JP2015040994A - Manufacturing method of liquid crystal dispersion - Google Patents

Manufacturing method of liquid crystal dispersion Download PDF

Info

Publication number
JP2015040994A
JP2015040994A JP2013172191A JP2013172191A JP2015040994A JP 2015040994 A JP2015040994 A JP 2015040994A JP 2013172191 A JP2013172191 A JP 2013172191A JP 2013172191 A JP2013172191 A JP 2013172191A JP 2015040994 A JP2015040994 A JP 2015040994A
Authority
JP
Japan
Prior art keywords
liquid crystal
compound
particles
liquid
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013172191A
Other languages
Japanese (ja)
Other versions
JP6115955B2 (en
Inventor
聡 西村
Satoshi Nishimura
聡 西村
哲夫 谷田部
Tetsuo Yatabe
哲夫 谷田部
井上 貴仁
Takahito Inoue
貴仁 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2013172191A priority Critical patent/JP6115955B2/en
Publication of JP2015040994A publication Critical patent/JP2015040994A/en
Application granted granted Critical
Publication of JP6115955B2 publication Critical patent/JP6115955B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Colloid Chemistry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of liquid crystal dispersion in which liquid crystal compound particles composed of a liquid crystal compound are dispersed, and with which the particle diameter of the liquid crystal compound particles can be made uniform and the particles can be stably provided with a simple method.SOLUTION: A manufacturing method of liquid crystal dispersion includes a step of arranging a compound liquid including a liquid crystal compound partitioned by an aqueous solution and a porous membrane, and a repeatedly passing step of passing the compound liquid on both surface sides of the porous membrane a plurality of times in a reciprocating manner.

Description

本発明は、水溶液中に液晶化合物粒子を分散させた液晶分散液の製造方法に関し、特に、水溶液中に所定の粒子径を有する液晶化合物粒子を分散させた液晶分散液の製造方法に関する。   The present invention relates to a method for producing a liquid crystal dispersion in which liquid crystal compound particles are dispersed in an aqueous solution, and more particularly to a method for producing a liquid crystal dispersion in which liquid crystal compound particles having a predetermined particle diameter are dispersed in an aqueous solution.

例えば、特許文献1で述べられているように、高分子ポリマーに液晶化合物粒子を分散させた複合体を用いた液晶表示素子では、偏光板やカラーフィルターなどを使用せずにカラー表示が可能となる。つまり、透過光の光強度を大きく減じ得る光透過要素を減じることができることから、従前と同じ光源であっても、より明るい表示が可能となる。また、表示メモリー性を有しており、無電源で表示を継続できることから、低消費電力であって、電子ペーパーなどへの実用化も期待される。   For example, as described in Patent Document 1, in a liquid crystal display element using a composite in which liquid crystal compound particles are dispersed in a polymer, color display is possible without using a polarizing plate or a color filter. Become. That is, since light transmitting elements that can greatly reduce the light intensity of transmitted light can be reduced, brighter display is possible even with the same light source as before. In addition, since it has display memory characteristics and can continue display without a power source, it is expected to be practically used for electronic paper with low power consumption.

ところで、高分子ポリマーに液晶化合物粒子を分散させた複合体は、水溶液中に液晶化合物粒子を分散させた液晶分散液を乾燥させて得られる。かかる液晶分散液は、界面活性剤や水溶性高分子などの乳化剤を添加した水溶液中に液晶化合物粒子を高速攪拌機や超音波ホモジナイザを用いて分散させて作成される。また、多孔質膜に液晶化合物を通過させて粒子化させながら、上記したような水溶液中に分散させる方法も知られている。   By the way, a composite in which liquid crystal compound particles are dispersed in a polymer is obtained by drying a liquid crystal dispersion in which liquid crystal compound particles are dispersed in an aqueous solution. Such a liquid crystal dispersion is prepared by dispersing liquid crystal compound particles in an aqueous solution to which an emulsifier such as a surfactant or a water-soluble polymer is added, using a high-speed stirrer or an ultrasonic homogenizer. In addition, a method is also known in which a liquid crystal compound is passed through a porous film to form particles and dispersed in an aqueous solution as described above.

例えば、特許文献2では、多孔質ガラスの如き多数の貫通した孔を有する膜の一方の面に沿ってポリビニルアルコール等の保護コロイドや界面活性剤を含む水を主体とする分散媒体を流しておき、該膜の他方の面からポンプで所定の圧力を与えて液晶化合物を該分散媒体の中に圧入することで、液晶化合物粒子を分散させた水中油滴型の乳化物を製造できることを開示している。かかる工程により得られた液晶分散液を基材上に塗布し乾燥させると、高分子ポリマーマトリクス中に液晶化合物粒子が分散した複合体を形成できる。粒径の均一な液晶化合物粒子を分散させ得るので、結果として、高コントラスト、低電圧駆動及び急峻性等の表示特性に優れた液晶表示素子を与えると述べている。   For example, in Patent Document 2, a dispersion medium mainly composed of water containing a protective colloid such as polyvinyl alcohol or a surfactant is allowed to flow along one surface of a membrane having many through holes such as porous glass. Discloses that an oil-in-water emulsion in which liquid crystal compound particles are dispersed can be produced by applying a predetermined pressure with a pump from the other surface of the membrane and press-fitting the liquid crystal compound into the dispersion medium. ing. When the liquid crystal dispersion obtained in this step is applied onto a substrate and dried, a composite in which liquid crystal compound particles are dispersed in a polymer matrix can be formed. It is stated that liquid crystal compound particles having a uniform particle size can be dispersed, and as a result, a liquid crystal display element excellent in display characteristics such as high contrast, low voltage driving and steepness is provided.

