WO2023032916A1 - Joint mechanism, parallel link mechanism, and link actuation device - Google Patents

Joint mechanism, parallel link mechanism, and link actuation device Download PDF

Info

Publication number
WO2023032916A1
WO2023032916A1 PCT/JP2022/032407 JP2022032407W WO2023032916A1 WO 2023032916 A1 WO2023032916 A1 WO 2023032916A1 JP 2022032407 W JP2022032407 W JP 2022032407W WO 2023032916 A1 WO2023032916 A1 WO 2023032916A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
bearing
hub
link member
proximal
Prior art date
Application number
PCT/JP2022/032407
Other languages
French (fr)
Japanese (ja)
Inventor
浩 磯部
友彰 後藤
航大 渡部
秀明 田中
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN202280059162.5A priority Critical patent/CN117881909A/en
Publication of WO2023032916A1 publication Critical patent/WO2023032916A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/46Gearings comprising primarily only links or levers, with or without slides with movements in three dimensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/46Gearings comprising primarily only links or levers, with or without slides with movements in three dimensions
    • F16H21/54Gearings comprising primarily only links or levers, with or without slides with movements in three dimensions for conveying or interconverting oscillating or reciprocating motions

Definitions

  • the present invention relates to a joint mechanism, a parallel link mechanism, and a link actuator used in equipment that requires high speed, high precision, and a wide operating range, such as medical equipment or industrial equipment.
  • Patent Document 1 a working device which has a base plate and a traveling plate, which are connected by a plurality of links, and performs a predetermined work by means of a parallel link mechanism that moves the traveling plate by cooperating these links.
  • Patent Literature 2 proposes a link actuating device that is compact, high-speed, highly accurate, and capable of operating in a wide operating range.
  • each link has a small operating angle. Therefore, in order to increase the operating range of the traveling plate, it is necessary to lengthen the link length. As a result, there is a problem that the size of the entire mechanism is increased, resulting in an increase in the size of the device. Also, increasing the length of the link leads to a reduction in the rigidity of the entire mechanism. Therefore, there is also a problem that the weight of the tool mounted on the traveling plate, that is, the weight capacity of the traveling plate is also limited to a small one.
  • each of the rotating pair portions oscillates, and for the bearings installed in the rotating pair portions, the stop-start-run-stop operation per unit time is required.
  • the number of switching times increases. Therefore, the acceleration and deceleration applied to the bearing each time increase, resulting in increased slippage of the bearing.
  • the slippage that occurs in the bearing makes it easier for the oil film to run out between the rolling elements and the bearing rings.
  • fretting wear tends to occur on the surfaces of the rolling elements or on the raceway surfaces of the inner and outer rings, possibly shortening the life of the bearing.
  • the bearing is slightly oscillated under high preload, the grease will cause a so-called "jamming,” in which the rotational torque of the bearing will increase in some areas during rotation, making it impossible to rotate smoothly. I was afraid it would disappear.
  • An object of the present invention is to provide a joint mechanism, a parallel link mechanism, and a link operating device that are capable of high-speed operation over a wide operating range, and that achieve long life and smooth movement.
  • a joint mechanism of the present invention is a joint mechanism in which adjacent members are rotatably connected to each other via a rotating pair portion, and a grease-filled bearing in which a grease composition is sealed is provided in the rotating pair portion,
  • the grease composition contains a base oil and a thickener and has a worked penetration of 310 or more,
  • the thickener is calcium sulfonate complex soap or lithium soap.
  • the "worked penetration” is a 60-fold worked penetration in accordance with JIS K 2220.
  • the inflow of grease to, for example, the contact portion between the rolling element and the bearing ring in the bearing is improved, and the fretting wear resistance is excellent.
  • the grease-filled bearing is used in the rotating pair portion, even if the bearing is slightly oscillated in a high preload state, catching during subsequent rotation is reduced and high-speed operation becomes possible. Therefore, it is possible to realize a joint mechanism that is capable of high-speed operation in a wide operating range, has a long service life, and achieves smooth movement.
  • a link hub on the distal end side is connected to a link hub on the proximal end side via three or more sets of link mechanisms so that the attitude can be changed, and each of the link mechanisms is connected to the link hub on the proximal end side.
  • a proximal end link member having one end rotatably connected to a link hub; a distal end link member having one end rotatably connected to the distal link hub; a center link member rotatably connected at both ends to the other end of the end link member on the tip side; A rotational pair portion between the proximal link hub and the proximal end link member, a rotational pair portion between the proximal end link member and the central link member, and the distal end link.
  • a bearing is provided at each rotational pair portion including a rotational pair portion between the member and the central link member and a rotational pair portion between the tip side link hub and the tip side end link member, and a plurality of the bearings at least one bearing in is a grease-filled bearing comprising inner and outer rings that are bearing rings, a plurality of rolling elements interposed between the inner and outer rings, and a grease composition sealed in the bearing space between the inner and outer rings
  • the grease composition contains a base oil and a thickener and has a worked penetration of 310 or more,
  • the thickener is calcium sulfonate complex soap or lithium soap.
  • the "worked penetration” is a 60-fold worked penetration in accordance with JIS K 2220.
  • the link hub on the base end side, the link hub on the tip side, and three or more sets of link mechanisms are arranged so that the link hub on the tip side can rotate about two orthogonal axes with respect to the link hub on the base end side.
  • a degree of freedom mechanism is configured.
  • the link hub on the distal end side has two degrees of freedom in rotation with respect to the link hub on the proximal end side, and the posture can be freely changed.
  • This two-degrees-of-freedom mechanism is compact, but allows a wide movable range of the link hub on the distal end side with respect to the link hub on the proximal end side.
  • This parallel link mechanism performs an oscillating motion in which each rotational pair is near ⁇ max/2 with respect to the maximum bending angle ⁇ max, which is the operating range.
  • the revolving motion of the rolling elements is 1/2 of the rocking motion of the rotating pair.
  • the rigidity of the parallel link mechanism largely contributes to the moment rigidity of the bearing, and the bearing is often used under high preload.
  • a grease-encapsulated bearing in which the following grease composition is enclosed is applied to the rotating pair portion of the present parallel link mechanism.
  • the grease composition contains a base oil and a thickener, has a worked penetration of 310 or more, and the thickener is a calcium sulfonate complex soap or a lithium soap.
  • the grease can easily flow into the contact portion between the rolling element and the bearing ring, resulting in excellent fretting wear resistance.
  • the grease-filled bearing is used in the rotating pair portion, even if the bearing is slightly oscillated in a high preload state, catching during subsequent rotation is reduced and high-speed operation becomes possible. Therefore, it is possible to realize a parallel link mechanism that is capable of high-speed operation over a wide operating range and that achieves a long life and smooth movement.
  • the grease-filled bearing may be used under a high load condition in which the maximum contact surface pressure on the bearing ring is 2000 MPa or more and under a condition of less than the critical swing angle.
  • the “maximum contact surface pressure” is the maximum value of the surface pressure on the contact surface between the bearing ring and the rolling element.
  • the “critical swing angle” is the minimum practical swing angle of a bearing, and is determined mainly by the number of rolling elements included in a single row in the internal design of the bearing. be. This grease-filled bearing has sufficient fretting wear resistance and sealing performance even under the high load condition and under the condition of less than the critical swing angle.
  • the thickener may be a calcium sulfonate complex soap, and the worked penetration may be 310-340.
  • the fluidity of the grease is restricted to a predetermined range, resulting in better sealing performance.
  • the base oil of the grease composition may be mineral oil or synthetic hydrocarbon oil.
  • the combination of base oil and thickener is involved in the interaction between the thickeners in the base oil and affects the thickening effect. Therefore, it is preferable to select an appropriate combination.
  • the base oil is mineral oil, the cost can be reduced compared to using a synthetic hydrocarbon oil.
  • the base oil is a synthetic hydrocarbon oil, lubricating performance at high temperatures is obtained better than using mineral oil.
  • the grease-filled bearing may be an angular contact ball bearing.
  • an axial load can be applied in advance to the angular contact ball bearing to increase the rigidity of the bearing. Therefore, it is possible to improve the accuracy of the parallel link mechanism.
  • the angular contact ball bearing may be a combination angular contact ball bearing used back to back.
  • the stiffness of the parallel link mechanism greatly contributes to the moment stiffness of the bearing. Therefore, by using a back-to-back paired angular contact ball bearing, it is possible to increase the moment rigidity of the bearing with an inexpensive bearing structure. As a result, the rigidity of the parallel link mechanism can be increased and the cost can be reduced.
  • the paired angular contact ball bearing may be provided with a seal member on the axial outer surface opposite to the mating surface.
  • a seal member on the axial outer surface opposite to the mating surface.
  • a link hub on the distal end side is connected to a link hub on the proximal end side via three or more sets of link mechanisms so that the attitude can be changed, and each of the link mechanisms is connected to the link hub on the proximal end side.
  • a grease composition for use in a parallel link mechanism having a central link member rotatably connected at both ends to the other end of the end link member on the tip side,
  • the grease composition contains a base oil and a thickener and has a worked penetration of 310 or more,
  • the thickener is calcium sulfonate complex soap or lithium soap.
  • the "worked penetration” is a 60-fold worked penetration in accordance with JIS K 2220.
  • the link hub on the front end side is connected to the link hub on the base end side through three or more sets of link mechanisms so that the posture can be changed, and each of the link mechanisms is connected to the link hub on the base end side.
  • a proximal end link member having one end rotatably connected to the distal end link hub;
  • a distal end link member having one end rotatably connected to the distal link hub;
  • a bearing used in a parallel link mechanism having a center link member rotatably connected at both ends to the other end of the side end link member,
  • the bearing includes a rotational pair portion between the proximal side link hub and the proximal side end link member, a rotational pair portion between the proximal side end link member and the central link member, and the distal end side.
  • each rotational pair portion including a rotational pair portion between the end link member and the central link member, and a rotational pair portion between the tip side link hub and the tip side end link member, and a plurality of At least one of the bearings includes inner and outer rings as bearing rings, a plurality of rolling elements interposed between the inner and outer rings, and a grease composition sealed in a bearing space between the inner and outer rings.
  • the grease composition contains a base oil and a thickener and has a worked penetration of 310 or more,
  • the thickener is calcium sulfonate complex soap or lithium soap.
  • the "worked penetration” is a 60-fold worked penetration in accordance with JIS K 2220.
  • the grease can easily flow into the contact area between the rolling element and the bearing ring, resulting in excellent fretting wear resistance.
  • the grease-filled bearing is used in the rotating pair portion, even if the bearing is slightly oscillated in a high preload state, catching during subsequent rotation is reduced and high-speed operation becomes possible.
  • the link actuating device of the present invention arbitrarily controls the posture of the link hub on the tip end side of two or more link mechanisms among the three or more link mechanisms in the parallel link mechanism having any of the above configurations of the present invention. It is equipped with an attitude control actuator. Therefore, each effect mentioned above is acquired about the parallel link mechanism of this invention.
  • FIG. 2 is a partial cross-sectional view taken along line IIA-IIA of FIG. 1;
  • FIG. 2B is a partially enlarged view of a portion IIB of FIG. 2A; It is the figure which represented one link mechanism of the same parallel link mechanism with a straight line.
  • FIG. 11 is a perspective view of a link actuating device according to a third embodiment of the invention. It is the front view of the simple model which abbreviate
  • FIG. 11 is a partial cross-sectional view along line XIA-XIA of FIG. 10;
  • FIG. 11B is a partially enlarged view of the XIB portion of FIG. 11A;
  • FIG. It is a figure which shows the maximum bending angle etc. of the same link actuating device.
  • FIG. 1 A parallel link mechanism, which is a type of joint mechanism according to an embodiment of the present invention, will be described with reference to FIGS. 1 to 4.
  • FIG. 1 the parallel link mechanism (joint mechanism) 9 connects a link hub 13 on the distal end side to a link hub 12 on the proximal end side via three sets of link mechanisms 14 so that the posture can be changed. be.
  • the number of sets of link mechanisms 14 may be four or more. 1, only one set of link mechanisms 14 is shown, and the remaining two link mechanisms are omitted.
  • Each link mechanism 14 has an end link member 15 on the base end side, an end link member 16 on the tip end side, and a center link member 17, and forms a four-bar linkage link mechanism consisting of four rotational pairs.
  • the proximal and distal end link members 15, 16 are L-shaped (FIG. 2A).
  • One end of the proximal end link member 15 is connected to the proximal link hub 12
  • one end of the distal end link member 16 is rotatably connected to the distal link hub 13 .
  • the center link member 17 is rotatably connected to both ends of the end link members 15 and 16 on the base end side and the tip end side, respectively.
  • the parallel link mechanism 9 is a structure that combines two spherical link mechanisms.
  • the central axis of each rotational pair of the link hub 12 on the proximal side and the end link member 15 on the proximal side, and each rotational pair of the end link member 15 on the proximal side and the center link member 17 intersect at the spherical link center PA on the side.
  • the central axis of each rotating pair of the tip-side link hub 13 and the tip-side end link member 16, and each rotating pair of the tip-side end link member 16 and the center link member 17 intersect at the spherical link center PB of .
  • the distance between the center of the rotational pair of the link hub 12 on the proximal side and the end link member 15 on the proximal side and the spherical link center PA on the proximal side is the same.
  • the distance between the center of the rotational pair of the end link member 15 on the proximal side and the center link member 17 and the spherical link center PA on the proximal side is the same.
  • the distance between the center of the rotational pair of the link hub 13 on the tip side and the end link member 16 on the tip side and the center PB of the spherical link on the tip side is the same.
  • the distance between the center of the rotational pair of the end link member 16 and the center link member 17 on the tip side and the center PB of the spherical link on the tip side is the same.
  • the central axes of each rotational pair of the proximal and distal end link members 15, 16 and the central link member 17 may have a crossing angle ⁇ or may be parallel.
  • FIG. 2A shows a rotational pair portion T1 between the proximal side link hub 12 and the proximal side end link member 15, and a rotational pair portion T2 between the proximal side end link member 15 and the central link member 17.
  • the proximal side link hub 12 and the proximal side end link member 15 correspond to "adjacent members”
  • the proximal side end link member 15 and the central link member 17 correspond to "adjacent members”.
  • a rotating pair portion T3 of the end link member 16 on the tip end side and the center link member 17 shown in FIG. 3 has the same shape as the rotating pair portion T2 shown enlarged in FIG. 2B.
  • a rotating pair portion T4 of the tip side link hub 13 and the tip side end link member 16 shown in FIG. 3 has the same shape as the rotating pair portion T1 shown enlarged in FIG. 2B.
  • the tip-side end link member 16 and the center link member 17 shown in FIG. corresponds to "adjacent members" in the rotational pair portion T4.
  • each rotational pair portion T1 between the proximal side link hub 12 and the proximal side end link member 15, the proximal side end link member 15 and the central link member 17 and the central axis O2 of each rotational pair portion T2 is 90°.
  • the angle ⁇ may be other than 90°.
  • the three sets of link mechanisms 14 have the same geometric shape.
  • the geometrically identical shape means, as shown in FIG.
  • a model represented by a straight line connecting parts T1, T2, T3, and T4 has a shape in which the proximal side part and the distal side part with respect to the central part of the central link member 17 are symmetrical regardless of the posture. It means that In the following description, the rotational pairs T1, T2, T3, and T4 may be referred to as the rotational pairs T1 and the like.
  • FIG. 3 is a diagram showing a set of link mechanisms 14 represented by straight lines.
  • the parallel link mechanism 9 of this embodiment is of a rotationally symmetrical type, and includes a proximal portion consisting of a proximal link hub 12 and a proximal end link member 15, a distal link hub 13 and a distal end.
  • the positional relationship with the distal end portion formed by the central link member 16 is rotationally symmetrical with respect to the center line C of the central link member 17 .
  • a link hub 12 on the proximal side, a link hub 13 on the distal side, and three sets of link mechanisms 14 provide 2 freedoms in which the link hub 13 on the distal side is rotatable about two orthogonal axes with respect to the link hub 12 on the proximal side.
  • a degree mechanism is configured. In other words, the link hub 13 on the distal end side can be rotated with two degrees of freedom and the posture can be freely changed with respect to the link hub 12 on the proximal end side. This two-degrees-of-freedom mechanism is compact, but allows a wide movable range of the link hub 13 on the distal side with respect to the link hub 12 on the proximal side.
  • a straight line that passes through the center of the spherical link PA on the proximal side and perpendicularly intersects the central axis O1 (FIG. 2A) of the rotational pair of the link hub 12 on the proximal side and the end link member 15 on the proximal side is , the central axis QA of the link hub 12.
  • a straight line that passes through the center PB of the spherical link on the tip side and perpendicularly intersects the central axis O1 (FIG. 2A) of the rotational pair of the link hub 13 on the tip side and the end link member 16 on the tip side is defined as the link hub on the tip side. 13 as the central axis QB.
  • the maximum bending angle ⁇ max which is the maximum bending angle ⁇ between the central axis QA of the link hub 12 on the proximal side and the central axis QB of the link hub 13 on the distal side, can be about ⁇ 90°.
  • the turning angle ⁇ of the link hub 13 on the distal side with respect to the link hub 12 on the proximal side can be set within a range of 0° to 360°.
  • the bending angle ⁇ is a vertical angle at which the central axis QB of the link hub 13 on the distal end side is inclined with respect to the central axis QA of the link hub 12 on the proximal side.
  • the turning angle ⁇ is a horizontal angle at which the central axis QB of the link hub 13 on the distal side is inclined with respect to the central axis QA of the link hub 12 on the proximal side. Note that the maximum bending angle ⁇ max may be 90° or more.
  • FIG. 1 shows a state in which the central axis QA of the link hub 12 on the base end side and the central axis QB of the link hub 13 on the distal end side are on the same line
  • FIG. It shows a state where an operating angle (bent angle) is taken. Even if the attitude of the link hub 13 on the front end side with respect to the link hub 12 on the base end side changes, the distance L between the spherical link centers PA and PB on the base end side and the front end side does not change.
  • the link hub 12 on the proximal side includes a flat plate-shaped proximal member 6 and three rotating shaft connecting members 21 (FIG. 2A) provided integrally with the proximal member 6. have.
  • the base end member 6 shown in FIG. 2A has a circular through hole 6a in the central portion, and three rotating shaft connecting members 21 are arranged at equal intervals in the circumferential direction around this through hole 6a.
  • the center of the through hole 6a is located on the center axis QA (Fig. 1) of the link hub 12 on the base end side.
  • a bearing 23 is provided on each rotating pair T1 and the like.
  • the rotation shaft is connected to each of the rotation shaft connecting members 21 via the bearing 23. 22 are rotatably connected.
  • the axis of this rotating shaft 22 intersects with the center axis QA (FIG. 1) of the link hub 12 on the base end side.
  • One end of the proximal end link member 15 is connected to the rotating shaft 22 so as to rotate together with the rotating shaft 22 .
  • the rotary shaft 22 has a large-diameter portion, a small-diameter portion, and a male threaded portion in order along the axial direction, and is rotatably supported by the rotary shaft connecting member 21 via two bearings 23 at the small-diameter portion.
  • the outer peripheral surfaces of the two bearings 23 are fitted in an inner diameter groove provided in the rotating shaft connecting member 21 and fixed.
  • the types and installation methods of the bearings provided in the other rotating pairs T2, T3, and T4 (FIG. 3) are substantially the same.
  • a cutout portion 25 is formed at one end of the end link member 15 on the base end side, and both side portions of the cutout portion 25 constitute a pair of inner and outer rotating shaft support portions 27 and 26 .
  • a through hole is formed in each of the pair of rotating shaft support portions 27 and 26 .
  • the rotating shaft connecting member 21 is arranged in the notch portion 25 , and the small diameter portion of the rotating shaft 22 is inserted through the through hole and the inner peripheral surface of the inner ring of the bearing 23 .
  • the male threaded portion of the rotary shaft 22 protrudes inward (lower in FIG. 2B) than the rotary shaft support portion 27 on the inner side.
  • a nut Nt is screwed onto the male threaded portion.
  • a spacer Sp is interposed between the inner rotating shaft support portion 27 and the inner ring end face facing this rotating shaft supporting portion 27, and the outer rotating shaft supporting portion 26 and this rotating shaft supporting portion 26 are opposed to each other.
  • a spacer Sp is interposed between the two inner ring end faces. Therefore, preload is applied to the bearing 23 when the nut Nt is screwed.
  • a rotation shaft 22 is connected to one end of the central link member 17 via a bearing 23 to the rotational pair portion T2 of the end link member 15 on the base end side and the central link member 17 . That is, a rotating shaft 22 rotatably connected to one end of a central link member 17 is connected to the other end of the end link member 15 on the base end side. The rotary shaft 22 is rotatably supported at one end of the central link member 17 via two bearings 23 at the small diameter portion.
  • a cutout portion 37 is formed at the other end of the end link member 15 on the base end side, and both side portions of the cutout portion 37 constitute a pair of inner and outer rotary shaft support portions 39 and 38 .
  • a through hole is formed in each of the pair of rotating shaft support portions 39 and 38 .
  • One end of the central link member 17 is arranged in the notch portion 37 , and the small diameter portion is inserted through the through hole and the inner ring inner peripheral surface of the bearing 23 . Furthermore, a nut Nt is screwed onto the male threaded portion of the rotary shaft 22 . Spacers Sp, Sp are interposed between the inner ring end surface of the bearing 23 and the pair of rotating shaft support portions 39, 38, and preload is applied to the bearing 23 when the nut Nt is screwed.
  • the link hub 13 on the front end side has a flat tip member 40 and three rotating shaft connecting members 41 provided on the bottom surface of the tip member 40 at equal intervals in the circumferential direction. .
  • the center of the circumference where each rotating shaft coupling member 41 is arranged is positioned on the central axis QB of the link hub 13 on the tip side.
  • a rotating shaft 22 whose axis intersects the center axis QB of the link hub 13 on the distal end side is rotatably connected to each rotating shaft connecting member 41 .
  • One end of an end link member 16 on the tip side is connected to the rotating shaft 22 .
  • the other end of the end link member 16 on the tip side is connected to a rotating shaft 22 that is rotatably connected to the other end of the central link member 17 .
  • a rotating shaft 22 is rotatably connected.
  • a rotating shaft T3 (FIG. 3) between the end link member 16 on the distal end side and the central link member 17 is provided with two bearings 23 (FIG. 4) provided at the other end of the central link member 17. 22 are rotatably connected.
  • the bearing 23 is a grease-filled bearing, comprising an inner ring 2 and an outer ring 3 which are bearing rings, a plurality of rolling elements 4 interposed between the inner and outer rings 2 and 3, and these rolling elements 4. It comprises a retainer 5 for holding, a seal member 6 for sealing a bearing space between the inner and outer rings 2 and 3, and a grease composition gr, which will be described later, sealed in the bearing space.
  • the grease-filled bearing of this example is an angular contact ball bearing, and steel balls, for example, are applied as the rolling elements 4 .
  • the angular contact ball bearing of this embodiment is a combination angular contact ball bearing used in a back-to-back manner.
  • the duplex angular contact ball bearing has a seal member 6 on the axial outer surface opposite to the mating surface.
  • no seal member is provided on the axially inner surface, which is the mating surface side, and the seal member 6 is provided only on the axially outer surface.
  • the opposite mating surface side is sometimes referred to as the front side.
  • An outer ring seal mounting groove 3a for fitting and fixing the seal member 6 is formed on the inner peripheral surface of the outer ring 3 on the front side.
  • the seal member 6 is a so-called non-contact seal, and has a base end attached to the outer ring seal mounting groove 3a and a tip end having a seal lip inserted into the inner ring seal groove 2a without contact.
  • the seal member 6 may be a contact seal in which a seal lip contacts the inner ring seal groove or the outer peripheral surface of the inner ring.
  • the sealing member can also be configured by a shield plate made of only a steel plate.
  • the grease composition gr contains a base oil and a thickener, has a worked penetration of 310 or more, and the thickener is a calcium sulfonate complex soap.
  • the calcium sulfonate complex soap of this embodiment is a complex soap obtained by combining calcium sulfonate and a calcium salt other than calcium sulfonate.
  • the thickener of the grease composition is only the calcium sulfonate complex soap, and it is preferable that other metal soaps, urea compounds, and the like are not included as thickeners. As a result, the ionic interaction of the calcium salt portion is not affected by other components, the properties of the grease are stable over a long period of time, and a drop in consistency is less likely to occur. Therefore, it contributes to good sealing performance.
  • Examples of calcium sulfonates include dodecylbenzenesulfonic acid, octadecylbenzenesulfonic acid, dilaurylcetylbenzenesulfonic acid, dinonylnaphthalenesulfonic acid, paraffin wax-substituted benzenesulfonic acid, polyolefin-substituted benzenesulfonic acid, and polyisobutylene-substituted benzenesulfonic acid.
  • Calcium salts of alkylaromatic sulfonic acids calcium salts of aromatic sulfonic acids, calcium salts of alkylsulfonic acids, calcium salts of petroleum sulfonic acids, and the like.
  • Examples of calcium salts other than calcium sulfonate include calcium salts of inorganic acids such as carbonic acid, boric acid, phosphoric acid, hydrochloric acid, and sulfonic acid, behenic acid, arachidic acid, stearic acid, hydroxystearic acid, hexadecanoic acid, and octanoic acid. calcium salts of higher fatty acids, calcium salts of lower fatty acids such as acetic acid, butyric acid and valeric acid, and calcium salts of inorganic bases.
  • calcium salts of dibasic fatty acids such as, for example, azelaic acid, sebacic acid, adipic acid, glutaric acid, succinic acid, malonic acid, and oxalic acid.
  • Calcium salts other than calcium sulfonate may be used singly or in combination of two or more.
  • the calcium sulfonate complex soap may be synthesized in advance and dispersed in the base oil, or may be synthesized in the base oil and dispersed in the base oil.
  • the latter method is preferable because the manufacturing process can be simplified and the thickener can be well dispersed in the base oil.
  • the base oil used in the grease composition can be used without any particular limitation as long as it is usually used for rolling bearings.
  • mineral oils such as paraffinic mineral oils and naphthenic mineral oils, synthetic hydrocarbon oils such as PAO oils and alkylbenzene oils, ester oils, ether oils, silicone oils, and fluorine oils. These base oils may be used alone or in combination of two or more.
  • the base oil is preferably mineral oil or synthetic hydrocarbon oil. From a cost point of view, the base oil is preferably mineral oil. Moreover, from the viewpoint of lubricating performance at high temperatures, the base oil is preferably a synthetic hydrocarbon oil.
  • paraffinic mineral oil is preferable from the viewpoint of lubricity, and naphthenic mineral oil is preferable from the viewpoint of cost.
  • the mineral oil can be refined by appropriately combining vacuum distillation, solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, sulfuric acid washing, clay refining, hydrorefining, and the like.
  • PAO oil (polyalphaolefin oil) is more preferable as the synthetic hydrocarbon oil.
  • PAO oils are mixtures of alpha-olefins or isomerized alpha-olefin oligomers or polymers.
  • Specific examples of ⁇ -olefins include 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1 -nonadecene, 1-eicosene, 1-docosene, 1-tetradocosene and the like, and mixtures thereof are usually used.
  • the kinematic viscosity of the base oil is preferably 10 to 200 mm 2 /s at 40°C. It is more preferably 10 to 100 mm 2 /s, still more preferably 30 to 100 mm 2 /s.
  • the grease composition gr may further contain other additives as long as the object of the present invention is not impaired.
  • additives include amine, phenol, and sulfur antioxidants, chlorine, sulfur, and phosphorus compounds, extreme pressure agents such as organic molybdenum, sulfonates, polyhydric alcohol esters, and sorbitan esters. Rust preventives such as, esters, oily agents such as alcohol, and the like.
  • the grease-filled bearing of this embodiment is mainly used under high load conditions. Therefore, it is preferable to contain an extreme pressure agent.
  • the content of the additives as a whole is preferably 5% by mass or less with respect to the entire grease composition.
  • Calcium sulfonate complex soap not only has a thickening effect when blended with the base oil, but also has a rust-preventing effect that makes it difficult for metals in contact with it to rust. Therefore, the calcium sulfonate complex soap can serve as both a thickener and an antirust agent. Therefore, the grease does not need to contain a separate rust preventive agent.
  • the worked penetration of the grease composition gr is 310 or more. By setting the worked penetration within this range, the inflow of grease to the contact portion between the rolling elements 4 and the bearing ring is improved, and the fretting wear resistance is excellent.
  • the worked penetration of the grease composition gr is more preferably 310-340. Within this range, the fluidity of the grease is restricted to a predetermined range, and the sealing performance is excellent.
  • the grease thickener is a calcium sulfonate composite soap. Therefore, a thickener film that can withstand a high load is formed.
  • this grease-filled bearing can be used under high load conditions in which the maximum contact surface pressure on the bearing ring is 2000 MPa or more and under conditions of less than the critical rocking angle. Therefore, grease-filled bearings can be applied to applications requiring high precision, where fretting wear is likely to occur in general-purpose deep groove ball bearings.
  • the maximum contact surface pressure of the bearing ring is more preferably 2300 MPa or more, further preferably 2700 MPa or more.
  • the critical swing angle when the grease-filled bearing is an angular contact ball bearing is expressed by the following relationship in the case of inner ring swing.
  • Critical swing angle (360°/Z) (Dpw/(Dpw-DwCOS ⁇ 1))
  • Z is the number of balls per row of the single-row angular contact ball bearing
  • Dpw is the pitch circle diameter of the balls
  • Dw is the diameter of the balls
  • ⁇ 1 is the contact angle.
  • the denominator on the right side is Dpw+DwCOS ⁇ 1.
  • the link hub 12 on the proximal side, the link hub 13 on the distal side, and the three or more sets of link mechanisms 14 are configured to connect the link hub 13 on the distal side to the link hub 12 on the proximal side.
  • the posture of the link hub 13 on the distal end side can be changed with two degrees of freedom in rotation relative to the link hub 12 on the proximal end side.
  • This two-degrees-of-freedom mechanism is compact, but allows a wide movable range of the link hub 13 on the distal side with respect to the link hub 12 on the proximal side.
  • the parallel link mechanism 9 performs a swinging motion in which each rotating pair portion is in the vicinity of ⁇ max/2 with respect to the maximum bending angle ⁇ max, which is the operating range.
  • the revolving motion of the rolling elements 4 is 1/2 of the rocking motion of the rotating pair.
  • the rigidity of the parallel link mechanism 9 largely contributes to the moment rigidity of the bearing 23, and the bearing 23 is often used in a high preload state.
  • a grease-encapsulated bearing in which the following grease composition gr is enclosed is applied to the rotating pair portion of the parallel link mechanism 9 as described above.
  • the grease composition gr contains a base oil and a thickener, has a worked penetration of 310 or more, and the thickener is a calcium sulfonate complex soap.
  • the rigidity of the parallel link mechanism 9 greatly contributes to the moment rigidity of the bearing 23. Therefore, by using a back-to-back combination angular contact ball bearing as the bearing 23 applied to the rotating pair portion, the moment rigidity of the bearing 23 can be increased with an inexpensive bearing structure. As a result, the rigidity of the parallel link mechanism 9 can be increased and the cost can be reduced.
  • the paired angular contact ball bearing is provided with a seal member 6 on the axial outer surface opposite to the mating surface, the minimum number of parts is required to prevent foreign matter from entering the bearing 23 and grease leakage from the bearing 23. can. Also, the orientation of the bearings 23 installed when the parallel link mechanism 9 is assembled can be easily determined by the presence or absence of the seal member 6 . Therefore, assemblability is improved, leading to cost reduction.
  • FIGS. 6 to 8 In the parallel link mechanism 9 shown in FIG. 6, the arm length L2A on the proximal end side and the arm length L2B on the distal end side are different. 7 is a partial cross-sectional view taken along line VII-VII of FIG. 6. FIG. 8 is a partial cross-sectional view taken along line VIII-VIII of FIG. 6. FIG. As shown in FIG. 6, the distance from the center PA of the spherical link on the proximal side to the center point C1A (FIG. 7) of each rotation pair between the end link member 15 and the central link member 17 on the proximal side (hereinafter referred to as "link L1A (FIG. 7) are identical to each other.
  • link length L1B the distance (hereinafter referred to as "link length") L1B from the center PB of the spherical link on the tip side to the center point C1B (FIG. 8) of each rotational pair between the end link member 16 and the center link member 17 on the tip side (FIG. 8) are identical to each other.
  • the link length L1A on the proximal end side and the link length L1B on the distal end side are the same.
  • the distance from the base end spherical link center PA to each rotation pair center point C2A (FIG. 7) between the base end link hub 12 and the base end link member 15 (hereinafter referred to as "arm ) is L2A.
  • the distance from the center PB of the spherical link on the tip side to the center point C2B (FIG. 8) of the link hub 13 on the tip side and the end link member 16 on the tip side (hereinafter referred to as "arm length") ) is L2B.
  • the link length L2A on the proximal end side and the link length L2B on the distal end side are different.
  • the proximal arm length L2A is longer than the distal arm length L2B (L2A>L2B).
  • the rotational pair center points C1A (FIG. 7), C1B (FIG. 8), C2A (FIG. 7), and C2B (FIG. 8) are the edges along the rotational pair axes O1A, O1B, O2A, and O2B in each rotational pair portion. It indicates the central point of the width direction of the partial link members 15 and 16 .
  • the parallel link mechanism 9 has an arm length L2A on the proximal end side and an arm length L2B on the distal end side. Therefore, the degree of freedom in design is increased, and design changes for expanding the movable range and reducing the weight of the distal end are facilitated. Even if the arm length L2A on the proximal side and the arm length L2B on the distal side are different, if the proximal side and the distal side have the same shape geometrically, the distal end of the link hub 12 on the proximal side is A two-degrees-of-freedom mechanism is configured in which the side link hub 13 can change its posture with two degrees of freedom in rotation.
  • the constituent parts of the parallel link mechanism 9 are less likely to interfere with each other, and a compact configuration can have a wide movable range.
  • the weight of the tip side can be reduced, the moment of inertia of the tip side becomes small, and high-speed operation becomes possible.
  • FIGS. 9 to 12> As shown in FIG. 9, the link actuating device 7 can arbitrarily change the attitude of the parallel link mechanism 9 according to any one of the first and second embodiments and the link hub 13 on the distal end side of the parallel link mechanism 9. and an attitude control actuator 10 to control.
  • the attitude control actuator 10 is a rotary actuator provided with a speed reduction mechanism 52 shown in FIG. ing.
  • the attitude control actuator 10 is provided integrally with a speed reduction mechanism 52 , and the speed reduction mechanism 52 is fixed to the base end member 6 ( FIG. 10 ) by a motor fixing member 53 .
  • the attitude control actuator 10 may be equipped with a brake.
  • all three sets of link mechanisms 14 are provided with attitude control actuators 10, but at least two of the three sets of link mechanisms 14 are provided with attitude control actuators 10. If provided, the posture of the link hub 13 on the distal side with respect to the link hub 12 on the proximal side can be determined.
  • the link actuating device 7 actuates the parallel link mechanism 9 by rotationally driving each attitude control actuator 10 .
  • the attitude control actuator 10 is rotationally driven, the rotation is decelerated and transmitted to the rotating shaft 22 via the deceleration mechanism 52 shown in FIG. 11B.
  • FIG. 12 the posture of the link hub 13 on the distal side with respect to the link hub 12 on the proximal side is arbitrarily changed.
  • An end effector (not shown) is attached to the tip member 40 of the link hub 13 on the tip side. Examples of end effectors include hands including grippers, cleaning nozzles, dispensers, welding torches, image processing equipment, and the like.
  • This link actuating device 7 is capable of performing fine movements at high speed. Therefore, in many cases, the operation-stop-work with the end effector is frequently repeated, and each time the acceleration and deceleration applied to the bearing 23 shown in FIG. Slippage is increasing.
  • each rotating pair performs a swinging motion in the vicinity of ⁇ max/2 [deg] with respect to the maximum bending angle ⁇ max [deg], which is the operating range of the link actuating device 7 shown in FIG. 12 . Therefore, the link actuating device 7 has a swing angle of the rotating pair smaller than that of a general robot. Further, the rigidity of the link actuating device 7 largely contributes to the moment rigidity of the bearing, and the bearing 23 is often used in a high preload state.
  • the link actuating device 7 that is capable of high-speed operation in a wide operating range and that achieves a long life and smooth movement.
  • the thickener of the grease-filled bearing may be lithium soap, as shown in the examples described later.
  • the sealing performance is inferior to that of the grease-encapsulated bearing in which the thickener is a calcium sulfonate complex soap, it has sufficient fretting wear resistance.
  • the grease-filled bearings may be deep groove ball bearings or cross roller bearings instead of angular ball bearings.
  • the grease-filled bearing of the present invention may be adopted only for some of the rotating pair portions.
  • a grease-encapsulated bearing containing the grease composition described above may be applied to the joint mechanism of a vertical articulated robot or a horizontal articulated robot.
  • the grease composition of Example 3 contains lithium soap as a thickener and has a worked penetration of NLGI No. 0 (355 to 385).
  • the load conditions were evaluated according to the following two levels.
  • the first condition is a contact surface pressure of 1700 MPa in accordance with ASTM D 4170 (hereinafter referred to as “low surface pressure”).
  • the second condition assumed a high moment load and set the contact surface pressure to 3000 MPa (hereinafter referred to as “high surface pressure”).
  • FIGS. 5A and 5B Fretting wear resistance test results are shown in Figures 5A and 5B and Table 1.
  • 5A and 5B show the relationship between the amount of wear and the worked penetration obtained in tests using three samples for each grease.
  • FIG. 5A shows the results under low surface pressure conditions
  • FIG. 5B shows the results under high surface pressure conditions.
  • the reference line represented by the dotted line in FIGS. 5A and 5B was determined based on grease that does not cause fretting wear under actual use conditions (under conditions where the bearing rotation direction changes and oscillates with acceleration/deceleration).
  • bearing sealing property test A bearing rocking test was performed at less than the critical rocking angle (critical rocking angle is 44.8 degrees) for the sealed angular contact ball bearing DB set (bearing inner diameter 6 mm) filled with the above 7 types of grease. Three samples were used, and the presence or absence of grease leakage was visually confirmed. The bearing sealing property was judged by whether or not the leakage of grease could be confirmed from the appearance of the bearing after the bearing rocking test was carried out. In this case, it was judged that the bearing sealing property was good when there was no grease leakage from all bearings, and the bearing sealing property was judged to be poor when there was grease leakage from one or more bearings.
  • Example 1 Example 2, Comparative Example 1, Comparative Example 2, and Reference Proposal Example 2
  • NLGI No. 2 265 to 295
  • Example 2 Comparing Example 2 and Reference Proposal Example 1, both base oils are synthetic hydrocarbon oils and the worked penetration is the same, but Reference Proposal Example 1 containing a urea compound as a thickener is a calcium sulfonate composite
  • the sealing performance was inferior to that of Example 2 containing soap.
  • Calcium sulfonate complex soaps as thickeners are known to have low thixotropy when subjected to shear stress and small changes in grease consistency (Non-Patent Document 1). Therefore, by using a calcium sulfonate complex soap as a thickener, the change in grease consistency during operation is smaller than when using other thickeners, and the worked penetration during non-operation is relatively high. It is considered that even at the level, good sealing performance was exhibited.
  • the parallel link mechanism according to this reference proposal example 1 is described as follows.
  • a link hub on the distal end side is connected to a link hub on the proximal side via three or more sets of link mechanisms so as to be able to change their attitudes, and one end of each of the link mechanisms is rotatable with respect to the link hub on the proximal side.
  • a proximal side end link member connected, a distal side end link member having one end rotatably connected to the distal side link hub, and these proximal side and distal side end link members.
  • a central link member having both ends rotatably connected to the other end, A rotational pair portion between the proximal link hub and the proximal end link member, a rotational pair portion between the proximal end link member and the central link member, and the distal end link.
  • a bearing is provided at each rotational pair portion including a rotational pair portion between the member and the central link member and a rotational pair portion between the tip side link hub and the tip side end link member, and a plurality of the bearings at least one bearing in is a grease-filled bearing comprising inner and outer rings that are bearing rings, a plurality of rolling elements interposed between the inner and outer rings, and a grease composition sealed in the bearing space between the inner and outer rings
  • a parallel link mechanism The grease composition contains a base oil and a thickener and has a worked penetration of 310 or more, The parallel link mechanism, wherein the thickener is a urea compound.
  • the parallel link mechanism according to the reference proposal example 2 is described as follows.
  • a link hub on the distal end side is connected to a link hub on the proximal side via three or more sets of link mechanisms so as to be able to change their attitudes, and one end of each of the link mechanisms is rotatable with respect to the link hub on the proximal side.
  • a proximal side end link member connected, a distal side end link member having one end rotatably connected to the distal side link hub, and these proximal side and distal side end link members.
  • a central link member having both ends rotatably connected to the other end, A rotational pair portion between the proximal link hub and the proximal end link member, a rotational pair portion between the proximal end link member and the central link member, and the distal end link.
  • a bearing is provided at each rotational pair portion including a rotational pair portion between the member and the central link member and a rotational pair portion between the tip side link hub and the tip side end link member, and a plurality of the bearings at least one bearing in is a grease-filled bearing comprising inner and outer rings that are bearing rings, a plurality of rolling elements interposed between the inner and outer rings, and a grease composition sealed in the bearing space between the inner and outer rings
  • a parallel link mechanism wherein the grease composition contains a base oil and a thickener, has a worked penetration of 265 or more and 295 or less, and the thickener is a urea compound.

Abstract

Provided is a parallel link mechanism comprising a bearing (23) in each of revolute pair parts including revolute pair parts each between a link hub (12) on a base end side and an end portion link member (15) on the base end side, revolute pair parts each between each of end portion link members on the base end side and a distal end side and a center link member (17), and revolute pair parts each between a link hub on the distal end side and the end portion link member on the distal end side. The bearing (23) is a grease-sealed bearing provided with a grease composition sealed into a bearing space between inner and outer rings. The grease composition contains a base oil and a thickener and has a worked penetration of 310 or more. The thickener is a calcium sulfonate complex soap or a lithium soap.

Description

関節機構、パラレルリンク機構およびリンク作動装置Joint mechanism, parallel link mechanism and link actuator 関連出願Related application
 この出願は、2021年9月3日出願の特願2021-144317の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2021-144317 filed on September 3, 2021, and is incorporated herein by reference in its entirety.
 本発明は、例えば、医療機器または産業機器等の高速、高精度、および広範な作動範囲を必要とする機器に用いられる関節機構、パラレルリンク機構およびリンク作動装置に関する。 The present invention relates to a joint mechanism, a parallel link mechanism, and a link actuator used in equipment that requires high speed, high precision, and a wide operating range, such as medical equipment or industrial equipment.
 特許文献1では、ベースプレートとトラベリングプレートとを有し、両者の間を複数のリンクで結合し、これらのリンクを協調動作させることによりトラベリングプレートを移動させるパラレルリンク機構によって所定の作業を行う作業装置が提案されている。
 特許文献2では、コンパクトでありながら、高速、高精度で、広範な作動範囲の動作が可能なリンク作動装置が提案されている。
In Patent Document 1, a working device which has a base plate and a traveling plate, which are connected by a plurality of links, and performs a predetermined work by means of a parallel link mechanism that moves the traveling plate by cooperating these links. is proposed.
Patent Literature 2 proposes a link actuating device that is compact, high-speed, highly accurate, and capable of operating in a wide operating range.
特開2000-94245号公報JP-A-2000-94245 米国特許第5893296号明細書U.S. Pat. No. 5,893,296
 特許文献1のパラレルリンク機構では、各リンクの作動角が小さい。そのため、トラベリングプレートの作動範囲を大きく設定するためには、リンク長さを長くする必要がある。それにより、機構全体の寸法が大きくなって、装置が大型になってしまうという問題があった。また、リンク長さを長くすると、機構全体の剛性の低下を招く。そのため、トラベリングプレートに搭載されるツールの重量、つまり、トラベリングプレートの可搬重量も小さいものに制限されるという問題もあった。 In the parallel link mechanism of Patent Document 1, each link has a small operating angle. Therefore, in order to increase the operating range of the traveling plate, it is necessary to lengthen the link length. As a result, there is a problem that the size of the entire mechanism is increased, resulting in an increase in the size of the device. Also, increasing the length of the link leads to a reduction in the rigidity of the entire mechanism. Therefore, there is also a problem that the weight of the tool mounted on the traveling plate, that is, the weight capacity of the traveling plate is also limited to a small one.
 特許文献2に示すパラレルリンク機構およびリンク作動装置の構成では、各回転対偶部が揺動運動し、回転対偶部に設置される軸受にとっては、単位時間当りの停止-起動-運転-停止動作の切換えの回数が増加する。よって、その都度軸受に加えられる加速度および減速度が大きくなり、それに伴い軸受に生じるすべりが大きくなっている。軸受に生じるすべりは、転動体と軌道輪の間に油膜切れを生じやすくする。その結果、転動体の表面または内・外輪の軌道面に、フレッチング摩耗と呼ばれる局部的な摩耗が発生しやすくなり、軸受寿命が低下する恐れがあった。また、高予圧状態で軸受を微小揺動させると、その後、軸受には、グリースの影響により回転時に軸受らしからぬ部分的に回転トルクが大きくなるいわゆる「引っ掛かり」が発生し、滑らかな回転ができなくなる恐れがあった。 In the configuration of the parallel link mechanism and the link actuation device shown in Patent Document 2, each of the rotating pair portions oscillates, and for the bearings installed in the rotating pair portions, the stop-start-run-stop operation per unit time is required. The number of switching times increases. Therefore, the acceleration and deceleration applied to the bearing each time increase, resulting in increased slippage of the bearing. The slippage that occurs in the bearing makes it easier for the oil film to run out between the rolling elements and the bearing rings. As a result, local wear called fretting wear tends to occur on the surfaces of the rolling elements or on the raceway surfaces of the inner and outer rings, possibly shortening the life of the bearing. In addition, if the bearing is slightly oscillated under high preload, the grease will cause a so-called "jamming," in which the rotational torque of the bearing will increase in some areas during rotation, making it impossible to rotate smoothly. I was afraid it would disappear.
 本発明の目的は、広作動範囲で高速動作が可能で、かつ長寿命化と滑らかな動きを実現する関節機構、パラレルリンク機構およびリンク作動装置を提供することである。 An object of the present invention is to provide a joint mechanism, a parallel link mechanism, and a link operating device that are capable of high-speed operation over a wide operating range, and that achieve long life and smooth movement.
 本発明の関節機構は、隣接する部材同士が回転対偶部を介して回転自在に連結され、前記回転対偶部に、グリース組成物が封入されたグリース封入軸受が設けられた関節機構であって、
 前記グリース組成物は、基油と増ちょう剤とを含み、混和ちょう度が310以上であり、
 前記増ちょう剤は、カルシウムスルホネート複合石鹸またはリチウム石鹸である。
 前記「混和ちょう度」は、JIS K 2220に準拠した60回混和ちょう度である。
A joint mechanism of the present invention is a joint mechanism in which adjacent members are rotatably connected to each other via a rotating pair portion, and a grease-filled bearing in which a grease composition is sealed is provided in the rotating pair portion,
The grease composition contains a base oil and a thickener and has a worked penetration of 310 or more,
The thickener is calcium sulfonate complex soap or lithium soap.
The "worked penetration" is a 60-fold worked penetration in accordance with JIS K 2220.
 前記グリース組成物を適用することで、軸受内における、例えば、転動体と軌道輪の接触部分へのグリースの流入性が良好となり、耐フレッチング摩耗性に優れる。また、回転対偶部に前記グリース封入軸受を使用すると、高予圧状態で軸受を微小揺動させても、その後の回転時の引っ掛かりが低減され高速動作が可能となる。したがって、広作動範囲で高速動作が可能で、かつ長寿命化と滑らかな動きを実現する関節機構を実現し得る。 By applying the above-mentioned grease composition, the inflow of grease to, for example, the contact portion between the rolling element and the bearing ring in the bearing is improved, and the fretting wear resistance is excellent. In addition, when the grease-filled bearing is used in the rotating pair portion, even if the bearing is slightly oscillated in a high preload state, catching during subsequent rotation is reduced and high-speed operation becomes possible. Therefore, it is possible to realize a joint mechanism that is capable of high-speed operation in a wide operating range, has a long service life, and achieves smooth movement.
 本発明のパラレルリンク機構は、基端側のリンクハブに対し先端側のリンクハブが3組以上のリンク機構を介して姿勢を変更可能に連結され、前記各リンク機構が、前記基端側のリンクハブに一端が回転可能に連結された基端側の端部リンク部材と、前記先端側のリンクハブに一端が回転可能に連結された先端側の端部リンク部材と、これら基端側および先端側の端部リンク部材の他端に両端がそれぞれ回転可能に連結された中央リンク部材とを有し、
 前記基端側のリンクハブと前記基端側の端部リンク部材との回転対偶部、前記基端側の端部リンク部材と前記中央リンク部材との回転対偶部、前記先端側の端部リンク部材と前記中央リンク部材との回転対偶部、および前記先端側のリンクハブと前記先端側の端部リンク部材との回転対偶部を含む各回転対偶部に軸受がそれぞれ設けられ、複数の前記軸受における少なくとも1つの軸受は、軌道輪である内外輪と、これら内外輪間に介在する複数の転動体と、前記内外輪間の軸受空間に封入されたグリース組成物とを備えたグリース封入軸受であるパラレルリンク機構であって、
 前記グリース組成物は、基油と増ちょう剤とを含み、混和ちょう度が310以上であり、
 前記増ちょう剤は、カルシウムスルホネート複合石鹸またはリチウム石鹸である。
 前記「混和ちょう度」は、JIS K 2220に準拠した60回混和ちょう度である。
In the parallel link mechanism of the present invention, a link hub on the distal end side is connected to a link hub on the proximal end side via three or more sets of link mechanisms so that the attitude can be changed, and each of the link mechanisms is connected to the link hub on the proximal end side. a proximal end link member having one end rotatably connected to a link hub; a distal end link member having one end rotatably connected to the distal link hub; a center link member rotatably connected at both ends to the other end of the end link member on the tip side;
A rotational pair portion between the proximal link hub and the proximal end link member, a rotational pair portion between the proximal end link member and the central link member, and the distal end link. A bearing is provided at each rotational pair portion including a rotational pair portion between the member and the central link member and a rotational pair portion between the tip side link hub and the tip side end link member, and a plurality of the bearings at least one bearing in is a grease-filled bearing comprising inner and outer rings that are bearing rings, a plurality of rolling elements interposed between the inner and outer rings, and a grease composition sealed in the bearing space between the inner and outer rings A parallel link mechanism,
The grease composition contains a base oil and a thickener and has a worked penetration of 310 or more,
The thickener is calcium sulfonate complex soap or lithium soap.
The "worked penetration" is a 60-fold worked penetration in accordance with JIS K 2220.
 この構成によると、基端側のリンクハブと先端側のリンクハブと3組以上のリンク機構とで、基端側のリンクハブに対し先端側のリンクハブが直交2軸周りに回転自在な2自由度機構が構成される。言い換えると、基端側のリンクハブに対して先端側のリンクハブを、回転が2自由度で姿勢変更自在な機構としている。この2自由度機構は、コンパクトでありながら、基端側のリンクハブに対する先端側のリンクハブの可動範囲を広くとれる。 According to this configuration, the link hub on the base end side, the link hub on the tip side, and three or more sets of link mechanisms are arranged so that the link hub on the tip side can rotate about two orthogonal axes with respect to the link hub on the base end side. A degree of freedom mechanism is configured. In other words, the link hub on the distal end side has two degrees of freedom in rotation with respect to the link hub on the proximal end side, and the posture can be freely changed. This two-degrees-of-freedom mechanism is compact, but allows a wide movable range of the link hub on the distal end side with respect to the link hub on the proximal end side.
 本パラレルリンク機構は、作動範囲となる最大折れ角θmaxに対し、各回転対偶部が±θmax/2付近となる揺動運動を行う。転動体の公転運動は前記回転対偶部の揺動運動の1/2となる。また、パラレルリンク機構の剛性は、軸受のモーメント剛性に寄与する部分が大きく、軸受を高予圧状態で使用する場合が多い。このような本パラレルリンク機構の回転対偶部に、以下のグリース組成物が封入されたグリース封入軸受を適用する。前記グリース組成物は、基油と増ちょう剤とを含み、混和ちょう度が310以上であり、前記増ちょう剤は、カルシウムスルホネート複合石鹸またはリチウム石鹸である。これにより、転動体と軌道輪の接触部分へのグリースの流入性が良好となり、耐フレッチング摩耗性に優れる。また、回転対偶部に前記グリース封入軸受を使用すると、高予圧状態で軸受を微小揺動させても、その後の回転時の引っ掛かりが低減され高速動作が可能となる。したがって、広作動範囲で高速動作が可能で、かつ長寿命化と滑らかな動きを実現するパラレルリンク機構を実現し得る。 This parallel link mechanism performs an oscillating motion in which each rotational pair is near ±θmax/2 with respect to the maximum bending angle θmax, which is the operating range. The revolving motion of the rolling elements is 1/2 of the rocking motion of the rotating pair. Moreover, the rigidity of the parallel link mechanism largely contributes to the moment rigidity of the bearing, and the bearing is often used under high preload. A grease-encapsulated bearing in which the following grease composition is enclosed is applied to the rotating pair portion of the present parallel link mechanism. The grease composition contains a base oil and a thickener, has a worked penetration of 310 or more, and the thickener is a calcium sulfonate complex soap or a lithium soap. As a result, the grease can easily flow into the contact portion between the rolling element and the bearing ring, resulting in excellent fretting wear resistance. In addition, when the grease-filled bearing is used in the rotating pair portion, even if the bearing is slightly oscillated in a high preload state, catching during subsequent rotation is reduced and high-speed operation becomes possible. Therefore, it is possible to realize a parallel link mechanism that is capable of high-speed operation over a wide operating range and that achieves a long life and smooth movement.
 前記グリース封入軸受は、前記軌道輪における最大接触面圧が2000MPa以上の高荷重条件、かつ、臨界揺動角未満の条件で使用されてもよい。
 前記「最大接触面圧」は、軌道輪と転動体との接触面における面圧の最大値である。
 前記「臨界揺動角」は、軸受における実用可能な最小な揺動角であり、軸受内部設計の主に一列に含まれる転動体数によって決定され、定格寿命が得られる最小の揺動角である。
 このグリース封入軸受によると、前記高荷重条件、かつ、臨界揺動角未満の条件においても、十分な耐フレッチング摩耗性とシール性を有する。
The grease-filled bearing may be used under a high load condition in which the maximum contact surface pressure on the bearing ring is 2000 MPa or more and under a condition of less than the critical swing angle.
The "maximum contact surface pressure" is the maximum value of the surface pressure on the contact surface between the bearing ring and the rolling element.
The "critical swing angle" is the minimum practical swing angle of a bearing, and is determined mainly by the number of rolling elements included in a single row in the internal design of the bearing. be.
This grease-filled bearing has sufficient fretting wear resistance and sealing performance even under the high load condition and under the condition of less than the critical swing angle.
 前記グリース組成物は、前記増ちょう剤がカルシウムスルホネート複合石鹸で、かつ前記混和ちょう度が310~340であってもよい。この場合、グリースの流動性が所定の範囲に制限され、シール性により優れる。 In the grease composition, the thickener may be a calcium sulfonate complex soap, and the worked penetration may be 310-340. In this case, the fluidity of the grease is restricted to a predetermined range, resulting in better sealing performance.
 前記グリース組成物の前記基油が、鉱油または合成炭化水素油であってもよい。基油と増ちょう剤の組み合わせは、基油中での増ちょう剤同士の相互作用に関わり、増ちょう効果に影響する。そのため、適切な組み合わせを選択することが好ましい。前記基油が鉱油である場合、合成炭化水素油を用いるよりもコスト低減を図れる。前記基油が合成炭化水素油である場合、鉱油を用いるよりも高温での潤滑性能が得られる。 The base oil of the grease composition may be mineral oil or synthetic hydrocarbon oil. The combination of base oil and thickener is involved in the interaction between the thickeners in the base oil and affects the thickening effect. Therefore, it is preferable to select an appropriate combination. When the base oil is mineral oil, the cost can be reduced compared to using a synthetic hydrocarbon oil. When the base oil is a synthetic hydrocarbon oil, lubricating performance at high temperatures is obtained better than using mineral oil.
 前記グリース封入軸受が、アンギュラ玉軸受であってもよい。この場合、アンギュラ玉軸受に予めアキシアル荷重を負荷して軸受の剛性を高めることができる。したがって、パラレルリンク機構の高精度化を図ることができる。 The grease-filled bearing may be an angular contact ball bearing. In this case, an axial load can be applied in advance to the angular contact ball bearing to increase the rigidity of the bearing. Therefore, it is possible to improve the accuracy of the parallel link mechanism.
 前記アンギュラ玉軸受は、背面合わせで使用する組合せアンギュラ玉軸受であってもよい。パラレルリンク機構の剛性は、軸受のモーメント剛性に大きく寄与する。そのため、背面合わせで使用する組合せアンギュラ玉軸受を使用することで、安価な軸受構成で軸受のモーメント剛性を高くできる。これにより、パラレルリンク機構の剛性を高めると共にコスト低減を図れる。 The angular contact ball bearing may be a combination angular contact ball bearing used back to back. The stiffness of the parallel link mechanism greatly contributes to the moment stiffness of the bearing. Therefore, by using a back-to-back paired angular contact ball bearing, it is possible to increase the moment rigidity of the bearing with an inexpensive bearing structure. As a result, the rigidity of the parallel link mechanism can be increased and the cost can be reduced.
 前記組合せアンギュラ玉軸受は、反合わせ面側である軸方向外側面にシール部材を備えてもよい。この場合、必要最低限の部品で、軸受に異物が侵入することおよび軸受からのグリース漏れを防止できる。また、パラレルリンク機構の組立時に設置する軸受の向きを、シール部材の有無で容易に判断できる。そのため、組立性が向上し、コスト低減に繋がる。 The paired angular contact ball bearing may be provided with a seal member on the axial outer surface opposite to the mating surface. In this case, it is possible to prevent foreign matter from entering the bearing and grease leakage from the bearing with a minimum number of parts. Also, the orientation of the bearings to be installed when assembling the parallel link mechanism can be easily determined by the presence or absence of the seal member. Therefore, assemblability is improved, leading to cost reduction.
 本発明のグリース組成物は、基端側のリンクハブに対し先端側のリンクハブが3組以上のリンク機構を介して姿勢を変更可能に連結され、前記各リンク機構が、前記基端側のリンクハブに一端が回転可能に連結された基端側の端部リンク部材と、前記先端側のリンクハブに一端が回転可能に連結された先端側の端部リンク部材と、これら基端側および先端側の端部リンク部材の他端に両端がそれぞれ回転可能に連結された中央リンク部材とを有するパラレルリンク機構に使用されるグリース組成物であって、
 前記グリース組成物は、基油と増ちょう剤とを含み、混和ちょう度が310以上であり、
 前記増ちょう剤は、カルシウムスルホネート複合石鹸またはリチウム石鹸である。
 前記「混和ちょう度」は、JIS K 2220に準拠した60回混和ちょう度である。
In the grease composition of the present invention, a link hub on the distal end side is connected to a link hub on the proximal end side via three or more sets of link mechanisms so that the attitude can be changed, and each of the link mechanisms is connected to the link hub on the proximal end side. a proximal end link member having one end rotatably connected to a link hub; a distal end link member having one end rotatably connected to the distal link hub; A grease composition for use in a parallel link mechanism having a central link member rotatably connected at both ends to the other end of the end link member on the tip side,
The grease composition contains a base oil and a thickener and has a worked penetration of 310 or more,
The thickener is calcium sulfonate complex soap or lithium soap.
The "worked penetration" is a 60-fold worked penetration in accordance with JIS K 2220.
 前記パラレルリンク機構の各接触部分に前記グリース組成物を使用することで、同接触部分へのグリースの流入性が良好となり、耐フレッチング摩耗性に優れる。 By using the grease composition in each contact portion of the parallel link mechanism, the inflow of grease to the contact portion is improved and the fretting wear resistance is excellent.
 本発明の軸受は、基端側のリンクハブに対し先端側のリンクハブが3組以上のリンク機構を介して姿勢を変更可能に連結され、前記各リンク機構が、前記基端側のリンクハブに一端が回転可能に連結された基端側の端部リンク部材と、前記先端側のリンクハブに一端が回転可能に連結された先端側の端部リンク部材と、れら基端側および先端側の端部リンク部材の他端に両端がそれぞれ回転可能に連結された中央リンク部材とを有するパラレルリンク機構に使用される軸受であり、
 前記軸受は、前記基端側のリンクハブと前記基端側の端部リンク部材との回転対偶部、前記基端側の端部リンク部材と前記中央リンク部材との回転対偶部、前記先端側の端部リンク部材と前記中央リンク部材との回転対偶部、および前記先端側のリンクハブと前記先端側の端部リンク部材との回転対偶部を含む各回転対偶部にそれぞれ設けられ、複数の前記軸受における少なくとも1つの軸受は、軌道輪である内外輪と、これら内外輪間に介在する複数の転動体と、前記内外輪間の軸受空間に封入されたグリース組成物とを備えたグリース封入軸受であって、
 前記グリース組成物は、基油と増ちょう剤とを含み、混和ちょう度が310以上であり、
 前記増ちょう剤は、カルシウムスルホネート複合石鹸またはリチウム石鹸である。
 前記「混和ちょう度」は、JIS K 2220に準拠した60回混和ちょう度である。
In the bearing of the present invention, the link hub on the front end side is connected to the link hub on the base end side through three or more sets of link mechanisms so that the posture can be changed, and each of the link mechanisms is connected to the link hub on the base end side. a proximal end link member having one end rotatably connected to the distal end link hub; a distal end link member having one end rotatably connected to the distal link hub; A bearing used in a parallel link mechanism having a center link member rotatably connected at both ends to the other end of the side end link member,
The bearing includes a rotational pair portion between the proximal side link hub and the proximal side end link member, a rotational pair portion between the proximal side end link member and the central link member, and the distal end side. provided in each rotational pair portion including a rotational pair portion between the end link member and the central link member, and a rotational pair portion between the tip side link hub and the tip side end link member, and a plurality of At least one of the bearings includes inner and outer rings as bearing rings, a plurality of rolling elements interposed between the inner and outer rings, and a grease composition sealed in a bearing space between the inner and outer rings. a bearing,
The grease composition contains a base oil and a thickener and has a worked penetration of 310 or more,
The thickener is calcium sulfonate complex soap or lithium soap.
The "worked penetration" is a 60-fold worked penetration in accordance with JIS K 2220.
 この場合、転動体と軌道輪の接触部分へのグリースの流入性が良好となり、耐フレッチング摩耗性に優れる。また、回転対偶部に前記グリース封入軸受を使用すると、高予圧状態で軸受を微小揺動させても、その後の回転時の引っ掛かりが低減され高速動作が可能となる。 In this case, the grease can easily flow into the contact area between the rolling element and the bearing ring, resulting in excellent fretting wear resistance. In addition, when the grease-filled bearing is used in the rotating pair portion, even if the bearing is slightly oscillated in a high preload state, catching during subsequent rotation is reduced and high-speed operation becomes possible.
 本発明のリンク作動装置は、本発明の上記いずれかの構成のパラレルリンク機構における前記3組以上のリンク機構のうち2組以上のリンク機構に、前記先端側のリンクハブの姿勢を任意に制御する姿勢制御用アクチュエータを備えている。そのため、本発明のパラレルリンク機構につき前述した各効果が得られる。 The link actuating device of the present invention arbitrarily controls the posture of the link hub on the tip end side of two or more link mechanisms among the three or more link mechanisms in the parallel link mechanism having any of the above configurations of the present invention. It is equipped with an attitude control actuator. Therefore, each effect mentioned above is acquired about the parallel link mechanism of this invention.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、この発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、この発明に含まれる。 Any combination of at least two configurations disclosed in the claims and/or the specification and/or the drawings is included in the present invention. In particular, any combination of two or more of each claim is included in the invention.
 本発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、本発明の範囲を定めるために利用されるべきものではない。本発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
本発明の第1の実施形態に係るパラレルリンク機構の一部を省略した正面図である。 図1のIIA-IIA線の一部断面図である。 図2AのIIB部の部分拡大図である。 同パラレルリンク機構の1つのリンク機構を直線で表現した図である。 同パラレルリンク機構のグリース封入軸受の縦断面図である。 低面圧の耐フレッチング摩耗性の評価結果である。 高面圧の耐フレッチング摩耗性の評価結果である。 本発明の第2の実施形態に係るパラレルリンク機構の正面図である。 同パラレルリンク機構の各基端側の端部リンク部材の水平断面図である。 同パラレルリンク機構の各先端側の端部リンク部材の水平断面図である。 本発明の第3の実施形態に係るリンク作動装置の斜視図である。 同リンク作動装置の2つのリンク機構を省略した簡易モデルの正面図である。 図10のXIA-XIA線の一部断面図である。 図11AのXIB部の部分拡大図である。 同リンク作動装置の最大折れ角等を示す図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same part number in multiple drawings indicates the same or corresponding part.
It is the front view which omitted a part of parallel link mechanism concerning a 1st embodiment of the present invention. FIG. 2 is a partial cross-sectional view taken along line IIA-IIA of FIG. 1; FIG. 2B is a partially enlarged view of a portion IIB of FIG. 2A; It is the figure which represented one link mechanism of the same parallel link mechanism with a straight line. It is a longitudinal cross-sectional view of a grease-filled bearing of the parallel link mechanism. It is an evaluation result of fretting wear resistance at low surface pressure. It is an evaluation result of fretting wear resistance under high surface pressure. It is a front view of a parallel link mechanism concerning a 2nd embodiment of the present invention. It is a horizontal sectional view of the end part link member of each proximal end side of the same parallel link mechanism. It is a horizontal sectional view of the end part link member of each front end side of the same parallel link mechanism. FIG. 11 is a perspective view of a link actuating device according to a third embodiment of the invention; It is the front view of the simple model which abbreviate|omitted two link mechanisms of the same link actuation apparatus. 11 is a partial cross-sectional view along line XIA-XIA of FIG. 10; FIG. 11B is a partially enlarged view of the XIB portion of FIG. 11A; FIG. It is a figure which shows the maximum bending angle etc. of the same link actuating device.
 [第1の実施形態]
 本発明の実施形態に係る関節機構の一種であるパラレルリンク機構を図1ないし図4と共に説明する。
 図1に示すように、パラレルリンク機構(関節機構)9は、基端側のリンクハブ12に対し先端側のリンクハブ13を3組のリンク機構14を介して姿勢変更可能に連結したものである。リンク機構14の組数は4組以上であってもよい。なお、図1では、1組のリンク機構14のみが示され、残りの2つのリンク機構が省略されている。
[First embodiment]
A parallel link mechanism, which is a type of joint mechanism according to an embodiment of the present invention, will be described with reference to FIGS. 1 to 4. FIG.
As shown in FIG. 1, the parallel link mechanism (joint mechanism) 9 connects a link hub 13 on the distal end side to a link hub 12 on the proximal end side via three sets of link mechanisms 14 so that the posture can be changed. be. The number of sets of link mechanisms 14 may be four or more. 1, only one set of link mechanisms 14 is shown, and the remaining two link mechanisms are omitted.
 各リンク機構14は、基端側の端部リンク部材15、先端側の端部リンク部材16、および中央リンク部材17を有し、4つの回転対偶からなる4節連鎖のリンク機構をなす。基端側および先端側の端部リンク部材15,16はL字形状(図2A)である。基端側の端部リンク部材15の一端が基端側のリンクハブ12に連結され、先端側の端部リンク部材16の一端が先端側のリンクハブ13に回転可能に連結されている。中央リンク部材17は、両端に基端側および先端側の端部リンク部材15,16の他端がそれぞれ回転可能に連結されている。 Each link mechanism 14 has an end link member 15 on the base end side, an end link member 16 on the tip end side, and a center link member 17, and forms a four-bar linkage link mechanism consisting of four rotational pairs. The proximal and distal end link members 15, 16 are L-shaped (FIG. 2A). One end of the proximal end link member 15 is connected to the proximal link hub 12 , and one end of the distal end link member 16 is rotatably connected to the distal link hub 13 . The center link member 17 is rotatably connected to both ends of the end link members 15 and 16 on the base end side and the tip end side, respectively.
 パラレルリンク機構9は、2つの球面リンク機構を組み合わせた構造である。基端側のリンクハブ12と基端側の端部リンク部材15の各回転対偶部、および基端側の端部リンク部材15と中央リンク部材17の各回転対偶部の中心軸が、基端側の球面リンク中心PAで交差している。同様に、先端側のリンクハブ13と先端側の端部リンク部材16の各回転対偶部、および先端側の端部リンク部材16と中央リンク部材17の各回転対偶部の中心軸が、先端側の球面リンク中心PBで交差している。 The parallel link mechanism 9 is a structure that combines two spherical link mechanisms. The central axis of each rotational pair of the link hub 12 on the proximal side and the end link member 15 on the proximal side, and each rotational pair of the end link member 15 on the proximal side and the center link member 17 intersect at the spherical link center PA on the side. Similarly, the central axis of each rotating pair of the tip-side link hub 13 and the tip-side end link member 16, and each rotating pair of the tip-side end link member 16 and the center link member 17 intersect at the spherical link center PB of .
 また、基端側のリンクハブ12と基端側の端部リンク部材15との回転対偶部の中心と基端側の球面リンク中心PA間の距離は同じである。基端側の端部リンク部材15と中央リンク部材17との回転対偶部の中心と基端側の球面リンク中心PA間の距離は同じである。同様に、先端側のリンクハブ13と先端側の端部リンク部材16との回転対偶部の中心と先端側の球面リンク中心PB間の距離は同じである。先端側の端部リンク部材16と中央リンク部材17との回転対偶部の中心と先端側の球面リンク中心PB間の距離は同じである。基端側および先端側の端部リンク部材15,16と中央リンク部材17との各回転対偶部の中心軸は、ある交差角γを持っていてもよいし、平行であってもよい。 Also, the distance between the center of the rotational pair of the link hub 12 on the proximal side and the end link member 15 on the proximal side and the spherical link center PA on the proximal side is the same. The distance between the center of the rotational pair of the end link member 15 on the proximal side and the center link member 17 and the spherical link center PA on the proximal side is the same. Similarly, the distance between the center of the rotational pair of the link hub 13 on the tip side and the end link member 16 on the tip side and the center PB of the spherical link on the tip side is the same. The distance between the center of the rotational pair of the end link member 16 and the center link member 17 on the tip side and the center PB of the spherical link on the tip side is the same. The central axes of each rotational pair of the proximal and distal end link members 15, 16 and the central link member 17 may have a crossing angle γ or may be parallel.
 図2Aに、基端側のリンクハブ12と基端側の端部リンク部材15の回転対偶部T1、基端側の端部リンク部材15と中央リンク部材17の回転対偶部T2が示されている。回転対偶部T1において、基端側のリンクハブ12と基端側の端部リンク部材15とが、「隣接する部材同士」に相当し、回転対偶部T2において、基端側の端部リンク部材15と中央リンク部材17とが、「隣接する部材同士」に相当する。 FIG. 2A shows a rotational pair portion T1 between the proximal side link hub 12 and the proximal side end link member 15, and a rotational pair portion T2 between the proximal side end link member 15 and the central link member 17. there is In the rotational pair portion T1, the proximal side link hub 12 and the proximal side end link member 15 correspond to "adjacent members", and in the rotational pair portion T2, the proximal side end link member 15 and the central link member 17 correspond to "adjacent members".
 図3に示す先端側の端部リンク部材16と中央リンク部材17の回転対偶部T3は、図2Bに拡大して示す回転対偶部T2と同様の形状である。図3に示す先端側のリンクハブ13と先端側の端部リンク部材16の回転対偶部T4は、図2Bに拡大して示す回転対偶部T1と同様の形状である。図3に示す先端側の端部リンク部材16と中央リンク部材17とが、回転対偶部T3における「隣接する部材同士」に相当し、先端側のリンクハブ13と先端側の端部リンク部材16とが、回転対偶部T4における「隣接する部材同士」に相当する。 A rotating pair portion T3 of the end link member 16 on the tip end side and the center link member 17 shown in FIG. 3 has the same shape as the rotating pair portion T2 shown enlarged in FIG. 2B. A rotating pair portion T4 of the tip side link hub 13 and the tip side end link member 16 shown in FIG. 3 has the same shape as the rotating pair portion T1 shown enlarged in FIG. 2B. The tip-side end link member 16 and the center link member 17 shown in FIG. corresponds to "adjacent members" in the rotational pair portion T4.
 また、図2Aでは、基端側のリンクハブ12と基端側の端部リンク部材15との各回転対偶部T1の中心軸O1と、基端側の端部リンク部材15と中央リンク部材17との各回転対偶部T2の中心軸O2とが成す角度αが90°となっている。但し、前記角度αは90°以外であってもよい。 Further, in FIG. 2A, the center axis O1 of each rotational pair portion T1 between the proximal side link hub 12 and the proximal side end link member 15, the proximal side end link member 15 and the central link member 17 and the central axis O2 of each rotational pair portion T2 is 90°. However, the angle α may be other than 90°.
 3組のリンク機構14は、幾何学的に同一形状をなす。幾何学的に同一形状とは、図3に示すように、各リンク部材15,16,17を直線で表現した幾何学モデル、すなわち各回転対偶部T1,T2,T3,T4と、これら回転対偶部T1,T2,T3,T4間を結ぶ直線とで表現したモデルが、どのような姿勢をとっていても、中央リンク部材17の中央部に対する基端側部分と先端側部分が対称を成す形状であることをいう。なお、各回転対偶部T1,T2,T3,T4を、以下の説明において各回転対偶部T1等という場合がある。図3は、1組のリンク機構14を直線で表現した図である。この実施形態のパラレルリンク機構9は回転対称タイプで、基端側のリンクハブ12および基端側の端部リンク部材15からなる基端側部分と、先端側のリンクハブ13および先端側の端部リンク部材16からなる先端側部分との位置関係が、中央リンク部材17の中心線Cに対して回転対称となっている。 The three sets of link mechanisms 14 have the same geometric shape. The geometrically identical shape means, as shown in FIG. A model represented by a straight line connecting parts T1, T2, T3, and T4 has a shape in which the proximal side part and the distal side part with respect to the central part of the central link member 17 are symmetrical regardless of the posture. It means that In the following description, the rotational pairs T1, T2, T3, and T4 may be referred to as the rotational pairs T1 and the like. FIG. 3 is a diagram showing a set of link mechanisms 14 represented by straight lines. The parallel link mechanism 9 of this embodiment is of a rotationally symmetrical type, and includes a proximal portion consisting of a proximal link hub 12 and a proximal end link member 15, a distal link hub 13 and a distal end. The positional relationship with the distal end portion formed by the central link member 16 is rotationally symmetrical with respect to the center line C of the central link member 17 .
 基端側のリンクハブ12と先端側のリンクハブ13と3組のリンク機構14とで、基端側のリンクハブ12に対し先端側のリンクハブ13が直交2軸周りに回転自在な2自由度機構が構成されている。言い換えると、基端側のリンクハブ12に対して先端側のリンクハブ13を、回転が2自由度で姿勢変更自在な機構である。この2自由度機構は、コンパクトでありながら、基端側のリンクハブ12に対する先端側のリンクハブ13の可動範囲を広くとれる。 A link hub 12 on the proximal side, a link hub 13 on the distal side, and three sets of link mechanisms 14 provide 2 freedoms in which the link hub 13 on the distal side is rotatable about two orthogonal axes with respect to the link hub 12 on the proximal side. A degree mechanism is configured. In other words, the link hub 13 on the distal end side can be rotated with two degrees of freedom and the posture can be freely changed with respect to the link hub 12 on the proximal end side. This two-degrees-of-freedom mechanism is compact, but allows a wide movable range of the link hub 13 on the distal side with respect to the link hub 12 on the proximal side.
 例えば、基端側の球面リンク中心PAを通り、基端側のリンクハブ12と基端側の端部リンク部材15の回転対偶の中心軸O1(図2A)と直角に交わる直線を基端側のリンクハブ12の中心軸QAとする。同様に、先端側の球面リンク中心PBを通り、先端側のリンクハブ13と先端側の端部リンク部材16の回転対偶の中心軸O1(図2A)と直角に交わる直線を先端側のリンクハブ13の中心軸QBとする。 For example, a straight line that passes through the center of the spherical link PA on the proximal side and perpendicularly intersects the central axis O1 (FIG. 2A) of the rotational pair of the link hub 12 on the proximal side and the end link member 15 on the proximal side is , the central axis QA of the link hub 12. Similarly, a straight line that passes through the center PB of the spherical link on the tip side and perpendicularly intersects the central axis O1 (FIG. 2A) of the rotational pair of the link hub 13 on the tip side and the end link member 16 on the tip side is defined as the link hub on the tip side. 13 as the central axis QB.
 この場合、基端側のリンクハブ12の中心軸QAと先端側のリンクハブ13の中心軸QBとの折れ角θの最大値である最大折れ角θmaxを約±90°とすることができる。また、基端側のリンクハブ12に対する先端側のリンクハブ13の旋回角φを0°~360°の範囲に設定できる。折れ角θは、基端側のリンクハブ12の中心軸QAに対して先端側のリンクハブ13の中心軸QBが傾斜した垂直角度のことである。旋回角φは、基端側のリンクハブ12の中心軸QAに対して先端側のリンクハブ13の中心軸QBが傾斜した水平角度のことである。なお最大折れ角θmaxが90°以上であってもよい。 In this case, the maximum bending angle θmax, which is the maximum bending angle θ between the central axis QA of the link hub 12 on the proximal side and the central axis QB of the link hub 13 on the distal side, can be about ±90°. Further, the turning angle φ of the link hub 13 on the distal side with respect to the link hub 12 on the proximal side can be set within a range of 0° to 360°. The bending angle θ is a vertical angle at which the central axis QB of the link hub 13 on the distal end side is inclined with respect to the central axis QA of the link hub 12 on the proximal side. The turning angle φ is a horizontal angle at which the central axis QB of the link hub 13 on the distal side is inclined with respect to the central axis QA of the link hub 12 on the proximal side. Note that the maximum bending angle θmax may be 90° or more.
 基端側のリンクハブ12に対する先端側のリンクハブ13の姿勢変更は、基端側のリンクハブ12の中心軸QAと先端側のリンクハブ13の中心軸QBとの交点Oを回転中心として行われる。図1は、基端側のリンクハブ12の中心軸QAと先端側のリンクハブ13の中心軸QBが同一線上にある状態を示し、図3は中心軸QAに対して中心軸QBが或る作動角(折れ角)をとった状態を示す。基端側のリンクハブ12に対する先端側のリンクハブ13の姿勢が変化しても、基端側と先端側の球面リンク中心PA,PB間の距離Lは変化しない。 The posture of the link hub 13 on the front end side relative to the link hub 12 on the base end side is changed with the intersection point O of the center axis QA of the link hub 12 on the base end side and the center axis QB of the link hub 13 on the front end side as the center of rotation. will be FIG. 1 shows a state in which the central axis QA of the link hub 12 on the base end side and the central axis QB of the link hub 13 on the distal end side are on the same line, and FIG. It shows a state where an operating angle (bent angle) is taken. Even if the attitude of the link hub 13 on the front end side with respect to the link hub 12 on the base end side changes, the distance L between the spherical link centers PA and PB on the base end side and the front end side does not change.
 図1に示すように、基端側のリンクハブ12は、平板状の基端部材6と、この基端部材6と一体に設けられた3個の回転軸連結部材21(図2A)とを有する。図2Aに示す基端部材6は中央部に円形の貫通孔6aを有し、この貫通孔6aの周囲に3個の回転軸連結部材21が円周方向に等間隔で配置されている。貫通孔6aの中心は、基端側のリンクハブ12の中心軸QA(図1)上に位置する。 As shown in FIG. 1, the link hub 12 on the proximal side includes a flat plate-shaped proximal member 6 and three rotating shaft connecting members 21 (FIG. 2A) provided integrally with the proximal member 6. have. The base end member 6 shown in FIG. 2A has a circular through hole 6a in the central portion, and three rotating shaft connecting members 21 are arranged at equal intervals in the circumferential direction around this through hole 6a. The center of the through hole 6a is located on the center axis QA (Fig. 1) of the link hub 12 on the base end side.
 各回転対偶部T1等に軸受23が設けられている。図2Bに示すように、基端側のリンクハブ12(図2A)と基端側の端部リンク部材15の回転対偶部T1では、各回転軸連結部材21に軸受23を介して、回転軸22が回転自在に連結されている。この回転軸22の軸心は、基端側のリンクハブ12の中心軸QA(図1)と交差する。回転軸22に、この回転軸22と一体に回転するように、基端側の端部リンク部材15の一端が連結されている。 A bearing 23 is provided on each rotating pair T1 and the like. As shown in FIG. 2B, in the rotation pair portion T1 between the link hub 12 (FIG. 2A) on the base end side and the end link member 15 on the base end side, the rotation shaft is connected to each of the rotation shaft connecting members 21 via the bearing 23. 22 are rotatably connected. The axis of this rotating shaft 22 intersects with the center axis QA (FIG. 1) of the link hub 12 on the base end side. One end of the proximal end link member 15 is connected to the rotating shaft 22 so as to rotate together with the rotating shaft 22 .
 回転軸22は、軸方向に沿って順次、大径部、小径部、および雄ねじ部を有し、前記小径部で2個の軸受23を介して回転軸連結部材21に回転自在に支持されている。前記2個の軸受23は、回転軸連結部材21に設けられた内径溝に外輪外周面が嵌合状態で固定されている。他の回転対偶部T2,T3,T4(図3)に設けられる軸受の種類および設置方法も略同様である。 The rotary shaft 22 has a large-diameter portion, a small-diameter portion, and a male threaded portion in order along the axial direction, and is rotatably supported by the rotary shaft connecting member 21 via two bearings 23 at the small-diameter portion. there is The outer peripheral surfaces of the two bearings 23 are fitted in an inner diameter groove provided in the rotating shaft connecting member 21 and fixed. The types and installation methods of the bearings provided in the other rotating pairs T2, T3, and T4 (FIG. 3) are substantially the same.
 基端側の端部リンク部材15の一端に切欠き部25が形成され、この切欠き部25の両側部分が内外一対の回転軸支持部27,26を構成している。これら一対の回転軸支持部27,26に貫通孔がそれぞれ形成されている。回転軸連結部材21が切欠き部25内に配置され、回転軸22の前記小径部が前記貫通孔および軸受23の内輪内周面に挿通されている。回転軸22の前記雄ねじ部は、内側の回転軸支持部27よりも内側(図2B下側)に突出している。前記雄ねじ部にナットNtが螺着されている。内側の回転軸支持部27と、この回転軸支持部27に対向する内輪端面との間に、スペーサSpが介在されると共に、外側の回転軸支持部26と、この回転軸支持部26に対向する内輪端面との間に、スペーサSpが介在されている。したがって、前記ナットNtの螺着時に軸受23に予圧が付与される。 A cutout portion 25 is formed at one end of the end link member 15 on the base end side, and both side portions of the cutout portion 25 constitute a pair of inner and outer rotating shaft support portions 27 and 26 . A through hole is formed in each of the pair of rotating shaft support portions 27 and 26 . The rotating shaft connecting member 21 is arranged in the notch portion 25 , and the small diameter portion of the rotating shaft 22 is inserted through the through hole and the inner peripheral surface of the inner ring of the bearing 23 . The male threaded portion of the rotary shaft 22 protrudes inward (lower in FIG. 2B) than the rotary shaft support portion 27 on the inner side. A nut Nt is screwed onto the male threaded portion. A spacer Sp is interposed between the inner rotating shaft support portion 27 and the inner ring end face facing this rotating shaft supporting portion 27, and the outer rotating shaft supporting portion 26 and this rotating shaft supporting portion 26 are opposed to each other. A spacer Sp is interposed between the two inner ring end faces. Therefore, preload is applied to the bearing 23 when the nut Nt is screwed.
 基端側の端部リンク部材15と中央リンク部材17の回転対偶部T2には、中央リンク部材17の一端に軸受23を介して、回転軸22が連結されている。すなわち基端側の端部リンク部材15の他端には、中央リンク部材17の一端に回転自在に連結された回転軸22が連結されている。この回転軸22は、小径部で2個の軸受23を介して中央リンク部材17の一端に回転自在に支持されている。基端側の端部リンク部材15の他端に切欠き部37が形成され、この切欠き部37の両側部分が内外一対の回転軸支持部39,38を構成している。これら一対の回転軸支持部39,38に貫通孔がそれぞれ形成されている。 A rotation shaft 22 is connected to one end of the central link member 17 via a bearing 23 to the rotational pair portion T2 of the end link member 15 on the base end side and the central link member 17 . That is, a rotating shaft 22 rotatably connected to one end of a central link member 17 is connected to the other end of the end link member 15 on the base end side. The rotary shaft 22 is rotatably supported at one end of the central link member 17 via two bearings 23 at the small diameter portion. A cutout portion 37 is formed at the other end of the end link member 15 on the base end side, and both side portions of the cutout portion 37 constitute a pair of inner and outer rotary shaft support portions 39 and 38 . A through hole is formed in each of the pair of rotating shaft support portions 39 and 38 .
 切欠き部37内に中央リンク部材17の一端が配置され、前記小径部が前記貫通孔および軸受23の内輪内周面に挿通されている。さらに回転軸22の雄ねじ部にナットNtが螺着されている。軸受23の内輪端面と一対の回転軸支持部39,38との間に、スペーサSp,Spが介在されており、前記ナットNtの螺着時に軸受23に予圧が付与される。 One end of the central link member 17 is arranged in the notch portion 37 , and the small diameter portion is inserted through the through hole and the inner ring inner peripheral surface of the bearing 23 . Furthermore, a nut Nt is screwed onto the male threaded portion of the rotary shaft 22 . Spacers Sp, Sp are interposed between the inner ring end surface of the bearing 23 and the pair of rotating shaft support portions 39, 38, and preload is applied to the bearing 23 when the nut Nt is screwed.
 図1に示すように、先端側のリンクハブ13は、平板状の先端部材40と、この先端部材40の底面に円周方向等配で設けられた3個の回転軸連結部材41とを有する。各回転軸連結部材41が配置される円周の中心は、先端側のリンクハブ13の中心軸QB上に位置する。各回転軸連結部材41には、軸心が先端側のリンクハブ13の中心軸QBと交差する回転軸22が回転自在に連結されている。前記回転軸22に先端側の端部リンク部材16の一端が連結されている。先端側の端部リンク部材16の他端には、中央リンク部材17の他端に回転自在に連結された回転軸22が連結されている。 As shown in FIG. 1, the link hub 13 on the front end side has a flat tip member 40 and three rotating shaft connecting members 41 provided on the bottom surface of the tip member 40 at equal intervals in the circumferential direction. . The center of the circumference where each rotating shaft coupling member 41 is arranged is positioned on the central axis QB of the link hub 13 on the tip side. A rotating shaft 22 whose axis intersects the center axis QB of the link hub 13 on the distal end side is rotatably connected to each rotating shaft connecting member 41 . One end of an end link member 16 on the tip side is connected to the rotating shaft 22 . The other end of the end link member 16 on the tip side is connected to a rotating shaft 22 that is rotatably connected to the other end of the central link member 17 .
 先端側のリンクハブ13と先端側の端部リンク部材16の回転対偶部T4(図3)には、各回転軸連結部材41に設けられた2個の軸受23(図4)を介して、回転軸22が回転自在に連結されている。先端側の端部リンク部材16と中央リンク部材17の回転対偶部T3(図3)には、中央リンク部材17の他端に設けられた2個の軸受23(図4)を介して回転軸22が回転自在に連結されている。 Through two bearings 23 (FIG. 4) provided on each rotating shaft connecting member 41, the rotating pair T4 (FIG. 3) of the link hub 13 on the tip end side and the end link member 16 on the tip end side, A rotating shaft 22 is rotatably connected. A rotating shaft T3 (FIG. 3) between the end link member 16 on the distal end side and the central link member 17 is provided with two bearings 23 (FIG. 4) provided at the other end of the central link member 17. 22 are rotatably connected.
 <グリース封入軸受>
 図4に示すように、軸受23は、グリース封入軸受であり、軌道輪である内輪2および外輪3と、これら内外輪2,3間に介在する複数の転動体4と、これら転動体4を保持する保持器5と、内外輪2,3間の軸受空間を密封するシール部材6と、前記軸受空間に封入された後述するグリース組成物grとを備えている。この例のグリース封入軸受は、アンギュラ玉軸受であり、転動体4として例えば鋼球が適用されている。本実施形態のアンギュラ玉軸受は、背面合わせで使用する組合せアンギュラ玉軸受である。組合せアンギュラ玉軸受は、反合わせ面側である軸方向外側面にシール部材6を備えている。換言すれば、この組合せアンギュラ玉軸受は、合わせ面側である軸方向内側面にシール部材が設けられておらず、軸方向外側面のみにシール部材6が設けられている。反合わせ面側を正面側ということがある。
<Grease filled bearing>
As shown in FIG. 4, the bearing 23 is a grease-filled bearing, comprising an inner ring 2 and an outer ring 3 which are bearing rings, a plurality of rolling elements 4 interposed between the inner and outer rings 2 and 3, and these rolling elements 4. It comprises a retainer 5 for holding, a seal member 6 for sealing a bearing space between the inner and outer rings 2 and 3, and a grease composition gr, which will be described later, sealed in the bearing space. The grease-filled bearing of this example is an angular contact ball bearing, and steel balls, for example, are applied as the rolling elements 4 . The angular contact ball bearing of this embodiment is a combination angular contact ball bearing used in a back-to-back manner. The duplex angular contact ball bearing has a seal member 6 on the axial outer surface opposite to the mating surface. In other words, in this combination angular contact ball bearing, no seal member is provided on the axially inner surface, which is the mating surface side, and the seal member 6 is provided only on the axially outer surface. The opposite mating surface side is sometimes referred to as the front side.
 外輪3の正面側の内周面に、シール部材6を嵌合固定する外輪シール取付溝3aが形成されている。シール部材6は、いわゆる非接触シールであり、基端部が外輪シール取付溝3aに取り付けられ、先端部に内輪シール溝2aに非接触で挿入されるシールリップを有する。シール部材6は、内輪シール溝または内輪外周面にシールリップが接触する接触シールであってもよい。なお、シール部材は、鋼板のみからなるシールド板で構成することも可能である。 An outer ring seal mounting groove 3a for fitting and fixing the seal member 6 is formed on the inner peripheral surface of the outer ring 3 on the front side. The seal member 6 is a so-called non-contact seal, and has a base end attached to the outer ring seal mounting groove 3a and a tip end having a seal lip inserted into the inner ring seal groove 2a without contact. The seal member 6 may be a contact seal in which a seal lip contacts the inner ring seal groove or the outer peripheral surface of the inner ring. In addition, the sealing member can also be configured by a shield plate made of only a steel plate.
 <グリース組成物grについて>
 グリース組成物grは、基油と増ちょう剤とを含み、混和ちょう度が310以上であり、増ちょう剤はカルシウムスルホネート複合石鹸である。本実施形態のカルシウムスルホネート複合石鹸は、カルシウムスルホネートと、カルシウムスルホネート以外のカルシウム塩とを組み合わせた複合石鹸である。グリース組成物の増ちょう剤は、カルシウムスルホネート複合石鹸のみであり、それ以外の金属石鹸やウレア化合物などは、増ちょう剤としては含まれないことが好ましい。それにより、カルシウム塩部分のイオン間相互作用が他の成分によって影響を受けずにグリースの性質が長期的に安定となり、ちょう度の低下などが起こりにくい。そのため、良好なシール性に寄与する。
<Regarding grease composition gr>
The grease composition gr contains a base oil and a thickener, has a worked penetration of 310 or more, and the thickener is a calcium sulfonate complex soap. The calcium sulfonate complex soap of this embodiment is a complex soap obtained by combining calcium sulfonate and a calcium salt other than calcium sulfonate. The thickener of the grease composition is only the calcium sulfonate complex soap, and it is preferable that other metal soaps, urea compounds, and the like are not included as thickeners. As a result, the ionic interaction of the calcium salt portion is not affected by other components, the properties of the grease are stable over a long period of time, and a drop in consistency is less likely to occur. Therefore, it contributes to good sealing performance.
 カルシウムスルホネートとしては、例えば、ドデシルベンゼンスルホン酸、オクタデシルベンゼンスルホン酸、ジラウリルセチルベンゼンスルホン酸、ジノニルナフタレンスルホン酸、パラフィンワックス置換ベンゼンスルホン酸、ポリオレフィン置換ベンゼンスルホン酸、ポリイソブチレン置換ベンゼンスルホン酸などのアルキル芳香族スルホン酸のカルシウム塩や、芳香族スルホン酸のカルシウム塩、アルキルスルホン酸のカルシウム塩、石油スルホン酸のカルシウム塩などが挙げられる。 Examples of calcium sulfonates include dodecylbenzenesulfonic acid, octadecylbenzenesulfonic acid, dilaurylcetylbenzenesulfonic acid, dinonylnaphthalenesulfonic acid, paraffin wax-substituted benzenesulfonic acid, polyolefin-substituted benzenesulfonic acid, and polyisobutylene-substituted benzenesulfonic acid. Calcium salts of alkylaromatic sulfonic acids, calcium salts of aromatic sulfonic acids, calcium salts of alkylsulfonic acids, calcium salts of petroleum sulfonic acids, and the like.
 カルシウムスルホネート以外のカルシウム塩としては、例えば、炭酸、ホウ酸、リン酸、塩酸、スルホン酸などの無機酸のカルシウム塩、ベヘン酸、アラキジン酸、ステアリン酸、ヒドロキシステアリン酸、ヘキサデカン酸、オクタン酸などの高級脂肪酸のカルシウム塩、または酢酸、酪酸、吉草酸などの低級脂肪酸のカルシウム塩、無機塩基のカルシウム塩などが挙げられる。また、例えば、アゼライン酸、セバシン酸、アジピン酸、グルタル酸、コハク酸、マロン酸、およびシュウ酸などの二塩基性脂肪酸のカルシウム塩も挙げられる。カルシウムスルホネート以外のカルシウム塩は、1種を単独で用いてもよいし、2種以上を組み合わせてもよい。 Examples of calcium salts other than calcium sulfonate include calcium salts of inorganic acids such as carbonic acid, boric acid, phosphoric acid, hydrochloric acid, and sulfonic acid, behenic acid, arachidic acid, stearic acid, hydroxystearic acid, hexadecanoic acid, and octanoic acid. calcium salts of higher fatty acids, calcium salts of lower fatty acids such as acetic acid, butyric acid and valeric acid, and calcium salts of inorganic bases. Also included are calcium salts of dibasic fatty acids such as, for example, azelaic acid, sebacic acid, adipic acid, glutaric acid, succinic acid, malonic acid, and oxalic acid. Calcium salts other than calcium sulfonate may be used singly or in combination of two or more.
 カルシウムスルホネート複合石鹸は、予め合成したものを基油に分散させてもよいし、基油中で合成することによって基油に分散させてもよい。後者の方法の方が、製造工程を簡略化できるとともに、基油中に増ちょう剤を良好に分散させられるため好ましい。 The calcium sulfonate complex soap may be synthesized in advance and dispersed in the base oil, or may be synthesized in the base oil and dispersed in the base oil. The latter method is preferable because the manufacturing process can be simplified and the thickener can be well dispersed in the base oil.
 カルシウムスルホネート複合石鹸を基油中で合成する場合、例えば、基油に分散させたアルキル芳香族スルホン酸に、水、水酸化カルシウム、高級脂肪酸、低級脂肪酸、無機酸などを加えて加熱攪拌した後、過熱して水を除去することで、カルシウムスルホネート複合石鹸が得られる。 When synthesizing calcium sulfonate complex soap in base oil, for example, water, calcium hydroxide, higher fatty acid, lower fatty acid, inorganic acid, etc. are added to alkylaromatic sulfonic acid dispersed in base oil, and the mixture is heated and stirred. , heating and removing water to obtain a calcium sulfonate complex soap.
 グリース組成物に用いる基油は、通常、転がり軸受に用いられるものであれば、特に制限なく用いることができる。例えば、パラフィン系鉱油、ナフテン系鉱油などの鉱油、PAO油、アルキルベンゼン油などの合成炭化水素油、エステル油、エーテル油、シリコーン油、フッ素油などが挙げられる。これらの基油は、単独で用いられてもよく、2種以上が併用されてもよい。 The base oil used in the grease composition can be used without any particular limitation as long as it is usually used for rolling bearings. Examples thereof include mineral oils such as paraffinic mineral oils and naphthenic mineral oils, synthetic hydrocarbon oils such as PAO oils and alkylbenzene oils, ester oils, ether oils, silicone oils, and fluorine oils. These base oils may be used alone or in combination of two or more.
 基油と増ちょう剤の組み合わせは、基油中での増ちょう剤同士の相互作用に関わり、増ちょう効果に影響する。そのため、適切な組み合わせを選択することが好ましい。本実施形態で用いられるカルシウムスルホネート複合石鹸に対して、基油は、鉱油または合成炭化水素油であることが好ましい。コストの観点からは、基油は鉱油であることが好ましい。また、高温での潤滑性能の観点からは、基油は合成炭化水素油であることが好ましい。 The combination of base oil and thickener is related to the interaction between the thickeners in the base oil and affects the thickening effect. Therefore, it is preferable to select an appropriate combination. For the calcium sulfonate complex soap used in this embodiment, the base oil is preferably mineral oil or synthetic hydrocarbon oil. From a cost point of view, the base oil is preferably mineral oil. Moreover, from the viewpoint of lubricating performance at high temperatures, the base oil is preferably a synthetic hydrocarbon oil.
 鉱油としては、潤滑性の観点からはパラフィン系鉱油が好ましく、コストの観点からはナフテン系鉱油が好ましい。鉱油は、減圧蒸留、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、硫酸洗浄、白土精製、水素化精製などを、適宜組み合わせて精製したものを用いることができる。 As the mineral oil, paraffinic mineral oil is preferable from the viewpoint of lubricity, and naphthenic mineral oil is preferable from the viewpoint of cost. The mineral oil can be refined by appropriately combining vacuum distillation, solvent deasphalting, solvent extraction, hydrocracking, solvent dewaxing, sulfuric acid washing, clay refining, hydrorefining, and the like.
 合成炭化水素油としてはPAO油(ポリアルファオレフィン油)がより好ましい。PAO油は、α-オレフィンまたは異性化されたα-オレフィンのオリゴマーまたはポリマーの混合物である。α-オレフィンの具体例としては、1-オクテン、1-ノネン、1-デセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、1-ドコセン、1-テトラドコセンなどが挙げられ、通常はこれらの混合物が使用される。 PAO oil (polyalphaolefin oil) is more preferable as the synthetic hydrocarbon oil. PAO oils are mixtures of alpha-olefins or isomerized alpha-olefin oligomers or polymers. Specific examples of α-olefins include 1-octene, 1-nonene, 1-decene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1 -nonadecene, 1-eicosene, 1-docosene, 1-tetradocosene and the like, and mixtures thereof are usually used.
 基油の動粘度(混合油の場合は、混合油の動粘度)としては、40℃において10~200mm2/sが好ましい。より好ましくは10~100mm2/sであり、さらに好ましくは30~100mm2/sである。 The kinematic viscosity of the base oil (in the case of a mixed oil, the kinematic viscosity of the mixed oil) is preferably 10 to 200 mm 2 /s at 40°C. It is more preferably 10 to 100 mm 2 /s, still more preferably 30 to 100 mm 2 /s.
 グリース組成物grには、本発明の目的を損なわない範囲でさらに他の添加剤を配合してもよい。添加剤としては、例えば、アミン系やフェノール系、イオウ系の酸化防止剤、塩素系、イオウ系、りん系化合物、有機モリブデンなどの極圧剤、スルホン酸塩や、多価アルコールエステル、ソルビタンエステルなどの防錆剤、エステル、アルコールなどの油性剤などが挙げられる。本実施形態のグリース封入軸受は、主には高荷重条件下で使用される。そのため、極圧剤が含有されることが好ましい。添加剤を配合する場合、添加剤全体としての含有量は、グリース組成物全体に対して5質量%以下であることが好ましい。 The grease composition gr may further contain other additives as long as the object of the present invention is not impaired. Examples of additives include amine, phenol, and sulfur antioxidants, chlorine, sulfur, and phosphorus compounds, extreme pressure agents such as organic molybdenum, sulfonates, polyhydric alcohol esters, and sorbitan esters. Rust preventives such as, esters, oily agents such as alcohol, and the like. The grease-filled bearing of this embodiment is mainly used under high load conditions. Therefore, it is preferable to contain an extreme pressure agent. When additives are added, the content of the additives as a whole is preferably 5% by mass or less with respect to the entire grease composition.
 カルシウムスルホネート複合石鹸は、基油への配合により増ちょうさせる増ちょう作用だけでなく、接触する金属を錆びにくくする防錆作用も有する。よって、カルシウムスルホネート複合石鹸は増ちょう剤と防錆剤の両方の役割を果たすことができる。そのため、グリースには別途防錆剤を含まなくてもよい。  Calcium sulfonate complex soap not only has a thickening effect when blended with the base oil, but also has a rust-preventing effect that makes it difficult for metals in contact with it to rust. Therefore, the calcium sulfonate complex soap can serve as both a thickener and an antirust agent. Therefore, the grease does not need to contain a separate rust preventive agent.
 グリース組成物grの混和ちょう度は、310以上である。混和ちょう度をこの範囲とすることで、転動体4と軌道輪の接触部分へのグリースの流入性が良好となり、耐フレッチング摩耗性に優れる。グリース組成物grの混和ちょう度は、310~340であることがさらに好ましい。この範囲であれば、グリースの流動性が所定の範囲に制限され、シール性により優れる。 The worked penetration of the grease composition gr is 310 or more. By setting the worked penetration within this range, the inflow of grease to the contact portion between the rolling elements 4 and the bearing ring is improved, and the fretting wear resistance is excellent. The worked penetration of the grease composition gr is more preferably 310-340. Within this range, the fluidity of the grease is restricted to a predetermined range, and the sealing performance is excellent.
 本実施形態のグリース封入軸受は、グリースの増ちょう剤がカルシウムスルホネート複合石鹸である。そのため、高荷重に耐える増ちょう剤膜が形成される。それにより、このグリース封入軸受は、軌道輪における最大接触面圧が2000MPa以上の高荷重条件、かつ、臨界揺動角未満の条件で使用可能である。そのため、汎用の深溝玉軸受ではフレッチング摩耗が起こりやすい、高精度を必要とする用途にも、グリース封入軸受を適用できる。前記軌道輪における最大接触面圧は、2300MPa以上であることがより好ましく、2700MPa以上であることがさらに好ましい。 In the grease-filled bearing of this embodiment, the grease thickener is a calcium sulfonate composite soap. Therefore, a thickener film that can withstand a high load is formed. As a result, this grease-filled bearing can be used under high load conditions in which the maximum contact surface pressure on the bearing ring is 2000 MPa or more and under conditions of less than the critical rocking angle. Therefore, grease-filled bearings can be applied to applications requiring high precision, where fretting wear is likely to occur in general-purpose deep groove ball bearings. The maximum contact surface pressure of the bearing ring is more preferably 2300 MPa or more, further preferably 2700 MPa or more.
 グリース封入軸受がアンギュラ玉軸受である場合の臨界揺動角は、内輪揺動の場合、以下の関係で表される。
 臨界揺動角=(360°/Z)・(Dpw/(Dpw-DwCOSα1))
 上式中、Zは単列アンギュラ玉軸受の一列当たりの玉数、Dpwは玉のピッチ円径、Dwは玉の直径、α1は接触角を意味する。なお、外輪揺動の場合は、右辺分母はDpw+DwCOSα1となる。
The critical swing angle when the grease-filled bearing is an angular contact ball bearing is expressed by the following relationship in the case of inner ring swing.
Critical swing angle = (360°/Z) (Dpw/(Dpw-DwCOSα1))
In the above formula, Z is the number of balls per row of the single-row angular contact ball bearing, Dpw is the pitch circle diameter of the balls, Dw is the diameter of the balls, and α1 is the contact angle. In the case of outer ring oscillation, the denominator on the right side is Dpw+DwCOSα1.
 <作用効果>
 以上説明したパラレルリンク機構9によると、基端側のリンクハブ12と先端側のリンクハブ13と3組以上のリンク機構14とで、基端側のリンクハブ12に対し先端側のリンクハブ13が直交2軸周りに回転自在な2自由度機構が構成される。言い換えると、基端側のリンクハブ12に対して先端側のリンクハブ13を、回転が2自由度で姿勢変更自在である。この2自由度機構は、コンパクトでありながら、基端側のリンクハブ12に対する先端側のリンクハブ13の可動範囲を広くとれる。
<Effect>
According to the parallel link mechanism 9 described above, the link hub 12 on the proximal side, the link hub 13 on the distal side, and the three or more sets of link mechanisms 14 are configured to connect the link hub 13 on the distal side to the link hub 12 on the proximal side. constitutes a two-degree-of-freedom mechanism that is rotatable around two orthogonal axes. In other words, the posture of the link hub 13 on the distal end side can be changed with two degrees of freedom in rotation relative to the link hub 12 on the proximal end side. This two-degrees-of-freedom mechanism is compact, but allows a wide movable range of the link hub 13 on the distal side with respect to the link hub 12 on the proximal side.
 本パラレルリンク機構9は、作動範囲となる最大折れ角θmaxに対し、各回転対偶部が±θmax/2付近となる揺動運動を行う。転動体4の公転運動は前記回転対偶部の揺動運動の1/2となる。また、パラレルリンク機構9の剛性は、軸受23のモーメント剛性に寄与する部分が大きく、軸受23を高予圧状態で使用する場合が多い。このような本パラレルリンク機構9の回転対偶部に、以下のグリース組成物grが封入されたグリース封入軸受を適用する。グリース組成物grは、基油と増ちょう剤とを含み、混和ちょう度が310以上であり、増ちょう剤はカルシウムスルホネート複合石鹸である。これにより、転動体4と軌道輪の接触部分へのグリースの流入性が良好となり、耐フレッチング摩耗性に優れる。また、回転対偶部にグリース封入軸受を使用すると、高予圧状態で軸受23を微小揺動させても、その後の回転時の引っ掛かりが低減され高速動作が可能となる。したがって、広作動範囲で高速動作が可能で、かつ長寿命化と滑らかな動きを実現するパラレルリンク機構9を実現できる。 The parallel link mechanism 9 performs a swinging motion in which each rotating pair portion is in the vicinity of ±θmax/2 with respect to the maximum bending angle θmax, which is the operating range. The revolving motion of the rolling elements 4 is 1/2 of the rocking motion of the rotating pair. Further, the rigidity of the parallel link mechanism 9 largely contributes to the moment rigidity of the bearing 23, and the bearing 23 is often used in a high preload state. A grease-encapsulated bearing in which the following grease composition gr is enclosed is applied to the rotating pair portion of the parallel link mechanism 9 as described above. The grease composition gr contains a base oil and a thickener, has a worked penetration of 310 or more, and the thickener is a calcium sulfonate complex soap. As a result, the inflow of grease to the contact portion between the rolling elements 4 and the bearing ring is improved, and the fretting wear resistance is excellent. Further, if a grease-filled bearing is used in the rotating pair portion, even if the bearing 23 is slightly oscillated in a high preload state, catching during subsequent rotation is reduced and high-speed operation becomes possible. Therefore, it is possible to realize the parallel link mechanism 9 that is capable of high-speed operation over a wide operating range, and that realizes a long life and smooth movement.
 パラレルリンク機構9の剛性は、軸受23のモーメント剛性に大きく寄与する。そのため、回転対偶部に適用する軸受23として背面合わせで使用する組合せアンギュラ玉軸受を使用することで、安価な軸受構成で軸受23のモーメント剛性を高くできる。これにより、パラレルリンク機構9の剛性を高めると共にコスト低減を図れる。 The rigidity of the parallel link mechanism 9 greatly contributes to the moment rigidity of the bearing 23. Therefore, by using a back-to-back combination angular contact ball bearing as the bearing 23 applied to the rotating pair portion, the moment rigidity of the bearing 23 can be increased with an inexpensive bearing structure. As a result, the rigidity of the parallel link mechanism 9 can be increased and the cost can be reduced.
 組合せアンギュラ玉軸受が、反合わせ面側である軸方向外側面にシール部材6を備えている場合、必要最低限の部品で、軸受23に異物が侵入することおよび軸受23からのグリース漏れを防止できる。また、パラレルリンク機構9の組立時に設置する軸受23の向きを、シール部材6の有無で容易に判断できる。そのため、組立性が向上し、コスト低減に繋がる。 When the paired angular contact ball bearing is provided with a seal member 6 on the axial outer surface opposite to the mating surface, the minimum number of parts is required to prevent foreign matter from entering the bearing 23 and grease leakage from the bearing 23. can. Also, the orientation of the bearings 23 installed when the parallel link mechanism 9 is assembled can be easily determined by the presence or absence of the seal member 6 . Therefore, assemblability is improved, leading to cost reduction.
 <他の実施形態について>
 以下の説明においては、各実施形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成は同一の作用効果を奏する。各実施形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施形態同士を部分的に組合せることも可能である。
<About other embodiments>
In the following description, the same reference numerals are given to the parts corresponding to the items previously described in each embodiment, and redundant description is omitted. When only a portion of the configuration is described, the other portions of the configuration are the same as those previously described unless otherwise specified. The same configuration has the same effect. It is possible not only to combine the parts specifically described in each embodiment, but also to partially combine the embodiments if there is no problem with the combination.
 [第2の実施形態:図6~図8]
 図6に示すパラレルリンク機構9では、基端側のアーム長L2Aと先端側のアーム長L2Bとが異なっている。図7は、図6のVII-VII線の一部断面図である。図8は、図6のVIII-VIII線の一部断面図である。図6に示すように、基端側の球面リンク中心PAから基端側の端部リンク部材15と中央リンク部材17との各回転対偶中心点C1A(図7)までの距離(以下、「リンク長」とする)L1A(図7)は互いに同じである。同様に、先端側の球面リンク中心PBから先端側の端部リンク部材16と中央リンク部材17との各回転対偶中心点C1B(図8)までの距離(以下、「リンク長」とする)L1B(図8)は互いに同じである。これら基端側のリンク長L1Aと、先端側のリンク長L1Bは同じである。
[Second Embodiment: FIGS. 6 to 8]
In the parallel link mechanism 9 shown in FIG. 6, the arm length L2A on the proximal end side and the arm length L2B on the distal end side are different. 7 is a partial cross-sectional view taken along line VII-VII of FIG. 6. FIG. 8 is a partial cross-sectional view taken along line VIII-VIII of FIG. 6. FIG. As shown in FIG. 6, the distance from the center PA of the spherical link on the proximal side to the center point C1A (FIG. 7) of each rotation pair between the end link member 15 and the central link member 17 on the proximal side (hereinafter referred to as "link L1A (FIG. 7) are identical to each other. Similarly, the distance (hereinafter referred to as "link length") L1B from the center PB of the spherical link on the tip side to the center point C1B (FIG. 8) of each rotational pair between the end link member 16 and the center link member 17 on the tip side (FIG. 8) are identical to each other. The link length L1A on the proximal end side and the link length L1B on the distal end side are the same.
 これに対し、基端側の球面リンク中心PAから基端側のリンクハブ12と基端側の端部リンク部材15との各回転対偶中心点C2A(図7)までの距離(以下、「アーム長」とする)をL2Aとする。同様に、先端側の球面リンク中心PBから先端側のリンクハブ13と先端側の端部リンク部材16との各回転対偶中心点C2B(図8)までの距離(以下、「アーム長」とする)をL2Bとする。これら基端側のリンク長L2Aと、先端側のリンク長L2Bは異なる。この実施形態の場合、基端側のアーム長L2Aが、先端側のアーム長L2Bよりも長い(L2A>L2B)。 On the other hand, the distance from the base end spherical link center PA to each rotation pair center point C2A (FIG. 7) between the base end link hub 12 and the base end link member 15 (hereinafter referred to as "arm ) is L2A. Similarly, the distance from the center PB of the spherical link on the tip side to the center point C2B (FIG. 8) of the link hub 13 on the tip side and the end link member 16 on the tip side (hereinafter referred to as "arm length") ) is L2B. The link length L2A on the proximal end side and the link length L2B on the distal end side are different. In this embodiment, the proximal arm length L2A is longer than the distal arm length L2B (L2A>L2B).
 ここで、回転対偶中心点C1A(図7),C1B(図8),C2A(図7),C2B(図8)は、各回転対偶部における回転対偶軸O1A,O1B,O2A,O2Bに沿う端部リンク部材15,16の幅方向の中心点を指す。 Here, the rotational pair center points C1A (FIG. 7), C1B (FIG. 8), C2A (FIG. 7), and C2B (FIG. 8) are the edges along the rotational pair axes O1A, O1B, O2A, and O2B in each rotational pair portion. It indicates the central point of the width direction of the partial link members 15 and 16 .
 このパラレルリンク機構9は、基端側のアーム長L2Aと先端側のアーム長L2Bとが異なっている。このため、設計自由度が広がり、可動範囲の拡大および先端側の軽量化等を行うための設計変更が容易である。基端側のアーム長L2Aと先端側のアーム長L2Bとが異なっていても、基端側と先端側とが幾何学的に同一形状であれば、基端側のリンクハブ12に対して先端側のリンクハブ13が回転2自由度で姿勢変更可能な2自由度機構が構成される。 The parallel link mechanism 9 has an arm length L2A on the proximal end side and an arm length L2B on the distal end side. Therefore, the degree of freedom in design is increased, and design changes for expanding the movable range and reducing the weight of the distal end are facilitated. Even if the arm length L2A on the proximal side and the arm length L2B on the distal side are different, if the proximal side and the distal side have the same shape geometrically, the distal end of the link hub 12 on the proximal side is A two-degrees-of-freedom mechanism is configured in which the side link hub 13 can change its posture with two degrees of freedom in rotation.
 この実施形態のように、先端側のアーム長L2Bが基端側のアーム長L2Aよりも短い場合、パラレルリンク機構9の構成部品同士が干渉しにくくなり、コンパクトな構成で可動範囲を広くとれる。また、先端側を軽量化できるため、先端側の慣性モーメントが小さくなり、高速動作が可能になる。その他前述の実施形態と同様の作用効果を奏する。 As in this embodiment, when the arm length L2B on the distal end side is shorter than the arm length L2A on the proximal end side, the constituent parts of the parallel link mechanism 9 are less likely to interfere with each other, and a compact configuration can have a wide movable range. In addition, since the weight of the tip side can be reduced, the moment of inertia of the tip side becomes small, and high-speed operation becomes possible. Other effects similar to those of the above-described embodiment are obtained.
 <リンク作動装置(第3の実施形態):図9~図12>
 図9に示すように、リンク作動装置7は、第1および第2のの実施形態のいずれかに係るパラレルリンク機構9と、このパラレルリンク機構9の先端側のリンクハブ13の姿勢を任意に制御する姿勢制御用アクチュエータ10とを備える。
<Link actuating device (third embodiment): FIGS. 9 to 12>
As shown in FIG. 9, the link actuating device 7 can arbitrarily change the attitude of the parallel link mechanism 9 according to any one of the first and second embodiments and the link hub 13 on the distal end side of the parallel link mechanism 9. and an attitude control actuator 10 to control.
 <姿勢制御用アクチュエータ>
 姿勢制御用アクチュエータ10は、図11Bに示す減速機構52を備えたロータリアクチュエータであり、基端側のリンクハブ12の基端部材6(図10)の表面に回転軸22と同軸上に設置されている。姿勢制御用アクチュエータ10は減速機構52と一体に設けられ、モータ固定部材53により減速機構52が基端部材6(図10)に固定されている。なお、姿勢制御用アクチュエータ10は、ブレーキ付きのものを使用してもよい。
<Attitude control actuator>
The attitude control actuator 10 is a rotary actuator provided with a speed reduction mechanism 52 shown in FIG. ing. The attitude control actuator 10 is provided integrally with a speed reduction mechanism 52 , and the speed reduction mechanism 52 is fixed to the base end member 6 ( FIG. 10 ) by a motor fixing member 53 . The attitude control actuator 10 may be equipped with a brake.
 この例では、図11Aに示すように、3組のリンク機構14のすべてに姿勢制御用アクチュエータ10が設けられているが、3組のリンク機構14のうち少なくとも2組に姿勢制御用アクチュエータ10を設ければ、基端側のリンクハブ12に対する先端側のリンクハブ13の姿勢を確定することができる。 In this example, as shown in FIG. 11A, all three sets of link mechanisms 14 are provided with attitude control actuators 10, but at least two of the three sets of link mechanisms 14 are provided with attitude control actuators 10. If provided, the posture of the link hub 13 on the distal side with respect to the link hub 12 on the proximal side can be determined.
 図10に示すように、リンク作動装置7は、各姿勢制御用アクチュエータ10を回転駆動することで、パラレルリンク機構9が作動する。詳しくは、姿勢制御用アクチュエータ10を回転駆動すると、その回転が図11Bに示す減速機構52を介して減速して回転軸22に伝達される。それにより図12に示すように、基端側のリンクハブ12に対する先端側のリンクハブ13の姿勢が任意に変更される。先端側のリンクハブ13の先端部材40には、図示外のエンドエフェクタが取り付けられている。エンドエフェクタは、例えば、グリッパを含むハンド、洗浄用ノズル、ディスペンサ、溶接トーチ、画像処理機器等が挙げられる。 As shown in FIG. 10, the link actuating device 7 actuates the parallel link mechanism 9 by rotationally driving each attitude control actuator 10 . Specifically, when the attitude control actuator 10 is rotationally driven, the rotation is decelerated and transmitted to the rotating shaft 22 via the deceleration mechanism 52 shown in FIG. 11B. As a result, as shown in FIG. 12, the posture of the link hub 13 on the distal side with respect to the link hub 12 on the proximal side is arbitrarily changed. An end effector (not shown) is attached to the tip member 40 of the link hub 13 on the tip side. Examples of end effectors include hands including grippers, cleaning nozzles, dispensers, welding torches, image processing equipment, and the like.
 本リンク作動装置7は、細かい動きを高速で動作することが可能である。そのため、「動作-停止-エンドエフェクタで作業」を頻繁に繰り返して使用される場合が多く、その都度、図11Bに示す軸受23に加えられる加速度および減速度が大きくなり、それにともない軸受23に生じるすべりが大きくなってきている。 This link actuating device 7 is capable of performing fine movements at high speed. Therefore, in many cases, the operation-stop-work with the end effector is frequently repeated, and each time the acceleration and deceleration applied to the bearing 23 shown in FIG. Slippage is increasing.
 また、図12に示すリンク作動装置7の作動範囲となる最大折れ角θmax[deg]に対し、各回転対偶部が±θmax/2[deg]付近となる揺動運動を行う。このため、リンク作動装置7は、一般的なロボットよりも回転対偶部の揺動角が小さい。また、リンク作動装置7の剛性は、軸受のモーメント剛性に寄与する部分が大きく、軸受23を高予圧状態で使用する場合が多い。前記回転対偶部に、前述のグリース組成物が封入されたグリース封入軸受を適用することで、耐フレッチング摩耗性に優れる。 In addition, each rotating pair performs a swinging motion in the vicinity of ±θmax/2 [deg] with respect to the maximum bending angle θmax [deg], which is the operating range of the link actuating device 7 shown in FIG. 12 . Therefore, the link actuating device 7 has a swing angle of the rotating pair smaller than that of a general robot. Further, the rigidity of the link actuating device 7 largely contributes to the moment rigidity of the bearing, and the bearing 23 is often used in a high preload state. By applying the grease-encapsulated bearing in which the above-described grease composition is encapsulated to the rotating pair portion, the fretting wear resistance is excellent.
 また、回転対偶部に前記グリース封入軸受を使用すると、高予圧状態で軸受23を微小揺動させても、その後の回転時の引っ掛かりが低減され高速動作が可能となる。したがって、広作動範囲で高速動作が可能で、かつ長寿命化と滑らかな動きを実現するリンク作動装置7を実現できる。 In addition, if the grease-filled bearing is used in the rotating mating part, even if the bearing 23 is slightly oscillated in a high preload state, the catching during subsequent rotation is reduced and high-speed operation is possible. Therefore, it is possible to realize the link actuating device 7 that is capable of high-speed operation in a wide operating range and that achieves a long life and smooth movement.
 グリース封入軸受の増ちょう剤は、後述する実施例に示すように、増ちょう剤がリチウム石鹸であってもよい。この場合、増ちょう剤がカルシウムスルホネート複合石鹸であるグリース封入軸受よりもシール性が劣るものの十分な耐フレッチング摩耗性を有する。アンギュラ玉軸受を正面合わせとした組合せアンギュラ玉軸受とすることも可能である。グリース封入軸受は、アンギュラ玉軸受に代えて、深溝玉軸受またはクロスローラー軸受としてもよい。各回転対偶部における一部の回転対偶部のみ、本発明のグリース封入軸受を採用してもよい。 The thickener of the grease-filled bearing may be lithium soap, as shown in the examples described later. In this case, although the sealing performance is inferior to that of the grease-encapsulated bearing in which the thickener is a calcium sulfonate complex soap, it has sufficient fretting wear resistance. It is also possible to use a combined angular contact ball bearing in which the angular contact ball bearings are face-to-face. The grease-filled bearings may be deep groove ball bearings or cross roller bearings instead of angular ball bearings. The grease-filled bearing of the present invention may be adopted only for some of the rotating pair portions.
 垂直多関節ロボットまたは水平多関節ロボットの関節機構における回転対偶部に、前述のグリース組成物が封入されたグリース封入軸受を適用してもよい。 A grease-encapsulated bearing containing the grease composition described above may be applied to the joint mechanism of a vertical articulated robot or a horizontal articulated robot.
 以下、実施例により本発明をより詳細に説明するが、本発明は本実施例により何ら限定されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited by these examples.
 表1に示す組成のグリース組成物7種を調整した。実施例1および実施例2のグリース組成物は、増ちょう剤がカルシウムスルホネート複合石鹸であり、混和ちょう度は、NLGI番号で1号(310~340)である。実施例3のグリース組成物は増ちょう剤がリチウム石鹸であり、混和ちょう度は、NLGI番号で0号(355~385)である。 Seven types of grease compositions having the compositions shown in Table 1 were prepared. In the grease compositions of Examples 1 and 2, the thickener is a calcium sulfonate complex soap, and the worked penetration is NLGI No. 1 (310 to 340). The grease composition of Example 3 contains lithium soap as a thickener and has a worked penetration of NLGI No. 0 (355 to 385).
 (1)耐フレッチング摩耗性試験
 シール付きアンギュラ玉軸受を背面合わせした組合せアンギュラ玉軸受、つまりシール付きアンギュラ玉軸受DBセットにつき、ファフナー型微動摩耗試験を行い、上記7種の各グリースの耐フレッチング摩耗性を評価した。試験条件は、ASTM D 4170に準拠した。具体的には、グリース封入量1±0.05gとし、大気中、室温下でモータを回転させ、揺動角12deg、揺動サイクル30Hzの条件で試験を行った。試験後の軌道輪の質量の減少量(以下、「摩耗量」という)により、耐フレッチング摩耗性を評価した。
(1) Fretting wear resistance test A Fafner type micro-movement wear test was performed on a combined angular contact ball bearing in which sealed angular contact ball bearings were aligned back to back, that is, a DB set of sealed angular contact ball bearings, and the fretting wear resistance of each of the above seven types of grease was tested. evaluated the sex. The test conditions conformed to ASTM D4170. Specifically, the amount of grease was 1±0.05 g, the motor was rotated in the atmosphere at room temperature, and the test was conducted under the conditions of a swing angle of 12 degrees and a swing cycle of 30 Hz. The fretting wear resistance was evaluated based on the amount of decrease in mass of the bearing ring after the test (hereinafter referred to as "amount of wear").
 荷重条件は以下の2つの水準で評価した。1つ目の条件は、ASTM D 4170に準拠して接触面圧を1700MPaとし(以下、「低面圧」という)。2つ目の条件は、高モーメント荷重を想定し、接触面圧を3000MPaとした(以下、「高面圧」という)。 The load conditions were evaluated according to the following two levels. The first condition is a contact surface pressure of 1700 MPa in accordance with ASTM D 4170 (hereinafter referred to as "low surface pressure"). The second condition assumed a high moment load and set the contact surface pressure to 3000 MPa (hereinafter referred to as "high surface pressure").
 耐フレッチング摩耗性の試験結果を図5A、図5Bおよび表1に示す。図5A、図5Bには、各グリースについて3つの試料を用いた試験で得られた摩耗量と混和ちょう度の関係を示す。図5Aは低面圧条件での結果であり、図5Bは高面圧条件での結果である。図5A、図5B中の点線で表す基準線は実使用条件下(加減速を伴って軸受回転方向が変化して揺動する条件下)でフレッチング摩耗が発生しないグリースをもとに決定した。  Fretting wear resistance test results are shown in Figures 5A and 5B and Table 1. 5A and 5B show the relationship between the amount of wear and the worked penetration obtained in tests using three samples for each grease. FIG. 5A shows the results under low surface pressure conditions, and FIG. 5B shows the results under high surface pressure conditions. The reference line represented by the dotted line in FIGS. 5A and 5B was determined based on grease that does not cause fretting wear under actual use conditions (under conditions where the bearing rotation direction changes and oscillates with acceleration/deceleration).
 表1のファフナー試験摩耗量の低面圧、高面圧の欄には、それぞれ、各条件での3つの試料の摩耗量の平均値が、所定の値よりも多いが否かにより判断した耐フレッチング摩耗性の結果を記載する。
〇: 基準線以下
×: 基準線以上
In the columns of low surface pressure and high surface pressure of the Fafner test wear amount in Table 1, the average value of the wear amount of the three samples under each condition is greater than a predetermined value. The fretting wear results are described.
〇: Below reference line ×: Above reference line
 (2)軸受シール性試験
 上記7種のグリースを封入したシール付きアンギュラ玉軸受DBセット(軸受内径6mm)について臨界揺動角未満(臨界揺動角は44.8deg)での軸受揺動試験を3つの試料を用いて実施し、目視によりグリース漏れの有無を確認した。軸受シール性は、軸受揺動試験実施後の軸受から、外観上グリースの漏れが確認できるか否かにより判断した。この場合に、全ての軸受でグリース漏れなしのとき軸受シール性が良好と判断し、1つ以上の軸受でグリース漏れありのとき軸受シール性が劣ると判断した。
(2) Bearing sealing property test A bearing rocking test was performed at less than the critical rocking angle (critical rocking angle is 44.8 degrees) for the sealed angular contact ball bearing DB set (bearing inner diameter 6 mm) filled with the above 7 types of grease. Three samples were used, and the presence or absence of grease leakage was visually confirmed. The bearing sealing property was judged by whether or not the leakage of grease could be confirmed from the appearance of the bearing after the bearing rocking test was carried out. In this case, it was judged that the bearing sealing property was good when there was no grease leakage from all bearings, and the bearing sealing property was judged to be poor when there was grease leakage from one or more bearings.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図5A、図5Bの結果から、混和ちょう度の数値が高いほど摩耗量が低下し、耐フレッチング摩耗性が良化することがわかる。また、荷重条件が高面圧条件の場合、低面圧条件の場合と比べ、全体的に摩耗量が大きくなる傾向を示した。高面圧条件であっても、実施例1、実施例2、および実施例3は比較的低摩耗量であったことから、増ちょう剤に金属石けん基(カルシウムスルホネート複合石鹸またはリチウム石鹸)を含み、混和ちょう度が310以上のグリースでは、摩耗量が低くなり、耐フレッチング摩耗性に優れる結果であった。 From the results of FIGS. 5A and 5B, it can be seen that the higher the worked penetration value, the lower the wear amount and the better the fretting wear resistance. In addition, when the load condition is a high surface pressure condition, the amount of wear tends to increase overall compared to the case of a low surface pressure condition. The amount of wear in Examples 1, 2, and 3 was relatively low even under high surface pressure conditions. In addition, grease with a worked penetration of 310 or more resulted in a low wear amount and excellent fretting wear resistance.
 また、実施例1、実施例2、比較例1、比較例2、および参考提案例2では、グリース漏れは確認されず、混和ちょう度がNLGI番号で2号(265~295)、または増ちょう剤としてカルシウムスルホネート複合石鹸を含んだグリースは軸受シール性が良好であることが分かった。 In addition, in Example 1, Example 2, Comparative Example 1, Comparative Example 2, and Reference Proposal Example 2, no grease leakage was confirmed, and the worked penetration was NLGI No. 2 (265 to 295) or increased penetration. It was found that grease containing calcium sulfonate complex soap as an agent has good bearing sealing properties.
 実施例2と参考提案例1を比較すると、両者は基油がともに合成炭化水素油で、混和ちょう度も同じであるが、増ちょう剤としてウレア化合物を含む参考提案例1は、カルシウムスルホネート複合石鹸を含む実施例2よりもシール性が劣る結果であった。増ちょう剤としてのカルシウムスルホネート複合石鹸は、せん断応力を受けた際のチキソトロピー性が低く、グリースのちょう度変化が小さいことが知られている(非特許文献1)。よって、増ちょう剤としてカルシウムスルホネート複合石鹸を使用することで、他の増ちょう剤を用いた場合に比べて運転時のグリースのちょう度変化が少なく、非運転時の混和ちょう度が比較的高い水準でも、良好なシール性を発現したと考えられる。 Comparing Example 2 and Reference Proposal Example 1, both base oils are synthetic hydrocarbon oils and the worked penetration is the same, but Reference Proposal Example 1 containing a urea compound as a thickener is a calcium sulfonate composite The sealing performance was inferior to that of Example 2 containing soap. Calcium sulfonate complex soaps as thickeners are known to have low thixotropy when subjected to shear stress and small changes in grease consistency (Non-Patent Document 1). Therefore, by using a calcium sulfonate complex soap as a thickener, the change in grease consistency during operation is smaller than when using other thickeners, and the worked penetration during non-operation is relatively high. It is considered that even at the level, good sealing performance was exhibited.
 以上より、耐フレッチング摩耗性および軸受シール性試験の結果を総合すると、実施例1および実施例2は、耐フレッチング摩耗性およびシール性ともに良好な結果を示した。本結果より、増ちょう剤としてカルシウムスルホネート複合石鹸を用い、基油として鉱油または合成炭化水素油を含み、混和ちょう度が310~340のグリースとすることは、耐フレッチング摩耗性とシール性の両立に効果的といえる。 From the above, when the results of the fretting wear resistance and bearing sealing performance tests are summarized, Examples 1 and 2 showed good results in both fretting wear resistance and sealing performance. From these results, it was found that using a calcium sulfonate complex soap as a thickener, containing a mineral oil or a synthetic hydrocarbon oil as a base oil, and having a worked penetration of 310 to 340 makes it possible to achieve both fretting wear resistance and sealing performance. It can be said that it is effective for
 <参考提案例1>
 前記実施例の参考提案例1より、パラレルリンク機構において、グリース封入軸受の増ちょう剤として「ウレア化合物」を適用することも考えられる。この場合、カルシウムスルホネート複合石鹸を含む実施例1,2よりもシール性が劣るものの、低面圧の耐フレッチング摩耗性に優れる。
<Reference Proposal Example 1>
According to Reference Proposal Example 1 of the above embodiment, it is possible to apply a "urea compound" as a thickening agent to a grease-filled bearing in a parallel link mechanism. In this case, although the sealing properties are inferior to those of Examples 1 and 2 containing the calcium sulfonate complex soap, the fretting wear resistance at low surface pressure is excellent.
 この参考提案例1に係るパラレルリンク機構は、以下のように記載される。
 基端側のリンクハブに対し先端側のリンクハブが3組以上のリンク機構を介して姿勢を変更可能に連結され、前記各リンク機構が、前記基端側のリンクハブに一端が回転可能に連結された基端側の端部リンク部材と、前記先端側のリンクハブに一端が回転可能に連結された先端側の端部リンク部材と、これら基端側および先端側の端部リンク部材の他端に両端がそれぞれ回転可能に連結された中央リンク部材とを有し、
 前記基端側のリンクハブと前記基端側の端部リンク部材との回転対偶部、前記基端側の端部リンク部材と前記中央リンク部材との回転対偶部、前記先端側の端部リンク部材と前記中央リンク部材との回転対偶部、および前記先端側のリンクハブと前記先端側の端部リンク部材との回転対偶部を含む各回転対偶部に軸受がそれぞれ設けられ、複数の前記軸受における少なくとも1つの軸受は、軌道輪である内外輪と、これら内外輪間に介在する複数の転動体と、前記内外輪間の軸受空間に封入されたグリース組成物とを備えたグリース封入軸受であるパラレルリンク機構であって、
 前記グリース組成物は、基油と増ちょう剤とを含み、混和ちょう度が310以上であり、
 前記増ちょう剤はウレア化合物である、パラレルリンク機構。
The parallel link mechanism according to this reference proposal example 1 is described as follows.
A link hub on the distal end side is connected to a link hub on the proximal side via three or more sets of link mechanisms so as to be able to change their attitudes, and one end of each of the link mechanisms is rotatable with respect to the link hub on the proximal side. A proximal side end link member connected, a distal side end link member having one end rotatably connected to the distal side link hub, and these proximal side and distal side end link members. a central link member having both ends rotatably connected to the other end,
A rotational pair portion between the proximal link hub and the proximal end link member, a rotational pair portion between the proximal end link member and the central link member, and the distal end link. A bearing is provided at each rotational pair portion including a rotational pair portion between the member and the central link member and a rotational pair portion between the tip side link hub and the tip side end link member, and a plurality of the bearings at least one bearing in is a grease-filled bearing comprising inner and outer rings that are bearing rings, a plurality of rolling elements interposed between the inner and outer rings, and a grease composition sealed in the bearing space between the inner and outer rings A parallel link mechanism,
The grease composition contains a base oil and a thickener and has a worked penetration of 310 or more,
The parallel link mechanism, wherein the thickener is a urea compound.
 <参考提案例2>
 前記実施例の参考提案例2より、パラレルリンク機構において、グリース封入軸受のグリース組成物の混和ちょう度が265以上295以下で、かつ、増ちょう剤として「ウレア化合物」を適用することも考えられる。この場合、高面圧の耐フレッチング摩耗性に劣るものの、低面圧の耐フレッチング摩耗性に優れるうえシール性に優れる。
<Reference Proposal Example 2>
From Reference Proposal Example 2 of the above embodiment, it is conceivable that in the parallel link mechanism, the mixed penetration of the grease composition of the grease-filled bearing is 265 or more and 295 or less, and a "urea compound" is applied as a thickener. . In this case, although the fretting wear resistance at high surface pressure is inferior, the fretting wear resistance at low surface pressure is excellent and the sealing performance is excellent.
 この参考提案例2に係るパラレルリンク機構は、以下のように記載される。
 基端側のリンクハブに対し先端側のリンクハブが3組以上のリンク機構を介して姿勢を変更可能に連結され、前記各リンク機構が、前記基端側のリンクハブに一端が回転可能に連結された基端側の端部リンク部材と、前記先端側のリンクハブに一端が回転可能に連結された先端側の端部リンク部材と、これら基端側および先端側の端部リンク部材の他端に両端がそれぞれ回転可能に連結された中央リンク部材とを有し、
 前記基端側のリンクハブと前記基端側の端部リンク部材との回転対偶部、前記基端側の端部リンク部材と前記中央リンク部材との回転対偶部、前記先端側の端部リンク部材と前記中央リンク部材との回転対偶部、および前記先端側のリンクハブと前記先端側の端部リンク部材との回転対偶部を含む各回転対偶部に軸受がそれぞれ設けられ、複数の前記軸受における少なくとも1つの軸受は、軌道輪である内外輪と、これら内外輪間に介在する複数の転動体と、前記内外輪間の軸受空間に封入されたグリース組成物とを備えたグリース封入軸受であるパラレルリンク機構であって、
 前記グリース組成物は、基油と増ちょう剤とを含み、混和ちょう度が265以上295以下であり、前記増ちょう剤はウレア化合物である、パラレルリンク機構。
The parallel link mechanism according to the reference proposal example 2 is described as follows.
A link hub on the distal end side is connected to a link hub on the proximal side via three or more sets of link mechanisms so as to be able to change their attitudes, and one end of each of the link mechanisms is rotatable with respect to the link hub on the proximal side. A proximal side end link member connected, a distal side end link member having one end rotatably connected to the distal side link hub, and these proximal side and distal side end link members. a central link member having both ends rotatably connected to the other end,
A rotational pair portion between the proximal link hub and the proximal end link member, a rotational pair portion between the proximal end link member and the central link member, and the distal end link. A bearing is provided at each rotational pair portion including a rotational pair portion between the member and the central link member and a rotational pair portion between the tip side link hub and the tip side end link member, and a plurality of the bearings at least one bearing in is a grease-filled bearing comprising inner and outer rings that are bearing rings, a plurality of rolling elements interposed between the inner and outer rings, and a grease composition sealed in the bearing space between the inner and outer rings A parallel link mechanism,
The parallel link mechanism, wherein the grease composition contains a base oil and a thickener, has a worked penetration of 265 or more and 295 or less, and the thickener is a urea compound.
 本発明は、以上の実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 The present invention is not limited to the above embodiments, and various additions, changes, or deletions are possible without departing from the scope of the present invention. Accordingly, such are also included within the scope of this invention.
 2…内輪
3…外輪
4…転動体
6…シール部材
9…パラレルリンク機構(関節機構)
10…姿勢制御用アクチュエータ
12…基端側のリンクハブ
13…先端側のリンクハブ
14…リンク機構
15…基端側の端部リンク部材
16…先端側の端部リンク部材
17…中央リンク部材
23…軸受
gr…グリース組成物
2... Inner ring 3... Outer ring 4... Rolling element 6... Seal member 9... Parallel link mechanism (joint mechanism)
REFERENCE SIGNS LIST 10: attitude control actuator 12: proximal link hub 13: distal link hub 14: link mechanism 15: proximal end link member 16: distal end link member 17: central link member 23 ... Bearing gr ... Grease composition

Claims (11)

  1.  隣接する部材同士が回転対偶部を介して回転自在に連結され、前記回転対偶部に、グリース組成物が封入されたグリース封入軸受が設けられた関節機構であって、
     前記グリース組成物は、基油と増ちょう剤とを含み、混和ちょう度が310以上であり、
     前記増ちょう剤は、カルシウムスルホネート複合石鹸またはリチウム石鹸である、関節機構。
    A joint mechanism in which adjacent members are rotatably connected via a rotating pair, and a grease-filled bearing in which a grease composition is sealed is provided in the rotating pair,
    The grease composition contains a base oil and a thickener and has a worked penetration of 310 or more,
    A joint mechanism, wherein the thickening agent is calcium sulfonate complex soap or lithium soap.
  2.  基端側のリンクハブに対し先端側のリンクハブが3組以上のリンク機構を介して姿勢を変更可能に連結され、前記各リンク機構が、前記基端側のリンクハブに一端が回転可能に連結された基端側の端部リンク部材と、前記先端側のリンクハブに一端が回転可能に連結された先端側の端部リンク部材と、これら基端側および先端側の端部リンク部材の他端に両端がそれぞれ回転可能に連結された中央リンク部材とを有し、
     前記基端側のリンクハブと前記基端側の端部リンク部材との回転対偶部、前記基端側の端部リンク部材と前記中央リンク部材との回転対偶部、前記先端側の端部リンク部材と前記中央リンク部材との回転対偶部、および前記先端側のリンクハブと前記先端側の端部リンク部材との回転対偶部を含む各回転対偶部に軸受が設けられ、複数の前記軸受における少なくとも1つの軸受は、軌道輪である内外輪と、これら内外輪間に介在する複数の転動体と、前記内外輪間の軸受空間に封入されたグリース組成物とを備えたグリース封入軸受であるパラレルリンク機構であって、
     前記グリース組成物は、基油と増ちょう剤とを含み、混和ちょう度が310以上であり、
     前記増ちょう剤は、カルシウムスルホネート複合石鹸またはリチウム石鹸である、パラレルリンク機構。
    A link hub on the distal end side is connected to a link hub on the proximal side via three or more sets of link mechanisms so as to be able to change their attitudes, and one end of each of the link mechanisms is rotatable with respect to the link hub on the proximal side. A proximal side end link member connected, a distal side end link member having one end rotatably connected to the distal side link hub, and these proximal side and distal side end link members. a central link member having both ends rotatably connected to the other end,
    A rotational pair portion between the proximal link hub and the proximal end link member, a rotational pair portion between the proximal end link member and the central link member, and the distal end link. A bearing is provided at each rotational pair portion including a rotational pair portion between the member and the central link member, and a rotational pair portion between the link hub on the tip side and the end link member on the tip side, and in the plurality of bearings At least one bearing is a grease-filled bearing comprising inner and outer rings, which are bearing rings, a plurality of rolling elements interposed between the inner and outer rings, and a grease composition sealed in a bearing space between the inner and outer rings. A parallel link mechanism,
    The grease composition contains a base oil and a thickener and has a worked penetration of 310 or more,
    The parallel link mechanism, wherein the thickener is calcium sulfonate complex soap or lithium soap.
  3.  請求項2に記載のパラレルリンク機構において、前記グリース封入軸受は、前記軌道輪における最大接触面圧が2000MPa以上の高荷重条件、かつ、臨界揺動角未満の条件で使用されるパラレルリンク機構。 The parallel link mechanism according to claim 2, wherein the grease-filled bearing is used under a high load condition in which the maximum contact surface pressure on the bearing ring is 2000 MPa or more and under a condition of less than the critical swing angle.
  4.  請求項2または請求項3に記載のパラレルリンク機構において、前記グリース組成物は、前記増ちょう剤がカルシウムスルホネート複合石鹸で、かつ前記混和ちょう度が310~340であるパラレルリンク機構。 The parallel link mechanism according to claim 2 or claim 3, wherein the grease composition has a calcium sulfonate complex soap as the thickener and a worked penetration of 310-340.
  5.  請求項2ないし請求項4のいずれか1項に記載のパラレルリンク機構において、前記グリース組成物の前記基油が、鉱油または合成炭化水素油であるパラレルリンク機構。 The parallel link mechanism according to any one of claims 2 to 4, wherein the base oil of the grease composition is mineral oil or synthetic hydrocarbon oil.
  6.  請求項2ないし請求項5のいずれか1項に記載のパラレルリンク機構において、前記グリース封入軸受が、アンギュラ玉軸受であるパラレルリンク機構。 The parallel link mechanism according to any one of claims 2 to 5, wherein the grease-filled bearing is an angular contact ball bearing.
  7.  請求項6に記載のパラレルリンク機構において、前記アンギュラ玉軸受は、背面合わせで使用する組合せアンギュラ玉軸受であるパラレルリンク機構。 A parallel link mechanism according to claim 6, wherein said angular contact ball bearing is a combination angular contact ball bearing used back to back.
  8.  請求項7に記載のパラレルリンク機構において、前記組合せアンギュラ玉軸受は、反合わせ面側である軸方向外側面にシール部材を備えるパラレルリンク機構。 The parallel link mechanism according to claim 7, wherein the paired angular contact ball bearing has a sealing member on the axial outer surface opposite to the mating surface.
  9.  請求項2ないし請求項8のいずれか1項に記載のパラレルリンク機構における前記3組以上のリンク機構のうち2組以上のリンク機構に、前記先端側のリンクハブの姿勢を任意に制御する姿勢制御用アクチュエータを備えたリンク作動装置。 In the parallel link mechanism according to any one of claims 2 to 8, two or more link mechanisms among the three or more link mechanisms are configured to arbitrarily control the attitude of the link hub on the tip end side. A link actuator with a control actuator.
  10.  基端側のリンクハブに対し先端側のリンクハブが3組以上のリンク機構を介して姿勢を変更可能に連結され、前記各リンク機構が、前記基端側のリンクハブに一端が回転可能に連結された基端側の端部リンク部材と、前記先端側のリンクハブに一端が回転可能に連結された先端側の端部リンク部材と、これら基端側および先端側の端部リンク部材の他端に両端がそれぞれ回転可能に連結された中央リンク部材とを有するパラレルリンク機構、に使用されるグリース組成物であって、
     前記グリース組成物は、基油と増ちょう剤とを含み、混和ちょう度が310以上であり、
     前記増ちょう剤は、カルシウムスルホネート複合石鹸またはリチウム石鹸である、グリース組成物。
    A link hub on the distal end side is connected to a link hub on the proximal side via three or more sets of link mechanisms so as to be able to change their attitudes, and one end of each of the link mechanisms is rotatable with respect to the link hub on the proximal side. A proximal side end link member connected, a distal side end link member having one end rotatably connected to the distal side link hub, and these proximal side and distal side end link members. A grease composition for use in a parallel link mechanism having a central link member rotatably connected at both ends to the other end,
    The grease composition contains a base oil and a thickener and has a worked penetration of 310 or more,
    The grease composition, wherein the thickener is calcium sulfonate complex soap or lithium soap.
  11.  基端側のリンクハブに対し先端側のリンクハブが3組以上のリンク機構を介して姿勢を変更可能に連結され、前記各リンク機構が、前記基端側のリンクハブに一端が回転可能に連結された基端側の端部リンク部材と、前記先端側のリンクハブに一端が回転可能に連結された先端側の端部リンク部材と、これら基端側および先端側の端部リンク部材の他端に両端がそれぞれ回転可能に連結された中央リンク部材とを有するパラレルリンク機構に使用される軸受であり、
     前記軸受は、前記基端側のリンクハブと前記基端側の端部リンク部材との回転対偶部、前記基端側の端部リンク部材と前記中央リンク部材との回転対偶部、前記先端側の端部リンク部材と前記中央リンク部材との回転対偶部、および前記先端側のリンクハブと前記先端側の端部リンク部材との回転対偶部を含む各回転対偶部にそれぞれ設けられ、複数の前記軸受における少なくとも1つの軸受は、軌道輪である内外輪と、これら内外輪間に介在する複数の転動体と、前記内外輪間の軸受空間に封入されたグリース組成物とを備えたグリース封入軸受であって、
     前記グリース組成物は、基油と増ちょう剤とを含み、混和ちょう度が310以上であり、
     前記増ちょう剤は、カルシウムスルホネート複合石鹸またはリチウム石鹸である、
    軸受。
    A link hub on the distal end side is connected to a link hub on the proximal side via three or more sets of link mechanisms so as to be able to change their attitudes, and one end of each of the link mechanisms is rotatable with respect to the link hub on the proximal side. A proximal side end link member connected, a distal side end link member having one end rotatably connected to the distal side link hub, and these proximal side and distal side end link members. A bearing used in a parallel link mechanism having a central link member with both ends rotatably connected to the other end,
    The bearing includes a rotational pair portion between the proximal side link hub and the proximal side end link member, a rotational pair portion between the proximal side end link member and the central link member, and the distal end side. provided in each rotational pair portion including a rotational pair portion between the end link member and the central link member, and a rotational pair portion between the tip side link hub and the tip side end link member, and a plurality of At least one of the bearings includes inner and outer rings as bearing rings, a plurality of rolling elements interposed between the inner and outer rings, and a grease composition sealed in a bearing space between the inner and outer rings. a bearing,
    The grease composition contains a base oil and a thickener and has a worked penetration of 310 or more,
    The thickener is calcium sulfonate complex soap or lithium soap,
    bearing.
PCT/JP2022/032407 2021-09-03 2022-08-29 Joint mechanism, parallel link mechanism, and link actuation device WO2023032916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280059162.5A CN117881909A (en) 2021-09-03 2022-08-29 Joint mechanism, parallel link mechanism and link actuating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-144317 2021-09-03
JP2021144317A JP2023037511A (en) 2021-09-03 2021-09-03 Parallel link mechanism and link operation device

Publications (1)

Publication Number Publication Date
WO2023032916A1 true WO2023032916A1 (en) 2023-03-09

Family

ID=85412764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032407 WO2023032916A1 (en) 2021-09-03 2022-08-29 Joint mechanism, parallel link mechanism, and link actuation device

Country Status (3)

Country Link
JP (1) JP2023037511A (en)
CN (1) CN117881909A (en)
WO (1) WO2023032916A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141222A1 (en) * 2011-04-15 2012-10-18 Thk株式会社 Grease composition and motion guiding device lubricated thereby
JP2013121652A (en) * 2011-11-07 2013-06-20 Ntn Corp Parallel link mechanism, constant velocity universal joint and link actuator
JP2014005926A (en) * 2012-06-27 2014-01-16 Ntn Corp Link operation device
WO2014077090A1 (en) * 2012-11-16 2014-05-22 出光興産株式会社 Grease composition
JP2018168877A (en) * 2017-03-29 2018-11-01 Ntn株式会社 Parallel link mechanism, constant speed universal joint, and link operation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012141222A1 (en) * 2011-04-15 2012-10-18 Thk株式会社 Grease composition and motion guiding device lubricated thereby
JP2013121652A (en) * 2011-11-07 2013-06-20 Ntn Corp Parallel link mechanism, constant velocity universal joint and link actuator
JP2014005926A (en) * 2012-06-27 2014-01-16 Ntn Corp Link operation device
WO2014077090A1 (en) * 2012-11-16 2014-05-22 出光興産株式会社 Grease composition
JP2018168877A (en) * 2017-03-29 2018-11-01 Ntn株式会社 Parallel link mechanism, constant speed universal joint, and link operation device

Also Published As

Publication number Publication date
CN117881909A (en) 2024-04-12
JP2023037511A (en) 2023-03-15

Similar Documents

Publication Publication Date Title
US8003582B2 (en) Grease, rolling bearing, constant velocity joint, and rolling parts
KR101814236B1 (en) Grease composition and motion guiding device lubricated thereby
JP7127367B2 (en) ROBOT, GEAR DEVICE AND METHOD OF MANUFACTURING GEAR DEVICE
JP4884211B2 (en) Grease composition for constant velocity joint and constant velocity joint
WO2023032916A1 (en) Joint mechanism, parallel link mechanism, and link actuation device
JP4769456B2 (en) Urea-based lubricating grease composition, rolling bearing and electric power steering device
US20090050411A1 (en) Industrial Robot Lubricated with a polyglycol-Based Lubricant
US20110065515A1 (en) Constant velocity joint and method of making
JPWO2020240743A1 (en) Ball screw mechanism and linear moving device
KR20240054917A (en) Joint mechanism, parallel link mechanism and link actuation device
JP2006016481A (en) Grease composition for constant velocity joint and constant velocity joint sealed with the same
JP2006298963A (en) Grease for constant velocity joint and constant velocity joint
JP2006283830A (en) Constant velocity universal joint
JP2018053942A (en) Robot and gear device
JP4425605B2 (en) Urea-based lubricating grease composition and electric power steering device
JPH10169657A (en) Rolling device
JP2005255977A (en) Grease composition and rolling bearing
JP2006161624A (en) Spindle support device for wind power generation, and double row self-aligning roller bearing for the same
JP2007211874A (en) Electric-driven linear actuator
WO2022059638A1 (en) Grease-filled bearing
JP2006199761A (en) Constant velocity joint grease and constant velocity joint
EP2891705B1 (en) Grease composition for constant velocity joints, and constant velocity joint in which grease composition for constant velocity joints is sealed
JP2004059814A (en) Grease composition and rolling device
JP2007078120A (en) Tripod constant velocity universal joint
JP2009019129A (en) Grease for universal joint and universal joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864498

Country of ref document: EP

Kind code of ref document: A1