 1.19 g (3.9 mmol) of sodium 2-mercapto-1-ethanesulfonate was used. Was added, 2.7 mL (18 mmol) of DBU was added, and the mixture was stirred for 1 hour. Fmoc-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) is the product H-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-) After confirming that the content was 5% or less with respect to STag), 60 mL of a 5% sodium carbonate aqueous solution was added dropwise, the temperature was raised to room temperature, and the liquid was separated. 38 mL of 20% saline solution and 13 mL of 5% sodium carbonate aqueous solution and 2.7 mL of DMF were added to the obtained organic layer, and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Asn (Trt) -OH was condensed with taurine used as a scavenger, and H-Asn (Trt) -Cys (Trt) -Glu (OtBu) was confirmed. A CPME solution containing —O— (B—Stag) was obtained.

4)H-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)の合成
上記のH-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)を含むCPME溶液にCPME2mL、DMF7mL、Fmoc-Ala-OH一水和物 1.33g(4.1mmol)、COMU 1.67g(3.9mmol)、DIEPA 2.1mLを加え、室温で1時間半撹拌した。H-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)が生成物のFmoc-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、タウリン0.55g(3.9mmol)、DMSO 16mLを加え、室温で30分撹拌した。Fmoc-Ala-OHの活性エステルがスカベンジャーとして用いたタウリンと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム1.19g(3.9mmol)、DMF 1.3mLを添加し、DBU2.7mL(18mmol)を加え、1時間撹拌した。Fmoc-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)が生成物のH-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、1M硫酸水溶液9.6mLを滴下した後、5%炭酸ナトリウム水溶液60mLを加え、室温まで昇温し、分液した。得られた有機層に20%食塩水38mL、5%炭酸ナトリウム水溶液13mL、DMF 2.7mLを加え、分液した。得られた有機層にFmoc-Ala-OHの活性エステルがスカベンジャーとして用いたタウリンと縮合した化合物がないことを確認し、H-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)を含むCPME溶液を得た。
4) Synthesis of H-Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) The above H-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O -To a CPME solution containing (B-STAg), add 2 mL of CPME, 7 mL of DMF, 1.33 g (4.1 mmol) of Fmoc-Ala-OH monohydrate, 1.67 g (3.9 mmol) of COMU, and 2.1 mL of DIEPA. The mixture was stirred at room temperature for one and a half hours. H-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) is the product Fmoc-Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- ( After confirming that the content was 5% or less based on B-Stag), 0.55 g (3.9 mmol) of taurine and 16 mL of DMSO were added, and the mixture was stirred at room temperature for 30 minutes. After confirming the compound in which the active ester of Fmoc-Ala-OH was condensed with taurine used as a scavenger, the mixture was cooled to 0 ° C., 1.19 g (3.9 mmol) of sodium 2-mercapto-1-ethanesulfonate, DMF 1 .3 mL was added, 2.7 mL (18 mmol) of DBU was added, and the mixture was stirred for 1 hour. Fmoc-Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) is the product H-Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O -After confirming that the content was 5% or less with respect to (B-Stag), 9.6 mL of a 1 M sulfuric acid aqueous solution was added dropwise, 60 mL of a 5% sodium carbonate aqueous solution was added, the temperature was raised to room temperature, and the liquid was separated. 38 mL of 20% saline solution and 13 mL of 5% sodium carbonate aqueous solution and 2.7 mL of DMF were added to the obtained organic layer, and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Ala-OH was condensed with taurine used as a scavenger, and H-Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu)-. A CPME solution containing O- (B-STAg) was obtained.

5)H-Asp(OtBu)-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)の合成
上記のH-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)を含むCPME溶液にCPME2mL、DMF7mL、Fmoc-Asp(OtBu)-OH 1.67g(4.1mmol)、COMU 1.67g(3.9mmol)、DIEPA 2.1mLを加え、室温で1時間撹拌した。H-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)が生成物のFmoc-Asp(OtBu)-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、タウリン0.55g(3.9mmol)、DMSO 16mLを加え、室温で30分撹拌した。Fmoc-Asp(OtBu)-OHの活性エステルがスカベンジャーとして用いたタウリンと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム1.19g(3.9mmol)、DMF 1.3mLを添加し、DBU2.7mL(18mmol)を加え、40分撹拌した。Fmoc-Asp(OtBu)-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)が生成物のH-Asp(OtBu)-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、1M硫酸水溶液9.6mLを滴下した後、5%炭酸ナトリウム水溶液60mLを加え、室温まで昇温し、分液した。得られた有機層に20%食塩水38mL、5%炭酸ナトリウム水溶液13mL、DMF 2.7mLを加え、分液した。得られた有機層にFmoc-Ala-OHの活性エステルがスカベンジャーとして用いたタウリンと縮合した化合物がないことを確認し、H-Asp(OtBu)-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)を含むCPME溶液を得た。
得られたCPME溶液を減圧下で濃縮し、残渣にMeCN 40mLを加え析出した固体をろ取し、得られた固体を30℃で減圧乾燥した。H-Asp(OtBu)-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag) 4.58gを得た。
5) Synthesis of H-Asp (OtBu) -Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) The above H-Ala-Asn (Trt) -Cys (Trt) CPME solution containing -Glu (OtBu) -O- (B-STAg) contains 2 mL of CPME, 7 mL of DMF, 1.67 g (4.1 mmol) of Fmoc-Asp (OtBu) -OH, 1.67 g (3.9 mmol) of COMU, DIEPA. 2.1 mL was added, and the mixture was stirred at room temperature for 1 hour. H-Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) is the product Fmoc-Asp (OtBu) -Ala-Asn (Trt) -Cys (Trt) -Glu After confirming that the content was 5% or less based on (OtBu) -O- (B-Stag), 0.55 g (3.9 mmol) of taurine and 16 mL of DMSO were added, and the mixture was stirred at room temperature for 30 minutes. After confirming the compound in which the active ester of Fmoc-Asp (OtBu) -OH was condensed with taurine used as a scavenger, the mixture was cooled to 0 ° C., and 1.19 g (3.9 mmol) of sodium 2-mercapto-1-ethanesulfonate was used. , DMF 1.3 mL was added, DBU 2.7 mL (18 mmol) was added, and the mixture was stirred for 40 minutes. Fmoc-Asp (OtBu) -Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) is the product H-Asp (OtBu) -Ala-Asn (Trt) -Cys After confirming that the content was 5% or less with respect to (Trt) -Glu (OtBu) -O- (B-Stag), 9.6 mL of a 1 M sulfuric acid aqueous solution was added dropwise, and then 60 mL of a 5% sodium carbonate aqueous solution was added at room temperature. The temperature was raised to the maximum and the liquid was separated. 38 mL of 20% saline solution and 13 mL of 5% sodium carbonate aqueous solution and 2.7 mL of DMF were added to the obtained organic layer, and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Ala-OH was condensed with taurine used as a scavenger, and H-Asp (OtBu) -Ala-Asn (Trt) -Cys (Trt)-. A CPME solution containing Glu (OtBu) -O- (B-STAg) was obtained.
The obtained CPME solution was concentrated under reduced pressure, 40 mL of MeCN was added to the residue, the precipitated solid was collected by filtration, and the obtained solid was dried under reduced pressure at 30 ° C. H-Asp (OtBu) -Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) 4.58 g was obtained.

6)H-Asp-Ala―Asn-Cys-Glu-OHの合成
H-Asp(OtBu)-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)962mg(0.50mmol)にトリフルオロ酢酸9.5mL、水0.29mL、トリイソプロピルシラン0.29mL、ジチオトレイトール865mg、アニソール0.58mLを添加し、室温で2時間撹拌した。反応溶液を0℃に冷却し、ジイソプロピルエーテル72mLをゆっくりと滴下し、沈澱物を濾取した。ろ取した沈殿物をジイソプロピルエーテル10mLで3回洗浄行った後、沈澱物を減圧下で乾燥し、H-Asp-Ala―Asn-Cys-Glu-OH 275mgを得た。得られたH-Asp-Ala―Asn-Cys-Glu-OHの純度は90.5%であった。
6) Synthesis of H-Asp-Ala-Asn-Cys-Glu-OH H-Asp (OtBu) -Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) 962 mg ( To 0.50 mmol), 9.5 mL of trifluoroacetic acid, 0.29 mL of water, 0.29 mL of triisopropylsilane, 865 mg of dithiothreitol and 0.58 mL of anisole were added, and the mixture was stirred at room temperature for 2 hours. The reaction solution was cooled to 0 ° C., 72 mL of diisopropyl ether was slowly added dropwise, and the precipitate was collected by filtration. The precipitate collected by filtration was washed 3 times with 10 mL of diisopropyl ether, and then the precipitate was dried under reduced pressure to obtain 275 mg of H-Asp-Ala-Asn-Cys-Glu-OH. The purity of the obtained H-Asp-Ala-Asn-Cys-Glu-OH was 90.5%.

実施例4
H-Gln-Trp-Glu-Arg-Thr-NH2の合成
1)H-Thr(tBu)-NH-(D-STag)の合成
Fmoc-NH-(D-STag) 1.09g(1.0mmol)をCPME9mL、DMF2mLに溶解し、0℃に冷却した後、DIEPA 0.32mL(1.9mmol)、2-メルカプト-1-エタンスルホン酸ナトリウム0.30g(1.8mmol)を添加し、DBU0.67mL(4.5mmol)を滴下した。0℃で1時間撹拌し、Fmoc-NH-(D-STag)が生成物のNH2-(D-STag)に対し5%以下になったことを確認後、1M硫酸水溶液2.4mLを滴下し、5%炭酸ナトリウム水溶液10mLを加えた後、室温まで昇温し、分液した。得られた有機層に20%食塩水25mL、5%炭酸ナトリウム水溶液8mL、DMF 1.8mLを加え、分液し、NH2-(D-STag)を含むCPME溶液を得た。
このNH2-(D-STag)を含むCPME溶液に、CPME0.6mL、DMF2mL、Fmoc-Thr(tBu)-OH 0.55g(1.4mmol)、COMU 0.56g(1.3mmol)、DIEPA 0.71mL(4.1mmol)を加え、室温で70分撹拌した。NH2-(D-STag)が生成物のFmoc-Thr(tBu)-NH-(D-STag)に対し5%以下になったことを確認後、2-[2-(2-アミノエトキシ)エトキシ]エタノール(AEEE)62μL(0.5mmol)を加え、室温で30分撹拌した。Fmoc-Thr(tBu)-OHの活性エステルがスカベンジャーとして用いたAEEEと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.40g(2.4mmol)、DMSO 2.4mLを添加し、DBU0.91mL(6.1mmol)を加え、70分撹拌した。Fmoc-Thr(tBu)-NH-(D-STag)が生成物のH-Thr(tBu)-NH-(D-STag)に対し5%以下になったことを確認後、1M硫酸水溶液3.2mLを滴下し、5%炭酸ナトリウム水溶液13mLを加えた後、室温まで昇温し、分液した。得られた有機層に20%食塩水25mL、5%炭酸ナトリウム水溶液8mL、DMF 1.8mLを加え、分液した。得られた有機層にFmoc-Thr(tBu)-OHの活性エステルがスカベンジャーとして用いたAEEEと縮合した化合物がないことを確認し、H-Thr(tBu)-NH-(D-STag)を含むCPME溶液を得た。
Example 4
Synthesis of H-Gln-Trp-Glu-Arg-Thr-NH 2 1) Synthesis of H-Thr (tBu) -NH- (D-Stag) Fmoc-NH- (D-Stag) 1.09 g (1.0 mmol) ) Was dissolved in 9 mL of CPME and 2 mL of DMF, cooled to 0 ° C., 0.32 mL (1.9 mmol) of DIEPA and 0.30 g (1.8 mmol) of sodium 2-mercapto-1-ethanesulfonate were added, and DBU0. 67 mL (4.5 mmol) was added dropwise. After stirring at 0 ° C. for 1 hour and confirming that Fmoc-NH- (D-Stag) was 5% or less of the product NH 2- (D-Stag), 2.4 mL of 1 M sulfuric acid aqueous solution was added dropwise. Then, 10 mL of a 5% aqueous sodium carbonate solution was added, the temperature was raised to room temperature, and the liquid was separated. To the obtained organic layer, 25 mL of 20% saline solution and 8 mL of 5% sodium carbonate aqueous solution and 1.8 mL of DMF were added and separated to obtain a CPME solution containing NH 2- (D-Stag).
In this CPME solution containing NH 2- (D-Stag), CPME 0.6 mL, DMF 2 mL, Fmoc-Thr (tBu) -OH 0.55 g (1.4 mmol), COMU 0.56 g (1.3 mmol), DIEPA 0 .71 mL (4.1 mmol) was added, and the mixture was stirred at room temperature for 70 minutes. After confirming that NH 2- (D-Stag) was 5% or less of the product Fmoc-Thr (tBu) -NH- (D-Stag), 2- [2- (2-aminoethoxy) Ethoxy] Ethanol (AEEE) 62 μL (0.5 mmol) was added, and the mixture was stirred at room temperature for 30 minutes. After confirming the compound in which the active ester of Fmoc-Thr (tBu) -OH was condensed with AEEE used as a scavenger, the mixture was cooled to 0 ° C. and 0.40 g (2.4 mmol) of sodium 2-mercapto-1-ethanesulfonate. , DMSO 2.4 mL was added, DBU 0.91 mL (6.1 mmol) was added, and the mixture was stirred for 70 minutes. After confirming that Fmoc-Thr (tBu) -NH- (D-Stag) was 5% or less of the product H-Thr (tBu) -NH- (D-Stag), 1M aqueous sulfuric acid solution 3. 2 mL was added dropwise, 13 mL of a 5% aqueous sodium carbonate solution was added, the temperature was raised to room temperature, and the liquid was separated. To the obtained organic layer, 25 mL of 20% saline solution and 8 mL of 5% aqueous sodium carbonate solution and 1.8 mL of DMF were added and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Thr (tBu) -OH was condensed with AEEE used as a scavenger, and contained H-Thr (tBu) -NH- (D-Stag). A CPME solution was obtained.