更に、特許文献3でも、液晶化合物を加圧して多孔質ガラス膜を透過させ、ポリビニルアルコール水溶液中に液晶化合物粒子を分散させる方法を開示している。ここでも、多孔質膜に液晶化合物を通過させて粒子化させることで、攪拌により分散乳化させた液晶分散液よりも、液晶化合物粒子の粒径をより均一にできると述べている。1例として、平均孔径0.32μmの多孔質ガラス膜に加圧により透過させた液晶化合物は、約2.5μm程度の粒度になるとしている。   Further, Patent Document 3 discloses a method in which a liquid crystal compound is pressurized to permeate a porous glass film and the liquid crystal compound particles are dispersed in an aqueous polyvinyl alcohol solution. Here too, it is stated that the liquid crystal compound particles can be made more uniform by passing the liquid crystal compound through the porous film and making it into particles than the liquid crystal dispersion liquid dispersed and emulsified by stirring. As an example, a liquid crystal compound that has been transmitted through a porous glass film having an average pore size of 0.32 μm by pressurization has a particle size of about 2.5 μm.

更に、特許文献4でも、多孔質膜を利用した液晶分散液の作成方法を開示している。ここでは、粒子径の比較的大きい予備乳化物をまず作成してから、これを所定の範囲内の平均孔径の貫通孔を有する多孔質膜に通過させて液晶分散液を作成するとしている。かかる二段階の乳化工程を採用することで、乳化不良を抑制し高速で乳化できるとともに、粗大粒の発生を抑制できるとしている。   Furthermore, Patent Document 4 also discloses a method for producing a liquid crystal dispersion using a porous film. Here, a pre-emulsion having a relatively large particle size is first prepared and then passed through a porous film having through holes having an average pore size within a predetermined range to prepare a liquid crystal dispersion. By adopting such a two-stage emulsification process, it is said that poor emulsification can be suppressed and emulsification can be performed at high speed, and the generation of coarse particles can be suppressed.

特開平5−80303号公報JP-A-5-80303 特開平6−27447号公報JP-A-6-27447 特開平6−242420号公報JP-A-6-242420 特開2010−190946号公報JP 2010-190946 A

高分子ポリマーに液晶化合物粒子を分散させた複合体を用いた液晶表示素子では、低電圧で駆動が可能であり且つ高速表示のための高い電場応答性が要求される。一方で、液晶化合物粒子の分散安定性や所定の粒径調整のために使用される界面活性剤や乳化剤は、液晶粒子に規制力を働かせて電場配向性を低下させ、液晶表示素子における駆動電圧を高め、電場応答性を低下させる原因となっている。また、消費電力を増大させることにもなっている。   A liquid crystal display element using a composite in which liquid crystal compound particles are dispersed in a polymer is required to be driven at a low voltage and to have a high electric field response for high-speed display. On the other hand, surfactants and emulsifiers used for dispersion stability of liquid crystal compound particles and predetermined particle size adjustment exert a regulating force on the liquid crystal particles to lower the electric field orientation, and drive voltage in the liquid crystal display element. This is a cause of lowering the electric field response. In addition, power consumption is increased.

更に、液晶化合物粒子の粒径をより均一にするには、高速攪拌機や超音波ホモジナイザ若しくは多孔質膜を適宜組み合わせ、予備乳化を行うなど、複雑且つ多くの工程を要することになって、適切な製造条件を得ることが困難であり安定した製造が難しいといった指摘もある。   Furthermore, in order to make the particle size of the liquid crystal compound particles more uniform, a high-speed stirrer, an ultrasonic homogenizer, or a porous membrane is appropriately combined, and pre-emulsification is required. It is also pointed out that it is difficult to obtain manufacturing conditions and that stable manufacturing is difficult.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、水溶液中に液晶化合物粒子を分散させた液晶分散液の製造方法であって、液晶化合物粒子の粒径を均一にできるとともに、これを簡便な方法で安定して与えることのできる製造方法の提供にある。   The present invention has been made in view of the above situation, and an object of the present invention is a method for producing a liquid crystal dispersion in which liquid crystal compound particles are dispersed in an aqueous solution. An object of the present invention is to provide a production method capable of making the particle size uniform and stably providing the particle size by a simple method.

本発明による製造方法は、水溶液中に液晶化合物粒子を分散させた液晶分散液の製造方法であって、液晶化合物を含む化合物液体を前記水溶液と多孔膜を隔てて配置するステップと、前記化合物液体を前記多孔膜の両面側において複数回往復通過させる繰り返し通過ステップと、を含むことを特徴とする。   The production method according to the present invention is a production method of a liquid crystal dispersion in which liquid crystal compound particles are dispersed in an aqueous solution, the compound liquid containing the liquid crystal compound being arranged with the aqueous solution and a porous film being separated, and the compound liquid And a repetitive passing step of reciprocating a plurality of times on both sides of the porous membrane.

かかる発明によれば、ポンプなどを接続するための配管等を使用せず簡便な装置を用いることができて、しかも、界面活性剤や乳化剤を過度に使用せずとも粒径の均一な液晶化合物粒子を分散させた液晶分散液を安定して得ることができるのである。すなわち、かかる液晶分散液から得た複合体を用いた液晶表示素子では、低電圧で駆動が可能となり且つ高速表示のための高い電場応答性が得られるのである。   According to this invention, a simple apparatus can be used without using a pipe for connecting a pump or the like, and the liquid crystal compound has a uniform particle size without excessive use of a surfactant or an emulsifier. A liquid crystal dispersion in which particles are dispersed can be obtained stably. That is, a liquid crystal display element using a composite obtained from such a liquid crystal dispersion can be driven at a low voltage and has a high electric field response for high-speed display.

上記した発明において、前記繰り返し通過ステップは、前記多孔膜の一方の面側から他方の面側へ向けて流動圧力を与え、続いて、前記多孔膜の前記他方の面側から前記一方の面側へ向けて流動圧力を与えることを繰り返すことを特徴としてもよい。かかる発明によれば、簡便な装置でありながら、界面活性剤や乳化剤を過度に使用せずとも粒径の均一な液晶化合物粒子を分散させた液晶分散液を安定して得ることができるのである。   In the above-described invention, the repetitive passing step applies a flow pressure from one surface side of the porous membrane to the other surface side, and then continues from the other surface side of the porous membrane to the one surface side. It is good also as repeating to give flow pressure towards. According to this invention, it is possible to stably obtain a liquid crystal dispersion in which liquid crystal compound particles having a uniform particle size are dispersed without excessive use of a surfactant or an emulsifier, while being a simple apparatus. .

