JP7027963B2 - Current measuring device and radiation detection device - Google Patents

Current measuring device and radiation detection device Download PDF

Info

Publication number
JP7027963B2
JP7027963B2 JP2018037697A JP2018037697A JP7027963B2 JP 7027963 B2 JP7027963 B2 JP 7027963B2 JP 2018037697 A JP2018037697 A JP 2018037697A JP 2018037697 A JP2018037697 A JP 2018037697A JP 7027963 B2 JP7027963 B2 JP 7027963B2
Authority
JP
Japan
Prior art keywords
current
measured
measuring device
current measuring
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018037697A
Other languages
Japanese (ja)
Other versions
JP2019152528A (en
Inventor
昭仁 洞
修 畠山
俊之 倉橋
精仁 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2018037697A priority Critical patent/JP7027963B2/en
Publication of JP2019152528A publication Critical patent/JP2019152528A/en
Application granted granted Critical
Publication of JP7027963B2 publication Critical patent/JP7027963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば、電離箱式放射線検出装置における電離電流等の微小電流を測定する電流測定装置、及び、この電流測定装置を用いた放射線検出装置に関する。 The present invention relates to, for example, a current measuring device for measuring a minute current such as an ionization current in an ionizing box type radiation detecting device, and a radiation detecting device using this current measuring device.

図5は、電離箱式放射線検出器に適用される電流測定装置の従来技術であり、特許文献1に記載されているものである。
電流測定装置1は、入力端子2から入力される被測定電流(電離電流)Iinを積分する電荷積分回路3を備え、その出力信号(積分電圧信号)Vは低レンジ側電流測定部4及び高レンジ側電流測定部5に入力されている。これらの電流測定部4,5により算出された測定値ImL,ImHは、測定値決定部6に入力されて最終的な電流測定値Iが決定される。
電荷積分回路3の入力側には、積分コンデンサに蓄積された電荷を放電させるポンピング回路7が接続され、このポンピング回路7には高レンジ側電流測定部5からのパルス信号Pが入力されている。
FIG. 5 is a conventional technique of a current measuring device applied to an ionization chamber type radiation detector, which is described in Patent Document 1.
The current measuring device 1 includes a charge integrating circuit 3 that integrates the measured current (ionized current) I in input from the input terminal 2, and its output signal (integrated voltage signal) Vo is the low range side current measuring unit 4. And is input to the high range side current measuring unit 5. The measured values Im and ImH calculated by these current measuring units 4 and 5 are input to the measured value determining unit 6 to determine the final current measured value Im .
A pumping circuit 7 for discharging the charge accumulated in the integrating capacitor is connected to the input side of the charge integrating circuit 3, and a pulse signal P1 from the high range side current measuring unit 5 is input to the pumping circuit 7. There is.

図6は、図5に示した電流測定装置1の詳細な構成図である。
電荷積分回路3はオペアンプ31と積分コンデンサ32とを備え、オペアンプ31から出力された積分電圧信号Vは低レンジ側電流測定部4のA/D変換回路41によりディジタル信号Vodに変換され、低レンジ側測定値演算部42a及び高レンジ側測定値演算部42bからなる演算処理回路42に入力される。
FIG. 6 is a detailed configuration diagram of the current measuring device 1 shown in FIG.
The charge integration circuit 3 includes an operational amplifier 31 and an integrating capacitor 32, and the integrated voltage signal Vo output from the operational amplifier 31 is converted into a digital signal V od by the A / D conversion circuit 41 of the low range side current measuring unit 4. It is input to the operation processing circuit 42 including the low range side measurement value calculation unit 42a and the high range side measurement value calculation unit 42b.