2)H-Arg(Pbf)-Thr(tBu)-NH-(D-STag)の合成
上記のH-Thr(tBu)-NH-(D-STag)を含むCPME溶液に、CPME0.7mL、DMF2mL、Fmoc-Arg(Pbf)-OH 0.88g(1.4mmol)、COMU 0.56g(1.3mmol)、DIEPA 0.71mL(4.1mmol)を加え、室温で1時間撹拌した。H-Thr(tBu)-NH-(D-STag)が生成物のFmoc-Arg(Pbf)-Thr(tBu)-NH-(D-STag)に対し5%以下になったことを確認後、AEEE62μL(0.5mmol)を加え、室温で30分撹拌した。Fmoc-Arg(Pbf)-OHの活性エステルがスカベンジャーとして用いたAEEEと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.40g(2.4mmol)、DMSO 2.4mLを添加し、DBU 0.91mL(6.1mmol)を加え、50分撹拌した。Fmoc-Arg(Pbf)-Thr(tBu)-NH-(D-STag)が生成物のH-Arg(Pbf)-Thr(tBu)-NH-(D-STag)に対し5%以下になったことを確認後、5%炭酸ナトリウム水溶液13mLを滴下した後、室温まで昇温し、分液した。得られた有機層に20%食塩水13mL、5%炭酸ナトリウム水溶液4mL、DMF 0.9mLを加え、分液した。得られた有機層にFmoc-Arg(Pbf)-OHの活性エステルがスカベンジャーとして用いたAEEEと縮合した化合物がないことを確認し、H-Arg(Pbf)-Thr(tBu)-NH-(D-STag)を含むCPME溶液を得た。
2) Synthesis of H-Arg (Pbf) -Thr (tBu) -NH- (D-Stag) In the CPME solution containing the above H-Thr (tBu) -NH- (D-Stag), CPME 0.7 mL and DMF 2 mL , Fmoc-Arg (Pbf) -OH 0.88 g (1.4 mmol), COMU 0.56 g (1.3 mmol), DIEPA 0.71 mL (4.1 mmol) were added, and the mixture was stirred at room temperature for 1 hour. After confirming that H-Thr (tBu) -NH- (D-Stag) was 5% or less of the product Fmoc-Arg (Pbf) -Thr (tBu) -NH- (D-Stag), 62 μL (0.5 mmol) of AEEE was added, and the mixture was stirred at room temperature for 30 minutes. After confirming the compound in which the active ester of Fmoc-Arg (Pbf) -OH was condensed with AEEE used as a scavenger, the mixture was cooled to 0 ° C. and 0.40 g (2.4 mmol) of sodium 2-mercapto-1-ethanesulfonate. , DMSO 2.4 mL was added, DBU 0.91 mL (6.1 mmol) was added, and the mixture was stirred for 50 minutes. Fmoc-Arg (Pbf) -Thr (tBu) -NH- (D-Stag) was 5% or less of the product H-Arg (Pbf) -Thr (tBu) -NH- (D-Stag). After confirming that, 13 mL of a 5% sodium carbonate aqueous solution was added dropwise, the temperature was raised to room temperature, and the liquid was separated. To the obtained organic layer, 13 mL of 20% saline solution and 4 mL of 5% aqueous sodium carbonate solution and 0.9 mL of DMF were added and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Arg (Pbf) -OH was condensed with AEEE used as a scavenger, and H-Arg (Pbf) -Thr (tBu) -NH- (D) was confirmed. -A CPME solution containing Stag) was obtained.

3)H-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)の合成
上記のH-Arg(Pbf)-Thr(tBu)-NH-(D-STag)を含むCPME溶液に、CPME0.5mL、DMF2mL、Fmoc-Glu(OtBu)-OH 0.58g(1.4mmol)、COMU 0.56g(1.3mmol)、DIEPA 0.71mL(4.1mmol)を加え、室温で1時間撹拌した。H-Arg(Pbf)-Thr(tBu)-NH-(D-STag)が生成物のFmoc-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)に対し5%以下になったことを確認後、AEEE62μL(0.5mmol)を加え、室温で40分撹拌した。Fmoc-Glu(OtBu)-OHの活性エステルがスカベンジャーとして用いたAEEEと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.40g(2.4mmol)、DMSO 2.4mLを添加し、DBU 0.91mL(6.1mmol)を加え、65分撹拌した。Fmoc-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)が生成物のH-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)に対し5%以下になったことを確認後、5%炭酸ナトリウム水溶液13mLを滴下した後、室温まで昇温し、分液した。得られた有機層に20%食塩水13mL、5%炭酸ナトリウム水溶液4mL、DMF 0.9mLを加え、分液した。得られた有機層にFmoc-Glu(OtBu)-OHの活性エステルがスカベンジャーとして用いたAEEEと縮合した化合物がないことを確認し、H-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)を含むCPME溶液を得た。
3) Synthesis of H-Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (D-Stag) The above H-Arg (Pbf) -Thr (tBu) -NH- (D-Stag) was used. To the CPME solution containing, CPME 0.5 mL, DMF 2 mL, Fmoc-Glu (OtBu) -OH 0.58 g (1.4 mmol), COMU 0.56 g (1.3 mmol), DIEPA 0.71 mL (4.1 mmol) were added. The mixture was stirred at room temperature for 1 hour. H-Arg (Pbf) -Thr (tBu) -NH- (D-Stag) is 5 relative to the product Fmoc-Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (D-Stag). After confirming that the content was less than%, 62 μL (0.5 mmol) of AEEE was added, and the mixture was stirred at room temperature for 40 minutes. After confirming the compound in which the active ester of Fmoc-Glu (OtBu) -OH was condensed with AEEE used as a scavenger, the mixture was cooled to 0 ° C. and 0.40 g (2.4 mmol) of sodium 2-mercapto-1-ethanesulfonate. , DMSO 2.4 mL was added, DBU 0.91 mL (6.1 mmol) was added, and the mixture was stirred for 65 minutes. Fmoc-Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (D-Stag) is the product H-Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (D-) After confirming that the content was 5% or less with respect to STag), 13 mL of a 5% sodium carbonate aqueous solution was added dropwise, the temperature was raised to room temperature, and the liquid was separated. To the obtained organic layer, 13 mL of 20% saline solution and 4 mL of 5% aqueous sodium carbonate solution and 0.9 mL of DMF were added and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Glu (OtBu) -OH was condensed with AEEE used as a scavenger, and H-Glu (OtBu) -Arg (Pbf) -Thr (tBu). A CPME solution containing -NH- (D-Stag) was obtained.

4)H-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)の合成
上記のH-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)を含むCPME溶液に、CPME0.5mL、DMF2mL、Fmoc-Trp(Boc)-OH 0.71g(1.4mmol)、COMU 0.56g(1.3mmol)、DIEPA 0.71mL(4.1mmol)を加え、室温で70分撹拌した。H-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)が生成物のFmoc-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)に対し5%以下になったことを確認後、AEEE62μL(0.5mmol)を加え、室温で40分撹拌した。Fmoc-Trp(Boc)-OHの活性エステルがスカベンジャーとして用いたAEEEと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.40g(2.4mmol)、DMSO 2.4mLを添加し、DMF 0.4mL、DBU 0.91mL(6.1mmol)を加え、65分撹拌した。Fmoc-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)が生成物のH-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)に対し5%以下になったことを確認後、1M硫酸水溶液3.2mLを滴下し、5%炭酸ナトリウム水溶液13mLを加えた後、室温まで昇温し、分液した。得られた有機層に20%食塩水13mL、5%炭酸ナトリウム水溶液4mL、DMF 0.9mLを加え、分液した。得られた有機層にFmoc-Trp(Boc)-OHの活性エステルがスカベンジャーとして用いたAEEEと縮合した化合物がないことを確認し、H-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)を含むCPME溶液を得た。
4) Synthesis of H-Trp (Boc) -Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (D-Stag) The above H-Glu (OtBu) -Arg (Pbf) -Thr (tBu) ) -NH- (D-Stag) in CPME solution, CPME 0.5 mL, DMF 2 mL, Fmoc-Trp (Boc) -OH 0.71 g (1.4 mmol), COMU 0.56 g (1.3 mmol), DIEPA 0 .71 mL (4.1 mmol) was added, and the mixture was stirred at room temperature for 70 minutes. H-Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (D-Stag) is the product Fmoc-Trp (Boc) -Glu (OtBu) -Arg (Pbf) -Thr (tBu)- After confirming that the content was 5% or less with respect to NH- (D-Stag), 62 μL (0.5 mmol) of AEEE was added, and the mixture was stirred at room temperature for 40 minutes. After confirming the compound in which the active ester of Fmoc-Trp (Boc) -OH was condensed with AEEE used as a scavenger, the mixture was cooled to 0 ° C. and 0.40 g (2.4 mmol) of sodium 2-mercapto-1-ethanesulfonate. , DMSO 2.4 mL was added, DMF 0.4 mL and DBU 0.91 mL (6.1 mmol) were added, and the mixture was stirred for 65 minutes. Fmoc-Trp (Boc) -Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (D-Stag) is the product H-Trp (Boc) -Glu (OtBu) -Arg (Pbf)- After confirming that the ratio was 5% or less with respect to Thr (tBu) -NH- (D-Stag), 3.2 mL of a 1 M sulfuric acid aqueous solution was added dropwise, 13 mL of a 5% sodium carbonate aqueous solution was added, and then the temperature was raised to room temperature. And separated. To the obtained organic layer, 13 mL of 20% saline solution and 4 mL of 5% aqueous sodium carbonate solution and 0.9 mL of DMF were added and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Trp (Boc) -OH was condensed with AEEE used as a scavenger, and H-Trp (Boc) -Glu (OtBu) -Arg (Pbf). A CPME solution containing -Thr (tBu) -NH- (D-Stag) was obtained.