上記した発明において、前記繰り返し通過ステップは、前記化合物液体及び前記水溶液を加温しながら行うことを特徴としてもよい。また、前記化合物液体は、室温で結晶相である液晶化合物を含むことを特徴としてもよい。かかる発明によれば、流動圧力を与える機構を簡素化できて簡便な装置で、界面活性剤や乳化剤を過度に使用せずとも粒径の均一な液晶化合物粒子を分散させた液晶分散液を安定して得ることができるのである。   In the above-described invention, the repeated passage step may be performed while heating the compound liquid and the aqueous solution. The compound liquid may include a liquid crystal compound that is in a crystalline phase at room temperature. According to this invention, it is possible to simplify a liquid pressure dispersion in which liquid crystal compound particles having a uniform particle diameter are dispersed without excessive use of a surfactant or an emulsifier with a simple apparatus that can simplify a mechanism for applying a flow pressure. Can be obtained.

上記した発明において、前記多孔膜は、前記液晶化合物粒子の目標粒子径を平均孔径として有することを特徴としてもよい。かかる発明によれば、簡便な装置でありながら、界面活性剤や乳化剤を過度に使用せずとも粒径の均一な液晶化合物粒子を分散させた液晶分散液を安定して得ることができるのである。   In the above-described invention, the porous film may have a target particle diameter of the liquid crystal compound particles as an average pore diameter. According to this invention, it is possible to stably obtain a liquid crystal dispersion in which liquid crystal compound particles having a uniform particle size are dispersed without excessive use of a surfactant or an emulsifier, while being a simple apparatus. .

上記した発明において、前記水溶液は、水であることを特徴としてもよい。かかる発明によれば、界面活性剤や乳化剤を使用せずとも、粒径の均一な液晶化合物粒子を分散させた液晶分散液を安定して得ることができる。すなわち、かかる液晶分散液から得た複合体を用いた液晶表示素子では、低電圧で駆動が可能となり且つ高速表示のための高い電場応答性が得られるのである。   In the above-described invention, the aqueous solution may be water. According to this invention, a liquid crystal dispersion in which liquid crystal compound particles having a uniform particle diameter are dispersed can be stably obtained without using a surfactant or an emulsifier. That is, a liquid crystal display element using a composite obtained from such a liquid crystal dispersion can be driven at a low voltage and has a high electric field response for high-speed display.

本発明による装置を示す図である。FIG. 2 shows a device according to the invention. 本発明による装置の動作を示す図である。FIG. 3 shows the operation of the device according to the invention. 本発明による装置の動作を示す図である。FIG. 3 shows the operation of the device according to the invention. 液晶化合物の分散を示す図である。It is a figure which shows dispersion | distribution of a liquid crystal compound. 液晶化合物の分極を示す図である。It is a figure which shows the polarization of a liquid crystal compound. 試験に用いた液晶化合物の構造式である。It is a structural formula of the liquid crystal compound used for the test. 液晶分散液の顕微鏡写真である。It is a microscope picture of a liquid crystal dispersion. 液晶分散液の顕微鏡写真である。It is a microscope picture of a liquid crystal dispersion. 液晶分散液の顕微鏡写真である。It is a microscope picture of a liquid crystal dispersion. 液晶分散液の顕微鏡写真である。It is a microscope picture of a liquid crystal dispersion. 液晶分散液の顕微鏡写真である。It is a microscope picture of a liquid crystal dispersion. 液晶分散液のゼータ電位測定のグラフである。It is a graph of the zeta potential measurement of a liquid crystal dispersion. 液晶分散液の顕微鏡写真である。It is a microscope picture of a liquid crystal dispersion. 液晶分散液の顕微鏡写真である。It is a microscope picture of a liquid crystal dispersion.

本発明による1つの実施例としての液晶分散液の製造方法について、図1乃至図5を用いて説明する。   A method for producing a liquid crystal dispersion as one embodiment according to the present invention will be described with reference to FIGS.

図1に示すように、液晶分散液の製造方法に用いられる装置30は、第1のシリンジ31と第2のシリンジ32とを密閉容器である混合室33を介して接続した構造を有する。また、混合室33の内部は、多孔膜34を隔てて、第1室33a及び第2室33bに分割されている。   As shown in FIG. 1, the apparatus 30 used for the manufacturing method of a liquid crystal dispersion has the structure which connected the 1st syringe 31 and the 2nd syringe 32 via the mixing chamber 33 which is an airtight container. The inside of the mixing chamber 33 is divided into a first chamber 33 a and a second chamber 33 b with a porous film 34 interposed therebetween.

第1のシリンジ31は、シリンジ本体31aとこれに嵌合して移動自在のピストン体31bとからなり、シリンジ本体31aの先端は第1室33aに連通し、シリンジ本体31a内部の液体を第1室33aの内部へと導入可能である。同様に、第2のシリンジ32は、シリンジ本体32aとこれに嵌合して移動自在のピストン体32bとからなる。シリンジ本体32aの先端は、コック35を介して、第2室33bに連通する。すなわち、シリンジ本体32b内部の液体は、コック35を開いたときのみ、第2室33bの内部へと導入可能である。   The first syringe 31 includes a syringe body 31a and a piston body 31b that can be fitted to the syringe body 31b, and the tip of the syringe body 31a communicates with the first chamber 33a. It can be introduced into the chamber 33a. Similarly, the second syringe 32 includes a syringe body 32a and a piston body 32b that can be fitted and moved to the syringe body 32a. The tip of the syringe body 32a communicates with the second chamber 33b through the cock 35. That is, the liquid inside the syringe body 32b can be introduced into the second chamber 33b only when the cock 35 is opened.

多孔膜34は、後述する液晶分散粒子の目標粒径に対応する貫通孔径を有する。多孔膜34は、図示しない支持体の間に挟まれ混合室33内に設置される。   The porous film 34 has a through-hole diameter corresponding to a target particle diameter of liquid crystal dispersed particles described later. The porous film 34 is sandwiched between support bodies (not shown) and installed in the mixing chamber 33.