また、積分電圧信号Vは、高レンジ側電流測定部5内の電圧比較回路51に入力され、基準電圧Vとの比較結果に応じて比較信号Sが出力される。この比較信号Sは、単安定マルチバイブレータからなるパルス信号生成回路52に入力され、その出力であるパルス信号Pがカウンタ回路53及び前記ポンピング回路7に入力されている。
カウンタ回路53は、逐次入力されるパルス信号Pの周期、すなわち積分電圧信号Vの周期Tに相当するカウント値Nを計数し、低レンジ側電流測定部4内の高レンジ側測定値演算部42bに出力する。
なお、図7は、高レンジ側電流測定部5を構成する各部の動作を、被測定電流Iin及び積分電圧信号Vと共に示したものである。
Further, the integrated voltage signal Vo is input to the voltage comparison circuit 51 in the high range side current measuring unit 5 , and the comparison signal Sc is output according to the comparison result with the reference voltage V1. The comparison signal Sc is input to a pulse signal generation circuit 52 composed of a monostable multivibrator, and the output pulse signal P 1 is input to the counter circuit 53 and the pumping circuit 7.
The counter circuit 53 counts the count value N corresponding to the cycle of the pulse signal P 1 sequentially input, that is, the cycle T of the integrated voltage signal Vo , and calculates the high range side measurement value in the low range side current measurement unit 4. Output to unit 42b.
Note that FIG. 7 shows the operation of each unit constituting the high range side current measuring unit 5 together with the measured current I in and the integrated voltage signal Vo .

前述したように、パルス信号Pは、コンデンサ71,抵抗73及びダイオード72からなるポンピング回路7に入力され、ポンピング回路7の出力が電荷積分回路3内のオペアンプ31の反転入力端子に加えられている。 As described above, the pulse signal P 1 is input to the pumping circuit 7 including the capacitor 71, the resistor 73 and the diode 72, and the output of the pumping circuit 7 is applied to the inverting input terminal of the operational amplifier 31 in the charge integrating circuit 3. There is.

演算処理回路42の低レンジ側測定値演算部42aは、A/D変換回路41のサンプリング周期と等しい周期(例えば1[s])でタイマ割込処理を行い、積分電圧信号Vのディジタル信号Vodの変化率に換算係数を乗算して低レンジ側電流測定値ImLを算出する。
一方、高レンジ側測定値演算部42bは、所定周期(例えば125[ms])のタイマ割込処理によってカウンタ回路53から取り込んだ周期Tに基づき積分電圧信号Vの周波数を求め、この周波数に換算係数を乗算して高レンジ側電流測定値ImHを算出する。
図8(a)は、低レンジ側測定値演算部42aにより演算される被測定電流Iin(ImL)と積分電圧信号Vの時間変化率との関係を示し、図8(b)は、高レンジ側測定値演算部42bにより演算される被測定電流Iin(ImH)と積分電圧信号Vの周波数との関係を示している。
The low range side measurement value calculation unit 42a of the calculation processing circuit 42 performs timer interruption processing in a cycle equal to the sampling cycle of the A / D conversion circuit 41 (for example, 1 [s]), and digital signals of the integrated voltage signal Vo . Multiply the rate of change of V od by the conversion factor to calculate the low range side current measurement value I mL .
On the other hand, the measured value calculation unit 42b on the high range side obtains the frequency of the integrated voltage signal Vo based on the period T taken in from the counter circuit 53 by the timer interruption processing of a predetermined period (for example, 125 [ms]), and uses this frequency. Multiply the conversion factor to calculate the high range side current measurement value ImH .
FIG. 8A shows the relationship between the measured current I in ( IML ) calculated by the low range side measurement value calculation unit 42a and the time change rate of the integrated voltage signal Vo, and FIG. 8B shows the relationship. , The relationship between the measured current I in ( ImH ) calculated by the measured value calculation unit 42b on the high range side and the frequency of the integrated voltage signal Vo is shown.

図5の測定値決定部6は、高レンジ側電流測定部5により所望の出力要求タイミングに応じて高レンジ側電流測定値ImHを算出できる場合には、高レンジ側電流測定値ImHを被測定電流Iinに対する電流測定値Iとして決定する。また、高レンジ側電流測定値ImHを所望の出力要求タイミングで算出できない場合には、低レンジ側電流測定部4により算出した低レンジ側電流測定値ImLを被測定電流Iinに対する電流測定値Iとして決定する。
このように、高レンジ側電流測定値ImHを所望の出力要求タイミング内に算出できるか否かに応じてImL,ImHの何れかを選択して電流測定値Iを得ているため、レンジの切替による損失時間が発生することがなく、広いレンジの微小な被測定電流Iinを所望の出力要求タイミングに従って正確に測定することができる。
When the measured value determination unit 6 in FIG. 5 can calculate the high range side current measured value ImH according to the desired output request timing by the high range side current measuring unit 5, the high range side current measured value ImH is calculated. It is determined as the current measured value Im with respect to the measured current I in . If the high range side current measurement value ImH cannot be calculated at the desired output request timing, the low range side current measurement value I mL calculated by the low range side current measurement unit 4 is measured with respect to the measured current I in . Determined as the value Im .
In this way, the current measurement value Im is obtained by selecting either I mL or ImH depending on whether or not the high range side current measurement value ImH can be calculated within the desired output request timing. It is possible to accurately measure a minute measured current I in in a wide range according to a desired output request timing without causing a loss time due to range switching.