5)H-Gln(Trt)-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)の合成
上記のH-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)を含むCPME溶液に、CPME0.5mL、DMF2mL、Fmoc-Gln(Trt)-OH 0.82g(1.4mmol)、COMU 0.56g(1.3mmol)、DIEPA 0.71mL(4.1mmol)を加え、室温で1時間撹拌した。H-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)が生成物のFmoc-Gln(Trt)-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)に対し5%以下になったことを確認後、AEEE62μL(0.5mmol)を加え、室温で40分撹拌した。Fmoc-Gln(Trt)-OHの活性エステルがスカベンジャーとして用いたAEEEと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.40g(2.4mmol)、DMSO 3.0mLを添加し、DMF 0.4mL、DBU 0.91mL(6.1mmol)を加え、65分撹拌した。Fmoc-Gln(Trt)-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)が生成物のH-Gln(Trt)-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)に対し5%以下になったことを確認後、1M硫酸水溶液3.2mLを滴下し、5%炭酸ナトリウム水溶液13mLを加えた後、室温まで昇温し、分液した。得られた有機層に20%食塩水13mL、5%炭酸ナトリウム水溶液4mL、DMF 0.9mLを加え、分液した。得られた有機層にFmoc-Gln(Trt)-OHの活性エステルがスカベンジャーとして用いたAEEEと縮合した化合物がないことを確認し、H-Gln(Trt)-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)を含むCPME溶液を得た。
得られたCPME溶液を減圧下で濃縮し、残渣にMeCN 24mL、IPA18mL、CPME6mL、水12mLを加え、析出した固体をろ取し、得られた固体を30℃で減圧乾燥した。H-Gln(Trt)-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag) 1.84gを得た。
5) Synthesis of H-Gln (Trt) -Trp (Boc) -Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (D-Stag) The above H-Trp (Boc) -Glu (OtBu) ) -Arg (Pbf) -Thr (tBu) -NH- (D-Stag) in CPME solution, CPME 0.5 mL, DMF 2 mL, Fmoc-Gln (Trt) -OH 0.82 g (1.4 mmol), COMU 0 .56 g (1.3 mmol) and 0.71 mL (4.1 mmol) of DIEPA were added, and the mixture was stirred at room temperature for 1 hour. H-Trp (Boc) -Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (D-Stag) is the product Fmoc-Gln (Trt) -Trp (Boc) -Glu (OtBu)- After confirming that the content was 5% or less with respect to Arg (Pbf) -Thr (tBu) -NH- (D-Stag), 62 μL (0.5 mmol) of AEEE was added, and the mixture was stirred at room temperature for 40 minutes. After confirming the compound in which the active ester of Fmoc-Gln (Trt) -OH was condensed with AEEE used as a scavenger, the mixture was cooled to 0 ° C. and 0.40 g (2.4 mmol) of sodium 2-mercapto-1-ethanesulfonate. , DMSO 3.0 mL was added, DMF 0.4 mL and DBU 0.91 mL (6.1 mmol) were added, and the mixture was stirred for 65 minutes. Fmoc-Gln (Trt) -Trp (Boc) -Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (D-Stag) is the product H-Gln (Trt) -Trp (Boc)- After confirming that the content was 5% or less of Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (D-Stag), 3.2 mL of 1 M sulfuric acid aqueous solution was added dropwise, and a 5% sodium carbonate aqueous solution was added. After adding 13 mL, the temperature was raised to room temperature and the solution was separated. To the obtained organic layer, 13 mL of 20% saline solution and 4 mL of 5% aqueous sodium carbonate solution and 0.9 mL of DMF were added and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Gln (Trt) -OH was condensed with AEEE used as a scavenger, and H-Gln (Trt) -Trp (Boc) -Glu (OtBu) was confirmed. A CPME solution containing -Arg (Pbf) -Thr (tBu) -NH- (D-Stag) was obtained.
The obtained CPME solution was concentrated under reduced pressure, 24 mL of MeCN, 18 mL of IPA, 6 mL of CPME and 12 mL of water were added to the residue, the precipitated solid was collected by filtration, and the obtained solid was dried under reduced pressure at 30 ° C. H-Gln (Trt) -Trp (Boc) -Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (D-Stag) 1.84 g was obtained.

6)H-Gln-Trp-Glu-Arg-Thr-NH2の合成
H-Gln(Trt)-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(D-STag)1.14g(0.50mmol)にトリフルオロ酢酸9.5mL、水0.25mL、トリイソプロピルシラン0.25mLを添加し、室温で2時間撹拌した。反応溶液を0℃に冷却し、MTBE70mLをゆっくりと滴下し、沈澱物を濾取した。ろ取した沈殿物をMTBE10mLで3回洗浄行った後、沈澱物を減圧下で乾燥し、H-Gln-Trp-Glu-Arg-Thr-NH2 227mgを得た。得られたH-Gln-Trp-Glu-Arg-Thr-NH2の純度は77.2%であった。
6) Synthesis of H-Gln-Trp-Glu-Arg-Thr-NH 2 H-Gln (Trt) -Trp (Boc) -Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (D-) To 1.14 g (0.50 mmol) of Stag), 9.5 mL of trifluoroacetic acid, 0.25 mL of water and 0.25 mL of triisopropylsilane were added, and the mixture was stirred at room temperature for 2 hours. The reaction solution was cooled to 0 ° C., 70 mL of MTBE was slowly added dropwise, and the precipitate was collected by filtration. The collected precipitate was washed 3 times with 10 mL of MTBE, and then the precipitate was dried under reduced pressure to obtain 227 mg of H-Gln-Trp-Glu-Arg-Thr-NH 2 2 . The purity of the obtained H-Gln-Trp-Glu-Arg-Thr-NH 2 was 77.2%.

実施例5
H-Asp-Ala―Asn-Cys-Glu-OHの合成
1)H-Glu(OtBu)-O-(B-STag)の合成
B-STag 0.79g(1.0mmol)をCPME2mL、THF3mLに溶解し、Fmoc-Glu(OtBu)-OH 1.06g(2.5mmol)、WSCI・HCl 0.48g(2.5mmol)、4-ジメチルアミノピリジン12.2mg(0.1mmol)を加え、室温で2時間撹拌した。B-STagが生成物のFmoc-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、2-アミノエタノール150μL(2.5mmol)を加え、室温で2時間撹拌した。Fmoc-Glu(OtBu)-OHの活性エステルがスカベンジャーとして用いた2-アミノエタノールと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.74g(4.5mmol)、DMSO 4.5mLを添加し、DBU1.7mL(11.3mmol)を加え、1時間撹拌した。Fmoc-Glu(OtBu)-O-(B-STag)が生成物のH-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、1M硫酸水溶液6mLを滴下し、5%炭酸ナトリウム水溶液19mLを加えた後、室温まで昇温し分液した。得られた有機層に20%食塩水20mLを加え、分液した。得られた有機層にFmoc-Glu(OtBu)-OHの活性エステルがスカベンジャーとして用いた2-アミノエタノールと縮合した化合物がないことを確認し、有機層を濃縮したのち、残渣にCPME9mL加え、H-Glu(OtBu)-O-(B-STag)を含むCPME溶液を得た。
Example 5
Synthesis of H-Asp-Ala-Asn-Cys-Glu-OH 1) Synthesis of H-Glu (OtBu) -O- (B-Stag) 0.79 g (1.0 mmol) of B-Stag was dissolved in 2 mL of CPME and 3 mL of THF. Then, add 1.06 g (2.5 mmol) of Fmoc-Glu (OtBu) -OH, 0.48 g (2.5 mmol) of WSCI / HCl, and 12.2 mg (0.1 mmol) of 4-dimethylaminopyridine, and add 2 at room temperature. Stir for hours. After confirming that B-STAg was 5% or less of the product Fmoc-Glu (OtBu) -O- (B-STAg), 150 μL (2.5 mmol) of 2-aminoethanol was added, and 2 at room temperature. Stir for hours. After confirming the compound in which the active ester of Fmoc-Glu (OtBu) -OH was condensed with 2-aminoethanol used as a scavenger, the mixture was cooled to 0 ° C. and 0.74 g (4) of sodium 2-mercapto-1-ethanesulfonate. .5 mmol) and 4.5 mL of DMSO were added, 1.7 mL (11.3 mmol) of DBU was added, and the mixture was stirred for 1 hour. After confirming that Fmoc-Glu (OtBu) -O- (B-Stag) was 5% or less of the product H-Glu (OtBu) -O- (B-Stag), add 6 mL of 1M sulfuric acid aqueous solution. The mixture was added dropwise, 19 mL of a 5% aqueous sodium carbonate solution was added, the temperature was raised to room temperature, and the solution was separated. 20 mL of 20% saline solution was added to the obtained organic layer, and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Glu (OtBu) -OH was condensed with 2-aminoethanol used as a scavenger. After concentrating the organic layer, 9 mL of CPME was added to the residue, and H was added. A CPME solution containing -Glu (OtBu) -O- (B-STAg) was obtained.

2)H-Cys(Trt)-Glu(OtBu)-O-(B-STag)の合成
上記のH-Glu(OtBu)-O-(B-STag)を含むCPME溶液にDMF2mL、Fmoc-Cys(Trt)-OH 0.79g(1.4mmol)、COMU 0.57g(1.3mmol)、DIEPA 0.71mLを加え、室温で1時間撹拌した。H-Glu(OtBu)-O-(B-STag)が生成物のFmoc-Cys(Trt)-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、2-アミノエタノール81μL(1.4mmol)を加え、室温で1時間半撹拌した。Fmoc-Cys(Trt)-OHの活性エステルがスカベンジャーとして用いた2-アミノエタノールと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.40g(1.3mmol)、DMSO 2.4mLを添加し、DBU0.91mL(6.1mmol)を加え、25分撹拌した。Fmoc-Cys(Trt)-Glu(OtBu)-O-(B-STag)が生成物のH-Cys(Trt)-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、1M硫酸水溶液3.2mLを滴下したのち、5%炭酸ナトリウム水溶液13mLを加え、室温まで昇温し、分液した。得られた有機層に20%食塩水13mL、5%炭酸ナトリウム水溶液4mL、DMF 0.9mLを加え、分液した。得られた有機層にFmoc-Cys(Trt)-OHの活性エステルがスカベンジャーとして用いた2-アミノエタノールと縮合した化合物がないことを確認し、H-Cys(Trt)-Glu(OtBu)-O-(B-STag)を含むCPME溶液を得た。
2) Synthesis of H-Cys (Trt) -Glu (OtBu) -O- (B-Stag) 2 mL of DMF, Fmoc-Cys ( Trt) -OH 0.79 g (1.4 mmol), COMU 0.57 g (1.3 mmol), and DIEPA 0.71 mL were added, and the mixture was stirred at room temperature for 1 hour. After confirming that H-Glu (OtBu) -O- (B-Stag) was 5% or less of the product Fmoc-Cys (Trt) -Glu (OtBu) -O- (B-Stag), 81 μL (1.4 mmol) of 2-aminoethanol was added, and the mixture was stirred at room temperature for 1.5 hours. After confirming the compound in which the active ester of Fmoc-Cys (Trt) -OH was condensed with 2-aminoethanol used as a scavenger, the mixture was cooled to 0 ° C. and 0.40 g (1) of sodium 2-mercapto-1-ethanesulfonate. .3 mmol) and 2.4 mL of DMSO were added, 0.91 mL (6.1 mmol) of DBU was added, and the mixture was stirred for 25 minutes. Fmoc-Cys (Trt) -Glu (OtBu) -O- (B-Stag) was 5% or less of the product H-Cys (Trt) -Glu (OtBu) -O- (B-Stag). After confirming that, 3.2 mL of a 1 M sulfuric acid aqueous solution was added dropwise, 13 mL of a 5% sodium carbonate aqueous solution was added, the temperature was raised to room temperature, and the liquid was separated. To the obtained organic layer, 13 mL of 20% saline solution and 4 mL of 5% aqueous sodium carbonate solution and 0.9 mL of DMF were added and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Cys (Trt) -OH was condensed with 2-aminoethanol used as a scavenger, and H-Cys (Trt) -Glu (OtBu) -O was confirmed. -A CPME solution containing (B-STAg) was obtained.

3)H-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)の合成
上記のH-Cys(Trt)-Glu(OtBu)-O-(B-STag)を含むCPME溶液にCPME0.5mL、DMF2mL、Fmoc-Asn(Trt)-OH 0.81g(1.4mmol)、COMU 0.56g(1.3mmol)、DIEPA 0.71mLを加え、室温で55分撹拌した。H-Cys(Trt)-Glu(OtBu)-O-(B-STag)が生成物のFmoc-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、2-アミノエタノール81μL(1.4mmol)を加え、室温で25分撹拌した。Fmoc-Asn(Trt)-OHの活性エステルがスカベンジャーとして用いた2-アミノエタノールと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.40g(2.4mmol)、DMSO 2.4mLを添加し、DBU0.91mL(6.1mmol)を加え、75分撹拌した。Fmoc-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)が生成物のH-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、1M硫酸水溶液3.2mLを滴下したのち、5%炭酸ナトリウム水溶液13mLを加え、室温まで昇温し、分液した。得られた有機層に20%食塩水13mL、5%炭酸ナトリウム水溶液4mL、DMF 0.9mLを加え、分液した。得られた有機層にFmoc-Asn(Trt)-OHの活性エステルがスカベンジャーとして用いた2-アミノエタノールと縮合した化合物がないことを確認し、H-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)を含むCPME溶液を得た。
3) Synthesis of H-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) The above H-Cys (Trt) -Glu (OtBu) -O- (B-Stag) was used. To the CPME solution containing, CPME 0.5 mL, DMF 2 mL, Fmoc-Asn (Trt) -OH 0.81 g (1.4 mmol), COMU 0.56 g (1.3 mmol), and DIEPA 0.71 mL were added, and the mixture was stirred at room temperature for 55 minutes. .. H-Cys (Trt) -Glu (OtBu) -O- (B-Stag) is 5 for the product Fmoc-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag). After confirming that the content was less than%, 81 μL (1.4 mmol) of 2-aminoethanol was added, and the mixture was stirred at room temperature for 25 minutes. After confirming the compound in which the active ester of Fmoc-Asn (Trt) -OH was condensed with 2-aminoethanol used as a scavenger, the mixture was cooled to 0 ° C. and 0.40 g (2) of sodium 2-mercapto-1-ethanesulfonate was confirmed. .4 mmol) and 2.4 mL of DMSO were added, 0.91 mL (6.1 mmol) of DBU was added, and the mixture was stirred for 75 minutes. Fmoc-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) is the product H-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-) After confirming that the content was 5% or less with respect to STag), 3.2 mL of a 1 M sulfuric acid aqueous solution was added dropwise, 13 mL of a 5% sodium carbonate aqueous solution was added, the temperature was raised to room temperature, and the liquid was separated. To the obtained organic layer, 13 mL of 20% saline solution and 4 mL of 5% aqueous sodium carbonate solution and 0.9 mL of DMF were added and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Asn (Trt) -OH was condensed with 2-aminoethanol used as a scavenger, and H-Asn (Trt) -Cys (Trt) -Glu was confirmed. A CPME solution containing (OtBu) -O- (B-STAg) was obtained.

4)H-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)の合成
上記のH-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)を含むCPME溶液にCPME0.5mL、DMF2mL、Fmoc-Ala-OH・一水和物 0.47g(1.5mmol)、COMU 0.64g(1.5mmol)、DIEPA 0.78mL(4.5mmol)を加え、室温で1時間撹拌した。H-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)が生成物のFmoc-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、2-アミノエタノール89μL(1.5mmol)を加え、室温で2時間撹拌した。Fmoc-Ala-OHの活性エステルがスカベンジャーとして用いた2-アミノエタノールと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.40g(2.5mmol)、DMSO 2.5mLを添加し、DBU0.91mL(6.1mmol)を加え、1時間撹拌した。Fmoc-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)が生成物のH-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、1M硫酸水溶液3.2mLを滴下したのち、5%炭酸ナトリウム水溶液13mLを加え、室温まで昇温し、分液した。得られた有機層に20%食塩水13mL、5%炭酸ナトリウム水溶液4mL、DMF 0.9mLを加え、分液した。得られた有機層にFmoc-Ala-OHの活性エステルがスカベンジャーとして用いた2-アミノエタノールと縮合した化合物がないことを確認し、H-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)を含むCPME溶液を得た。
4) Synthesis of H-Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) The above H-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O -CPME solution containing (B-STAg) 0.5 mL CPME, 2 mL DMF, 0.47 g (1.5 mmol) Fmoc-Ala-OH monohydrate, 0.64 g (1.5 mmol) COMU, 0.78 mL DIEPA (4.5 mmol) was added, and the mixture was stirred at room temperature for 1 hour. H-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) is the product Fmoc-Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- ( After confirming that the content was 5% or less with respect to B-Stag), 89 μL (1.5 mmol) of 2-aminoethanol was added, and the mixture was stirred at room temperature for 2 hours. After confirming the compound in which the active ester of Fmoc-Ala-OH was condensed with 2-aminoethanol used as a scavenger, the mixture was cooled to 0 ° C., and 0.40 g (2.5 mmol) of sodium 2-mercapto-1-ethanesulfonate was used. , DMSO 2.5 mL was added, DBU 0.91 mL (6.1 mmol) was added, and the mixture was stirred for 1 hour. Fmoc-Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) is the product H-Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O -After confirming that the content was 5% or less with respect to (B-Stag), 3.2 mL of a 1 M sulfuric acid aqueous solution was added dropwise, 13 mL of a 5% sodium carbonate aqueous solution was added, the temperature was raised to room temperature, and the liquid was separated. To the obtained organic layer, 13 mL of 20% saline solution and 4 mL of 5% aqueous sodium carbonate solution and 0.9 mL of DMF were added and the liquids were separated. It was confirmed that there was no compound in which the active ester of Fmoc-Ala-OH was condensed with 2-aminoethanol used as a scavenger in the obtained organic layer, and it was confirmed that H-Asn (Trt) -Cys (Trt) -Glu (OtBu). A CPME solution containing —O— (B—STAg) was obtained.

5)H-Asp(OtBu)-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)の合成
上記のH-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)を含むCPME溶液にCPME0.5mL、DMF2mL、Fmoc-Asp(OtBu)-OH 0.56g(1.4mmol)、COMU 0.56g(1.3mmol)、DIEPA 0.71mL(4.1mmol)を加え、室温で1時間撹拌した。H-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)が生成物のFmoc-Asp(OtBu)-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、2-アミノエタノール81μL(1.4mmol)を加え、室温で70分撹拌した。Fmoc-Asp(OtBu)-OHの活性エステルがスカベンジャーとして用いた2-アミノエタノールと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.40g(2.4mmol)、DMSO 2.4mLを添加し、DBU0.91mL(6.1mmol)を加え、75分撹拌した。Fmoc-Asp(OtBu)-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)が生成物のH-Asp(OtBu)-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)に対し5%以下になったことを確認後、水 3.2mLを滴下したのち、5%炭酸ナトリウム水溶液13mLを加え、室温まで昇温し、分液した。得られた有機層に20%食塩水13mL、5%炭酸ナトリウム水溶液4mL、DMF 0.9mLを加え、分液した。得られた有機層にFmoc-Asp(OtBu)-OHの活性エステルがスカベンジャーとして用いた2-アミノエタノールと縮合した化合物がないことを確認し、H-Asp(OtBu)-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)を含むCPME溶液を得た。
得られたCPME溶液を減圧下で濃縮し、残渣にMeCN 40mLを加え析出した固体をろ取し、得られた固体を30℃で減圧乾燥した。H-Asp(OtBu)-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag) 1.56gを得た。
5) Synthesis of H-Asp (OtBu) -Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) The above H-Ala-Asn (Trt) -Cys (Trt) CPME solution containing -Glu (OtBu) -O- (B-Stag) 0.5 mL CPME, 2 mL DMF, 0.56 g (1.4 mmol) Fmoc-Asp (OtBu) -OH 0.56 g (1.3 mmol) COMU , DIEPA 0.71 mL (4.1 mmol) was added, and the mixture was stirred at room temperature for 1 hour. H-Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) is the product Fmoc-Asp (OtBu) -Ala-Asn (Trt) -Cys (Trt) -Glu After confirming that the content was 5% or less with respect to (OtBu) -O- (B-Stag), 81 μL (1.4 mmol) of 2-aminoethanol was added, and the mixture was stirred at room temperature for 70 minutes. After confirming the compound in which the active ester of Fmoc-Asp (OtBu) -OH was condensed with 2-aminoethanol used as a scavenger, the mixture was cooled to 0 ° C. and 0.40 g (2) of sodium 2-mercapto-1-ethanesulfonate was confirmed. .4 mmol) and 2.4 mL of DMSO were added, 0.91 mL (6.1 mmol) of DBU was added, and the mixture was stirred for 75 minutes. Fmoc-Asp (OtBu) -Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) is the product H-Asp (OtBu) -Ala-Asn (Trt) -Cys After confirming that it was 5% or less of (Trt) -Glu (OtBu) -O- (B-Stag), add 3.2 mL of water, add 13 mL of 5% sodium carbonate aqueous solution, and raise to room temperature. It was warmed and separated. To the obtained organic layer, 13 mL of 20% saline solution and 4 mL of 5% aqueous sodium carbonate solution and 0.9 mL of DMF were added and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Asp (OtBu) -OH was condensed with 2-aminoethanol used as a scavenger, and H-Asp (OtBu) -Ala-Asn (Trt) was confirmed. A CPME solution containing -Cys (Trt) -Glu (OtBu) -O- (B-Stag) was obtained.
The obtained CPME solution was concentrated under reduced pressure, 40 mL of MeCN was added to the residue, the precipitated solid was collected by filtration, and the obtained solid was dried under reduced pressure at 30 ° C. H-Asp (OtBu) -Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) 1.56 g was obtained.

6)H-Asp-Ala―Asn-Cys-Glu-OHの合成
H-Asp(OtBu)-Ala-Asn(Trt)-Cys(Trt)-Glu(OtBu)-O-(B-STag)962mg(0.50mmol)にトリフルオロ酢酸7.5mL、水0.21mL、トリイソプロピルシラン0.21mL、3,6-ジオキサ-1,8-オクタンジチオール0.42mLを添加し、室温で2時間撹拌した。反応溶液を0℃に冷却し、MTBE60mLをゆっくりと滴下し、沈澱物を濾取した。ろ取した沈殿物をMTBE10mLで3回洗浄行った後、沈澱物を減圧下で乾燥し、H-Asp-Ala―Asn-Cys-Glu-OH 275mgを得た。得られたH-Asp-Ala―Asn-Cys-Glu-OHの純度は78.4%であった。
6) Synthesis of H-Asp-Ala-Asn-Cys-Glu-OH H-Asp (OtBu) -Ala-Asn (Trt) -Cys (Trt) -Glu (OtBu) -O- (B-Stag) 962 mg ( 7.5 mL of trifluoroacetic acid, 0.21 mL of water, 0.21 mL of triisopropylsilane, and 0.42 mL of 3,6-dioxa-1,8-octanedithiol were added to 0.50 mmol), and the mixture was stirred at room temperature for 2 hours. The reaction solution was cooled to 0 ° C., 60 mL of MTBE was slowly added dropwise, and the precipitate was collected by filtration. The collected precipitate was washed 3 times with 10 mL of MTBE, and then the precipitate was dried under reduced pressure to obtain 275 mg of H-Asp-Ala-Asn-Cys-Glu-OH. The purity of the obtained H-Asp-Ala-Asn-Cys-Glu-OH was 78.4%.

実施例6
H-Gln-Trp-Glu-Arg-Thr-NH2の合成
1)H-Thr(tBu)-NH-(X-STag)の合成
Fmoc-NH-(X-STag) 1.10g(1.0mmol)をCPME9mL、DMF2mLに溶解し、0℃に冷却した後、DIEPA 0.33mL(1.9mmol)、2-メルカプト-1-エタンスルホン酸ナトリウム0.30g(1.8mmol)を添加し、DBU0.67mL(4.5mmol)を滴下した。0℃で1時間撹拌し、Fmoc-NH-(X-STag)が生成物のNH2-(X-STag)に対し5%以下になったことを確認後、1M硫酸水溶液4.8mLを滴下し、5%炭酸ナトリウム水溶液10mLを加えた後、室温まで昇温し、分液した。得られた有機層に20%食塩水25mL、5%炭酸ナトリウム水溶液8mL、DMF 1.8mLを加え、分液し、NH2-(X-STag)を含むCPME溶液を得た。
このNH2-(X-STag)を含むCPME溶液に、CPME0.6mL、DMF2mL、Fmoc-Thr(tBu)-OH 0.54g(1.4mmol)、COMU 0.57g(1.3mmol)、DIEPA 0.71mL(4.1mmol)を加え、室温で70分撹拌した。NH2-(X-STag)が生成物のFmoc-Thr(tBu)-NH-(X-STag)に対し5%以下になったことを確認後、アミノメタンホスホン酸0.11g(1.0mmol)、DMSO 2.4mLを加え、室温で20分撹拌した。Fmoc-Thr(tBu)-OHの活性エステルがスカベンジャーとして用いたアミノメタンホスホン酸と縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.40g(2.4mmol)を添加し、DBU0.91mL(6.1mmol)を加え、70分撹拌した。Fmoc-Thr(tBu)-NH-(X-STag)が生成物のH-Thr(tBu)-NH-(X-STag)に対し5%以下になったことを確認後、1M硫酸水溶液3.2mLを滴下し、5%炭酸ナトリウム水溶液13mLを加えた後、室温まで昇温し、分液した。得られた有機層に20%食塩水25mL、5%炭酸ナトリウム水溶液8mL、DMF 1.8mLを加え、分液した。得られた有機層にFmoc-Thr(tBu)-OHの活性エステルがスカベンジャーとして用いたアミノメタンホスホン酸と縮合した化合物がないことを確認し、H-Thr(tBu)-NH-(X-STag)を含むCPME溶液を得た。
Example 6
Synthesis of H-Gln-Trp-Glu-Arg-Thr-NH 2 1) Synthesis of H-Thr (tBu) -NH- (X-Stag) Fmoc-NH- (X-Stag) 1.10 g (1.0 mmol) ) Was dissolved in 9 mL of CPME and 2 mL of DMF, cooled to 0 ° C., 0.33 mL (1.9 mmol) of DIEPA and 0.30 g (1.8 mmol) of sodium 2-mercapto-1-ethanesulfonate were added, and DBU0. 67 mL (4.5 mmol) was added dropwise. After stirring at 0 ° C. for 1 hour and confirming that Fmoc-NH- (X-Stag) was 5% or less of the product NH 2- (X-Stag), 4.8 mL of 1 M sulfuric acid aqueous solution was added dropwise. Then, 10 mL of a 5% aqueous sodium carbonate solution was added, the temperature was raised to room temperature, and the liquid was separated. To the obtained organic layer, 25 mL of 20% saline solution and 8 mL of 5% sodium carbonate aqueous solution and 1.8 mL of DMF were added and separated to obtain a CPME solution containing NH 2- (X-Stag).
In this CPME solution containing NH 2- (X-Stag), CPME 0.6 mL, DMF 2 mL, Fmoc-Thr (tBu) -OH 0.54 g (1.4 mmol), COMU 0.57 g (1.3 mmol), DIEPA 0 .71 mL (4.1 mmol) was added, and the mixture was stirred at room temperature for 70 minutes. After confirming that NH 2- (X-Stag) was 5% or less of the product Fmoc-Thr (tBu) -NH- (X-Stag), 0.11 g (1.0 mmol) of aminomethanephosphonic acid. ), DMSO 2.4 mL was added, and the mixture was stirred at room temperature for 20 minutes. After confirming the compound in which the active ester of Fmoc-Thr (tBu) -OH was condensed with the aminomethanephosphonic acid used as a scavenger, the mixture was cooled to 0 ° C. and 0.40 g (2) of sodium 2-mercapto-1-ethanesulfonate was confirmed. .4 mmol) was added, 0.91 mL (6.1 mmol) of DBU was added, and the mixture was stirred for 70 minutes. After confirming that Fmoc-Thr (tBu) -NH- (X-Stag) was 5% or less of the product H-Thr (tBu) -NH- (X-Stag), 1M aqueous sulfuric acid solution 3. 2 mL was added dropwise, 13 mL of a 5% aqueous sodium carbonate solution was added, the temperature was raised to room temperature, and the liquid was separated. To the obtained organic layer, 25 mL of 20% saline solution and 8 mL of 5% aqueous sodium carbonate solution and 1.8 mL of DMF were added and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Thr (tBu) -OH was condensed with the aminomethanephosphonic acid used as a scavenger, and it was confirmed that there was no compound condensed with H-Thr (tBu) -NH- (X-Stag). ) Was obtained.

2)H-Arg(Pbf)-Thr(tBu)-NH-(X-STag)の合成
上記のH-Thr(tBu)-NH-(X-STag)を含むCPME溶液に、CPME0.7mL、DMF2mL、Fmoc-Arg(Pbf)-OH 0.88g(1.4mmol)、COMU 0.56g(1.3mmol)、DIEPA 0.71mL(4.1mmol)を加え、室温で1時間撹拌した。H-Thr(tBu)-NH-(X-STag)が生成物のFmoc-Arg(Pbf)-Thr(tBu)-NH-(X-STag)に対し5%以下になったことを確認後、2-アミノエタノール81μL(1.4mmol)を加え、室温で30分撹拌した。Fmoc-Arg(Pbf)-OHの活性エステルがスカベンジャーとして用いた2-アミノエタノールと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.40g(2.4mmol)、DMSO 2.4mLを添加し、DBU 0.91mL(6.1mmol)を加え、50分撹拌した。Fmoc-Arg(Pbf)-Thr(tBu)-NH-(X-STag)が生成物のH-Arg(Pbf)-Thr(tBu)-NH-(X-STag)に対し5%以下になったことを確認後、5%炭酸ナトリウム水溶液13mLを滴下した後、室温まで昇温し、分液した。得られた有機層に20%食塩水13mL、5%炭酸ナトリウム水溶液4mL、DMF 0.9mLを加え、分液した。得られた有機層にFmoc-Arg(Pbf)-OHの活性エステルがスカベンジャーとして用いた2-アミノエタノールと縮合した化合物がないことを確認し、H-Arg(Pbf)-Thr(tBu)-NH-(X-STag)を含むCPME溶液を得た。
2) Synthesis of H-Arg (Pbf) -Thr (tBu) -NH- (X-Stag) In the CPME solution containing the above H-Thr (tBu) -NH- (X-Stag), CPME 0.7 mL, DMF 2 mL , Fmoc-Arg (Pbf) -OH 0.88 g (1.4 mmol), COMU 0.56 g (1.3 mmol), DIEPA 0.71 mL (4.1 mmol) were added, and the mixture was stirred at room temperature for 1 hour. After confirming that H-Thr (tBu) -NH- (X-Stag) was 5% or less of the product Fmoc-Arg (Pbf) -Thr (tBu) -NH- (X-Stag), 81 μL (1.4 mmol) of 2-aminoethanol was added, and the mixture was stirred at room temperature for 30 minutes. After confirming the compound in which the active ester of Fmoc-Arg (Pbf) -OH was condensed with 2-aminoethanol used as a scavenger, the mixture was cooled to 0 ° C. and 0.40 g (2) of sodium 2-mercapto-1-ethanesulfonate. .4 mmol) and 2.4 mL of DMSO were added, 0.91 mL (6.1 mmol) of DBU was added, and the mixture was stirred for 50 minutes. Fmoc-Arg (Pbf) -Thr (tBu) -NH- (X-Stag) was 5% or less of the product H-Arg (Pbf) -Thr (tBu) -NH- (X-Stag). After confirming that, 13 mL of a 5% sodium carbonate aqueous solution was added dropwise, the temperature was raised to room temperature, and the liquid was separated. To the obtained organic layer, 13 mL of 20% saline solution and 4 mL of 5% aqueous sodium carbonate solution and 0.9 mL of DMF were added and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Arg (Pbf) -OH was condensed with 2-aminoethanol used as a scavenger, and H-Arg (Pbf) -Thr (tBu) -NH was confirmed. -A CPME solution containing (X-STAg) was obtained.

3)H-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)の合成
上記のH-Arg(Pbf)-Thr(tBu)-NH-(X-STag)を含むCPME溶液に、CPME0.5mL、DMF2mL、Fmoc-Glu(OtBu)-OH 0.57g(1.4mmol)、COMU 0.56g(1.3mmol)、DIEPA 0.71mL(4.1mmol)を加え、室温で1時間撹拌した。H-Arg(Pbf)-Thr(tBu)-NH-(X-STag)が生成物のFmoc-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)に対し5%以下になったことを確認後、2-アミノエタノール81μL(1.0mmol)を加え、室温で40分撹拌した。Fmoc-Glu(OtBu)-OHの活性エステルがスカベンジャーとして用いたAEEEと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.40g(2.4mmol)、DMSO 2.4mL、DMF0.4mLを添加し、DBU 0.91mL(6.1mmol)を加え、65分撹拌した。Fmoc-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)が生成物のH-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)に対し5%以下になったことを確認後、5%炭酸ナトリウム水溶液13mLを滴下した後、室温まで昇温し、分液した。得られた有機層に20%食塩水13mL、5%炭酸ナトリウム水溶液4mL、DMF 0.9mLを加え、分液した。得られた有機層にFmoc-Glu(OtBu)-OHの活性エステルがスカベンジャーとして用いた2-アミノエタノールと縮合した化合物がないことを確認し、H-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)を含むCPME溶液を得た。
3) Synthesis of H-Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (X-Stag) The above H-Arg (Pbf) -Thr (tBu) -NH- (X-Stag) was used. To the CPME solution containing, CPME 0.5 mL, DMF 2 mL, Fmoc-Glu (OtBu) -OH 0.57 g (1.4 mmol), COMU 0.56 g (1.3 mmol), DIEPA 0.71 mL (4.1 mmol) were added. The mixture was stirred at room temperature for 1 hour. H-Arg (Pbf) -Thr (tBu) -NH- (X-Stag) is 5 relative to the product Fmoc-Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (X-Stag). After confirming that the content was less than%, 81 μL (1.0 mmol) of 2-aminoethanol was added, and the mixture was stirred at room temperature for 40 minutes. After confirming the compound in which the active ester of Fmoc-Glu (OtBu) -OH was condensed with AEEE used as a scavenger, the mixture was cooled to 0 ° C. and 0.40 g (2.4 mmol) of sodium 2-mercapto-1-ethanesulfonate. , DMSO 2.4 mL, DMF 0.4 mL was added, DBU 0.91 mL (6.1 mmol) was added, and the mixture was stirred for 65 minutes. Fmoc-Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (X-Stag) is the product H-Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (X-) After confirming that the content was 5% or less with respect to STag), 13 mL of a 5% sodium carbonate aqueous solution was added dropwise, the temperature was raised to room temperature, and the liquid was separated. To the obtained organic layer, 13 mL of 20% saline solution and 4 mL of 5% aqueous sodium carbonate solution and 0.9 mL of DMF were added and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Glu (OtBu) -OH was condensed with 2-aminoethanol used as a scavenger, and H-Glu (OtBu) -Arg (Pbf) -Thr. A CPME solution containing (tBu) -NH- (X-STAg) was obtained.

4)H-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)の合成
上記のH-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)を含むCPME溶液に、CPME0.5mL、DMF2mL、Fmoc-Trp(Boc)-OH 0.71g(1.4mmol)、COMU 0.56g(1.3mmol)、DIEPA 0.71mL(4.1mmol)を加え、室温で70分撹拌した。H-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)が生成物のFmoc-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)に対し5%以下になったことを確認後、2-アミノエタノール81μL(1.0mmol)を加え、室温で40分撹拌した。Fmoc-Trp(Boc)-OHの活性エステルがスカベンジャーとして用いた2-アミノエタノールと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.40g(2.4mmol)、DMSO 2.4mLを添加し、DMF 0.4mL、DBU 0.91mL(6.1mmol)を加え、65分撹拌した。Fmoc-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)が生成物のH-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)に対し5%以下になったことを確認後、1M硫酸水溶液3.2mLを滴下し、5%炭酸ナトリウム水溶液13mLを加えた後、室温まで昇温し、分液した。得られた有機層に20%食塩水13mL、5%炭酸ナトリウム水溶液4mL、DMF 0.9mLを加え、分液した。得られた有機層にFmoc-Trp(Boc)-OHの活性エステルがスカベンジャーとして用いた2-アミノエタノールと縮合した化合物がないことを確認し、H-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)を含むCPME溶液を得た。
4) Synthesis of H-Trp (Boc) -Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (X-Stag) The above H-Glu (OtBu) -Arg (Pbf) -Thr (tBu) ) -NH- (X-Stag) in CPME solution, CPME 0.5 mL, DMF 2 mL, Fmoc-Trp (Boc) -OH 0.71 g (1.4 mmol), COMU 0.56 g (1.3 mmol), DIEPA 0 .71 mL (4.1 mmol) was added, and the mixture was stirred at room temperature for 70 minutes. H-Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (X-Stag) is the product Fmoc-Trp (Boc) -Glu (OtBu) -Arg (Pbf) -Thr (tBu)- After confirming that the content was 5% or less with respect to NH- (X-Stag), 81 μL (1.0 mmol) of 2-aminoethanol was added, and the mixture was stirred at room temperature for 40 minutes. After confirming the compound in which the active ester of Fmoc-Trp (Boc) -OH was condensed with 2-aminoethanol used as a scavenger, the mixture was cooled to 0 ° C. and 0.40 g (2) of sodium 2-mercapto-1-ethanesulfonate was confirmed. .4 mmol) and 2.4 mL of DMSO were added, 0.4 mL of DMF and 0.91 mL (6.1 mmol) of DBU were added, and the mixture was stirred for 65 minutes. Fmoc-Trp (Boc) -Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (X-Stag) is the product H-Trp (Boc) -Glu (OtBu) -Arg (Pbf)- After confirming that the ratio was 5% or less with respect to Thr (tBu) -NH- (X-Stag), 3.2 mL of a 1 M sulfuric acid aqueous solution was added dropwise, 13 mL of a 5% sodium carbonate aqueous solution was added, and then the temperature was raised to room temperature. And separated. To the obtained organic layer, 13 mL of 20% saline solution and 4 mL of 5% aqueous sodium carbonate solution and 0.9 mL of DMF were added and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Trp (Boc) -OH was condensed with 2-aminoethanol used as a scavenger, and H-Trp (Boc) -Glu (OtBu) -Arg was confirmed. A CPME solution containing (Pbf) -Thr (tBu) -NH- (X-Stag) was obtained.

5)H-Gln(Trt)-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)の合成
上記のH-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)を含むCPME溶液に、CPME0.5mL、DMF2mL、Fmoc-Gln(Trt)-OH 0.83g(1.4mmol)、COMU 0.56g(1.3mmol)、DIEPA 0.71mL(4.1mmol)を加え、室温で1時間撹拌した。H-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)が生成物のFmoc-Gln(Trt)-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)に対し5%以下になったことを確認後、2-アミノエタノール81μL(1.0mmol)を加え、室温で40分撹拌した。Fmoc-Gln(Trt)-OHの活性エステルがスカベンジャーとして用いた2-アミノエタノールと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.40g(2.4mmol)、DMSO 3.0mLを添加し、DMF 0.4mL、DBU 0.91mL(6.1mmol)を加え、65分撹拌した。Fmoc-Gln(Trt)-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)が生成物のH-Gln(Trt)-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)に対し5%以下になったことを確認後、1M硫酸水溶液3.2mLを滴下し、5%炭酸ナトリウム水溶液13mLを加えた後、室温まで昇温し、分液した。得られた有機層に20%食塩水13mL、5%炭酸ナトリウム水溶液4mL、DMF 0.9mLを加え、分液した。得られた有機層にFmoc-Gln(Trt)-OHの活性エステルがスカベンジャーとして用いた2-アミノエタノールと縮合した化合物がないことを確認し、H-Gln(Trt)-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)を含むCPME溶液を得た。
得られたCPME溶液を減圧下で濃縮し、残渣にMeCN 25mL、MeOH15mLを加え、析出した固体をろ取し、得られた固体を30℃で減圧乾燥した。H-Gln(Trt)-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag) 1.26gを得た。
5) Synthesis of H-Gln (Trt) -Trp (Boc) -Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (X-Stag) The above H-Trp (Boc) -Glu (OtBu) ) -Arg (Pbf) -Thr (tBu) -NH- (X-STAg) in CPME solution, CPME 0.5 mL, DMF 2 mL, Fmoc-Gln (Trt) -OH 0.83 g (1.4 mmol), COMU 0 .56 g (1.3 mmol) and 0.71 mL (4.1 mmol) of DIEPA were added, and the mixture was stirred at room temperature for 1 hour. H-Trp (Boc) -Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (X-Stag) is the product Fmoc-Gln (Trt) -Trp (Boc) -Glu (OtBu)- After confirming that the content was 5% or less with respect to Arg (Pbf) -Thr (tBu) -NH- (X-Stag), 81 μL (1.0 mmol) of 2-aminoethanol was added, and the mixture was stirred at room temperature for 40 minutes. After confirming the compound in which the active ester of Fmoc-Gln (Trt) -OH was condensed with 2-aminoethanol used as a scavenger, the mixture was cooled to 0 ° C. and 0.40 g (2) of sodium 2-mercapto-1-ethanesulfonate was confirmed. .4 mmol), DMSO 3.0 mL was added, DMF 0.4 mL and DBU 0.91 mL (6.1 mmol) were added, and the mixture was stirred for 65 minutes. Fmoc-Gln (Trt) -Trp (Boc) -Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (X-Stag) is the product H-Gln (Trt) -Trp (Boc)- After confirming that the content was 5% or less of Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (X-Stag), 3.2 mL of 1 M sulfuric acid aqueous solution was added dropwise, and a 5% sodium carbonate aqueous solution was added. After adding 13 mL, the temperature was raised to room temperature and the solution was separated. To the obtained organic layer, 13 mL of 20% saline solution and 4 mL of 5% aqueous sodium carbonate solution and 0.9 mL of DMF were added and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Gln (Trt) -OH was condensed with 2-aminoethanol used as a scavenger, and H-Gln (Trt) -Trp (Boc) -Glu was confirmed. A CPME solution containing (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (X-Stag) was obtained.
The obtained CPME solution was concentrated under reduced pressure, 25 mL of MeCN and 15 mL of MeOH were added to the residue, the precipitated solid was collected by filtration, and the obtained solid was dried under reduced pressure at 30 ° C. H-Gln (Trt) -Trp (Boc) -Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (X-Stag) 1.26 g was obtained.

6)H-Gln-Trp-Glu-Arg-Thr-NH2の合成
H-Gln(Trt)-Trp(Boc)-Glu(OtBu)-Arg(Pbf)-Thr(tBu)-NH-(X-STag)1.15g(0.50mmol)にトリフルオロ酢酸9.5mL、水0.25mL、トリイソプロピルシラン0.25mLを添加し、室温で2時間撹拌した。反応溶液を0℃に冷却し、MTBE70mLをゆっくりと滴下し、沈澱物を濾取した。ろ取した沈殿物をMTBE10mLで3回洗浄行った後、沈澱物を減圧下で乾燥し、H-Gln-Trp-Glu-Arg-Thr-NH2 358mgを得た。得られたH-Gln-Trp-Glu-Arg-Thr-NH2の純度は78.1%であった。
6) Synthesis of H-Gln-Trp-Glu-Arg-Thr-NH 2 H-Gln (Trt) -Trp (Boc) -Glu (OtBu) -Arg (Pbf) -Thr (tBu) -NH- (X-) To 1.15 g (0.50 mmol) of Stag), 9.5 mL of trifluoroacetic acid, 0.25 mL of water and 0.25 mL of triisopropylsilane were added, and the mixture was stirred at room temperature for 2 hours. The reaction solution was cooled to 0 ° C., 70 mL of MTBE was slowly added dropwise, and the precipitate was collected by filtration. The collected precipitate was washed 3 times with 10 mL of MTBE, and then the precipitate was dried under reduced pressure to obtain 358 mg of H-Gln-Trp-Glu-Arg-Thr-NH 2 . The purity of the obtained H-Gln-Trp-Glu-Arg-Thr-NH 2 was 78.1%.

実施例7
H-Gln-Asn-Cys-Arg-OHの合成
1)H-Arg(Pbf)-O-(B-STag)の合成
B-STag 0.40g(0.5mmol)をCPME1mL、THF1.5mLに溶解し、Fmoc-Arg(Pbf)-OH 0.81g(1.3mmol)、WSCI・HCl 0.24g(1.3mmol)、4-ジメチルアミノピリジン6.1mg(0.05mmol)を加え、室温で2時間撹拌した。B-STagが生成物のFmoc-Arg(Pbf)-O-(B-STag)に対し10%以下になったことを確認後、リン酸二水素2-アミノエチル(AEDP)0.18g(1.3mmol)、DMSO 2.5mLを加え、室温で1時間撹拌した。Fmoc-Arg(Pbf)-OHの活性エステルがスカベンジャーとして用いたAEDPと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.37g(2.3mmol)を添加し、DBU0.84mL(5.6mmol)を加え、65分撹拌した。Fmoc-Arg(Pbf)-O-(B-STag)が生成物のH-Arg(Pbf)-O-(B-STag)に対し10%以下になったことを確認後、5%炭酸水素カリウム水溶液15mL、CPME3mLを滴下し、室温まで昇温し、分液した。得られた有機層に20%食塩水6mLを加え、分液した。得られた有機層にFmoc-Arg(Pbf)-OHの活性エステルがスカベンジャーとして用いたAEDPと縮合した化合物がないことを確認し、有機層を濃縮したのち、残渣にCPME0.6mL加え、H-Arg(Pbf)-O-(B-STag)を含むCPME溶液を得た。
Example 7
Synthesis of H-Gln-Asn-Cys-Arg-OH 1) Synthesis of H-Arg (Pbf) -O- (B-Stag) 0.40 g (0.5 mmol) of B-Stag was dissolved in 1 mL of CPME and 1.5 mL of THF. Then, add 0.81 g (1.3 mmol) of Fmoc-Arg (Pbf) -OH, 0.24 g (1.3 mmol) of WSCI / HCl, and 6.1 mg (0.05 mmol) of 4-dimethylaminopyridine, and add 2 at room temperature. Stirred for hours. After confirming that B-STAg was 10% or less of the product Fmoc-Arg (Pbf) -O- (B-STAg), 0.18 g (1) of 2-aminoethyl dihydrogen phosphate (AEDP). .3 mmol), 2.5 mL of DMSO was added, and the mixture was stirred at room temperature for 1 hour. After confirming the compound in which the active ester of Fmoc-Arg (Pbf) -OH was condensed with AEDP used as a scavenger, the mixture was cooled to 0 ° C. and cooled to 0 ° C., and 0.37 g (2.3 mmol) of sodium 2-mercapto-1-ethanesulfonate was used. Was added, 0.84 mL (5.6 mmol) of DBU was added, and the mixture was stirred for 65 minutes. After confirming that Fmoc-Arg (Pbf) -O- (B-STAg) was 10% or less of the product H-Arg (Pbf) -O- (B-STAg), 5% potassium hydrogen carbonate 15 mL of the aqueous solution and 3 mL of CPME were added dropwise, the temperature was raised to room temperature, and the liquid was separated. 6 mL of 20% saline solution was added to the obtained organic layer, and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Arg (Pbf) -OH was condensed with AEDP used as a scavenger, and after concentrating the organic layer, 0.6 mL of CPME was added to the residue, and H- A CPME solution containing Arg (Pbf) -O- (B-STAg) was obtained.

2)H-Cys(Trt)-Arg(Pbf)-O-(B-STag)の合成
上記のH-Arg(Pbf)-O-(B-STag)を含むCPME溶液にDMF7mL、Fmoc-Cys(Trt)-OH 0.40g(0.7mmol)、COMU 0.28g(0.7mmol)、DIEPA 0.24mLを加え、室温で80分撹拌した。H-Arg(Pbf)-O-(B-STag)が生成物のFmoc-Cys(Trt)-Arg(Pbf)-O-(B-STag)に対し10%以下になったことを確認後、AEDP 92mg(0.7mmol)、DMSO 1.3mLを加え、室温で2時間撹拌した。Fmoc-Cys(Trt)-OHの活性エステルがスカベンジャーとして用いたAEDPと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.21g(1.2mmol)を添加し、DBU0.45mL(3mmol)を加え、50分撹拌した。Fmoc-Cys(Trt)-Arg(Pbf)-O-(B-STag)が生成物のH-Cys(Trt)-Arg(Pbf)-O-(B-STag)に対し10%以下になったことを確認後、1M硫酸水溶液1.6mLを滴下したのち、5%炭酸水素カリウム水溶液7mLを加え、室温まで昇温し、分液した。得られた有機層に20%食塩水8mL、DMF 0.4mLを加え、分液した。得られた有機層にFmoc-Cys(Trt)-OHの活性エステルがスカベンジャーとして用いたAEDPと縮合した化合物がないことを確認し、H-Cys(Trt)-Arg(Pbf)-O-(B-STag)を含むCPME溶液を得た。
2) Synthesis of H-Cys (Trt) -Arg (Pbf) -O- (B-Stag) 7 mL of DMF, Fmoc-Cys ( Trt) -OH 0.40 g (0.7 mmol), COMU 0.28 g (0.7 mmol), and DIEPA 0.24 mL were added, and the mixture was stirred at room temperature for 80 minutes. After confirming that H-Arg (Pbf) -O- (B-Stag) was 10% or less of the product Fmoc-Cys (Trt) -Arg (Pbf) -O- (B-Stag), 92 mg (0.7 mmol) of AEDP and 1.3 mL of DMSO were added, and the mixture was stirred at room temperature for 2 hours. After confirming the compound in which the active ester of Fmoc-Cys (Trt) -OH was condensed with AEDP used as a scavenger, the mixture was cooled to 0 ° C. and 0.21 g (1.2 mmol) of sodium 2-mercapto-1-ethanesulfonate. Was added, 0.45 mL (3 mmol) of DBU was added, and the mixture was stirred for 50 minutes. Fmoc-Cys (Trt) -Arg (Pbf) -O- (B-Stag) was 10% or less of the product H-Cys (Trt) -Arg (Pbf) -O- (B-Stag). After confirming that, 1.6 mL of a 1 M sulfuric acid aqueous solution was added dropwise, 7 mL of a 5% potassium hydrogen carbonate aqueous solution was added, the temperature was raised to room temperature, and the liquid was separated. 8 mL of 20% saline solution and 0.4 mL of DMF were added to the obtained organic layer, and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Cys (Trt) -OH was condensed with AEDP used as a scavenger, and H-Cys (Trt) -Arg (Pbf) -O- (B) was confirmed. -A CPME solution containing STag) was obtained.

3)H-Asn(Trt)-Cys(Trt)-Arg(Pbf)-O-(B-STag)の合成
上記のH-Cys(Trt)-Arg(Pbf)-O-(B-STag)を含むCPME溶液にCPME0.2mL、DMF1.1mL、Fmoc-Asn(Trt)-OH 0.40g(0.7mmol)、COMU 0.28g(0.7mmol)、DIEPA 0.24mLを加え、室温で65分撹拌した。H-Cys(Trt)-Arg(Pbf)-O-(B-STag)が生成物のFmoc-Asn(Trt)-Cys(Trt)-Arg(Pbf)-O-(B-STag)に対し10%以下になったことを確認後、AEDP92mg(0.7mmol)、DMSO 1.3mLを加え、室温で90分撹拌した。Fmoc-Asn(Trt)-OHの活性エステルがスカベンジャーとして用いたAEDPと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.21g(1.2mmol)を添加し、DBU0.45mL(3mmol)を加え、1時間撹拌した。Fmoc-Asn(Trt)-Cys(Trt)-Arg(Pbf)-O-(B-STag)が生成物のH-Asn(Trt)-Cys(Trt)-Arg(Pbf)-O-(B-STag)に対し10%以下になったことを確認後、1M硫酸水溶液1.6mLを滴下したのち、5%炭酸水素カリウム水溶液7mLを加え、室温まで昇温し、分液した。得られた有機層に20%食塩水8mL、DMF 0.4mLを加え、分液した。得られた有機層にFmoc-Asn(Trt)-OHの活性エステルがスカベンジャーとして用いたAEDPと縮合した化合物がないことを確認し、H-Asn(Trt)-Cys(Trt)-Arg(Pbf)-O-(B-STag)を含むCPME溶液を得た。
3) Synthesis of H-Asn (Trt) -Cys (Trt) -Arg (Pbf) -O- (B-Stag) The above H-Cys (Trt) -Arg (Pbf) -O- (B-Stag) was used. To the CPME solution containing, CPME 0.2 mL, DMF 1.1 mL, Fmoc-Asn (Trt) -OH 0.40 g (0.7 mmol), COMU 0.28 g (0.7 mmol), DIEPA 0.24 mL were added, and 65 minutes at room temperature. Stirred. H-Cys (Trt) -Arg (Pbf) -O- (B-Stag) is 10 relative to the product Fmoc-Asn (Trt) -Cys (Trt) -Arg (Pbf) -O- (B-Stag). After confirming that the content was less than%, 92 mg (0.7 mmol) of AEDP and 1.3 mL of DMSO were added, and the mixture was stirred at room temperature for 90 minutes. After confirming the compound in which the active ester of Fmoc-Asn (Trt) -OH was condensed with AEDP used as a scavenger, the mixture was cooled to 0 ° C. and 0.21 g (1.2 mmol) of sodium 2-mercapto-1-ethanesulfonate. Was added, 0.45 mL (3 mmol) of DBU was added, and the mixture was stirred for 1 hour. Fmoc-Asn (Trt) -Cys (Trt) -Arg (Pbf) -O- (B-Stag) is the product H-Asn (Trt) -Cys (Trt) -Arg (Pbf) -O- (B-) After confirming that the content was 10% or less with respect to STag), 1.6 mL of a 1 M sulfuric acid aqueous solution was added dropwise, 7 mL of a 5% potassium hydrogen carbonate aqueous solution was added, the temperature was raised to room temperature, and the liquid was separated. 8 mL of 20% saline solution and 0.4 mL of DMF were added to the obtained organic layer, and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Asn (Trt) -OH was condensed with AEDP used as a scavenger, and H-Asn (Trt) -Cys (Trt) -Arg (Pbf) was confirmed. A CPME solution containing —O— (B—STAg) was obtained.

4)H-Gln(Trt)-Asn(Trt)-Cys(Trt)-Arg(Pbf)-O-(B-STag)の合成
上記のH-Asn(Trt)-Cys(Trt)-Arg(Pbf)-O-(B-STag)を含むCPME溶液にCPME0.2mL、DMF1.1mL、Fmoc-Gln(Trt)-OH0.48g(0.75mmol)、COMU 0.31g(0.73mmol)、DIEPA 0.39mLを加え、室温で80分撹拌した。H-Asn(Trt)-Cys(Trt)-Arg(Pbf)-O-(B-STag)が生成物のFmoc-Gln(Trt)-Asn(Trt)-Cys(Trt)-Arg(Pbf)-O-(B-STag)に対し10%以下になったことを確認後、AEDP 0.10g(0.73mmol)、DMSO 1。5mLを加え、室温で45分撹拌した。Fmoc-Gln(Trt)-OHの活性エステルがスカベンジャーとして用いたAEDPと縮合した化合物を確認したのち、0℃に冷却し、2-メルカプト-1-エタンスルホン酸ナトリウム0.22g(1.4mmol)を添加し、DBU0.50mL(3.4mmol)を加え、1時間撹拌した。Fmoc-Gln(Trt)-Asn(Trt)-Cys(Trt)-Arg(Pbf)-O-(B-STag)が生成物のH-Gln(Trt)-Asn(Trt)-Cys(Trt)-Arg(Pbf)-O-(B-STag)に対し10%以下になったことを確認後、1M硫酸水溶液1.8mLを滴下した後、5%炭酸水素カリウム水溶液7mLを加え、室温まで昇温し、分液した。得られた有機層に20%食塩水8mL、DMF 0.4mLを加え、分液した。得られた有機層にFmoc-Gln(Trt)-OHの活性エステルがスカベンジャーとして用いたAEDPと縮合した化合物がないことを確認し、H-Gln(Trt)-Asn(Trt)-Cys(Trt)-Arg(Pbf)-O-(B-STag)を含むCPME溶液を得た。
得られたCPME溶液を減圧下で濃縮し、残渣として、H-Gln(Trt)-Asn(Trt)-Cys(Trt)-Arg(Pbf)-O-(B-STag) 1.58gを得た。
4) Synthesis of H-Gln (Trt) -Asn (Trt) -Cys (Trt) -Arg (Pbf) -O- (B-Stag) The above H-Asn (Trt) -Cys (Trt) -Arg (Pbf) ) -O- (B-Stag) in CPME solution containing 0.2 mL of CPME, 1.1 mL of DMF, 0.48 g (0.75 mmol) of Fmoc-Gln (Trt) -OH, 0.31 g (0.73 mmol) of COMU, DIEPA 0 .39 mL was added and stirred at room temperature for 80 minutes. H-Asn (Trt) -Cys (Trt) -Arg (Pbf) -O- (B-Stag) is the product Fmoc-Gln (Trt) -Asn (Trt) -Cys (Trt) -Arg (Pbf)- After confirming that the content was 10% or less with respect to O- (B-STAg), 0.10 g (0.73 mmol) of AEDP and 1.5 mL of DMSO were added, and the mixture was stirred at room temperature for 45 minutes. After confirming the compound in which the active ester of Fmoc-Gln (Trt) -OH was condensed with AEDP used as a scavenger, the mixture was cooled to 0 ° C. and 0.22 g (1.4 mmol) of sodium 2-mercapto-1-ethanesulfonate. Was added, 0.50 mL (3.4 mmol) of DBU was added, and the mixture was stirred for 1 hour. Fmoc-Gln (Trt) -Asn (Trt) -Cys (Trt) -Arg (Pbf) -O- (B-Stag) is the product H-Gln (Trt) -Asn (Trt) -Cys (Trt)- After confirming that it was 10% or less of Arg (Pbf) -O- (B-Stag), 1.8 mL of 1 M sulfuric acid aqueous solution was added dropwise, then 7 mL of 5% potassium hydrogen carbonate aqueous solution was added, and the temperature was raised to room temperature. And separated. 8 mL of 20% saline solution and 0.4 mL of DMF were added to the obtained organic layer, and the liquids were separated. It was confirmed that the obtained organic layer had no compound in which the active ester of Fmoc-Gln (Trt) -OH was condensed with AEDP used as a scavenger, and H-Gln (Trt) -Asn (Trt) -Cys (Trt) was confirmed. A CPME solution containing -Arg (Pbf) -O- (B-STAg) was obtained.
The obtained CPME solution was concentrated under reduced pressure to obtain 1.58 g of H-Gln (Trt) -Asn (Trt) -Cys (Trt) -Arg (Pbf) -O- (B-STAg) as a residue. ..

5)H-Gln―Asn-Cys-Arg-OHの合成
上記のH-Gln(Trt)-Asn(Trt)-Cys(Trt)-Arg(Pbf)-O-(B-STag)1.58(0.50mmol相当)に事前に調製したトリフルオロ酢酸/水/トリイソプロピルシラン/3,6-ジオキサ-1,8-オクタンジチオール混液(90/2.5/2.5/5)10mLを添加し、室温で2時間撹拌した。反応溶液を0℃に冷却し、MTBE60mLをゆっくりと滴下し、沈澱物を濾取した。ろ取した沈殿物をMTBE10mLで3回洗浄行った後、沈澱物を減圧下で乾燥し、H-Gln―Asn-Cys-Arg-OH 275mgを得た。得られたH-Gln―Asn-Cys-Arg-OHの純度は82.6%であった。
以上のように、本発明で見いだされたアミノスルホン酸類、アミノ硫酸類、アミノホスホン酸類、アミノリン酸類及びアミノアルコール類は、アミノ酸活性エステルのスカベンジャーとして機能し、ペプチド伸長反応、特にワンポットで行う連続したペプチド伸長反応に有用であることが示された。
5) Synthesis of H-Gln-Asn-Cys-Arg-OH The above H-Gln (Trt) -Asn (Trt) -Cys (Trt) -Arg (Pbf) -O- (B-Stag) 1.58 ( Add 10 mL of a pre-prepared trifluoroacetic acid / water / triisopropylsilane / 3,6-dioxa-1,8-octanedithiol mixture (90 / 2.5 / 2.5 / 5) to (equivalent to 0.50 mmol). , Stirred at room temperature for 2 hours. The reaction solution was cooled to 0 ° C., 60 mL of MTBE was slowly added dropwise, and the precipitate was collected by filtration. The collected precipitate was washed 3 times with 10 mL of MTBE, and then the precipitate was dried under reduced pressure to obtain 275 mg of H-Gln-Asn-Cys-Arg-OH. The purity of the obtained H-Gln-Asn-Cys-Arg-OH was 82.6%.
As described above, the aminosulfonic acids, aminosulfates, aminophosphonic acids, aminophosphates and aminoalcohols found in the present invention function as scavengers for amino acid active esters, and are continuously subjected to peptide elongation reactions, especially in one pot. It has been shown to be useful for peptide elongation reactions.

Claims (5)

次の工程a~dを含むことを特徴とする液相ペプチド製造方法。
a.有機溶媒を含む溶媒中で、液相ペプチド合成用担体が結合したアミノ酸、ペプチド又はアミノ酸アミドと、アミノ保護基でアミノ基が保護されたアミノ酸又はペプチドとを縮合させる工程、
b.縮合反応後の反応液に、次の一般式(1)で表されるアミノスルホン酸類及びアミノ硫酸類、
Figure 0007063408000030
1 は炭素数1~10の2価の有機基を示し、X 1 は単結合又は酸素原子を示す)
一般式(2)で表されるアミノホスホン酸類及びアミノリン酸類、並びに
Figure 0007063408000031
(R 2 は炭素数1~10の2価の有機基を示し、X 2 は単結合又は酸素原子を示す)
一般式(3)で表されるアミノアルコール類から選ばれるアミノ酸活性エステルスカベンジャーを添加する工程、
Figure 0007063408000032
(nは0又は2~20の整数を示し、R 3 、R 4 はそれぞれ独立して水素原子、メチル基、エチル基、又はヒドロキシメチル基を示す)
c.反応液中の前記アミノ保護基でアミノ基が保護された化合物のアミノ保護基を脱離する工程、
d.反応液に水溶液を添加した後、分液して、液相ペプチド合成用担体が結合したアミノ酸、ペプチド又はアミノ酸アミドと、前記アミノ保護基が脱離したアミノ酸又はペプチドとの縮合体を含有する有機溶媒層を得る工程。
A method for producing a liquid phase peptide, which comprises the following steps a to d.
a. A step of condensing an amino acid, peptide or amino acid amide to which a carrier for liquid phase peptide synthesis is bound and an amino acid or peptide whose amino group is protected by an amino protecting group in a solvent containing an organic solvent.
b. Aminosulfonic acids and aminosulfuric acids represented by the following general formula (1) are added to the reaction solution after the condensation reaction.
Figure 0007063408000030
( R 1 indicates a divalent organic group having 1 to 10 carbon atoms, and X 1 indicates a single bond or an oxygen atom).
Aminophosphonic acids and aminophosphates represented by the general formula (2), and
Figure 0007063408000031
(R 2 indicates a divalent organic group having 1 to 10 carbon atoms, and X 2 indicates a single bond or an oxygen atom)
A step of adding an amino acid active ester scavenger selected from amino alcohols represented by the general formula (3) ,
Figure 0007063408000032
(N indicates 0 or an integer of 2 to 20, and R 3 and R 4 independently indicate a hydrogen atom, a methyl group, an ethyl group, or a hydroxymethyl group).
c. The step of removing the amino-protecting group of the compound whose amino-protecting group is protected by the amino-protecting group in the reaction solution.
d. After adding the aqueous solution to the reaction solution, the solution is separated to contain a condensate of the amino acid, peptide or amino acid amide to which the carrier for liquid phase peptide synthesis is bound and the amino acid or peptide from which the amino protecting group has been removed. A step of obtaining a solvent layer.
前記アミノ酸活性エステルスカベンジャーが、次の一般式(1a)で表されるアミノスルホン酸類、
Figure 0007063408000033
(R1は炭素数1~10の2価の有機基を示す)
一般式(2)で表されるアミノホスホン酸類及びアミノリン酸類、並びに
Figure 0007063408000034
(R2は炭素数1~10の2価の有機基を示し、X2は単結合又は酸素原子を示す)
一般式(3)で表されるアミノアルコール類から選ばれる化合物である請求項1記載の液相ペプチド製造方法。
Figure 0007063408000035
(nは0又は2~20の整数を示し、R3、R4はそれぞれ独立して水素原子、メチル基、エチル基、又はヒドロキシメチル基を示す)
The amino acid active ester scavenger is an aminosulfonic acid represented by the following general formula (1a),
Figure 0007063408000033
(R 1 indicates a divalent organic group having 1 to 10 carbon atoms)
Aminophosphonic acids and aminophosphates represented by the general formula (2), and
Figure 0007063408000034
(R 2 indicates a divalent organic group having 1 to 10 carbon atoms, and X 2 indicates a single bond or an oxygen atom)
The liquid phase peptide production method according to claim 1, which is a compound selected from amino alcohols represented by the general formula (3).
Figure 0007063408000035
(N indicates 0 or an integer of 2 to 20, and R 3 and R 4 independently indicate a hydrogen atom, a methyl group, an ethyl group, or a hydroxymethyl group).
前記アミノ保護基が、Fmоc基、Bоc基、Cbz基及びAc基から選ばれる保護基である請求項1又は2記載の液相ペプチド製造方法。 The liquid phase peptide production method according to claim 1 or 2 , wherein the amino protecting group is a protecting group selected from an Fmоc group, a Bоc group, a Cbz group and an Ac group. 前記液相ペプチド合成用担体が、アミノ酸、ペプチド又はアミノ酸アミドに直接またはリンカーを介して結合して、それらを有機溶媒に溶解性で水に不溶性にする化合物である請求項1~のいずれか1項に記載の液相ペプチド製造方法。 Any of claims 1 to 3 , wherein the carrier for liquid phase peptide synthesis is a compound that binds to an amino acid, peptide or amino acid amide directly or via a linker to make them soluble in an organic solvent and insoluble in water. The method for producing a liquid phase peptide according to item 1. 前記液相ペプチド合成用担体が、下記式(I):
Figure 0007063408000036
[式中、
環Aはヘテロ原子を含んでいてもよく、多環性でもよいC4~18の芳香環を示し;R11は、水素原子であるか、又は環Aがベンゼン環でRbが下記式(a)で表される基である場合には、R14と一緒になって単結合を示して、環A及び環Bと共にフルオレン環を形成するか、又は酸素原子を介して環A及び環Bと共にキサンテン環を形成してもよく;p個のXは、それぞれ独立して-O-、-S-、-C(=O)O-、-C(=O)NH-又は-NR17-(R17は水素原子、アルキル基又はアラルキル基を示す。)を示し;p個のR12は、それぞれ独立して酸素原子を介してシリル基又は脂肪族炭化水素基で置換されていてもよい脂肪族炭化水素基を有する有機基を示し;q個のR13は、それぞれ独立して水素原子であるか、又は酸素原子を介してシリル基若しくは脂肪族炭化水素基で置換されていてもよい脂肪族炭化水素基を有する有機基を示し;p、qは、それぞれ0~3の整数かつp+qが1以上4以下を示し;環Aは、p個のXR12に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、及びハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよく;Raは、水素原子、又はハロゲン原子により置換されていてもよい芳香族環を示し;Rbは、水素原子、又は式(a):
Figure 0007063408000037
(式中、*は結合位置を示し;
r、sは、それぞれ0~3の整数かつr+sが4以下を示し;
r個のZは、それぞれ独立して-O-、-S-、-C(=O)O-、-C(=O)NH-又は-NR18-(R18は水素原子、アルキル基又はアラルキル基を示す。)を示し;
r個のR15は、独立して酸素原子を介してシリル基又は脂肪族炭化水素基で置換されていてもよい脂肪族炭化水素基を有する有機基を示し;
s個のR16は、それぞれ独立して酸素原子を介してシリル基又は脂肪族炭化水素基で置換されていてもよい脂肪族炭化水素基を有する有機基を示し;
14は、水素原子を示すか、R11と一緒になって単結合を示して、環A及び環Bと共にフルオレン環を形成するか,又は酸素原子を介して環A及び環Bと共にキサンテン環を形成してもよく;
環Bは、r個のZR15に加えて、さらにハロゲン原子、ハロゲン原子で置換されていてもよいC1-6アルキル基、及びハロゲン原子で置換されていてもよいC1-6アルコキシ基からなる群から選択される置換基を有していてもよい。)で表される基を示し;
Yは、ヒドロキシ基、NHR19(R19は水素原子、アルキル基又はアラルキル基を示す。)又はハロゲン原子を示す。]
で表される化合物である請求項1~のいずれか1項に記載の液相ペプチド製造方法。
The carrier for liquid phase peptide synthesis has the following formula (I):
Figure 0007063408000036
[During the ceremony,
Ring A represents an aromatic ring of C4-18 which may contain a hetero atom and may be polycyclic; R 11 is a hydrogen atom or ring A is a benzene ring and Rb is the following formula (a). When it is a group represented by, it shows a single bond together with R 14 to form a fluorene ring with rings A and B, or xanthene with rings A and B via an oxygen atom. Rings may be formed; p Xs are independently -O-, -S-, -C (= O) O-, -C (= O) NH- or -NR 17- (R). 17 indicates a hydrogen atom, an alkyl group or an aralkyl group); p R 12s may be independently substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom. Representing an organic group having a hydrocarbon group; q R 13s are each independently a hydrogen atom or an aliphatic group which may be substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom. An organic group having a hydrocarbon group is shown; p and q are integers of 0 to 3 and p + q is 1 or more and 4 or less, respectively; ring A is a halogen atom and a halogen atom in addition to p XR 12 . It may have a substituent selected from the group consisting of a C1-6 alkyl group optionally substituted with and a C1-6 alkoxy group optionally substituted with a halogen atom; Ra is a hydrogen atom. , Or an aromatic ring that may be substituted with a halogen atom; Rb is a hydrogen atom, or formula (a) :.
Figure 0007063408000037
(In the formula, * indicates the bond position;
r and s are integers of 0 to 3 and r + s is 4 or less, respectively;
The r Zs are independently -O-, -S-, -C (= O) O-, -C (= O) NH- or -NR 18- (R 18 is a hydrogen atom, an alkyl group or Indicates an aralkyl group.) Indicates;
The r R 15s represent organic groups having an aliphatic hydrocarbon group which may be independently substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom;
The s R 16s represent organic groups having an aliphatic hydrocarbon group which may be independently substituted with a silyl group or an aliphatic hydrocarbon group via an oxygen atom;
R 14 either exhibits a hydrogen atom or exhibits a single bond with R 11 to form a fluorene ring with rings A and B, or a xanthene ring with rings A and B via an oxygen atom. May form;
Ring B is a group consisting of a halogen atom, a C1-6 alkyl group optionally substituted with a halogen atom, and a C1-6 alkoxy group optionally substituted with a halogen atom, in addition to r ZR 15 . It may have a substituent selected from. ) Indicates a group;
Y represents a hydroxy group, NHR 19 (R 19 indicates a hydrogen atom, an alkyl group or an aralkyl group) or a halogen atom. ]
The liquid phase peptide production method according to any one of claims 1 to 4 , which is a compound represented by.
JP2021111125A 2021-07-02 2021-07-02 Liquid phase peptide production method Active JP7063408B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021111125A JP7063408B1 (en) 2021-07-02 2021-07-02 Liquid phase peptide production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021111125A JP7063408B1 (en) 2021-07-02 2021-07-02 Liquid phase peptide production method

Publications (2)

Publication Number Publication Date
JP7063408B1 true JP7063408B1 (en) 2022-05-09
JP2023007947A JP2023007947A (en) 2023-01-19

Family

ID=81534469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021111125A Active JP7063408B1 (en) 2021-07-02 2021-07-02 Liquid phase peptide production method

Country Status (1)

Country Link
JP (1) JP7063408B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136301A1 (en) * 2022-01-17 2023-07-20 学校法人中部大学 Peptide compound production method
WO2023214577A1 (en) * 2022-05-02 2023-11-09 中外製薬株式会社 Peptide synthesis method for suppressing defect caused by diketopiperazine formation
WO2024071178A1 (en) * 2022-09-28 2024-04-04 積水メディカル株式会社 Method for producing alkylsilyloxy-substituted benzylamine compound
CN118005545A (en) * 2024-01-04 2024-05-10 兰州大学 Small-molecule antibacterial peptide mimics and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2626789A (en) * 2023-02-03 2024-08-07 Exactmer Ltd Deprotection processes and cation scavengers for use in the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055396A (en) 2001-07-19 2003-02-26 Akzo Nobel Nv Process for rapid solution synthesis of peptide
WO2016140232A1 (en) 2015-03-04 2016-09-09 Jitsubo株式会社 Peptide synthesis method
WO2019198833A1 (en) 2018-04-13 2019-10-17 Jitsubo株式会社 Peptide synthesis method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055396A (en) 2001-07-19 2003-02-26 Akzo Nobel Nv Process for rapid solution synthesis of peptide
WO2016140232A1 (en) 2015-03-04 2016-09-09 Jitsubo株式会社 Peptide synthesis method
WO2019198833A1 (en) 2018-04-13 2019-10-17 Jitsubo株式会社 Peptide synthesis method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Molecules,Vol. 26, No. 12, 3497,2021年06月08日,P. 1-13

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136301A1 (en) * 2022-01-17 2023-07-20 学校法人中部大学 Peptide compound production method
WO2023214577A1 (en) * 2022-05-02 2023-11-09 中外製薬株式会社 Peptide synthesis method for suppressing defect caused by diketopiperazine formation
WO2024071178A1 (en) * 2022-09-28 2024-04-04 積水メディカル株式会社 Method for producing alkylsilyloxy-substituted benzylamine compound
CN118005545A (en) * 2024-01-04 2024-05-10 兰州大学 Small-molecule antibacterial peptide mimics and application thereof

Also Published As

Publication number Publication date
JP2023007947A (en) 2023-01-19

Similar Documents

Publication Publication Date Title
JP7063408B1 (en) Liquid phase peptide production method
JP6713983B2 (en) Peptide synthesis method
JP6703668B2 (en) Peptide synthesis method
JP7063409B1 (en) How to remove the Fmоc group
JP6703669B2 (en) Method for producing leuprorelin
US20240116980A1 (en) Compound or salt thereof and preparation method and application of same
JP7154513B1 (en) Liquid-phase peptide production method
WO2023033017A1 (en) Method for producing ganirelix or salt thereof
WO2019101939A1 (en) Method for preparing peptides
JP2017537875A (en) Apparatus for performing peptide synthesis method and peptide solid-phase synthesis method
JP5985534B2 (en) Indolesulfonyl protecting group for protection of guanidyl and amino groups
JPH082860B2 (en) New coupling agent for peptide synthesis
TW202112759A (en) Method for manufacturing peptide compound, reagent for forming protecting group, and condensed polycyclic compound
FI88031C (en) 4- (SUBSTITUTES AMINOCARBONYLOXIMETHYL) PHENOXYETHYXRADERATED, FOERFARANDE FOER FRAMSTAELLNING AV DESSA OCH DERAS ANVAENDNING I EN FASTFASSYNTES AV PEPTID-AMINOALKYLAMIDER
JP7162853B1 (en) Method for analyzing carrier-bound peptides for liquid-phase peptide synthesis
JP2748897B2 (en) Novel arginine derivative and method for producing peptide using the same
US20230242581A1 (en) Synthesis of a guanylate cyclase agonist by fragments based approach
CN117209540A (en) Hexa (X-phenoxy) cyclotriphosphazene compound, preparation method and application in preparation of tetrapeptide gastrin
JP2013230988A (en) Peptide synthesis method using microwave with low racemization rate
WO2008105759A1 (en) Methods for synthesis of modified peptides

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20210730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211124

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220404

R150 Certificate of patent or registration of utility model

Ref document number: 7063408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150