図2(a)に示すように、第2のシリンジ32に液晶化合物またはこの混合物からなる化合物液体を入れてコック35を閉じる。また、第1のシリンジ31に水または水溶液などの分散媒溶液を入れる。このとき、第1のシリンジ31内の分散媒溶液と第2のシリンジ32内の化合物液体とは所定の比で与える。   As shown in FIG. 2A, a liquid crystal compound or a compound liquid composed of this mixture is placed in the second syringe 32 and the cock 35 is closed. Further, a dispersion medium solution such as water or an aqueous solution is put into the first syringe 31. At this time, the dispersion medium solution in the first syringe 31 and the compound liquid in the second syringe 32 are given at a predetermined ratio.

次に、図2(b)に示すように、コック35を開き、シリンジ本体32aにピストン体32bを押し込んで第2のシリンジ32内の液体を混合室33内へと押し込む。これと同時に、シリンジ本体31aからピストン体31bを引き抜き第1のシリンジ31内に混合室33内から液体を引き込む。このとき、多孔膜34を介して第2室33bから第1室33aへと液体が移動する。つまり、一部の化合物液体は、多孔膜34を通過して第1室33aへと移動するとともに、化合物液体と分散媒溶液とが混合される。   Next, as shown in FIG. 2B, the cock 35 is opened, the piston body 32 b is pushed into the syringe body 32 a, and the liquid in the second syringe 32 is pushed into the mixing chamber 33. At the same time, the piston body 31 b is pulled out from the syringe body 31 a and the liquid is drawn into the first syringe 31 from the mixing chamber 33. At this time, the liquid moves from the second chamber 33b to the first chamber 33a through the porous film 34. That is, a part of the compound liquid passes through the porous film 34 and moves to the first chamber 33a, and the compound liquid and the dispersion medium solution are mixed.

続いて、図2(c)に示すように、今度は、シリンジ本体32aからピストン体32bを引き抜き第2のシリンジ32内へと混合室33内の化合物液体及び/又は分散媒溶液を引き込む。これと同時に、シリンジ本体31aにピストン体31bを押し込んで第1のシリンジ31内の液体を混合室33内へと押し込む。このとき、多孔膜34を介して第1室33aから第2室33bへと液体が移動する。つまり、一部の化合物液体は、再び、多孔膜34を通過して第2室33bへと移動するとともに、更に、化合物液体と分散媒溶液とが混合されるのである。   Subsequently, as shown in FIG. 2C, this time, the piston body 32 b is pulled out from the syringe body 32 a and the compound liquid and / or the dispersion medium solution in the mixing chamber 33 is drawn into the second syringe 32. At the same time, the piston body 31 b is pushed into the syringe body 31 a to push the liquid in the first syringe 31 into the mixing chamber 33. At this time, the liquid moves from the first chamber 33a to the second chamber 33b via the porous film 34. That is, a part of the compound liquid again passes through the porous film 34 and moves to the second chamber 33b, and the compound liquid and the dispersion medium solution are further mixed.

上記した図2(b)及び(c)の動作を繰り返すと、混合室33内の液体、特に、化合物液体が多孔膜34を介して第1室33aと第2室33bとの間での移動を繰り返すのである。   2B and 2C is repeated, the liquid in the mixing chamber 33, particularly the compound liquid, moves between the first chamber 33a and the second chamber 33b through the porous film 34. Is repeated.

詳細には、図3に示すように、化合物液体を多孔膜34の両側において連続的に通過させることで、液晶化合物(若しくは混合物、以下、これらを合わせて「液晶化合物」と称する。)からなる粒子36を分散させた単分子分散液を得られる。図3(a)に示すように、上記したような第1のシリンジ31及び第2のシリンジ32の繰り返し操作(以下、単に「往復操作」と称する。)を開始した直後は、大半の粒子36は粗大粒子である。   Specifically, as shown in FIG. 3, a compound liquid is continuously passed on both sides of the porous film 34 to form a liquid crystal compound (or a mixture, hereinafter referred to as “liquid crystal compound”). A monomolecular dispersion in which the particles 36 are dispersed can be obtained. As shown in FIG. 3A, most of the particles 36 are immediately after the start of the repetitive operation of the first syringe 31 and the second syringe 32 (hereinafter simply referred to as “reciprocating operation”) as described above. Are coarse particles.

図3(b)に示すように、往復操作を10回程度繰り返すと、粗大な粒子36は分裂し、その粒径が小さくなるとともに、粒子の数は増える。   As shown in FIG. 3 (b), when the reciprocating operation is repeated about 10 times, the coarse particles 36 are split, the particle size is reduced, and the number of particles is increased.

図3(c)に示すように、更に、往復操作を20回以上繰り返すと、多孔膜34の貫通孔径にほぼ同じ粒径の粒子36からなる単分散粒子の液晶分散液が得られるのである。   As shown in FIG. 3C, when the reciprocating operation is further repeated 20 times or more, a liquid crystal dispersion of monodispersed particles composed of particles 36 having a particle diameter substantially the same as the through-hole diameter of the porous film 34 is obtained.

なお、往復操作にあたって、混合室33などを加温装置によって適宜、加温してもよい。室温で結晶相であるサーモトロピック液晶からなる化合物液体であるとき、かかる加温によって液晶相もしくは等方相となるように調整される。   In the reciprocating operation, the mixing chamber 33 and the like may be appropriately heated by a heating device. When the compound liquid is composed of a thermotropic liquid crystal that is a crystal phase at room temperature, the liquid crystal phase or the isotropic phase is adjusted by such heating.

ところで、液晶化合物からなる化合物液体を水とともに多孔膜34の両面側において複数回往復通過させたときの水中の液晶化合物について説明する。   By the way, a liquid crystal compound in water when a compound liquid composed of a liquid crystal compound is reciprocated a plurality of times on both sides of the porous film 34 together with water will be described.

