WO2023032949A1 - Control system, control method, and control program - Google Patents

Control system, control method, and control program Download PDF

Info

Publication number
WO2023032949A1
WO2023032949A1 PCT/JP2022/032508 JP2022032508W WO2023032949A1 WO 2023032949 A1 WO2023032949 A1 WO 2023032949A1 JP 2022032508 W JP2022032508 W JP 2022032508W WO 2023032949 A1 WO2023032949 A1 WO 2023032949A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
design surface
vehicle body
revolving
bucket
Prior art date
Application number
PCT/JP2022/032508
Other languages
French (fr)
Japanese (ja)
Inventor
和生 竹原
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to CN202280054461.XA priority Critical patent/CN117836491A/en
Priority to DE112022003034.8T priority patent/DE112022003034T5/en
Priority to KR1020247003766A priority patent/KR20240026519A/en
Publication of WO2023032949A1 publication Critical patent/WO2023032949A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2033Limiting the movement of frames or implements, e.g. to avoid collision between implements and the cabin
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like

Definitions

  • the present disclosure relates to control systems, control methods, and control programs.
  • This application claims priority to Japanese Patent Application No. 2021-141520 filed in Japan on August 31, 2021, and the contents thereof are incorporated herein.
  • Patent Literature 1 there is known a technique for controlling a work machine so that a bucket provided on the work machine does not intrude ahead of a design surface indicating a target shape of an excavating object.
  • the control device recognizes the position of the work machine in the global coordinate system using GNSS, so that the cutting edge can be controlled with respect to the design surface.
  • GNSS global coordinate system
  • An object of the present disclosure is to provide a control system, control method, and control program capable of generating a design surface for controlling a working machine without referring to the global coordinate system.
  • a control system includes a traveling body, a revolving body rotatably supported by the running body, and a working machine operably supported by the revolving body. control the machine.
  • the control system comprises a processor.
  • the processor generates a design surface defined by a plane on vehicle body coordinates with the representative point of the vehicle body as the origin.
  • the processor rotationally transforms the design plane around the origin of the vehicle body coordinate system as the revolving superstructure turns.
  • the processor identifies the position of the work implement in the vehicle body coordinate system.
  • the processor controls the work machine based on the identified position and design aspect of the work machine.
  • a control method for a work machine including a travelable running body, a revolving body rotatably supported by the running body, and a work machine operably supported by the revolving body.
  • the generation step generates a design surface defined by a plane on a vehicle body coordinate system having a representative point of the revolving body as an origin.
  • the rotational transformation step rotationally transforms the design surface around the origin of the vehicle body coordinate system as the revolving body turns.
  • the identification step identifies the position of the work implement in the vehicle body coordinate system.
  • the control step controls the working machine based on the identified position and design of the working machine.
  • the control program includes a work including a travelable running body, a revolving body rotatably supported by the running body, and a working machine operably supported by the revolving body.
  • the generation step generates a design surface defined by a plane on a vehicle body coordinate system having a representative point of the revolving body as an origin.
  • the rotational transformation step rotationally transforms the design surface around the origin of the vehicle body coordinate system as the revolving body turns.
  • the identification step identifies the position of the work implement in the vehicle body coordinate system.
  • the control step controls the working machine based on the identified position and design of the working machine.
  • FIG. 1 is a schematic diagram showing the configuration of a working machine according to a first embodiment
  • FIG. It is a figure which shows the drive system of the working machine which concerns on 1st Embodiment.
  • 1 is a schematic block diagram showing the configuration of a control device according to a first embodiment
  • FIG. 5 is a diagram showing an example of resetting of a design surface accompanying revolving of the revolving superstructure in the first embodiment
  • 4 is a flowchart showing a design surface setting method according to the first embodiment
  • 4 is a flow chart showing design surface update and intervention control associated with turning set in the first embodiment
  • 6 is a flowchart showing design surface update processing by the control device according to the first embodiment.
  • FIG. 4 is a diagram showing changes in the design surface before and after movement of the work machine in the first embodiment
  • FIG. 10 is a diagram showing movement of a design surface in the first embodiment
  • FIG. 1 is a schematic diagram showing the configuration of a working machine 100 according to the first embodiment.
  • a working machine 100 according to the first embodiment is, for example, a hydraulic excavator.
  • the working machine 100 includes a traveling body 120 , a revolving body 140 , a working machine 160 , an operator's cab 180 and a control device 200 .
  • the work machine 100 according to the first embodiment is controlled by an operator to generate a planar design plane and prevent the cutting edge from exceeding the design plane.
  • the design plane is set in the vehicle body coordinate system, construction using the design plane can be realized even when positioning cannot be performed by GNSS or the like, such as when work machine 100 constructs a tunnel.
  • Traveling body 120 supports work machine 100 so that it can travel.
  • the traveling body 120 is, for example, a pair of left and right endless tracks.
  • the revolving body 140 is supported by the traveling body 120 so as to be able to revolve around the revolving center.
  • Revolving body 140 is an example of a vehicle body of work machine 100 .
  • Work implement 160 is operably supported by revolving body 140 .
  • Work implement 160 is hydraulically driven.
  • Work machine 160 includes a boom 161, an arm 162, and a bucket 163 that is a work implement.
  • a base end of the boom 161 is rotatably attached to the revolving body 140 .
  • a proximal end of the arm 162 is rotatably attached to a distal end of the boom 161 .
  • the base end of the bucket 163 is rotatably attached to the tip of the arm 162 .
  • a portion of the revolving body 140 to which the work implement 160 is attached is referred to as a front portion.
  • the front portion is referred to as the rear portion
  • the left portion is referred to as the left portion
  • the right portion is referred to as the right portion.
  • the operator's cab 180 is provided in the front part of the revolving body 140 . Inside the operator's cab 180, an operation device 141 for an operator to operate the work machine 100 and a monitor device 142 as a man-machine interface of the control device 200 are provided.
  • the monitor device 142 is realized by a computer having a touch panel, for example.
  • the control device 200 controls the traveling body 120, the revolving body 140, and the working machine 160 based on the operator's operation of the operation device.
  • the control device 200 is provided inside the cab 180, for example.
  • FIG. 2 is a diagram showing the drive system of the work machine 100 according to the first embodiment.
  • Work machine 100 includes a plurality of actuators for driving work machine 100 .
  • work machine 100 includes an engine 111 , a hydraulic pump 112 , a control valve 113 , a pair of travel motors 114 , a swing motor 115 , a boom cylinder 116 , an arm cylinder 117 and a bucket cylinder 118 .
  • the engine 111 is a prime mover that drives the hydraulic pump 112 .
  • Hydraulic pump 112 is driven by engine 111 and supplies working oil to travel motor 114 , swing motor 115 , boom cylinder 116 , arm cylinder 117 and bucket cylinder 118 via control valve 113 .
  • Control valve 113 controls the flow rate of hydraulic oil supplied from hydraulic pump 112 to travel motor 114 , swing motor 115 , boom cylinder 116 , arm cylinder 117 and bucket cylinder 118 .
  • the traveling motor 114 is driven by hydraulic oil supplied from the hydraulic pump 112 to drive the traveling body 120 .
  • the swing motor 115 is driven by hydraulic fluid supplied from the hydraulic pump 112 to swing the swing body 140 with respect to the traveling body 120 .
  • Boom cylinder 116 is a hydraulic cylinder for driving boom 161 .
  • a proximal end of the boom cylinder 116 is attached to a rotating body 140 .
  • a tip of the boom cylinder 116 is attached to the boom 161 .
  • Arm cylinder 117 is a hydraulic cylinder for driving arm 162 .
  • a base end of the arm cylinder 117 is attached to the boom 161 .
  • a tip of the arm cylinder 117 is attached to the arm 162 .
  • Bucket cylinder 118 is a hydraulic cylinder for driving bucket 163 .
  • the proximal end of bucket cylinder 118 is attached to arm 162 .
  • a tip of the bucket cylinder 118 is attached to the bucket 163 .
  • Work machine 100 includes a plurality of sensors for measuring the attitude and position of work machine 100 .
  • work machine 100 includes tilt measuring instrument 101 , turning angle sensor 102 , boom angle sensor 103 , arm angle sensor 104 and bucket angle sensor 105 .
  • the tilt measuring instrument 101 measures the attitude of the revolving body 140 .
  • the tilt measuring device 101 measures the tilt (for example, roll angle, pitch angle and yaw angle) of the revolving superstructure 140 with respect to the horizontal plane.
  • An example of the tilt measuring instrument 101 is an IMU (Inertial Measurement Unit).
  • the tilt measuring instrument 101 measures the acceleration and angular velocity of the revolving structure 140, and calculates the tilt of the revolving structure 140 with respect to the horizontal plane based on the measurement results.
  • the tilt measuring instrument 101 is installed, for example, below the driver's cab 180 .
  • the inclination measuring instrument 101 outputs the posture data of the revolving body 140 as measured values to the control device 200 .
  • the turning angle sensor 102 measures the turning angle of the turning body 140 with respect to the traveling body 120 .
  • the measured value of the turning angle sensor 102 indicates zero when the directions of the traveling body 120 and the turning body 140 match, for example.
  • the turning angle sensor 102 is installed, for example, at the turning center of the turning body 140 .
  • the turning angle sensor 102 outputs turning angle data, which is a measured value, to the control device 200 .
  • the boom angle sensor 103 measures the boom angle, which is the rotation angle of the boom 161 with respect to the revolving body 140 .
  • Boom angle sensor 103 may be an IMU attached to boom 161 .
  • the boom angle sensor 103 measures the boom angle based on the tilt of the boom 161 with respect to the horizontal plane and the tilt of the revolving body measured by the tilt measuring device 101 .
  • the measured value of the boom angle sensor 103 indicates zero when, for example, the direction of a straight line passing through the base end and the tip end of the boom 161 coincides with the longitudinal direction of the revolving body 140 .
  • the boom angle sensor 103 according to another embodiment may be a stroke sensor attached to the boom cylinder 116 .
  • the boom angle sensor 103 may be a rotation sensor provided on a pin that connects the revolving body 140 and the boom 161 .
  • Boom angle sensor 103 outputs boom angle data, which is a measured value, to control device 200 .
  • the arm angle sensor 104 measures the arm angle, which is the rotation angle of the arm 162 with respect to the boom 161 .
  • Arm angle sensor 104 may be an IMU attached to arm 162 .
  • the arm angle sensor 104 measures the arm angle based on the tilt of the arm 162 with respect to the horizontal plane and the boom angle measured by the boom angle sensor 103 .
  • the measured value of the arm angle sensor 104 indicates zero when the direction of the straight line passing through the proximal end and the distal end of the arm 162 matches the direction of the straight line passing through the proximal end and the distal end of the boom 161, for example.
  • the arm angle sensor 104 may calculate the angle by attaching a stroke sensor to the arm cylinder 117 .
  • the arm angle sensor 104 according to another embodiment may be a rotation sensor provided on a pin that connects the boom 161 and the arm 162 . Arm angle sensor 104 outputs arm angle data, which is a measured value, to control device 200 .
  • the bucket angle sensor 105 measures the bucket angle, which is the rotation angle of the bucket 163 with respect to the arm 162 .
  • Bucket angle sensor 105 may be a stroke sensor provided on bucket cylinder 118 for driving bucket 163 . In this case, the bucket angle sensor 105 measures the bucket angle based on the stroke amount of the bucket cylinder. The measured value of the bucket angle sensor 105 indicates zero, for example, when the direction of the straight line passing through the proximal end and the cutting edge of the bucket 163 matches the direction of the straight line passing through the proximal end and the distal end of the arm 162 .
  • Bucket angle sensor 105 may be a rotation sensor provided on a pin that connects arm 162 and bucket 163 .
  • Bucket angle sensor 105 according to another embodiment may be an IMU attached to bucket 163 . Bucket angle sensor 105 outputs bucket angle data, which is a measured value, to control device 200 .
  • FIG. 3 is a schematic block diagram showing the configuration of the control device 200 according to the first embodiment.
  • the control device 200 is a computer that includes a processor 210 , main memory 230 , storage 250 and interface 270 .
  • Control device 200 is an example of a control system. Controller 200 receives measurements from tilt gauge 101 , turning angle sensor 102 , boom angle sensor 103 , arm angle sensor 104 and bucket angle sensor 105 .
  • the storage 250 is a non-temporary tangible storage medium. Examples of the storage 250 include magnetic disks, optical disks, magneto-optical disks, semiconductor memories, and the like.
  • the storage 250 may be an internal medium directly connected to the bus of the control device 200, or an external medium connected to the control device 200 via the interface 270 or communication line.
  • Storage 250 stores a control program for controlling work machine 100 .
  • the control program may be for realizing part of the functions that the control device 200 is to perform.
  • the control program may function in combination with another program already stored in the storage 250 or in combination with another program installed in another device.
  • the control device 200 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration.
  • PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array).
  • part or all of the functions implemented by the processor may be implemented by the integrated circuit.
  • the storage 250 records geometry data representing the dimensions and center-of-gravity positions of the revolving structure 140, the boom 161, the arm 162, and the bucket 163.
  • Geometry data is data representing the position of an object in a predetermined coordinate system.
  • the processor 210 By executing the control program, the processor 210 performs the operation amount acquisition unit 211, the input unit 212, the display control unit 213, the measured value acquisition unit 214, the position specifying unit 215, the generation unit 216, the rotation conversion unit 217, and the intervention determination unit. 218 , an intervention control unit 219 , a control signal output unit 220 and an update unit 221 .
  • the operation amount acquisition unit 211 acquires an operation signal indicating the operation amount of each actuator from the operation device 141 .
  • the input unit 212 receives operation input from the operator from the monitor device 142 .
  • the display control unit 213 outputs screen data to be displayed on the monitor device 142 to the monitor device 142 .
  • the measured value acquisition unit 214 acquires measured values from the tilt measuring device 101 , the turning angle sensor 102 , the boom angle sensor 103 , the arm angle sensor 104 and the bucket angle sensor 105 .
  • the position specifying unit 215 specifies the position of the cutting edge of the bucket 163 in the vehicle body coordinate system based on the various measurement values acquired by the measurement value acquisition unit 214 and the geometry data recorded in the storage 250 .
  • the vehicle body coordinate system is an orthogonal coordinate system whose origin is a representative point of the revolving body 140 (for example, a point passing through the center of revolving). The calculation of the position specifying unit 215 will be described later.
  • the generating unit 216 calculates the parameters of the design surface based on the position of the cutting edge of the bucket 163 identified by the position identifying unit 215 .
  • the generator 216 records the generated parameters of the design surface in the vehicle body coordinate system in the main memory 230 .
  • the rotation conversion unit 217 updates the parameters of the design surface stored in the main memory 230 as the revolving body 140 revolves. Specifically, the rotation conversion unit 217 rotates the parameters of the design surface about the origin of the vehicle body coordinate system by the amount of change in the pitch angle, roll angle, and yaw angle measured by the tilt measuring device 101 .
  • FIG. 4 is a diagram showing an example of resetting the design surface as the revolving superstructure revolves according to the first embodiment. For example, as shown in FIG.
  • the rotation conversion unit 217 refers to the measurement values of the tilt measuring device 101 acquired by the measurement value acquiring unit 214 to The amount of change in the roll angle, pitch angle, and yaw angle caused by the turning of the vehicle is calculated, and the parameters of the design surface are rotationally transformed around the origin of the vehicle body coordinate system. As a result, the rotation conversion unit 217 can cancel the rotation of the design surface caused by the turning of the turning body 140 .
  • the intervention determination unit 218 determines whether or not to limit the speed of the work implement 160 based on the positional relationship between the cutting edge of the bucket 163 and the design surface specified by the position specifying unit 215 .
  • the restriction of the speed of work implement 160 by control device 200 is also referred to as intervention control.
  • intervention determination unit 218 obtains the minimum distance between the design surface and bucket 163 , and determines that intervention control is to be performed for work implement 160 when the minimum distance is equal to or less than a predetermined distance.
  • the intervention control unit 219 controls the operation amount to be intervened among the operation amounts acquired by the operation amount acquisition unit 211 .
  • intervention control controls the amount of operation of boom 161 so that work implement 160 does not enter the control line.
  • the boom 161 is driven such that the speed of the bucket 163 corresponds to the distance between the bucket 163 and the control line.
  • the intervention control unit 219 limits the speed of the cutting edge of the bucket 163 by raising the boom 161 in accordance with the design.
  • the control signal output unit 220 outputs the operation amount acquired by the operation amount acquisition unit 211 or the operation amount controlled by the intervention determination unit 218 to the control valve 113 .
  • the update unit 221 updates the parameters of the design surface stored in the main memory 230 as the work machine 100 travels. Specifically, before and after work machine 100 travels, the operator operates work machine 160 to bring the cutting edge of bucket 163 into contact with a specific position on the site. The updating unit 221 moves the design surface based on the difference in the position of the cutting edge of the bucket 163 in the vehicle body coordinate system before and after traveling.
  • the position specifying unit 215 specifies the position of the cutting edge of the bucket 163 based on the various measurement values acquired by the measurement value acquiring unit 214 and the geometry data recorded in the storage 250 .
  • the storage 250 records geometry data representing the dimensions of the revolving structure 140 , the boom 161 , the arm 162 and the bucket 163 .
  • the geometry data of the rotating body 140 indicates the positions (x bm , y bm , z bm ) of the pins supporting the boom 161 of the rotating body 140 in the vehicle body coordinate system, which is the local coordinate system.
  • the vehicle body coordinate system is a coordinate system composed of the X sb axis extending in the front-rear direction, the Y sb axis extending in the left-right direction, and the Z sb axis extending in the up-down direction with reference to the turning center of the turning body 140 .
  • the vertical direction of the revolving body 140 does not necessarily match the vertical direction.
  • the geometry data of the boom 161 indicates the boom top position (x am , y am , z am ) in the boom coordinate system, which is the local coordinate system.
  • the boom coordinate system is based on the position of the pin that connects the boom 161 and the revolving body 140, and is orthogonal to the Xbm axis extending in the longitudinal direction, the Ybm axis extending in the direction in which the pin extends, and the Xbm axis and the Ybm axis. It is a coordinate system composed of the Zbm axis.
  • the boom top is the position of the pin that connects the boom 161 and arm 162 .
  • the geometry data of the arm 162 indicates the arm top position (x bk , y bk , z bk ) in the arm coordinate system, which is the local coordinate system.
  • the arm coordinate system is based on the position of the pin that connects the arm 162 and the boom 161, the X am axis extending in the longitudinal direction, the Y am axis extending in the direction in which the pin extends, and the Z axis perpendicular to the X am axis and the Yam axis. It is a coordinate system composed of the am- axis.
  • Arm top is the location of the pin that connects arm 162 and bucket 163 .
  • the geometry data of the bucket 163 indicates the position (x ed , y ed , z ed ) of the cutting edge of the bucket 163 in the bucket coordinate system, which is the local coordinate system.
  • the bucket coordinate system is based on the position of the pin that connects the bucket 163 and the arm 162.
  • the Xbk axis extends in the direction of the cutting edge
  • the Ybk axis extends in the direction in which the pin extends
  • the Xbk axis and the Ybk axis are perpendicular to each other. It is a coordinate system composed of the Zbk axis.
  • the position specifying unit 215 converts the boom coordinate system to the vehicle body coordinate system using the following formula (1) based on the measured value of the boom angle ⁇ bm acquired by the measured value acquisition unit 214 and the geometry data of the swing body 140.
  • the position specifying unit 215 obtains the product of the position of the boom top in the boom coordinate system indicated by the geometry data of the boom 161 and the boom-vehicle transformation matrix T bm sb , thereby determining the position of the boom top in the vehicle body coordinate system. demand.
  • the position specifying unit 215 converts the arm coordinate system to the boom coordinate system using the following formula (2) based on the measured value of the arm angle ⁇ am acquired by the measured value acquiring unit 214 and the geometry data of the boom 161. Generate an arm-to-boom transformation matrix T am bm for .
  • the arm-boom transformation matrix T am bm rotates about the Y am axis by the arm angle ⁇ am and moves by the deviation (x am , y am , z am ) between the origin of the boom coordinate system and the origin of the arm coordinate system. matrix.
  • the position specifying unit 215 obtains the product of the boom-body transformation matrix T bm sb and the arm-boom transformation matrix T am bm , thereby obtaining the arm-body transformation matrix T for transformation from the arm coordinate system to the vehicle body coordinate system. Generate am sb . Further, the position specifying unit 215 obtains the product of the position of the arm top in the arm coordinate system indicated by the geometry data of the arm 162 and the arm-to-body transformation matrix T am sb , thereby determining the position of the arm top in the body coordinate system. demand.
  • the position specifying unit 215 converts the bucket coordinate system into the arm coordinate system using the following formula (3) based on the measured value of the bucket angle ⁇ bk acquired by the measured value acquiring unit 214 and the geometry data of the arm 162. Generate a bucket-to-arm transformation matrix T bk am for .
  • the bucket-to-arm transformation matrix T bk am is rotated about the Y bk axis by the bucket angle ⁇ bk and translated by the deviation between the origin of the arm coordinate system and the origin of the bucket coordinate system (x bk , y bk , z bk ) matrix.
  • the position specifying unit 215 obtains the product of the arm-body transformation matrix T am sb and the bucket-arm transformation matrix T bk am , thereby obtaining the bucket-body transformation matrix T for transforming from the bucket coordinate system to the vehicle body coordinate system. Create bk sb .
  • the position specifying unit 215 obtains the position of the cutting edge of the bucket 163 in the vehicle body coordinate system by multiplying the position of the cutting edge in the bucket coordinate system indicated by the geometry data of the bucket 163 by the bucket-vehicle transformation matrix T bk sb . .
  • FIG. 5 is a flow chart showing a design surface setting method according to the first embodiment.
  • the display control unit 213 causes the monitor device 142 to display a guidance screen including a distance input field, an inclination input field, and a setting button (step S101).
  • a guidance screen including a distance input field, an inclination input field, and a setting button (step S101).
  • step S101 On the guidance screen, move the cutting edge of the bucket 163 above the point where the design surface is to be set, enter the distance from the cutting edge to the design surface in the distance input field, and the inclination angle of the design surface in the inclination input field.
  • a message to operate the button is displayed.
  • a distance of 0 meters, a pitch angle of 0 degrees, and a roll angle of 0 degrees are entered as initial values in the distance input field and the tilt angle input field.
  • the distance input in the distance input field will be referred to as input distance
  • the tilt angle input in the tilt angle input field will be referred to as input tilt angle (input pitch angle, input roll angle).
  • the operator operates work machine 100 to move the cutting edge of bucket 163 to a desired position, and then operates the setting button.
  • the input unit 212 receives inputs from the monitor device 142 in the distance input field and the tilt angle input field and the operation of the setting button (step S102).
  • the input unit 212 acquires the values in the distance input field and the tilt angle input field when the setting button is operated (step S103).
  • the input tilt angle is a tilt angle based on the vertical direction and the front of work machine 100 when the design surface is set. That is, the input pitch angle and input roll angle are the inclinations of the normal to the design surface with respect to the vertical
  • the measured value acquisition unit 214 acquires the measured values of the tilt measuring device 101, turning angle sensor 102, boom angle sensor 103, arm angle sensor 104, and bucket angle sensor 105 at the time the setting button is operated (step S104).
  • the position specifying unit 215 specifies the position of the cutting edge of the bucket 163 in the vehicle body coordinate system based on the acquired measurement values (step S105).
  • the generation unit 216 inputs the roll angle and pitch angle (measured roll angle and measured pitch angle) obtained from the tilt measuring instrument 101 in step S104, the position of the cutting edge obtained in step S105, and the input distance obtained in step S103.
  • the parameters of the design surface are calculated based on the inclination angle.
  • the generation unit 216 rotates a vector having a value of 0 on the X sb axis, a value of 0 on the Y sb axis, and a value of 1 on the Z sb axis by the measured roll angle and the measured pitch angle, so that the vertical A vector is obtained (step S106).
  • the generation unit 216 obtains the position vector of the design surface by obtaining the sum of the vector indicating the position of the cutting edge obtained in step S104 and the depth vector obtained by multiplying the vertical vector by the distance (step S107).
  • the generator 216 also obtains the normal vector of the design surface based on the vertical vector and the input tilt angle (step S108). Specifically, the generator 216 shares the origin with the vehicle body coordinate system, and the Zv axis extending in the vertical direction coincides with the Xsb axis of the vehicle body coordinate system when the measured roll angle and the measured pitch angle are zero.
  • a vertical coordinate system which is an orthogonal coordinate system composed of the Xv - axis and the Yv-axis that coincides with the Ysb - axis of the vehicle body coordinate system when the measured roll angle and the measured pitch angle are zero, is specified. That is, the vertical coordinate system coincides with the vehicle body coordinate system when the measured roll angle and measured pitch angle are zero.
  • the generator 216 rotates the vertical coordinate system around the Yv axis by the input pitch angle.
  • the generation unit 216 also rotates the vertical coordinate system around the Xv axis by the input roll angle.
  • the generation unit 216 calculates the outer product of the unit vector extending in the Xv - axis direction of the vertical coordinate system rotated about the Yv- axis and the unit vector extending in the Yv - axis direction of the vertical coordinate system rotated about the Xv- axis. to find the normal vector of the design surface in the vertical coordinate system.
  • the generation unit 216 rotates the normal vector in the vertical coordinate system by the measured roll angle and the measured pitch angle to obtain the normal vector of the design surface in the vehicle body coordinate system.
  • the generation unit 216 records the generated design surface parameters (normal vector and position vector) in the main memory 230 (step S109). If the design surface parameters are already recorded in the main memory 230, the old parameters are overwritten with the new parameters.
  • the work machine 100 can perform work within the reach of the work machine 160 by turning the revolving body 140 . Therefore, an operator normally turns work machine 100 when performing work such as excavation. Since the vehicle body coordinate system is based on revolving body 140 , the positional relationship between the design plane set in the vehicle body coordinate system and work machine 160 does not change as work machine 100 turns. Therefore, if the design plane is not updated while being set by the above procedure, the design plane behaves as if it moves following the revolution of the revolving body 140 as seen from the viewpoint of the global coordinate system.
  • the control device 200 performs rotation conversion processing of the design surface in order to maintain the position of the design surface in the global coordinate system before and after the work machine 100 turns.
  • FIG. 6 is a flow chart showing design surface update and intervention control associated with turning set in the first embodiment.
  • control device 200 starts the control described below.
  • the operation amount acquisition unit 211 acquires operation signals for the boom 161, the arm 162, the bucket 163, and the revolving body 140 from the operation device 141 (step S201).
  • the measured value acquisition unit 214 acquires measured values of the tilt measuring device 101, the turning angle sensor 102, the boom angle sensor 103, the arm angle sensor 104, and the bucket angle sensor 105 (step S202).
  • the rotation transforming unit 217 rotates and updates the design surface stored in the main memory 230 based on the roll angle, pitch angle, and yaw angle of the revolving structure 140 acquired from the tilt measuring instrument 101 in step S202 (step S203). ).
  • the position specifying unit 215 calculates the position of the cutting edge of the bucket 163 in the vehicle body coordinate system based on the measurement values obtained in step S202 (step S204).
  • the intervention determination unit 218 identifies a cross section parallel to the X sb -Z sb plane of the vehicle body coordinate system passing through the position of the cutting edge calculated in step S204 (step S205).
  • the intervention determination unit 218 calculates the line of intersection between the cross section generated in step S205 and the design surface as a control line (step S206).
  • the intervention determination unit 218 obtains the distance between the cutting edge of the bucket 163 and the control line (step S207).
  • the intervention determination unit 218 determines whether or not the distance between the cutting edge and the control line is longer than the intervention start distance (step S208). If the distance is longer than the intervention start distance (step S ⁇ b>208 : YES), intervention control unit 219 does not perform intervention control for work implement 160 .
  • intervention control unit 219 controls boom 161, arm 162, and A target speed of the bucket 163 is calculated (step S209).
  • Intervention control unit 219 calculates the moving speed of the cutting edge of bucket 163 based on the target speeds and geometry data of boom 161, arm 162 and bucket 163 (step S210).
  • the intervention control unit 219 identifies the speed limit of the cutting edge of the bucket 163 based on the distance calculated in step S207 and a predetermined speed limit table (step S211).
  • the angular speed limit table is a function showing the relationship between the distance between the cutting edge and the control line and the speed limit of the cutting edge, and the shorter the distance, the smaller the speed limit.
  • the intervention control unit 219 determines whether or not the speed of the cutting edge calculated in step S210 exceeds the speed limit (step S212). If the speed of the cutting edge exceeds the speed limit (step S212: YES), the intervention control unit 219 calculates the speed of the boom 161 for matching the speed of the cutting edge with the speed limit, and sets the target speed of the boom (step S213). If the speed of the cutting edge does not exceed the speed limit (step S ⁇ b>212 : NO), intervention control unit 219 does not perform intervention control for work implement 160 .
  • the control signal output unit 220 generates a control signal based on the target velocities of the boom 161, arm 162 and bucket 163 and the target angular velocity of the revolving body 140, and outputs the control signal to the control valve 113 (step S214).
  • the construction site of work machine 100 is usually outside the reach of work machine 160 due to the swing of revolving body 140 . Therefore, the operator makes the work machine 100 travel and moves the position of the work machine 100 to carry out construction work on the site.
  • the design plane according to the first embodiment is set in the vehicle body coordinate system, when the position of the work machine 100 moves, the design plane follows the revolving body 140 from the viewpoint of the global coordinate system. behave to For example, when the pitch angle ⁇ is set on the design surface, the height of the design surface should change tan ⁇ every meter, but the height of the design surface does not change even if the work machine 100 moves 1 meter. . Therefore, the control device 200 according to the first embodiment performs the design surface update process shown in FIG. 7 in order to maintain the position of the design surface in the global coordinate system before and after the work machine 100 moves.
  • FIG. 7 is a flowchart showing design surface update processing by the control device according to the first embodiment.
  • the operator moves the work machine 100 during construction of the design surface, the operator operates the monitor device 142 and inputs an instruction to execute the update process.
  • the display control unit 213 causes the monitor device 142 to display a first guidance screen including a setting button (step S301).
  • the guidance screen displays that the cutting edge of the bucket 163 should be applied to a target that can be touched by the bucket 163 before and after the movement, and the setting button should be operated.
  • the operator operates the work machine 100 and operates the setting button after the cutting edge of the bucket 163 hits the target.
  • the input unit 212 receives operation of the setting button from the monitor device 142 (step S302).
  • Measured value acquisition unit 214 acquires information on tilt measuring instrument 101, turning angle sensor 102, boom angle sensor 103, arm angle sensor 104, and bucket angle sensor 105 at the time (first time) when the setting button of the first guidance screen is operated. is acquired (step S303).
  • the position specifying unit 215 specifies the position of the cutting edge of the bucket 163 in the vehicle body coordinate system based on the acquired measurement values (step S304). That is, the position specifying unit 215 specifies the position of the target in the vehicle body coordinate system at the first time.
  • the position specifying unit 215 records the specified position of the cutting edge in the main memory 230 .
  • the display control unit 213 causes the monitor device 142 to display a second guidance screen including setting buttons (step S305).
  • the guidance screen displays instructions to move work machine 100 to a desired position, apply the cutting edge of bucket 163 to the same target, and operate the setting button. An operator operates the work machine 100 to make the work machine 100 travel.
  • the measured value acquiring unit 214 acquires the measured values of the tilt measuring instrument 101, turning angle sensor 102, boom angle sensor 103, arm angle sensor 104, and bucket angle sensor 105 (step S306).
  • the updating unit 221 determines whether or not the setting button has been operated (step S307). If the setting button has not been operated (step S307: NO), that is, if the movement to the desired position has not been completed, the rotation conversion unit 217 converts the design surface stored in the main memory 230 to the inclination measuring instrument 101. Rotational conversion is performed based on the measured value and updated (step S308). Then, the control device 200 returns the process to step S306 and repeats the process until the setting button is operated.
  • step S307 When the setting button is operated (step S307: YES), that is, when movement to the desired position is completed, the position specifying unit 215 moves the bucket in the vehicle body coordinate system based on the measured values acquired by the measured value acquisition unit 214.
  • the position of the cutting edge of 163 is identified (step S309).
  • the position specifying unit 215 specifies the position of the target in the vehicle body coordinate system at the time when the setting button of the second guidance screen is operated (second time).
  • the updating unit 221 calculates a translational vector that is the difference between the position vector indicating the position of the cutting edge identified in step S304 and the position vector indicating the position of the cutting edge identified in step S309 (step S310). .
  • the updating unit 221 uses the calculated translation vector to move and update the design surface stored in the main memory 230 (step S311). Thereby, the updating unit 221 can maintain the position of the design surface in the global coordinate system before and after traveling.
  • FIG. 8 is a diagram showing changes in the design surface before and after movement of work machine 100 in the first embodiment.
  • the design surface has a pitch angle.
  • the operator hits the blade edge of bucket 163 against target tgt, and then travels work machine 100 backward by distance L.
  • FIG. Since the design surface s is defined by the vehicle body coordinate system, the relative positional relationship between the revolving body 140 and the design surface s is maintained even when the work machine 100 moves. Therefore, from the viewpoint of the global coordinate system, a deviation occurs between the design surface s1 before movement of work machine 100 and the design surface s2 after movement. At this time, the relative positional relationship between the position of the cutting edge of bucket 163 recorded at time t1 and revolving body 140 is also held in the same manner as design surface s.
  • FIG. 9 is a diagram showing movement of the design surface in the first embodiment.
  • the updating unit 221 calculates a translational vector v representing the amount of change in the position of the cutting edge from the position of the cutting edge at time t1 and the position of the cutting edge at time t2.
  • Translation vector v corresponds to the amount of movement of work machine 100 as shown in FIG. Therefore, the update unit 221 updates the design surface s2 to the design surface s3 by moving the design surface s2 after movement by the translation vector v.
  • Design surface s3 after movement is equal to design surface s1 of work machine 100 before movement from the viewpoint of the global coordinate system.
  • control device 200 can control the position of the cutting edge of the bucket 163 in the vehicle body coordinate system when the cutting edge of the bucket 163 is positioned at the reference point (for example, the target) of the site at the first time,
  • the design surface is moved based on the difference from the position of the cutting edge when the cutting edge is positioned at the reference point at the second time.
  • control device 200 can maintain the position of the design surface in the global coordinate system even if the position of work machine 100 changes due to travel.
  • control device 200 rotationally transforms the design plane based on the measured value of the attitude of the revolving structure 140 between the first time and the second time. Accordingly, even if the posture of work machine 100 changes due to movement of work machine 100, control device 200 can maintain the position of the design plane in the global coordinate system. In another embodiment, if work machine 100 can always maintain the same posture, control device 200 does not need to rotate the design surface.
  • An example of the work machine 100 that always maintains the same posture is the work machine 100 that runs on straight rails that are not twisted.
  • control device 200 may be configured by a single computer, or the configuration of the control device 200 may be divided into a plurality of computers, and the plurality of computers may cooperate with each other. may function as the control device 200. At this time, a part of the computers constituting control device 200 may be mounted inside work machine 100 and the other computers may be provided outside work machine 100 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

A processor generates a design plane defined by a flat plane on a vehicle body coordinate system in which a representative point of a pivoting body is the origin. The processor rotationally transforms the design plane around the origin of the vehicle body coordinate system as the pivoting body pivots. The processor identifies the position of a work implement in the vehicle body coordinate system. The processor controls the work implement on the basis of the identified position of the work implement and the design plane.

Description

制御システム、制御方法および制御プログラムControl system, control method and control program
 本開示は、制御システム、制御方法および制御プログラムに関する。
 本願は、2021年8月31日に日本に出願された特願2021-141520号について優先権を主張し、その内容をここに援用する。
The present disclosure relates to control systems, control methods, and control programs.
This application claims priority to Japanese Patent Application No. 2021-141520 filed in Japan on August 31, 2021, and the contents thereof are incorporated herein.
 特許文献1に開示されているように、作業機械が備えるバケットが、掘削対象の目標形状を示す設計面より先に侵入しないように作業機を制御する技術が知られている。 As disclosed in Patent Literature 1, there is known a technique for controlling a work machine so that a bucket provided on the work machine does not intrude ahead of a design surface indicating a target shape of an excavating object.
特許第5654144号公報Japanese Patent No. 5654144
 特許文献1に記載の技術は、制御装置がGNSSによりグローバル座標系における作業機の位置を認識することで、設計面に対する刃先の制御を行うことができる。しかしながら、衛星の見通し環境や作業機械の構成によっては、常にグローバル座標系を参照することができるとは限らない。例えば、作業機械が室内において作業をする場合、衛星の見通しが悪くGNSSを参照できない場合がある。 With the technology described in Patent Document 1, the control device recognizes the position of the work machine in the global coordinate system using GNSS, so that the cutting edge can be controlled with respect to the design surface. However, it is not always possible to refer to the global coordinate system depending on the line-of-sight environment of the satellite and the configuration of the work machine. For example, when a work machine works indoors, it may not be possible to refer to GNSS due to poor satellite visibility.
 本開示の目的は、グローバル座標系を参照せずに、作業機を制御するための設計面を生成することができる制御システム、制御方法および制御プログラムを提供することにある。 An object of the present disclosure is to provide a control system, control method, and control program capable of generating a design surface for controlling a working machine without referring to the global coordinate system.
 本発明の第1の態様によれば、制御システムは、走行可能な走行体と、走行体に旋回可能に支持される旋回体と、旋回体に動作可能に支持された作業機とを備える作業機械を制御する。制御システムは、プロセッサを備える。プロセッサは、車体の代表点を原点とする車体座標上に平面で規定される設計面を生成する。プロセッサは、旋回体の旋回に伴って、設計面を車体座標系の原点回りに回転変換する。プロセッサは、車体座標系における作業機の位置を特定する。プロセッサは、特定された作業機の位置と設計面とに基づいて、作業機を制御する。 According to a first aspect of the present invention, a control system includes a traveling body, a revolving body rotatably supported by the running body, and a working machine operably supported by the revolving body. control the machine. The control system comprises a processor. The processor generates a design surface defined by a plane on vehicle body coordinates with the representative point of the vehicle body as the origin. The processor rotationally transforms the design plane around the origin of the vehicle body coordinate system as the revolving superstructure turns. The processor identifies the position of the work implement in the vehicle body coordinate system. The processor controls the work machine based on the identified position and design aspect of the work machine.
 本発明の第2の態様によれば、走行可能な走行体と、走行体に旋回可能に支持される旋回体と、旋回体に動作可能に支持された作業機とを備える作業機械の制御方法は、生成ステップと、回転変換ステップと、特定ステップと、制御ステップとを備える。生成ステップは、旋回体の代表点を原点とする車体座標系上に平面で規定される設計面を生成する。回転変換ステップは、旋回体の旋回に伴って、設計面を車体座標系の原点回りに回転変換する。特定ステップは、車体座標系における作業機の位置を特定する。制御ステップは、特定された作業機の位置と設計面とに基づいて、作業機を制御する。 According to a second aspect of the present invention, there is provided a control method for a work machine including a travelable running body, a revolving body rotatably supported by the running body, and a work machine operably supported by the revolving body. comprises a generation step, a rotation transformation step, an identification step, and a control step. The generation step generates a design surface defined by a plane on a vehicle body coordinate system having a representative point of the revolving body as an origin. The rotational transformation step rotationally transforms the design surface around the origin of the vehicle body coordinate system as the revolving body turns. The identification step identifies the position of the work implement in the vehicle body coordinate system. The control step controls the working machine based on the identified position and design of the working machine.
 本発明の第3の態様によれば、制御プログラムは、走行可能な走行体と、走行体に旋回可能に支持される旋回体と、旋回体に動作可能に支持された作業機とを備える作業機械のコンピュータに実行される制御プログラムであって、生成ステップと、回転変換ステップと、特定ステップと、制御ステップとを実行させる。生成ステップは、旋回体の代表点を原点とする車体座標系上に平面で規定される設計面を生成する。回転変換ステップは、旋回体の旋回に伴って、設計面を車体座標系の原点回りに回転変換する。特定ステップは、車体座標系における作業機の位置を特定する。制御ステップは、特定された作業機の位置と設計面とに基づいて、作業機を制御する。 According to a third aspect of the present invention, the control program includes a work including a travelable running body, a revolving body rotatably supported by the running body, and a working machine operably supported by the revolving body. A control program executed by the computer of the machine that causes the generation step, the rotation conversion step, the identification step, and the control step to be performed. The generation step generates a design surface defined by a plane on a vehicle body coordinate system having a representative point of the revolving body as an origin. The rotational transformation step rotationally transforms the design surface around the origin of the vehicle body coordinate system as the revolving body turns. The identification step identifies the position of the work implement in the vehicle body coordinate system. The control step controls the working machine based on the identified position and design of the working machine.
 上記態様の少なくとも1つによれば、グローバル座標系を参照せずに、作業機を制御するための設計面を生成することができる。 According to at least one of the above aspects, it is possible to generate a design surface for controlling the working machine without referring to the global coordinate system.
第1の実施形態に係る作業機械の構成を示す概略図である。1 is a schematic diagram showing the configuration of a working machine according to a first embodiment; FIG. 第1の実施形態に係る作業機械の駆動系を示す図である。It is a figure which shows the drive system of the working machine which concerns on 1st Embodiment. 第1の実施形態に係る制御装置の構成を示す概略ブロック図である。1 is a schematic block diagram showing the configuration of a control device according to a first embodiment; FIG. 第1の実施形態における旋回体の旋回に伴う設計面の再設定の一例を示す図である。FIG. 5 is a diagram showing an example of resetting of a design surface accompanying revolving of the revolving superstructure in the first embodiment; 第1の実施形態に係る設計面の設定方法を示すフローチャートである。4 is a flowchart showing a design surface setting method according to the first embodiment; 第1の実施形態において設定された旋回に伴う設計面の更新および介入制御を示すフローチャートである。4 is a flow chart showing design surface update and intervention control associated with turning set in the first embodiment. 第1の実施形態に係る制御装置による設計面の更新処理を示すフローチャートである。6 is a flowchart showing design surface update processing by the control device according to the first embodiment. 第1の実施形態における作業機械の移動前後の設計面の変化を示す図である。FIG. 4 is a diagram showing changes in the design surface before and after movement of the work machine in the first embodiment; 第1の実施形態における設計面の移動を示す図である。FIG. 10 is a diagram showing movement of a design surface in the first embodiment; FIG.
〈第1の実施形態〉
《作業機械の構成》
 以下、図面を参照しながら実施形態について詳しく説明する。
 図1は、第1の実施形態に係る作業機械100の構成を示す概略図である。第1の実施形態に係る作業機械100は、例えば油圧ショベルである。作業機械100は、走行体120、旋回体140、作業機160、運転室180、制御装置200を備える。第1の実施形態に係る作業機械100は、オペレータによる操作によって平面状の設計面を生成し、刃先が設計面を越えないように制御される。このとき、設計面は車体座標系に設定されるため、作業機械100がトンネルの施工をする場合など、GNSSなどによる測位ができない場合にも、設計面を用いた施工を実現することができる。
<First embodiment>
<<Construction of working machine>>
Hereinafter, embodiments will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing the configuration of a working machine 100 according to the first embodiment. A working machine 100 according to the first embodiment is, for example, a hydraulic excavator. The working machine 100 includes a traveling body 120 , a revolving body 140 , a working machine 160 , an operator's cab 180 and a control device 200 . The work machine 100 according to the first embodiment is controlled by an operator to generate a planar design plane and prevent the cutting edge from exceeding the design plane. At this time, since the design plane is set in the vehicle body coordinate system, construction using the design plane can be realized even when positioning cannot be performed by GNSS or the like, such as when work machine 100 constructs a tunnel.
 走行体120は、作業機械100を走行可能に支持する。走行体120は、例えば左右1対の無限軌道である。
 旋回体140は、走行体120に旋回中心回りに旋回可能に支持される。旋回体140は、作業機械100の車体の一例である。
 作業機160は、旋回体140に動作可能に支持される。作業機160は、油圧により駆動する。作業機160は、ブーム161、アーム162、および作業器具であるバケット163を備える。ブーム161の基端部は、旋回体140に回動可能に取り付けられる。アーム162の基端部は、ブーム161の先端部に回動可能に取り付けられる。バケット163の基端部は、アーム162の先端部に回動可能に取り付けられる。ここで、旋回体140のうち作業機160が取り付けられる部分を前部という。また、旋回体140について、前部を基準に、反対側の部分を後部、左側の部分を左部、右側の部分を右部という。
Traveling body 120 supports work machine 100 so that it can travel. The traveling body 120 is, for example, a pair of left and right endless tracks.
The revolving body 140 is supported by the traveling body 120 so as to be able to revolve around the revolving center. Revolving body 140 is an example of a vehicle body of work machine 100 .
Work implement 160 is operably supported by revolving body 140 . Work implement 160 is hydraulically driven. Work machine 160 includes a boom 161, an arm 162, and a bucket 163 that is a work implement. A base end of the boom 161 is rotatably attached to the revolving body 140 . A proximal end of the arm 162 is rotatably attached to a distal end of the boom 161 . The base end of the bucket 163 is rotatably attached to the tip of the arm 162 . Here, a portion of the revolving body 140 to which the work implement 160 is attached is referred to as a front portion. In addition, with respect to the revolving body 140, the front portion is referred to as the rear portion, the left portion is referred to as the left portion, and the right portion is referred to as the right portion.
 運転室180は、旋回体140の前部に設けられる。運転室180内には、オペレータが作業機械100を操作するための操作装置141、および制御装置200のマンマシンインタフェースであるモニタ装置142が設けられる。モニタ装置142は、例えばタッチパネルを備えるコンピュータによって実現される。 The operator's cab 180 is provided in the front part of the revolving body 140 . Inside the operator's cab 180, an operation device 141 for an operator to operate the work machine 100 and a monitor device 142 as a man-machine interface of the control device 200 are provided. The monitor device 142 is realized by a computer having a touch panel, for example.
 制御装置200は、オペレータによる操作装置の操作に基づいて、走行体120、旋回体140、および作業機160を制御する。制御装置200は、例えば運転室180の内部に設けられる。 The control device 200 controls the traveling body 120, the revolving body 140, and the working machine 160 based on the operator's operation of the operation device. The control device 200 is provided inside the cab 180, for example.
《作業機械100の駆動系》
 図2は、第1の実施形態に係る作業機械100の駆動系を示す図である。
 作業機械100は、作業機械100を駆動するための複数のアクチュエータを備える。具体的には、作業機械100は、エンジン111、油圧ポンプ112、コントロールバルブ113、一対の走行モータ114、旋回モータ115、ブームシリンダ116、アームシリンダ117、バケットシリンダ118を備える。
<<Drive System of Working Machine 100>>
FIG. 2 is a diagram showing the drive system of the work machine 100 according to the first embodiment.
Work machine 100 includes a plurality of actuators for driving work machine 100 . Specifically, work machine 100 includes an engine 111 , a hydraulic pump 112 , a control valve 113 , a pair of travel motors 114 , a swing motor 115 , a boom cylinder 116 , an arm cylinder 117 and a bucket cylinder 118 .
 エンジン111は、油圧ポンプ112を駆動する原動機である。
 油圧ポンプ112は、エンジン111により駆動され、コントロールバルブ113を介して走行モータ114、旋回モータ115、ブームシリンダ116、アームシリンダ117およびバケットシリンダ118に作動油を供給する。
 コントロールバルブ113は、油圧ポンプ112から走行モータ114、旋回モータ115、ブームシリンダ116、アームシリンダ117およびバケットシリンダ118へ供給される作動油の流量を制御する。
 走行モータ114は、油圧ポンプ112から供給される作動油によって駆動され、走行体120を駆動する。
 旋回モータ115は、油圧ポンプ112から供給される作動油によって駆動され、走行体120に対して旋回体140を旋回させる。
The engine 111 is a prime mover that drives the hydraulic pump 112 .
Hydraulic pump 112 is driven by engine 111 and supplies working oil to travel motor 114 , swing motor 115 , boom cylinder 116 , arm cylinder 117 and bucket cylinder 118 via control valve 113 .
Control valve 113 controls the flow rate of hydraulic oil supplied from hydraulic pump 112 to travel motor 114 , swing motor 115 , boom cylinder 116 , arm cylinder 117 and bucket cylinder 118 .
The traveling motor 114 is driven by hydraulic oil supplied from the hydraulic pump 112 to drive the traveling body 120 .
The swing motor 115 is driven by hydraulic fluid supplied from the hydraulic pump 112 to swing the swing body 140 with respect to the traveling body 120 .
 ブームシリンダ116は、ブーム161を駆動するための油圧シリンダである。ブームシリンダ116の基端部は、旋回体140に取り付けられる。ブームシリンダ116の先端部は、ブーム161に取り付けられる。
 アームシリンダ117は、アーム162を駆動するための油圧シリンダである。アームシリンダ117の基端部は、ブーム161に取り付けられる。アームシリンダ117の先端部は、アーム162に取り付けられる。
 バケットシリンダ118は、バケット163を駆動するための油圧シリンダである。バケットシリンダ118の基端部は、アーム162に取り付けられる。バケットシリンダ118の先端部は、バケット163に取り付けられる。
Boom cylinder 116 is a hydraulic cylinder for driving boom 161 . A proximal end of the boom cylinder 116 is attached to a rotating body 140 . A tip of the boom cylinder 116 is attached to the boom 161 .
Arm cylinder 117 is a hydraulic cylinder for driving arm 162 . A base end of the arm cylinder 117 is attached to the boom 161 . A tip of the arm cylinder 117 is attached to the arm 162 .
Bucket cylinder 118 is a hydraulic cylinder for driving bucket 163 . The proximal end of bucket cylinder 118 is attached to arm 162 . A tip of the bucket cylinder 118 is attached to the bucket 163 .
《作業機械100の計測系》
 作業機械100は、作業機械100の姿勢および位置を計測するための複数のセンサを備える。具体的には、作業機械100は、傾斜計測器101、旋回角センサ102、ブーム角センサ103、アーム角センサ104およびバケット角センサ105を備える。
<<Measurement System of Work Machine 100>>
Work machine 100 includes a plurality of sensors for measuring the attitude and position of work machine 100 . Specifically, work machine 100 includes tilt measuring instrument 101 , turning angle sensor 102 , boom angle sensor 103 , arm angle sensor 104 and bucket angle sensor 105 .
 傾斜計測器101は、旋回体140の姿勢を計測する。傾斜計測器101は、水平面に対する旋回体140の傾き(例えば、ロール角、ピッチ角およびヨー角)を計測する。傾斜計測器101の例としては、IMU(Inertial Measurement Unit:慣性計測装置)が挙げられる。この場合、傾斜計測器101は、旋回体140の加速度および角速度を計測し、計測結果に基づいて旋回体140の水平面に対する傾きを算出する。傾斜計測器101は、例えば運転室180の下方に設置される。傾斜計測器101は、計測値である旋回体140の姿勢データを制御装置200へ出力する。 The tilt measuring instrument 101 measures the attitude of the revolving body 140 . The tilt measuring device 101 measures the tilt (for example, roll angle, pitch angle and yaw angle) of the revolving superstructure 140 with respect to the horizontal plane. An example of the tilt measuring instrument 101 is an IMU (Inertial Measurement Unit). In this case, the tilt measuring instrument 101 measures the acceleration and angular velocity of the revolving structure 140, and calculates the tilt of the revolving structure 140 with respect to the horizontal plane based on the measurement results. The tilt measuring instrument 101 is installed, for example, below the driver's cab 180 . The inclination measuring instrument 101 outputs the posture data of the revolving body 140 as measured values to the control device 200 .
 旋回角センサ102は、走行体120に対する旋回体140の旋回角度を計測する。旋回角センサ102の計測値は、例えば、走行体120と旋回体140の方向が一致しているときにゼロを示す。旋回角センサ102は、例えば旋回体140の旋回中心に設置される。旋回角センサ102は、計測値である旋回角度データを制御装置200へ出力する。 The turning angle sensor 102 measures the turning angle of the turning body 140 with respect to the traveling body 120 . The measured value of the turning angle sensor 102 indicates zero when the directions of the traveling body 120 and the turning body 140 match, for example. The turning angle sensor 102 is installed, for example, at the turning center of the turning body 140 . The turning angle sensor 102 outputs turning angle data, which is a measured value, to the control device 200 .
 ブーム角センサ103は、旋回体140に対するブーム161の回転角であるブーム角を計測する。ブーム角センサ103は、ブーム161に取り付けられたIMUであってよい。この場合、ブーム角センサ103は、ブーム161の水平面に対する傾きと傾斜計測器101が計測した旋回体の傾きとに基づいて、ブーム角を計測する。ブーム角センサ103の計測値は、例えば、ブーム161の基端と先端とを通る直線の方向が旋回体140の前後方向と一致するときにゼロを示す。なお、他の実施形態係るブーム角センサ103は、ブームシリンダ116に取り付けられたストロークセンサであってもよい。また、他の実施形態に係るブーム角センサ103は、旋回体140とブーム161とを接続するピンに設けられた回転センサであってもよい。ブーム角センサ103は、計測値であるブーム角データを制御装置200へ出力する。 The boom angle sensor 103 measures the boom angle, which is the rotation angle of the boom 161 with respect to the revolving body 140 . Boom angle sensor 103 may be an IMU attached to boom 161 . In this case, the boom angle sensor 103 measures the boom angle based on the tilt of the boom 161 with respect to the horizontal plane and the tilt of the revolving body measured by the tilt measuring device 101 . The measured value of the boom angle sensor 103 indicates zero when, for example, the direction of a straight line passing through the base end and the tip end of the boom 161 coincides with the longitudinal direction of the revolving body 140 . Note that the boom angle sensor 103 according to another embodiment may be a stroke sensor attached to the boom cylinder 116 . Also, the boom angle sensor 103 according to another embodiment may be a rotation sensor provided on a pin that connects the revolving body 140 and the boom 161 . Boom angle sensor 103 outputs boom angle data, which is a measured value, to control device 200 .
 アーム角センサ104は、ブーム161に対するアーム162の回転角であるアーム角を計測する。アーム角センサ104は、アーム162に取り付けられたIMUであってよい。この場合、アーム角センサ104は、アーム162の水平面に対する傾きとブーム角センサ103が計測したブーム角とに基づいて、アーム角を計測する。アーム角センサ104の計測値は、例えば、アーム162の基端と先端とを通る直線の方向がブーム161の基端と先端とを通る直線の方向と一致するときにゼロを示す。なお、他の実施形態に係るアーム角センサ104は、アームシリンダ117にストロークセンサを取付けて角度算出を行ってもよい。また、他の実施形態に係るアーム角センサ104は、ブーム161とアーム162とを接続するピンに設けられた回転センサであってもよい。アーム角センサ104は、計測値であるアーム角データを制御装置200へ出力する。 The arm angle sensor 104 measures the arm angle, which is the rotation angle of the arm 162 with respect to the boom 161 . Arm angle sensor 104 may be an IMU attached to arm 162 . In this case, the arm angle sensor 104 measures the arm angle based on the tilt of the arm 162 with respect to the horizontal plane and the boom angle measured by the boom angle sensor 103 . The measured value of the arm angle sensor 104 indicates zero when the direction of the straight line passing through the proximal end and the distal end of the arm 162 matches the direction of the straight line passing through the proximal end and the distal end of the boom 161, for example. Note that the arm angle sensor 104 according to another embodiment may calculate the angle by attaching a stroke sensor to the arm cylinder 117 . Also, the arm angle sensor 104 according to another embodiment may be a rotation sensor provided on a pin that connects the boom 161 and the arm 162 . Arm angle sensor 104 outputs arm angle data, which is a measured value, to control device 200 .
 バケット角センサ105は、アーム162に対するバケット163の回転角であるバケット角を計測する。バケット角センサ105は、バケット163を駆動させるためのバケットシリンダ118に設けられたストロークセンサであってよい。この場合、バケット角センサ105は、バケットシリンダのストローク量に基づいてバケット角を計測する。バケット角センサ105の計測値は、例えば、バケット163の基端と刃先とを通る直線の方向がアーム162の基端と先端とを通る直線の方向と一致するときにゼロを示す。なお、他の実施形態に係るバケット角センサ105は、アーム162とバケット163とを接続するピンに設けられた回転センサであってもよい。また、他の実施形態に係るバケット角センサ105は、バケット163に取付けられたIMUであってもよい。バケット角センサ105は、計測値であるバケット角データを制御装置200へ出力する。 The bucket angle sensor 105 measures the bucket angle, which is the rotation angle of the bucket 163 with respect to the arm 162 . Bucket angle sensor 105 may be a stroke sensor provided on bucket cylinder 118 for driving bucket 163 . In this case, the bucket angle sensor 105 measures the bucket angle based on the stroke amount of the bucket cylinder. The measured value of the bucket angle sensor 105 indicates zero, for example, when the direction of the straight line passing through the proximal end and the cutting edge of the bucket 163 matches the direction of the straight line passing through the proximal end and the distal end of the arm 162 . Bucket angle sensor 105 according to another embodiment may be a rotation sensor provided on a pin that connects arm 162 and bucket 163 . Bucket angle sensor 105 according to another embodiment may be an IMU attached to bucket 163 . Bucket angle sensor 105 outputs bucket angle data, which is a measured value, to control device 200 .
《制御装置200の構成》
 図3は、第1の実施形態に係る制御装置200の構成を示す概略ブロック図である。
 制御装置200は、プロセッサ210、メインメモリ230、ストレージ250、インタフェース270を備えるコンピュータである。制御装置200は、制御システムの一例である。制御装置200は、傾斜計測器101、旋回角センサ102、ブーム角センサ103、アーム角センサ104、およびバケット角センサ105から計測値を受信する。
<<Configuration of Control Device 200>>
FIG. 3 is a schematic block diagram showing the configuration of the control device 200 according to the first embodiment.
The control device 200 is a computer that includes a processor 210 , main memory 230 , storage 250 and interface 270 . Control device 200 is an example of a control system. Controller 200 receives measurements from tilt gauge 101 , turning angle sensor 102 , boom angle sensor 103 , arm angle sensor 104 and bucket angle sensor 105 .
 ストレージ250は、一時的でない有形の記憶媒体である。ストレージ250の例としては、磁気ディスク、光ディスク、光磁気ディスク、半導体メモリ等が挙げられる。ストレージ250は、制御装置200のバスに直接接続された内部メディアであってもよいし、インタフェース270または通信回線を介して制御装置200に接続される外部メディアであってもよい。ストレージ250は、作業機械100を制御するための制御プログラムを記憶する。 The storage 250 is a non-temporary tangible storage medium. Examples of the storage 250 include magnetic disks, optical disks, magneto-optical disks, semiconductor memories, and the like. The storage 250 may be an internal medium directly connected to the bus of the control device 200, or an external medium connected to the control device 200 via the interface 270 or communication line. Storage 250 stores a control program for controlling work machine 100 .
 制御プログラムは、制御装置200に発揮させる機能の一部を実現するためのものであってもよい。例えば、制御プログラムは、ストレージ250に既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、制御装置200は、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサによって実現される機能の一部または全部が当該集積回路によって実現されてよい。 The control program may be for realizing part of the functions that the control device 200 is to perform. For example, the control program may function in combination with another program already stored in the storage 250 or in combination with another program installed in another device. In other embodiments, the control device 200 may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration. Examples of PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array). In this case, part or all of the functions implemented by the processor may be implemented by the integrated circuit.
 ストレージ250には、旋回体140、ブーム161、アーム162及びバケット163の寸法及び重心位置を表すジオメトリデータが記録される。ジオメトリデータは、所定の座標系における物体の位置を表すデータである。 The storage 250 records geometry data representing the dimensions and center-of-gravity positions of the revolving structure 140, the boom 161, the arm 162, and the bucket 163. Geometry data is data representing the position of an object in a predetermined coordinate system.
《ソフトウェア構成》
 プロセッサ210は、制御プログラムを実行することで、操作量取得部211、入力部212、表示制御部213、計測値取得部214、位置特定部215、生成部216、回転変換部217、介入判定部218、介入制御部219、制御信号出力部220、更新部221を備える。
《Software configuration》
By executing the control program, the processor 210 performs the operation amount acquisition unit 211, the input unit 212, the display control unit 213, the measured value acquisition unit 214, the position specifying unit 215, the generation unit 216, the rotation conversion unit 217, and the intervention determination unit. 218 , an intervention control unit 219 , a control signal output unit 220 and an update unit 221 .
 操作量取得部211は、操作装置141から各アクチュエータの操作量を示す操作信号を取得する。
 入力部212は、モニタ装置142からオペレータによる操作入力を受け付ける。
 表示制御部213は、モニタ装置142に表示させる画面データをモニタ装置142へ出力する。
 計測値取得部214は、傾斜計測器101、旋回角センサ102、ブーム角センサ103、アーム角センサ104およびバケット角センサ105から計測値を取得する。
The operation amount acquisition unit 211 acquires an operation signal indicating the operation amount of each actuator from the operation device 141 .
The input unit 212 receives operation input from the operator from the monitor device 142 .
The display control unit 213 outputs screen data to be displayed on the monitor device 142 to the monitor device 142 .
The measured value acquisition unit 214 acquires measured values from the tilt measuring device 101 , the turning angle sensor 102 , the boom angle sensor 103 , the arm angle sensor 104 and the bucket angle sensor 105 .
 位置特定部215は、計測値取得部214が取得した各種計測値とストレージ250に記録されたジオメトリデータとに基づいて、車体座標系におけるバケット163の刃先の位置を特定する。車体座標系とは、旋回体140の代表点(例えば、旋回中心を通る点)を原点とする直交座標系である。位置特定部215の計算については後述する。 The position specifying unit 215 specifies the position of the cutting edge of the bucket 163 in the vehicle body coordinate system based on the various measurement values acquired by the measurement value acquisition unit 214 and the geometry data recorded in the storage 250 . The vehicle body coordinate system is an orthogonal coordinate system whose origin is a representative point of the revolving body 140 (for example, a point passing through the center of revolving). The calculation of the position specifying unit 215 will be described later.
 生成部216は、入力部212がオペレータから設計面の生成指示を受け付けた場合に、位置特定部215が特定したバケット163の刃先の位置に基づいて設計面のパラメータを計算する。生成部216は、生成した車体座標系における設計面のパラメータをメインメモリ230に記録する。 When the input unit 212 receives a design surface generation instruction from the operator, the generating unit 216 calculates the parameters of the design surface based on the position of the cutting edge of the bucket 163 identified by the position identifying unit 215 . The generator 216 records the generated parameters of the design surface in the vehicle body coordinate system in the main memory 230 .
 回転変換部217は、旋回体140の旋回に伴ってメインメモリ230に記憶された設計面のパラメータを更新する。具体的には、回転変換部217は、傾斜計測器101が計測したピッチ角、ロール角、ヨー角の変化分だけ設計面のパラメータを車体座標系の原点を中心に回転変換する。図4は、第1の実施形態における旋回体の旋回に伴う設計面の再設定の一例を示す図である。例えば、図4に示すように、設計面の設定後に旋回体140が旋回した場合、回転変換部217は、計測値取得部214が取得した傾斜計測器101の計測値を参照して旋回体140の旋回によって生じたロール角、ピッチ角、ヨー角の変化量を計算し、設計面のパラメータを車体座標系の原点を中心に回転変換する。これにより、回転変換部217は、旋回体140の旋回による設計面の回転をキャンセルすることができる。 The rotation conversion unit 217 updates the parameters of the design surface stored in the main memory 230 as the revolving body 140 revolves. Specifically, the rotation conversion unit 217 rotates the parameters of the design surface about the origin of the vehicle body coordinate system by the amount of change in the pitch angle, roll angle, and yaw angle measured by the tilt measuring device 101 . FIG. 4 is a diagram showing an example of resetting the design surface as the revolving superstructure revolves according to the first embodiment. For example, as shown in FIG. 4 , when the revolving superstructure 140 revolves after setting the design surface, the rotation conversion unit 217 refers to the measurement values of the tilt measuring device 101 acquired by the measurement value acquiring unit 214 to The amount of change in the roll angle, pitch angle, and yaw angle caused by the turning of the vehicle is calculated, and the parameters of the design surface are rotationally transformed around the origin of the vehicle body coordinate system. As a result, the rotation conversion unit 217 can cancel the rotation of the design surface caused by the turning of the turning body 140 .
 介入判定部218は、位置特定部215が特定したバケット163の刃先と設計面との位置関係に基づいて、作業機160の速度を制限するか否かを判定する。以下、制御装置200が作業機160の速度を制限することを介入制御ともいう。具体的には、介入判定部218は、設計面とバケット163との最小距離を求め、当該最小距離が所定距離以下である場合に、作業機160について介入制御をすると判定する。 The intervention determination unit 218 determines whether or not to limit the speed of the work implement 160 based on the positional relationship between the cutting edge of the bucket 163 and the design surface specified by the position specifying unit 215 . Hereinafter, the restriction of the speed of work implement 160 by control device 200 is also referred to as intervention control. Specifically, intervention determination unit 218 obtains the minimum distance between the design surface and bucket 163 , and determines that intervention control is to be performed for work implement 160 when the minimum distance is equal to or less than a predetermined distance.
 介入制御部219は、介入判定部218によって介入制御を行うと判定された場合に、操作量取得部211が取得した操作量のうち介入対象の操作量を制御する。介入制御において介入制御部219は、制御線に作業機160が侵入しないように、ブーム161の操作量を制御する。これにより、バケット163の速度がバケット163と制御線との距離に応じた速度となるように、ブーム161が駆動する。つまり介入制御部219は、オペレータがアーム162を操作して掘削を行うときに、設計面に応じてブーム161を上昇させることでバケット163の刃先の速度を制限する。 When the intervention determination unit 218 determines that intervention control should be performed, the intervention control unit 219 controls the operation amount to be intervened among the operation amounts acquired by the operation amount acquisition unit 211 . In intervention control, intervention control unit 219 controls the amount of operation of boom 161 so that work implement 160 does not enter the control line. As a result, the boom 161 is driven such that the speed of the bucket 163 corresponds to the distance between the bucket 163 and the control line. In other words, when the operator operates the arm 162 to excavate, the intervention control unit 219 limits the speed of the cutting edge of the bucket 163 by raising the boom 161 in accordance with the design.
 制御信号出力部220は、操作量取得部211が取得した操作量、または介入判定部218によって制御された操作量をコントロールバルブ113に出力する。 The control signal output unit 220 outputs the operation amount acquired by the operation amount acquisition unit 211 or the operation amount controlled by the intervention determination unit 218 to the control valve 113 .
 更新部221は、作業機械100の走行に伴って、メインメモリ230に記憶された設計面のパラメータを更新する。具体的には、作業機械100の走行前後に、オペレータが作業機160を操作し、バケット163の刃先を現場の特定の位置に触れさせる。更新部221は、走行前後の車体座標系におけるバケット163の刃先の位置の違いに基づいて、設計面を移動させる。 The update unit 221 updates the parameters of the design surface stored in the main memory 230 as the work machine 100 travels. Specifically, before and after work machine 100 travels, the operator operates work machine 160 to bring the cutting edge of bucket 163 into contact with a specific position on the site. The updating unit 221 moves the design surface based on the difference in the position of the cutting edge of the bucket 163 in the vehicle body coordinate system before and after traveling.
《位置特定部215の計算》
 ここで、位置特定部215によるバケット163の刃先の位置の特定方法を説明する。位置特定部215は、計測値取得部214が取得した各種計測値とストレージ250に記録されたジオメトリデータとに基づいてバケット163の刃先の位置を特定する。ストレージ250には、旋回体140、ブーム161、アーム162及びバケット163の寸法を表すジオメトリデータが記録される。
<<Calculation of position specifying unit 215>>
Here, a method for specifying the position of the cutting edge of bucket 163 by position specifying unit 215 will be described. The position specifying unit 215 specifies the position of the cutting edge of the bucket 163 based on the various measurement values acquired by the measurement value acquiring unit 214 and the geometry data recorded in the storage 250 . The storage 250 records geometry data representing the dimensions of the revolving structure 140 , the boom 161 , the arm 162 and the bucket 163 .
 旋回体140のジオメトリデータは、ローカル座標系である車体座標系における旋回体140のブーム161を支持するピンの位置(xbm、ybm、zbm)を示す。車体座標系は、旋回体140の旋回中心を基準として前後方向に伸びるXsb軸、左右方向に伸びるYsb軸、上下方向に伸びるZsb軸から構成される座標系である。なお、旋回体140の上下方向は、必ずしも鉛直方向と一致しない。 The geometry data of the rotating body 140 indicates the positions (x bm , y bm , z bm ) of the pins supporting the boom 161 of the rotating body 140 in the vehicle body coordinate system, which is the local coordinate system. The vehicle body coordinate system is a coordinate system composed of the X sb axis extending in the front-rear direction, the Y sb axis extending in the left-right direction, and the Z sb axis extending in the up-down direction with reference to the turning center of the turning body 140 . Note that the vertical direction of the revolving body 140 does not necessarily match the vertical direction.
 ブーム161のジオメトリデータは、ローカル座標系であるブーム座標系におけるブームトップ位置(xam、yam、zam)を示す。ブーム座標系は、ブーム161と旋回体140とを接続するピンの位置を基準として、長手方向に伸びるXbm軸、ピンが伸びる方向に伸びるYbm軸、Xbm軸とYbm軸に直交するZbm軸から構成される座標系である。ブームトップは、ブーム161とアーム162を接続するピンの位置である。 The geometry data of the boom 161 indicates the boom top position (x am , y am , z am ) in the boom coordinate system, which is the local coordinate system. The boom coordinate system is based on the position of the pin that connects the boom 161 and the revolving body 140, and is orthogonal to the Xbm axis extending in the longitudinal direction, the Ybm axis extending in the direction in which the pin extends, and the Xbm axis and the Ybm axis. It is a coordinate system composed of the Zbm axis. The boom top is the position of the pin that connects the boom 161 and arm 162 .
 アーム162のジオメトリデータは、ローカル座標系であるアーム座標系におけるアームトップ位置(xbk、ybk、zbk)を示す。アーム座標系は、アーム162とブーム161とを接続するピンの位置を基準として、長手方向に伸びるXam軸、ピンが伸びる方向に伸びるYam軸、Xam軸とYam軸に直交するZam軸から構成される座標系である。アームトップは、アーム162とバケット163を接続するピンの位置である。 The geometry data of the arm 162 indicates the arm top position (x bk , y bk , z bk ) in the arm coordinate system, which is the local coordinate system. The arm coordinate system is based on the position of the pin that connects the arm 162 and the boom 161, the X am axis extending in the longitudinal direction, the Y am axis extending in the direction in which the pin extends, and the Z axis perpendicular to the X am axis and the Yam axis. It is a coordinate system composed of the am- axis. Arm top is the location of the pin that connects arm 162 and bucket 163 .
 バケット163のジオメトリデータは、ローカル座標系であるバケット座標系におけるバケット163の刃先の位置(xed、yed、zed)を示す。バケット座標系は、バケット163とアーム162とを接続するピンの位置を基準として、刃先の方向に伸びるXbk軸、ピンが伸びる方向に伸びるYbk軸、Xbk軸とYbk軸に直交するZbk軸から構成される座標系である。 The geometry data of the bucket 163 indicates the position (x ed , y ed , z ed ) of the cutting edge of the bucket 163 in the bucket coordinate system, which is the local coordinate system. The bucket coordinate system is based on the position of the pin that connects the bucket 163 and the arm 162. The Xbk axis extends in the direction of the cutting edge, the Ybk axis extends in the direction in which the pin extends, and the Xbk axis and the Ybk axis are perpendicular to each other. It is a coordinate system composed of the Zbk axis.
 位置特定部215は、計測値取得部214が取得したブーム角θbmの計測値と、旋回体140のジオメトリデータとに基づいて、下記式(1)により、ブーム座標系から車体座標系へ変換するためのブーム-車体変換行列Tbm sbを生成する。ブーム-車体変換行列Tbm sbは、Ybm軸回りにブーム角θbmだけ回転させ、かつ車体座標系の原点とブーム座標系の原点の偏差(xbm、ybm、zbm)だけ移動させる行列である。また、位置特定部215は、ブーム161のジオメトリデータが示すブーム座標系におけるブームトップの位置と、ブーム-車体変換行列Tbm sbとの積を求めることで、車体座標系におけるブームトップの位置を求める。 The position specifying unit 215 converts the boom coordinate system to the vehicle body coordinate system using the following formula (1) based on the measured value of the boom angle θbm acquired by the measured value acquisition unit 214 and the geometry data of the swing body 140. Generate a boom-to-body transformation matrix T bm sb for The boom-body transformation matrix T bm sb is rotated about the Y bm axis by the boom angle θ bm and moved by the deviation (x bm , y bm , z bm ) between the origin of the body coordinate system and the origin of the boom coordinate system. matrix. Further, the position specifying unit 215 obtains the product of the position of the boom top in the boom coordinate system indicated by the geometry data of the boom 161 and the boom-vehicle transformation matrix T bm sb , thereby determining the position of the boom top in the vehicle body coordinate system. demand.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 位置特定部215は、計測値取得部214が取得したアーム角θamの計測値と、ブーム161のジオメトリデータとに基づいて、下記式(2)により、アーム座標系からブーム座標系へ変換するためのアーム-ブーム変換行列Tam bmを生成する。アーム-ブーム変換行列Tam bmは、Yam軸回りにアーム角θamだけ回転させ、かつブーム座標系の原点とアーム座標系の原点の偏差(xam、yam、zam)だけ移動させる行列である。また、位置特定部215は、ブーム-車体変換行列Tbm sbとアーム-ブーム変換行列Tam bmの積を求めることで、アーム座標系から車体座標系へ変換するためのアーム-車体変換行列Tam sbを生成する。また、位置特定部215は、アーム162のジオメトリデータが示すアーム座標系におけるアームトップの位置と、アーム-車体変換行列Tam sbとの積を求めることで、車体座標系におけるアームトップの位置を求める。 The position specifying unit 215 converts the arm coordinate system to the boom coordinate system using the following formula (2) based on the measured value of the arm angle θ am acquired by the measured value acquiring unit 214 and the geometry data of the boom 161. Generate an arm-to-boom transformation matrix T am bm for . The arm-boom transformation matrix T am bm rotates about the Y am axis by the arm angle θ am and moves by the deviation (x am , y am , z am ) between the origin of the boom coordinate system and the origin of the arm coordinate system. matrix. Further, the position specifying unit 215 obtains the product of the boom-body transformation matrix T bm sb and the arm-boom transformation matrix T am bm , thereby obtaining the arm-body transformation matrix T for transformation from the arm coordinate system to the vehicle body coordinate system. Generate am sb . Further, the position specifying unit 215 obtains the product of the position of the arm top in the arm coordinate system indicated by the geometry data of the arm 162 and the arm-to-body transformation matrix T am sb , thereby determining the position of the arm top in the body coordinate system. demand.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 位置特定部215は、計測値取得部214が取得したバケット角θbkの計測値と、アーム162のジオメトリデータとに基づいて、下記式(3)により、バケット座標系からアーム座標系へ変換するためのバケット-アーム変換行列Tbk amを生成する。バケット-アーム変換行列Tbk amは、Ybk軸回りにバケット角θbkだけ回転させ、かつアーム座標系の原点とバケット座標系の原点の偏差(xbk、ybk、zbk)だけ移動させる行列である。また、位置特定部215は、アーム-車体変換行列Tam sbとバケット-アーム変換行列Tbk amの積を求めることで、バケット座標系から車体座標系へ変換するためのバケット-車体変換行列Tbk sbを生成する。 The position specifying unit 215 converts the bucket coordinate system into the arm coordinate system using the following formula (3) based on the measured value of the bucket angle θbk acquired by the measured value acquiring unit 214 and the geometry data of the arm 162. Generate a bucket-to-arm transformation matrix T bk am for . The bucket-to-arm transformation matrix T bk am is rotated about the Y bk axis by the bucket angle θ bk and translated by the deviation between the origin of the arm coordinate system and the origin of the bucket coordinate system (x bk , y bk , z bk ) matrix. Further, the position specifying unit 215 obtains the product of the arm-body transformation matrix T am sb and the bucket-arm transformation matrix T bk am , thereby obtaining the bucket-body transformation matrix T for transforming from the bucket coordinate system to the vehicle body coordinate system. Create bk sb .
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 位置特定部215は、バケット163のジオメトリデータが示すバケット座標系における刃先の位置と、バケット-車体変換行列Tbk sbとの積を求めることで、車体座標系におけるバケット163の刃先の位置を求める。 The position specifying unit 215 obtains the position of the cutting edge of the bucket 163 in the vehicle body coordinate system by multiplying the position of the cutting edge in the bucket coordinate system indicated by the geometry data of the bucket 163 by the bucket-vehicle transformation matrix T bk sb . .
《作業機械100の制御方法》
 以下、第1の実施形態に係る作業機械100の制御方法について説明する。
 まず作業機械100のオペレータは、モニタ装置142を操作し、設計面の設定を行う。
<<Method of Controlling Work Machine 100>>
A control method for the work machine 100 according to the first embodiment will be described below.
First, the operator of the work machine 100 operates the monitor device 142 to set the design surface.
《設計面の設定》
 図5は、第1の実施形態に係る設計面の設定方法を示すフローチャートである。
 入力部212がモニタ装置142から設計面の設定指示を受け付けると、表示制御部213は、距離入力欄と、傾斜角入力欄と、設定ボタンとを含むガイダンス画面をモニタ装置142に表示させる(ステップS101)。ガイダンス画面には、設計面を設定したい点の上方にバケット163の刃先を移動させ、距離入力欄に刃先から設計面までの距離を、傾斜角入力欄に設計面の傾斜角を入力し、設定ボタンを操作する旨が表示される。距離入力欄および傾斜角入力欄には、初期値として距離0メートル、ピッチ角0度、ロール角0度が入力される。以下、距離入力欄に入力される距離を入力距離といい、傾斜角入力欄に入力される傾斜角を入力傾斜角(入力ピッチ角、入力ロール角)という。オペレータは、作業機械100を操作し、バケット163の刃先を所望の位置に移動させた後に設定ボタンを操作する。入力部212はモニタ装置142から距離入力欄および傾斜角入力欄への入力ならびに設定ボタンの操作を受け付ける(ステップS102)。入力部212は、設定ボタンが操作された時点における距離入力欄および傾斜角入力欄の値を取得する(ステップS103)。なお、入力傾斜角は、鉛直方向と、設計面の設定時における作業機械100の前方を基準とした傾斜角である。つまり、入力ピッチ角および入力ロール角は、設計面の法線の鉛直軸に対する傾きである。
《Setting the design surface》
FIG. 5 is a flow chart showing a design surface setting method according to the first embodiment.
When the input unit 212 receives a design surface setting instruction from the monitor device 142, the display control unit 213 causes the monitor device 142 to display a guidance screen including a distance input field, an inclination input field, and a setting button (step S101). On the guidance screen, move the cutting edge of the bucket 163 above the point where the design surface is to be set, enter the distance from the cutting edge to the design surface in the distance input field, and the inclination angle of the design surface in the inclination input field. A message to operate the button is displayed. A distance of 0 meters, a pitch angle of 0 degrees, and a roll angle of 0 degrees are entered as initial values in the distance input field and the tilt angle input field. Hereinafter, the distance input in the distance input field will be referred to as input distance, and the tilt angle input in the tilt angle input field will be referred to as input tilt angle (input pitch angle, input roll angle). The operator operates work machine 100 to move the cutting edge of bucket 163 to a desired position, and then operates the setting button. The input unit 212 receives inputs from the monitor device 142 in the distance input field and the tilt angle input field and the operation of the setting button (step S102). The input unit 212 acquires the values in the distance input field and the tilt angle input field when the setting button is operated (step S103). The input tilt angle is a tilt angle based on the vertical direction and the front of work machine 100 when the design surface is set. That is, the input pitch angle and input roll angle are the inclinations of the normal to the design surface with respect to the vertical axis.
 計測値取得部214は、設定ボタンが操作された時点における傾斜計測器101、旋回角センサ102、ブーム角センサ103、アーム角センサ104およびバケット角センサ105の計測値を取得する(ステップS104)。位置特定部215は、取得した計測値に基づいて車体座標系におけるバケット163の刃先の位置を特定する(ステップS105)。 The measured value acquisition unit 214 acquires the measured values of the tilt measuring device 101, turning angle sensor 102, boom angle sensor 103, arm angle sensor 104, and bucket angle sensor 105 at the time the setting button is operated (step S104). The position specifying unit 215 specifies the position of the cutting edge of the bucket 163 in the vehicle body coordinate system based on the acquired measurement values (step S105).
 生成部216は、ステップS104で傾斜計測器101から取得したロール角およびピッチ角(計測ロール角および計測ピッチ角)と、ステップS105で求めた刃先の位置と、ステップS103で取得した入力距離と入力傾斜角とに基づいて、設計面のパラメータを算出する。生成部216は、Xsb軸の値が0、Ysb軸の値が0、Zsb軸の値が1のベクトルを、計測ロール角および計測ピッチ角だけ回転させることで、車体座標系における鉛直ベクトルを求める(ステップS106)。生成部216は、ステップS104で求めた刃先の位置を示すベクトルと、鉛直ベクトルに距離を乗算した深度ベクトルとの和を求めることで、設計面の位置ベクトルを得る(ステップS107)。また生成部216は、鉛直ベクトルと入力傾斜角とに基づいて設計面の法線ベクトルを得る(ステップS108)。具体的には、生成部216は、車体座標系と原点を共有し、鉛直方向に伸びるZ軸と、計測ロール角および計測ピッチ角がゼロのときに車体座標系のXsb軸と一致するX軸と、計測ロール角および計測ピッチ角がゼロのときに車体座標系のYsb軸と一致するY軸とで構成される直交座標系である鉛直座標系を特定する。つまり、鉛直座標系は、計測ロール角および計測ピッチ角がゼロのときに車体座標系と一致する。生成部216は、鉛直座標系をY軸回りに入力ピッチ角だけ回転させる。また、生成部216は、鉛直座標系をX軸回りに入力ロール角だけ回転させる。生成部216は、Y軸回りに回転させた鉛直座標系のX軸方向に伸びる単位ベクトルとX軸回りに回転させた鉛直座標系のY軸方向に伸びる単位ベクトルとの外積を取ることで、鉛直座標系における設計面の法線ベクトルを求める。生成部216は、鉛直座標系における法線ベクトルを計測ロール角および計測ピッチ角だけ回転させることで、車体座標系における設計面の法線ベクトルを求める。 The generation unit 216 inputs the roll angle and pitch angle (measured roll angle and measured pitch angle) obtained from the tilt measuring instrument 101 in step S104, the position of the cutting edge obtained in step S105, and the input distance obtained in step S103. The parameters of the design surface are calculated based on the inclination angle. The generation unit 216 rotates a vector having a value of 0 on the X sb axis, a value of 0 on the Y sb axis, and a value of 1 on the Z sb axis by the measured roll angle and the measured pitch angle, so that the vertical A vector is obtained (step S106). The generation unit 216 obtains the position vector of the design surface by obtaining the sum of the vector indicating the position of the cutting edge obtained in step S104 and the depth vector obtained by multiplying the vertical vector by the distance (step S107). The generator 216 also obtains the normal vector of the design surface based on the vertical vector and the input tilt angle (step S108). Specifically, the generator 216 shares the origin with the vehicle body coordinate system, and the Zv axis extending in the vertical direction coincides with the Xsb axis of the vehicle body coordinate system when the measured roll angle and the measured pitch angle are zero. A vertical coordinate system, which is an orthogonal coordinate system composed of the Xv - axis and the Yv-axis that coincides with the Ysb - axis of the vehicle body coordinate system when the measured roll angle and the measured pitch angle are zero, is specified. That is, the vertical coordinate system coincides with the vehicle body coordinate system when the measured roll angle and measured pitch angle are zero. The generator 216 rotates the vertical coordinate system around the Yv axis by the input pitch angle. The generation unit 216 also rotates the vertical coordinate system around the Xv axis by the input roll angle. The generation unit 216 calculates the outer product of the unit vector extending in the Xv - axis direction of the vertical coordinate system rotated about the Yv- axis and the unit vector extending in the Yv - axis direction of the vertical coordinate system rotated about the Xv- axis. to find the normal vector of the design surface in the vertical coordinate system. The generation unit 216 rotates the normal vector in the vertical coordinate system by the measured roll angle and the measured pitch angle to obtain the normal vector of the design surface in the vehicle body coordinate system.
 生成部216は、生成した設計面のパラメータ(法線ベクトルおよび位置ベクトル)をメインメモリ230に記録する(ステップS109)。なお、メインメモリ230に既に設計面のパラメータが記録されている場合、古いパラメータを新たなパラメータで上書きする。 The generation unit 216 records the generated design surface parameters (normal vector and position vector) in the main memory 230 (step S109). If the design surface parameters are already recorded in the main memory 230, the old parameters are overwritten with the new parameters.
《旋回に伴う設計面の更新および介入制御》
 作業機械100は、旋回体140を旋回させて作業機160が届く範囲内の作業を行うことができる。そのため、通常、オペレータは、掘削などの作業を行う場合、作業機械100を旋回させる。車体座標系は旋回体140を基準とするため、車体座標系に設定される設計面と作業機160との位置関係は、作業機械100の旋回によって変化しない。そのため、設計面が上記手順で設定されたまま更新されない場合、設計面は、グローバル座標系の視点から見て旋回体140の旋回に追従して移動するようにふるまう。例えば、旋回体140から見て下り坂となる設計面を生成すると、旋回体140をどのように旋回させても、旋回体140から見た設計面の傾き方向は常に下り坂が維持される。
 そのため、第1の実施形態に係る制御装置200は、作業機械100の旋回前後でグローバル座標系における設計面の位置を維持するために、設計面の回転変換処理を行う。
《Updating the design surface and intervention control accompanying turning》
The work machine 100 can perform work within the reach of the work machine 160 by turning the revolving body 140 . Therefore, an operator normally turns work machine 100 when performing work such as excavation. Since the vehicle body coordinate system is based on revolving body 140 , the positional relationship between the design plane set in the vehicle body coordinate system and work machine 160 does not change as work machine 100 turns. Therefore, if the design plane is not updated while being set by the above procedure, the design plane behaves as if it moves following the revolution of the revolving body 140 as seen from the viewpoint of the global coordinate system. For example, if a design surface that slopes downward when viewed from the revolving superstructure 140 is generated, the tilt direction of the design surface viewed from the revolving superstructure 140 always maintains the downward slope no matter how the revolving superstructure 140 is rotated.
Therefore, the control device 200 according to the first embodiment performs rotation conversion processing of the design surface in order to maintain the position of the design surface in the global coordinate system before and after the work machine 100 turns.
 図6は、第1の実施形態において設定された旋回に伴う設計面の更新および介入制御を示すフローチャートである。作業機械100のオペレータがモニタ装置142の操作によって設計面を設定すると、制御装置200は、以下に示す制御を開始する。 FIG. 6 is a flow chart showing design surface update and intervention control associated with turning set in the first embodiment. When the operator of work machine 100 sets the design surface by operating monitor device 142, control device 200 starts the control described below.
 操作量取得部211は、操作装置141からブーム161、アーム162、バケット163、および旋回体140の操作信号を取得する(ステップS201)。計測値取得部214は、傾斜計測器101、旋回角センサ102、ブーム角センサ103、アーム角センサ104およびバケット角センサ105の計測値を取得する(ステップS202)。 The operation amount acquisition unit 211 acquires operation signals for the boom 161, the arm 162, the bucket 163, and the revolving body 140 from the operation device 141 (step S201). The measured value acquisition unit 214 acquires measured values of the tilt measuring device 101, the turning angle sensor 102, the boom angle sensor 103, the arm angle sensor 104, and the bucket angle sensor 105 (step S202).
 回転変換部217は、メインメモリ230が記憶する設計面を、ステップS202で傾斜計測器101から取得した旋回体140のロール角、ピッチ角、ヨー角に基づいて回転変換し、更新する(ステップS203)。 The rotation transforming unit 217 rotates and updates the design surface stored in the main memory 230 based on the roll angle, pitch angle, and yaw angle of the revolving structure 140 acquired from the tilt measuring instrument 101 in step S202 (step S203). ).
 位置特定部215は、ステップS202で取得した計測値に基づいて車体座標系におけるバケット163の刃先の位置を算出する(ステップS204)。介入判定部218は、ステップS204で算出した刃先の位置を通り、車体座標系のXsb-Zsb平面に平行な断面を特定する(ステップS205)。 The position specifying unit 215 calculates the position of the cutting edge of the bucket 163 in the vehicle body coordinate system based on the measurement values obtained in step S202 (step S204). The intervention determination unit 218 identifies a cross section parallel to the X sb -Z sb plane of the vehicle body coordinate system passing through the position of the cutting edge calculated in step S204 (step S205).
 介入判定部218は、ステップS205で生成した断面と設計面との交線を制御線として算出する(ステップS206)。介入判定部218は、バケット163の刃先と制御線との距離を求める(ステップS207)。介入判定部218は、刃先と制御線との距離が、介入開始距離より長いか否かを判定する(ステップS208)。距離が介入開始距離より長い場合(ステップS208:YES)、介入制御部219は作業機160についての介入制御を行わない。 The intervention determination unit 218 calculates the line of intersection between the cross section generated in step S205 and the design surface as a control line (step S206). The intervention determination unit 218 obtains the distance between the cutting edge of the bucket 163 and the control line (step S207). The intervention determination unit 218 determines whether or not the distance between the cutting edge and the control line is longer than the intervention start distance (step S208). If the distance is longer than the intervention start distance (step S<b>208 : YES), intervention control unit 219 does not perform intervention control for work implement 160 .
 他方、最短距離が介入開始距離以下である場合(ステップS208:NO)、介入制御部219は、ステップS201で取得したブーム161、アーム162およびバケット163の操作信号に基づいてブーム161、アーム162およびバケット163の目標速度を算出する(ステップS209)。介入制御部219は、ブーム161、アーム162およびバケット163の目標速度とジオメトリデータとに基づいて、バケット163の刃先の移動速度を算出する(ステップS210)。 On the other hand, if the shortest distance is equal to or less than the intervention start distance (step S208: NO), intervention control unit 219 controls boom 161, arm 162, and A target speed of the bucket 163 is calculated (step S209). Intervention control unit 219 calculates the moving speed of the cutting edge of bucket 163 based on the target speeds and geometry data of boom 161, arm 162 and bucket 163 (step S210).
 介入制御部219は、ステップS207で算出した距離と予め定められた制限速度テーブルとに基づいてバケット163の刃先の制限速度を特定する(ステップS211)。制限角速度テーブルは、刃先と制御線との距離と、刃先の制限速度との関係を示す関数であって、距離が短いほど制限速度が小さくなる関数である。介入制御部219は、ステップS210で算出した刃先の速度が制限速度を超えるか否かを判定する(ステップS212)。刃先の速度が制限速度を超える場合(ステップS212:YES)、介入制御部219は、刃先の速度を制限速度と一致させるためのブーム161の速度を算出し、ブームの目標速度を設定する(ステップS213)。刃先の速度が制限速度を超えない場合(ステップS212:NO)、介入制御部219は、作業機160についての介入制御を行わない。 The intervention control unit 219 identifies the speed limit of the cutting edge of the bucket 163 based on the distance calculated in step S207 and a predetermined speed limit table (step S211). The angular speed limit table is a function showing the relationship between the distance between the cutting edge and the control line and the speed limit of the cutting edge, and the shorter the distance, the smaller the speed limit. The intervention control unit 219 determines whether or not the speed of the cutting edge calculated in step S210 exceeds the speed limit (step S212). If the speed of the cutting edge exceeds the speed limit (step S212: YES), the intervention control unit 219 calculates the speed of the boom 161 for matching the speed of the cutting edge with the speed limit, and sets the target speed of the boom (step S213). If the speed of the cutting edge does not exceed the speed limit (step S<b>212 : NO), intervention control unit 219 does not perform intervention control for work implement 160 .
 制御信号出力部220は、ブーム161、アーム162、バケット163の目標速度および旋回体140の目標角速度に基づいて制御信号を生成し、コントロールバルブ113に出力する(ステップS214)。 The control signal output unit 220 generates a control signal based on the target velocities of the boom 161, arm 162 and bucket 163 and the target angular velocity of the revolving body 140, and outputs the control signal to the control valve 113 (step S214).
《移動に伴う設計面の更新》
 作業機械100の施工現場は、通常、旋回体140の旋回によって作業機160が届く範囲内に収まらない。そのため、オペレータは、作業機械100を走行させ、作業機械100の位置を移動させながら現場の施工を行う。第1の実施形態に係る設計面は、車体座標系に設定されるため、作業機械100の位置が移動した場合、設計面はグローバル座標系の視点からみて旋回体140に追従して移動するようにふるまう。例えば、設計面にピッチ角θが設定されている場合、設計面の高さは1メートルごとにtanθ変化すべきところ、作業機械100が1メートル移動しても、設計面の高さは変化しない。
 そのため、第1の実施形態に係る制御装置200は、作業機械100の移動前後でグローバル座標系における設計面の位置を維持するために、図7に示す設計面の更新処理を行う。
《Updating the design due to the move》
The construction site of work machine 100 is usually outside the reach of work machine 160 due to the swing of revolving body 140 . Therefore, the operator makes the work machine 100 travel and moves the position of the work machine 100 to carry out construction work on the site. Since the design plane according to the first embodiment is set in the vehicle body coordinate system, when the position of the work machine 100 moves, the design plane follows the revolving body 140 from the viewpoint of the global coordinate system. behave to For example, when the pitch angle θ is set on the design surface, the height of the design surface should change tan θ every meter, but the height of the design surface does not change even if the work machine 100 moves 1 meter. .
Therefore, the control device 200 according to the first embodiment performs the design surface update process shown in FIG. 7 in order to maintain the position of the design surface in the global coordinate system before and after the work machine 100 moves.
 図7は、第1の実施形態に係る制御装置による設計面の更新処理を示すフローチャートである。
 オペレータは、設計面の施工中に作業機械100を移動させる際に、モニタ装置142を操作し、更新処理の実行指示を入力する。制御装置200の入力部212がモニタ装置142から更新処理の実行指示を受け付けると、表示制御部213は、設定ボタンとを含む第1ガイダンス画面をモニタ装置142に表示させる(ステップS301)。ガイダンス画面には、移動前後で共通してバケット163で触れることのできる目標物にバケット163の刃先を当て、設定ボタンを操作する旨が表示される。オペレータは作業機械100を操作し、バケット163の刃先を目標物に当てた後に設定ボタンを操作する。入力部212はモニタ装置142から設定ボタンの操作を受け付ける(ステップS302)。
FIG. 7 is a flowchart showing design surface update processing by the control device according to the first embodiment.
When the operator moves the work machine 100 during construction of the design surface, the operator operates the monitor device 142 and inputs an instruction to execute the update process. When the input unit 212 of the control device 200 receives an update processing execution instruction from the monitor device 142, the display control unit 213 causes the monitor device 142 to display a first guidance screen including a setting button (step S301). The guidance screen displays that the cutting edge of the bucket 163 should be applied to a target that can be touched by the bucket 163 before and after the movement, and the setting button should be operated. The operator operates the work machine 100 and operates the setting button after the cutting edge of the bucket 163 hits the target. The input unit 212 receives operation of the setting button from the monitor device 142 (step S302).
 計測値取得部214は、第1ガイダンス画面の設定ボタンが操作された時点(第1の時刻)における傾斜計測器101、旋回角センサ102、ブーム角センサ103、アーム角センサ104およびバケット角センサ105の計測値を取得する(ステップS303)。位置特定部215は、取得した計測値に基づいて車体座標系におけるバケット163の刃先の位置を特定する(ステップS304)。つまり、位置特定部215は、第1の時刻の車体座標系における目標物の位置を特定する。位置特定部215は、特定した刃先の位置をメインメモリ230に記録する。 Measured value acquisition unit 214 acquires information on tilt measuring instrument 101, turning angle sensor 102, boom angle sensor 103, arm angle sensor 104, and bucket angle sensor 105 at the time (first time) when the setting button of the first guidance screen is operated. is acquired (step S303). The position specifying unit 215 specifies the position of the cutting edge of the bucket 163 in the vehicle body coordinate system based on the acquired measurement values (step S304). That is, the position specifying unit 215 specifies the position of the target in the vehicle body coordinate system at the first time. The position specifying unit 215 records the specified position of the cutting edge in the main memory 230 .
 次に、表示制御部213は、設定ボタンとを含む第2ガイダンス画面をモニタ装置142に表示させる(ステップS305)。ガイダンス画面には、作業機械100を走行させて所望の位置に移動し、同じ目標物にバケット163の刃先を当て、設定ボタンを操作する旨が表示される。オペレータは作業機械100を操作し、作業機械100を走行させる。 Next, the display control unit 213 causes the monitor device 142 to display a second guidance screen including setting buttons (step S305). The guidance screen displays instructions to move work machine 100 to a desired position, apply the cutting edge of bucket 163 to the same target, and operate the setting button. An operator operates the work machine 100 to make the work machine 100 travel.
 オペレータが作業機械100を操作している間、計測値取得部214は、傾斜計測器101、旋回角センサ102、ブーム角センサ103、アーム角センサ104およびバケット角センサ105の計測値を取得する(ステップS306)。更新部221は、設定ボタンが操作されたか否かを判定する(ステップS307)。設定ボタンが操作されていない場合(ステップS307:NO)、つまり所望の位置への移動が完了していない場合、回転変換部217は、メインメモリ230が記憶する設計面を、傾斜計測器101の計測値に基づいて回転変換し、更新する(ステップS308)。そして、制御装置200は処理をステップS306に戻し、設定ボタンが操作されるまで処理を繰り返す。 While the operator is operating the work machine 100, the measured value acquiring unit 214 acquires the measured values of the tilt measuring instrument 101, turning angle sensor 102, boom angle sensor 103, arm angle sensor 104, and bucket angle sensor 105 ( step S306). The updating unit 221 determines whether or not the setting button has been operated (step S307). If the setting button has not been operated (step S307: NO), that is, if the movement to the desired position has not been completed, the rotation conversion unit 217 converts the design surface stored in the main memory 230 to the inclination measuring instrument 101. Rotational conversion is performed based on the measured value and updated (step S308). Then, the control device 200 returns the process to step S306 and repeats the process until the setting button is operated.
 設定ボタンが操作された場合(ステップS307:YES)、つまり所望の位置への移動が完了した場合、位置特定部215は、計測値取得部214が取得した計測値に基づいて車体座標系におけるバケット163の刃先の位置を特定する(ステップS309)。つまり、位置特定部215は、第2ガイダンス画面の設定ボタンが操作された時点(第2の時刻)の車体座標系における目標物の位置を特定する。 When the setting button is operated (step S307: YES), that is, when movement to the desired position is completed, the position specifying unit 215 moves the bucket in the vehicle body coordinate system based on the measured values acquired by the measured value acquisition unit 214. The position of the cutting edge of 163 is identified (step S309). In other words, the position specifying unit 215 specifies the position of the target in the vehicle body coordinate system at the time when the setting button of the second guidance screen is operated (second time).
 次に、更新部221は、ステップS304で特定された刃先の位置を示す位置ベクトルと、ステップS309で特定された刃先の位置を示す位置ベクトルとの差である並進ベクトルを算出する(ステップS310)。更新部221は、算出した並進ベクトルを用いて、メインメモリ230が記憶する設計面を移動させ、更新する(ステップS311)。これにより、更新部221は、走行前後でグローバル座標系における設計面の位置を維持することができる。 Next, the updating unit 221 calculates a translational vector that is the difference between the position vector indicating the position of the cutting edge identified in step S304 and the position vector indicating the position of the cutting edge identified in step S309 (step S310). . The updating unit 221 uses the calculated translation vector to move and update the design surface stored in the main memory 230 (step S311). Thereby, the updating unit 221 can maintain the position of the design surface in the global coordinate system before and after traveling.
《作用・効果》
 ここで、更新部221による設計面の更新処理について図を参照しながら説明する。図8は、第1の実施形態における作業機械100の移動前後の設計面の変化を示す図である。図8に示す例では、設計面はピッチ角を有する。オペレータは、時刻t1においてバケット163の刃先を目標物tgtに当てたのち、距離Lだけ作業機械100を後方に走行させる。設計面sが車体座標系で規定されているため、作業機械100が移動しても旋回体140と設計面sとの相対的な位置関係が保持される。そのため、グローバル座標系の視点において、作業機械100の移動前の設計面s1と移動後の設計面s2との間にはずれが生じる。このとき、時刻t1に記録したバケット163の刃先の位置と旋回体140との相対的な位置関係も、設計面sと同様に保持される。
《Action and effect》
Here, the design surface update processing by the update unit 221 will be described with reference to the drawings. FIG. 8 is a diagram showing changes in the design surface before and after movement of work machine 100 in the first embodiment. In the example shown in FIG. 8, the design surface has a pitch angle. At time t1, the operator hits the blade edge of bucket 163 against target tgt, and then travels work machine 100 backward by distance L. FIG. Since the design surface s is defined by the vehicle body coordinate system, the relative positional relationship between the revolving body 140 and the design surface s is maintained even when the work machine 100 moves. Therefore, from the viewpoint of the global coordinate system, a deviation occurs between the design surface s1 before movement of work machine 100 and the design surface s2 after movement. At this time, the relative positional relationship between the position of the cutting edge of bucket 163 recorded at time t1 and revolving body 140 is also held in the same manner as design surface s.
 図9は、第1の実施形態における設計面の移動を示す図である。その後、時刻t2において、オペレータがバケット163の刃先を再度目標物tgtに当てる。更新部221は、時刻t1における刃先の位置と時刻t2における刃先の位置から、刃先の位置の変化量を表す並進ベクトルvを算出する。並進ベクトルvは、図8に示すように作業機械100の移動量に対応する。そのため、更新部221は、移動後の設計面s2を、並進ベクトルvによって移動させることで、設計面s2を設計面s3に更新する。移動後の設計面s3は、グローバル座標系の視点において、作業機械100の移動前の設計面s1と等しくなる。 FIG. 9 is a diagram showing movement of the design surface in the first embodiment. After that, at time t2, the operator hits the blade edge of the bucket 163 against the target tgt again. The updating unit 221 calculates a translational vector v representing the amount of change in the position of the cutting edge from the position of the cutting edge at time t1 and the position of the cutting edge at time t2. Translation vector v corresponds to the amount of movement of work machine 100 as shown in FIG. Therefore, the update unit 221 updates the design surface s2 to the design surface s3 by moving the design surface s2 after movement by the translation vector v. Design surface s3 after movement is equal to design surface s1 of work machine 100 before movement from the viewpoint of the global coordinate system.
 このように、第1の実施形態に係る制御装置200は、第1の時刻においてバケット163の刃先を現場の基準点(例えば目標物)に位置させたときの刃先の車体座標系における位置と、第2の時刻において刃先を基準点に位置させたときの刃先の位置との差に基づいて、設計面を移動させる。これにより、制御装置200は、走行によって作業機械100の位置が変わったとしても、グローバル座標系における設計面の位置を維持することができる。 In this way, the control device 200 according to the first embodiment can control the position of the cutting edge of the bucket 163 in the vehicle body coordinate system when the cutting edge of the bucket 163 is positioned at the reference point (for example, the target) of the site at the first time, The design surface is moved based on the difference from the position of the cutting edge when the cutting edge is positioned at the reference point at the second time. Thereby, control device 200 can maintain the position of the design surface in the global coordinate system even if the position of work machine 100 changes due to travel.
 また、第1の実施形態に係る制御装置200は、第1の時刻から第2の時刻の間、旋回体140の姿勢の計測値に基づいて、設計面を回転変換する。これにより、制御装置200は、作業機械100の移動によって作業機械100の姿勢が変化したとしても、グローバル座標系における設計面の位置を維持することができる。なお、他の実施形態において、作業機械100が常に同じ姿勢を保つことができる場合、制御装置200は設計面の回転変換を行わなくてもよい。常に同じ姿勢を保つ作業機械100の例としては、ねじれのない直線状のレールの上を走行する作業機械100などが挙げられる。 Also, the control device 200 according to the first embodiment rotationally transforms the design plane based on the measured value of the attitude of the revolving structure 140 between the first time and the second time. Accordingly, even if the posture of work machine 100 changes due to movement of work machine 100, control device 200 can maintain the position of the design plane in the global coordinate system. In another embodiment, if work machine 100 can always maintain the same posture, control device 200 does not need to rotate the design surface. An example of the work machine 100 that always maintains the same posture is the work machine 100 that runs on straight rails that are not twisted.
〈他の実施形態〉
 以上、図面を参照して一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、様々な設計変更等をすることが可能である。すなわち、他の実施形態においては、上述の処理の順序が適宜変更されてもよい。また、一部の処理が並列に実行されてもよい。
 上述した実施形態に係る制御装置200は、単独のコンピュータによって構成されるものであってもよいし、制御装置200の構成を複数のコンピュータに分けて配置し、複数のコンピュータが互いに協働することで制御装置200として機能するものであってもよい。このとき、制御装置200を構成する一部のコンピュータが作業機械100の内部に搭載され、他のコンピュータが作業機械100の外部に設けられてもよい。
<Other embodiments>
Although one embodiment has been described in detail above with reference to the drawings, the specific configuration is not limited to the one described above, and various design changes and the like can be made. That is, in other embodiments, the order of the processes described above may be changed as appropriate. Also, some processes may be executed in parallel.
The control device 200 according to the above-described embodiment may be configured by a single computer, or the configuration of the control device 200 may be divided into a plurality of computers, and the plurality of computers may cooperate with each other. may function as the control device 200. At this time, a part of the computers constituting control device 200 may be mounted inside work machine 100 and the other computers may be provided outside work machine 100 .
 上記態様の少なくとも1つによれば、グローバル座標系を参照せずに、作業機を制御するための設計面を生成することができる。 According to at least one of the above aspects, it is possible to generate a design surface for controlling the working machine without referring to the global coordinate system.
 100…作業機械 101…傾斜計測器 102…旋回角センサ 103…ブーム角センサ 104…アーム角センサ 105…バケット角センサ 111…エンジン 112…油圧ポンプ 113…コントロールバルブ 114…走行モータ 115…旋回モータ 116…ブームシリンダ 117…アームシリンダ 118…バケットシリンダ 120…走行体 140…旋回体 141…操作装置 142…モニタ装置 160…作業機 161…ブーム 162…アーム 163…バケット 180…運転室 200…制御装置 210…プロセッサ 211…操作量取得部 212…入力部 213…表示制御部 214…計測値取得部 215…位置特定部 216…生成部 217…回転変換部 218…介入判定部 219…介入制御部 220…制御信号出力部 221…更新部 230…メインメモリ 250…ストレージ 270…インタフェース 100...Work machine 101...Inclination measuring instrument 102...Swing angle sensor 103...Boom angle sensor 104...Arm angle sensor 105...Bucket angle sensor 111...Engine 112...Hydraulic pump 113...Control valve 114...Travel motor 115...Slewing motor 116... Boom cylinder 117... Arm cylinder 118... Bucket cylinder 120... Traveling body 140... Rotating body 141... Operation device 142... Monitor device 160... Work machine 161... Boom 162... Arm 163... Bucket 180... Operator's cab 200... Control device 210... Processor 211... operation amount acquisition section 212... input section 213... display control section 214... measurement value acquisition section 215... position specifying section 216... generation section 217... rotation conversion section 218... intervention determination section 219... intervention control section 220... control signal output Part 221... Update part 230... Main memory 250... Storage 270... Interface

Claims (6)

  1.  走行可能な走行体と、前記走行体に旋回可能に支持される旋回体と、前記旋回体に動作可能に支持された作業機とを備える作業機械を制御する制御システムであって、
     プロセッサを備え、
     前記プロセッサは、
     前記旋回体の代表点を原点とする車体座標系上に平面で規定される設計面を生成し、
     前記旋回体の旋回に伴って、前記設計面を前記車体座標系の原点回りに回転変換し、
     前記車体座標系における前記作業機の位置を特定し、
     前記特定された前記作業機の位置と前記設計面とに基づいて、前記作業機を制御する
     制御システム。
    A control system for controlling a work machine comprising a traveling body, a revolving body rotatably supported by the running body, and a work machine operably supported by the revolving body,
    with a processor
    The processor
    generating a design surface defined by a plane on a vehicle body coordinate system having a representative point of the revolving body as an origin;
    rotationally transforming the design surface around the origin of the vehicle body coordinate system as the revolving body turns;
    identifying the position of the work machine in the vehicle body coordinate system;
    A control system that controls the working machine based on the identified position of the working machine and the design surface.
  2.  前記プロセッサは、
     前記旋回体の姿勢を計測する傾斜計測器から計測値を取得し、
     前記計測値に基づいて前記旋回体の旋回によって生じる前記姿勢の変化量を計算し、
     前記姿勢の変化量に基づいて、前記設計面を回転変換する
     請求項1に記載の制御システム。
    The processor
    obtaining a measured value from an inclination measuring instrument that measures the attitude of the revolving body;
    calculating the amount of change in the attitude caused by the revolving of the revolving body based on the measured values;
    The control system according to claim 1, wherein the design plane is rotationally transformed based on the amount of change in attitude.
  3.  前記プロセッサは、
     第1の時刻において前記作業機を現場の基準点に位置させたときの前記車体座標系における前記作業機の位置である第1位置と、第2の時刻において前記作業機を前記基準点に位置させたときの前記車体座標系における前記作業機の位置である第2位置との差に基づいて、前記設計面を移動させる
     請求項1または請求項2に記載の制御システム。
    The processor
    A first position, which is the position of the work implement in the vehicle body coordinate system when the work implement is positioned at the reference point of the site at a first time, and a position of the work implement at the reference point at the second time. 3. The control system according to claim 1, wherein the design surface is moved based on a difference from a second position, which is the position of the work implement in the vehicle body coordinate system when the work implement is moved.
  4.  前記第1の時刻は前記走行体による走行前の時刻であり、
     前記第2の時刻は前記走行体による走行後の時刻である
     請求項3に記載の制御システム。
    The first time is a time before running by the running body,
    4. The control system according to claim 3, wherein the second time is a time after the traveling body travels.
  5.  走行可能な走行体と、前記走行体に旋回可能に支持される旋回体と、前記旋回体に動作可能に支持された作業機とを備える作業機械の制御方法であって、
     前記旋回体の代表点を原点とする車体座標系上に平面で規定される設計面を生成するステップと、
     前記旋回体の旋回に伴って、前記設計面を前記車体座標系の原点回りに回転変換するステップと、
     前記車体座標系における前記作業機の位置を特定するステップと、
     前記特定された前記作業機の位置と前記設計面とに基づいて、前記作業機を制御するステップと
     を備える制御方法。
    A control method for a work machine comprising a travelable running body, a revolving body rotatably supported by the running body, and a work machine operably supported by the revolving body, comprising:
    a step of generating a design surface defined by a plane on a vehicle body coordinate system having a representative point of the revolving body as an origin;
    a step of rotationally transforming the design surface around the origin of the vehicle body coordinate system as the revolving body revolves;
    identifying a position of the working machine in the vehicle body coordinate system;
    A control method comprising: controlling the working machine based on the identified position of the working machine and the design surface.
  6.  走行可能な走行体と、前記走行体に旋回可能に支持される旋回体と、前記旋回体に動作可能に支持された作業機とを備える作業機械のコンピュータに、
     前記旋回体の代表点を原点とする車体座標系上に平面で規定される設計面を生成するステップと、
     前記旋回体の旋回に伴って、前記設計面を前記車体座標系の原点回りに回転変換するステップと、
     前記車体座標系における前記作業機の位置を特定するステップと、
     前記特定された前記作業機の位置と前記設計面とに基づいて、前記作業機を制御するステップと
     を実行させる制御プログラム。
    A computer of a work machine comprising a traveling body, a revolving body rotatably supported by the running body, and a work machine operably supported by the revolving body,
    a step of generating a design surface defined by a plane on a vehicle body coordinate system having a representative point of the revolving body as an origin;
    a step of rotationally transforming the design surface around the origin of the vehicle body coordinate system as the revolving body revolves;
    identifying a position of the working machine in the vehicle body coordinate system;
    and a step of controlling the working machine based on the specified position of the working machine and the design surface.
PCT/JP2022/032508 2021-08-31 2022-08-30 Control system, control method, and control program WO2023032949A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280054461.XA CN117836491A (en) 2021-08-31 2022-08-30 Control system, control method, and control program
DE112022003034.8T DE112022003034T5 (en) 2021-08-31 2022-08-30 Tax system, tax procedure and tax program
KR1020247003766A KR20240026519A (en) 2021-08-31 2022-08-30 Control systems, control methods and control programs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-141520 2021-08-31
JP2021141520A JP2023034969A (en) 2021-08-31 2021-08-31 Control system, control method, and control program

Publications (1)

Publication Number Publication Date
WO2023032949A1 true WO2023032949A1 (en) 2023-03-09

Family

ID=85411288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032508 WO2023032949A1 (en) 2021-08-31 2022-08-30 Control system, control method, and control program

Country Status (5)

Country Link
JP (1) JP2023034969A (en)
KR (1) KR20240026519A (en)
CN (1) CN117836491A (en)
DE (1) DE112022003034T5 (en)
WO (1) WO2023032949A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294763A (en) * 2001-03-30 2002-10-09 Hitachi Constr Mach Co Ltd Positional detector and display for working machine
US20170089032A1 (en) * 2014-03-18 2017-03-30 Novatron Oy System and method for positioning construction machine
JP2020183681A (en) * 2019-05-09 2020-11-12 鹿島建設株式会社 Vertical shaft construction device and vertical shaft construction method
JP2021085216A (en) * 2019-11-27 2021-06-03 株式会社小松製作所 Work machine control system, work machine, and work machine control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654144Y2 (en) 1977-11-30 1981-12-17
JPS5915552Y2 (en) 1979-09-30 1984-05-08 トヨタ自動車株式会社 Anti-theft door lock device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294763A (en) * 2001-03-30 2002-10-09 Hitachi Constr Mach Co Ltd Positional detector and display for working machine
US20170089032A1 (en) * 2014-03-18 2017-03-30 Novatron Oy System and method for positioning construction machine
JP2020183681A (en) * 2019-05-09 2020-11-12 鹿島建設株式会社 Vertical shaft construction device and vertical shaft construction method
JP2021085216A (en) * 2019-11-27 2021-06-03 株式会社小松製作所 Work machine control system, work machine, and work machine control method

Also Published As

Publication number Publication date
JP2023034969A (en) 2023-03-13
KR20240026519A (en) 2024-02-28
CN117836491A (en) 2024-04-05
DE112022003034T5 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
KR101833603B1 (en) Control system of work machine and work machine
JP6058217B2 (en) Work vehicle, bucket device, and method of acquiring tilt angle
CN110300827B (en) Construction machine
US9689145B1 (en) Work vehicle and method for obtaining tilt angle
JPWO2019175917A1 (en) Work machine
JP7223823B2 (en) swivel work vehicle
CN113272498A (en) Control system for construction machine and control method for construction machine
JP6889675B2 (en) Method of detecting the position of the construction end of a turning work vehicle and a turning work vehicle
KR102479701B1 (en) work machine
WO2023032949A1 (en) Control system, control method, and control program
WO2023054610A1 (en) System and method for controlling working machine
WO2023054608A1 (en) System and method for controlling work machine
WO2023054623A1 (en) System, method and program for controlling work machine
WO2023054603A1 (en) System and method for controlling work machine
WO2023032970A1 (en) Control system, control method, and control program
WO2023054615A1 (en) System, method, and program for controlling work machine
JP7324100B2 (en) working machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247003766

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280054461.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022003034

Country of ref document: DE