WO2023032675A1 - Polymer dispersion type liquid crystal film, and method for producing polymer dispersion type liquid crystal film - Google Patents

Polymer dispersion type liquid crystal film, and method for producing polymer dispersion type liquid crystal film Download PDF

Info

Publication number
WO2023032675A1
WO2023032675A1 PCT/JP2022/031088 JP2022031088W WO2023032675A1 WO 2023032675 A1 WO2023032675 A1 WO 2023032675A1 JP 2022031088 W JP2022031088 W JP 2022031088W WO 2023032675 A1 WO2023032675 A1 WO 2023032675A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
polymer
region
crystal compound
polymerizable liquid
Prior art date
Application number
PCT/JP2022/031088
Other languages
French (fr)
Japanese (ja)
Inventor
雅徳 大塚
真理子 平井
仁 吉川
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202280058751.1A priority Critical patent/CN117897653A/en
Publication of WO2023032675A1 publication Critical patent/WO2023032675A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering

Definitions

  • the present invention relates to a polymer-dispersed liquid crystal film and a method for producing a polymer-dispersed liquid crystal film.
  • a PDLC film having a polymer dispersed liquid crystal (hereinafter sometimes referred to as “PDLC”) layer between a pair of transparent electrode layers is a type of light control film, and can be applied in a voltage applied state or in a non-printed state. By switching between the additional states, it is possible to switch between a light scattering state (scattering state) and a light transmitting state (non-scattering state or transparent state).
  • PDLC polymer dispersed liquid crystal
  • the PDLC layer includes a polymer matrix and droplets of a liquid crystal compound dispersed in the polymer matrix (liquid crystal droplets), and the refractive index of the liquid crystal compound in the liquid crystal droplets and the polymer matrix is Liquid crystal droplets may become scattering particles due to differences and the like, causing light scattering.
  • the PDLC film Since the PDLC film generally exhibits a cloudy appearance in the scattering state, it can exhibit two appearances: cloudy (scattering state) and transparent (non-scattering state). A need exists for a light management film that can provide.
  • Patent Document 1 discloses that a light control film capable of adjusting the total amount of incident light exhibits a transparent appearance in a non-scattering state by using a dichroic substance instead of a liquid crystal compound, Light management films have been proposed that exhibit a colored appearance in the scattering state.
  • the present invention has been made to solve the above-mentioned conventional problems, and its main purpose is to provide a polymer-dispersed liquid crystal film capable of switching between a transparent state and a scattering state only in a predetermined region. be.
  • the liquid crystal droplets in the second region contain a non-polymerizable liquid crystal compound and a polymerizable liquid crystal compound.
  • the content weight ratio of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound in the second region is 99:1 to 70:30. be.
  • the liquid crystal polymer contained in the liquid crystal droplets in the first region is a polymerization product of the polymerizable liquid crystal compound contained in the liquid crystal droplets in the second region.
  • the difference between the haze of the first region and the haze of the second region is increased by applying voltage.
  • the liquid crystal polymer contained in the liquid crystal droplets in the first region is in a non-aligned state. In one embodiment, the difference between the haze of the first region and the haze of the second region is reduced by applying a voltage. In one embodiment, the liquid crystal polymer contained in the liquid crystal droplets in the first region is oriented in a predetermined direction.
  • a first transparent conductive film is coated with a coating liquid containing a polymer matrix-forming resin, a non-polymerizable liquid crystal compound, a polymerizable liquid crystal compound, and a solvent, Obtaining a coating layer, drying the coating layer to obtain a polymer dispersion type comprising a polymer matrix and liquid crystal droplets containing the non-polymerizable liquid crystal compound dispersed in the polymer matrix and the polymerizable liquid crystal compound obtaining a liquid crystal layer, laminating a second transparent conductive film on the polymer dispersed liquid crystal layer, and between the first transparent conductive film and the second transparent conductive film , the polymer-dispersed liquid crystal layer is irradiated with an active energy ray in a predetermined pattern while a voltage is applied to the polymer-dispersed liquid crystal layer so that the polymer-dispersed liquid crystal layer contains a liquid crystal polymer that is a polymerization product of the polymerizable liquid crystal compound and the
  • a method of making a polymer dispersed liquid crystal film comprising forming a first region containing liquid crystal droplets.
  • a first transparent conductive film is coated with a coating liquid containing a polymer matrix-forming resin, a non-polymerizable liquid crystal compound, a polymerizable liquid crystal compound, and a solvent, Obtaining a coating layer, drying the coating layer to obtain a polymer dispersion type comprising a polymer matrix and liquid crystal droplets containing the non-polymerizable liquid crystal compound dispersed in the polymer matrix and the polymerizable liquid crystal compound obtaining a liquid crystal layer, laminating a second transparent conductive film on the polymer dispersed liquid crystal layer, and between the first transparent conductive film and the second transparent conductive film
  • the polymer-dispersed liquid crystal layer is irradiated with an active energy ray in a predetermined pattern while no voltage is applied to the polymer-dispersed liquid crystal layer, so that the polymer-disper
  • a method of making a polymer dispersed liquid crystal film comprising forming a first region containing liquid crystal droplets.
  • the coating liquid is an emulsion coating liquid in which liquid crystal particles containing the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound are dispersed in the solvent.
  • the weight ratio of the total content of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound in the coating liquid to the content of the polymer matrix-forming resin is 30:70 to 70:30.
  • the content weight ratio of the non-polymerizable liquid crystal compound to the polymerizable liquid crystal compound (non-polymerizable liquid crystal compound:polymerizable liquid crystal compound) in the coating liquid is 99:1 to 70:30. be.
  • the orientation of the liquid crystal compound is restricted within the liquid crystal droplets in which the liquid crystal polymer exists, the change in haze caused by the change in voltage application state is suppressed. Therefore, by changing the voltage application state while the liquid crystal polymer is present in the liquid crystal droplets in the desired region, it is possible to suppress the haze change in that region while changing the haze in other regions. can. As a result, it is possible to provide a light control film that exhibits an appearance with a predetermined pattern when either voltage is applied or when no voltage is applied, and exhibits a highly uniform appearance in the other case.
  • FIG. 1 is a schematic diagram illustrating an example of a method for producing a PDLC film of the present invention
  • FIG. 1 is a schematic diagram illustrating an example of a method for producing a PDLC film of the present invention
  • FIG. 1 is a schematic diagram illustrating an example of a method for producing a PDLC film of the present invention
  • a polymer dispersed liquid crystal (PDLC) film includes a first transparent conductive film, a polymer matrix, and liquid crystal droplets dispersed in the polymer matrix.
  • a PDLC layer and a second transparent conductive film are included in this order, and the PDLC layer has a first region and a second region having different amounts of change in haze due to voltage application in a plan view, and A change in haze due to voltage application in the first region is smaller than that in the second region, and the liquid crystal droplets in the first region contain a non-polymerizable liquid crystal compound and a liquid crystal polymer.
  • FIG. 1(a) is a schematic plan view of an example of the PDLC film of the first embodiment of the present invention, and (b) is a voltage-free PDLC film shown in (a).
  • FIG. 2C is a schematic cross-sectional view for explaining a state during heating, and (c) is a schematic cross-sectional view for explaining a state when voltage is applied to the PDLC film shown in (a).
  • the PDLC film 100a includes a first transparent conductive film 10, a PDLC layer 20 including a polymer matrix 22 and liquid crystal droplets 24 dispersed in the polymer matrix 22, a second transparent conductive film 30, in that order.
  • the PDLC layer 20 has a first region A and a second region B that have different amounts of change in haze due to voltage application in plan view.
  • the liquid crystal droplets 24 in the first region A contain a non-polymerizable liquid crystal compound 24a and a liquid crystal polymer 24c, typically the liquid crystal polymer 24c exists in a non-aligned state.
  • the liquid crystal droplets 24 in the second region B contain a non-polymerizable liquid crystal compound 24a and a polymerizable liquid crystal compound 24b.
  • the expression that a certain compound is "in a non-oriented state" means that the compound is not arranged with a certain regularity.
  • both the non-polymerizable liquid crystal compound 24a and the liquid crystal polymer 24c in the liquid crystal droplets 24 in the first region A are in a non-aligned state
  • both the non-polymerizable liquid crystal compound 24a and the polymerizable liquid crystal compound 24b in the liquid crystal droplets 24 in the second region B are in a non-aligned state
  • scattering of transmitted light occurs in both regions. Therefore, both the first region A and the second region B can be in the scattering state, and as a result, the entire main surface of the PDLC film 100a can be in the scattering state.
  • both the non-polymerizable liquid crystal compound 24a and the polymerizable liquid crystal compound 24b in the liquid crystal droplets 24 in the second region B are transparent conductive. Since it is oriented in the direction perpendicular to the major surfaces of the films 10 and 30 and scattering of transmitted light is suppressed, the haze of the region is reduced.
  • the non-aligned liquid crystal polymer 24c prevents the alignment of the non-polymerizable liquid crystal compound 24a and maintains the non-aligned state, so that transmitted light is still scattered. Therefore, the amount of change in haze due to the application of voltage in the first region is smaller than the amount of change in the second region, and the difference between the haze in the first region and the haze in the second region increases with the application of voltage. do.
  • the PDLC film 100a when no voltage is applied, the entire main surface is in a scattering state and has a cloudy appearance. can appear opaque while the second region appears transparent. Therefore, the PDLC film 100a can exhibit different appearances by switching between voltage application and non-application.
  • the voltage applied to the PDLC film during voltage application is a voltage (operating voltage) capable of operating the PDLC film, and can be, for example, 5V to 200V, preferably 10V to 100V.
  • the term "haze when voltage is applied” means haze when an operating voltage is applied to the PDLC film, for example, haze when a voltage of 5 V or higher, 10 V or higher, or 20 V or higher is applied. could be.
  • the haze of the region corresponding to the first region of the PDLC film when no voltage is applied is, for example, 50% to 100%, preferably 70% to 100%. %.
  • the haze of the first region when voltage is applied is, for example, 40% to 100%, preferably 60% to 100%.
  • the amount of change in haze in the first region due to voltage application is, for example, 0% to 40%, preferably 0% to 30%.
  • the haze of the region corresponding to the second region of the PDLC film when no voltage is applied is, for example, 50% to 100%, preferably 70% to 100%. %.
  • the haze of the second region when voltage is applied is, for example, 1% to 20%, preferably 1% to 10%.
  • the amount of change in haze in the second region due to voltage application is, for example, 30% to 99%, preferably 60% to 99%.
  • the amount of change in haze in the first region due to voltage application is smaller than the amount of change in haze in the second region due to voltage application, and the difference is, for example, 10% to 99%, preferably 30% to 99%. .
  • the total light transmittance of the region corresponding to the first region of the PDLC film when no voltage is applied is, for example, 50% to 95%, Preferably it is 60% to 90%.
  • the total light transmittance of the first region when voltage is applied is, for example, 50% to 95%, preferably 60% to 90%.
  • Total light transmittance can be measured according to JIS K 7361.
  • the total light transmittance of the region corresponding to the second region of the PDLC film when no voltage is applied is, for example, 50% to 95%, Preferably it is 60% to 90%.
  • the total light transmittance of the second region when voltage is applied is, for example, 70% to 95%, preferably 80% to 90%.
  • the thickness of the PDLC film is, for example, 30 ⁇ m to 250 ⁇ m, preferably 50 ⁇ m to 150 ⁇ m.
  • the first transparent conductive film 10 typically has a first transparent substrate 12 and a first transparent electrode layer 14 provided on one side thereof.
  • the first transparent conductive film 10 may have a hard coat layer on one side or both sides of the first transparent substrate 12, if necessary.
  • a refractive index adjusting layer may be provided between the transparent electrode layer 14 of .
  • the surface resistance value of the first transparent conductive film is preferably 1 ⁇ / ⁇ to 1000 ⁇ / ⁇ , more preferably 5 ⁇ / ⁇ to 300 ⁇ / ⁇ , even more preferably 10 ⁇ / ⁇ to 200 ⁇ / ⁇ . .
  • the haze value of the first transparent conductive film is preferably 20% or less, more preferably 10% or less, still more preferably 0.1% to 10%.
  • the total light transmittance of the first transparent conductive film is preferably 30% or higher, more preferably 60% or higher, and even more preferably 80% or higher.
  • the first transparent base material can be formed using any appropriate material. Specifically, for example, polymer substrates such as films and plastic substrates are preferably used. This is because it is excellent in smoothness and wettability with the composition for forming a transparent electrode layer, and productivity can be greatly improved by continuous production using rolls.
  • the material that constitutes the first transparent substrate is typically a polymer film containing a thermoplastic resin as a main component.
  • thermoplastic resins include polyester-based resins; cycloolefin-based resins such as polynorbornene; acrylic-based resins; polycarbonate resins; and cellulose-based resins.
  • polyester resins, cycloolefin resins and acrylic resins are preferable. These resins are excellent in transparency, mechanical strength, thermal stability, moisture barrier properties, and the like. You may use the said thermoplastic resin individually or in combination of 2 or more types.
  • an optical film used for a polarizing plate such as a low retardation substrate, a high retardation substrate, a retardation plate, an absorptive polarizing film, a polarized selective reflection film, etc., can also be used as the first transparent substrate. is.
  • the thickness of the first transparent substrate is preferably 200 ⁇ m or less, more preferably 3 ⁇ m to 100 ⁇ m, still more preferably 5 ⁇ m to 70 ⁇ m. By setting the thickness of the first transparent base material to 200 ⁇ m or less, the function of the PDLC layer can be sufficiently exhibited.
  • the total light transmittance of the first transparent substrate is preferably 30% or higher, more preferably 60% or higher, and even more preferably 80% or higher.
  • the first transparent electrode layer can be formed using, for example, metal oxides such as indium tin oxide (ITO), zinc oxide (ZnO), tin oxide (SnO 2 ).
  • ITO indium tin oxide
  • ZnO zinc oxide
  • SnO 2 tin oxide
  • a transparent electrode layer containing ITO is excellent in transparency.
  • the first transparent electrode layer can be patterned into a desired shape depending on the purpose.
  • the light transmittance of the first transparent electrode layer is preferably 85% or higher, more preferably 87% or higher, and still more preferably 90% or higher.
  • a transparent electrode layer having a light transmittance in such a range a high light transmittance is obtained in a transparent state.
  • the first transparent electrode layer contains crystal grains.
  • Light transmittance can be improved by containing crystal grains.
  • the method for forming the crystal grains is not limited, the crystal grains can be preferably formed by, for example, heating in the atmosphere.
  • the area occupation ratio of crystal grains in the transparent electrode layer is, for example, 30% or more, preferably 50% or more, and more preferably 80% or more.
  • the upper limit of the area occupation ratio is, for example, 100%. If the area occupation ratio of the crystal grains is within the above range, the light transmittance can be improved.
  • the area occupation ratio of the crystal grains can be calculated from the area ratio of the crystal grain region and the amorphous region by observing the surface of the transparent electrode layer with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the surface roughness Ra of the first transparent electrode layer is, for example, 0.1 nm or more. If the surface roughness Ra of the first transparent electrode layer is less than 0.1 nm, the adhesion to the substrate may deteriorate.
  • the upper limit of the surface roughness Ra of the first transparent electrode layer is preferably less than 1.2 nm, more preferably 1.0 nm or less, even more preferably less than 1.0 nm, particularly preferably 0.8 nm. It is below. If the surface roughness Ra of the first transparent electrode layer is too large, it may become difficult to suitably form crystal grains.
  • the surface roughness Ra in this specification means the arithmetic mean roughness Ra measured by AFM (Atomic Force Microscope).
  • the thickness of the first transparent electrode layer is, for example, 10 nm or more, preferably 15 nm or more. If the thickness of the transparent electrode layer is less than 10 nm, the area occupation ratio of crystal grains may decrease.
  • the upper limit of the thickness of the first transparent electrode layer is, for example, 50 nm or less, preferably 35 nm or less, more preferably less than 30 nm, still more preferably 27 nm or less. If the thickness of the transparent electrode layer exceeds 50 nm, the transmittance may deteriorate, and the surface roughness of the transparent electrode layer may increase.
  • the first transparent electrode layer is provided on one surface of the first transparent substrate by, for example, sputtering. After the metal oxide layer is formed by sputtering, it can be crystallized by annealing. Annealing is performed, for example, by heat treatment at 120° C. to 300° C. for 10 minutes to 120 minutes.
  • the refractive index adjusting layer can control the hue and/or transmittance of the PDLC film.
  • the refractive index adjusting layer may consist of a single layer, or may be a laminate of two or more layers.
  • the refractive index of the refractive index adjusting layer is preferably 1.3 to 1.8, more preferably 1.35 to 1.7, even more preferably 1.38 to 1.68.
  • a rather low refractive index is desirable, for example, 1.38 to 1.46, so as to optically relax the refractive index of ITO.
  • interfacial reflection between the transparent base material and the transparent electrode layer can be preferably reduced.
  • the refractive index adjusting layer is made of an inorganic substance, an organic substance, or a mixture of an inorganic substance and an organic substance.
  • Materials for forming the refractive index adjustment layer include NaF, Na3AlF6 , LiF, MgF2 , CaF2, SiO2 , LaF3 , CeF3 , Al2O3 , TiO2 , Ta2O5 , and ZrO2. , ZnO, ZnS, and SiO x (where x is 1.5 or more and less than 2), and organic substances such as acrylic resins, epoxy resins, urethane resins, melamine resins, alkyd resins, and siloxane-based polymers.
  • a thermosetting resin composed of a mixture of melamine resin, alkyd resin and organic silane condensate as the organic material.
  • the refractive index adjusting layer may contain nanoparticles with an average particle size of 1 nm to 100 nm. By containing nanoparticles in the refractive index adjusting layer, the refractive index of the refractive index adjusting layer itself can be easily adjusted.
  • the content of nanoparticles in the refractive index adjusting layer is preferably 0.1% by weight to 90% by weight. Moreover, the content of the nanoparticles in the refractive index adjusting layer is more preferably 10 wt % to 80 wt %, and even more preferably 20 wt % to 70 wt %.
  • inorganic oxides that form nanoparticles include silicon oxide (silica), hollow nanosilica, titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide, and niobium oxide.
  • silicon oxide (silica), titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide, and niobium oxide are preferred. These may be used individually by 1 type, and may use 2 or more types together.
  • the thickness of the refractive index adjusting layer is preferably 10 nm to 200 nm, more preferably 20 nm to 150 nm, and even more preferably 30 nm to 130 nm. If the thickness of the refractive index adjusting layer is too small, it is difficult to form a continuous film. Further, when the thickness of the refractive index adjusting layer is excessively large, there is a tendency that the transparency in the transparent state is lowered and cracks are likely to occur.
  • the refractive index adjustment layer can be formed using the above materials by a coating method such as a wet method, a gravure coating method or a bar coating method, a vacuum deposition method, a sputtering method, an ion plating method, or the like.
  • a coating method such as a wet method, a gravure coating method or a bar coating method, a vacuum deposition method, a sputtering method, an ion plating method, or the like.
  • the PDLC layer 20 includes a polymer matrix 22 and liquid crystal compound droplets (liquid crystal droplets) 24 dispersed in the polymer matrix 22 .
  • the PDLC layer 20 has a first region A and a second region B, and the liquid crystal droplets 24 in the first region A are composed of a non-polymerizable liquid crystal compound 24a and a liquid crystal polymer in a non-aligned state. 24c, and the liquid crystal droplet 24 in the second region B includes a non-polymerizable liquid crystal compound 24a and a polymerizable liquid crystal compound 24b.
  • the first region A and the second region B can be formed in any suitable pattern according to the design desired for the PDLC film.
  • the polymer matrix can be composed of any suitable resin.
  • the polymer matrix-forming resin can be appropriately selected according to the light transmittance, the refractive index of the liquid crystal compound, the adhesion to the transparent conductive film, and the like.
  • water-soluble resins or water-dispersible resins such as urethane-based resins, polyvinyl alcohol-based resins, polyethylene-based resins, polypropylene-based resins, and acrylic-based resins can be preferably used.
  • the polymer matrix-forming resin may be used alone or in combination.
  • the content of the polymer matrix in the PDLC layer is, for example, 30% to 70% by weight, preferably 35% to 65% by weight, more preferably 40% to 60% by weight, in both the first region and the second region. % by weight. If the content of the polymer matrix is within this range, a good dimming function can be exhibited at a moderate operating voltage, good mechanical strength can be obtained, liquid crystal leakage from the edges can be prevented, etc. effect can be obtained.
  • any appropriate liquid crystal compound can be used as the non-polymerizable liquid crystal compound.
  • the dielectric anisotropy of the non-polymerizable liquid crystal compound may be positive or negative.
  • Non-polymerizable liquid crystal compounds can be, for example, nematic, smectic, or cholesteric liquid crystal compounds. It is preferable to use a nematic type liquid crystal compound because excellent transparency can be achieved in the transparent state.
  • Nematic type liquid crystal compounds include biphenyl-based compounds, phenylbenzoate-based compounds, cyclohexylbenzene-based compounds, azoxybenzene-based compounds, azobenzene-based compounds, azomethine-based compounds, terphenyl-based compounds, biphenylbenzoate-based compounds, cyclohexylbiphenyl-based compounds, Examples include phenylpyridine-based compounds, cyclohexylpyrimidine-based compounds, cholesterol-based compounds, and fluorine-based compounds. These low-molecular-weight liquid crystal compounds may be used alone or in combination.
  • the polymerizable liquid crystal compound can be appropriately selected according to the light transmittance, compatibility with the non-polymerizable liquid crystal compound, and the like.
  • the polymerizable liquid crystal compound may be of a bifunctional or higher crosslinked type.
  • Polymerizable liquid crystal compounds include, for example, polymeric mesogenic compounds described in JP-T-2002-533742 (WO00/37585), EP358208 (US5211877), EP66137 (US4388453), WO93/22397, EP0261712, DE19504224, DE4408171, and GB2280445. etc. can be used.
  • a specific example of such a polymerizable mesogenic compound is LC242 (trade name) available from BASF.
  • As the polymerizable liquid crystal compound for example, a nematic liquid crystal monomer is preferable.
  • a liquid crystal polymer is typically a polymerization product of the polymerizable liquid crystal compound.
  • a polymer may be formed by polymerization of the polymerizable liquid crystal compound, and a network structure may be formed by cross-linking, but these are non-liquid crystalline. Therefore, in a liquid crystal polymer, for example, a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change peculiar to a liquid crystalline compound does not occur.
  • a liquid crystal polymer typically exists in a non-aligned state in a liquid crystal droplet. Since the liquid crystal polymer in the liquid crystal droplets is in a non-aligned state, the first region maintains a high haze (for example, 40% to 100%, preferably 60% to 100%) even when a voltage is applied. obtain.
  • a high haze for example, 40% to 100%, preferably 60% to 100%
  • the total content of the non-polymerizable liquid crystal compound and the liquid crystal polymer in the first region is, for example, 30 wt% to 70 wt%, preferably 35 wt% to 65 wt%, more preferably 40 wt% to 60 wt%.
  • the weight content ratio of the non-polymerizable liquid crystal compound to the liquid crystal polymer (non-polymerizable liquid crystal compound: liquid crystal polymer) in the first region is, for example, 99:1 to 70:30, preferably 95:5 to 80:20. be.
  • the total content of the polymer matrix, the non-polymerizable liquid crystal compound and the liquid crystal polymer in the first region may be, for example, 90% to 99.9% by weight, preferably 95% to 99.9% by weight. .
  • the total content of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound in the second region is, for example, 30% to 70% by weight, preferably 35% to 65% by weight, more preferably 40% to 60% by weight. is. Further, the weight content ratio of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound (non-polymerizable liquid crystal compound:polymerizable liquid crystal compound) in the second region is, for example, 99:1 to 70:30, preferably 95:5 to It is 80:20.
  • the total content of the polymer matrix, the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound in the second region is, for example, 90% by weight to 99.9% by weight, preferably 95% by weight to 99.9% by weight. could be.
  • the PDLC layer having the first region and the second region is polymerized in a predetermined region of the PDLC layer containing liquid crystal droplets containing a non-polymerizable liquid crystal compound and a polymerizable liquid crystal compound. It may be formed by polymerizing a liquid crystalline compound to form a liquid crystalline polymer, in which case the predetermined area becomes the first area and the other area becomes the second area. Therefore, in the first region and the second region, the liquid crystal droplet may further contain a polymerization initiator. The content of the polymerization initiator is as described in Section B. In addition, unreacted polymerizable liquid crystal compounds may remain in the liquid crystal droplets in the first region.
  • the content of the unreacted polymerizable liquid crystal compound in the first region is, for example, 3% by weight or less, preferably 1% by weight or less. Further, it is preferable that substantially no liquid crystal polymer is present in the liquid crystal droplets in the second region.
  • the content of the liquid crystal polymer in the second region is, for example, 3% by weight or less, preferably 1% by weight or less.
  • the average particle size of liquid crystal droplets can be, for example, 0.3 ⁇ m to 9 ⁇ m, preferably 0.4 ⁇ m to 8 ⁇ m. If the average particle size of the liquid crystal droplets is too small, the liquid crystal droplet size is smaller than the wavelength of the light, so the light passes through the liquid crystal droplets without being scattered, and as a result, sufficient haze cannot be obtained. There can be a problem that there is no On the other hand, if the average particle size is too large, the size of the liquid crystal droplets is too large for the wavelength of light, which may cause a problem that a sufficient haze cannot be obtained.
  • the average particle size of the liquid crystal droplets in the PDLC layer is the volume average particle size of the liquid crystal droplets when viewed from a direction perpendicular to the main surface of the PDLC film.
  • the thickness of the PDLC layer is typically 2 ⁇ m to 40 ⁇ m, preferably 3 ⁇ m to 35 ⁇ m, more preferably 4 ⁇ m to 30 ⁇ m.
  • the second transparent conductive film 30 typically has a second transparent substrate 32 and a second transparent electrode layer 34 provided on one side thereof.
  • the second transparent conductive film 30 may have a hard coat layer on one side or both sides of the second transparent substrate 32, if necessary.
  • a refractive index adjusting layer may be provided between the transparent electrode layer 34 of .
  • the surface resistance value of the second transparent conductive film is preferably 1 ⁇ / ⁇ to 1000 ⁇ / ⁇ , more preferably 5 ⁇ / ⁇ to 300 ⁇ / ⁇ , even more preferably 10 ⁇ / ⁇ to 200 ⁇ / ⁇ . .
  • the haze value of the second transparent conductive film is preferably 20% or less, more preferably 10% or less, still more preferably 0.1% to 10%.
  • the total light transmittance of the second transparent conductive film is preferably 30% or higher, more preferably 60% or higher, and even more preferably 80% or higher.
  • the second transparent conductive film may have the same configuration as the first transparent conductive film, or may have a different configuration.
  • FIG. 2(a) is a schematic plan view of an example of the PDLC film of the second embodiment of the present invention, and (b) is a voltage-free PDLC film shown in (a).
  • FIG. 2C is a schematic cross-sectional view for explaining a state during heating, and (c) is a schematic cross-sectional view for explaining a state when voltage is applied to the PDLC film shown in (a).
  • the PDLC film 100b includes a first transparent conductive film 10, a PDLC layer 20 including a polymer matrix 22 and liquid crystal droplets 24 dispersed in the polymer matrix 22, a second transparent conductive film 30, in that order.
  • the PDLC layer 20 has a first region A and a second region B that have different amounts of change in haze due to voltage application in plan view.
  • the liquid crystal droplets 24 in the first region A contain a non-polymerizable liquid crystal compound 24a and a liquid crystal polymer 24c. perpendicular to the main surface).
  • the liquid crystal droplets 24 in the second region B contain a non-polymerizable liquid crystal compound 24a and a polymerizable liquid crystal compound 24b.
  • both the non-polymerizable liquid crystal compound 24a and the polymerizable liquid crystal compound 24b in the liquid crystal droplets 24 in the second region B are in a non-aligned state. Something causes scattering of the transmitted light.
  • the non-polymerizable liquid crystal compound 24a is oriented along the orientation direction of the liquid crystal polymer 24c, so that scattering of transmitted light is suppressed. Therefore, in the PDLC film 100b, the first region A can be in a transparent state and the second region B can be in a scattering state.
  • both the non-polymerizable liquid crystal compound 24a and the polymerizable liquid crystal compound 24b in the liquid crystal droplets 24 in the second region B are transparent conductive. It is oriented in the direction perpendicular to the major surfaces of the films 10 and 30, and as a result of suppressing the scattering of transmitted light, the haze is reduced.
  • the first region A since the orientation of the non-polymerizable liquid crystal compound 24a does not change significantly, scattering of transmitted light is still suppressed. Therefore, the amount of change in haze due to the application of voltage in the first region is smaller than the amount of change in the second region, and the difference between the haze in the first region and the haze in the second region is reduced by the application of voltage. do.
  • the PDLC film 100b when no voltage is applied, the first region is transparent, and the second region has a cloudy appearance. state, resulting in a transparent appearance over the entire major surface. Therefore, the PDLC film 100b can exhibit different appearances by switching between voltage application and non-application.
  • the voltage applied to the PDLC film during voltage application is a voltage (operating voltage) capable of operating the PDLC film, and can be, for example, 5V to 200V, preferably 10V to 100V.
  • the haze of the first region when no voltage is applied is, for example, 1% to 20%, preferably 1% to 10%.
  • the haze of the first region when voltage is applied is, for example, 1% to 20%, preferably 1% to 10%.
  • the amount of change in haze in the first region due to voltage application is, for example, 0% to 20%, preferably 0% to 10%.
  • the haze of the second region when no voltage is applied is, for example, 50% to 100%, preferably 70% to 100%.
  • the haze of the second region when voltage is applied is, for example, 1% to 20%, preferably 1% to 10%.
  • the amount of change in haze in the second region due to voltage application is, for example, 30% to 99%, preferably 60% to 99%.
  • the amount of change in haze in the first region due to voltage application is smaller than the amount of change in haze in the second region due to voltage application, and the difference is, for example, 10% to 99%, preferably 30% to 99%. .
  • the total light transmittance of the first region when no voltage is applied is, for example, 70% to 95%, preferably 80% to 90%.
  • the total light transmittance of the first region when voltage is applied is, for example, 70% to 95%, preferably 80% to 90%.
  • the total light transmittance of the second region when no voltage is applied is, for example, 50% to 95%, preferably 60% to 90%.
  • the total light transmittance of the second region when voltage is applied is, for example, 70% to 95%, preferably 80% to 90%.
  • the thickness of the PDLC film is, for example, 30 ⁇ m to 250 ⁇ m, preferably 50 ⁇ m to 150 ⁇ m.
  • the first transparent conductive film and the second transparent conductive film are the first transparent conductive film and the second transparent conductive film in the PDLC film of the first embodiment.
  • the same explanations as for the sex films can be applied respectively.
  • the same description as that for the PDLC layer in the PDLC film of the first embodiment applies, except that the liquid crystal polymer contained in the liquid crystal droplets in the first region is oriented in a predetermined direction. be able to.
  • the liquid crystal polymer contained in the liquid crystal droplets is oriented in a predetermined direction.
  • the liquid crystal polymer preferably forms an angle substantially perpendicular to the major surfaces of the first transparent conductive film and the second transparent conductive film, for example, 90° ⁇ 5°, preferably 90° ⁇ 3°. are oriented as Since the liquid crystal polymer in the liquid crystal droplets is oriented in a predetermined direction, the first region has a low haze (for example, 1% to 20%, preferably 1% to 10%) even when no voltage is applied. ) can be maintained.
  • a method for producing a polymer dispersed liquid crystal (PDLC) film comprises: (Step A) coating a first transparent conductive film with a coating liquid containing a polymer matrix-forming resin, a non-polymerizable liquid crystal compound, a polymerizable liquid crystal compound, and a solvent to obtain a coating layer; (Step B) drying the coating layer to obtain a PDLC layer containing a polymer matrix and liquid crystal droplets containing the non-polymerizable liquid crystal compound dispersed in the polymer matrix and the polymerizable liquid crystal compound; (Step C) laminating a second transparent conductive film on the PDLC layer, and (Step D) irradiating the PDLC layer with an active energy ray in a predetermined pattern to polymerize the polymerizable liquid crystal compound.
  • the liquid crystal droplets include the first region containing the non-polymerizable liquid crystal compound and the liquid crystal polymer, and the liquid crystal droplets contain the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound.
  • the active energy ray irradiation in step D is performed with no voltage applied between the first transparent conductive film and the second transparent conductive film. In another embodiment, the active energy ray irradiation in step D is performed with a voltage applied between the first transparent conductive film and the second transparent conductive film.
  • step A a coating liquid containing a polymer matrix-forming resin, a non-polymerizable liquid crystal compound, a polymerizable liquid crystal compound, and a solvent is applied to the first transparent conductive film to obtain a coating layer.
  • the coating liquid is preferably an emulsion in which liquid crystal particles containing a non-polymerizable liquid crystal compound and a polymerizable liquid crystal compound are dispersed in a solvent (hereinafter sometimes referred to as "emulsion coating liquid").
  • the coating liquid is an emulsion coating liquid in which polymer matrix-forming resin particles and liquid crystal particles containing a non-polymerizable liquid crystal compound and a polymerizable liquid crystal compound are dispersed in a solvent.
  • the emulsion coating liquid preferably further contains a polymerization initiator in the liquid crystal particles, and may further contain any suitable additive depending on the purpose.
  • water or a mixed solvent of water and a water-miscible organic solvent can be preferably used.
  • Water-miscible organic solvents include C1-3 alcohols, acetone, DMSO and the like.
  • the non-polymerizable liquid crystal compound, the polymerizable liquid crystal compound and the polymer matrix-forming resin are as described in Section A-1-2.
  • Optional additives include dispersants, leveling agents, cross-linking agents, and the like.
  • the content ratio of the liquid crystal compound in the solid content of the coating liquid is, for example, 30% to 70% by weight, preferably 35% to 65% by weight, More preferably, it may be 40% to 60% by weight.
  • the content weight ratio of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound (non-polymerizable liquid crystal compound:polymerizable liquid crystal compound) in the coating liquid is preferably from 99:1 to 70:30, more preferably from 95:5 to It can be 80:20.
  • the content of the polymer matrix-forming resin in the solid content of the coating solution can be, for example, 30% to 70% by weight, preferably 35% to 65% by weight, and more preferably 40% to 60% by weight. .
  • the weight ratio of the content of the liquid crystal compound in the coating liquid (the total content of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound) to the content of the polymer matrix-forming resin (liquid crystal compound: polymer matrix-forming resin ) can be, for example, 30:70 to 70:30, preferably 35:65 to 65:35, more preferably 40:60 to 60:40. Further, the total content ratio of the polymer matrix-forming resin, the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound in the solid content of the coating liquid is, for example, 90% by weight to 99.9% by weight, preferably 95% by weight to 99.9% by weight.
  • the average particle size of the liquid crystal particles is preferably 0.3 ⁇ m or more, more preferably 0.4 ⁇ m or more. Also, the average particle size of the liquid crystal particles is preferably 9 ⁇ m or less, more preferably 8 ⁇ m or less. If the average particle size of the liquid crystal particles is within this range, the average particle size of the liquid crystal droplets in the PDLC layer can be within the desired range.
  • the average particle size of the liquid crystal particles is the volume average particle size.
  • the average particle size of the liquid crystal particles preferably has a relatively narrow particle size distribution.
  • the coefficient of variation (CV value) of the average particle diameter of the liquid crystal particles may be, for example, less than 0.40, preferably 0.35 or less, more preferably 0.30 or less.
  • an emulsion coating solution that does not substantially contain liquid crystal particles having a particle size of less than 0.3 ⁇ m or more than 9 ⁇ m (for example, a liquid crystal particle having a particle size of less than 0.3 ⁇ m or more than 9 ⁇ m with respect to the total volume of liquid crystal particles).
  • An emulsion coating liquid in which the volume ratio of certain liquid crystal particles is 10% or less can be used.
  • the average particle size of the polymer matrix-forming resin particles is preferably 10 nm to 500 nm, more preferably 30 nm to 300 nm, still more preferably 50 nm to 200 nm. Two or more kinds of resin particles having different resin types and/or different average particle sizes may be used.
  • the average particle size of the polymer matrix-forming resin particles means a volume-average median size, and can be measured using a dynamic light scattering particle size distribution analyzer.
  • photopolymerization initiator can be used as the polymerization initiator depending on the purpose and desired properties.
  • photopolymerization initiators include 2,2-dimethoxy-2-phenylacetophenone, acetophenone, benzophenone, xanthone, 3-methylacetophenone, 4-chlorobenzophenone, 4,4′-dimethoxybenzophenone, benzoinpropyl ether, benzyl dimethyl ketal, N,N,N',N'-tetramethyl-4,4'-diaminobenzophenone, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, 2,4, 6-trimethylbenzoyldiphenylphosphine oxide, bis-(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-2,4-dipentoxyphenylphosphine oxide, Bis(2,6-dimethoxy-benz
  • a photoinitiator may be used independently and may use 2 or more types together.
  • the content of the photopolymerization initiator is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, per 100 parts by weight of the polymerizable liquid crystal compound.
  • dispersants examples include anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants.
  • the content of the dispersant is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 1 part by weight, per 100 parts by weight of the emulsion coating liquid.
  • leveling agents examples include acrylic leveling agents, fluorine-based leveling agents, and silicone-based leveling agents.
  • the content of the leveling agent is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 1 part by weight, per 100 parts by weight of the emulsion coating liquid.
  • cross-linking agents examples include aziridine-based cross-linking agents and isocyanate-based cross-linking agents.
  • the content of the cross-linking agent is preferably 0.5 to 10 parts by weight, more preferably 0.8 to 5 parts by weight, per 100 parts by weight of the emulsion coating liquid.
  • the emulsion coating liquid includes, for example, a resin emulsion or resin particle dispersion containing polymer matrix-forming resin particles, a liquid crystal emulsion containing liquid crystal particles containing a liquid crystal compound and a polymerization initiator, and optional additives (e.g., dispersing agents, leveling agents, cross-linking agents). If desired, additional solvent may be added during mixing.
  • the emulsion coating liquid can be prepared by adding a non-polymerizable liquid crystal compound, a polymerizable liquid crystal compound, a water-dispersible resin, a polymerization initiator and optional additives to a solvent and mechanically dispersing the liquid. obtain.
  • the above resin emulsion and liquid crystal emulsion can be prepared, for example, by mechanical emulsification, microchannel method, membrane emulsification, and the like.
  • the liquid crystal emulsion is preferably prepared by the film emulsification method.
  • the membrane emulsification method an emulsion having a uniform particle size distribution can be suitably obtained.
  • JP-A-4-355719 and JP-A-2015-40994 (these are incorporated herein by reference).
  • the solid content concentration of the emulsion coating liquid can be, for example, 20% to 60% by weight, preferably 30% to 50% by weight.
  • the viscosity of the emulsion coating liquid can be appropriately adjusted so that the coating on the first transparent conductive film is preferably performed.
  • the viscosity of the emulsion coating liquid at the time of application is preferably 20 mPas to 400 mPas, more preferably 30 mPas to 300 mPas, still more preferably 40 mPas to 200 mPas. If the viscosity is less than 20 mPas, the convection of the solvent becomes significant when the solvent is dried, and the thickness of the PDLC layer may become unstable. Also, if the viscosity exceeds 400 mPas, the bead of the emulsion coating liquid may not be stable.
  • the viscosity of the emulsion coating liquid can be measured, for example, with a rheometer MCR302 manufactured by Anton Paar.
  • the viscosity used here is the value of the shear viscosity under the conditions of 20° C. and a shear rate of 1000 (1/s).
  • the emulsion coating liquid is typically applied to the transparent electrode layer side surface of the first transparent conductive film.
  • the first transparent conductive film is as described in Section A-1-1.
  • any appropriate method can be adopted as the application method.
  • Examples thereof include roll coating, spin coating, wire bar coating, dip coating, die coating, curtain coating, spray coating, and knife coating (comma coating, etc.).
  • the roll coating method is preferable.
  • the description of Japanese Patent Application Laid-Open No. 2019-5698 can be referred to regarding coating by a roll coating method using a slot die.
  • the thickness of the coating layer is preferably 3 ⁇ m to 40 ⁇ m, more preferably 4 ⁇ m to 30 ⁇ m, still more preferably 5 ⁇ m to 20 ⁇ m. Within such a range, a PDLC layer with excellent thickness uniformity can be obtained.
  • step B the coating layer is dried to obtain a PDLC layer containing a polymer matrix and liquid crystal droplets containing a non-polymerizable liquid crystal compound and a polymerizable liquid crystal compound dispersed in the polymer matrix.
  • the solvent is removed from the coating layer by drying, and the polymer matrix-forming resin particles are fused to each other to form a PDLC layer having a structure in which liquid crystal droplets are dispersed in the polymer matrix.
  • the drying of the coating layer can be performed by any appropriate method. Specific examples of the drying method include heat drying and hot air drying. When the emulsion coating liquid contains a cross-linking agent, a cross-linked structure of the polymer matrix may be formed during drying.
  • the drying temperature is preferably 20°C to 150°C, more preferably 25°C to 80°C.
  • the drying time is preferably 1 minute to 100 minutes, more preferably 2 minutes to 10 minutes.
  • step C a second transparent conductive film is laminated on the PDLC layer.
  • a PDLC film having the first transparent conductive film, the PDLC layer, and the second transparent conductive film in this order is obtained.
  • the second conductive film is as described in Section A-1-3, and the second transparent conductive film is laminated on the PDLC layer so that the second transparent electrode layer side faces the PDLC layer. It is done as follows. From the viewpoint of obtaining sufficient adhesion, the lamination is preferably performed using a laminator at a lamination pressure of 0.006 MPa / m to 7 MPa / m, more preferably 0.06 MPa / m to 0.7 MPa / m. can be done while applying
  • step D the PDLC layer is irradiated with an active energy ray in a predetermined pattern to form a first region containing liquid crystal droplets containing a liquid crystal polymer that is a polymerization product of a polymerizable liquid crystal compound and a non-polymerizable liquid crystal compound.
  • a liquid crystal polymer that is a polymerization product of a polymerizable liquid crystal compound and a non-polymerizable liquid crystal compound.
  • the polymerizable liquid crystal compound in the liquid crystal droplets is polymerized to form a liquid crystal polymer, resulting in the formation of a non-polymerizable liquid crystal compound and the liquid crystal polymer.
  • a liquid crystal droplet containing is formed.
  • the polymerizable liquid crystal compound remains unreacted, and as a result, the liquid crystal droplets contain the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound. Therefore, the irradiated region of the PDLC layer becomes the first region A containing the liquid crystal droplets containing the non-polymerizable liquid crystalline compound and the liquid crystal polymer, and the non-irradiated region contains the non-polymerizable liquid crystalline compound and the polymerizable liquid crystalline compound.
  • the liquid crystal polymer contained in the liquid crystal droplets in the first region A is a polymerization product of the polymerizable liquid crystal compound contained in the liquid crystal droplets in the second region B.
  • the content ratio of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound in the droplet in the non-irradiated region is the content ratio at the beginning of formation of the liquid crystal droplet, that is, the non-polymerizable liquid crystal compound in the coating liquid. It can roughly correspond to the content ratio with the polymerizable liquid crystal compound.
  • Irradiation of active energy rays is performed through a photomask with a predetermined pattern.
  • active energy rays ultraviolet rays, infrared rays, X-rays, ⁇ -rays, ⁇ -rays, ⁇ -rays, electron beams, and the like are used. Among them, ultraviolet rays are preferable.
  • the active energy ray is preferably collimated light that travels straight from the irradiation source.
  • the ultraviolet irradiation conditions can be appropriately set according to the type of polymerizable liquid crystal compound, the transmittance of the transparent conductive film, the absorption wavelength of the photopolymerization initiator, and the like.
  • the irradiation intensity can be, for example, 0.1 mW/cm 2 to 1000 mW/cm 2 , preferably 1 mW/cm 2 to 100 mW/cm 2 .
  • the dose can be, for example, 10 mJ/cm 2 to 10000 mJ/cm 2 , preferably 100 mJ/cm 2 to 5000 mJ/cm 2 .
  • the irradiation temperature can be, for example, -20°C to 80°C, preferably -20°C to 60°C.
  • FIGS. 3 and 4 are schematic diagrams each illustrating an example of active energy ray irradiation in the method for producing a PDLC film according to the embodiment of the present invention.
  • active energy ray irradiation is performed through a photomask 40 in a state where no voltage is applied between the first transparent conductive film 10 and the second transparent conductive film 30.
  • the polymerizable liquid crystal compound 24b is polymerized in the non-aligned state in the liquid crystal droplets 24 in the irradiated region of the PDLC layer 20, so the formed liquid crystal polymer 24c is also in the non-aligned state. Therefore, according to this embodiment, the PDLC film of the first embodiment described in Section A-1 can be obtained favorably.
  • the active energy ray irradiation is performed with a voltage applied between the first transparent conductive film 10 and the second transparent conductive film 30 through the photomask 40.
  • the polymerizable liquid crystal compound 24b moves along the electric field in a predetermined direction (in the illustrated example, with respect to the main surfaces of the transparent conductive films 10 and 30). Since the polymerization is performed in the state of being oriented in the vertical direction), the liquid crystal polymer 24c in which the orientation is fixed is formed. Therefore, according to this embodiment, the PDLC film of the second embodiment described in Section A-2 can be obtained favorably.
  • the voltage applied during the irradiation of the active energy ray is not limited as long as the desired orientation (in other words, the desired haze of the first region) is achieved, and is, for example, 10V to 200V, preferably 20V to 100V. could be.
  • the second 1 region can be formed. Therefore, in the obtained PDLC film, the region corresponding to each light-transmitting portion can exhibit a haze corresponding to its aperture ratio in the overall view.
  • the entire surface is in a scattering state when no voltage is applied, and no voltage is applied.
  • a PDLC film can be obtained that exhibits an appearance in which the haze increases continuously from the right end to the left end upon application.
  • the entire surface is in a transparent state when the voltage is applied, and the voltage is applied. It is possible to obtain a PDLC film exhibiting an appearance in which the haze continuously decreases from the right end to the left end when no application is applied.
  • the volume average particle diameter was calculated by dividing the volume into 256 at equal intervals from 0.4 ⁇ m to 12 ⁇ m on a logarithmic basis and taking the statistics of the volume for each discretized particle diameter. .
  • the aperture size is set to 30 ⁇ m, and the volume is divided into 256 at equal intervals from 0.6 ⁇ m to 18 ⁇ m on a logarithmic basis, and the volume of each discretized particle size is obtained.
  • a volume average particle size was calculated.
  • (3) Average particle diameter of resin particles A measurement sample was prepared by adding several drops of a resin dispersion to 100 mL of water.
  • Example 1 (First and second transparent conductive films) An ITO layer was formed on one surface of a PET substrate (thickness: 50 ⁇ m) by a sputtering method to obtain a transparent conductive film having a structure of [transparent substrate/transparent electrode layer].
  • a dispersing agent Noigen ET159 manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.
  • a leveling agent manufactured by DIC, product name "F-444
  • the above emulsion coating liquid was applied to the ITO layer surface of the first transparent conductive film to form a coating layer having a thickness of 20 ⁇ m. Coating was performed using a slot die and the line speed was 6 m/min. Then, the coating layer was dried at 25° C. for 8 minutes to form a PDLC layer having a thickness of 8 ⁇ m.
  • Example 2 A PDLC film was obtained in the same manner as in Example 1, except that the ultraviolet irradiation was performed in a state in which no voltage was applied (applied voltage: 0 V).
  • optical properties of the PDLC films obtained in Examples were evaluated by the following methods. Table 1 shows the results. ⁇ Optical properties ⁇ Using an AC power supply "EC750SA" manufactured by NF Circuit Design Block Co., Ltd., haze was measured when an AC voltage of 0 V to 50 V was applied to the PDLC film.
  • the amount of change in haze due to voltage application in the first region (irradiated region) was greater than that in the second region (unirradiated region). small.
  • the PDLC film of Example 1 exhibits a predetermined pattern composed of a transparent first region and a cloudy second region when no voltage is applied. It exhibited a highly uniform appearance.
  • the PDLC film of Example 2 exhibits a highly uniform appearance with a cloudy appearance on the entire main surface when no voltage is applied. It exhibited a predetermined pattern.
  • the PDLC film of the present invention is suitably used for various purposes such as advertisements, displays such as information boards, and smart windows.
  • first transparent conductive film 100 PDLC film 10 first transparent conductive film 20 PDLC layer 22 polymer matrix 24 liquid crystal droplets 24a non-polymerizable liquid crystal compound 24b polymerizable liquid crystal compound 24c liquid crystal polymer 30 second transparent conductive film

Abstract

The present invention provides a polymer dispersion type liquid crystal film capable of switching between a transparent state and a scattered state in only a prescribed region. The polymer dispersion type liquid crystal film according to the present invention comprises, in the following order: a first transparent conductive film (10); a polymer dispersion type liquid crystal layer (20) including a polymer matrix (22) and liquid crystal droplets (24) dispersed in the polymer matrix; and a second transparent conductive film (30). The polymer dispersion type liquid crystal layer comprises, in a plan view, a first region (A) and a second region (B) in which the amounts of change in haze caused by the application of a voltage differ, and, in the first region, the amount of change in haze caused by the application of a voltage is smaller than said amount of change in the second region. The liquid crystal droplets in the first region include a non-polymerizable liquid crystal compound (24a) and a liquid crystal polymer (24c).

Description

高分子分散型液晶フィルムおよび高分子分散型液晶フィルムの製造方法Polymer-dispersed liquid crystal film and method for producing polymer-dispersed liquid crystal film
 本発明は、高分子分散型液晶フィルムおよび高分子分散型液晶フィルムの製造方法に関する。 The present invention relates to a polymer-dispersed liquid crystal film and a method for producing a polymer-dispersed liquid crystal film.
 近年、電圧の印加状態に応じて異なる外観を呈する調光フィルムが、広告、案内板等の表示体、スマートウインドウ等の種々の用途に適用されている。 In recent years, light control films that exhibit different appearances depending on the state of voltage application have been applied to various applications such as advertisements, displays such as information boards, and smart windows.
 一対の透明電極層の間に高分子分散型液晶(Polymer Dispersed Liquid Crystal;以下、「PDLC」と称する場合がある)層を有するPDLCフィルムは、調光フィルムの一種であり、電圧印加状態と無印加状態とを切り替えることにより、光を散乱させる状態(散乱状態)と光を透過させる状態(非散乱状態または透明状態)とを切り替えることができる。具体的には、PDLC層は、高分子マトリクスと該高分子マトリクス中に分散した液晶化合物の液滴(液晶液滴)とを含み、液晶液滴中の液晶化合物と高分子マトリクスとの屈折率差等に起因して液晶液滴が散乱粒子となって光散乱を生じさせ得る。 A PDLC film having a polymer dispersed liquid crystal (hereinafter sometimes referred to as “PDLC”) layer between a pair of transparent electrode layers is a type of light control film, and can be applied in a voltage applied state or in a non-printed state. By switching between the additional states, it is possible to switch between a light scattering state (scattering state) and a light transmitting state (non-scattering state or transparent state). Specifically, the PDLC layer includes a polymer matrix and droplets of a liquid crystal compound dispersed in the polymer matrix (liquid crystal droplets), and the refractive index of the liquid crystal compound in the liquid crystal droplets and the polymer matrix is Liquid crystal droplets may become scattering particles due to differences and the like, causing light scattering.
 上記PDLCフィルムは、一般に、散乱状態において白濁した外観を呈することから、白濁(散乱状態)と透明(非散乱状態)との2つの外観を呈し得るが、意匠性を考慮すると、他の外観を呈することができる調光フィルムへの要望が存在する。 Since the PDLC film generally exhibits a cloudy appearance in the scattering state, it can exhibit two appearances: cloudy (scattering state) and transparent (non-scattering state). A need exists for a light management film that can provide.
 上記要望に関連して、特許文献1には、全体入射光量の調節が可能な調光フィルムとして、液晶化合物ではなく、二色性物質を用いることにより、非散乱状態において透明な外観を呈し、散乱状態において着色した外観を呈する調光フィルムが提案されている。 In relation to the above demand, Patent Document 1 discloses that a light control film capable of adjusting the total amount of incident light exhibits a transparent appearance in a non-scattering state by using a dichroic substance instead of a liquid crystal compound, Light management films have been proposed that exhibit a colored appearance in the scattering state.
特開2002-189123号公報Japanese Patent Application Laid-Open No. 2002-189123
 従来の調光フィルムにおいては、透明状態と散乱状態との切り替えは、フィルム全面に関して行われ、所定の領域のみにおいて当該切り替えを行うことはできなかった。 In conventional light control films, switching between the transparent state and the scattering state was performed over the entire film surface, and it was not possible to perform the switching only in a predetermined area.
 本発明は、上記従来の課題を解決するためになされたものであり、その主たる目的は、所定の領域のみにおいて透明状態と散乱状態とを切り替え可能な高分子分散型液晶フィルムを提供することにある。 The present invention has been made to solve the above-mentioned conventional problems, and its main purpose is to provide a polymer-dispersed liquid crystal film capable of switching between a transparent state and a scattering state only in a predetermined region. be.
 本発明の1つの局面によれば、第1の透明導電性フィルムと、高分子マトリクスと該高分子マトリクス中に分散した液晶液滴とを含む高分子分散型液晶層と、第2の透明導電性フィルムと、をこの順に含む、高分子分散型液晶フィルムであって、該高分子分散型液晶層が、平面視において、電圧の印加によるヘイズの変化量が異なる第1領域と第2領域とを有し、該第1領域における電圧の印加によるヘイズの変化量が、該第2領域における該変化量よりも小さく、該第1領域における該液晶液滴が、非重合性液晶化合物と液晶ポリマーとを含む、高分子分散型液晶フィルムが提供される。
 1つの実施形態において、上記第2領域における液晶液滴が、非重合性液晶化合物と重合性液晶化合物とを含む。
 1つの実施形態において、上記第2領域における上記非重合性液晶化合物と上記重合性液晶化合物との含有重量比(非重合性液晶化合物:重合性液晶化合物)が、99:1~70:30である。
 1つの実施形態において、上記第1領域における上記液晶液滴に含まれる上記液晶ポリマーが、上記第2領域における液晶液滴に含まれる上記重合性液晶化合物の重合生成物である。
 1つの実施形態において、上記第1領域のヘイズと上記第2領域のヘイズとの差が、電圧の印加によって増大する。
 1つの実施形態において、上記第1領域における上記液晶液滴に含まれる上記液晶ポリマーが、非配向状態である。
 1つの実施形態において、上記第1領域のヘイズと上記第2領域のヘイズとの差が、電圧の印加によって減少する。
 1つの実施形態において、上記第1領域における上記液晶液滴に含まれる上記液晶ポリマーが、所定の方向に配向している。
 本発明の別の局面によれば、第1の透明導電性フィルムに、高分子マトリクス形成用樹脂と非重合性液晶化合物と重合性液晶化合物と溶媒とを含む塗工液を塗工して、塗布層を得ること、該塗布層を乾燥させて、高分子マトリクスと該高分子マトリクス中に分散した該非重合性液晶化合物と該重合性液晶化合物とを含む液晶液滴とを含む高分子分散型液晶層を得ること、該高分子分散型液晶層の上に第2の透明導電性フィルムを積層すること、および、該第1の透明導電性フィルムと該第2の透明導電性フィルムとの間に電圧を印加した状態で、該高分子分散型液晶層に所定のパターンで活性エネルギー線を照射して、該重合性液晶化合物の重合生成物である液晶ポリマーと該非重合性液晶化合物とを含む液晶液滴を含む第1領域を形成すること、を含む、高分子分散型液晶フィルムの製造方法が提供される。
 本発明の別の局面によれば、第1の透明導電性フィルムに、高分子マトリクス形成用樹脂と非重合性液晶化合物と重合性液晶化合物と溶媒とを含む塗工液を塗工して、塗布層を得ること、該塗布層を乾燥させて、高分子マトリクスと該高分子マトリクス中に分散した該非重合性液晶化合物と該重合性液晶化合物とを含む液晶液滴とを含む高分子分散型液晶層を得ること、該高分子分散型液晶層の上に第2の透明導電性フィルムを積層すること、および、該第1の透明導電性フィルムと該第2の透明導電性フィルムとの間に電圧を印加しない状態で、該高分子分散型液晶層に所定のパターンで活性エネルギー線を照射して、該重合性液晶化合物の重合生成物である液晶ポリマーと該非重合性液晶化合物とを含む液晶液滴を含む第1領域を形成すること、を含む、高分子分散型液晶フィルムの製造方法が提供される。
 1つの実施形態において、上記塗工液が、上記非重合性液晶化合物と上記重合性液晶化合物とを含む液晶粒子が上記溶媒中に分散したエマルション塗工液である。
 1つの実施形態において、上記塗工液における上記非重合性液晶化合物と上記重合性液晶化合物との合計含有量と上記高分子マトリクス形成用樹脂の含有量との重量比(液晶化合物:高分子マトリクス形成用樹脂)が、30:70~70:30である。
 1つの実施形態において、上記塗工液における上記非重合性液晶化合物と上記重合性液晶化合物との含有重量比(非重合性液晶化合物:重合性液晶化合物)が、99:1~70:30である。
According to one aspect of the present invention, a first transparent conductive film, a polymer-dispersed liquid crystal layer including a polymer matrix and liquid crystal droplets dispersed in the polymer matrix, and a second transparent conductive film. and a polymer-dispersed liquid crystal film in this order, wherein the polymer-dispersed liquid crystal layer comprises a first region and a second region in which the amounts of change in haze due to voltage application are different in plan view. wherein the amount of change in haze due to voltage application in the first region is smaller than the amount of change in the second region, and the liquid crystal droplets in the first region are composed of a non-polymerizable liquid crystal compound and a liquid crystal polymer and a polymer dispersed liquid crystal film is provided.
In one embodiment, the liquid crystal droplets in the second region contain a non-polymerizable liquid crystal compound and a polymerizable liquid crystal compound.
In one embodiment, the content weight ratio of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound in the second region (non-polymerizable liquid crystal compound:polymerizable liquid crystal compound) is 99:1 to 70:30. be.
In one embodiment, the liquid crystal polymer contained in the liquid crystal droplets in the first region is a polymerization product of the polymerizable liquid crystal compound contained in the liquid crystal droplets in the second region.
In one embodiment, the difference between the haze of the first region and the haze of the second region is increased by applying voltage.
In one embodiment, the liquid crystal polymer contained in the liquid crystal droplets in the first region is in a non-aligned state.
In one embodiment, the difference between the haze of the first region and the haze of the second region is reduced by applying a voltage.
In one embodiment, the liquid crystal polymer contained in the liquid crystal droplets in the first region is oriented in a predetermined direction.
According to another aspect of the present invention, a first transparent conductive film is coated with a coating liquid containing a polymer matrix-forming resin, a non-polymerizable liquid crystal compound, a polymerizable liquid crystal compound, and a solvent, Obtaining a coating layer, drying the coating layer to obtain a polymer dispersion type comprising a polymer matrix and liquid crystal droplets containing the non-polymerizable liquid crystal compound dispersed in the polymer matrix and the polymerizable liquid crystal compound obtaining a liquid crystal layer, laminating a second transparent conductive film on the polymer dispersed liquid crystal layer, and between the first transparent conductive film and the second transparent conductive film , the polymer-dispersed liquid crystal layer is irradiated with an active energy ray in a predetermined pattern while a voltage is applied to the polymer-dispersed liquid crystal layer so that the polymer-dispersed liquid crystal layer contains a liquid crystal polymer that is a polymerization product of the polymerizable liquid crystal compound and the non-polymerizable liquid crystal compound. A method of making a polymer dispersed liquid crystal film is provided, comprising forming a first region containing liquid crystal droplets.
According to another aspect of the present invention, a first transparent conductive film is coated with a coating liquid containing a polymer matrix-forming resin, a non-polymerizable liquid crystal compound, a polymerizable liquid crystal compound, and a solvent, Obtaining a coating layer, drying the coating layer to obtain a polymer dispersion type comprising a polymer matrix and liquid crystal droplets containing the non-polymerizable liquid crystal compound dispersed in the polymer matrix and the polymerizable liquid crystal compound obtaining a liquid crystal layer, laminating a second transparent conductive film on the polymer dispersed liquid crystal layer, and between the first transparent conductive film and the second transparent conductive film The polymer-dispersed liquid crystal layer is irradiated with an active energy ray in a predetermined pattern while no voltage is applied to the polymer-dispersed liquid crystal layer, so that the polymer-dispersed liquid crystal layer contains a liquid crystal polymer that is a polymerization product of the polymerizable liquid crystal compound and the non-polymerizable liquid crystal compound. A method of making a polymer dispersed liquid crystal film is provided, comprising forming a first region containing liquid crystal droplets.
In one embodiment, the coating liquid is an emulsion coating liquid in which liquid crystal particles containing the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound are dispersed in the solvent.
In one embodiment, the weight ratio of the total content of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound in the coating liquid to the content of the polymer matrix-forming resin (liquid crystal compound:polymer matrix Forming resin) is 30:70 to 70:30.
In one embodiment, the content weight ratio of the non-polymerizable liquid crystal compound to the polymerizable liquid crystal compound (non-polymerizable liquid crystal compound:polymerizable liquid crystal compound) in the coating liquid is 99:1 to 70:30. be.
 本発明の実施形態によれば、液晶ポリマーが存在する液晶液滴内では液晶化合物の配向が制限されることから、電圧の印加状態の変化に起因するヘイズの変化が抑制される。よって、所望の領域における液晶液滴内に液晶ポリマーを存在させた状態で電圧の印加状態を変化させることにより、その領域におけるヘイズの変化を抑制しつつ、その他の領域のヘイズを変化させることができる。その結果、電圧印加時と無印加時とのいずれか一方の場合において所定のパターンを有する外観を呈し、他方の場合には均一性の高い外観を呈する調光フィルムが提供され得る。 According to the embodiment of the present invention, since the orientation of the liquid crystal compound is restricted within the liquid crystal droplets in which the liquid crystal polymer exists, the change in haze caused by the change in voltage application state is suppressed. Therefore, by changing the voltage application state while the liquid crystal polymer is present in the liquid crystal droplets in the desired region, it is possible to suppress the haze change in that region while changing the haze in other regions. can. As a result, it is possible to provide a light control film that exhibits an appearance with a predetermined pattern when either voltage is applied or when no voltage is applied, and exhibits a highly uniform appearance in the other case.
(a)は、本発明の第1の実施形態のPDLCフィルムの一例の概略平面図であり、(b)は、(a)で示すPDLCフィルムの電圧無印加時の状態を説明する概略断面図であり、(c)は、(a)で示すPDLCフィルムの電圧印加時の状態を説明する概略断面図である。(a) is a schematic plan view of an example of the PDLC film of the first embodiment of the present invention, and (b) is a schematic cross-sectional view for explaining the state of the PDLC film shown in (a) when no voltage is applied. and (c) is a schematic cross-sectional view for explaining the state of the PDLC film shown in (a) when a voltage is applied. (a)は、本発明の第2の実施形態のPDLCフィルムの一例の概略平面図であり、(b)は、(a)で示すPDLCフィルムの電圧無印加時の状態を説明する概略断面図であり、(c)は、(a)で示すPDLCフィルムの電圧印加時の状態を説明する概略断面図である。(a) is a schematic plan view of an example of the PDLC film of the second embodiment of the present invention, and (b) is a schematic cross-sectional view for explaining the state of the PDLC film shown in (a) when no voltage is applied. and (c) is a schematic cross-sectional view for explaining the state of the PDLC film shown in (a) when a voltage is applied. 本発明のPDLCフィルムの製造方法の一例を説明する概略図である。1 is a schematic diagram illustrating an example of a method for producing a PDLC film of the present invention; FIG. 本発明のPDLCフィルムの製造方法の一例を説明する概略図である。1 is a schematic diagram illustrating an example of a method for producing a PDLC film of the present invention; FIG.
 以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されない。なお、本明細書中で、数値範囲を表す「~」は、その上限および下限の数値を含む。 Preferred embodiments of the present invention will be described below, but the present invention is not limited to these embodiments. In this specification, "-" representing a numerical range includes its upper and lower limits.
A.高分子分散型液晶フィルム
 本発明の実施形態による高分子分散型液晶(PDLC)フィルムは、第1の透明導電性フィルムと、高分子マトリクスと該高分子マトリクス中に分散した液晶液滴とを含むPDLC層と、第2の透明導電性フィルムと、をこの順に含み、該PDLC層が、平面視において、電圧の印加によるヘイズの変化量が異なる第1領域と第2領域とを有し、該第1領域における電圧の印加によるヘイズの変化量が、該第2領域における該変化量よりも小さく、該第1領域における該液晶液滴が、非重合性液晶化合物と液晶ポリマーとを含む。
A. Polymer Dispersed Liquid Crystal Film A polymer dispersed liquid crystal (PDLC) film according to an embodiment of the present invention includes a first transparent conductive film, a polymer matrix, and liquid crystal droplets dispersed in the polymer matrix. A PDLC layer and a second transparent conductive film are included in this order, and the PDLC layer has a first region and a second region having different amounts of change in haze due to voltage application in a plan view, and A change in haze due to voltage application in the first region is smaller than that in the second region, and the liquid crystal droplets in the first region contain a non-polymerizable liquid crystal compound and a liquid crystal polymer.
A-1.第1の実施形態のPDLCフィルム
 図1(a)は、本発明の第1の実施形態のPDLCフィルムの一例の概略平面図であり、(b)は、(a)で示すPDLCフィルムの電圧無印加時の状態を説明する概略断面図であり、(c)は、(a)で示すPDLCフィルムの電圧印加時の状態を説明する概略断面図である。PDLCフィルム100aは、第1の透明導電性フィルム10と、高分子マトリクス22と高分子マトリクス22中に分散した液晶液滴24とを含むPDLC層20と、第2の透明導電性フィルム30と、をこの順に含む。PDLC層20は、平面視において、電圧の印加によるヘイズの変化量が異なる第1領域Aと第2領域Bとを有する。第1領域Aにおける液晶液滴24は、非重合性液晶化合物24aと液晶ポリマー24cとを含み、代表的には、液晶ポリマー24cは非配向状態で存在する。第2領域Bにおける液晶液滴24は、非重合性液晶化合物24aと重合性液晶化合物24bとを含む。なお、本明細書において、ある化合物が「非配向状態にある」とは、当該化合物が、一定の規則性をもって配列していない状態であることを意味する。
A-1. PDLC Film of First Embodiment FIG. 1(a) is a schematic plan view of an example of the PDLC film of the first embodiment of the present invention, and (b) is a voltage-free PDLC film shown in (a). FIG. 2C is a schematic cross-sectional view for explaining a state during heating, and (c) is a schematic cross-sectional view for explaining a state when voltage is applied to the PDLC film shown in (a). The PDLC film 100a includes a first transparent conductive film 10, a PDLC layer 20 including a polymer matrix 22 and liquid crystal droplets 24 dispersed in the polymer matrix 22, a second transparent conductive film 30, in that order. The PDLC layer 20 has a first region A and a second region B that have different amounts of change in haze due to voltage application in plan view. The liquid crystal droplets 24 in the first region A contain a non-polymerizable liquid crystal compound 24a and a liquid crystal polymer 24c, typically the liquid crystal polymer 24c exists in a non-aligned state. The liquid crystal droplets 24 in the second region B contain a non-polymerizable liquid crystal compound 24a and a polymerizable liquid crystal compound 24b. In the present specification, the expression that a certain compound is "in a non-oriented state" means that the compound is not arranged with a certain regularity.
 図1(b)に示すように、電圧無印加時のPDLCフィルム100aにおいては、第1領域Aにおける液晶液滴24中の非重合性液晶化合物24aおよび液晶ポリマー24cが共に非配向状態であり、第2領域Bにおける液晶液滴24中の非重合性液晶化合物24aおよび重合性液晶化合物24bが共に非配向状態であることから、いずれの領域においても透過光の散乱が生じる。よって、第1領域Aおよび第2領域Bは共に散乱状態であり得、結果として、PDLCフィルム100aは、主面全体が散乱状態であり得る。 As shown in FIG. 1B, in the PDLC film 100a when no voltage is applied, both the non-polymerizable liquid crystal compound 24a and the liquid crystal polymer 24c in the liquid crystal droplets 24 in the first region A are in a non-aligned state, Since both the non-polymerizable liquid crystal compound 24a and the polymerizable liquid crystal compound 24b in the liquid crystal droplets 24 in the second region B are in a non-aligned state, scattering of transmitted light occurs in both regions. Therefore, both the first region A and the second region B can be in the scattering state, and as a result, the entire main surface of the PDLC film 100a can be in the scattering state.
 一方、図1(c)に示すように、電圧印加時のPDLCフィルム100aにおいては、第2領域Bにおける液晶液滴24中の非重合性液晶化合物24aおよび重合性液晶化合物24bは共に透明導電性フィルム10、30の主面に対して垂直方向に配向しており、透過光の散乱が抑制されることから、当該領域のヘイズは低下する。一方、第1領域Aにおいては、非配向状態の液晶ポリマー24cの存在によって非重合性液晶化合物24aの配向が妨げられて非配向状態が維持されることから、依然として透過光の散乱が生じる。よって、第1領域における電圧の印加によるヘイズの変化量は、第2領域における該変化量よりも小さく、また、第1領域のヘイズと第2領域のヘイズとの差は、電圧の印加によって増大する。 On the other hand, as shown in FIG. 1C, in the PDLC film 100a when a voltage is applied, both the non-polymerizable liquid crystal compound 24a and the polymerizable liquid crystal compound 24b in the liquid crystal droplets 24 in the second region B are transparent conductive. Since it is oriented in the direction perpendicular to the major surfaces of the films 10 and 30 and scattering of transmitted light is suppressed, the haze of the region is reduced. On the other hand, in the first region A, the non-aligned liquid crystal polymer 24c prevents the alignment of the non-polymerizable liquid crystal compound 24a and maintains the non-aligned state, so that transmitted light is still scattered. Therefore, the amount of change in haze due to the application of voltage in the first region is smaller than the amount of change in the second region, and the difference between the haze in the first region and the haze in the second region increases with the application of voltage. do.
 以上のように、PDLCフィルム100aは、電圧無印加時には主面全体が散乱状態であり、白濁した外観を呈する一方で、電圧の印加により第2領域のヘイズのみが大きく低下して、第1領域が白濁、第2領域が透明な外観を呈し得る。よって、PDLCフィルム100aは、電圧の印加と無印加との切り替えによって、異なる外観を呈することができる。 As described above, in the PDLC film 100a, when no voltage is applied, the entire main surface is in a scattering state and has a cloudy appearance. can appear opaque while the second region appears transparent. Therefore, the PDLC film 100a can exhibit different appearances by switching between voltage application and non-application.
 電圧印加時にPDLCフィルムに印加される電圧は、PDLCフィルムを動作させ得る電圧(動作電圧)であり、例えば5V~200V、好ましくは10V~100Vであり得る。本明細書において、「電圧印加時におけるヘイズ」とは、PDLCフィルムに動作電圧が印加されたときのヘイズを意味し、例えば5V以上、10V以上または20V以上の電圧が印加されたときのヘイズであり得る。 The voltage applied to the PDLC film during voltage application is a voltage (operating voltage) capable of operating the PDLC film, and can be, for example, 5V to 200V, preferably 10V to 100V. As used herein, the term "haze when voltage is applied" means haze when an operating voltage is applied to the PDLC film, for example, haze when a voltage of 5 V or higher, 10 V or higher, or 20 V or higher is applied. could be.
 電圧無印加時におけるPDLCフィルムの上記第1領域に対応する領域のヘイズ(以下、単に「第1領域のヘイズ」と称する場合がある)は、例えば50%~100%、好ましくは70%~100%である。電圧印加時における第1領域のヘイズは、例えば40%~100%、好ましくは60%~100%である。電圧の印加による第1領域のヘイズの変化量(|電圧無印加時のヘイズ-電圧印加時のヘイズ|)は、例えば0%~40%、好ましくは0%~30%である。 The haze of the region corresponding to the first region of the PDLC film when no voltage is applied (hereinafter sometimes simply referred to as "haze of the first region") is, for example, 50% to 100%, preferably 70% to 100%. %. The haze of the first region when voltage is applied is, for example, 40% to 100%, preferably 60% to 100%. The amount of change in haze in the first region due to voltage application (|haze when no voltage is applied−haze when voltage is applied|) is, for example, 0% to 40%, preferably 0% to 30%.
 電圧無印加時におけるPDLCフィルムの上記第2領域に対応する領域のヘイズ(以下、単に「第2領域のヘイズ」と称する場合がある)は、例えば50%~100%、好ましくは70%~100%である。電圧印加時における第2領域のヘイズは、例えば1%~20%、好ましくは1%~10%である。電圧の印加による第2領域のヘイズの変化量(|電圧無印加時のヘイズ-電圧印加時のヘイズ|)は、例えば30%~99%、好ましくは60%~99%である。 The haze of the region corresponding to the second region of the PDLC film when no voltage is applied (hereinafter sometimes simply referred to as "the haze of the second region") is, for example, 50% to 100%, preferably 70% to 100%. %. The haze of the second region when voltage is applied is, for example, 1% to 20%, preferably 1% to 10%. The amount of change in haze in the second region due to voltage application (|haze when no voltage is applied−haze when voltage is applied|) is, for example, 30% to 99%, preferably 60% to 99%.
 電圧の印加による第1領域のヘイズの変化量は、電圧の印加による第2領域のヘイズの変化量よりも小さく、その差は、例えば10%~99%、好ましくは30%~99%である。 The amount of change in haze in the first region due to voltage application is smaller than the amount of change in haze in the second region due to voltage application, and the difference is, for example, 10% to 99%, preferably 30% to 99%. .
 電圧無印加時におけるPDLCフィルムの上記第1領域に対応する領域の全光線透過率(以下、単に「第1領域の全光線透過率」と称する場合がある)は、例えば50%~95%、好ましくは60%~90%である。電圧印加時における第1領域の全光線透過率は、例えば50%~95%、好ましくは60%~90%である。全光線透過率は、JIS K 7361に従って測定され得る。 The total light transmittance of the region corresponding to the first region of the PDLC film when no voltage is applied (hereinafter sometimes simply referred to as the "total light transmittance of the first region") is, for example, 50% to 95%, Preferably it is 60% to 90%. The total light transmittance of the first region when voltage is applied is, for example, 50% to 95%, preferably 60% to 90%. Total light transmittance can be measured according to JIS K 7361.
 電圧無印加時におけるPDLCフィルムの上記第2領域に対応する領域の全光線透過率(以下、単に「第2領域の全光線透過率」と称する場合がある)は、例えば50%~95%、好ましくは60%~90%である。電圧印加時における第2領域の全光線透過率は、例えば70%~95%、好ましくは80%~90%である。 The total light transmittance of the region corresponding to the second region of the PDLC film when no voltage is applied (hereinafter sometimes simply referred to as "the total light transmittance of the second region") is, for example, 50% to 95%, Preferably it is 60% to 90%. The total light transmittance of the second region when voltage is applied is, for example, 70% to 95%, preferably 80% to 90%.
 PDLCフィルムの厚みは、例えば30μm~250μm、好ましくは50μm~150μmである。 The thickness of the PDLC film is, for example, 30 μm to 250 μm, preferably 50 μm to 150 μm.
A-1-1.第1の透明導電性フィルム
 第1の透明導電性フィルム10は、代表的には、第1の透明基材12とその一方の側に設けられた第1の透明電極層14とを有する。第1の透明導電性フィルム10は、必要に応じて、第1の透明基材12の片側または両側にハードコート層を有していてもよく、また、第1の透明基材12と第1の透明電極層14との間に屈折率調整層を有していてもよい。
A-1-1. First Transparent Conductive Film The first transparent conductive film 10 typically has a first transparent substrate 12 and a first transparent electrode layer 14 provided on one side thereof. The first transparent conductive film 10 may have a hard coat layer on one side or both sides of the first transparent substrate 12, if necessary. A refractive index adjusting layer may be provided between the transparent electrode layer 14 of .
 第1の透明導電性フィルムの表面抵抗値は、好ましくは1Ω/□~1000Ω/□であり、より好ましくは5Ω/□~300Ω/□であり、さらに好ましくは10Ω/□~200Ω/□である。 The surface resistance value of the first transparent conductive film is preferably 1 Ω/□ to 1000 Ω/□, more preferably 5 Ω/□ to 300 Ω/□, even more preferably 10 Ω/□ to 200 Ω/□. .
 第1の透明導電性フィルムのヘイズ値は、好ましくは20%以下であり、より好ましくは10%以下であり、さらに好ましくは0.1%~10%である。 The haze value of the first transparent conductive film is preferably 20% or less, more preferably 10% or less, still more preferably 0.1% to 10%.
 第1の透明導電性フィルムの全光線透過率は、好ましくは30%以上であり、より好ましくは60%以上であり、さらに好ましくは80%以上である。 The total light transmittance of the first transparent conductive film is preferably 30% or higher, more preferably 60% or higher, and even more preferably 80% or higher.
 第1の透明基材は、任意の適切な材料を用いて形成され得る。具体的には、例えば、フィルムやプラスチック基材等の高分子基材が好ましく用いられる。平滑性および透明電極層形成用組成物に対する濡れ性に優れ、また、ロールによる連続生産により生産性を大幅に向上させ得るからである。 The first transparent base material can be formed using any appropriate material. Specifically, for example, polymer substrates such as films and plastic substrates are preferably used. This is because it is excellent in smoothness and wettability with the composition for forming a transparent electrode layer, and productivity can be greatly improved by continuous production using rolls.
 第1の透明基材を構成する材料は、代表的には熱可塑性樹脂を主成分とする高分子フィルムである。熱可塑性樹脂としては、例えば、ポリエステル系樹脂;ポリノルボルネン等のシクロオレフィン系樹脂;アクリル系樹脂;ポリカーボネート樹脂;セルロース系樹脂等が挙げられる。なかでも好ましくは、ポリエステル系樹脂、シクロオレフィン系樹脂またはアクリル系樹脂である。これらの樹脂は、透明性、機械的強度、熱安定性、水分遮蔽性等に優れる。上記熱可塑性樹脂は、単独で、または2種以上組み合わせて用いてもよい。また、偏光板に用いられるような光学フィルム、例えば、低位相差基材、高位相差基材、位相差板、吸収型偏光フィルム、偏光選択反射フィルム等を第1の透明基材として用いることも可能である。 The material that constitutes the first transparent substrate is typically a polymer film containing a thermoplastic resin as a main component. Examples of thermoplastic resins include polyester-based resins; cycloolefin-based resins such as polynorbornene; acrylic-based resins; polycarbonate resins; and cellulose-based resins. Among them, polyester resins, cycloolefin resins and acrylic resins are preferable. These resins are excellent in transparency, mechanical strength, thermal stability, moisture barrier properties, and the like. You may use the said thermoplastic resin individually or in combination of 2 or more types. Further, an optical film used for a polarizing plate, such as a low retardation substrate, a high retardation substrate, a retardation plate, an absorptive polarizing film, a polarized selective reflection film, etc., can also be used as the first transparent substrate. is.
 第1の透明基材の厚みは、好ましくは200μm以下であり、より好ましくは3μm~100μmであり、さらに好ましくは5μm~70μmである。第1の透明基材の厚みを200μm以下とすることにより、PDLC層の機能を十分に発揮させることができる。 The thickness of the first transparent substrate is preferably 200 μm or less, more preferably 3 μm to 100 μm, still more preferably 5 μm to 70 μm. By setting the thickness of the first transparent base material to 200 μm or less, the function of the PDLC layer can be sufficiently exhibited.
 第1の透明基材の全光線透過率は、好ましくは30%以上であり、より好ましくは60%以上であり、さらに好ましくは80%以上である。 The total light transmittance of the first transparent substrate is preferably 30% or higher, more preferably 60% or higher, and even more preferably 80% or higher.
 第1の透明電極層は、例えば、インジウム錫酸化物(ITO)、酸化亜鉛(ZnO)、酸化錫(SnO)等の金属酸化物を用いて形成され得る。好ましくはITOを含む透明電極層が形成される。ITOを含む透明電極層は透明性に優れる。第1の透明電極層は、目的に応じて、所望の形状にパターニングされ得る。 The first transparent electrode layer can be formed using, for example, metal oxides such as indium tin oxide (ITO), zinc oxide (ZnO), tin oxide (SnO 2 ). A transparent electrode layer, preferably comprising ITO, is formed. A transparent electrode layer containing ITO is excellent in transparency. The first transparent electrode layer can be patterned into a desired shape depending on the purpose.
 第1の透明電極層の光透過率は、好ましくは85%以上であり、より好ましくは87%以上であり、さらに好ましくは90%以上である。このような範囲の光透過率を有する透明電極層を用いることにより、透明状態において高い光透過率を有する。当該光透過率は高いほど好ましいが、その上限は、例えば、99%である。 The light transmittance of the first transparent electrode layer is preferably 85% or higher, more preferably 87% or higher, and still more preferably 90% or higher. By using a transparent electrode layer having a light transmittance in such a range, a high light transmittance is obtained in a transparent state. The higher the light transmittance, the better, but the upper limit is, for example, 99%.
 好ましくは、第1の透明電極層は、結晶粒を含有する。結晶粒を含有することで光透過率を向上することができる。結晶粒の形成方法に限定はないが、例えば、大気下で加熱することで好適に結晶粒を形成することができる。透明電極層における結晶粒の面積占有率は、例えば30%以上、好ましくは50%以上、より好ましくは80%以上である。当該面積占有率の上限は、例えば100%である。結晶粒の面積占有率が上記範囲であれば、光透過率を向上することができる。なお、結晶粒の面積占有率は透過型電子顕微鏡(TEM)で透明電極層の表面を観察し、結晶粒領域と非結晶領域の面積比から算出することができる。 Preferably, the first transparent electrode layer contains crystal grains. Light transmittance can be improved by containing crystal grains. Although the method for forming the crystal grains is not limited, the crystal grains can be preferably formed by, for example, heating in the atmosphere. The area occupation ratio of crystal grains in the transparent electrode layer is, for example, 30% or more, preferably 50% or more, and more preferably 80% or more. The upper limit of the area occupation ratio is, for example, 100%. If the area occupation ratio of the crystal grains is within the above range, the light transmittance can be improved. The area occupation ratio of the crystal grains can be calculated from the area ratio of the crystal grain region and the amorphous region by observing the surface of the transparent electrode layer with a transmission electron microscope (TEM).
 第1の透明電極層の表面粗さRaは、例えば、0.1nm以上である。第1の透明電極層の表面粗さRaが0.1nm未満の場合、基材との密着性が悪化するおそれがある。第1の透明電極層の表面粗さRaの上限は、好ましくは1.2nm未満であり、より好ましくは1.0nm以下であり、さらに好ましくは1.0nm未満であり、特に好ましくは0.8nm以下である。第1の透明電極層の表面粗さRaが大きすぎる場合、好適に結晶粒を形成することが難しくなるおそれがある。なお、本明細書における表面粗さRaとは、AFM(Atomic Force Microscope:原子間力顕微鏡)により測定される、算術平均粗さRaを意味する。 The surface roughness Ra of the first transparent electrode layer is, for example, 0.1 nm or more. If the surface roughness Ra of the first transparent electrode layer is less than 0.1 nm, the adhesion to the substrate may deteriorate. The upper limit of the surface roughness Ra of the first transparent electrode layer is preferably less than 1.2 nm, more preferably 1.0 nm or less, even more preferably less than 1.0 nm, particularly preferably 0.8 nm. It is below. If the surface roughness Ra of the first transparent electrode layer is too large, it may become difficult to suitably form crystal grains. The surface roughness Ra in this specification means the arithmetic mean roughness Ra measured by AFM (Atomic Force Microscope).
 第1の透明電極層の厚みは、例えば、10nm以上であり、好ましくは15nm以上である。透明電極層の厚みが10nm未満の場合、結晶粒の面積占有率が低下するおそれがある。第1の透明電極層の厚みの上限は、例えば、50nm以下であり、好ましくは35nm以下であり、より好ましくは30nm未満であり、さらに好ましくは27nm以下である。透明電極層の厚みが50nmを超える場合、透過率が悪化するおそれがあり、また、透明電極層の表面粗さが大きくなるおそれがある。 The thickness of the first transparent electrode layer is, for example, 10 nm or more, preferably 15 nm or more. If the thickness of the transparent electrode layer is less than 10 nm, the area occupation ratio of crystal grains may decrease. The upper limit of the thickness of the first transparent electrode layer is, for example, 50 nm or less, preferably 35 nm or less, more preferably less than 30 nm, still more preferably 27 nm or less. If the thickness of the transparent electrode layer exceeds 50 nm, the transmittance may deteriorate, and the surface roughness of the transparent electrode layer may increase.
 第1の透明電極層は、例えば、スパッタリングよって、第1の透明基材の一方の面に設けられる。スパッタリングによって金属酸化物層を形成後、アニーリングすることにより結晶化することができる。アニーリングは、例えば120℃~300℃、10分~120分熱処理することにより行われる。 The first transparent electrode layer is provided on one surface of the first transparent substrate by, for example, sputtering. After the metal oxide layer is formed by sputtering, it can be crystallized by annealing. Annealing is performed, for example, by heat treatment at 120° C. to 300° C. for 10 minutes to 120 minutes.
 屈折率調整層は、PDLCフィルムの色相および/または透過率を制御し得る。屈折率調整層は、単層からなってもよく、2層以上の積層体であってもよい。 The refractive index adjusting layer can control the hue and/or transmittance of the PDLC film. The refractive index adjusting layer may consist of a single layer, or may be a laminate of two or more layers.
 屈折率調整層の屈折率は、1.3~1.8であることが好ましく、1.35~1.7であることがより好ましく、1.38~1.68であることがさらに好ましい。単層の場合は、例えば透明電極層がITOの場合、ITOの屈折率を光学的に緩和できるようむしろ低い屈折率が望ましく、例えば1.38~1.46が好ましい。これにより、透明基材-透明電極層間における界面反射を好適に低減できる。 The refractive index of the refractive index adjusting layer is preferably 1.3 to 1.8, more preferably 1.35 to 1.7, even more preferably 1.38 to 1.68. In the case of a single layer, for example, when the transparent electrode layer is ITO, a rather low refractive index is desirable, for example, 1.38 to 1.46, so as to optically relax the refractive index of ITO. As a result, interfacial reflection between the transparent base material and the transparent electrode layer can be preferably reduced.
 屈折率調整層は、無機物、有機物、あるいは無機物と有機物との混合物により形成される。屈折率調整層を形成する材料としては、NaF、NaAlF、LiF、MgF、CaF2、SiO、LaF、CeF、Al、TiO、Ta、ZrO、ZnO、ZnS、SiO(xは1.5以上2未満)等の無機物や、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、メラミン樹脂、アルキド樹脂、シロキサン系ポリマー等の有機物が挙げられる。特に、有機物として、メラミン樹脂とアルキド樹脂と有機シラン縮合物の混合物からなる熱硬化型樹脂を使用することが好ましい。 The refractive index adjusting layer is made of an inorganic substance, an organic substance, or a mixture of an inorganic substance and an organic substance. Materials for forming the refractive index adjustment layer include NaF, Na3AlF6 , LiF, MgF2 , CaF2, SiO2 , LaF3 , CeF3 , Al2O3 , TiO2 , Ta2O5 , and ZrO2. , ZnO, ZnS, and SiO x (where x is 1.5 or more and less than 2), and organic substances such as acrylic resins, epoxy resins, urethane resins, melamine resins, alkyd resins, and siloxane-based polymers. In particular, it is preferable to use a thermosetting resin composed of a mixture of melamine resin, alkyd resin and organic silane condensate as the organic material.
 屈折率調整層は、平均粒子径が1nm~100nmのナノ微粒子を含んでいてもよい。屈折率調整層中にナノ微粒子を含有することによって、屈折率調整層自体の屈折率の調整を容易に行うことができる。  The refractive index adjusting layer may contain nanoparticles with an average particle size of 1 nm to 100 nm. By containing nanoparticles in the refractive index adjusting layer, the refractive index of the refractive index adjusting layer itself can be easily adjusted. 
 屈折率調整層中のナノ微粒子の含有割合は、0.1重量%~90重量%であることが好ましい。また、屈折率調整層中のナノ微粒子の含有割合は、10重量%~80重量%であることがより好ましく、20重量%~70重量%であることがさらに好ましい。 The content of nanoparticles in the refractive index adjusting layer is preferably 0.1% by weight to 90% by weight. Moreover, the content of the nanoparticles in the refractive index adjusting layer is more preferably 10 wt % to 80 wt %, and even more preferably 20 wt % to 70 wt %.
 ナノ微粒子を形成する無機酸化物としては、例えば、酸化ケイ素(シリカ)、中空ナノシリカ、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化ニオブ等が挙げられる。これらの中でも、酸化ケイ素(シリカ)、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化ニオブが好ましい。これらは1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of inorganic oxides that form nanoparticles include silicon oxide (silica), hollow nanosilica, titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide, and niobium oxide. Among these, silicon oxide (silica), titanium oxide, aluminum oxide, zinc oxide, tin oxide, zirconium oxide, and niobium oxide are preferred. These may be used individually by 1 type, and may use 2 or more types together.
 屈折率調整層の厚みは、10nm~200nmであることが好ましく、20nm~150nmであることがより好ましく、30nm~130nmであることがさらに好ましい。屈折率調整層の厚みが過度に小さいと連続被膜となりにくい。また、屈折率調整層の厚みが過度に大きいと、透明状態における透明性が低下したり、クラックが生じ易くなったりする傾向がある。 The thickness of the refractive index adjusting layer is preferably 10 nm to 200 nm, more preferably 20 nm to 150 nm, and even more preferably 30 nm to 130 nm. If the thickness of the refractive index adjusting layer is too small, it is difficult to form a continuous film. Further, when the thickness of the refractive index adjusting layer is excessively large, there is a tendency that the transparency in the transparent state is lowered and cracks are likely to occur.
 屈折率調整層は、上記の材料を用いて、ウエット法、グラビアコート法やバーコート法などの塗布法、真空蒸着法、スパッタリング法、イオンプレーティング法などにより形成できる。 The refractive index adjustment layer can be formed using the above materials by a coating method such as a wet method, a gravure coating method or a bar coating method, a vacuum deposition method, a sputtering method, an ion plating method, or the like.
A-1-2.PDLC層
 PDLC層20は、高分子マトリクス22と高分子マトリクス22中に分散した液晶化合物の液滴(液晶液滴)24とを含む。図1に示すように、PDLC層20は、第1領域Aと第2領域Bとを有し、第1領域Aにおける液晶液滴24は、非重合性液晶化合物24aと非配向状態の液晶ポリマー24cとを含み、第2領域Bにおける液晶液滴24は、非重合性液晶化合物24aと重合性液晶化合物24bとを含む。第1領域Aおよび第2領域Bは、PDLCフィルムに所望される意匠に応じて、任意の適切なパターンで形成され得る。
A-1-2. PDLC Layer The PDLC layer 20 includes a polymer matrix 22 and liquid crystal compound droplets (liquid crystal droplets) 24 dispersed in the polymer matrix 22 . As shown in FIG. 1, the PDLC layer 20 has a first region A and a second region B, and the liquid crystal droplets 24 in the first region A are composed of a non-polymerizable liquid crystal compound 24a and a liquid crystal polymer in a non-aligned state. 24c, and the liquid crystal droplet 24 in the second region B includes a non-polymerizable liquid crystal compound 24a and a polymerizable liquid crystal compound 24b. The first region A and the second region B can be formed in any suitable pattern according to the design desired for the PDLC film.
 高分子マトリクスは、任意の適切な樹脂で構成され得る。高分子マトリクス形成用樹脂は、光透過率、液晶化合物の屈折率、透明導電性フィルムとの密着力等に応じて適切に選択され得る。例えば、ウレタン系樹脂、ポリビニルアルコール系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂等の水溶性樹脂または水分散性樹脂が好ましく用いられ得る。高分子マトリクス形成用樹脂は、単独で用いても、複数を組み合わせて用いてもよい。 The polymer matrix can be composed of any suitable resin. The polymer matrix-forming resin can be appropriately selected according to the light transmittance, the refractive index of the liquid crystal compound, the adhesion to the transparent conductive film, and the like. For example, water-soluble resins or water-dispersible resins such as urethane-based resins, polyvinyl alcohol-based resins, polyethylene-based resins, polypropylene-based resins, and acrylic-based resins can be preferably used. The polymer matrix-forming resin may be used alone or in combination.
 PDLC層中における高分子マトリクスの含有割合は、第1領域および第2領域の両方において、例えば30重量%~70重量%、好ましくは35重量%~65重量%、より好ましくは40重量%~60重量%である。高分子マトリクスの含有割合が当該範囲内であれば、適度な動作電圧で良好な調光機能が発揮される、良好な機械的強度が得られる、端部からの液晶漏れが防止される、等の効果が得られ得る。 The content of the polymer matrix in the PDLC layer is, for example, 30% to 70% by weight, preferably 35% to 65% by weight, more preferably 40% to 60% by weight, in both the first region and the second region. % by weight. If the content of the polymer matrix is within this range, a good dimming function can be exhibited at a moderate operating voltage, good mechanical strength can be obtained, liquid crystal leakage from the edges can be prevented, etc. effect can be obtained.
 非重合性液晶化合物としては、任意の適切な液晶化合物が用いられ得る。好ましくは波長589nmにおいて0.05~0.50の複屈折Δn(=ne-no;neは液晶化合物分子の長軸方向の屈折率、noは液晶化合物分子の短軸方向の屈折率)、より好ましくは0.10~0.45の複屈折Δnを有する液晶化合物が用いられる。 Any appropriate liquid crystal compound can be used as the non-polymerizable liquid crystal compound. Preferably, the birefringence Δn of 0.05 to 0.50 at a wavelength of 589 nm (= ne-no; ne is the refractive index in the long axis direction of the liquid crystal compound molecule, no is the refractive index in the short axis direction of the liquid crystal compound molecule), and more A liquid crystal compound having a birefringence Δn of 0.10 to 0.45 is preferably used.
 非重合性液晶化合物の誘電異方性は、正でも負でもよい。非重合性液晶化合物は、例えば、ネマティック型、スメクティック型、コレステリック型液晶化合物であり得る。透明状態において優れた透明性を実現できることから、ネマティック型液晶化合物を用いることが好ましい。 The dielectric anisotropy of the non-polymerizable liquid crystal compound may be positive or negative. Non-polymerizable liquid crystal compounds can be, for example, nematic, smectic, or cholesteric liquid crystal compounds. It is preferable to use a nematic type liquid crystal compound because excellent transparency can be achieved in the transparent state.
 ネマティック型液晶化合物としては、ビフェニル系化合物、フェニルベンゾエート系化合物、シクロヘキシルベンゼン系化合物、アゾキシベンゼン系化合物、アゾベンゼン系化合物、アゾメチン系化合物、ターフェニル系化合物、ビフェニルベンゾエート系化合物、シクロヘキシルビフェニル系化合物、フェニルピリジン系化合物、シクロヘキシルピリミジン系化合物、コレステロール系化合物、フッ素系化合物等が挙げられる。これらの低分子液晶化合物は、単独で用いても、複数を組み合わせて用いてもよい。 Nematic type liquid crystal compounds include biphenyl-based compounds, phenylbenzoate-based compounds, cyclohexylbenzene-based compounds, azoxybenzene-based compounds, azobenzene-based compounds, azomethine-based compounds, terphenyl-based compounds, biphenylbenzoate-based compounds, cyclohexylbiphenyl-based compounds, Examples include phenylpyridine-based compounds, cyclohexylpyrimidine-based compounds, cholesterol-based compounds, and fluorine-based compounds. These low-molecular-weight liquid crystal compounds may be used alone or in combination.
 重合性液晶化合物は、光透過率、非重合性液晶化合物との相溶性等に応じて適切に選択され得る。重合性液晶化合物は、2官能以上の架橋型であってもよい。重合性液晶化合物としては、例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、およびGB2280445等に記載の重合型メソゲン化合物等が使用できる。このような重合型メソゲン化合物の具体例としては、例えば、BASF社の商品名LC242が挙げられる。重合性液晶化合物としては、例えばネマティック型液晶モノマーが好ましい。 The polymerizable liquid crystal compound can be appropriately selected according to the light transmittance, compatibility with the non-polymerizable liquid crystal compound, and the like. The polymerizable liquid crystal compound may be of a bifunctional or higher crosslinked type. Polymerizable liquid crystal compounds include, for example, polymeric mesogenic compounds described in JP-T-2002-533742 (WO00/37585), EP358208 (US5211877), EP66137 (US4388453), WO93/22397, EP0261712, DE19504224, DE4408171, and GB2280445. etc. can be used. A specific example of such a polymerizable mesogenic compound is LC242 (trade name) available from BASF. As the polymerizable liquid crystal compound, for example, a nematic liquid crystal monomer is preferable.
 液晶ポリマーは、代表的には、上記重合性液晶化合物の重合生成物である。重合性液晶化合物の重合によりポリマーが形成され、また、架橋によりネットワーク構造が形成され得るが、これらは非液晶性である。したがって、液晶ポリマーにおいては、例えば、液晶性の化合物に特有の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。 A liquid crystal polymer is typically a polymerization product of the polymerizable liquid crystal compound. A polymer may be formed by polymerization of the polymerizable liquid crystal compound, and a network structure may be formed by cross-linking, but these are non-liquid crystalline. Therefore, in a liquid crystal polymer, for example, a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a temperature change peculiar to a liquid crystalline compound does not occur.
 液晶ポリマーは、液晶液滴中、代表的には、非配向状態で存在する。液晶液滴中の液晶ポリマーが非配向状態であることにより、電圧印加時であっても、第1領域は、高いヘイズ(例えば40%~100%、好ましくは60%~100%)を維持し得る。 A liquid crystal polymer typically exists in a non-aligned state in a liquid crystal droplet. Since the liquid crystal polymer in the liquid crystal droplets is in a non-aligned state, the first region maintains a high haze (for example, 40% to 100%, preferably 60% to 100%) even when a voltage is applied. obtain.
 第1領域における非重合性液晶化合物と液晶ポリマーとの合計含有割合は、例えば30重量%~70重量%、好ましくは35重量%~65重量%、より好ましくは40重量%~60重量%である。また、第1領域における非重合性液晶化合物と液晶ポリマーとの重量含有比(非重合性液晶化合物:液晶ポリマー)は、例えば99:1~70:30、好ましくは95:5~80:20である。また、第1領域における高分子マトリクスと非重合性液晶化合物と液晶ポリマーとの合計含有割合は、例えば90重量%~99.9重量%、好ましくは95重量%~99.9重量%であり得る。 The total content of the non-polymerizable liquid crystal compound and the liquid crystal polymer in the first region is, for example, 30 wt% to 70 wt%, preferably 35 wt% to 65 wt%, more preferably 40 wt% to 60 wt%. . The weight content ratio of the non-polymerizable liquid crystal compound to the liquid crystal polymer (non-polymerizable liquid crystal compound: liquid crystal polymer) in the first region is, for example, 99:1 to 70:30, preferably 95:5 to 80:20. be. Further, the total content of the polymer matrix, the non-polymerizable liquid crystal compound and the liquid crystal polymer in the first region may be, for example, 90% to 99.9% by weight, preferably 95% to 99.9% by weight. .
 第2領域における非重合性液晶化合物と重合性液晶化合物との合計含有割合は、例えば30重量%~70重量%、好ましくは35重量%~65重量%、より好ましくは40重量%~60重量%である。また、第2領域における非重合性液晶化合物と重合性液晶化合物との重量含有比(非重合性液晶化合物:重合性液晶化合物)は、例えば99:1~70:30、好ましくは95:5~80:20である。また、第2領域における高分子マトリクスと非重合性液晶化合物と重合性液晶化合物との合計含有割合は、例えば90重量%~99.9重量%、好ましくは95重量%~99.9重量%であり得る。 The total content of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound in the second region is, for example, 30% to 70% by weight, preferably 35% to 65% by weight, more preferably 40% to 60% by weight. is. Further, the weight content ratio of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound (non-polymerizable liquid crystal compound:polymerizable liquid crystal compound) in the second region is, for example, 99:1 to 70:30, preferably 95:5 to It is 80:20. In addition, the total content of the polymer matrix, the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound in the second region is, for example, 90% by weight to 99.9% by weight, preferably 95% by weight to 99.9% by weight. could be.
 B項で詳述するように、第1領域と第2領域とを有するPDLC層は、非重合性液晶化合物と重合性液晶化合物とを含む液晶液滴を含むPDLC層の所定の領域において、重合性液晶化合物を重合させて液晶ポリマーを形成させることによって形成され得、この場合、当該所定の領域が第1領域となり、他の領域が第2領域となる。よって、第1領域および第2領域において、液晶液滴は、重合開始剤をさらに含み得る。重合開始剤の含有割合は、B項に記載の通りである。また、第1領域における液晶液滴には、未反応の重合性液晶化合物が残存し得る。第1領域における未反応の重合性液晶化合物の含有割合は、例えば3重量%以下、好ましくは1重量%以下である。また、第2領域における液晶液滴には、実質的に液晶ポリマーが存在しないことが好ましい。第2領域における液晶ポリマーの含有割合は、例えば3重量%以下、好ましくは1重量%以下である。 As detailed in section B, the PDLC layer having the first region and the second region is polymerized in a predetermined region of the PDLC layer containing liquid crystal droplets containing a non-polymerizable liquid crystal compound and a polymerizable liquid crystal compound. It may be formed by polymerizing a liquid crystalline compound to form a liquid crystalline polymer, in which case the predetermined area becomes the first area and the other area becomes the second area. Therefore, in the first region and the second region, the liquid crystal droplet may further contain a polymerization initiator. The content of the polymerization initiator is as described in Section B. In addition, unreacted polymerizable liquid crystal compounds may remain in the liquid crystal droplets in the first region. The content of the unreacted polymerizable liquid crystal compound in the first region is, for example, 3% by weight or less, preferably 1% by weight or less. Further, it is preferable that substantially no liquid crystal polymer is present in the liquid crystal droplets in the second region. The content of the liquid crystal polymer in the second region is, for example, 3% by weight or less, preferably 1% by weight or less.
 液晶液滴の平均粒子径は、例えば0.3μm~9μm、好ましくは0.4μm~8μmであり得る。液晶液滴の平均粒子径が小さすぎると、光の波長よりも液晶液滴サイズが小さいために、光が散乱することなく液晶液滴を透過してしまい、結果として、十分なヘイズを得られないという問題が生じ得る。また、該平均粒子径が大きすぎると、光の波長よりも液晶液滴サイズが大きすぎるために、十分なヘイズを得られないという問題が生じ得る。なお、上記PDLC層中における液晶液滴の平均粒子径は、PDLCフィルムの主面に対して垂直な方向から見た場合の液晶液滴の体積平均粒子径である。 The average particle size of liquid crystal droplets can be, for example, 0.3 μm to 9 μm, preferably 0.4 μm to 8 μm. If the average particle size of the liquid crystal droplets is too small, the liquid crystal droplet size is smaller than the wavelength of the light, so the light passes through the liquid crystal droplets without being scattered, and as a result, sufficient haze cannot be obtained. There can be a problem that there is no On the other hand, if the average particle size is too large, the size of the liquid crystal droplets is too large for the wavelength of light, which may cause a problem that a sufficient haze cannot be obtained. The average particle size of the liquid crystal droplets in the PDLC layer is the volume average particle size of the liquid crystal droplets when viewed from a direction perpendicular to the main surface of the PDLC film.
 PDLC層の厚みは、代表的には2μm~40μmであり、好ましくは3μm~35μm、より好ましくは4μm~30μmである。 The thickness of the PDLC layer is typically 2 μm to 40 μm, preferably 3 μm to 35 μm, more preferably 4 μm to 30 μm.
A-1-3.第2の透明導電性フィルム
 第2の透明導電性フィルム30は、代表的には、第2の透明基材32とその一方の側に設けられた第2の透明電極層34とを有する。第2の透明導電性フィルム30は、必要に応じて、第2の透明基材32の片側または両側にハードコート層を有していてもよく、また、第2の透明基材32と第2の透明電極層34との間に屈折率調整層を有していてもよい。
A-1-3. Second Transparent Conductive Film The second transparent conductive film 30 typically has a second transparent substrate 32 and a second transparent electrode layer 34 provided on one side thereof. The second transparent conductive film 30 may have a hard coat layer on one side or both sides of the second transparent substrate 32, if necessary. A refractive index adjusting layer may be provided between the transparent electrode layer 34 of .
 第2の透明導電性フィルムの表面抵抗値は、好ましくは1Ω/□~1000Ω/□であり、より好ましくは5Ω/□~300Ω/□であり、さらに好ましくは10Ω/□~200Ω/□である。 The surface resistance value of the second transparent conductive film is preferably 1 Ω/□ to 1000 Ω/□, more preferably 5 Ω/□ to 300 Ω/□, even more preferably 10 Ω/□ to 200 Ω/□. .
 第2の透明導電性フィルムのヘイズ値は、好ましくは20%以下であり、より好ましくは10%以下であり、さらに好ましくは0.1%~10%である。 The haze value of the second transparent conductive film is preferably 20% or less, more preferably 10% or less, still more preferably 0.1% to 10%.
 第2の透明導電性フィルムの全光線透過率は、好ましくは30%以上であり、より好ましくは60%以上であり、さらに好ましくは80%以上である。 The total light transmittance of the second transparent conductive film is preferably 30% or higher, more preferably 60% or higher, and even more preferably 80% or higher.
 第2の透明基材および第2の透明電極層については、第1の透明基材および第1の透明電極層と同様の説明をそれぞれ適用することができる。第2の透明導電性フィルムは、第1の透明導電性フィルムと同じ構成を有していてもよく、異なる構成を有していてもよい。 For the second transparent base material and the second transparent electrode layer, the same explanation as for the first transparent base material and the first transparent electrode layer can be applied. The second transparent conductive film may have the same configuration as the first transparent conductive film, or may have a different configuration.
A-2.第2の実施形態のPDLCフィルム
 図2(a)は、本発明の第2の実施形態のPDLCフィルムの一例の概略平面図であり、(b)は、(a)で示すPDLCフィルムの電圧無印加時の状態を説明する概略断面図であり、(c)は、(a)で示すPDLCフィルムの電圧印加時の状態を説明する概略断面図である。PDLCフィルム100bは、第1の透明導電性フィルム10と、高分子マトリクス22と高分子マトリクス22中に分散した液晶液滴24とを含むPDLC層20と、第2の透明導電性フィルム30と、をこの順に含む。PDLC層20は、平面視において、電圧の印加によるヘイズの変化量が異なる第1領域Aと第2領域Bとを有する。第1領域Aにおける液晶液滴24は、非重合性液晶化合物24aと液晶ポリマー24cとを含み、代表的には、液晶ポリマー24cは所定の方向(図示例では、透明導電性フィルム10、30の主面に対して垂直方向)に配向している。第2領域Bにおける液晶液滴24は、非重合性液晶化合物24aと重合性液晶化合物24bとを含む。
A-2. PDLC Film of Second Embodiment FIG. 2(a) is a schematic plan view of an example of the PDLC film of the second embodiment of the present invention, and (b) is a voltage-free PDLC film shown in (a). FIG. 2C is a schematic cross-sectional view for explaining a state during heating, and (c) is a schematic cross-sectional view for explaining a state when voltage is applied to the PDLC film shown in (a). The PDLC film 100b includes a first transparent conductive film 10, a PDLC layer 20 including a polymer matrix 22 and liquid crystal droplets 24 dispersed in the polymer matrix 22, a second transparent conductive film 30, in that order. The PDLC layer 20 has a first region A and a second region B that have different amounts of change in haze due to voltage application in plan view. The liquid crystal droplets 24 in the first region A contain a non-polymerizable liquid crystal compound 24a and a liquid crystal polymer 24c. perpendicular to the main surface). The liquid crystal droplets 24 in the second region B contain a non-polymerizable liquid crystal compound 24a and a polymerizable liquid crystal compound 24b.
 図2(b)に示すように、電圧無印加時のPDLCフィルム100bにおいては、第2領域Bにおける液晶液滴24中の非重合性液晶化合物24aおよび重合性液晶化合物24bが共に非配向状態であることから、透過光の散乱が生じる。一方、第1領域Aにおいては、液晶ポリマー24cの配向方向に沿って非重合性液晶化合物24aが配向する結果、透過光の散乱が抑制される。よって、PDLCフィルム100bにおいて、第1領域Aは透明状態であり得、また、第2領域Bは散乱状態であり得る。 As shown in FIG. 2B, in the PDLC film 100b when no voltage is applied, both the non-polymerizable liquid crystal compound 24a and the polymerizable liquid crystal compound 24b in the liquid crystal droplets 24 in the second region B are in a non-aligned state. Something causes scattering of the transmitted light. On the other hand, in the first region A, the non-polymerizable liquid crystal compound 24a is oriented along the orientation direction of the liquid crystal polymer 24c, so that scattering of transmitted light is suppressed. Therefore, in the PDLC film 100b, the first region A can be in a transparent state and the second region B can be in a scattering state.
 一方、図2(c)に示すように、電圧印加時のPDLCフィルム100bにおいては、第2領域Bにおける液晶液滴24中の非重合性液晶化合物24aおよび重合性液晶化合物24bが共に透明導電性フィルム10、30の主面に対して垂直方向に配向し、透過光の散乱が抑制される結果、ヘイズが低下する。一方、第1領域Aにおいては、非重合性液晶化合物24aの配向が大きく変化しないことから、依然として透過光の散乱が抑制される。よって、第1領域における電圧の印加によるヘイズの変化量は、第2領域における該変化量よりも小さく、また、第1領域のヘイズと第2領域のヘイズとの差は、電圧の印加によって減少する。 On the other hand, as shown in FIG. 2C, in the PDLC film 100b when a voltage is applied, both the non-polymerizable liquid crystal compound 24a and the polymerizable liquid crystal compound 24b in the liquid crystal droplets 24 in the second region B are transparent conductive. It is oriented in the direction perpendicular to the major surfaces of the films 10 and 30, and as a result of suppressing the scattering of transmitted light, the haze is reduced. On the other hand, in the first region A, since the orientation of the non-polymerizable liquid crystal compound 24a does not change significantly, scattering of transmitted light is still suppressed. Therefore, the amount of change in haze due to the application of voltage in the first region is smaller than the amount of change in the second region, and the difference between the haze in the first region and the haze in the second region is reduced by the application of voltage. do.
 以上のように、PDLCフィルム100bは、電圧無印加時には第1領域が透明、第2領域が白濁した外観を呈し、電圧印加により第2領域のヘイズのみが大きく低下して、両方の領域が透明状態となり、結果として、主面全体が透明な外観を呈し得る。よって、PDLCフィルム100bは、電圧の印加と無印加との切り替えによって、異なる外観を呈することができる。 As described above, in the PDLC film 100b, when no voltage is applied, the first region is transparent, and the second region has a cloudy appearance. state, resulting in a transparent appearance over the entire major surface. Therefore, the PDLC film 100b can exhibit different appearances by switching between voltage application and non-application.
 電圧印加時にPDLCフィルムに印加される電圧は、PDLCフィルムを動作させ得る電圧(動作電圧)であり、例えば5V~200V、好ましくは10V~100Vであり得る。 The voltage applied to the PDLC film during voltage application is a voltage (operating voltage) capable of operating the PDLC film, and can be, for example, 5V to 200V, preferably 10V to 100V.
 電圧無印加時における第1領域のヘイズは、例えば1%~20%、好ましくは1%~10%である。電圧印加時における第1領域のヘイズは、例えば1%~20%、好ましくは1%~10%である。電圧の印加による第1領域のヘイズの変化量(|電圧無印加時のヘイズ-電圧印加時のヘイズ|)は、例えば0%~20%、好ましくは0%~10%である。 The haze of the first region when no voltage is applied is, for example, 1% to 20%, preferably 1% to 10%. The haze of the first region when voltage is applied is, for example, 1% to 20%, preferably 1% to 10%. The amount of change in haze in the first region due to voltage application (|haze when no voltage is applied−haze when voltage is applied|) is, for example, 0% to 20%, preferably 0% to 10%.
 電圧無印加時における第2領域のヘイズは、例えば50%~100%、好ましくは70%~100%である。電圧印加時における第2領域のヘイズは、例えば1%~20%、好ましくは1%~10%である。電圧の印加による第2領域のヘイズの変化量(|電圧無印加時のヘイズ-電圧印加時のヘイズ|)は、例えば30%~99%、好ましくは60%~99%である。 The haze of the second region when no voltage is applied is, for example, 50% to 100%, preferably 70% to 100%. The haze of the second region when voltage is applied is, for example, 1% to 20%, preferably 1% to 10%. The amount of change in haze in the second region due to voltage application (|haze when no voltage is applied−haze when voltage is applied|) is, for example, 30% to 99%, preferably 60% to 99%.
 電圧の印加による第1領域のヘイズの変化量は、電圧の印加による第2領域のヘイズの変化量よりも小さく、その差は、例えば10%~99%、好ましくは30%~99%である。 The amount of change in haze in the first region due to voltage application is smaller than the amount of change in haze in the second region due to voltage application, and the difference is, for example, 10% to 99%, preferably 30% to 99%. .
 電圧無印加時における第1領域の全光線透過率は、例えば70%~95%、好ましくは80%~90%である。電圧印加時における第1領域の全光線透過率は、例えば70%~95%、好ましくは80%~90%である。 The total light transmittance of the first region when no voltage is applied is, for example, 70% to 95%, preferably 80% to 90%. The total light transmittance of the first region when voltage is applied is, for example, 70% to 95%, preferably 80% to 90%.
 電圧無印加時における第2領域の全光線透過率は、例えば50%~95%、好ましくは60%~90%である。電圧印加時における第2領域の全光線透過率は、例えば70%~95%、好ましくは80%~90%である。 The total light transmittance of the second region when no voltage is applied is, for example, 50% to 95%, preferably 60% to 90%. The total light transmittance of the second region when voltage is applied is, for example, 70% to 95%, preferably 80% to 90%.
 PDLCフィルムの厚みは、例えば30μm~250μm、好ましくは50μm~150μmである。 The thickness of the PDLC film is, for example, 30 μm to 250 μm, preferably 50 μm to 150 μm.
 第2の実施形態のPDLCフィルムに関して、第1の透明導電性フィルムおよび第2の透明導電性フィルムについては、第1の実施形態のPDLCフィルムにおける第1の透明導電性フィルムおよび第2の透明導電性フィルムと同様の説明をそれぞれ適用することができる。また、PDLC層については、第1領域における液晶液滴に含まれる液晶ポリマーが所定の方向に配向していること以外は、第1の実施形態のPDLCフィルムにおけるPDLC層と同様の説明を適用することができる。 Regarding the PDLC film of the second embodiment, the first transparent conductive film and the second transparent conductive film are the first transparent conductive film and the second transparent conductive film in the PDLC film of the first embodiment. The same explanations as for the sex films can be applied respectively. Also, with respect to the PDLC layer, the same description as that for the PDLC layer in the PDLC film of the first embodiment applies, except that the liquid crystal polymer contained in the liquid crystal droplets in the first region is oriented in a predetermined direction. be able to.
 PDLC層の第1領域において、液晶液滴に含まれる液晶ポリマーは、所定の方向に配向している。液晶ポリマーは、好ましくは第1の透明導電性フィルムおよび第2の透明導電性フィルムの主面に対して略垂直方向に、例えば90°±5°、好ましくは90°±3°の角度をなすように配向している。液晶液滴中の液晶ポリマーが所定の方向に配向していることにより、電圧無印加時であっても、第1領域は、低いヘイズ(例えば1%~20%、好ましくは1%~10%)を維持し得る。 In the first region of the PDLC layer, the liquid crystal polymer contained in the liquid crystal droplets is oriented in a predetermined direction. The liquid crystal polymer preferably forms an angle substantially perpendicular to the major surfaces of the first transparent conductive film and the second transparent conductive film, for example, 90°±5°, preferably 90°±3°. are oriented as Since the liquid crystal polymer in the liquid crystal droplets is oriented in a predetermined direction, the first region has a low haze (for example, 1% to 20%, preferably 1% to 10%) even when no voltage is applied. ) can be maintained.
B.高分子分散型液晶フィルムの製造方法
 本発明の1つの局面によれば、高分子分散型液晶(PDLC)フィルムの製造方法が提供される。本発明の実施形態によるPDLCフィルムの製造方法は、
(工程A)第1の透明導電性フィルムに、高分子マトリクス形成用樹脂と非重合性液晶化合物と重合性液晶化合物と溶媒とを含む塗工液を塗工して、塗布層を得ること、
(工程B)該塗布層を乾燥させて、高分子マトリクスと該高分子マトリクス中に分散した該非重合性液晶化合物と該重合性液晶化合物とを含む液晶液滴とを含むPDLC層を得ること、
(工程C)該PDLC層の上に第2の透明導電性フィルムを積層すること、および
(工程D)該PDLC層に所定のパターンで活性エネルギー線を照射して、該重合性液晶化合物の重合生成物である液晶ポリマーと該非重合性液晶化合物とを含む液晶液滴を含む第1領域を形成すること、
 を含む。本発明の実施形態によるPDLCフィルムの製造方法によれば、液晶液滴が非重合性液晶化合物と液晶ポリマーとを含む第1領域と、液晶液滴が非重合性液晶化合物と重合性液晶化合物とを含む第2領域と、を有するPDLC層を形成することができ、結果として、A項に記載のPDLCフィルムが好適に得られ得る。
B. Method for Producing Polymer Dispersed Liquid Crystal Film According to one aspect of the present invention, a method for producing a polymer dispersed liquid crystal (PDLC) film is provided. A method for manufacturing a PDLC film according to an embodiment of the present invention comprises:
(Step A) coating a first transparent conductive film with a coating liquid containing a polymer matrix-forming resin, a non-polymerizable liquid crystal compound, a polymerizable liquid crystal compound, and a solvent to obtain a coating layer;
(Step B) drying the coating layer to obtain a PDLC layer containing a polymer matrix and liquid crystal droplets containing the non-polymerizable liquid crystal compound dispersed in the polymer matrix and the polymerizable liquid crystal compound;
(Step C) laminating a second transparent conductive film on the PDLC layer, and (Step D) irradiating the PDLC layer with an active energy ray in a predetermined pattern to polymerize the polymerizable liquid crystal compound. forming a first region containing liquid crystal droplets containing the product liquid crystal polymer and the non-polymerizable liquid crystal compound;
including. According to the method for manufacturing a PDLC film according to an embodiment of the present invention, the liquid crystal droplets include the first region containing the non-polymerizable liquid crystal compound and the liquid crystal polymer, and the liquid crystal droplets contain the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound. A PDLC layer having a second region containing
 1つの実施形態において、工程Dの活性エネルギー線照射は、第1の透明導電性フィルムと第2の透明導電性フィルムとの間に電圧を印加しない状態で行われる。別の実施形態において、工程Dの活性エネルギー線照射は、第1の透明導電性フィルムと第2の透明導電性フィルムとの間に電圧を印加した状態で行われる。 In one embodiment, the active energy ray irradiation in step D is performed with no voltage applied between the first transparent conductive film and the second transparent conductive film. In another embodiment, the active energy ray irradiation in step D is performed with a voltage applied between the first transparent conductive film and the second transparent conductive film.
B-1.工程A
 工程Aにおいては、第1の透明導電性フィルムに、高分子マトリクス形成用樹脂と非重合性液晶化合物と重合性液晶化合物と溶媒とを含む塗工液を塗工して、塗布層を得る。
B-1. Process A
In step A, a coating liquid containing a polymer matrix-forming resin, a non-polymerizable liquid crystal compound, a polymerizable liquid crystal compound, and a solvent is applied to the first transparent conductive film to obtain a coating layer.
 上記塗工液は、好ましくは、非重合性液晶化合物と重合性液晶化合物とを含む液晶粒子が溶媒中に分散したエマルション(以下、「エマルション塗工液」と称する場合がある)である。1つの実施形態において、塗工液は、高分子マトリクス形成用樹脂粒子と、非重合性液晶化合物と重合性液晶化合物とを含む液晶粒子とが溶媒中に分散したエマルション塗工液である。エマルション塗工液は、好ましくは液晶粒子中に重合開始剤をさらに含み、目的に応じて、任意の適切な添加剤をさらに含み得る。 The coating liquid is preferably an emulsion in which liquid crystal particles containing a non-polymerizable liquid crystal compound and a polymerizable liquid crystal compound are dispersed in a solvent (hereinafter sometimes referred to as "emulsion coating liquid"). In one embodiment, the coating liquid is an emulsion coating liquid in which polymer matrix-forming resin particles and liquid crystal particles containing a non-polymerizable liquid crystal compound and a polymerizable liquid crystal compound are dispersed in a solvent. The emulsion coating liquid preferably further contains a polymerization initiator in the liquid crystal particles, and may further contain any suitable additive depending on the purpose.
 溶媒としては、水または水と水混和性有機溶媒との混合溶媒が好ましく用いられ得る。水混和性有機溶媒としては、C1-3アルコール、アセトン、DMSO等が挙げられる。非重合性液晶化合物、重合性液晶化合物および高分子マトリクス形成用樹脂については、A-1-2項に記載した通りである。任意の添加剤としては、分散剤、レベリング剤、架橋剤等が挙げられる。 As the solvent, water or a mixed solvent of water and a water-miscible organic solvent can be preferably used. Water-miscible organic solvents include C1-3 alcohols, acetone, DMSO and the like. The non-polymerizable liquid crystal compound, the polymerizable liquid crystal compound and the polymer matrix-forming resin are as described in Section A-1-2. Optional additives include dispersants, leveling agents, cross-linking agents, and the like.
 塗工液の固形分における液晶化合物の含有割合(非重合性液晶化合物と重合性液晶化合物との合計含有割合)は、例えば30重量%~70重量%、好ましくは35重量%~65重量%、より好ましくは40重量%~60重量%であり得る。 The content ratio of the liquid crystal compound in the solid content of the coating liquid (the total content ratio of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound) is, for example, 30% to 70% by weight, preferably 35% to 65% by weight, More preferably, it may be 40% to 60% by weight.
 塗工液における非重合性液晶化合物と重合性液晶化合物との含有重量比(非重合性液晶化合物:重合性液晶化合物)は、好ましくは99:1~70:30、より好ましくは95:5~80:20であり得る。 The content weight ratio of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound (non-polymerizable liquid crystal compound:polymerizable liquid crystal compound) in the coating liquid is preferably from 99:1 to 70:30, more preferably from 95:5 to It can be 80:20.
 塗工液の固形分における高分子マトリクス形成用樹脂の含有割合は、例えば30重量%~70重量%、好ましくは35重量%~65重量%、より好ましくは40重量%~60重量%であり得る。 The content of the polymer matrix-forming resin in the solid content of the coating solution can be, for example, 30% to 70% by weight, preferably 35% to 65% by weight, and more preferably 40% to 60% by weight. .
 塗工液における液晶化合物の含有量(非重合性液晶化合物と重合性液晶化合物との合計含有量)と高分子マトリクス形成用樹脂の含有量との重量比(液晶化合物:高分子マトリクス形成用樹脂)は、例えば30:70~70:30、好ましくは35:65~65:35、より好ましくは40:60~60:40であり得る。また、塗工液の固形分における高分子マトリクス形成用樹脂と非重合性液晶化合物と重合性液晶化合物との合計含有割合は、例えば90重量%~99.9重量%、好ましくは95重量%~99.9重量%であり得る。 The weight ratio of the content of the liquid crystal compound in the coating liquid (the total content of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound) to the content of the polymer matrix-forming resin (liquid crystal compound: polymer matrix-forming resin ) can be, for example, 30:70 to 70:30, preferably 35:65 to 65:35, more preferably 40:60 to 60:40. Further, the total content ratio of the polymer matrix-forming resin, the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound in the solid content of the coating liquid is, for example, 90% by weight to 99.9% by weight, preferably 95% by weight to 99.9% by weight.
 液晶粒子の平均粒子径は、好ましくは0.3μm以上であり、より好ましくは0.4μm以上である。また、液晶粒子の平均粒子径は、好ましくは9μm以下であり、より好ましくは8μm以下である。液晶粒子の平均粒子径が当該範囲内であれば、PDLC層における液晶液滴の平均粒子径を所望の範囲とすることができる。なお、上記液晶粒子の平均粒子径は、体積平均粒子径である。 The average particle size of the liquid crystal particles is preferably 0.3 μm or more, more preferably 0.4 μm or more. Also, the average particle size of the liquid crystal particles is preferably 9 μm or less, more preferably 8 μm or less. If the average particle size of the liquid crystal particles is within this range, the average particle size of the liquid crystal droplets in the PDLC layer can be within the desired range. The average particle size of the liquid crystal particles is the volume average particle size.
 液晶粒子の平均粒子径は、比較的狭い粒度分布を有することが好ましい。液晶粒子の平均粒子径の変動係数(CV値)は、例えば0.40未満であり得、好ましくは0.35以下、より好ましくは0.30以下であり得る。1つの実施形態において、粒子径が0.3μm未満または9μm超である液晶粒子を実質的に含まないエマルション塗工液(例えば、液晶粒子の総体積に対する粒子径が0.3μm未満または9μm超である液晶粒子の体積の割合が10%以下であるエマルション塗工液)が用いられ得る。 The average particle size of the liquid crystal particles preferably has a relatively narrow particle size distribution. The coefficient of variation (CV value) of the average particle diameter of the liquid crystal particles may be, for example, less than 0.40, preferably 0.35 or less, more preferably 0.30 or less. In one embodiment, an emulsion coating solution that does not substantially contain liquid crystal particles having a particle size of less than 0.3 μm or more than 9 μm (for example, a liquid crystal particle having a particle size of less than 0.3 μm or more than 9 μm with respect to the total volume of liquid crystal particles). An emulsion coating liquid in which the volume ratio of certain liquid crystal particles is 10% or less can be used.
 高分子マトリクス形成用樹脂粒子の平均粒子径は、好ましくは10nm~500nmであり、より好ましくは30nm~300nm、さらに好ましくは50nm~200nmである。樹脂の種類および/または平均粒子径の異なる2種以上の樹脂粒子を用いてもよい。高分子マトリクス形成用樹脂粒子の平均粒子径は、体積平均のメジアン径を意味し、動的光散乱式粒度分布測定装置を用いて測定され得る。 The average particle size of the polymer matrix-forming resin particles is preferably 10 nm to 500 nm, more preferably 30 nm to 300 nm, still more preferably 50 nm to 200 nm. Two or more kinds of resin particles having different resin types and/or different average particle sizes may be used. The average particle size of the polymer matrix-forming resin particles means a volume-average median size, and can be measured using a dynamic light scattering particle size distribution analyzer.
 重合開始剤としては、目的および所望の特性等に応じて任意の適切な光重合開始剤が用いられ得る。光重合開始剤の具体例としては、2,2-ジメトキシ-2-フェニルアセトフェノン、アセトフェノン、ベンゾフェノン、キサントン、3-メチルアセトフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、ベンゾインプロピルエーテル、ベンジルジメチルケタール、N,N,N’,N’-テトラメチル-4,4’-ジアミノベンゾフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-2,4-ジペントキシフェニルホスフィンオキサイド、ビス(2,6-ジメトキシ-ベンゾイル)-(2,4,4-トリメチル-ペンチル)-ホスフィンオキサイド、チオキサントン系化合物が挙げられる。光重合開始剤は、単独で用いてもよく、2種以上を併用してもよい。光重合開始剤の含有割合は、重合性液晶化合物100重量部に対して、好ましくは0.1重量部~10重量部であり、より好ましくは0.5重量部~5重量部である。 Any appropriate photopolymerization initiator can be used as the polymerization initiator depending on the purpose and desired properties. Specific examples of photopolymerization initiators include 2,2-dimethoxy-2-phenylacetophenone, acetophenone, benzophenone, xanthone, 3-methylacetophenone, 4-chlorobenzophenone, 4,4′-dimethoxybenzophenone, benzoinpropyl ether, benzyl dimethyl ketal, N,N,N',N'-tetramethyl-4,4'-diaminobenzophenone, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, 2,4, 6-trimethylbenzoyldiphenylphosphine oxide, bis-(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-2,4-dipentoxyphenylphosphine oxide, Bis(2,6-dimethoxy-benzoyl)-(2,4,4-trimethyl-pentyl)-phosphine oxide, thioxanthone compounds. A photoinitiator may be used independently and may use 2 or more types together. The content of the photopolymerization initiator is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, per 100 parts by weight of the polymerizable liquid crystal compound.
 分散剤としては、例えば、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、非イオン界面活性剤等を挙げることができる。分散剤の含有割合は、エマルション塗工液100重量部に対して、好ましくは0.05重量部~10重量部であり、より好ましくは0.1重量部~1重量部である。 Examples of dispersants include anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants. The content of the dispersant is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 1 part by weight, per 100 parts by weight of the emulsion coating liquid.
 レベリング剤としては、例えば、アクリル系レベリング剤、フッ素系レベリング剤、シリコーン系レベリング剤等を挙げることができる。レベリング剤の含有割合は、エマルション塗工液100重量部に対して、好ましくは0.05重量部~10重量部であり、より好ましくは0.1重量部~1重量部である。 Examples of leveling agents include acrylic leveling agents, fluorine-based leveling agents, and silicone-based leveling agents. The content of the leveling agent is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 1 part by weight, per 100 parts by weight of the emulsion coating liquid.
 架橋剤としては、例えば、アジリジン系架橋剤、イソシアネート系架橋剤等を挙げることができる。架橋剤の含有割合は、エマルション塗工液100重量部に対して、好ましくは0.5重量部~10重量部であり、より好ましくは0.8重量部~5重量部である。 Examples of cross-linking agents include aziridine-based cross-linking agents and isocyanate-based cross-linking agents. The content of the cross-linking agent is preferably 0.5 to 10 parts by weight, more preferably 0.8 to 5 parts by weight, per 100 parts by weight of the emulsion coating liquid.
 エマルション塗工液は、例えば、高分子マトリクス形成用樹脂粒子を含む樹脂エマルションまたは樹脂粒子分散体と、液晶化合物と重合開始剤とを含む液晶粒子を含む液晶エマルションと、任意の添加剤(例えば、分散剤、レベリング剤、架橋剤)と、を混合することによって調製され得る。必要に応じて、混合時に、溶媒をさらに添加してもよい。あるいは、エマルション塗工液は、溶媒中に非重合性液晶化合物、重合性液晶化合物、水分散性樹脂、重合開始剤および任意の添加剤を添加し、機械的に分散させること等によっても調製され得る。 The emulsion coating liquid includes, for example, a resin emulsion or resin particle dispersion containing polymer matrix-forming resin particles, a liquid crystal emulsion containing liquid crystal particles containing a liquid crystal compound and a polymerization initiator, and optional additives (e.g., dispersing agents, leveling agents, cross-linking agents). If desired, additional solvent may be added during mixing. Alternatively, the emulsion coating liquid can be prepared by adding a non-polymerizable liquid crystal compound, a polymerizable liquid crystal compound, a water-dispersible resin, a polymerization initiator and optional additives to a solvent and mechanically dispersing the liquid. obtain.
 上記樹脂エマルションおよび液晶エマルションは、例えば、機械的乳化法、マイクロチャネル法、膜乳化法等によって調製され得る。なかでも、液晶エマルションは膜乳化法で調製されることが好ましい。膜乳化法によれば、粒度分布が揃ったエマルションが好適に得られ得る。膜乳化法の詳細については、特開平4-355719号公報、特開2015-40994号公報(これらは、本明細書に参考として援用される)等の開示を参照することができる。 The above resin emulsion and liquid crystal emulsion can be prepared, for example, by mechanical emulsification, microchannel method, membrane emulsification, and the like. Among them, the liquid crystal emulsion is preferably prepared by the film emulsification method. According to the membrane emulsification method, an emulsion having a uniform particle size distribution can be suitably obtained. For details of the membrane emulsification method, reference can be made to disclosures such as JP-A-4-355719 and JP-A-2015-40994 (these are incorporated herein by reference).
 エマルション塗工液の固形分濃度は、例えば20重量%~60重量%、好ましくは30重量%~50重量%であり得る。 The solid content concentration of the emulsion coating liquid can be, for example, 20% to 60% by weight, preferably 30% to 50% by weight.
 エマルション塗工液の粘度は、第1の透明導電性フィルムへの塗布が好適に行われるように適切に調整され得る。塗布時におけるエマルション塗工液の粘度は、好ましくは20mPas~400mPasであり、より好ましくは30mPas~300mPasであり、さらに好ましくは40mPas~200mPasである。粘度が20mPas未満の場合、溶媒を乾燥させる際に溶媒の対流が顕著となり、PDLC層の厚みが不安定となるおそれがある。また、粘度が400mPasを超える場合、エマルション塗工液のビードが安定しないおそれがある。エマルション塗工液の粘度は、例えば、アントンパール社製レオメーターMCR302により測定することができる。ここでの粘度は、20℃、せん断速度1000(1/s)の条件でのせん断粘度の値を用いている。 The viscosity of the emulsion coating liquid can be appropriately adjusted so that the coating on the first transparent conductive film is preferably performed. The viscosity of the emulsion coating liquid at the time of application is preferably 20 mPas to 400 mPas, more preferably 30 mPas to 300 mPas, still more preferably 40 mPas to 200 mPas. If the viscosity is less than 20 mPas, the convection of the solvent becomes significant when the solvent is dried, and the thickness of the PDLC layer may become unstable. Also, if the viscosity exceeds 400 mPas, the bead of the emulsion coating liquid may not be stable. The viscosity of the emulsion coating liquid can be measured, for example, with a rheometer MCR302 manufactured by Anton Paar. The viscosity used here is the value of the shear viscosity under the conditions of 20° C. and a shear rate of 1000 (1/s).
 エマルション塗工液は、代表的には、第1の透明導電性フィルムの透明電極層側表面に塗布される。第1の透明導電性フィルムについては、A-1-1項に記載した通りである。 The emulsion coating liquid is typically applied to the transparent electrode layer side surface of the first transparent conductive film. The first transparent conductive film is as described in Section A-1-1.
 塗布方法としては、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレコート法、ナイフコート法(コンマコート法等)等が挙げられる。なかでも、ロールコート法が好ましい。例えば、スロットダイを用いたロールコート法による塗布に関しては、特開2019-5698号公報の記載を参照することができる。 Any appropriate method can be adopted as the application method. Examples thereof include roll coating, spin coating, wire bar coating, dip coating, die coating, curtain coating, spray coating, and knife coating (comma coating, etc.). Among them, the roll coating method is preferable. For example, the description of Japanese Patent Application Laid-Open No. 2019-5698 can be referred to regarding coating by a roll coating method using a slot die.
 塗布層の厚みは、好ましくは3μm~40μmであり、より好ましくは4μm~30μmであり、さらに好ましくは5μm~20μmである。このような範囲であれば、厚みの均一性に優れるPDLC層を得ることができる。 The thickness of the coating layer is preferably 3 μm to 40 μm, more preferably 4 μm to 30 μm, still more preferably 5 μm to 20 μm. Within such a range, a PDLC layer with excellent thickness uniformity can be obtained.
B-2.工程B
 工程Bにおいては、塗布層を乾燥させて、高分子マトリクスと該高分子マトリクス中に分散した非重合性液晶化合物と重合性液晶化合物とを含む液晶液滴とを含むPDLC層を得る。乾燥により塗布層から溶媒が除去されて、高分子マトリクス形成用樹脂粒子が互いに融着し合うことにより、高分子マトリクス中に液晶液滴が分散した構造を有するPDLC層が形成される。
B-2. Process B
In step B, the coating layer is dried to obtain a PDLC layer containing a polymer matrix and liquid crystal droplets containing a non-polymerizable liquid crystal compound and a polymerizable liquid crystal compound dispersed in the polymer matrix. The solvent is removed from the coating layer by drying, and the polymer matrix-forming resin particles are fused to each other to form a PDLC layer having a structure in which liquid crystal droplets are dispersed in the polymer matrix.
 塗布層の乾燥は、任意の適切な方法によって行われ得る。乾燥方法の具体例としては、加熱乾燥、熱風乾燥等が挙げられる。エマルション塗工液が架橋剤を含む場合、乾燥時において、高分子マトリクスの架橋構造が形成され得る。 The drying of the coating layer can be performed by any appropriate method. Specific examples of the drying method include heat drying and hot air drying. When the emulsion coating liquid contains a cross-linking agent, a cross-linked structure of the polymer matrix may be formed during drying.
 乾燥温度は、好ましくは20℃~150℃であり、より好ましくは25℃~80℃である。乾燥時間は、好ましくは1分~100分であり、より好ましくは2分~10分である。 The drying temperature is preferably 20°C to 150°C, more preferably 25°C to 80°C. The drying time is preferably 1 minute to 100 minutes, more preferably 2 minutes to 10 minutes.
B-3.工程C
 工程Cにおいては、PDLC層の上に第2の透明導電性フィルムを積層する。これにより、第1の透明導電性フィルムと、PDLC層と、第2の透明導電性フィルムとをこの順に有するPDLCフィルムが得られる。
B-3. Process C
In step C, a second transparent conductive film is laminated on the PDLC layer. As a result, a PDLC film having the first transparent conductive film, the PDLC layer, and the second transparent conductive film in this order is obtained.
 第2の導電性フィルムについては、A-1-3項に記載した通りであり、PDLC層上への第2の透明導電性フィルムの積層は、第2の透明電極層側がPDLC層と対向するように行われる。当該積層は、十分な密着性を得る観点から、好ましくはラミネーターを用いて、0.006MPa/m~7MPa/mのラミネート圧、より好ましくは0.06MPa/m~0.7MPa/mのラミネート圧をかけながら行われ得る。 The second conductive film is as described in Section A-1-3, and the second transparent conductive film is laminated on the PDLC layer so that the second transparent electrode layer side faces the PDLC layer. It is done as follows. From the viewpoint of obtaining sufficient adhesion, the lamination is preferably performed using a laminator at a lamination pressure of 0.006 MPa / m to 7 MPa / m, more preferably 0.06 MPa / m to 0.7 MPa / m. can be done while applying
B-4.工程D
 工程Dにおいては、PDLC層に所定のパターンで活性エネルギー線を照射して、重合性液晶化合物の重合生成物である液晶ポリマーと非重合性液晶化合物とを含む液晶液滴を含む第1領域を形成する。具体的には、活性エネルギー線が照射された領域(照射領域)においては、液晶液滴中の重合性液晶化合物が重合して液晶ポリマーが生成する結果、非重合性液晶性化合物と液晶ポリマーとを含む液晶液滴が形成される。一方、活性エネルギー線が照射されない領域(未照射領域)においては、重合性液晶化合物が未反応のまま存在する結果、液晶液滴は、非重合性液晶化合物と重合性液晶化合物とを含む。よって、PDLC層の照射領域が、非重合性液晶性化合物と液晶ポリマーとを含む液晶液滴を含む第1領域Aとなり、未照射領域が、非重合性液晶性化合物と重合性液晶性化合物とを含む液晶液滴を含む第2領域Bとなる。第1領域Aにおける液晶液滴に含まれる液晶ポリマーは、第2領域Bにおける液晶液滴に含まれる重合性液晶化合物の重合生成物である。なお、未照射領域における液滴中の非重合性液晶化合物と重合性液晶化合物との含有量比は、液晶液滴の形成当初の含有量比、すなわち、塗工液における非重合性液晶化合物と重合性液晶化合物との含有量比に概ね対応し得る。
B-4. Process D
In step D, the PDLC layer is irradiated with an active energy ray in a predetermined pattern to form a first region containing liquid crystal droplets containing a liquid crystal polymer that is a polymerization product of a polymerizable liquid crystal compound and a non-polymerizable liquid crystal compound. Form. Specifically, in the region irradiated with the active energy ray (irradiated region), the polymerizable liquid crystal compound in the liquid crystal droplets is polymerized to form a liquid crystal polymer, resulting in the formation of a non-polymerizable liquid crystal compound and the liquid crystal polymer. A liquid crystal droplet containing is formed. On the other hand, in the area not irradiated with the active energy ray (non-irradiated area), the polymerizable liquid crystal compound remains unreacted, and as a result, the liquid crystal droplets contain the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound. Therefore, the irradiated region of the PDLC layer becomes the first region A containing the liquid crystal droplets containing the non-polymerizable liquid crystalline compound and the liquid crystal polymer, and the non-irradiated region contains the non-polymerizable liquid crystalline compound and the polymerizable liquid crystalline compound. becomes a second region B containing liquid crystal droplets containing The liquid crystal polymer contained in the liquid crystal droplets in the first region A is a polymerization product of the polymerizable liquid crystal compound contained in the liquid crystal droplets in the second region B. Note that the content ratio of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound in the droplet in the non-irradiated region is the content ratio at the beginning of formation of the liquid crystal droplet, that is, the non-polymerizable liquid crystal compound in the coating liquid. It can roughly correspond to the content ratio with the polymerizable liquid crystal compound.
 活性エネルギー線の照射は、所定のパターンのフォトマスクを介して行われる。活性エネルギー線としては、紫外線、赤外線、X線、α線、β線、γ線および電子線等が用いられる。なかでも、紫外線が好ましい。また、活性エネルギー線は照射源からの直進性が高いコリメート光であることが好ましい。 Irradiation of active energy rays is performed through a photomask with a predetermined pattern. As active energy rays, ultraviolet rays, infrared rays, X-rays, α-rays, β-rays, γ-rays, electron beams, and the like are used. Among them, ultraviolet rays are preferable. In addition, the active energy ray is preferably collimated light that travels straight from the irradiation source.
 紫外線の照射条件は、重合性液晶化合物の種類、透明導電性フィルムの透過率、光重合開始剤の吸収波長等に応じて適切に設定され得る。照射強度は、例えば0.1mW/cm~1000mW/cm、好ましくは1mW/cm~100mW/cmであり得る。照射量は、例えば10mJ/cm~10000mJ/cm、好ましくは100mJ/cm~5000mJ/cmであり得る。照射温度は、例えば-20℃~80℃、好ましくは-20℃~60℃であり得る。 The ultraviolet irradiation conditions can be appropriately set according to the type of polymerizable liquid crystal compound, the transmittance of the transparent conductive film, the absorption wavelength of the photopolymerization initiator, and the like. The irradiation intensity can be, for example, 0.1 mW/cm 2 to 1000 mW/cm 2 , preferably 1 mW/cm 2 to 100 mW/cm 2 . The dose can be, for example, 10 mJ/cm 2 to 10000 mJ/cm 2 , preferably 100 mJ/cm 2 to 5000 mJ/cm 2 . The irradiation temperature can be, for example, -20°C to 80°C, preferably -20°C to 60°C.
 図3および図4はそれぞれ、本発明の実施形態によるPDLCフィルムの製造方法における活性エネルギー線照射の一例を説明する概略図である。図3に示す実施形態において、活性エネルギー線照射は、フォトマスク40を介して、第1の透明導電性フィルム10と第2の透明導電性フィルム30との間に電圧を印加しない状態で行われる。本実施形態によれば、PDLC層20の照射領域の液晶液滴24において、重合性液晶化合物24bが非配向状態で重合することから、形成される液晶ポリマー24cもまた非配向状態となる。よって、本実施形態によれば、A-1項に記載の第1の実施形態のPDLCフィルムが好適に得られ得る。 FIGS. 3 and 4 are schematic diagrams each illustrating an example of active energy ray irradiation in the method for producing a PDLC film according to the embodiment of the present invention. In the embodiment shown in FIG. 3, active energy ray irradiation is performed through a photomask 40 in a state where no voltage is applied between the first transparent conductive film 10 and the second transparent conductive film 30. . According to the present embodiment, the polymerizable liquid crystal compound 24b is polymerized in the non-aligned state in the liquid crystal droplets 24 in the irradiated region of the PDLC layer 20, so the formed liquid crystal polymer 24c is also in the non-aligned state. Therefore, according to this embodiment, the PDLC film of the first embodiment described in Section A-1 can be obtained favorably.
 図4に示す実施形態において、活性エネルギー線照射は、フォトマスク40を介して、第1の透明導電性フィルム10と第2の透明導電性フィルム30との間に電圧を印加した状態で行われる。本実施形態によれば、PDLC層20の照射領域の液晶液滴24において、重合性液晶化合物24bが電界に沿って所定の方向(図示例では、透明導電性フィルム10、30の主面に対して垂直方向)に配向した状態で重合することから、当該配向が固定化された液晶ポリマー24cが形成される。よって、本実施形態によれば、A-2項に記載の第2の実施形態のPDLCフィルムが好適に得られ得る。なお、活性エネルギー線照射時に印加する電圧は、所望の配向(換言すれば、第1領域に所望されるヘイズ)が実現される限りにおいて制限はなく、例えば10V~200V、好ましくは20V~100Vであり得る。 In the embodiment shown in FIG. 4, the active energy ray irradiation is performed with a voltage applied between the first transparent conductive film 10 and the second transparent conductive film 30 through the photomask 40. . According to the present embodiment, in the liquid crystal droplets 24 in the irradiated region of the PDLC layer 20, the polymerizable liquid crystal compound 24b moves along the electric field in a predetermined direction (in the illustrated example, with respect to the main surfaces of the transparent conductive films 10 and 30). Since the polymerization is performed in the state of being oriented in the vertical direction), the liquid crystal polymer 24c in which the orientation is fixed is formed. Therefore, according to this embodiment, the PDLC film of the second embodiment described in Section A-2 can be obtained favorably. The voltage applied during the irradiation of the active energy ray is not limited as long as the desired orientation (in other words, the desired haze of the first region) is achieved, and is, for example, 10V to 200V, preferably 20V to 100V. could be.
 1つの実施形態において、開口率が異なる複数の透光部を有するフォトマスクを用いて活性エネルギー線照射を行うことにより、各透光部に対応する領域において、その開口率に対応した割合で第1領域を形成することができる。よって、得られるPDLCフィルムにおいて、各透光部に対応する領域は、全体視において、その開口率に対応したヘイズを示し得る。 In one embodiment, by performing active energy ray irradiation using a photomask having a plurality of light-transmitting portions with different aperture ratios, in a region corresponding to each light-transmitting portion, the second 1 region can be formed. Therefore, in the obtained PDLC film, the region corresponding to each light-transmitting portion can exhibit a haze corresponding to its aperture ratio in the overall view.
 例えば、開口率が右端部から左端部に向かって連続的に増大するフォトマスクを用い、電圧を印加しない状態で活性エネルギー線照射を行うことにより、電圧無印加時には全面が散乱状態であり、電圧印加時には右端部から左端部に向かってヘイズが連続的に増大する外観を呈するPDLCフィルムが得られ得る。また例えば、開口率が右端部から左端部に向かって連続的に増大するフォトマスクを用い、電圧を印加した状態で活性エネルギー線照射を行うことにより、電圧印加時には全面が透明状態であり、電圧無印加時には右端部から左端部に向かってヘイズが連続的に低下する外観を呈するPDLCフィルムが得られ得る。 For example, by using a photomask in which the aperture ratio continuously increases from the right end to the left end, and performing active energy ray irradiation in a state in which no voltage is applied, the entire surface is in a scattering state when no voltage is applied, and no voltage is applied. A PDLC film can be obtained that exhibits an appearance in which the haze increases continuously from the right end to the left end upon application. Further, for example, by using a photomask in which the aperture ratio continuously increases from the right end to the left end, and performing active energy ray irradiation with a voltage applied, the entire surface is in a transparent state when the voltage is applied, and the voltage is applied. It is possible to obtain a PDLC film exhibiting an appearance in which the haze continuously decreases from the right end to the left end when no application is applied.
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。各特性の測定方法は以下の通りである。また、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The measurement method of each characteristic is as follows. In addition, unless otherwise specified, "parts" and "%" in Examples and Comparative Examples are by weight.
(1)厚み
 デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(2)液晶エマルション中の液晶粒子の体積平均粒子径
 電解質水溶液(コールター社製、「アイソトンII」)200mlに液晶エマルションを0.1重量%添加し、得られた混合液を測定試料としてマルチサイザー3(コールター社製、アパーチャーサイズ=20μm)を用いて、0.4μmから12μmまで対数基準で等間隔に256分割し離散化した粒子径ごとの体積の統計を取り、体積平均粒子径を算出した。なお、12μm以上の粒子が存在している場合は、アパーチャーサイズを30μmとし、0.6μmから18μmまで対数基準で等間隔に256分割し離散化した粒子径ごとの体積の統計を取ることで、体積平均粒子径を算出した。
(3)樹脂粒子の平均粒子径
 100mLの水に樹脂分散体を数滴加えて測定試料を調製した。動的光散乱式粒子径分布測定装置(Microtrac社製、装置名「Nanotrac150」)を用いて、装置の測定ホルダに測定試料をセットし、測定可能な濃度であることを装置のモニタにて確認後に測定を行った。
(4)ヘイズ
 日本電色社製 製品名「NDH4000」を用い、JIS K 7136に基づいて測定した。
(1) Thickness Measured using a digital micrometer (manufactured by Anritsu, product name “KC-351C”).
(2) Volume Average Particle Size of Liquid Crystal Particles in Liquid Crystal Emulsion 0.1% by weight of the liquid crystal emulsion was added to 200 ml of an aqueous electrolyte solution (manufactured by Coulter, "Isoton II"), and the resulting mixture was used as a measurement sample in a multisizer. 3 (manufactured by Coulter, aperture size = 20 μm), the volume average particle diameter was calculated by dividing the volume into 256 at equal intervals from 0.4 μm to 12 μm on a logarithmic basis and taking the statistics of the volume for each discretized particle diameter. . When particles of 12 μm or more are present, the aperture size is set to 30 μm, and the volume is divided into 256 at equal intervals from 0.6 μm to 18 μm on a logarithmic basis, and the volume of each discretized particle size is obtained. A volume average particle size was calculated.
(3) Average particle diameter of resin particles A measurement sample was prepared by adding several drops of a resin dispersion to 100 mL of water. Using a dynamic light scattering particle size distribution measuring device (manufactured by Microtrac, device name “Nanotrac150”), a measurement sample is set in the measurement holder of the device, and the concentration that can be measured is confirmed on the monitor of the device. Measurements were taken afterwards.
(4) Haze Measured according to JIS K 7136 using Nippon Denshoku's product name "NDH4000".
[実施例1]
(第1および第2の透明導電性フィルム)
 PET基材(厚み:50μm)の一方の面に、スパッタ法によりITO層を形成して、[透明基材/透明電極層]の構成を有する透明導電性フィルムを得た。
[Example 1]
(First and second transparent conductive films)
An ITO layer was formed on one surface of a PET substrate (thickness: 50 μm) by a sputtering method to obtain a transparent conductive film having a structure of [transparent substrate/transparent electrode layer].
(エマルション塗工液の作製)
 非重合性液晶化合物(JNC社製、製品名「LX-153XX」、複屈折Δn=0.149(ne=1.651,no=1.502)、粘度=48.5mPa・s)53.7部、重合性液晶化合物(BASF社製、製品名「PALIOCOLOR LC-242」)5.9部、光重合開始剤(IGM社製、製品名「OMNIRAD651」)0.1部、純水39.8部、および分散剤(第一工業製薬社製、「ノイゲンET159」)0.5部を混合し、ホモジナイザーにて100rpmで10分攪拌することにより液晶エマルションを調製した。得られた液晶エマルション中の液晶粒子の平均粒子径は、3.4μmであった。
 上記液晶エマルション38.4部、ポリエーテル系ポリウレタン樹脂水性分散体(DSM社製、商品名「NeoRez R967」、ポリマー平均粒子径:80nm、CV値=0.27、固形分:40wt%)19.1部、ポリエステル系ポリウレタン樹脂水性分散体(三洋化成社製、商品名「ユーコート C-102」、ポリマー平均粒子径:168nm、CV値=0.23、固形分:45wt%)17.0部、レベリング剤(DIC社製、製品名「F-444」)0.1部、および架橋剤(トリス〔3-(2-メチルアジリジン-1-イル)プロピオン酸〕=プロピリジントリメチル)1.1部、純水24.3部を混合することにより、エマルション塗工液(固形分濃度:40wt%)を得た。
(Preparation of emulsion coating liquid)
Non-polymerizable liquid crystal compound (manufactured by JNC, product name “LX-153XX”, birefringence Δn = 0.149 (ne = 1.651, no = 1.502), viscosity = 48.5 mPa s) 53.7 Part, polymerizable liquid crystal compound (manufactured by BASF, product name "PALIOCOLOR LC-242") 5.9 parts, photopolymerization initiator (manufactured by IGM, product name "OMNIRAD651") 0.1 part, pure water 39.8 and 0.5 part of a dispersing agent (“Noigen ET159” manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) were mixed and stirred at 100 rpm for 10 minutes with a homogenizer to prepare a liquid crystal emulsion. The average particle size of the liquid crystal particles in the resulting liquid crystal emulsion was 3.4 μm.
38.4 parts of the above liquid crystal emulsion, polyether-based polyurethane resin aqueous dispersion (manufactured by DSM, trade name "NeoRez R967", polymer average particle size: 80 nm, CV value = 0.27, solid content: 40 wt%)19. 1 part, polyester-based polyurethane resin aqueous dispersion (manufactured by Sanyo Kasei Co., Ltd., trade name "Ucoat C-102", polymer average particle size: 168 nm, CV value = 0.23, solid content: 45 wt%) 17.0 parts, 0.1 part of a leveling agent (manufactured by DIC, product name "F-444") and 1.1 part of a cross-linking agent (tris[3-(2-methylaziridin-1-yl)propionic acid]=propyridinetrimethyl) , and 24.3 parts of pure water were mixed to obtain an emulsion coating liquid (solid concentration: 40 wt %).
(エマルション塗工液の塗布および乾燥)
 上記エマルション塗工液を、第1の透明導電性フィルムのITO層面に塗布して厚み20μmの塗布層を形成した。塗布は、スロットダイを用いて行い、ライン速度は6m/minであった。次いで、該塗布層を25℃で8分乾燥させることにより、厚み8μmのPDLC層を形成した。
(Application and drying of emulsion coating liquid)
The above emulsion coating liquid was applied to the ITO layer surface of the first transparent conductive film to form a coating layer having a thickness of 20 μm. Coating was performed using a slot die and the line speed was 6 m/min. Then, the coating layer was dried at 25° C. for 8 minutes to form a PDLC layer having a thickness of 8 μm.
(第2の透明導電性フィルムの積層)
 ラミネーターを用いて0.4MPa/mのラミネート圧を適用しながら、上記PDLC層の上に第2の透明導電性フィルムを、ITO層がPDLC層に対向するように積層した。これにより、PDLCフィルムを得た。
(Lamination of the second transparent conductive film)
While applying a lamination pressure of 0.4 MPa/m using a laminator, a second transparent conductive film was laminated on the PDLC layer such that the ITO layer faced the PDLC layer. A PDLC film was thus obtained.
(活性エネルギー線照射)
 PDLCフィルムの両面において、透明導電性フィルムの一部を透明基材までハーフカットして透明電極層を露出させ、当該露出部を取り出し電極として用いた。電極処理を施したPDLCフィルムに所定のパターンを有するフォトマスクを載せ、50Vの電圧を印加しながらUV-LEDランプ(浜松ホトニクス社製、製品名「C11924-101」、ピーク波長365nm)の下で10mW/cmで10分間露光処理した。
(Active energy ray irradiation)
On both sides of the PDLC film, a part of the transparent conductive film was half-cut to the transparent base material to expose the transparent electrode layer, and the exposed part was used as an extraction electrode. A photomask having a predetermined pattern is placed on an electrode-treated PDLC film, and a voltage of 50 V is applied under a UV-LED lamp (manufactured by Hamamatsu Photonics, product name “C11924-101”, peak wavelength 365 nm). Exposure processing was performed at 10 mW/cm 2 for 10 minutes.
[実施例2]
 電圧を印加しない状態(印加電圧:0V)で紫外線照射を行ったこと以外は実施例1と同様にして、PDLCフィルムを得た。
[Example 2]
A PDLC film was obtained in the same manner as in Example 1, except that the ultraviolet irradiation was performed in a state in which no voltage was applied (applied voltage: 0 V).
 実施例で得られたPDLCフィルムに対して、下記の方法によって光学特性を評価した。結果を表1に示す。
≪光学特性≫
 エヌエフ回路設計ブロック社製の交流電源「EC750SA」を用いて、PDLCフィルムに0V~50Vの交流電圧を印加した時のヘイズを測定した。
The optical properties of the PDLC films obtained in Examples were evaluated by the following methods. Table 1 shows the results.
≪Optical properties≫
Using an AC power supply "EC750SA" manufactured by NF Circuit Design Block Co., Ltd., haze was measured when an AC voltage of 0 V to 50 V was applied to the PDLC film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるとおり、実施例で得られたPDLCフィルムはいずれも、第1領域(照射領域)における電圧の印加によるヘイズの変化量が、第2領域(未照射領域)における変化量よりも小さい。また、実施例1のPDLCフィルムは、電圧無印加状態では、透明な第1領域と白濁した第2領域とによって構成される所定のパターンを呈し、50Vの電圧印加時には、主面全面が透明な均一性の高い外観を呈した。一方、実施例2のPDLCフィルムは、電圧無印加状態では、主面全体が白濁した均一性の高い外観を呈し、50Vの電圧印加時には、白濁した第1領域と透明な第2領域とによって構成される所定のパターンを呈した。 As shown in Table 1, in all of the PDLC films obtained in Examples, the amount of change in haze due to voltage application in the first region (irradiated region) was greater than that in the second region (unirradiated region). small. In addition, the PDLC film of Example 1 exhibits a predetermined pattern composed of a transparent first region and a cloudy second region when no voltage is applied. It exhibited a highly uniform appearance. On the other hand, the PDLC film of Example 2 exhibits a highly uniform appearance with a cloudy appearance on the entire main surface when no voltage is applied. It exhibited a predetermined pattern.
 本発明のPDLCフィルムは、広告、案内板等の表示体、スマートウインドウ等の種々の用途に好適に用いられる。 The PDLC film of the present invention is suitably used for various purposes such as advertisements, displays such as information boards, and smart windows.
100 PDLCフィルム
10  第1の透明導電性フィルム
20  PDLC層
22  高分子マトリクス
24  液晶液滴
24a 非重合性液晶化合物
24b 重合性液晶化合物
24c 液晶ポリマー
30  第2の透明導電性フィルム

 
100 PDLC film 10 first transparent conductive film 20 PDLC layer 22 polymer matrix 24 liquid crystal droplets 24a non-polymerizable liquid crystal compound 24b polymerizable liquid crystal compound 24c liquid crystal polymer 30 second transparent conductive film

Claims (13)

  1.  第1の透明導電性フィルムと、高分子マトリクスと該高分子マトリクス中に分散した液晶液滴とを含む高分子分散型液晶層と、第2の透明導電性フィルムと、をこの順に含む、高分子分散型液晶フィルムであって、
     該高分子分散型液晶層が、平面視において、電圧の印加によるヘイズの変化量が異なる第1領域と第2領域とを有し、
     該第1領域における電圧の印加によるヘイズの変化量が、該第2領域における該変化量よりも小さく、
     該第1領域における該液晶液滴が、非重合性液晶化合物と液晶ポリマーとを含む、高分子分散型液晶フィルム。
    a polymer-dispersed liquid crystal layer containing a polymer matrix and liquid crystal droplets dispersed in the polymer matrix; and a second transparent conductive film, in this order. A molecularly dispersed liquid crystal film,
    The polymer-dispersed liquid crystal layer has a first region and a second region having different amounts of change in haze due to voltage application in plan view,
    the amount of change in haze due to voltage application in the first region is smaller than the amount of change in the second region;
    A polymer-dispersed liquid crystal film, wherein the liquid crystal droplets in the first region include a non-polymerizable liquid crystal compound and a liquid crystal polymer.
  2.  前記第2領域における液晶液滴が、非重合性液晶化合物と重合性液晶化合物とを含む、請求項1に記載の高分子分散型液晶フィルム。 The polymer dispersed liquid crystal film according to claim 1, wherein the liquid crystal droplets in the second region contain a non-polymerizable liquid crystal compound and a polymerizable liquid crystal compound.
  3.  前記第2領域における前記非重合性液晶化合物と前記重合性液晶化合物との含有重量比(非重合性液晶化合物:重合性液晶化合物)が、99:1~70:30である、請求項2に記載の高分子分散型液晶フィルム。 3. The content weight ratio of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound (non-polymerizable liquid crystal compound:polymerizable liquid crystal compound) in the second region is 99:1 to 70:30. A polymer-dispersed liquid crystal film as described.
  4.  前記第1領域における前記液晶液滴に含まれる前記液晶ポリマーが、前記第2領域における液晶液滴に含まれる前記重合性液晶化合物の重合生成物である、請求項2または3に記載の高分子分散型液晶フィルム。 4. The polymer according to claim 2, wherein said liquid crystal polymer contained in said liquid crystal droplets in said first region is a polymerization product of said polymerizable liquid crystal compound contained in said liquid crystal droplets in said second region. Dispersion type liquid crystal film.
  5.  前記第1領域のヘイズと前記第2領域のヘイズとの差が、電圧の印加によって増大する、請求項1から4のいずれかに記載の高分子分散型液晶フィルム。 The polymer dispersed liquid crystal film according to any one of claims 1 to 4, wherein the difference between the haze of the first region and the haze of the second region is increased by voltage application.
  6.  前記第1領域における前記液晶液滴に含まれる前記液晶ポリマーが、非配向状態である、請求項5に記載の高分子分散型液晶フィルム。 The polymer dispersed liquid crystal film according to claim 5, wherein the liquid crystal polymer contained in the liquid crystal droplets in the first region is in a non-oriented state.
  7.  前記第1領域のヘイズと前記第2領域のヘイズとの差が、電圧の印加によって減少する、請求項1から4のいずれかに記載の高分子分散型液晶フィルム。 5. The polymer dispersed liquid crystal film according to any one of claims 1 to 4, wherein the difference between the haze of the first region and the haze of the second region is reduced by voltage application.
  8.  前記第1領域における前記液晶液滴に含まれる前記液晶ポリマーが、所定の方向に配向している、請求項7に記載の高分子分散型液晶フィルム。 The polymer dispersed liquid crystal film according to claim 7, wherein the liquid crystal polymer contained in the liquid crystal droplets in the first region is oriented in a predetermined direction.
  9.  第1の透明導電性フィルムに、高分子マトリクス形成用樹脂と非重合性液晶化合物と重合性液晶化合物と溶媒とを含む塗工液を塗工して、塗布層を得ること、
     該塗布層を乾燥させて、高分子マトリクスと該高分子マトリクス中に分散した該非重合性液晶化合物と該重合性液晶化合物とを含む液晶液滴とを含む高分子分散型液晶層を得ること、
     該高分子分散型液晶層の上に第2の透明導電性フィルムを積層すること、および
     該第1の透明導電性フィルムと該第2の透明導電性フィルムとの間に電圧を印加した状態で、該高分子分散型液晶層に所定のパターンで活性エネルギー線を照射して、該重合性液晶化合物の重合生成物である液晶ポリマーと該非重合性液晶化合物とを含む液晶液滴を含む第1領域を形成すること、
     を含む、高分子分散型液晶フィルムの製造方法。
    obtaining a coating layer by coating a first transparent conductive film with a coating liquid containing a polymer matrix-forming resin, a non-polymerizable liquid crystal compound, a polymerizable liquid crystal compound, and a solvent;
    drying the coating layer to obtain a polymer-dispersed liquid crystal layer containing a polymer matrix and liquid crystal droplets containing the non-polymerizable liquid crystal compound dispersed in the polymer matrix and the polymerizable liquid crystal compound;
    laminating a second transparent conductive film on the polymer-dispersed liquid crystal layer; and applying a voltage between the first transparent conductive film and the second transparent conductive film irradiating the polymer-dispersed liquid crystal layer with an active energy ray in a predetermined pattern to form a first liquid crystal droplet containing a liquid crystal polymer that is a polymerization product of the polymerizable liquid crystal compound and the non-polymerizable liquid crystal compound; forming a region;
    A method for producing a polymer-dispersed liquid crystal film, comprising:
  10.  第1の透明導電性フィルムに、高分子マトリクス形成用樹脂と非重合性液晶化合物と重合性液晶化合物と溶媒とを含む塗工液を塗工して、塗布層を得ること、
     該塗布層を乾燥させて、高分子マトリクスと該高分子マトリクス中に分散した該非重合性液晶化合物と該重合性液晶化合物とを含む液晶液滴とを含む高分子分散型液晶層を得ること、
     該高分子分散型液晶層の上に第2の透明導電性フィルムを積層すること、および
     該第1の透明導電性フィルムと該第2の透明導電性フィルムとの間に電圧を印加しない状態で、該高分子分散型液晶層に所定のパターンで活性エネルギー線を照射して、該重合性液晶化合物の重合生成物である液晶ポリマーと該非重合性液晶化合物とを含む液晶液滴を含む第1領域を形成すること、
     を含む、高分子分散型液晶フィルムの製造方法。
    obtaining a coating layer by coating a first transparent conductive film with a coating liquid containing a polymer matrix-forming resin, a non-polymerizable liquid crystal compound, a polymerizable liquid crystal compound, and a solvent;
    drying the coating layer to obtain a polymer-dispersed liquid crystal layer containing a polymer matrix and liquid crystal droplets containing the non-polymerizable liquid crystal compound dispersed in the polymer matrix and the polymerizable liquid crystal compound;
    Laminating a second transparent conductive film on the polymer-dispersed liquid crystal layer, and without applying a voltage between the first transparent conductive film and the second transparent conductive film irradiating the polymer-dispersed liquid crystal layer with an active energy ray in a predetermined pattern to form a first liquid crystal droplet containing a liquid crystal polymer that is a polymerization product of the polymerizable liquid crystal compound and the non-polymerizable liquid crystal compound; forming a region;
    A method for producing a polymer-dispersed liquid crystal film, comprising:
  11.  前記塗工液が、前記非重合性液晶化合物と前記重合性液晶化合物とを含む液晶粒子が前記溶媒中に分散したエマルション塗工液である、請求項9または10に記載の高分子分散型液晶フィルムの製造方法。 11. The polymer-dispersed liquid crystal according to claim 9, wherein the coating liquid is an emulsion coating liquid in which liquid crystal particles containing the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound are dispersed in the solvent. Film production method.
  12.  前記塗工液における前記非重合性液晶化合物と前記重合性液晶化合物との合計含有量と前記高分子マトリクス形成用樹脂の含有量との重量比(液晶化合物:高分子マトリクス形成用樹脂)が、30:70~70:30である、請求項9から11のいずれかに記載の高分子分散型液晶フィルムの製造方法。 The weight ratio of the total content of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound to the content of the polymer matrix-forming resin (liquid crystal compound: polymer matrix-forming resin) in the coating liquid is 12. The method for producing a polymer dispersed liquid crystal film according to any one of claims 9 to 11, wherein the ratio is 30:70 to 70:30.
  13.  前記塗工液における前記非重合性液晶化合物と前記重合性液晶化合物との含有重量比(非重合性液晶化合物:重合性液晶化合物)が、99:1~70:30である、請求項9から12のいずれかに記載の高分子分散型液晶フィルムの製造方法。
     
    10. From claim 9, wherein the content weight ratio of the non-polymerizable liquid crystal compound and the polymerizable liquid crystal compound (non-polymerizable liquid crystal compound:polymerizable liquid crystal compound) in the coating liquid is 99:1 to 70:30. 13. The method for producing a polymer dispersed liquid crystal film according to any one of 12.
PCT/JP2022/031088 2021-09-01 2022-08-17 Polymer dispersion type liquid crystal film, and method for producing polymer dispersion type liquid crystal film WO2023032675A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280058751.1A CN117897653A (en) 2021-09-01 2022-08-17 Polymer dispersed liquid crystal film and method for producing polymer dispersed liquid crystal film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-142442 2021-09-01
JP2021142442A JP2023035529A (en) 2021-09-01 2021-09-01 Polymer dispersion type liquid crystal film and method for manufacturing polymer dispersion type liquid crystal film

Publications (1)

Publication Number Publication Date
WO2023032675A1 true WO2023032675A1 (en) 2023-03-09

Family

ID=85411133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031088 WO2023032675A1 (en) 2021-09-01 2022-08-17 Polymer dispersion type liquid crystal film, and method for producing polymer dispersion type liquid crystal film

Country Status (4)

Country Link
JP (1) JP2023035529A (en)
CN (1) CN117897653A (en)
TW (1) TW202317378A (en)
WO (1) WO2023032675A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070648A1 (en) * 2022-09-28 2024-04-04 日東電工株式会社 Polymer dispersed liquid crystal film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023145004A (en) * 2022-03-28 2023-10-11 日東電工株式会社 Polymer dispersed liquid crystal film and method for manufacturing polymer dispersed liquid crystal film

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4388453A (en) 1981-05-15 1983-06-14 Consortium Fur Elektrochemische Crosslinked organopolysiloxanes having liquid-crystalline properties
EP0261712A1 (en) 1986-09-04 1988-03-30 Koninklijke Philips Electronics N.V. Picture display cell, method of forming an orientation layer on a substrate of the picture display cell and monomeric compounds for use in the orientation layer
JPH04355719A (en) 1991-06-03 1992-12-09 Nippon Sheet Glass Co Ltd Production of liquid crystal element
US5211877A (en) 1988-09-08 1993-05-18 Consortium Fur Elektrochemische Industrie Gmbh Liquid-crystalline polyorganosiloxanes containing (meth) acryloxy groups
WO1993022397A1 (en) 1992-04-27 1993-11-11 Merck Patent Gmbh Electrooptical liquid crystal system
DE19504224A1 (en) 1994-02-23 1995-08-24 Merck Patent Gmbh Liq. crystalline (LC) material
DE4408171A1 (en) 1994-03-11 1995-09-14 Basf Ag New polymerizable liquid crystalline compounds
GB2280445B (en) 1993-07-05 1998-02-11 Merck Patent Gmbh Liquid crystalline copolymer
WO2000037585A1 (en) 1998-12-22 2000-06-29 Basf Aktiengesellschaft Utilization of polymerizable liquid crystal substances for the production of optical components
JP2012137756A (en) * 2010-12-22 2012-07-19 Photon Dynamics Inc Encapsulated polymer network liquid crystal material, device and applications
JP2015040994A (en) 2013-08-22 2015-03-02 独立行政法人産業技術総合研究所 Manufacturing method of liquid crystal dispersion
JP2019005698A (en) 2017-06-23 2019-01-17 日東電工株式会社 Manufacturing method of dimming film
JP2019514047A (en) * 2016-03-23 2019-05-30 ガーディアン・グラス・エルエルシーGuardian Glass, Llc Low haze switchable liquid crystal device for use in switchable windows or similar windows
JP2020109441A (en) * 2019-01-04 2020-07-16 凸版印刷株式会社 Dimming device and dimming sheet

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0066137B1 (en) 1981-05-15 1985-07-31 Consortium für elektrochemische Industrie GmbH Liquid crystalline reticulated polysiloxanes
US4388453A (en) 1981-05-15 1983-06-14 Consortium Fur Elektrochemische Crosslinked organopolysiloxanes having liquid-crystalline properties
EP0261712A1 (en) 1986-09-04 1988-03-30 Koninklijke Philips Electronics N.V. Picture display cell, method of forming an orientation layer on a substrate of the picture display cell and monomeric compounds for use in the orientation layer
US5211877A (en) 1988-09-08 1993-05-18 Consortium Fur Elektrochemische Industrie Gmbh Liquid-crystalline polyorganosiloxanes containing (meth) acryloxy groups
EP0358208B1 (en) 1988-09-08 1994-03-02 Consortium für elektrochemische Industrie GmbH Liquid crystal polyorganosiloxanes containing (meth)acryloxy groups
JPH04355719A (en) 1991-06-03 1992-12-09 Nippon Sheet Glass Co Ltd Production of liquid crystal element
WO1993022397A1 (en) 1992-04-27 1993-11-11 Merck Patent Gmbh Electrooptical liquid crystal system
GB2280445B (en) 1993-07-05 1998-02-11 Merck Patent Gmbh Liquid crystalline copolymer
DE19504224A1 (en) 1994-02-23 1995-08-24 Merck Patent Gmbh Liq. crystalline (LC) material
DE4408171A1 (en) 1994-03-11 1995-09-14 Basf Ag New polymerizable liquid crystalline compounds
WO2000037585A1 (en) 1998-12-22 2000-06-29 Basf Aktiengesellschaft Utilization of polymerizable liquid crystal substances for the production of optical components
JP2002533742A (en) 1998-12-22 2002-10-08 ビーエーエスエフ アクチェンゲゼルシャフト Use of polymerizable liquid crystal materials for making optical elements
JP2012137756A (en) * 2010-12-22 2012-07-19 Photon Dynamics Inc Encapsulated polymer network liquid crystal material, device and applications
JP2015040994A (en) 2013-08-22 2015-03-02 独立行政法人産業技術総合研究所 Manufacturing method of liquid crystal dispersion
JP2019514047A (en) * 2016-03-23 2019-05-30 ガーディアン・グラス・エルエルシーGuardian Glass, Llc Low haze switchable liquid crystal device for use in switchable windows or similar windows
JP2019005698A (en) 2017-06-23 2019-01-17 日東電工株式会社 Manufacturing method of dimming film
JP2020109441A (en) * 2019-01-04 2020-07-16 凸版印刷株式会社 Dimming device and dimming sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070648A1 (en) * 2022-09-28 2024-04-04 日東電工株式会社 Polymer dispersed liquid crystal film

Also Published As

Publication number Publication date
CN117897653A (en) 2024-04-16
TW202317378A (en) 2023-05-01
JP2023035529A (en) 2023-03-13

Similar Documents

Publication Publication Date Title
WO2023032675A1 (en) Polymer dispersion type liquid crystal film, and method for producing polymer dispersion type liquid crystal film
JP5232448B2 (en) Anti-glare material
JP5066535B2 (en) Optical laminated film
CN108603954A (en) Optical laminate, polarizer and display device
WO2018016378A1 (en) Light control laminate and resin spacer for light control laminates
CN108700684B (en) Optical laminate, polarizer and display device
WO2014119505A1 (en) Anti-reflection film and production method therefor
JP2013092782A (en) Optical laminate
WO2021200828A1 (en) Polymer-dispersed-type liquid crystal film, emulsion, and method for producing polymer-dispersed-type liquid crystal film
JP5911785B2 (en) Optical laminate
JP2009048092A (en) Optical laminate
WO2023189891A1 (en) Polymer dispersion-type liquid crystal film, and method for producing polymer dispersion-type liquid crystal film
KR20240054271A (en) Polymer dispersed liquid crystal film and method for producing polymer dispersed liquid crystal film
WO2024070648A1 (en) Polymer dispersed liquid crystal film
WO2022210418A1 (en) Polymer dispersed liquid crystal film and manufacturing method therefor
WO2023190029A1 (en) Optical film and method for producing optical film
JP7343273B2 (en) Anti-glare film, method for producing anti-glare film, optical member and image display device
JP2020122926A (en) Antiglare reflection prevention hard coat film, image display device and manufacturing method of antiglare reflection prevention hard coat film
JP5069929B2 (en) Optical laminate
JP2009113433A (en) Optical laminate
JP2008292987A (en) Optical laminate
TW202348425A (en) Polymer-dispersed liquid crystal film, optical film set, and method for producing polymer-dispersed liquid crystal film
WO2020196865A1 (en) Transmissive screen and video image display device
JP2023048468A (en) Polymer-dispersed liquid crystal film, method of manufacturing the same, and composition for forming the same
JP2017021294A (en) Quantum dot sheet, backlight, and liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864260

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022864260

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022864260

Country of ref document: EP

Effective date: 20240402