図4は、液晶粒子36と水37との界面における分子間相互作用(水素結合の形成)を模式的に示したものである。特に、かかる界面では、液晶性分子36aの極性基36cは液晶粒子36と水37との界面の方向を向いて、水分子37aと水素結合38を形成する。これにより、液晶粒子36と水37との界面が安定し、液晶粒子36が分散安定化する。ここで、図5に示すように、極性基39は、シアノ基39aやフルオロ基39bなどで分極40を有するため、上述した水素結合を形成することが可能となる。   FIG. 4 schematically shows the intermolecular interaction (formation of hydrogen bonds) at the interface between the liquid crystal particles 36 and the water 37. In particular, at such an interface, the polar group 36 c of the liquid crystal molecule 36 a faces the interface between the liquid crystal particle 36 and the water 37 and forms a hydrogen bond 38 with the water molecule 37 a. As a result, the interface between the liquid crystal particles 36 and the water 37 is stabilized, and the liquid crystal particles 36 are dispersed and stabilized. Here, as shown in FIG. 5, the polar group 39 has a polarization 40 of a cyano group 39a, a fluoro group 39b, and the like, so that the above-described hydrogen bond can be formed.

以上のように、本実施例では、室温で結晶相であり加温することで液晶相または等方相を形成する、若しくは、少なくとも1成分が結晶相である液晶化合物からなる混合物であって、室温で液晶相を形成するサーモトロピック液晶化合物及びそれらを主成分とする混合物を水または水溶液に分散させる方法である。液晶化合物には、目標とする粒子径に相当する貫通孔径を有する多孔膜を介して連続的に往復通過させるような簡便な一段階の工程で粒子径の揃った液晶化合物または混合物の粒子を含む液晶分散液を製造できる。乳化剤の添加または無添加を問わず、液晶化合物または混合物と、水または水溶液を任意の割合で調整した液晶分散液を得られる。   As described above, in this example, a crystalline phase is heated at room temperature to form a liquid crystal phase or an isotropic phase by heating, or a mixture composed of a liquid crystal compound in which at least one component is a crystalline phase, In this method, a thermotropic liquid crystal compound that forms a liquid crystal phase at room temperature and a mixture containing them as a main component are dispersed in water or an aqueous solution. The liquid crystal compound includes a liquid crystal compound or a mixture of particles having a uniform particle diameter in a simple one-step process such that the liquid crystal compound is continuously reciprocated through a porous film having a through-hole diameter corresponding to a target particle diameter. A liquid crystal dispersion can be produced. Regardless of whether an emulsifier is added or not, a liquid crystal dispersion in which a liquid crystal compound or mixture and water or an aqueous solution are adjusted at an arbitrary ratio can be obtained.

次に、図1を参照しながら、液晶分散液のいくつかの試験結果について述べる。   Next, some test results of the liquid crystal dispersion will be described with reference to FIG.

<試験1>
室温で液晶相である液晶化合物の粒子を分散させた液晶分散液の作製試験について述べる。
<Test 1>
A preparation test of a liquid crystal dispersion in which particles of a liquid crystal compound that is a liquid crystal phase at room temperature are dispersed will be described.

図6(a)に示す化合物1(5CB)を装置30の第2のシリンジ32に0.05ml入れるとともに、水を第1のシリンジ31に0.95ml入れ、これらを33℃に加温した。なお、多孔膜34には、貫通孔径10μmのWhatman社製の商品名:Nuclepore Track−Etch Membrabeを用いた。上記した往復操作を20回行った後、加温を停止し、室温へと戻した。図7に液晶分散液の液晶粒子の顕微鏡写真を示した。これによれば、7〜10μm程度の粒子径、すなわち、多孔膜34の貫通孔径とほぼ同じ大きさの液晶粒子36を凝集させることなく分散させた液晶分散液となっていた。   Compound 1 (5CB) shown in FIG. 6A was put in 0.05 ml of the second syringe 32 of the apparatus 30, and 0.95 ml of water was put in the first syringe 31, and these were heated to 33 ° C. In addition, the product name: Nuclepore Track-Etch Membrane made by Whatman having a through-hole diameter of 10 μm was used for the porous membrane 34. After performing the above-described reciprocating operation 20 times, heating was stopped and the temperature was returned to room temperature. FIG. 7 shows a micrograph of the liquid crystal particles of the liquid crystal dispersion. According to this, a liquid crystal dispersion was obtained in which liquid crystal particles 36 having a particle diameter of about 7 to 10 μm, that is, a liquid crystal particle 36 having almost the same size as the through-hole diameter of the porous film 34 were dispersed without agglomeration.

<試験2>
室温で結晶相である液晶化合物の粒子を分散させた液晶分散液の作製試験について述べる。
<Test 2>
A preparation test of a liquid crystal dispersion in which particles of a liquid crystal compound that is a crystalline phase at room temperature are dispersed will be described.

図6(d)に示す化合物4(F1)を第2のシリンジ32に0.05g入れるとともに、水を第1のシリンジ31に0.95g入れ、これらを63℃に加温した。なお、多孔膜34には、試験1と同じ膜を用いた。上記した往復操作を50回行った後、加温を停止し、室温へと戻した。図8に液晶分散液の液晶粒子の顕微鏡写真を示した。これによれば、7μm程度の粒子径、すなわち、多孔膜34の貫通孔径とほぼ同じ大きさの液晶粒子36を凝集させることなく分散させた液晶分散液となっていた。   While adding 0.05 g of compound 4 (F1) shown in FIG. 6 (d) to the second syringe 32, 0.95 g of water was added to the first syringe 31, and these were heated to 63 ° C. Note that the same membrane as that in Test 1 was used as the porous membrane 34. After performing the above-described reciprocating operation 50 times, heating was stopped and the temperature was returned to room temperature. FIG. 8 shows a photomicrograph of the liquid crystal particles of the liquid crystal dispersion. According to this, a liquid crystal dispersion liquid was obtained in which liquid crystal particles 36 having a particle diameter of about 7 μm, that is, substantially the same size as the through-hole diameter of the porous film 34 were dispersed without aggregation.

<試験3>
室温で結晶相である液晶化合物の混合物であって、室温で液晶相となる混合物の粒子を分散させた液晶分散液の作製について述べる。
<Test 3>
The preparation of a liquid crystal dispersion in which particles of a liquid crystal compound that is a crystalline phase at room temperature and in which a mixture that becomes a liquid crystal phase at room temperature is dispersed will be described.

図6(b)及び(c)に示す室温で結晶相の液晶化合物2(7CB)と液晶化合物3(5CHB)とをモル比で1:2取り、第2のシリンジ32に0.05ml入れた。かかる化合物は、室温で液晶相である。また、水を第1のシリンジ31に0.95ml入れた。多孔膜34には、試験例1と同じ膜を用い、上記した往復操作を20回行った。図9に6ヶ月経過後の液晶分散液の液晶粒子36の顕微鏡写真を示した。これによれば、作製後6ヵ月を経ても、3μm程度の粒子径の液晶粒子における単分散性が維持されていた。 The liquid crystal compound 2 (7CB) and the liquid crystal compound 3 (5CHB) in the crystalline phase at room temperature shown in FIGS. 6B and 6C were taken at a molar ratio of 1: 2, and 0.05 ml was put in the second syringe 32. . Such compounds are in the liquid crystal phase at room temperature. In addition, 0.95 ml of water was placed in the first syringe 31. As the porous film 34, the same film as in Test Example 1 was used, and the above-described reciprocating operation was performed 20 times. FIG. 9 shows a micrograph of the liquid crystal particles 36 of the liquid crystal dispersion after 6 months. According to this, monodispersity in liquid crystal particles having a particle diameter of about 3 μm was maintained even after 6 months from the production.

<試験4>
異なる極性基を有する液晶化合物の混合物であって、室温で液晶相である混合物の粒子を分散させた液晶分散液の作製について述べる。
<Test 4>
The preparation of a liquid crystal dispersion liquid in which particles of a mixture of liquid crystal compounds having different polar groups and in a liquid crystal phase at room temperature are dispersed will be described.

図6(b)及び(c)に示す室温で結晶相であるシアノ基を有する化合物2(7CB)とフルオロ基を有する化合物4(F1)をモル比で1:1取り、第2のシリンジ32に0.05ml入れた。また、水を第1のシリンジ31に0.95ml入れた。これらを30℃に加温した。多孔膜34には、試験例1と同じ膜を用い、上記した往復操作を20回行った後、加温を停止し、室温へと戻した。図10に液晶分散液の液晶粒子の顕微鏡写真を示した。これによれば、2〜7μm程度の粒子径の液晶粒子36を凝集させることなく分散させた液晶分散液となっていた。   The compound 2 (7CB) having a cyano group that is a crystalline phase at room temperature and the compound 4 (F1) having a fluoro group shown in FIGS. 6B and 6C at a molar ratio of 1: 1 are taken, and the second syringe 32 is used. 0.05 ml was placed in the container. In addition, 0.95 ml of water was placed in the first syringe 31. These were warmed to 30 ° C. As the porous membrane 34, the same membrane as in Test Example 1 was used, and after performing the above-described reciprocating operation 20 times, the heating was stopped and the temperature was returned to room temperature. FIG. 10 shows a micrograph of the liquid crystal particles of the liquid crystal dispersion. According to this, a liquid crystal dispersion was obtained in which liquid crystal particles 36 having a particle diameter of about 2 to 7 μm were dispersed without agglomeration.

<試験5>
液晶分散液の作製における多孔膜の通過回数(往復操作の回数)を変えた試験の結果について述べる。
<Test 5>
The results of tests in which the number of passages through the porous membrane (number of reciprocation operations) in the preparation of the liquid crystal dispersion are described.

図6(a)に示す化合物1(5CB)を第2のシリンジ32に0.01ml入れるとともに、水を第1のシリンジ31に0.99ml入れ、これらを33℃に加温した。なお、多孔膜34には、試験1と同じ膜を用い、上記した往復操作を1,3,5回とそれぞれ行って、加温を停止し、室温へと戻した。図11に液晶分散液の液晶粒子の顕微鏡写真を示した。これによれば、往復操作の回数が5回以上では粗大粒子がなくなり、均一な粒径の単分散粒子分散液が得られた。   While putting 0.01 ml of compound 1 (5CB) shown in FIG. 6 (a) into the second syringe 32, 0.99ml of water was put into the first syringe 31, and these were heated to 33 ° C. In addition, the same membrane as the test 1 was used for the porous membrane 34, and the above-described reciprocation operation was performed 1, 3, and 5 times, respectively, and heating was stopped and returned to room temperature. FIG. 11 shows a photomicrograph of the liquid crystal particles of the liquid crystal dispersion. According to this, when the number of reciprocating operations was 5 or more, coarse particles disappeared, and a monodispersed particle dispersion having a uniform particle size was obtained.

<試験6>
本発明による製造方法で得られる液晶粒子の分散安定性は非常に高く、上記したように、実施例3で得られた液晶粒子は、作製後6ヵ月を経ても単分散性が維持されている。そこで、次に、液晶粒子のゼータ電位測定の結果について述べる。
<Test 6>
The dispersion stability of the liquid crystal particles obtained by the production method according to the present invention is very high, and as described above, the liquid crystal particles obtained in Example 3 maintain the monodispersity even after 6 months from the production. . Then, next, the result of the zeta potential measurement of liquid crystal particles will be described.

上記した試験3において、分散媒の塩(NaCl)の濃度を変えながらゼータ電位を測定した。その結果を図12に示す。ここで、ゼータ電位は、水に分散する液晶粒子の表面電位に相当し、その絶対値が大きいほど、分散安定性が高い。図12によれば、ゼータ電位は、−55±5mV(pH5.8、10-5M NaCl)であった。これは、例えば、ポリスチレンスルホン酸を乳化剤に用いて作製された液晶粒子のゼータ電位、pH5.8で〜−50mV(NANOLETTERS、Vol.6、No.10、2006、pp.2243‐2248)よりも大きい。すなわち、かかる液晶粒子の分散安定性の高さを示している。 In Test 3 described above, the zeta potential was measured while changing the concentration of the dispersion medium salt (NaCl). The result is shown in FIG. Here, the zeta potential corresponds to the surface potential of the liquid crystal particles dispersed in water, and the larger the absolute value, the higher the dispersion stability. According to FIG. 12, the zeta potential was −55 ± 5 mV (pH 5.8, 10 −5 M NaCl). This is, for example, more than -50 mV (NANOLETTERS, Vol. 6, No. 10, 2006, pp. 22243-2248) at zeta potential, pH 5.8 of liquid crystal particles prepared using polystyrene sulfonic acid as an emulsifier. large. That is, the dispersion stability of such liquid crystal particles is high.

<試験7>
本発明による製造方法で得られる液晶粒子の電場応答性の試験結果について述べる。
<Test 7>
The electric field response test results of the liquid crystal particles obtained by the production method according to the present invention will be described.

試験1で得られた分散液を用い、これに周波数1kHzの交流電場を印加して、液晶粒子36の連珠配列体が形成する様子を観察した。その結果の顕微鏡写真を図13及び図14に示す。   Using the dispersion obtained in Test 1, an alternating electric field having a frequency of 1 kHz was applied thereto, and the appearance of the formation of a continuous array of liquid crystal particles 36 was observed. The resulting micrographs are shown in FIGS.

連珠配列体は、電場の印加によって、液晶化合物/水界面における分極を生じ、双極子を誘起することによるものである。この場合、28.6Vrms/cmにおいて、液晶粒子は電場に敏感に応答し始め、図13に示すように、42.4Vrms/cmでは、連珠配列36’が形成されている。   The tandem array is formed by inducing a dipole by causing polarization at the liquid crystal compound / water interface by application of an electric field. In this case, at 28.6 Vrms / cm, the liquid crystal particles begin to respond sensitively to the electric field, and at 42.4 Vrms / cm, a string array 36 'is formed as shown in FIG.

なお、試験1において、ドデシル硫酸ソーダ(SDS、3.28mM)を乳化剤に用いて作製した液晶分散液についても、周波数1kHzの交流電場を印加して、液晶粒子36を観察した。その結果の顕微鏡写真を図14に示す。この場合、42.4Vrms/cmでは、液晶粒子の連珠配列が形成されていなかった。すなわち、図13と比較して、乳化剤を用いることなく液晶分散液を作製できる本発明においては、乳化剤を使用しないことで、より低電場で応答可能にできて、これを用いた各種素子では、消費電力の低減が期待できる。   In Test 1, a liquid crystal dispersion produced using sodium dodecyl sulfate (SDS, 3.28 mM) as an emulsifier was also subjected to observation of liquid crystal particles 36 by applying an alternating electric field having a frequency of 1 kHz. The resulting micrograph is shown in FIG. In this case, a continuous arrangement of liquid crystal particles was not formed at 42.4 Vrms / cm. That is, compared with FIG. 13, in the present invention that can produce a liquid crystal dispersion without using an emulsifier, by using no emulsifier, it is possible to respond with a lower electric field. Reduction of power consumption can be expected.

以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。   As mentioned above, although the Example by this invention and the modification based on this were demonstrated, this invention is not necessarily limited to this, A person skilled in the art will deviate from the main point of this invention, or the attached claim. Various alternative embodiments and modifications could be found without doing so.

31 第1のシリンジ
32 第2のシリンジ
33 混合室
34 多孔膜
35 コック
36 液晶粒子
31 First Syringe 32 Second Syringe 33 Mixing Chamber 34 Porous Film 35 Cock 36 Liquid Crystal Particles

Claims (6)

水溶液中に液晶化合物粒子を分散させた液晶分散液の製造方法であって、
液晶化合物を含む化合物液体を前記水溶液と多孔膜を隔てて配置するステップと、前記化合物液体を前記多孔膜の両面側において複数回往復通過させる繰り返し通過ステップと、を含むことを特徴とする液晶分散液の製造方法。
A method for producing a liquid crystal dispersion in which liquid crystal compound particles are dispersed in an aqueous solution,
A liquid crystal dispersion comprising: disposing a compound liquid containing a liquid crystal compound across the aqueous solution and a porous film; and repeatedly passing the compound liquid a plurality of times on both sides of the porous film. Liquid manufacturing method.
前記繰り返し通過ステップは、前記多孔膜の一方の面側から他方の面側へ向けて流動圧力を与え、続いて、前記多孔膜の前記他方の面側から前記一方の面側へ向けて流動圧力を与えることを繰り返すことを特徴とする請求項1記載の液晶分散液の製造方法。   In the repeated passage step, a flow pressure is applied from one surface side of the porous membrane to the other surface side, and then the flow pressure is applied from the other surface side of the porous membrane to the one surface side. The method for producing a liquid crystal dispersion liquid according to claim 1, wherein the step of applying a liquid crystal is repeated. 前記繰り返し通過ステップは、前記化合物液体及び前記水溶液を加温しながら行うことを特徴とする請求項1又は2に記載の液晶分散液の製造方法。   The method for producing a liquid crystal dispersion according to claim 1, wherein the repeated passage step is performed while heating the compound liquid and the aqueous solution. 前記化合物液体は、室温で結晶相である液晶化合物を含むことを特徴とする請求項3記載の液晶分散液の製造方法。   The method for producing a liquid crystal dispersion according to claim 3, wherein the compound liquid contains a liquid crystal compound that is in a crystalline phase at room temperature. 前記多孔膜は、前記液晶化合物粒子の目標粒子径を平均孔径として有することを特徴とする請求項1乃至4のうちの1つに記載の液晶分散液の製造方法。   The method for producing a liquid crystal dispersion according to claim 1, wherein the porous film has a target particle diameter of the liquid crystal compound particles as an average pore diameter. 前記水溶液は、水であることを特徴とする請求項1乃至5のうちの1つに記載の液晶分散液の製造方法。   The method for producing a liquid crystal dispersion liquid according to claim 1, wherein the aqueous solution is water.
JP2013172191A 2013-08-22 2013-08-22 Method for producing liquid crystal dispersion Expired - Fee Related JP6115955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013172191A JP6115955B2 (en) 2013-08-22 2013-08-22 Method for producing liquid crystal dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013172191A JP6115955B2 (en) 2013-08-22 2013-08-22 Method for producing liquid crystal dispersion

Publications (2)

Publication Number Publication Date
JP2015040994A true JP2015040994A (en) 2015-03-02
JP6115955B2 JP6115955B2 (en) 2017-04-19

Family

ID=52695180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013172191A Expired - Fee Related JP6115955B2 (en) 2013-08-22 2013-08-22 Method for producing liquid crystal dispersion

Country Status (1)

Country Link
JP (1) JP6115955B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019503862A (en) * 2016-01-05 2019-02-14 エーシー&ビー エスエーエス Method and apparatus for mixing ingredients to produce a customized product
WO2021200828A1 (en) 2020-03-31 2021-10-07 日東電工株式会社 Polymer-dispersed-type liquid crystal film, emulsion, and method for producing polymer-dispersed-type liquid crystal film
WO2022181406A1 (en) 2021-02-25 2022-09-01 日東電工株式会社 Decorative film
WO2022181407A1 (en) 2021-02-25 2022-09-01 日東電工株式会社 Decorative film
WO2022210418A1 (en) 2021-03-30 2022-10-06 日東電工株式会社 Polymer dispersed liquid crystal film and manufacturing method therefor
WO2023032675A1 (en) 2021-09-01 2023-03-09 日東電工株式会社 Polymer dispersion type liquid crystal film, and method for producing polymer dispersion type liquid crystal film
US11868036B2 (en) 2019-03-28 2024-01-09 Nitto Denko Corporation Transmissive screen and video image display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7325993B2 (en) 2019-03-29 2023-08-15 日東電工株式会社 EMULSION MANUFACTURING METHOD AND MANUFACTURING APPARATUS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346565A (en) * 2005-06-15 2006-12-28 Spg Techno Kk Method for preparing emulsion using porous body and its apparatus
JP2010190946A (en) * 2009-02-16 2010-09-02 Fuji Xerox Co Ltd Method for producing liquid crystal emulsion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006346565A (en) * 2005-06-15 2006-12-28 Spg Techno Kk Method for preparing emulsion using porous body and its apparatus
JP2010190946A (en) * 2009-02-16 2010-09-02 Fuji Xerox Co Ltd Method for producing liquid crystal emulsion

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019503862A (en) * 2016-01-05 2019-02-14 エーシー&ビー エスエーエス Method and apparatus for mixing ingredients to produce a customized product
JP2022050393A (en) * 2016-01-05 2022-03-30 エーシー&ビー エスエーエス Method and device for mixing components for manufacturing customized product
JP7316696B2 (en) 2016-01-05 2023-07-28 エーシー&ビー エスエーエス Method and Apparatus for Mixing Ingredients for Making Customized Products
US11868036B2 (en) 2019-03-28 2024-01-09 Nitto Denko Corporation Transmissive screen and video image display device
WO2021200828A1 (en) 2020-03-31 2021-10-07 日東電工株式会社 Polymer-dispersed-type liquid crystal film, emulsion, and method for producing polymer-dispersed-type liquid crystal film
WO2022181406A1 (en) 2021-02-25 2022-09-01 日東電工株式会社 Decorative film
WO2022181407A1 (en) 2021-02-25 2022-09-01 日東電工株式会社 Decorative film
WO2022210418A1 (en) 2021-03-30 2022-10-06 日東電工株式会社 Polymer dispersed liquid crystal film and manufacturing method therefor
WO2023032675A1 (en) 2021-09-01 2023-03-09 日東電工株式会社 Polymer dispersion type liquid crystal film, and method for producing polymer dispersion type liquid crystal film

Also Published As

Publication number Publication date
JP6115955B2 (en) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6115955B2 (en) Method for producing liquid crystal dispersion
Jiang et al. Pickering emulsions responsive to CO2/N2 and light dual stimuli at ambient temperature
Farhadi et al. Experimental study of nanoparticle-surfactant-stabilized CO2 foam: Stability and mobility control
JP2733729B2 (en) Method for producing monodispersed single and double emulsions
Vignati et al. Pickering emulsions: interfacial tension, colloidal layer morphology, and trapped-particle motion
Hua et al. Study of deep profile control and oil displacement technologies with nanoscale polymer microspheres
Roustaei et al. An evaluation of modified silica nanoparticles’ efficiency in enhancing oil recovery of light and intermediate oil reservoirs
Fameau et al. Stimuli-responsive liquid foams: From design to applications
JP4349639B2 (en) S / O suspension and manufacturing method thereof
Surh et al. On the preparation of lecithin-stabilized oil-in-water emulsions by multi-stage premix membrane emulsification
Yan et al. CO2-responsive pickering emulsions stabilized by a bio-based rigid surfactant with nanosilica
Li et al. Carboxylated fullerene at the oil/water interface
US7452470B2 (en) Method of preparing a finely divided emulsion from a crude emulsion
JP2007008924A (en) Method for producing organic compound fine particle, organic fine particle prepared by the same and method for controlling particle diameter
Langevin et al. Surface force measurements on freely suspended liquid films
JP2004008837A (en) S/o suspension, s/o/w emulsion, and their manufacturing method
Fang et al. Fabrication and characterization of microcapsule encapsulating EOR surfactants by microfluidic technique
Valkova et al. Mechanisms and control of self-emulsification upon freezing and melting of dispersed alkane drops
Ji et al. Effects of calcium ions on the solubility and rheological behavior of a C22-tailed hydroxyl sulfobetaine surfactant in aqueous solution
Chen et al. All-oil constructs stabilized by cellulose nanocrystal surfactants
Fujiu et al. Influence of temperature on production of water-in-oil emulsions by microchannel emulsification
JP2010190946A (en) Method for producing liquid crystal emulsion
US20240158696A1 (en) A system comprising a nematic liquid crystal and an interface
Zhang et al. Self-assembly and rheological behaviors of dynamic pseudo-oligomeric surfactant
Marino Phase inversion temperature emulsification: from batch to continuous process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170315

R150 Certificate of patent or registration of utility model

Ref document number: 6115955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees