WO2023032814A1 - Electric discharge charge amount measuring device - Google Patents

Electric discharge charge amount measuring device Download PDF

Info

Publication number
WO2023032814A1
WO2023032814A1 PCT/JP2022/032087 JP2022032087W WO2023032814A1 WO 2023032814 A1 WO2023032814 A1 WO 2023032814A1 JP 2022032087 W JP2022032087 W JP 2022032087W WO 2023032814 A1 WO2023032814 A1 WO 2023032814A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
capacitor
terminal
value
peak
Prior art date
Application number
PCT/JP2022/032087
Other languages
French (fr)
Japanese (ja)
Inventor
輝夫 鈴木
光石 崔
裕生 長田
善也 宮林
Original Assignee
春日電機株式会社
独立行政法人労働者健康安全機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 春日電機株式会社, 独立行政法人労働者健康安全機構 filed Critical 春日電機株式会社
Priority to CN202280053473.0A priority Critical patent/CN117751293A/en
Priority to KR1020237043783A priority patent/KR20240010024A/en
Publication of WO2023032814A1 publication Critical patent/WO2023032814A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/30Measuring the maximum or the minimum value of current or voltage reached in a time interval
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/24Arrangements for measuring quantities of charge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only

Definitions

  • the present invention relates to a discharge charge amount measuring device that measures the discharge charge amount when a charged object is discharged.
  • the discharge charge amount measuring device shown in FIG. the voltage detected by the voltage measuring unit 4 is converted into a charge amount by conversion means (not shown).
  • the voltage detected by the voltage measuring unit 4 is converted into a charge amount by conversion means (not shown).
  • the tip 2a of the detection terminal 2 is brought close to the charged object 1, the electric field between the tip 2a and the charged object 1 increases.
  • a discharge is generated from 1 to the detection terminal 2 .
  • the capacitor 3 is charged with the charge that has flowed from the charged object 1 to the detection terminal 2 side.
  • the charge amount is detected by measuring the voltage V across the terminals 3a and 3b of the capacitor 3.
  • FIG. Specifically, the detected inter-terminal voltage is multiplied by the capacitance of the capacitor 3 to calculate the discharge charge amount.
  • an induced voltage is generated in the capacitor 3 due to the charge of the charged object 1 in the process of bringing the tip 2a of the detection terminal 2 closer to the charged object 1 .
  • the charged object 1 is positively charged
  • the tip 2 a approaches the charged object 1
  • the negative charge in the detection terminal 2 is attracted to the positive charge of the charged object 1 . Therefore, a positive charge is induced to one terminal 3a side of the capacitor 3.
  • FIG. Therefore, a positive induced voltage is generated between the terminals 3 a and 3 b of the capacitor 3 .
  • an induced voltage is generated between the terminals 3a and 3b of the capacitor 3 even if the charged object 1 does not discharge. Therefore, the voltage between the terminals 3a and 3b of the capacitor generated by the discharge charge amount when the discharge actually occurs is affected by the above induced voltage, and as a result, the discharge charge amount cannot be measured accurately. .
  • An object of the present invention is to provide a discharge charge amount measuring device that can accurately and easily measure the discharge charge amount of an object to be measured.
  • a first invention comprises a detection terminal brought close to an electrostatically charged object to be measured, a capacitor having one terminal connected to the detection terminal and the other terminal grounded, and a resistor connected in parallel to the capacitor.
  • voltage measuring means for measuring the voltage across the terminals of the capacitor; peak detecting means for detecting a peak value of the voltage value measured by the voltage measuring means; and detecting the peak value detected by the peak detecting means.
  • the peak detecting means samples the inter-terminal voltage measured by the voltage measuring means every preset sampling time ⁇ t, and peaks the highest sampled voltage value.
  • the capacitance C of the capacitor, the resistance value R of the resistor, and the sampling time ⁇ t are each set within a range that satisfies C ⁇ R> ⁇ t.
  • a second invention comprises a detection terminal that is brought into contact with an electrostatically charged object to be measured, a capacitor that is connected to the detection terminal and stores the discharge charge from the object to be measured, and a resistor that is connected in parallel to the capacitor.
  • a voltage measuring means for measuring the voltage across the terminals of the capacitor; a converting means for converting the voltage value measured by the voltage measuring means into a charge amount; and a peak value of the charge amount converted by the converting means.
  • peak detection means wherein the peak detection means has a function of sampling the charge amount converted by the conversion means at each preset sampling time ⁇ t and specifying the maximum value of the sampled charge amount as the peak value.
  • each of the capacitance C of the capacitor, the resistance value R of the resistor, and the sampling time ⁇ t is set within a range that satisfies CR> ⁇ t.
  • the capacitance C, the resistance value R, and the sampling time ⁇ t satisfy C ⁇ R ⁇ 50 ⁇ t.
  • the capacitance C and the resistance value R satisfy ⁇ C ⁇ R, and ⁇ satisfies 10 ⁇ 3 [seconds] ⁇ 1 [seconds].
  • the electric charge induced in the process of bringing the detection terminal close to the charged object can be released to the ground through the resistor. can be prevented from being affected by Furthermore, since the capacitance C of the capacitor and the resistance value R of the resistor are set so that the attenuation time constant of the voltage across the capacitor is greater than the sampling time ⁇ t, the peak value of the voltage across the capacitor can be specified more accurately. As a result, the amount of charge stored in the capacitor can be accurately measured.
  • the voltage peak value can be detected more accurately, and the discharge charge amount can be accurately measured.
  • the charge accumulated in the capacitor is rapidly attenuated, enabling continuous measurement.
  • FIG. 1 is a circuit diagram of a discharge charge amount measuring device according to an embodiment.
  • FIG. 2 is a graph showing changes in voltage between terminals of a capacitor.
  • FIG. 3 is a graph showing the results of charge amount measurement using the discharge charge amount measuring device of the embodiment.
  • FIG. 4 is a circuit diagram of a conventional electric charge measuring device.
  • FIG. 1 is a circuit diagram of a discharge charge amount measuring device according to an embodiment
  • FIG. 2 is a graph showing changes in voltage between terminals of a capacitor according to an embodiment
  • FIG. is a graph showing the measurement results of
  • the discharge charge amount measuring apparatus of this embodiment includes a detection terminal 2 having a tip 2a shaped to prevent corona discharge. is provided with a capacitor 3 whose terminal 3b is grounded. And, as in the conventional case, a voltage measuring section 4, which is voltage measuring means for measuring the voltage across the terminals of the capacitor 3, is provided. However, in this embodiment, a resistor 5 is connected in parallel with the capacitor 3 .
  • the capacitance of the capacitor 3 is C [F], and the resistance value of the resistor 5 is R [ ⁇ ].
  • the shape in which the corona discharge is unlikely to occur is a shape in which the discharge from the charged object 1 does not become a corona discharge that persists around a tip or the like. Specifically, it is spherical with a diameter of 20 [mm] or more. By increasing the diameter of the tip 2a of the detection terminal 2 in this way, the curvature of the spherical surface is reduced, and even if the tip 2a of the detection terminal 2 is brought close to the charged object 1, the electric field from the charged object 1 is generated at the tip 2a. It is no longer concentrated on one point on the spherical surface. Therefore, corona discharge is less likely to occur near the tip 2a of the detection terminal 2, and a pulsed discharge is generated from the charged object 1.
  • the tip 2a of the detection terminal 2 has a shape that makes it difficult for corona discharge to occur in order to enable measurement of the discharge charge amount of one pulse-like discharge generated from the charged object 1. be. Therefore, the tip 2a of the detection terminal 2 does not have to be spherical unless the surface facing the charged object 1 has a curved surface with a small curvature and does not have a sharp portion.
  • the voltage measurement unit 4 is connected to a peak detection unit 6 which is a peak detection means for detecting and holding the peak value of the voltage value measured by the voltage measurement unit 4.
  • a conversion unit 7 conversion means that converts the peak value of the voltage into the amount of charge is connected.
  • an output unit 8 is provided for outputting the value of the amount of charge converted by the conversion unit 7 .
  • the voltage measuring section 4 has a function of continuously detecting the voltage between the terminals 3 a and 3 b of the capacitor 3 .
  • the peak detection unit 6 has a function of repeatedly sampling the voltage value detected by the voltage measurement unit 4 at a sampling time ⁇ t and specifying the highest value as the peak value Vp. Specifically, the peak detector 6 samples the voltage value V1 at the start of measurement, holds the voltage value V1, samples the voltage value V2 again after the sampling time ⁇ t, and also samples the voltage value V2 . The process of comparing V2 and V1 , holding the larger value and erasing the other is repeated for a certain period of time, and the maximum value during that period is specified as the peak value Vp.
  • C ⁇ R ⁇ sampling time ⁇ t C ⁇ R ⁇ sampling time ⁇ t.
  • the above C ⁇ R corresponds to the time constant ⁇ [S] when the voltage across the terminals of the capacitor 3, which has increased due to the charging of the discharged electric charge, attenuates from the maximum voltage V0.
  • the time constant ⁇ is the time for the exponentially decaying voltage across the terminals of the capacitor 3 to decay from the maximum voltage V0 to the voltage V1 of 36.8% (see FIG. 2).
  • the output unit 8 has a function of displaying and recording the input charge amount Q value.
  • the capacitance C of the capacitor 3 is 1 [ ⁇ F]
  • the resistance value R of the resistor 5 is 100 [k ⁇ ]
  • the peak detector 6 detects and holds the peak value Vp of the voltage between the terminals of the capacitor 3 as follows.
  • the peak detection unit 6 samples the voltage V across the terminals of the capacitor 3 measured by the voltage measurement unit 4 every sampling time ⁇ t, here 2 [mS]. Then, the sampled inter-terminal voltage V is compared, the peak value Vp is specified, and the peak value Vp is input to the conversion unit 7 .
  • a value of the capacitance C of the capacitor 3 is preset in the conversion unit 7 .
  • the induced charge is allowed to flow through the resistor 5 to ground, so that the measured terminal voltage is not affected by the induced charge as in the prior art.
  • FIG. 2 is a graph of changes in the voltage V across the terminals of the capacitor 3. As shown in FIG. At the instant t0 when the discharge from the charged object 1 occurs, the discharged charge flows into the capacitor 3 at once, and the voltage across the terminals rises to V0. After that, charges flow from the capacitor 3 to the ground through the resistor 5, and the inter-terminal voltage V is attenuated. At time t1 , the voltage is attenuated to 36.8[%] of the maximum voltage V0. The time from time t0 to t1 is the time constant ⁇ .
  • the peak value Vp is specified and held based on 50 samplings within the time constant ⁇ . become.
  • the peak detector 6 detects the peak value Vp by sampling 50 times until the maximum voltage V0 attenuates to V1, so the detected Vp is close to the maximum voltage V0. becomes.
  • the charge amount measurement result using the discharge charge amount measuring device of this embodiment will be described below.
  • a commercially available film capacitor was charged with a known charge amount and used.
  • the amount of charge used in the experiment was -10000 [nC] to +10000 [nC], and the film capacitor was given ⁇ 500 [nC] and ⁇ 1000 [nC] to 1000 [nC] each.
  • the tip 2a of the detection terminal 2 was brought into contact with the charged film capacitor to discharge it, and the amount of discharged charge at that time was measured.
  • the measurement results are as shown in the graph of FIG.
  • the horizontal axis is the charge amount Q1 of the film capacitor
  • the vertical axis is the measured value Qm .
  • the measured value Qm obtained by the discharge charge amount measuring device of the embodiment coincides with the charge amount Q1 of the film capacitor, confirming the reliability of this discharge charge amount measurement device.
  • the discharge charge measuring device of the embodiment since the resistor 5 connected to the ground is provided in parallel with the capacitor 3 and the sampling time ⁇ t is set smaller than the time constant ⁇ , the discharge charge amount can be accurately measured. It became possible. The smaller the sampling time ⁇ t, the closer the value to the maximum voltage V0, that is, the more accurate peak value Vp can be identified. However, if the sampling time ⁇ t is less than the time constant ⁇ , sampling is performed at least once within the time constant ⁇ , and it is considered that sufficient detection accuracy can be obtained. , the accuracy will be further improved. Also, since the time constant ⁇ can be set by the capacitance C and the resistance value R, the time constant ⁇ can be adjusted according to the sampling time ⁇ of the peak detector 6 .
  • the capacitance C of the capacitor 3 must be increased. However, if the capacitance C is too large compared to the amount of discharged charge, the voltage across the terminals may be too small and the detection accuracy may drop. Also, depending on the magnitude of the absolute value of the voltage across the terminals of the capacitor 3, the peak detector 6, the converter 7, and the output unit 8 having corresponding capabilities are required.
  • the capacitance C of the capacitor 3, the resistance value R of the resistor 5, and the sampling time .DELTA.t may be set within a range that satisfies C.times.R>.DELTA.t according to the purpose of use.
  • the peak detector 6 specifies and holds the peak value Vp of the terminal voltage, and then converts that value into the charge amount.
  • the charge amount may be converted as it is, and then the peak value of the charge amount may be detected and held.
  • the conversion section 7 is connected between the voltage measurement section 4 and the peak detection section 6 shown in FIG.
  • the amount of electric charge discharged from a charged object can be measured simply and accurately.
  • Measurement object 2a Tip 3 (of detection terminal) Capacitors 3a, 3b (Capacitor) terminal 4 (Voltage measurement means) Voltage measurement part 5 Resistor 6 (Peak detection means) Peak detection part 7 Conversion part

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

[Problem] To provide a device capable of measuring an electric discharge charge amount more accurately by reducing the impact of an induced voltage. [Solution] This electric discharge charge amount measuring device comprises a detection terminal 2 which is brought into contact with a measurement target object 1, a capacitor 3 having one terminal 3a connected to the detection terminal 2 and another terminal 3b grounded, a resistor 5 connected in parallel with the capacitor 3, a voltage measuring means 4 for measuring a terminal-to-terminal voltage of the capacitor 3, a peak detecting means 6 for detecting a peak value of a voltage value measured by the voltage measuring means 4, and a converting means 7 for converting the peak value detected by the peak detecting means 6 into a charge amount, wherein: the peak detecting means 6 has a function of sampling the terminal-to-terminal voltage measured by the voltage measuring means 4 at each predetermined sampling time Δt, and identifying the maximum value of the sampled voltage value as the peak value; and a capacitance C of the condenser 3, a resistance value R of the resistor 5, and the sampling time Δt are each set so as to satisfy the relationship C×R>Δt.