国際公開第2015/011916号(段落[0009]~[0011],[0041]~[0046]、図1,図2,図7等)International Publication No. 2015/01/916 (paragraphs [0009] to [0011], [0041] to [0046], Fig. 1, Fig. 2, Fig. 7, etc.)

前述した従来技術では、図7に示したように、積分電圧信号Vが基準電圧Vを上回った時に出力される比較信号Sによりパルス信号Pを発生させ、このパルス信号Pをポンピング回路7に供給して電圧積分回路3の積分コンデンサ32を放電させている。具体的には、パルス信号Pの立上りでコンデンサ71の電荷が抵抗73を介して接地側に流れ、その時に抵抗73に発生する電圧降下によりダイオード72を介して電圧積分回路3側に電流が流れることにより、積分コンデンサ32に蓄積された電荷が放電(リセット)されることになる。 In the above-mentioned prior art, as shown in FIG . 7, a pulse signal P 1 is generated by a comparison signal Sc output when the integrated voltage signal Vo exceeds the reference voltage V 1 , and this pulse signal P 1 is generated. It is supplied to the pumping circuit 7 to discharge the integrating capacitor 32 of the voltage integrating circuit 3. Specifically, at the rising edge of the pulse signal P1, the electric charge of the capacitor 71 flows to the ground side via the resistor 73, and the voltage drop generated in the resistor 73 at that time causes a current to flow to the voltage integrating circuit 3 side via the diode 72. By flowing, the electric charge accumulated in the integrating capacitor 32 is discharged (reset).

しかしながら、積分コンデンサ32を放電させた直後には、積分コンデンサ32の誘電吸収の影響により電荷が完全にゼロにはならず、これによって電流測定値に誤差が含まれるという問題があった。 However, immediately after discharging the integrating capacitor 32, the electric charge does not become completely zero due to the influence of the dielectric absorption of the integrating capacitor 32, which causes a problem that an error is included in the current measured value.

そこで、本発明の解決課題は、積分コンデンサの放電直後の電流測定値を適切に補正することにより、電流測定値の誤差を低減させた電流測定装置を提供すると共に、この電流測定装置を用いた放射線検出装置を提供することにある。 Therefore, the problem to be solved of the present invention is to provide a current measuring device that reduces the error of the current measured value by appropriately correcting the current measured value immediately after the discharge of the integrating capacitor, and to use this current measuring device. The purpose is to provide a radiation detector.

上記の課題を解決するために、請求項1に係る電流測定装置は、被測定電流を積分して積分電圧信号を出力する電荷積分手段と、 前記積分電圧信号の時間変化率に基づいて被測定電流を算出する電流測定手段と、前記積分電圧信号が基準電圧に達した時に前記電荷積分手段内の積分コンデンサを放電させるポンピング手段と、を備えた電流測定装置において、
値が既知である被測定電流と、この被測定電流を前記電荷積分手段に入力した時の前記電流測定手段による電流測定値と、の誤差を、前記ポンピング手段による前記積分コンデンサの放電直後から測定して前記誤差に近似した電荷リセット補償関数を生成する補償関数作成手段と、
前記電荷リセット補償関数を用いて前記電流測定値を補正することにより、前記誤差を除去した電流測定値を算出する測定値補正手段と、を備えたことを特徴とする。
In order to solve the above problem, the current measuring device according to claim 1 is a charge integrating means that integrates the measured current and outputs an integrated voltage signal, and is measured based on the time change rate of the integrated voltage signal. In a current measuring device including a current measuring means for calculating a current and a pumping means for discharging an integrating capacitor in the charge integrating means when the integrated voltage signal reaches a reference voltage.
The error between the measured current whose value is known and the current measured value by the current measuring means when the measured current is input to the charge integrating means is measured immediately after the discharge of the integrating capacitor by the pumping means. And a compensation function creating means that generates a charge reset compensation function that is close to the error.
It is characterized by comprising a measured value correction means for calculating a current measured value from which the error is removed by correcting the current measured value using the charge reset compensation function.

請求項2に係る電流測定装置は、前記補償関数作成手段が、電流初期値、減衰係数、及び、前記積分コンデンサの放電開始後の経過時間からなる補償関数を複数、合成して前記電荷リセット補償関数を作成することを特徴とする。 In the current measuring device according to claim 2, the compensation function creating means synthesizes a plurality of compensation functions including an initial current value, an attenuation coefficient, and an elapsed time after the start of discharge of the integrating capacitor, and the charge reset compensation is performed. It is characterized by creating a function.

請求項3に係る電流測定装置は、請求項1または2に記載した電流測定装置において、前記被測定電流が、放射線の線量率を測定するための電離電流であることを特徴とする。 The current measuring device according to claim 3 is the current measuring device according to claim 1 or 2, wherein the measured current is an ionization current for measuring a dose rate of radiation.

請求項4に係る放射線検出装置は、請求項1~3の何れか1項に記載した電流測定装置を備え、前記測定値補正手段から出力される電流測定値を用いて放射線の線量率を検出することを特徴とする。 The radiation detection device according to claim 4 includes the current measuring device according to any one of claims 1 to 3, and detects a radiation dose rate using a current measurement value output from the measured value correction means. It is characterized by doing.

本発明によれば、被測定電流が流入する電圧積分回路の積分コンデンサを放電させた後の電流測定値を電荷リセット補償関数によって補正することにより、積分コンデンサの誘電吸収に起因する誤差を低減させた電流測定装置を実現することができる。また、この電流測定装置を放射線検出装置に適用すれば、放射線の線量率を正確に測定することが可能である。 According to the present invention, the current measurement value after discharging the integrating capacitor of the voltage integrating circuit into which the measured current flows is corrected by the charge reset compensation function, thereby reducing the error caused by the dielectric absorption of the integrating capacitor. It is possible to realize a current measuring device. Further, if this current measuring device is applied to a radiation detecting device, it is possible to accurately measure the dose rate of radiation.

本発明の実施形態の主要部を示すブロック図である。It is a block diagram which shows the main part of the Embodiment of this invention. 本発明の実施形態において、電流測定装置の測定誤差に近似した合成補償関数を、3つの補償関数1~3の加算値として求めた場合のデータ(一部)を示す図である。In the embodiment of the present invention, it is a figure which shows the data (part) when the synthetic compensation function which approximated the measurement error of the current measuring apparatus is obtained as the addition value of three compensation functions 1 to 3. 図2における測定誤差、補償関数1~3、及び、合成補償関数を示す波形図である。It is a waveform diagram which shows the measurement error, the compensation function 1 to 3, and the composite compensation function in FIG. 図2のデータに基づく積分電荷リセット補償あり/なしの場合について、積分電荷放電後の経過時間と電流測定値との関係を示した波形図である。It is a waveform diagram which showed the relationship between the elapsed time after the integrated charge discharge and the current measured value in the case of with / without integrated charge reset compensation based on the data of FIG. 特許文献1に記載された電流測定装置のブロック図である。It is a block diagram of the current measuring apparatus described in Patent Document 1. 図5の詳細な構成図である。It is a detailed block diagram of FIG. 従来技術の動作を示す波形図である。It is a waveform diagram which shows the operation of the prior art. 従来技術において、低レンジ側測定値演算部による被測定電流と積分電圧信号の変化率との関係(図8(a))、及び、高レンジ側測定値演算部による被測定電流と積分電圧信号の周波数との関係(図8(b))をそれぞれ示す図である。In the prior art, the relationship between the measured current measured by the low range side measurement value calculation unit and the rate of change of the integrated voltage signal (FIG. 8A), and the measured current and integrated voltage signal by the high range side measurement value calculation unit. It is a figure which shows the relationship with the frequency (FIG. 8 (b)), respectively.

以下、図に沿って本発明の実施形態を説明する。
始めに、本発明は、被測定電流が入力されて積分動作を行う電荷積分手段と、その積分電圧信号に基づいて被測定電流を算出する電流測定手段と、電荷積分手段の積分コンデンサを所定のタイミングで放電させるポンピング手段とを備えた電流測定装置を対象とする。
このため、本発明は、例えば特許文献1に記載された電流測定装置にも適用可能であるが、前述した低レンジ側電流測定部、高レンジ側電流測定部を切り替えて測定する機能は必ずしも必要ではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, the present invention defines a charge integrating means for inputting a measured current to perform an integrating operation, a current measuring means for calculating the measured current based on the integrated voltage signal, and an integrating capacitor for the charge integrating means. The target is a current measuring device equipped with a pumping means for discharging at a timing.
Therefore, the present invention can be applied to, for example, the current measuring device described in Patent Document 1, but the function of switching between the low range side current measuring unit and the high range side current measuring unit described above is not always necessary. is not it.

まず、図1は、本発明の実施形態の主要部を示すブロック図である。
図1において、例えば電離箱式放射線検出装置における電離電流等の被測定電流Iinは、図6に示したようにオペアンプ及び積分コンデンサを備えた電荷積分手段11に入力されている。この電荷積分手段11から出力される積分電圧信号Vは電流測定手段12に入力され、電流測定手段12は、積分電圧信号Vと積分コンデンサの容量と測定開始からの経過時間とに基づいて周知の演算により電流測定値I’を算出する。
First, FIG. 1 is a block diagram showing a main part of an embodiment of the present invention.
In FIG. 1, for example, a measured current Iin such as an ionization current in an ionization chamber type radiation detection device is input to a charge integrating means 11 provided with an operational amplifier and an integrating capacitor as shown in FIG. The integrated voltage signal Vo output from the charge integrating means 11 is input to the current measuring means 12, and the current measuring means 12 is based on the integrated voltage signal Vo , the capacity of the integrating capacitor, and the elapsed time from the start of measurement. The measured current value Im'is calculated by a well-known calculation.

また、電流測定手段12は、積分電圧信号Vが基準電圧を超えるとパルス信号Pを生成してポンピング手段13に出力する。このポンピング手段13は、例えば図6のポンピング回路7と同様に構成されており、パルス信号Pが入力されると電荷積分手段11の積分コンデンサに蓄積された電荷を放電させる機能を備えている。 Further, when the integrated voltage signal Vo exceeds the reference voltage, the current measuring means 12 generates a pulse signal P and outputs the pulse signal P to the pumping means 13. The pumping means 13 is configured in the same manner as the pumping circuit 7 of FIG. 6, for example, and has a function of discharging the charge accumulated in the integrating capacitor of the charge integrating means 11 when the pulse signal P is input.

前述した積分コンデンサの誘電吸収の影響により、積分電圧信号Vは、積分コンデンサが放電した直後にゼロにならず、結果として電流測定手段12から出力される測定値I’は誤差を含んでいる。
そこで、本実施形態では、測定値I’の誤差を測定値補正手段15により補正して正確な測定値Iを得ることとし、この補正を行うために,補償関数作成手段としての合成手段14により生成した合成補償関数SCを用いるようにした。
Due to the influence of the dielectric absorption of the integrating capacitor described above, the integrated voltage signal Vo does not become zero immediately after the integrating capacitor is discharged, and as a result, the measured value Im'output from the current measuring means 12 includes an error. There is.
Therefore, in the present embodiment, the error of the measured value Im'is corrected by the measured value correcting means 15 to obtain an accurate measured value Im , and in order to make this correction, a synthesis means as a compensation function creating means. The synthetic compensation function SC n generated by 14 is used.

すなわち、測定に使用する電流測定装置に、値が既知である被測定電流Iinを入力し、電荷積分手段11及び電流測定手段12を介して測定値I’が得られた場合、ポンピング手段13により積分コンデンサを放電(リセット)させた直後の被測定電流Iinと測定値I’との誤差(測定誤差)の時間変化を測定する。この測定誤差に近似した補償関数(積分電荷リセット補償関数)を予め作成しておき、この積分電荷リセット補償関数を用いて測定値I’を補正すれば、積分コンデンサによる誘電吸収の影響を除いた正確な測定値Iを得ることができる。
なお、積分電荷リセット補償関数を単一の関数によって実現することは困難であるため、本実施形態では、複数の補償関数を合成して得た合成補償関数SCを用いている。
That is, when the measured current I in of which the value is known is input to the current measuring device used for the measurement and the measured value Im'is obtained via the charge integrating means 11 and the current measuring means 12, the pumping means The time change of the error (measurement error) between the measured current I in and the measured value Im'immediately after the integrating capacitor is discharged (reset) by 13 is measured. If a compensation function (integral charge reset compensation function) that approximates this measurement error is created in advance and the measured value Im'is corrected using this integrated charge reset compensation function, the effect of dielectric absorption by the integrating capacitor is removed. It is possible to obtain an accurate measured value Im .
Since it is difficult to realize the integrated charge reset compensation function by a single function, the synthetic compensation function SC n obtained by synthesizing a plurality of compensation functions is used in this embodiment.

図2は、電流測定装置に既知の被測定電流Iinを入力して測定誤差を求め、この測定誤差に近似した合成補償関数SCを3つの補償関数1~3(C1n~C3nとする)の加算値として求めた場合のデータ(一部)を示している。
ここでは、電流測定装置に約326[fA]の被測定電流Iinを入力し、1回目~4回目の各測定について、積分コンデンサを放電させてから1[s]ごとの経過時間における約50個の測定値(リセット補償なしのデータ)I’と、4回分の測定値I’の平均値と、この平均値の被測定電流Iinに対する測定誤差と、を求め、それぞれの測定誤差に近似した合成補償関数を補償関数1~3の加算値として算出している。
図2において、網掛けを施したデータNo.0~No.3は、被測定電流Iinの値を確認してから積分コンデンサを放電させた部分であり、データNo.3の時点が放電のタイミング(経過時間=0)である。
In FIG. 2, a known measured current I in is input to the current measuring device to obtain a measurement error, and the combined compensation function SC n approximated to this measurement error is referred to as three compensation functions 1 to 3 (C 1n to C 3 n ). The data (part) when it is obtained as the added value of) is shown.
Here, about 326 [fA] of the measured current I in is input to the current measuring device, and for each measurement from the first to the fourth, about 50 in the elapsed time for each 1 [s] after the integrating capacitor is discharged. The average value of each measured value (data without reset compensation) Im'and the four measured values Im ', and the measurement error of this average value with respect to the measured current I in are obtained, and each measurement error is obtained. The synthetic compensation function close to is calculated as the addition value of the compensation functions 1 to 3.
In FIG. 2, the shaded data No. 0-No. Reference numeral 3 is a portion in which the integrating capacitor is discharged after confirming the value of the measured current I in , and the data No. 3 is used. The time point 3 is the discharge timing (elapsed time = 0).

以下の数式1は補償関数1~3の設定例であり、補償ピーク電流初期値a~a及び減衰係数τ~τは、使用する電流測定装置ごとに調整可能である。

Figure 0007027963000001
The following equation 1 is a setting example of the compensation functions 1 to 3 , and the compensation peak current initial values a1 to a3 and the attenuation coefficients τ1 to τ3 can be adjusted for each current measuring device to be used.
Figure 0007027963000001

図3は、図2における測定誤差(実線)に近似させた合成補償関数(破線)、及び、補償関数1~3(一点鎖線,二点鎖線,点線)を示した波形図である。
合成補償関数SCは前述した図1の合成手段14によって求められるため、測定値補正手段15では、この合成補償関数SCを測定値I’に加算または減算して積分電荷リセット補償を行うことにより、積分コンデンサの誘電吸収に起因する誤差が除去された測定値Iを得ることができる。
FIG. 3 is a waveform diagram showing a synthetic compensation function (broken line) approximated to the measurement error (solid line) in FIG. 2 and compensation functions 1 to 3 (dashed-dotted line, two-dot chain line, dotted line).
Since the synthetic compensation function SC n is obtained by the synthetic means 14 of FIG. 1 described above, the measured value correction means 15 adds or subtracts the synthetic compensation function SC n to the measured value Im'to perform integrated charge reset compensation. Thereby, the measured value Im from which the error due to the dielectric absorption of the integrating capacitor is removed can be obtained.

図4は、図2のデータに基づき、本実施形態の積分電荷リセット補償を行った場合と行わない場合とについて、積分電荷放電後の経過時間と電流測定値との関係を示した波形図である。
図4のリセット補償なし(破線)の波形において、経過時間が0に近い方から4つのピーク値は図2におけるデータNo.5の1回目~4回目の測定値であり、各ピーク値の間の約50個の測定値が図2のリセット補償なしのデータである。
リセット補償なしの場合には、測定値が大きく変動しているが、本実施形態によるリセット補償あり(実線)の波形では測定値の変動幅が小さく、補償効果が顕著に表れているのがわかる。
FIG. 4 is a waveform diagram showing the relationship between the elapsed time after the integrated charge discharge and the current measured value in the case where the integrated charge reset compensation of the present embodiment is performed and the case where the integrated charge reset compensation is not performed, based on the data of FIG. be.
In the waveform without reset compensation (dashed line) in FIG. 4, the four peak values from the one whose elapsed time is closer to 0 are the data Nos. in FIG. It is the first to fourth measured values of No. 5, and about 50 measured values between each peak value are the data without reset compensation in FIG. 2.
When there is no reset compensation, the measured value fluctuates greatly, but in the waveform with reset compensation (solid line) according to this embodiment, the fluctuation range of the measured value is small, and it can be seen that the compensation effect is remarkable. ..

本発明は、放射線検出装置の電離電流を始めとして、微小電流を測定する各種の電流測定装置に利用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used in various current measuring devices for measuring minute currents, including ionizing currents of radiation detection devices.

11:電荷積分手段
12:電流測定手段
13:ポンピング手段
14:合成手段
15:測定値補正手段
11: Charge integrating means 12: Current measuring means 13: Pumping means 14: Synthesis means 15: Measured value correction means

Claims (4)

被測定電流を積分して積分電圧信号を出力する電荷積分手段と、 前記積分電圧信号の時間変化率に基づいて被測定電流を算出する電流測定手段と、前記積分電圧信号が基準電圧に達した時に前記電荷積分手段内の積分コンデンサを放電させるポンピング手段と、を備えた電流測定装置において、
値が既知である被測定電流と、この被測定電流を前記電荷積分手段に入力した時の前記電流測定手段による電流測定値と、の誤差を、前記ポンピング手段による前記積分コンデンサの放電直後から測定して前記誤差に近似した電荷リセット補償関数を生成する補償関数作成手段と、
前記電荷リセット補償関数を用いて前記電流測定値を補正することにより、前記誤差を除去した電流測定値を算出する測定値補正手段と、
を備えたことを特徴とする電流測定装置。
The charge integrating means that integrates the measured current and outputs the integrated voltage signal, the current measuring means that calculates the measured current based on the time change rate of the integrated voltage signal, and the integrated voltage signal have reached the reference voltage. In a current measuring device including a pumping means for discharging an integrating capacitor in the charge integrating means at times.
The error between the measured current whose value is known and the current measured value by the current measuring means when the measured current is input to the charge integrating means is measured immediately after the discharge of the integrating capacitor by the pumping means. And a compensation function creating means that generates a charge reset compensation function that is close to the error.
A measurement value correction means for calculating a current measurement value from which the error is removed by correcting the current measurement value using the charge reset compensation function, and a measurement value correction means.
A current measuring device characterized by being equipped with.
請求項1に記載した電流測定装置において、
前記補償関数作成手段は、電流初期値、減衰係数、及び、前記積分コンデンサの放電開始後の経過時間からなる補償関数を複数、合成して前記電荷リセット補償関数を作成することを特徴とする電流測定装置。
In the current measuring device according to claim 1,
The current compensation function creating means is characterized in that a plurality of compensation functions including an initial current value, an attenuation coefficient, and an elapsed time after the start of discharge of the integrating capacitor are combined to create the charge reset compensation function. measuring device.
請求項1または2に記載した電流測定装置において、
前記被測定電流が、放射線の線量率を測定するための電離電流であることを特徴とする電流測定装置。
In the current measuring device according to claim 1 or 2.
A current measuring device, characterized in that the measured current is an ionizing current for measuring a dose rate of radiation.
請求項1~3の何れか1項に記載した電流測定装置を備え、前記測定値補正手段から出力される電流測定値を用いて放射線の線量率を検出することを特徴とする放射線検出装置。
A radiation detection device comprising the current measuring device according to any one of claims 1 to 3, wherein the dose rate of radiation is detected by using the current measured value output from the measured value correcting means.
JP2018037697A 2018-03-02 2018-03-02 Current measuring device and radiation detection device Active JP7027963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018037697A JP7027963B2 (en) 2018-03-02 2018-03-02 Current measuring device and radiation detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018037697A JP7027963B2 (en) 2018-03-02 2018-03-02 Current measuring device and radiation detection device

Publications (2)

Publication Number Publication Date
JP2019152528A JP2019152528A (en) 2019-09-12
JP7027963B2 true JP7027963B2 (en) 2022-03-02

Family

ID=67948825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018037697A Active JP7027963B2 (en) 2018-03-02 2018-03-02 Current measuring device and radiation detection device

Country Status (1)

Country Link
JP (1) JP7027963B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460360B (en) * 2022-04-12 2022-07-01 江西西平计量检测有限公司 Detection method, system and device based on ammeter measurement current time integral

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337169A (en) 2000-05-25 2001-12-07 Toshiba Corp Radiation monitoring device
JP2014112052A (en) 2012-12-05 2014-06-19 Mitsubishi Electric Corp Radiation monitor
WO2015011916A1 (en) 2013-07-23 2015-01-29 富士電機株式会社 Current measurement device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117782Y2 (en) * 1971-08-23 1976-05-13
JPS5914071U (en) * 1982-07-19 1984-01-27 日本電気株式会社 Leakage current measurement circuit
JP3046327B2 (en) * 1990-06-28 2000-05-29 安藤電気株式会社 Control method of double integral type A / D converter
JP3382734B2 (en) * 1994-11-01 2003-03-04 オリンパス光学工業株式会社 Distance measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337169A (en) 2000-05-25 2001-12-07 Toshiba Corp Radiation monitoring device
JP2014112052A (en) 2012-12-05 2014-06-19 Mitsubishi Electric Corp Radiation monitor
WO2015011916A1 (en) 2013-07-23 2015-01-29 富士電機株式会社 Current measurement device

Also Published As

Publication number Publication date
JP2019152528A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
TWI409683B (en) Touch panel sensing circuit
JP5420387B2 (en) Voltage detector
JPH01502933A (en) Frequency counting device and method
SE519631C2 (en) Synchronous CDMA acquisition circuit
EP0633455B1 (en) Electromagnetic flowmeter
US8373487B1 (en) True RMS power measurement
JP6293516B2 (en) Double integral type A / D converter
JP7027963B2 (en) Current measuring device and radiation detection device
WO2015011916A1 (en) Current measurement device
US8633714B2 (en) Impedance detecting circuit and impedance detection method
US11448609B2 (en) Method for operating a gas sensor arrangement and gas sensor arrangement
WO2017097147A1 (en) Apparatus, device and method for measuring gain of sensor
JP2013253841A (en) Current sensing circuit
CN109725188B (en) Current measuring method and device
JP5237686B2 (en) Sensor device
KR101223953B1 (en) Self Temperature Compensated Precision Event timer using Standard Time reference Frequency
JP4540301B2 (en) Radiation monitor
EP3296709B1 (en) Temperature-to-digital converter
JP6173106B2 (en) Frequency detector
JPH0131967Y2 (en)
JP6712071B2 (en) Waveform restoration device and waveform restoration method
JP3328462B2 (en) Humidity detection circuit
JP3321966B2 (en) Time ratio detection circuit
JPH0424566A (en) Voltage detector
RU2244316C2 (en) Stochastic amplification coefficient meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R150 Certificate of patent or registration of utility model

Ref document number: 7027963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02