Description

放電電荷量測定装置Discharge charge measurement device
 この発明は、帯電物体が放電したときの、放電電荷量を測定する放電電荷量測定装置に関する。 The present invention relates to a discharge charge amount measuring device that measures the discharge charge amount when a charged object is discharged.
 従来から、静電気が帯電した物体から放電が発生したときの電荷量を測定する装置が知られている。
 例えば、図4に示す放電電荷量測定装置は、帯電物体1に接近させる検出端子2にコンデンサ3を直列に接続するとともに、コンデンサ3の端子3a,3b間の電圧を測定する電圧測定部4を備え、この電圧測定部4が検出した電圧を図示しない変換手段で電荷量に変換している。このような測定装置では、帯電物体1に検出端子2の先端2aを接近させると、先端2aと帯電物体1との間の電界が大きくなり、この電界が放電開始電界強度を超えると、帯電物体1から検出端子2に向かう放電が発生する。
 この放電により帯電物体1から検出端子2側へ流れ込んだ電荷はコンデンサ3に充電される。この充電電荷量をコンデンサ3の端子3a,3b間の電圧Vを測定して検出するようにしている。具体的には、検出された端子間電圧にコンデンサ3の静電容量を掛けて、放電電荷量を算出する。
2. Description of the Related Art Conventionally, there has been known a device for measuring the amount of electric charge when a discharge occurs from an object charged with static electricity.
For example, the discharge charge amount measuring device shown in FIG. In addition, the voltage detected by the voltage measuring unit 4 is converted into a charge amount by conversion means (not shown). In such a measuring device, when the tip 2a of the detection terminal 2 is brought close to the charged object 1, the electric field between the tip 2a and the charged object 1 increases. A discharge is generated from 1 to the detection terminal 2 .
Due to this discharge, the capacitor 3 is charged with the charge that has flowed from the charged object 1 to the detection terminal 2 side. The charge amount is detected by measuring the voltage V across the terminals 3a and 3b of the capacitor 3. FIG. Specifically, the detected inter-terminal voltage is multiplied by the capacitance of the capacitor 3 to calculate the discharge charge amount.
特開2007-212208号公報Japanese Patent Application Laid-Open No. 2007-212208
 上記した測定装置は、検出端子2の先端2aを、帯電物体1に接近させる過程で、帯電物体1の電荷によってコンデンサ3に誘導電圧が発生する。
 例えば、帯電物体1がプラスに帯電していた場合、先端2aが帯電物体1に近づくと、検出端子2内のマイナス電荷が帯電物体1のプラス電荷に引き付けられる。したがって、コンデンサ3の一方の端子3a側にプラスの電荷が誘導されることになる。そのため、コンデンサ3の端子3a,3b間にはプラスの誘導電圧が発生する。
 このように、帯電物体1からの放電が発生しなくても、コンデンサ3の端子3a,3b間に誘導電圧が発生してしまう。そのため、実際に放電が発生したときの、放電電荷量によって発生するコンデンサの端子3a,3b間の電圧が、上記誘導電圧の影響を受け、その結果、放電電荷量を正確に測定できなくなってしまう。
In the measuring apparatus described above, an induced voltage is generated in the capacitor 3 due to the charge of the charged object 1 in the process of bringing the tip 2a of the detection terminal 2 closer to the charged object 1 .
For example, when the charged object 1 is positively charged, when the tip 2 a approaches the charged object 1 , the negative charge in the detection terminal 2 is attracted to the positive charge of the charged object 1 . Therefore, a positive charge is induced to one terminal 3a side of the capacitor 3. FIG. Therefore, a positive induced voltage is generated between the terminals 3 a and 3 b of the capacitor 3 .
In this way, an induced voltage is generated between the terminals 3a and 3b of the capacitor 3 even if the charged object 1 does not discharge. Therefore, the voltage between the terminals 3a and 3b of the capacitor generated by the discharge charge amount when the discharge actually occurs is affected by the above induced voltage, and as a result, the discharge charge amount cannot be measured accurately. .
 この発明の目的は、測定対象物の放電電荷量を正確、簡単に測定できる放電電荷量測定装置を提供することである。 An object of the present invention is to provide a discharge charge amount measuring device that can accurately and easily measure the discharge charge amount of an object to be measured.
 第1の発明は、静電気帯電した測定対象物に接近させる検出端子と、一方の端子が上記検出端子に接続されるとともに他方の端子が接地されたコンデンサと、上記コンデンサに並列に接続された抵抗体と、上記コンデンサの端子間電圧を測定する電圧測定手段と、上記電圧測定手段で測定された電圧値のピーク値を検出するピーク検出手段と、上記ピーク検出手段で検出された上記ピーク値を電荷量に変換する変換手段とを備え、上記ピーク検出手段は、予め設定されたサンプリング時間Δtごとに上記電圧測定手段で測定された端子間電圧をサンプリングし、サンプリングした電圧値の最高値をピーク値として特定する機能を備えるとともに、上記コンデンサの静電容量C、上記抵抗体の抵抗値R、及び上記サンプリング時間Δtのそれぞれは、C×R>Δtを満足する範囲で設定されている。 A first invention comprises a detection terminal brought close to an electrostatically charged object to be measured, a capacitor having one terminal connected to the detection terminal and the other terminal grounded, and a resistor connected in parallel to the capacitor. voltage measuring means for measuring the voltage across the terminals of the capacitor; peak detecting means for detecting a peak value of the voltage value measured by the voltage measuring means; and detecting the peak value detected by the peak detecting means. The peak detecting means samples the inter-terminal voltage measured by the voltage measuring means every preset sampling time Δt, and peaks the highest sampled voltage value. The capacitance C of the capacitor, the resistance value R of the resistor, and the sampling time Δt are each set within a range that satisfies C×R>Δt.
 第2の発明は、静電気帯電した測定対象物に接触させる検出端子と、上記検出端子に接続され、上記測定対象物からの放電電荷を蓄積するコンデンサと、上記コンデンサに並列に接続された抵抗体と、上記コンデンサの端子間電圧を測定する電圧測定手段と、上記電圧測定手段で測定された電圧値を電荷量に変換する変換手段と上記変換手段で変換された電荷量のピーク値を検出するピーク検出手段とを備え、上記ピーク検出手段は、予め設定されたサンプリング時間Δtごとに上記変換手段で変換された電荷量をサンプリングし、サンプリングした電荷量の最高値をピーク値として特定する機能を備えるとともに、上記コンデンサの静電容量C、上記抵抗体の抵抗値R、及び上記サンプリング時間Δtのそれぞれは、C・R>Δtを満足する範囲で設定されている。 A second invention comprises a detection terminal that is brought into contact with an electrostatically charged object to be measured, a capacitor that is connected to the detection terminal and stores the discharge charge from the object to be measured, and a resistor that is connected in parallel to the capacitor. a voltage measuring means for measuring the voltage across the terminals of the capacitor; a converting means for converting the voltage value measured by the voltage measuring means into a charge amount; and a peak value of the charge amount converted by the converting means. peak detection means, wherein the peak detection means has a function of sampling the charge amount converted by the conversion means at each preset sampling time Δt and specifying the maximum value of the sampled charge amount as the peak value. In addition, each of the capacitance C of the capacitor, the resistance value R of the resistor, and the sampling time Δt is set within a range that satisfies CR>Δt.
 第3の発明は、上記静電容量Cと上記抵抗値R、及び上記サンプリング時間Δtが、C・R≧50×Δtを満足する。 In the third invention, the capacitance C, the resistance value R, and the sampling time Δt satisfy C·R≧50×Δt.
 第4の発明は、上記静電容量C及び上記抵抗値Rがβ≧C×Rであり、上記βが10-3[秒]≦β≦1[秒]である。 In a fourth invention, the capacitance C and the resistance value R satisfy β≧C×R, and β satisfies 10 −3 [seconds]≦β≦1 [seconds].
 第1,2の発明によれば、帯電物体に検出端子を近づける過程で誘導される電荷を、抵抗体を介してアースへ逃がすことができるので、放電によって発生するコンデンサの端子間電圧が誘導電圧の影響を受けることを防止できる。さらに、コンデンサの静電容量C及び抵抗体の抵抗値Rを、コンデンサの端子間電圧の減衰時定数が、サンプリング時間Δtより大きくなるように設定しているので、コンデンサの端子間電圧のピーク値をより正確に特定することができる。その結果、コンデンサに蓄積された電荷量を正確に測定することができる。 According to the first and second inventions, the electric charge induced in the process of bringing the detection terminal close to the charged object can be released to the ground through the resistor. can be prevented from being affected by Furthermore, since the capacitance C of the capacitor and the resistance value R of the resistor are set so that the attenuation time constant of the voltage across the capacitor is greater than the sampling time Δt, the peak value of the voltage across the capacitor can be specified more accurately. As a result, the amount of charge stored in the capacitor can be accurately measured.
 第3の発明によれば、電圧のピーク値をより正確に検出でき、放電電荷量を正確に測定できる。 According to the third invention, the voltage peak value can be detected more accurately, and the discharge charge amount can be accurately measured.
 第4の発明によれば、コンデンサに蓄積された電荷が速やかに減衰し、連続的な測定が可能になる。 According to the fourth invention, the charge accumulated in the capacitor is rapidly attenuated, enabling continuous measurement.
図1は、実施形態の放電電荷量測定装置の回路図である。FIG. 1 is a circuit diagram of a discharge charge amount measuring device according to an embodiment. 図2は、コンデンサの端子間電圧の変化を示したグラフである。FIG. 2 is a graph showing changes in voltage between terminals of a capacitor. 図3は、実施形態の放電電荷量測定装置を用いた電荷量の測定結果を示したグラフである。FIG. 3 is a graph showing the results of charge amount measurement using the discharge charge amount measuring device of the embodiment. 図4は、従来の電荷量測定装置の回路図である。FIG. 4 is a circuit diagram of a conventional electric charge measuring device.
[実施形態]
 この発明の一実施形態を説明する。図1は、実施形態の放電電荷量測定装置の回路図、図2は実施形態のコンデンサの端子間電圧の変化を示すグラフ、図3は、実施形態の放電電荷量測定装置を用いた電荷量の測定結果を示したグラフである。
[Embodiment]
An embodiment of the invention will be described. FIG. 1 is a circuit diagram of a discharge charge amount measuring device according to an embodiment, FIG. 2 is a graph showing changes in voltage between terminals of a capacitor according to an embodiment, and FIG. is a graph showing the measurement results of
 この実施形態の放電電荷量測定装置は、図1に示すように、先端2aをコロナ放電が発生しにくい形状にした検出端子2を備え、この検出端子2に一方の端子3aを接続するとともに他方の端子3bを接地させたコンデンサ3を備えている。そして、従来と同様に、コンデンサ3の端子間電圧を測定する電圧測定手段である電圧測定部4を備えている。ただし、この実施形態では、コンデンサ3に並列に抵抗体5が接続されている。 As shown in FIG. 1, the discharge charge amount measuring apparatus of this embodiment includes a detection terminal 2 having a tip 2a shaped to prevent corona discharge. is provided with a capacitor 3 whose terminal 3b is grounded. And, as in the conventional case, a voltage measuring section 4, which is voltage measuring means for measuring the voltage across the terminals of the capacitor 3, is provided. However, in this embodiment, a resistor 5 is connected in parallel with the capacitor 3 .
 そして、上記コンデンサ3の静電容量はC[F]、抵抗体5の抵抗値はR[Ω]である。
 なお、上記コロナ放電が発生しにくい形状とは、帯電物体1からの放電が尖端などの周りで持続するコロナ放電にならないような形状である。具体的には、直径が20[mm]以上の球形である。このように検出端子2の先端2aの直径を大きくすることで球表面の曲率が小さくなり、検出端子2の先端2aを帯電物体1に接近させても、帯電物体1からの電界が先端2aの球形表面の一箇所に集中しなくなる。そのため、検出端子2の先端2a付近でコロナ放電が発生しにくくなり、帯電物体1からはパルス状の放電が発生する。
The capacitance of the capacitor 3 is C [F], and the resistance value of the resistor 5 is R [Ω].
The shape in which the corona discharge is unlikely to occur is a shape in which the discharge from the charged object 1 does not become a corona discharge that persists around a tip or the like. Specifically, it is spherical with a diameter of 20 [mm] or more. By increasing the diameter of the tip 2a of the detection terminal 2 in this way, the curvature of the spherical surface is reduced, and even if the tip 2a of the detection terminal 2 is brought close to the charged object 1, the electric field from the charged object 1 is generated at the tip 2a. It is no longer concentrated on one point on the spherical surface. Therefore, corona discharge is less likely to occur near the tip 2a of the detection terminal 2, and a pulsed discharge is generated from the charged object 1. FIG.
 もし、検出端子2の曲率を大きくすると、帯電物体1からの電界が検出端子2の球面の一箇所に集中して、パルス状の放電が発生する前にコロナ放電が発生してしまう。このような場合には、帯電物体1の帯電電荷をコロナ放電によって逃がした後に発生したパルス状の放電の放電電荷量を測定することになるため、帯電物体1が保持していた電荷量に相当する、パルス状の放電の放電電荷量を正確に測定できない。つまり、この実施形態で、検出端子2の先端2aをコロナ放電が発生し難い形状にしたのは、帯電物体1から発生する一つのパルス状の放電の放電電荷量の測定を可能にするためである。したがって、帯電物体1と対向する側の面が、曲率が小さい曲面などでとがった部分を持たなければ、検出端子2の先端2aは球形でなくてもよい。 If the curvature of the detection terminal 2 is increased, the electric field from the charged object 1 will be concentrated at one point on the spherical surface of the detection terminal 2, and corona discharge will occur before the pulse-like discharge occurs. In such a case, since the amount of pulsed discharge generated after the charged charge of the charged object 1 is released by corona discharge is measured, it corresponds to the amount of charge held by the charged object 1. However, it is not possible to accurately measure the discharge charge amount of the pulsed discharge. In other words, in this embodiment, the tip 2a of the detection terminal 2 has a shape that makes it difficult for corona discharge to occur in order to enable measurement of the discharge charge amount of one pulse-like discharge generated from the charged object 1. be. Therefore, the tip 2a of the detection terminal 2 does not have to be spherical unless the surface facing the charged object 1 has a curved surface with a small curvature and does not have a sharp portion.
 また、上記電圧測定部4には、電圧測定部4が測定した電圧値のピーク値を検出して保持するピーク検出手段であるピーク検出部6が接続され、このピーク検出部6で検出された電圧のピーク値を電荷量に変換する変換部7(変換手段)が接続されている。さらに、変換部7が変換した電荷量の値を出力する出力部8を備えている。 Further, the voltage measurement unit 4 is connected to a peak detection unit 6 which is a peak detection means for detecting and holding the peak value of the voltage value measured by the voltage measurement unit 4. A conversion unit 7 (conversion means) that converts the peak value of the voltage into the amount of charge is connected. Further, an output unit 8 is provided for outputting the value of the amount of charge converted by the conversion unit 7 .
 上記電圧測定部4は、コンデンサ3の端子3a,3b間の電圧を連続して検出する機能を備えている。ピーク検出部6は、電圧測定部4で検出された電圧値をサンプリング時間Δtで繰り返しサンプリングし、最高値をピーク値Vpとして特定する機能を備えている。具体的には、ピーク検出部6は、測定開始時に電圧値Vをサンプリングしてその電圧値Vを保持し、そのサンプリング時間Δt後に再度、電圧値Vをサンプリングするとともに、この電圧値VとVとを比較して、大きい方の値を保持し、他方を消去することを一定時間繰り返し、その間の最大値をピーク値Vpとして特定する。 The voltage measuring section 4 has a function of continuously detecting the voltage between the terminals 3 a and 3 b of the capacitor 3 . The peak detection unit 6 has a function of repeatedly sampling the voltage value detected by the voltage measurement unit 4 at a sampling time Δt and specifying the highest value as the peak value Vp. Specifically, the peak detector 6 samples the voltage value V1 at the start of measurement, holds the voltage value V1, samples the voltage value V2 again after the sampling time Δt, and also samples the voltage value V2 . The process of comparing V2 and V1 , holding the larger value and erasing the other is repeated for a certain period of time, and the maximum value during that period is specified as the peak value Vp.
 そして、この実施形態の放電電荷量測定装置においては、C×R≧サンプリング時間Δtとなるようにしている。
 上記C×Rは、放電電荷が充電されることによって上昇したコンデンサ3の端子間電圧が、最大電圧V0から減衰する際の時定数τ[S]に相当する。時定数τは、指数関数的に減衰するコンデンサ3の端子間電圧が最大電圧V0から、その36.8%の電圧V1まで減衰する時間である(図2参照)。
In the discharge charge amount measuring device of this embodiment, C×R≧sampling time Δt.
The above C×R corresponds to the time constant τ [S] when the voltage across the terminals of the capacitor 3, which has increased due to the charging of the discharged electric charge, attenuates from the maximum voltage V0. The time constant τ is the time for the exponentially decaying voltage across the terminals of the capacitor 3 to decay from the maximum voltage V0 to the voltage V1 of 36.8% (see FIG. 2).
 また、上記変換部7は、ピーク検出部6で特定し保持された電圧のピーク値Vpを電荷量Qに変換して出力部8に対して出力する。変換部7は、上記ピーク値Vpと上記コンデンサ3の静電容量Cとに基づいて、電荷量Q=C×Vpを算出する。
 出力部8は、入力された電荷量Qの値を表示したり、記録したりする機能を備えている。
 なお、この実施形態では、コンデンサ3の静電容量C=1[μF]、抵抗体5の抵抗値R=100[kΩ]、サンプリング時間Δt=2[mS]とする。つまり、この実施形態では、時定数τ=C×Rが、サンプリング時間Δtの50倍にしている。
Further, the conversion section 7 converts the voltage peak value Vp specified and held by the peak detection section 6 into a charge amount Q and outputs the charge amount Q to the output section 8 . Based on the peak value Vp and the capacitance C of the capacitor 3, the conversion unit 7 calculates the amount of charge Q=C×Vp.
The output unit 8 has a function of displaying and recording the input charge amount Q value.
In this embodiment, the capacitance C of the capacitor 3 is 1 [μF], the resistance value R of the resistor 5 is 100 [kΩ], and the sampling time Δt is 2 [mS]. That is, in this embodiment, the time constant τ=C×R is 50 times the sampling time Δt.
[作用・効果等]
 上記のように構成されたこの実施形態の放電電荷量測定装置の作用等を説明する。
 帯電物体1の放電電荷量を測定する際には、帯電物体1からの放電が発生する距離まで、検出端子2の先端2aを帯電物体1の表面に近づける。
 この過程で、帯電物体1の電荷によって、検出端子2内において帯電物体1と逆極性の電荷が引き付けられ、コンデンサ3の一方の端子3aには帯電物体1と同極性の電荷が誘導される。しかし、この実施形態では、コンデンサ3に並列に抵抗体5が接続されているので、コンデンサ3に蓄積された電荷は抵抗体5を介して接地へ流れる。
 このように誘導電荷は接地へ流れるので、誘導電荷によるコンデンサ3の端子3a,3b間の電圧はほとんど上昇せず、ほぼゼロに保たれる。
[Action, effect, etc.]
The operation and the like of the discharge charge amount measuring device of this embodiment configured as described above will be described.
When measuring the discharge charge amount of the charged object 1, the tip 2a of the detection terminal 2 is brought close to the surface of the charged object 1 to a distance at which the discharge from the charged object 1 occurs.
In this process, the charge of the charged object 1 attracts the charge of the opposite polarity to that of the charged object 1 in the detection terminal 2 , and the charge of the same polarity as that of the charged object 1 is induced to one terminal 3 a of the capacitor 3 . However, in this embodiment, since the resistor 5 is connected in parallel with the capacitor 3, the charge accumulated in the capacitor 3 flows through the resistor 5 to the ground.
Since the induced charge thus flows to the ground, the voltage between the terminals 3a and 3b of the capacitor 3 due to the induced charge hardly rises and is kept substantially zero.
 上記先端2aが一定以上近づくと、帯電物体1からパルス状の放電が発生し、瞬間的に放電電荷が検出端子2から流れ込んでコンデンサ3が充電される。このときコンデンサ3に蓄積された電荷は放電によるもので、誘導電荷による誘導電圧の影響をほとんど受けない。したがって、コンデンサ3の端子間電圧を測定することで、対応する放電電荷量を特定することができる。 When the tip 2a approaches more than a certain amount, a pulsed discharge is generated from the charged object 1, and the discharged charge instantaneously flows from the detection terminal 2 to charge the capacitor 3. The charge accumulated in the capacitor 3 at this time is due to the discharge, and is hardly affected by the induced voltage due to the induced charge. Therefore, by measuring the voltage across the terminals of the capacitor 3, the corresponding discharge charge amount can be specified.
 また、コンデンサ3に一旦蓄積された放電電荷も、時間とともに抵抗体5を介して接地へ流れてしまうため、コンデンサ3の端子間電圧Vは、図2のように減衰してしまう。そこで、ピーク検出部6は、次のようにしてコンデンサ3の端子間電圧のピーク値Vpを検出して保持する。
 ピーク検出部6は、上記電圧測定部4が測定したコンデンサ3の端子間電圧Vを、サンプリング時間Δt、ここでは2[mS]ごとにサンプリングする。そして、サンプリングした端子間電圧Vを対比し、ピーク値Vpを特定して変換部7へ入力する。
Moreover, the discharge charge once accumulated in the capacitor 3 also flows to the ground via the resistor 5 over time, so the voltage V across the terminals of the capacitor 3 attenuates as shown in FIG. Therefore, the peak detector 6 detects and holds the peak value Vp of the voltage between the terminals of the capacitor 3 as follows.
The peak detection unit 6 samples the voltage V across the terminals of the capacitor 3 measured by the voltage measurement unit 4 every sampling time Δt, here 2 [mS]. Then, the sampled inter-terminal voltage V is compared, the peak value Vp is specified, and the peak value Vp is input to the conversion unit 7 .
 ピーク検出部6が特定して保持したピーク値Vpが入力された変換部7は、上記ピーク値Vpにコンデンサ3の静電容量Cを掛けて電荷量を算出し、出力部8に出力させる。上記変換部7には、コンデンサ3の静電容量Cの値が予め設定されている。
 この実施形態では、誘導電荷が抵抗体5を介して接地へ流れるようにしているので、測定される端子間電圧が、従来のように誘導電荷の影響を受けない。
The conversion unit 7, to which the peak value Vp specified and held by the peak detection unit 6 is input, multiplies the peak value Vp by the capacitance C of the capacitor 3 to calculate the amount of charge, and causes the output unit 8 to output the charge amount. A value of the capacitance C of the capacitor 3 is preset in the conversion unit 7 .
In this embodiment, the induced charge is allowed to flow through the resistor 5 to ground, so that the measured terminal voltage is not affected by the induced charge as in the prior art.
 また、ピーク検出部6のサンプリング時間Δtを、コンデンサ3の静電容量Cと抵抗体5の抵抗値Rとの積である時定数τの50分の1にしているので、ピーク値Vpを正確に検出できる。
 その理由を以下に説明する。
 図2は、コンデンサ3の端子間電圧Vの変化のグラフである。帯電物体1からの放電が発生した瞬間tに、放電電荷がコンデンサ3に一気に流れ込んで端子間の電圧がV0まで上昇する。その後、コンデンサ3から抵抗体5を介して電荷が接地へ流れて、端子間電圧Vが減衰する。そして、時刻tで、最大電圧V0の36.8[%]まで減衰する。この時刻tからtまでの時間が、上記時定数τである。
Further, since the sampling time Δt of the peak detector 6 is set to 1/50 of the time constant τ which is the product of the capacitance C of the capacitor 3 and the resistance value R of the resistor 5, the peak value Vp can be accurately detected. can be detected.
The reason is explained below.
FIG. 2 is a graph of changes in the voltage V across the terminals of the capacitor 3. As shown in FIG. At the instant t0 when the discharge from the charged object 1 occurs, the discharged charge flows into the capacitor 3 at once, and the voltage across the terminals rises to V0. After that, charges flow from the capacitor 3 to the ground through the resistor 5, and the inter-terminal voltage V is attenuated. At time t1 , the voltage is attenuated to 36.8[%] of the maximum voltage V0. The time from time t0 to t1 is the time constant τ.
 このように端子間電圧Vが減衰する過程で、ピーク検出部6がサンプリング時間Δt=2[mS]ごとに端子間電圧Vをサンプリングする。
 一方、コンデンサ3の端子間電圧が減衰する時定数は、τ=100[mS]である。これに対し、ピーク検出部6は、上記サンプリング時間Δt=2[mS]でサンプリングを実行するため、時定数τの時間内に50回のサンプリングに基づいてピーク値Vpが特定され保持されることになる。
 このように、最大電圧V0がV1まで減衰するまでの間に50回のサンプリングを行なってピーク検出部6がピーク値Vpを検出することになるので、検出されたVpは最大電圧V0に近いものとなる。
While the terminal voltage V is attenuating in this manner, the peak detector 6 samples the terminal voltage V every sampling time Δt=2 [mS].
On the other hand, the time constant at which the voltage across the terminals of the capacitor 3 attenuates is τ=100 [mS]. On the other hand, since the peak detection unit 6 performs sampling at the sampling time Δt=2 [mS], the peak value Vp is specified and held based on 50 samplings within the time constant τ. become.
Thus, the peak detector 6 detects the peak value Vp by sampling 50 times until the maximum voltage V0 attenuates to V1, so the detected Vp is close to the maximum voltage V0. becomes.
 以下に、この実施形態の放電電荷量測定装置を用いた電荷量測定結果を説明する。
 この実験では、上記帯電物体1の代わりに、市販のフィルムコンデンサに既知の値の電荷量を充電して用いた。実験で用いた電荷量は-10000[nC]~+10000[nC]で、フィルムコンデンサには、±500[nC]と、±1000[nC]から1000[nC]ずつを与えた。
 そして、充電したフィルムコンデンサに検出端子2の先端2aを接触させて放電させ、その時の放電電荷量を測定した。
The charge amount measurement result using the discharge charge amount measuring device of this embodiment will be described below.
In this experiment, instead of the charged object 1, a commercially available film capacitor was charged with a known charge amount and used. The amount of charge used in the experiment was -10000 [nC] to +10000 [nC], and the film capacitor was given ±500 [nC] and ±1000 [nC] to 1000 [nC] each.
Then, the tip 2a of the detection terminal 2 was brought into contact with the charged film capacitor to discharge it, and the amount of discharged charge at that time was measured.
 この測定結果は、図3のグラフに示すとおりである。このグラフは、横軸をフィルムコンデンサの充電電荷量Qとし、縦軸を測定値Qとしている。
 図3に示すように、実施形態の放電電荷量測定装置による測定値Qとフィルムコンデンサの充電電荷量Qとは一致し、この放電電荷量測定装置の信頼性が確認できた。
The measurement results are as shown in the graph of FIG. In this graph, the horizontal axis is the charge amount Q1 of the film capacitor, and the vertical axis is the measured value Qm .
As shown in FIG. 3, the measured value Qm obtained by the discharge charge amount measuring device of the embodiment coincides with the charge amount Q1 of the film capacitor, confirming the reliability of this discharge charge amount measurement device.
 実施形態の放電電荷測定装置では、コンデンサ3と並列に、接地に接続された抵抗体5を設けるとともに、時定数τに比べてサンプリング時間Δtを小さくしているため、放電電荷量を精度よく測定できるようになった。
 サンプリング時間Δtは、小さければ小さいほどより最大電圧V0に近い値、つまり正確なピーク値Vpを特定できることになる。ただし、サンプリング時間Δtが時定数τ未満であれば、少なくとも1回は時定数τ内でのサンプリングが実行され、十分な検出精度が得られると考えられるが、上記のように50分の1ならば、さらに精度が上がる。
 また、時定数τは、静電容量C及び抵抗値Rによって設定できるので、ピーク検出部6のサンプリング時間Δτに応じて時定数τを調整することもできる。
In the discharge charge measuring device of the embodiment, since the resistor 5 connected to the ground is provided in parallel with the capacitor 3 and the sampling time Δt is set smaller than the time constant τ, the discharge charge amount can be accurately measured. It became possible.
The smaller the sampling time Δt, the closer the value to the maximum voltage V0, that is, the more accurate peak value Vp can be identified. However, if the sampling time Δt is less than the time constant τ, sampling is performed at least once within the time constant τ, and it is considered that sufficient detection accuracy can be obtained. , the accuracy will be further improved.
Also, since the time constant τ can be set by the capacitance C and the resistance value R, the time constant τ can be adjusted according to the sampling time Δτ of the peak detector 6 .
 ただし、繰り返し電荷量を測定する際には、コンデンサ3に蓄積された電荷をその都度すべて接地へ流さなければならない。したがって、時定数τが大きすぎて、上記端子間電圧の減衰時間を長く設定された測定装置は、繰り返しの電荷量測定には適さない。
 上記端子間電圧Vが最大電圧V0からほぼゼロになるまでの時間は、時定数τの約5倍であるので、例えば、上記のように時定数τ=100[mS]ならば、約500[mS]でコンデンサ3が空になる。また、時定数τ=200[mS]でも、約1[S]で、コンデンサ3が空になるので、1[S]間隔での測定も可能になる。
However, when repeatedly measuring the amount of electric charge, the electric charge accumulated in the capacitor 3 must all flow to the ground each time. Therefore, the measuring device in which the time constant τ is too large and the attenuation time of the terminal voltage is set long is not suitable for repeated charge measurement.
Since the time required for the voltage V between the terminals to become substantially zero from the maximum voltage V0 is about five times the time constant τ, for example, if the time constant τ=100 [mS] as described above, then about 500 [ mS], the capacitor 3 is emptied. Also, even with the time constant τ=200 [mS], the capacitor 3 becomes empty at about 1 [S], so measurement at intervals of 1 [S] is possible.
 さらに、大きな放電電荷量を測定するためには、コンデンサ3の静電容量Cを大きくしなければならない。しかし、静電容量Cが放電電荷量と比べて大きすぎる場合には、端子間電圧が小さすぎて、検出精度が落ちてしまうこともある。また、コンデンサ3の端子間電圧の絶対値の大きさによって、対応する能力を有するピーク検出部6や変換部7、出力部8が必要になる。 Furthermore, in order to measure a large discharge charge amount, the capacitance C of the capacitor 3 must be increased. However, if the capacitance C is too large compared to the amount of discharged charge, the voltage across the terminals may be too small and the detection accuracy may drop. Also, depending on the magnitude of the absolute value of the voltage across the terminals of the capacitor 3, the peak detector 6, the converter 7, and the output unit 8 having corresponding capabilities are required.
 したがって、上記コンデンサ3の静電容量C、上記抵抗体5の抵抗値R、及び上記サンプリング時間Δtのそれぞれは、使用目的などに応じ、C×R>Δtを満足する範囲で設定すればよい。
 なお、上記実施形態では、ピーク検出部6が、端子間電圧のピーク値Vpを特定して保持した後に、その値を電荷量に変換するようにしているが、電圧測定部4の測定値をそのまま電荷量に変換し、その後、電荷量のピーク値を検出して保持するようにしてもよい。
 この場合には、図1に示す電圧測定部4とピーク検出部6との間に変換部7が接続される。
Therefore, the capacitance C of the capacitor 3, the resistance value R of the resistor 5, and the sampling time .DELTA.t may be set within a range that satisfies C.times.R>.DELTA.t according to the purpose of use.
In the above embodiment, the peak detector 6 specifies and holds the peak value Vp of the terminal voltage, and then converts that value into the charge amount. Alternatively, the charge amount may be converted as it is, and then the peak value of the charge amount may be detected and held.
In this case, the conversion section 7 is connected between the voltage measurement section 4 and the peak detection section 6 shown in FIG.
 帯電物体からの放電電荷量を、簡単かつ正確に測定することができる。 The amount of electric charge discharged from a charged object can be measured simply and accurately.
1  測定対象物
2  検出端子
2a  (検出端子の)先端
3  コンデンサ
3a,3b  (コンデンサの)端子
4  (電圧測定手段)電圧測定部
5  抵抗体
6  (ピーク検出手段)ピーク検出部
7  変換部
1 Measurement object 2 Detection terminal 2a Tip 3 (of detection terminal) Capacitors 3a, 3b (Capacitor) terminal 4 (Voltage measurement means) Voltage measurement part 5 Resistor 6 (Peak detection means) Peak detection part 7 Conversion part

Claims (4)

  1.  静電気帯電した測定対象物に接触させる検出端子と、
    一方の端子が上記検出端子に接続されるとともに他方の端子が接地されたコンデンサと、
    上記コンデンサに並列に接続された抵抗体と、
    上記コンデンサの端子間電圧を測定する電圧測定手段と、
    上記電圧測定手段で測定された電圧値のピーク値を検出するピーク検出手段と、
    上記ピーク検出手段で検出された上記ピーク値を電荷量に変換する変換手段と
    を備え、
    上記ピーク検出手段は、予め設定されたサンプリング時間Δtごとに上記電圧測定手段で測定された端子間電圧をサンプリングし、サンプリングした電圧値の最高値をピーク値として特定する機能を備えるとともに、
    上記コンデンサの静電容量C、上記抵抗体の抵抗値R、及び上記サンプリング時間Δtのそれぞれは、C×R>Δtを満足する範囲で設定された放電電荷量測定装置。
    a detection terminal that is brought into contact with an electrostatically charged object to be measured;
    a capacitor having one terminal connected to the detection terminal and the other terminal grounded;
    a resistor connected in parallel with the capacitor;
    voltage measuring means for measuring the voltage across the terminals of the capacitor;
    a peak detection means for detecting a peak value of the voltage value measured by the voltage measurement means;
    conversion means for converting the peak value detected by the peak detection means into a charge amount,
    The peak detection means has a function of sampling the inter-terminal voltage measured by the voltage measurement means at each preset sampling time Δt and specifying the maximum value of the sampled voltage values as a peak value,
    A discharge charge amount measuring device, wherein each of the capacitance C of the capacitor, the resistance value R of the resistor, and the sampling time Δt is set within a range satisfying C×R>Δt.
  2.  静電気帯電した測定対象物に接触させる検出端子と、
    一方の端子が上記検出端子に接続されるとともに他方の端子が接地されたコンデンサと、
    上記コンデンサに並列に接続された抵抗体と、
    上記コンデンサの端子間電圧を測定する電圧測定手段と、
    上記電圧測定手段で測定された電圧値を電荷量に変換する変換手段と
    上記変換手段で変換された電荷量のピーク値を検出するピーク検出手段と
    を備え、
    上記ピーク検出手段は、予め設定されたサンプリング時間Δtごとに上記変換手段で変換された電荷量をサンプリングし、サンプリングした電荷量の最高値をピーク値として特定する機能を備えるとともに、
    上記コンデンサの静電容量C、上記抵抗体の抵抗値R、及び上記サンプリング時間Δtのそれぞれは、C・R>Δtを満足する範囲で設定された放電電荷量測定装置。
    a detection terminal that is brought into contact with an electrostatically charged object to be measured;
    a capacitor having one terminal connected to the detection terminal and the other terminal grounded;
    a resistor connected in parallel with the capacitor;
    voltage measuring means for measuring the voltage across the terminals of the capacitor;
    conversion means for converting the voltage value measured by the voltage measurement means into a charge amount; and peak detection means for detecting a peak value of the charge amount converted by the conversion means,
    The peak detection means has a function of sampling the amount of charge converted by the conversion means every preset sampling time Δt and specifying the maximum value of the sampled amount of charge as a peak value,
    The discharge charge amount measuring device, wherein each of the capacitance C of the capacitor, the resistance value R of the resistor, and the sampling time Δt is set within a range satisfying C·R>Δt.
  3.  上記静電容量Cと上記抵抗値R、及び上記サンプリング時間Δtは、
    C・R≧50×Δtを満足する請求項1又は2に記載の放電電荷量測定装置。
    The capacitance C, the resistance value R, and the sampling time Δt are
    3. The discharge charge measuring device according to claim 1, wherein C·R≧50×Δt is satisfied.
  4.  上記静電容量C及び上記抵抗値Rとはβ≧C×Rであり、
    上記βは10-3[秒]≦β≦1[秒]である請求項1~3のいずれか1に記載の放電電荷力測定装置。
    The capacitance C and the resistance value R are β≧C×R,
    4. The discharge charge force measuring device according to any one of claims 1 to 3, wherein said β satisfies 10 -3 [seconds] ≤ β ≤ 1 [seconds].
PCT/JP2022/032087 2021-08-30 2022-08-25 Electric discharge charge amount measuring device WO2023032814A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280053473.0A CN117751293A (en) 2021-08-30 2022-08-25 Device for measuring discharge charge quantity
KR1020237043783A KR20240010024A (en) 2021-08-30 2022-08-25 Discharge charge measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-139566 2021-08-30
JP2021139566A JP7270904B2 (en) 2021-08-30 2021-08-30 Discharge charge measurement device

Publications (1)

Publication Number Publication Date
WO2023032814A1 true WO2023032814A1 (en) 2023-03-09

Family

ID=85412678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032087 WO2023032814A1 (en) 2021-08-30 2022-08-25 Electric discharge charge amount measuring device

Country Status (4)

Country Link
JP (1) JP7270904B2 (en)
KR (1) KR20240010024A (en)
CN (1) CN117751293A (en)
WO (1) WO2023032814A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304500A (en) * 1995-05-15 1996-11-22 Shishido Seidenki Kk Charged voltage meter
US5754056A (en) * 1996-04-23 1998-05-19 David Sarnoff Research Center, Inc. Charge detector with long integration time
JPH10197482A (en) * 1997-01-07 1998-07-31 Toto Ltd Ion detector
JP2000081468A (en) * 1998-09-07 2000-03-21 Nec Corp Electrostatic breakdown test device
JP2001042644A (en) * 1999-07-30 2001-02-16 Hitachi Ltd Image forming device and method
JP2007212208A (en) * 2006-02-08 2007-08-23 Kasuga Electric Works Ltd Apparatus for measuring charge quantity
JP2008076213A (en) * 2006-09-21 2008-04-03 Denki Kagaku Kogyo Kk Charging potential measuring probe, and charging potential distribution measuring system and charging potential distribution measuring device using probe
JP2016017873A (en) * 2014-07-09 2016-02-01 早田 裕 Discharge current measuring device
CN111766458A (en) * 2020-06-03 2020-10-13 国网山东省电力公司莱芜供电公司 Current integration-based method for measuring accumulated charges of insulating materials of direct-current high-voltage equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304500A (en) * 1995-05-15 1996-11-22 Shishido Seidenki Kk Charged voltage meter
US5754056A (en) * 1996-04-23 1998-05-19 David Sarnoff Research Center, Inc. Charge detector with long integration time
JPH10197482A (en) * 1997-01-07 1998-07-31 Toto Ltd Ion detector
JP2000081468A (en) * 1998-09-07 2000-03-21 Nec Corp Electrostatic breakdown test device
JP2001042644A (en) * 1999-07-30 2001-02-16 Hitachi Ltd Image forming device and method
JP2007212208A (en) * 2006-02-08 2007-08-23 Kasuga Electric Works Ltd Apparatus for measuring charge quantity
JP2008076213A (en) * 2006-09-21 2008-04-03 Denki Kagaku Kogyo Kk Charging potential measuring probe, and charging potential distribution measuring system and charging potential distribution measuring device using probe
JP2016017873A (en) * 2014-07-09 2016-02-01 早田 裕 Discharge current measuring device
CN111766458A (en) * 2020-06-03 2020-10-13 国网山东省电力公司莱芜供电公司 Current integration-based method for measuring accumulated charges of insulating materials of direct-current high-voltage equipment

Also Published As

Publication number Publication date
KR20240010024A (en) 2024-01-23
CN117751293A (en) 2024-03-22
JP2023033709A (en) 2023-03-13
JP7270904B2 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP4731330B2 (en) Radiation monitor
WO2015011916A1 (en) Current measurement device
WO2023032814A1 (en) Electric discharge charge amount measuring device
EP0573415A1 (en) Low power magnetostrictive sensor
JP2007183118A5 (en)
EP1752246A1 (en) Electric discharge machining apparatus
US11448609B2 (en) Method for operating a gas sensor arrangement and gas sensor arrangement
US20200025589A1 (en) Linear measurement in piston-cylinder arrangements
EP2932281B1 (en) Methods and circuits for measuring a high impedance element based on time constant measurements
Sotirov et al. Design and development of an electrostatic voltmeter based on surface potential sensor
JPH05180944A (en) Radiation measuring instrument
JP5039169B2 (en) Capacitance detection device, resistance detection device
TWI759959B (en) Measurement circuit for measuring passive component
JP7027963B2 (en) Current measuring device and radiation detection device
RU2176396C1 (en) Process of remote periodic test of conversion factor of piezoelectric accelerometer
US2870409A (en) Meter with logarithmic amplifier
RU2602401C1 (en) Method of measuring fluid flow rate
JP2977415B2 (en) Battery peak voltage and dip voltage detector
SU1678456A1 (en) Method for controlling the operation of electrostatic precipitator
CN113959532B (en) Multi-echo tracking magnetostrictive liquid level meter and liquid level measurement method
RU2594376C1 (en) Method of capacitors self-discharge time constant measuring
JP6966309B2 (en) Insulation resistance tester and its measurement method
JPS59220660A (en) Operation type insulation tester
JPH03176670A (en) Voltage-pulse converter and voltage measuring device using the same
SU798631A1 (en) Method of measuring complex-impedance components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237043783

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237043783

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280053473.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE