WO2023032294A1 - Solid electrolyte, all-solid-state battery, method for manufacturing solid electrolyte, and method for manufacturing all-solid-state battery - Google Patents

Solid electrolyte, all-solid-state battery, method for manufacturing solid electrolyte, and method for manufacturing all-solid-state battery Download PDF

Info

Publication number
WO2023032294A1
WO2023032294A1 PCT/JP2022/011205 JP2022011205W WO2023032294A1 WO 2023032294 A1 WO2023032294 A1 WO 2023032294A1 JP 2022011205 W JP2022011205 W JP 2022011205W WO 2023032294 A1 WO2023032294 A1 WO 2023032294A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
solid
electrode
state battery
layer
Prior art date
Application number
PCT/JP2022/011205
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤大悟
織茂洋子
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2023032294A1 publication Critical patent/WO2023032294A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid electrolyte, an all-solid battery, a method for producing a solid electrolyte, and a method for producing an all-solid battery.
  • a secondary battery using an electrolytic solution has problems such as leakage of the electrolytic solution. Therefore, development of an all-solid-state battery in which a solid electrolyte is provided and other components are also solid is being developed.
  • Oxide-based solid electrolytes are known, including sulfides, which have high ionic conductivity at room temperature, and oxides, which are more stable in the atmosphere, as well as polymers and hydrides. Oxide-based solid electrolytes are advantageous over other compound systems in terms of high stability and safety in the atmosphere. Therefore, the biggest problem is that it is necessary to sinter the particles to lower the interfacial resistance.
  • Li-based solid electrolytes having relatively high ion conductivity garnet type such as Li-La-Zr-O system, perovskite type such as Li-La-Ti-O system, Li-Al-Ti-P-O system and Li--Al--Ge--P--O system NASICON type and the like are widely known.
  • Li--Ta--P--O compounds for example, LiTa 2 PO 8 in Non-Patent Document 1 are also reported to exhibit high ionic conductivity. Although they have high ionic conductivity, they are mechanically hard and generally require high firing temperatures.
  • Li-Ge-O-based LISICON type Li-Si-O-based, Li-BO-based, Li-SO-based, Li-PO-based and glass-ceramic systems in which these are combined have been disclosed (see Patent Documents 1 and 2, for example).
  • LiTa2PO8 a fast lithium-ion conductor with new framework structure, Journal of Materials Chemistry A, 2018,6, 22478-22482.
  • LiTa 2 PO 8 described in Non-Patent Document 1 exhibits a high ionic conductivity of 2.5 ⁇ 10 ⁇ 4 S/cm at room temperature, but has a high sintering temperature of 1050° C., and is expected to form an all-solid-state battery. As a result, interdiffusion reactions occur with most of the active materials during firing, making it extremely difficult to use.
  • the glass-ceramics disclosed in Patent Documents 1 and 2 can be sintered at relatively low temperatures, but have the problem of low ionic conductivity.
  • the ionic conductivity is lower than that of the high ionic conductor LiTa 2 PO 8 alone.
  • the present invention has been made in view of the above problems, and aims to provide a solid electrolyte exhibiting high ionic conductivity and capable of being fired at a low temperature, an all-solid battery, a method for producing a solid electrolyte, and a method for producing an all-solid battery. aim.
  • M may be at least one of Zr, Ti, Ge, Hf, Sn, Y, B, Al, and Ga.
  • x may satisfy 0 ⁇ x ⁇ 0.3.
  • the solid electrolyte has a crystal structure belonging to a monoclinic system.
  • the average particle size may be 0.2 ⁇ m or more and 20 ⁇ m or less.
  • An all-solid-state battery includes a solid electrolyte layer containing the solid electrolyte as a main component; and a second electrode that contains a substance and is formed on a second main surface of the solid electrolyte layer that faces the first main surface.
  • a plurality of units may be stacked, with the solid electrolyte layer, the first electrode, and the second electrode forming one unit.
  • one of the first electrode and the second electrode may contain a positive electrode active material, and the other may contain a negative electrode active material.
  • the method for producing an all-solid-state battery according to the present invention is represented by a composition formula of Li 1+y Ta 2-x M x PO 8 , satisfies the relationship 0 ⁇ x ⁇ 0.5, and M has a lower valence than Ta.
  • a green sheet containing a solid electrolyte powder that is an element and y (5 ⁇ A) when the valence of M is A; and a first electrode layer formed on the first main surface of the green sheet preparing a laminate having a paste coating and a second electrode layer paste coating formed on the second main surface of the green sheet; and firing the laminate. It is characterized by
  • the firing temperature in the firing step may be 500°C or higher and 900°C or lower.
  • the present invention it is possible to provide a solid electrolyte that exhibits high ion conductivity and that can be fired at a low temperature, an all-solid battery, a method for producing a solid electrolyte, and a method for producing an all-solid battery.
  • FIG. 10 is a diagram illustrating the flow of another method for manufacturing an all-solid-state battery
  • FIG. 1(a) is a schematic cross-sectional view showing the basic structure of an all-solid-state battery 100.
  • the all-solid battery 100 has a structure in which a solid electrolyte layer 30 is sandwiched between a first electrode 10 and a second electrode 20 .
  • the first electrode 10 is formed on the first main surface of the solid electrolyte layer 30 and has a structure in which the first electrode layer 11 and the first current collector layer 12 are laminated.
  • a first electrode layer 11 is provided.
  • the second electrode 20 is formed on the second main surface of the solid electrolyte layer 30, has a structure in which a second electrode layer 21 and a second current collector layer 22 are laminated, and is provided on the solid electrolyte layer 30 side. A second electrode layer 21 is provided.
  • one of the first electrode 10 and the second electrode 20 is used as a positive electrode, and the other is used as a negative electrode.
  • the first electrode 10 is used as a positive electrode
  • the second electrode 20 is used as a negative electrode.
  • the solid electrolyte layer 30 is mainly composed of a solid electrolyte having ionic conductivity. As illustrated in FIG. 1B, the solid electrolyte layer 30 has a structure containing a plurality of solid electrolyte particles 31 as a main component ceramic.
  • LiTa 2 PO 8 may be used as the solid electrolyte particles 31 .
  • This LiTa 2 PO 8 exhibits a high ionic conductivity of 2.5 ⁇ 10 ⁇ 4 S/cm at room temperature.
  • the sintering temperature of LiTa 2 PO 8 is as high as 1050°C. Therefore, LiTa 2 PO 8 is very difficult to use because it causes an interdiffusion reaction with most of the active materials during firing of the all-solid-state battery.
  • LiTa 2 PO 8 and glass ceramics containing Li it is conceivable to combine LiTa 2 PO 8 and glass ceramics containing Li to obtain a solid electrolyte sintered body having a certain degree of ionic conductivity at a relatively low temperature.
  • the ionic conductivity of the solid electrolyte layer 30 in this case is lower than the ionic conductivity of the high ionic conductor LiTa 2 PO 8 alone.
  • by increasing the amount of Li it is possible to sinter at a low temperature. decreases.
  • a solid electrolyte represented by a composition formula of Li 1+x Ta 2-x M x PO 8 is used as the solid electrolyte particles 31 .
  • M is a metal element with a valence lower than that of pentavalent Ta.
  • part of the pentavalent Ta is substituted with a metal element having a low valence such as tetravalent or trivalent, and the amount of Li for charge compensation is increased according to the substitution amount of Ta. Therefore, the crystal structure of LiTa 2 PO 8 is maintained and the generation of secondary phases is suppressed. Thereby, good ionic conductivity can be obtained. Furthermore, the sintering temperature can be lowered by increasing the amount of Li.
  • M is, for example, at least one of Zr, Ti, Ge, Hf, Sn, Y, B, Al and Ga.
  • x preferably satisfies the relationship of 0.02 ⁇ x, more preferably 0.05 ⁇ x, from the viewpoint of increasing the amount of Li. preferable. From the viewpoint of suppressing the secondary phase amount, x preferably satisfies the relationship of x ⁇ 0.4, and more preferably satisfies the relationship of x ⁇ 0.3.
  • the solid electrolyte particles 31 have a crystal structure belonging to a monoclinic system as a result of XRD (X-ray diffraction) measurement.
  • "confirmed by XRD measurement that it belongs to a monoclinic crystal structure” means that the main peak is observed at least at 25.2 ° to 25.7 ° in XRD measurement using Cu K ⁇ as a radiation source. , and subpeaks of diffraction peak intensity of 30% to 70% of the main peak intensity in the three ranges of 20.2 ° to 20.7 °, 24.6 ° to 25.1 ° and 34.6 ° to 35.1 ° is observed.
  • the average grain diameter of the solid electrolyte particles 31 is preferably 0.3 ⁇ m or more, more preferably 0.6 ⁇ m or more, and even more preferably 1.2 ⁇ m or more.
  • the average grain diameter of the solid electrolyte particles 31 is preferably 22 ⁇ m or less, more preferably 12 ⁇ m or less, and even more preferably 6 ⁇ m or less.
  • the average grain diameter of the solid electrolyte particles 31 is obtained by measuring the horizontal or vertical Ferret diameter of 50 solid electrolyte particles 31 specified by EDS mapping in the cross section of the solid electrolyte layer 30, and averaging the diameter. It can be measured by giving a value.
  • the thickness of the solid electrolyte layer 30 is, for example, in the range of 1 ⁇ m to 30 ⁇ m, in the range of 2 ⁇ m to 25 ⁇ m, and in the range of 5 ⁇ m to 20 ⁇ m.
  • the positive electrode active material of the first electrode 10 is not particularly limited, but LiCoPO 4 , Li 2 CoP 2 O 7 , Li 6 Co 5 (P 2 O 7 ) 4 and the like can be mentioned.
  • LiCoPO 4 Li 2 CoP 2 O 7
  • Li 6 Co 5 (P 2 O 7 ) 4 and the like can be mentioned.
  • prior art in secondary batteries can be referred to as appropriate. compounds such as
  • a solid electrolyte having ionic conductivity, a conductive material (conductive aid) such as carbon or metal, and the like are further added.
  • a conductive material such as carbon or metal, and the like.
  • an electrode layer paste can be obtained by uniformly dispersing a binder and a plasticizer in water or an organic solvent.
  • the metal of the conductive aid include Pd, Ni, Cu, Fe, and alloys containing these.
  • the first current collector layer 12 and the second current collector layer 22 are mainly composed of a conductive material.
  • a conductive material for example, metal, carbon, or the like can be used as the conductive material of the first current collector layer 12 and the second current collector layer 22 .
  • FIG. 2 is a schematic cross-sectional view of a stacked all-solid-state battery 100a in which a plurality of battery units are stacked.
  • the all-solid-state battery 100a includes a laminated chip 60 having a substantially rectangular parallelepiped shape.
  • the first external electrode 40a and the second external electrode 40b are provided so as to be in contact with two side surfaces of the four surfaces other than the top surface and the bottom surface of the stacking direction end.
  • the two side surfaces may be two adjacent side surfaces or two side surfaces facing each other.
  • the first external electrode 40a and the second external electrode 40b are provided so as to be in contact with two side surfaces (hereinafter referred to as two end surfaces) facing each other.
  • a plurality of first collector layers 12 and a plurality of second collector layers 22 are alternately laminated. Edges of the plurality of first current collector layers 12 are exposed on the first end face of the laminated chip 60 and are not exposed on the second end face. Edges of the plurality of second current collector layers 22 are exposed on the second end surface of the laminated chip 60 and are not exposed on the first end surface. Thereby, the first current collector layer 12 and the second current collector layer 22 are alternately connected to the first external electrode 40a and the second external electrode 40b.
  • a first electrode layer 11 is laminated on the first collector layer 12 .
  • a solid electrolyte layer 30 is laminated on the first electrode layer 11 .
  • the solid electrolyte layer 30 extends from the first external electrode 40a to the second external electrode 40b.
  • a second electrode layer 21 is laminated on the solid electrolyte layer 30 .
  • a second collector layer 22 is laminated on the second electrode layer 21 .
  • Another second electrode layer 21 is laminated on the second collector layer 22 .
  • Another solid electrolyte layer 30 is laminated on the second electrode layer 21 .
  • the solid electrolyte layer 30 extends from the first external electrode 40a to the second external electrode 40b.
  • a first electrode layer 11 is laminated on the solid electrolyte layer 30 .
  • the first current collector layer 12 and the two first electrode layers 11 sandwiching it are regarded as one electrode
  • the second current collector layer 22 and the two second electrode layers 21 sandwiching it are regarded as one electrode.
  • the laminated chip 60 can be said to have a structure in which a plurality of internal electrodes and a plurality of solid electrolyte layers are alternately laminated.
  • the all-solid-state battery 100a does not have to have a collector layer.
  • the first current collector layer 12 and the second current collector layer 22 may not be provided.
  • only the first electrode layer 11 constitutes the first electrode 10
  • only the second electrode layer 21 constitutes the second electrode 20 .
  • FIG. 4 is a diagram illustrating the flow of the method for manufacturing the all-solid-state battery 100a.
  • a solid electrolyte powder for obtaining the above-described solid electrolyte particles 31 is prepared.
  • the raw material powder of the solid electrolyte particles 31 represented by the composition formula of Li 1+x Ta 2-x M x PO 8 is, for example, Li, Ta, P, and M, which is a metal element with a lower valence than Ta. is synthesized by a solid-phase synthesis method from a raw material containing For example, Li 3 PO 4 , Ta 2 O 5 , NH 4 H 2 PO 4 and an oxide of M are mixed in a predetermined molar ratio and heat-treated at about 900° C. in air. If M is trivalent, the oxide of M is M2O3 .
  • the oxide of M is MO2 .
  • the main heat treatment is performed again at 1100° C. or less.
  • the obtained powder is pulverized to a desired particle size with a wet ball mill.
  • the average particle size of the obtained raw material powder is large, it becomes difficult to make the solid electrolyte layer 30 thin and smooth. Therefore, it is preferable to set an upper limit for the average particle size of the raw material powder.
  • the average particle size of the raw material powder is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less. If the average particle size of the raw material powder to be obtained is small, it becomes difficult to handle, and there is a risk of causing aggregation of the particles. Therefore, it is preferable to set a lower limit for the average particle size of the raw material powder.
  • the average particle size of the raw material powder is preferably 0.2 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 1 ⁇ m or more.
  • Solid electrolyte green sheet manufacturing process Next, the obtained powder is uniformly dispersed in an aqueous solvent or an organic solvent together with a binder, a dispersant, a plasticizer, etc., and wet pulverized to obtain a solid electrolyte slurry having a desired average particle size.
  • a bead mill, a wet jet mill, various kneaders, a high-pressure homogenizer, or the like can be used, and it is preferable to use a bead mill from the viewpoint of being able to simultaneously adjust the particle size distribution and disperse.
  • a binder is added to the obtained solid electrolyte slurry to obtain a solid electrolyte paste.
  • a solid electrolyte green sheet By applying the obtained solid electrolyte paste, a solid electrolyte green sheet can be produced.
  • the coating method is not particularly limited, and a slot die method, a reverse coating method, a gravure coating method, a bar coating method, a doctor blade method, or the like can be used.
  • the particle size distribution after wet pulverization can be measured, for example, using a laser diffraction measurement device using a laser diffraction scattering method.
  • an internal electrode paste for producing the above-described first electrode layer 11 and second electrode layer 21 is produced.
  • an internal electrode paste can be obtained by uniformly dispersing a conductive aid, an electrode active material, a solid electrolyte material, a binder, a plasticizer, and the like in water or an organic solvent.
  • the solid electrolyte material the solid electrolyte paste described above may be used.
  • Pd, Ni, Cu, Fe, alloys containing these, various carbon materials, and the like may further be used as conductive aids.
  • each internal electrode paste may be prepared separately.
  • a current collector paste for manufacturing the above-described first current collector layer 12 and second current collector layer 22 is prepared.
  • a current collector paste can be obtained by uniformly dispersing Pd powder, carbon black, plate-like graphite carbon, a binder, a dispersant, a plasticizer, and the like in water or an organic solvent.
  • an external electrode paste for producing the first external electrode 40a and the second external electrode 40b is prepared.
  • an external electrode paste can be obtained by uniformly dispersing a conductive material, an electrode active material, a solid electrolyte, a binder, a plasticizer, and the like in water or an organic solvent.
  • a laminate process As illustrated in FIG. 5A, on one surface of a solid electrolyte green sheet 51, an internal electrode paste 52, a current collector paste 53, and an internal electrode paste 52 are printed.
  • a reverse pattern 54 is printed on a region of the solid electrolyte green sheet 51 where the internal electrode paste 52 and the current collector paste 53 are not printed. As the reverse pattern 54, the same one as the solid electrolyte green sheet 51 can be used.
  • a laminate is obtained by stacking a plurality of solid electrolyte green sheets 51 alternately after printing, and crimping a cover sheet 55 in which a plurality of solid electrolyte green sheets are bonded together from above and below in the stacking direction.
  • a substantially rectangular parallelepiped laminate is obtained so that pairs of the internal electrode paste 52 and the current collector paste 53 are alternately exposed on the two end surfaces of the laminate.
  • an external electrode paste 56 is applied to each of the two end faces by a dipping method or the like and dried. Thereby, a molding for forming the all-solid-state battery 100a is obtained.
  • the firing conditions include, without particular limitation, an oxidizing atmosphere or a non-oxidizing atmosphere and a maximum temperature of preferably 500°C to 900°C, more preferably 600°C to 800°C.
  • a step of holding below the maximum temperature in an oxidizing atmosphere may be provided to sufficiently remove the binder until the maximum temperature is reached.
  • reoxidation treatment may be performed.
  • the step of applying the current collector paste 53 in the step of FIG. 5(a) may be omitted.
  • FIG. 6 is a flowchart illustrating the manufacturing method in this case.
  • the external electrode paste 56 is not applied in the stacking process, and the external electrode paste 56 is applied to the two end faces of the laminated chip 60 obtained in the firing process and baked. Thereby, the first external electrode 40a and the second external electrode 40b can be formed.
  • the solid electrolyte represented by the composition formula of Li 1+x Ta 2-x M x PO 8 is used as the raw material powder synthesized for the solid electrolyte particles 31 .
  • M is a metal element with a valence lower than that of pentavalent Ta.
  • a part of the pentavalent Ta is substituted with a metal element having a low valence such as tetravalent or trivalent, and the amount of Li for charge compensation is increased according to the substitution amount of Ta. Therefore, the crystal structure of LiTa 2 PO 8 is maintained and the generation of secondary phases is suppressed. Thereby, good ionic conductivity can be obtained.
  • the sintering temperature can be lowered by increasing the amount of Li. From the above, it is possible to exhibit high ion conductivity and to perform low-temperature firing.
  • Example 1 Li 1+x Ta 2-x Zr x PO 8 in which part of Ta in crystalline LiTa 2 PO 8 was replaced with Zr was synthesized by a solid-phase synthesis method.
  • Synthetic powder is dispersed in a mixed solvent of ethanol and toluene, and organic binder is mixed well to prepare a slurry.
  • This slurry is spread on a PET film that has been subjected to surface release treatment with a doctor blade, and then heated and dried to form a green sheet. got Forty green sheets were laminated and pressure-bonded, and the small pieces were sintered at various temperatures in the atmosphere to be degreased and sintered.
  • Au electrodes were formed on both sides of the sintered body by Au sputtering, and ion conductivity (total conductivity ⁇ ) was evaluated at 25° C. by an AC impedance method. The highest densification temperature was 950° C. and ⁇ was 5.3 ⁇ 10 ⁇ 5 S/cm.
  • x 0.5 in the composition of Li 1+x Ta 2-x Zr x PO 8 .
  • XRD measurement of the synthetic powder in addition to the monoclinic crystal phase similar to LiTa 2 PO 8 , many diffraction peaks attributed to secondary phases were observed.
  • the highest densification temperature was 900° C. and ⁇ was 8.5 ⁇ 10 ⁇ 6 S/cm.
  • Example 2 Synthetic powder and sintered pellets were obtained in the same manner as in Example 1, except that crystalline LiTa2PO8 was synthesized using Li3PO4 , Ta2O5 , ZrO2 , and NH4H2PO4 as starting materials . rice field. From the results of XRD measurement of the synthetic powder, it was confirmed that the monoclinic crystal phase was the main phase. The highest densification temperature was 1050° C. and ⁇ was 6.2 ⁇ 10 ⁇ 5 S/cm.
  • Table 1 shows the results of Examples 1 to 3 and Comparative Examples 1 and 2.
  • the sinterability if the most densified temperature (densification temperature) was 950°C or less, it was judged to be acceptable, and if it exceeded 950°C, it was judged to be unsatisfactory.
  • the ionic conductivity if the ionic conductivity is 1.0 ⁇ 10 -5 S / cm or more, it is judged to be passed " ⁇ ", and if it is less than 1.0 ⁇ 10 -5 S / cm, it is judged to be unsatisfactory " ⁇ ” was determined. When both the sinterability and the ionic conductivity were determined to be acceptable, the comprehensive evaluation was made as "good”. When at least one of the sinterability and ionic conductivity was judged to be unacceptable, the overall judgment was set as unacceptable "x”.

Abstract

This solid electrolyte is characterized by being represented by the compositional formula Li1+yTa2-xMxPO8, where x satisfies 0<x<0.5, M is an element having a lower valence than Ta, and when the valence of M is defined as A, y=(5-A)x. 

Description

固体電解質、全固体電池、固体電解質の製造方法、および全固体電池の製造方法Solid electrolyte, all-solid battery, method for producing solid electrolyte, and method for producing all-solid battery
 本発明は、固体電解質、全固体電池、固体電解質の製造方法、および全固体電池の製造方法に関する。 The present invention relates to a solid electrolyte, an all-solid battery, a method for producing a solid electrolyte, and a method for producing an all-solid battery.
 近年、二次電池が様々な分野で利用されている。電解液を用いた二次電池には、電解液の漏液等の問題がある。そこで、固体電解質を備え、他の構成要素も固体で構成した全固体電池の開発が行われている。 In recent years, secondary batteries have been used in various fields. A secondary battery using an electrolytic solution has problems such as leakage of the electrolytic solution. Therefore, development of an all-solid-state battery in which a solid electrolyte is provided and other components are also solid is being developed.
 固体電解質として、室温で高いイオン伝導性を有する硫化物系、大気中でより安定性の高い酸化物系に加え、ポリマー系や水素化物系などが種々知られている。酸化物系固体電解質は、大気中での高い安定性・安全性という点で他の化合物系に対して有利である一方、機械的物性として硬く、イオン伝導を発現させるためには高温で焼成することで粒子同士を焼結して界面抵抗を下げる必要があることが最大の課題である。 Various types of solid electrolytes are known, including sulfides, which have high ionic conductivity at room temperature, and oxides, which are more stable in the atmosphere, as well as polymers and hydrides. Oxide-based solid electrolytes are advantageous over other compound systems in terms of high stability and safety in the atmosphere. Therefore, the biggest problem is that it is necessary to sinter the particles to lower the interfacial resistance.
 比較的高いイオン伝導性を有する酸化物系固体電解質として、Li-La-Zr-O系等のガーネット型、Li-La-Ti-O系等のペロブスカイト型、Li-Al-Ti-P-O系やLi-Al-Ge-P-O系のNASICON型などが広く知られている。また、近年報告されているLi-Ta-P-O系の化合物(例えば、非特許文献1のLiTaPO)も高いイオン伝導性を示すことが報告されている。これらは、イオン伝導が高い反面、機械的に硬く、一般的に高い焼成温度が必要である。 As oxide-based solid electrolytes having relatively high ion conductivity, garnet type such as Li-La-Zr-O system, perovskite type such as Li-La-Ti-O system, Li-Al-Ti-P-O system and Li--Al--Ge--P--O system NASICON type and the like are widely known. In addition, recently reported Li--Ta--P--O compounds (for example, LiTa 2 PO 8 in Non-Patent Document 1) are also reported to exhibit high ionic conductivity. Although they have high ionic conductivity, they are mechanically hard and generally require high firing temperatures.
 一方、低温での焼成に向いた材料として、Li-Ge-O系のLISICON型や、Li-Si-O系、Li-B-O系、Li-S-O系、Li-P-O系やこれらを組み合わせたガラスセラミックス系が開示されている(例えば、特許文献1,2参照)。 On the other hand, as materials suitable for firing at low temperatures, Li-Ge-O-based LISICON type, Li-Si-O-based, Li-BO-based, Li-SO-based, Li-PO-based and glass-ceramic systems in which these are combined have been disclosed (see Patent Documents 1 and 2, for example).
特開2000-26135号公報JP-A-2000-26135 特開2019-46559号公報JP 2019-46559 A
 非特許文献1に記載されるLiTaPOは、室温で2.5×10-4S/cmと高いイオン伝導性を示すが、焼結温度が1050℃と高く、全固体電池を形成しようとすると焼成時にほとんどの活物質と相互拡散反応を起こしてしまうことから非常に使用しづらい。 LiTa 2 PO 8 described in Non-Patent Document 1 exhibits a high ionic conductivity of 2.5×10 −4 S/cm at room temperature, but has a high sintering temperature of 1050° C., and is expected to form an all-solid-state battery. As a result, interdiffusion reactions occur with most of the active materials during firing, making it extremely difficult to use.
 一方、特許文献1,2で開示されているようなガラスセラミックス系は、比較的低温焼成が可能であるが、イオン伝導性が低いことが課題である。 On the other hand, the glass-ceramics disclosed in Patent Documents 1 and 2 can be sintered at relatively low temperatures, but have the problem of low ionic conductivity.
 これらを組み合わせて比較的低温である程度のイオン伝導性の固体電解質焼結体を得ることも可能であるが、高イオン伝導体のLiTaPO単体でのイオン伝導性に比較すると低下してしまう。また、Li量を増やすことで、より低温で焼結させることも可能であるが、Li過剰とすることでLiTaPOの結晶構造が保持しにくく二次相が生成してしまい、結果としてイオン伝導性が低下してしまう。 Although it is possible to obtain a solid electrolyte sintered body with a certain degree of ionic conductivity at a relatively low temperature by combining these, the ionic conductivity is lower than that of the high ionic conductor LiTa 2 PO 8 alone. . In addition, it is possible to sinter at a lower temperature by increasing the amount of Li, but if the amount of Li is excessive, the crystal structure of LiTa 2 PO 8 is difficult to maintain and a secondary phase is generated. Ionic conductivity decreases.
 本発明は、上記課題に鑑みなされたものであり、高いイオン伝導性を発現するとともに低温焼成可能な固体電解質、全固体電池、固体電解質の製造方法および全固体電池の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and aims to provide a solid electrolyte exhibiting high ionic conductivity and capable of being fired at a low temperature, an all-solid battery, a method for producing a solid electrolyte, and a method for producing an all-solid battery. aim.
 本発明に係る固体電解質は、Li1+yTa2-xPOの組成式で表され、xは、0<x<0.5を満たし、Mは、Taよりも価数の低い元素であり、Mの価数をAとしたとき、y=(5-A)xであることを特徴とする。 The solid electrolyte according to the present invention is represented by a composition formula of Li 1+y Ta 2-x M x PO 8 , where x satisfies 0<x<0.5, and M is an element with a lower valence than Ta. and y=(5−A)x, where A is the valence of M.
 上記固体電解質において、Mは、Zr、Ti、Ge、Hf、Sn、Y、B、Al、Gaの少なくとも1種以上としてもよい。 In the above solid electrolyte, M may be at least one of Zr, Ti, Ge, Hf, Sn, Y, B, Al, and Ga.
 上記固体電解質において、xは、0<x≦0.3を満たしてもよい。 In the above solid electrolyte, x may satisfy 0<x≦0.3.
 上記固体電解質において、XRD測定の結果で、単斜晶に帰属する結晶構造を有することが確認されてもよい。 It may be confirmed from the results of XRD measurement that the solid electrolyte has a crystal structure belonging to a monoclinic system.
 上記固体電解質において、平均粒径が0.2μm以上、20μm以下であってもよい。 In the above solid electrolyte, the average particle size may be 0.2 μm or more and 20 μm or less.
 本発明に係る全固体電池は、上記の固体電解質を主成分として含む固体電解質層と、電極活物質を含み、前記固体電解質層の第1主面上に形成された第1電極と、電極活物質を含み、前記固体電解質層の前記第1主面に対向する第2主面上に形成された第2電極と、を備えることを特徴とする。 An all-solid-state battery according to the present invention includes a solid electrolyte layer containing the solid electrolyte as a main component; and a second electrode that contains a substance and is formed on a second main surface of the solid electrolyte layer that faces the first main surface.
 上記全固体電池において、前記固体電解質層、前記第1電極および前記第2電極を一つの単位として、前記単位が複数積み重ねられていてもよい。 In the above all-solid-state battery, a plurality of units may be stacked, with the solid electrolyte layer, the first electrode, and the second electrode forming one unit.
 上記全固体電池において、前記第1電極および前記第2電極のうち、一方は正極活物質を含み、他方は負極活物質を含んでいてもよい。 In the all-solid-state battery, one of the first electrode and the second electrode may contain a positive electrode active material, and the other may contain a negative electrode active material.
 本発明に係る固体電解質の製造方法は、Liと、Taと、Pと、Taよりも価数の低い元素であるMと、を含む原料から、Li1+yTa2-xPOの組成式で表され、0<x<0.5の関係を満たし、Mの価数をAとしたときにy=(5-A)xである酸化物型の固体電解質を、1100℃以下で合成することを特徴とする。 In the method for producing a solid electrolyte according to the present invention, a composition of Li 1+y Ta 2-x M x PO 8 is prepared from a raw material containing Li, Ta, P, and M, which is an element with a lower valence than Ta. Synthesize at 1100 ° C. or less an oxide-type solid electrolyte represented by the formula that satisfies the relationship 0<x<0.5 and has y = (5-A) x where A is the valence of M. characterized by
 本発明に係る全固体電池の製造方法は、Li1+yTa2-xPOの組成式で表され、0<x<0.5の関係を満たし、MがTaよりも価数の低い元素であり、Mの価数をAとしたときにy=(5-A)である固体電解質粉末を含むグリーンシートと、前記グリーンシートの第1主面上に形成された第1電極層用ペースト塗布物と、前記グリーンシートの第2主面上に形成された第2電極層用ペースト塗布物と、を有する積層体を用意する工程と、前記積層体を焼成する焼成工程と、を含むことを特徴とする。 The method for producing an all-solid-state battery according to the present invention is represented by a composition formula of Li 1+y Ta 2-x M x PO 8 , satisfies the relationship 0<x<0.5, and M has a lower valence than Ta. A green sheet containing a solid electrolyte powder that is an element and y=(5−A) when the valence of M is A; and a first electrode layer formed on the first main surface of the green sheet preparing a laminate having a paste coating and a second electrode layer paste coating formed on the second main surface of the green sheet; and firing the laminate. It is characterized by
 上記全固体電池の製造方法において、前記焼成工程における焼成温度を、500℃以上900℃以下にしてもよい。 In the method for manufacturing an all-solid-state battery, the firing temperature in the firing step may be 500°C or higher and 900°C or lower.
 本発明によれば、高いイオン伝導を発現するとともに低温焼成可能な固体電解質、全固体電池、固体電解質の製造方法、および全固体電池の製造方法を提供することができる。 According to the present invention, it is possible to provide a solid electrolyte that exhibits high ion conductivity and that can be fired at a low temperature, an all-solid battery, a method for producing a solid electrolyte, and a method for producing an all-solid battery.
(a)は全固体電池の基本構造を示す模式的断面図であり、(b)は固体電解質層の模式的断面図である。(a) is a schematic cross-sectional view showing the basic structure of an all-solid-state battery, and (b) is a schematic cross-sectional view of a solid electrolyte layer. 実施形態に係る全固体電池の模式的断面図である。1 is a schematic cross-sectional view of an all-solid-state battery according to an embodiment; FIG. 他の全固体電池の模式的断面図である。FIG. 4 is a schematic cross-sectional view of another all-solid-state battery; 全固体電池の製造方法のフローを例示する図である。It is a figure which illustrates the flow of the manufacturing method of an all-solid-state battery. (a)および(b)は積層工程を例示する図である。(a) and (b) are figures which illustrate a lamination process. 全固体電池の他の製造方法のフローを例示する図である。FIG. 10 is a diagram illustrating the flow of another method for manufacturing an all-solid-state battery;
 以下、図面を参照しつつ、実施形態について説明する。 Embodiments will be described below with reference to the drawings.
(実施形態)
 図1(a)は、全固体電池100の基本構造を示す模式的断面図である。図1(a)で例示するように、全固体電池100は、第1電極10と第2電極20とによって、固体電解質層30が挟持された構造を有する。第1電極10は、固体電解質層30の第1主面上に形成されており、第1電極層11および第1集電体層12が積層された構造を有し、固体電解質層30側に第1電極層11を備える。第2電極20は、固体電解質層30の第2主面上に形成されており、第2電極層21および第2集電体層22が積層された構造を有し、固体電解質層30側に第2電極層21を備える。
(embodiment)
FIG. 1(a) is a schematic cross-sectional view showing the basic structure of an all-solid-state battery 100. FIG. As illustrated in FIG. 1( a ), the all-solid battery 100 has a structure in which a solid electrolyte layer 30 is sandwiched between a first electrode 10 and a second electrode 20 . The first electrode 10 is formed on the first main surface of the solid electrolyte layer 30 and has a structure in which the first electrode layer 11 and the first current collector layer 12 are laminated. A first electrode layer 11 is provided. The second electrode 20 is formed on the second main surface of the solid electrolyte layer 30, has a structure in which a second electrode layer 21 and a second current collector layer 22 are laminated, and is provided on the solid electrolyte layer 30 side. A second electrode layer 21 is provided.
 全固体電池100を二次電池として用いる場合には、第1電極10および第2電極20の一方を正極として用い、他方を負極として用いる。本実施形態においては、一例として、第1電極10を正極として用い、第2電極20を負極として用いるものとする。 When using the all-solid-state battery 100 as a secondary battery, one of the first electrode 10 and the second electrode 20 is used as a positive electrode, and the other is used as a negative electrode. In this embodiment, as an example, the first electrode 10 is used as a positive electrode, and the second electrode 20 is used as a negative electrode.
 固体電解質層30は、イオン伝導性を有する固体電解質を主成分とする。図1(b)で例示するように、固体電解質層30は、複数の固体電解質粒子31を主成分セラミックとして含む構造を有している。固体電解質粒子31として、例えば、LiTaPOを用いることが考えられる。このLiTaPOは、室温で2.5×10-4S/cmと高いイオン伝導性を示す。しかしながら、LiTaPOの焼結温度は、1050℃と高くなっている。したがって、LiTaPOは、全固体電池の焼成時にほとんどの活物質と相互拡散反応を起こしてしまうことから非常に使用しづらい。 The solid electrolyte layer 30 is mainly composed of a solid electrolyte having ionic conductivity. As illustrated in FIG. 1B, the solid electrolyte layer 30 has a structure containing a plurality of solid electrolyte particles 31 as a main component ceramic. For example, LiTa 2 PO 8 may be used as the solid electrolyte particles 31 . This LiTa 2 PO 8 exhibits a high ionic conductivity of 2.5×10 −4 S/cm at room temperature. However, the sintering temperature of LiTa 2 PO 8 is as high as 1050°C. Therefore, LiTa 2 PO 8 is very difficult to use because it causes an interdiffusion reaction with most of the active materials during firing of the all-solid-state battery.
 そこで、LiTaPOと、Liを含むガラスセラミックスとを組み合わせ、比較的低温で、ある程度のイオン伝導性を有する固体電解質焼結体を得ることが考えられる。しかしながら、この場合の固体電解質層30のイオン伝導性は、高イオン伝導体のLiTaPO単体でのイオン伝導性と比較すると低下してしまう。また、Li量を増やすことによって低温での焼結が可能となるが、Li過剰とすることでLiTaPOの結晶構造が保持しにくく二次相が生成してしまい、結果としてイオン伝導性が低下してしまう。 Therefore, it is conceivable to combine LiTa 2 PO 8 and glass ceramics containing Li to obtain a solid electrolyte sintered body having a certain degree of ionic conductivity at a relatively low temperature. However, the ionic conductivity of the solid electrolyte layer 30 in this case is lower than the ionic conductivity of the high ionic conductor LiTa 2 PO 8 alone. In addition, by increasing the amount of Li, it is possible to sinter at a low temperature. decreases.
 そこで、本実施形態においては、Li1+xTa2-xPOの組成式で表される固体電解質を、固体電解質粒子31として用いる。Mは、5価のTaよりも価数の低い金属元素である。上記組成は、5価のTaの一部が4価、3価などの価数の低い金属元素で置換され、Taの置換量に応じた電荷補償分のLi量を増加させた構成となる。したがって、LiTaPOの結晶構造が保持され、二次相の生成が抑制される。それにより、良好なイオン伝導性を得ることができる。さらに、Li量が多くなることで、焼結温度を低温化させることができる。以上のことから、高いイオン伝導性を発現するとともに低温焼成が可能となる。Li量を多くするために、xは、0<xの関係を満たす。また、xが大きすぎると二次相量が増えてしまうため、xは、x<0.5の関係を満たす。Mは、例えば、Zr、Ti、Ge、Hf、Sn、Y、B、Al、Gaの少なくとも1種以上である。 Therefore, in the present embodiment, a solid electrolyte represented by a composition formula of Li 1+x Ta 2-x M x PO 8 is used as the solid electrolyte particles 31 . M is a metal element with a valence lower than that of pentavalent Ta. In the above composition, part of the pentavalent Ta is substituted with a metal element having a low valence such as tetravalent or trivalent, and the amount of Li for charge compensation is increased according to the substitution amount of Ta. Therefore, the crystal structure of LiTa 2 PO 8 is maintained and the generation of secondary phases is suppressed. Thereby, good ionic conductivity can be obtained. Furthermore, the sintering temperature can be lowered by increasing the amount of Li. From the above, it becomes possible to exhibit high ionic conductivity and to perform low-temperature firing. In order to increase the amount of Li, x satisfies the relationship 0<x. Also, if x is too large, the amount of secondary phases increases, so x satisfies the relationship of x<0.5. M is, for example, at least one of Zr, Ti, Ge, Hf, Sn, Y, B, Al and Ga.
 Li1+xTa2-xPOの組成において、Li量を多くする観点から、xは、0.02≦xの関係を満たすことが好ましく、0.05≦xの関係を満たすことがより好ましい。二次相量を抑制する観点から、xは、x≦0.4の関係を満たすことが好ましく、x≦0.3の関係を満たすことがより好ましい。 In the composition of Li 1+x Ta 2−x M x PO 8 , x preferably satisfies the relationship of 0.02≦x, more preferably 0.05≦x, from the viewpoint of increasing the amount of Li. preferable. From the viewpoint of suppressing the secondary phase amount, x preferably satisfies the relationship of x≦0.4, and more preferably satisfies the relationship of x≦0.3.
 固体電解質粒子31は、XRD(X線回折)測定の結果として、単斜晶に帰属する結晶構造を有することが確認されることが好ましい。なお、「XRD測定で単斜晶の結晶構造に帰属することが確認される」とは、Cu Kαを線源とするXRD測定で少なくとも25.2°~25.7°にメインピークが観測され、さらに20.2°~20.7°と24.6°~25.1°と34.6°~35.1°の三範囲にメインピーク強度の30%~70%の回折ピーク強度のサブピークが観測されるというような結果が得られることを意味している。 It is preferable to confirm that the solid electrolyte particles 31 have a crystal structure belonging to a monoclinic system as a result of XRD (X-ray diffraction) measurement. In addition, "confirmed by XRD measurement that it belongs to a monoclinic crystal structure" means that the main peak is observed at least at 25.2 ° to 25.7 ° in XRD measurement using Cu Kα as a radiation source. , and subpeaks of diffraction peak intensity of 30% to 70% of the main peak intensity in the three ranges of 20.2 ° to 20.7 °, 24.6 ° to 25.1 ° and 34.6 ° to 35.1 ° is observed.
 固体電解質層30において、固体電解質粒子31の平均グレイン径が小さいと、イオン伝導低下のおそれがある。そこで、固体電解質粒子31の平均グレイン径に下限を設けることが好ましい。例えば、固体電解質粒子31の平均グレイン径は、0.3μm以上であることが好ましく、0.6μm以上であることがより好ましく、1.2μm以上であることがさらに好ましい。 In the solid electrolyte layer 30, if the average grain diameter of the solid electrolyte particles 31 is small, there is a risk of reduced ionic conductivity. Therefore, it is preferable to set a lower limit for the average grain diameter of the solid electrolyte particles 31 . For example, the average grain diameter of the solid electrolyte particles 31 is preferably 0.3 μm or more, more preferably 0.6 μm or more, and even more preferably 1.2 μm or more.
 固体電解質層30において、固体電解質粒子31の平均グレイン径が大きいと、焼結性低下のおそれがある。そこで、固体電解質粒子31の平均グレイン径に上限を設けることが好ましい。例えば、固体電解質粒子31の平均グレイン径は、22μm以下であることが好ましく、12μm以下であることがより好ましく、6μm以下であることがさらに好ましい。 In the solid electrolyte layer 30, if the average grain diameter of the solid electrolyte particles 31 is large, there is a risk of deterioration in sinterability. Therefore, it is preferable to set an upper limit for the average grain diameter of the solid electrolyte particles 31 . For example, the average grain diameter of the solid electrolyte particles 31 is preferably 22 μm or less, more preferably 12 μm or less, and even more preferably 6 μm or less.
 固体電解質粒子31の平均グレイン径は、例えば、固体電解質層30の断面におけるEDSマッピングで特定される固体電解質粒子31の50個について、水平あるいは垂直フェレ―径(Ferret Diameter)を測長し、平均値を出すというように測定することができる。 The average grain diameter of the solid electrolyte particles 31 is obtained by measuring the horizontal or vertical Ferret diameter of 50 solid electrolyte particles 31 specified by EDS mapping in the cross section of the solid electrolyte layer 30, and averaging the diameter. It can be measured by giving a value.
 なお、固体電解質層30の厚みは、例えば、1μm~30μmの範囲であり、2μm~25μmの範囲であり、5μm~20μmの範囲である。 The thickness of the solid electrolyte layer 30 is, for example, in the range of 1 μm to 30 μm, in the range of 2 μm to 25 μm, and in the range of 5 μm to 20 μm.
 第1電極10の正極活物質は、特に限定されないが、LiCoPOやLiCoPやLiCo(P等が挙げられる。第2電極20の負極活物質については、二次電池における従来技術を適宜参照することができ、例えば、チタン酸化物、リチウムチタン複合酸化物、リチウムチタン複合リン酸塩、カーボン、リン酸バナジウムリチウムなどの化合物が挙げられる。 The positive electrode active material of the first electrode 10 is not particularly limited, but LiCoPO 4 , Li 2 CoP 2 O 7 , Li 6 Co 5 (P 2 O 7 ) 4 and the like can be mentioned. Regarding the negative electrode active material of the second electrode 20, prior art in secondary batteries can be referred to as appropriate. compounds such as
 第1電極層11および第2電極層21の作製においては、これら電極活物質に加えて、イオン伝導性を有する固体電解質や、カーボンや金属といった導電性材料(導電助剤)などをさらに添加してもよい。これらの部材については、バインダと可塑剤を水あるいは有機溶剤に均一分散させることで電極層用ペーストを得ることができる。導電助剤の金属としては、Pd、Ni、Cu、Fe、これらを含む合金などが挙げられる。 In the production of the first electrode layer 11 and the second electrode layer 21, in addition to these electrode active materials, a solid electrolyte having ionic conductivity, a conductive material (conductive aid) such as carbon or metal, and the like are further added. may For these members, an electrode layer paste can be obtained by uniformly dispersing a binder and a plasticizer in water or an organic solvent. Examples of the metal of the conductive aid include Pd, Ni, Cu, Fe, and alloys containing these.
 第1集電体層12および第2集電体層22は、導電性材料を主成分とする。例えば、第1集電体層12および第2集電体層22の導電性材料として、金属、カーボンなどを用いることができる。 The first current collector layer 12 and the second current collector layer 22 are mainly composed of a conductive material. For example, metal, carbon, or the like can be used as the conductive material of the first current collector layer 12 and the second current collector layer 22 .
 図2は、複数の電池単位が積層された積層型の全固体電池100aの模式的断面図である。全固体電池100aは、略直方体形状を有する積層チップ60を備える。積層チップ60において、積層方向端の上面および下面以外の4面のうちの2面である2側面に接するように、第1外部電極40aおよび第2外部電極40bが設けられている。当該2側面は、隣接する2側面であってもよく、互いに対向する2側面であってもよい。本実施形態においては、互いに対向する2側面(以下、2端面と称する)に接するように第1外部電極40aおよび第2外部電極40bが設けられているものとする。 FIG. 2 is a schematic cross-sectional view of a stacked all-solid-state battery 100a in which a plurality of battery units are stacked. The all-solid-state battery 100a includes a laminated chip 60 having a substantially rectangular parallelepiped shape. In the laminated chip 60, the first external electrode 40a and the second external electrode 40b are provided so as to be in contact with two side surfaces of the four surfaces other than the top surface and the bottom surface of the stacking direction end. The two side surfaces may be two adjacent side surfaces or two side surfaces facing each other. In the present embodiment, the first external electrode 40a and the second external electrode 40b are provided so as to be in contact with two side surfaces (hereinafter referred to as two end surfaces) facing each other.
 以下の説明において、全固体電池100と同一の組成範囲、同一の厚み範囲、および同一の粒度分布範囲を有するものについては、同一符号を付すことで詳細な説明を省略する。 In the following description, those having the same composition range, the same thickness range, and the same particle size distribution range as the all-solid-state battery 100 are denoted by the same reference numerals, and detailed description thereof is omitted.
 全固体電池100aにおいては、複数の第1集電体層12と複数の第2集電体層22とが、交互に積層されている。複数の第1集電体層12の端縁は、積層チップ60の第1端面に露出し、第2端面には露出していない。複数の第2集電体層22の端縁は、積層チップ60の第2端面に露出し、第1端面には露出していない。それにより、第1集電体層12および第2集電体層22は、第1外部電極40aと第2外部電極40bとに、交互に導通している。 In the all-solid-state battery 100a, a plurality of first collector layers 12 and a plurality of second collector layers 22 are alternately laminated. Edges of the plurality of first current collector layers 12 are exposed on the first end face of the laminated chip 60 and are not exposed on the second end face. Edges of the plurality of second current collector layers 22 are exposed on the second end surface of the laminated chip 60 and are not exposed on the first end surface. Thereby, the first current collector layer 12 and the second current collector layer 22 are alternately connected to the first external electrode 40a and the second external electrode 40b.
 第1集電体層12上には、第1電極層11が積層されている。第1電極層11上には、固体電解質層30が積層されている。固体電解質層30は、第1外部電極40aから第2外部電極40bにかけて延在している。固体電解質層30上には、第2電極層21が積層されている。第2電極層21上には、第2集電体層22が積層されている。第2集電体層22上には、別の第2電極層21が積層されている。当該第2電極層21上には、別の固体電解質層30が積層されている。当該固体電解質層30は、第1外部電極40aから第2外部電極40bにかけて延在している。当該固体電解質層30上には、第1電極層11が積層されている。全固体電池100aにおいては、これらの積層単位が繰り返されている。それにより、全固体電池100aは、複数の電池単位が積層された構造を有している。 A first electrode layer 11 is laminated on the first collector layer 12 . A solid electrolyte layer 30 is laminated on the first electrode layer 11 . The solid electrolyte layer 30 extends from the first external electrode 40a to the second external electrode 40b. A second electrode layer 21 is laminated on the solid electrolyte layer 30 . A second collector layer 22 is laminated on the second electrode layer 21 . Another second electrode layer 21 is laminated on the second collector layer 22 . Another solid electrolyte layer 30 is laminated on the second electrode layer 21 . The solid electrolyte layer 30 extends from the first external electrode 40a to the second external electrode 40b. A first electrode layer 11 is laminated on the solid electrolyte layer 30 . These stacking units are repeated in the all-solid-state battery 100a. Accordingly, the all-solid-state battery 100a has a structure in which a plurality of battery units are stacked.
 なお、第1集電体層12と、それを挟む2層の第1電極層11を1つの電極と捉え、第2集電体層22と、それを挟む2層の第2電極層21を1つの電極と捉えると、積層チップ60は、複数の内部電極と複数の固体電解質層とが、交互に積層された構造を有していると言える。 The first current collector layer 12 and the two first electrode layers 11 sandwiching it are regarded as one electrode, and the second current collector layer 22 and the two second electrode layers 21 sandwiching it are regarded as one electrode. Considering one electrode, the laminated chip 60 can be said to have a structure in which a plurality of internal electrodes and a plurality of solid electrolyte layers are alternately laminated.
 全固体電池100aは、集電体層を備えていなくてもよい。例えば、図3で例示するように、第1集電体層12および第2集電体層22は設けられていなくてもよい。この場合、第1電極層11だけで第1電極10が構成され、第2電極層21だけで第2電極20が構成される。 The all-solid-state battery 100a does not have to have a collector layer. For example, as illustrated in FIG. 3, the first current collector layer 12 and the second current collector layer 22 may not be provided. In this case, only the first electrode layer 11 constitutes the first electrode 10 , and only the second electrode layer 21 constitutes the second electrode 20 .
 続いて、図2で例示した全固体電池100aの製造方法について説明する。図4は、全固体電池100aの製造方法のフローを例示する図である。 Next, a method for manufacturing the all-solid-state battery 100a illustrated in FIG. 2 will be described. FIG. 4 is a diagram illustrating the flow of the method for manufacturing the all-solid-state battery 100a.
 (セラミック原料粉末作製工程)
 まず、上述の固体電解質粒子31を得るための固体電解質粉末を作製する。
Li1+xTa2-xPOの組成式で表される固体電解質粒子31の原料粉末は、例えば、Liと、Taと、Pと、Taよりも価数の低い金属元素であるMと、を含む原料から、固相合成法にて合成する。例えば、LiPOと、Taと、NHPOと、Mの酸化物とを所定のモル比で混合し、大気中900℃程度で熱処理する。Mが3価であれば、Mの酸化物はMである。Mが4価であれば、Mの酸化物はMOである。得られた反応物を擂潰混合後、再度1100℃以下で本熱処理する。得られた粉末は、湿式ボールミルで所望の粒子径まで粉砕処理する。
(Ceramic raw material powder preparation process)
First, a solid electrolyte powder for obtaining the above-described solid electrolyte particles 31 is prepared.
The raw material powder of the solid electrolyte particles 31 represented by the composition formula of Li 1+x Ta 2-x M x PO 8 is, for example, Li, Ta, P, and M, which is a metal element with a lower valence than Ta. is synthesized by a solid-phase synthesis method from a raw material containing For example, Li 3 PO 4 , Ta 2 O 5 , NH 4 H 2 PO 4 and an oxide of M are mixed in a predetermined molar ratio and heat-treated at about 900° C. in air. If M is trivalent, the oxide of M is M2O3 . If M is tetravalent, the oxide of M is MO2 . After the obtained reactant is ground and mixed, the main heat treatment is performed again at 1100° C. or less. The obtained powder is pulverized to a desired particle size with a wet ball mill.
 得られる原料粉末の平均粒径が大きいと、固体電解質層30を薄く平滑にしにくくなる。そこで、原料粉末の平均粒径に上限を設けることが好ましい。例えば、原料粉末の平均粒径は、20μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることがさらに好ましい。得られる原料粉末の平均粒径が小さいと、ハンドリングが困難となり、粒子同士の凝集を招くおそれがある。そこで、原料粉末の平均粒径に下限を設けることが好ましい。例えば、原料粉末の平均粒径は、0.2μm以上であることが好ましく、0.5μm以上であることがより好ましく、1μm以上であることがさらに好ましい。 If the average particle size of the obtained raw material powder is large, it becomes difficult to make the solid electrolyte layer 30 thin and smooth. Therefore, it is preferable to set an upper limit for the average particle size of the raw material powder. For example, the average particle size of the raw material powder is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less. If the average particle size of the raw material powder to be obtained is small, it becomes difficult to handle, and there is a risk of causing aggregation of the particles. Therefore, it is preferable to set a lower limit for the average particle size of the raw material powder. For example, the average particle size of the raw material powder is preferably 0.2 μm or more, more preferably 0.5 μm or more, and even more preferably 1 μm or more.
 (固体電解質グリーンシート作製工程)
 次に、得られた粉末を、結着材、分散剤、可塑剤などとともに、水性溶媒あるいは有機溶媒に均一に分散させて、湿式粉砕を行うことで、所望の平均粒径を有する固体電解質スラリを得る。このとき、ビーズミル、湿式ジェットミル、各種混錬機、高圧ホモジナイザーなどを用いることができ、粒度分布の調整と分散とを同時に行うことができる観点からビーズミルを用いることが好ましい。得られた固体電解質スラリにバインダを添加して固体電解質ペーストを得る。得られた固体電解質ペーストを塗工することで、固体電解質グリーンシートを作製することができる。塗工方法は、特に限定されるものではなく、スロットダイ方式、リバースコート方式、グラビアコート方式、バーコート方式、ドクターブレード方式などを用いることができる。湿式粉砕後の粒度分布は、例えば、レーザ回折散乱法を用いたレーザ回折測定装置を用いて測定することができる。
(Solid electrolyte green sheet manufacturing process)
Next, the obtained powder is uniformly dispersed in an aqueous solvent or an organic solvent together with a binder, a dispersant, a plasticizer, etc., and wet pulverized to obtain a solid electrolyte slurry having a desired average particle size. get At this time, a bead mill, a wet jet mill, various kneaders, a high-pressure homogenizer, or the like can be used, and it is preferable to use a bead mill from the viewpoint of being able to simultaneously adjust the particle size distribution and disperse. A binder is added to the obtained solid electrolyte slurry to obtain a solid electrolyte paste. By applying the obtained solid electrolyte paste, a solid electrolyte green sheet can be produced. The coating method is not particularly limited, and a slot die method, a reverse coating method, a gravure coating method, a bar coating method, a doctor blade method, or the like can be used. The particle size distribution after wet pulverization can be measured, for example, using a laser diffraction measurement device using a laser diffraction scattering method.
 (内部電極用ペースト作製工程)
 次に、上述の第1電極層11および第2電極層21の作製用の内部電極用ペーストを作製する。例えば、導電助剤、電極活物質、固体電解質材料、バインダ、可塑剤などを水あるいは有機溶剤に均一分散させることで内部電極用ペーストを得ることができる。固体電解質材料として、上述した固体電解質ペーストを用いてもよい。導電助剤として、Pd、Ni、Cu、Fe、これらを含む合金や各種カーボン材料などをさらに用いてもよい。第1電極層11と第2電極層21とで組成が異なる場合には、それぞれの内部電極用ペーストを個別に作製すればよい。
(Internal electrode paste preparation process)
Next, an internal electrode paste for producing the above-described first electrode layer 11 and second electrode layer 21 is produced. For example, an internal electrode paste can be obtained by uniformly dispersing a conductive aid, an electrode active material, a solid electrolyte material, a binder, a plasticizer, and the like in water or an organic solvent. As the solid electrolyte material, the solid electrolyte paste described above may be used. Pd, Ni, Cu, Fe, alloys containing these, various carbon materials, and the like may further be used as conductive aids. When the compositions of the first electrode layer 11 and the second electrode layer 21 are different, each internal electrode paste may be prepared separately.
 (集電体用ペースト作製工程)
 次に、上述の第1集電体層12および第2集電体層22の作製用の集電体用ペーストを作製する。例えば、Pdの粉末、カーボンブラック、板状グラファイトカーボン、バインダ、分散剤、可塑剤などを水あるいは有機溶剤に均一分散させることで、集電体用ペーストを得ることができる。
(Current collector paste preparation step)
Next, a current collector paste for manufacturing the above-described first current collector layer 12 and second current collector layer 22 is prepared. For example, a current collector paste can be obtained by uniformly dispersing Pd powder, carbon black, plate-like graphite carbon, a binder, a dispersant, a plasticizer, and the like in water or an organic solvent.
 (外部電極用ペースト作製工程)
 次に、上述の第1外部電極40aおよび第2外部電極40bの作製用の外部電極用ペーストを作製する。例えば、導電性材料、電極活物質、固体電解質、バインダ、可塑剤などを水あるいは有機溶剤に均一分散させることで外部電極用ペーストを得ることができる。
(External electrode paste preparation process)
Next, an external electrode paste for producing the first external electrode 40a and the second external electrode 40b is prepared. For example, an external electrode paste can be obtained by uniformly dispersing a conductive material, an electrode active material, a solid electrolyte, a binder, a plasticizer, and the like in water or an organic solvent.
 (積層工程)
 図5(a)で例示するように、固体電解質グリーンシート51の一面に、内部電極用ペースト52を印刷し、さらに集電体用ペースト53を印刷し、さらに内部電極用ペースト52を印刷する。固体電解質グリーンシート51上で内部電極用ペースト52および集電体用ペースト53が印刷されていない領域には、逆パターン54を印刷する。逆パターン54として、固体電解質グリーンシート51と同様のものを用いることができる。印刷後の複数の固体電解質グリーンシート51を、交互にずらして積層し、積層方向の上下から、複数枚の固体電解質グリーンシートを貼り合わせたカバーシート55を圧着することで、積層体を得る。この場合、当該積層体において、2端面に交互に、内部電極用ペースト52および集電体用ペースト53のペアが露出するように、略直方体形状の積層体を得る。次に、図5(b)で例示するように、2端面のそれぞれに、ディップ法等で外部電極用ペースト56を塗布して乾燥させる。これにより、全固体電池100aを形成するための成型体が得られる。
(Lamination process)
As illustrated in FIG. 5A, on one surface of a solid electrolyte green sheet 51, an internal electrode paste 52, a current collector paste 53, and an internal electrode paste 52 are printed. A reverse pattern 54 is printed on a region of the solid electrolyte green sheet 51 where the internal electrode paste 52 and the current collector paste 53 are not printed. As the reverse pattern 54, the same one as the solid electrolyte green sheet 51 can be used. A laminate is obtained by stacking a plurality of solid electrolyte green sheets 51 alternately after printing, and crimping a cover sheet 55 in which a plurality of solid electrolyte green sheets are bonded together from above and below in the stacking direction. In this case, a substantially rectangular parallelepiped laminate is obtained so that pairs of the internal electrode paste 52 and the current collector paste 53 are alternately exposed on the two end surfaces of the laminate. Next, as exemplified in FIG. 5B, an external electrode paste 56 is applied to each of the two end faces by a dipping method or the like and dried. Thereby, a molding for forming the all-solid-state battery 100a is obtained.
 (焼成工程)
 次に、得られた積層体を焼成する。焼成の条件は酸化性雰囲気下あるいは非酸化性雰囲気下で、最高温度を好ましくは500℃~900℃、より好ましくは600℃~800℃などとすることが特に限定なく挙げられる。最高温度に達するまでにバインダを十分に除去するために酸化性雰囲気において最高温度より低い温度で保持する工程を設けてもよい。プロセスコストを低減するためにはできるだけ低温で焼成することが望ましい。焼成後に、再酸化処理を施してもよい。以上の工程により、全固体電池100aが生成される。
(Baking process)
Next, the obtained laminate is fired. The firing conditions include, without particular limitation, an oxidizing atmosphere or a non-oxidizing atmosphere and a maximum temperature of preferably 500°C to 900°C, more preferably 600°C to 800°C. A step of holding below the maximum temperature in an oxidizing atmosphere may be provided to sufficiently remove the binder until the maximum temperature is reached. In order to reduce process costs, it is desirable to bake at as low a temperature as possible. After firing, reoxidation treatment may be performed. Through the above steps, the all-solid-state battery 100a is produced.
 図2で例示した全固体電池100aについては、図5(a)の工程において集電体用ペースト53を塗布する工程を省略すればよい。 For the all-solid-state battery 100a illustrated in FIG. 2, the step of applying the current collector paste 53 in the step of FIG. 5(a) may be omitted.
 なお、第1外部電極40aおよび第2外部電極40bは、焼成工程後に焼き付けてもよい。図6は、この場合の製造方法を例示するフロー図である。例えば、積層工程で外部電極用ペースト56を塗布せず、焼成工程で得られた積層チップ60の2端面に外部電極用ペースト56を塗布し、焼き付ける。それにより、第1外部電極40aおよび第2外部電極40bを形成することができる。 Note that the first external electrode 40a and the second external electrode 40b may be baked after the baking process. FIG. 6 is a flowchart illustrating the manufacturing method in this case. For example, the external electrode paste 56 is not applied in the stacking process, and the external electrode paste 56 is applied to the two end faces of the laminated chip 60 obtained in the firing process and baked. Thereby, the first external electrode 40a and the second external electrode 40b can be formed.
 本実施形態によれば、固体電解質粒子31用に合成された原料粉末に、Li1+xTa2-xPOの組成式で表される固体電解質を用いる。Mは、5価のTaよりも価数の低い金属元素である。5価のTaの一部が4価、3価などの価数の低い金属元素で置換され、Taの置換量に応じた電荷補償分のLi量を増加させた構成となる。したがって、LiTaPOの結晶構造が保持され、二次相の生成が抑制される。それにより、良好なイオン伝導性を得ることができる。さらに、Li量が多くなることで、焼結温度を低温化させることができる。以上のことから、高いイオン伝導を発現するとともに低温焼成が可能となる。 According to this embodiment, the solid electrolyte represented by the composition formula of Li 1+x Ta 2-x M x PO 8 is used as the raw material powder synthesized for the solid electrolyte particles 31 . M is a metal element with a valence lower than that of pentavalent Ta. A part of the pentavalent Ta is substituted with a metal element having a low valence such as tetravalent or trivalent, and the amount of Li for charge compensation is increased according to the substitution amount of Ta. Therefore, the crystal structure of LiTa 2 PO 8 is maintained and the generation of secondary phases is suppressed. Thereby, good ionic conductivity can be obtained. Furthermore, the sintering temperature can be lowered by increasing the amount of Li. From the above, it is possible to exhibit high ion conductivity and to perform low-temperature firing.
 以下、実施形態に従って全固体電池を作製し、特性について調べた。 All-solid-state batteries were produced according to the embodiments, and their characteristics were investigated.
 (実施例1)
 結晶性LiTaPOのTaの一部をZrで置き換えたLi1+xTa2-xZrPOを固相合成法で合成した。まず、x=0.1となるように、出発物質のLiPOとTaとZrOとNHPOを擂潰混合し、大気中900℃で熱処理し、さらに擂潰処理後、再度1050℃で熱処理することにより合成した。合成粉についてXRD測定を行なった結果から、LiTaPOと同様の単斜晶系の結晶相が主相であることが確認された。合成粉をエタノール、トルエンの混合溶媒に分散させ、有機バインダをよく混合したスラリを作製し、このスラリを表面離型処理したPETフィルム上にドクターブレードにて展開し、加熱乾燥することでグリーンシートを得た。このグリーンシートを40枚積層して圧着し、小片化したものを大気中種々の温度で焼成することで、脱脂・焼結させた。焼結体の両面にAuスパッタリングでAu電極を形成し、25℃下、交流インピーダンス法にてイオン伝導性(総合導電率σ)を評価した。最も緻密化した温度は950℃であり、σは5.3×10-5S/cmであった。
(Example 1)
Li 1+x Ta 2-x Zr x PO 8 in which part of Ta in crystalline LiTa 2 PO 8 was replaced with Zr was synthesized by a solid-phase synthesis method. First, the starting materials Li 3 PO 4 , Ta 2 O 5 , ZrO 2 and NH 4 H 2 PO 4 were ground and mixed so that x=0.1, heat-treated at 900° C. in the air, and then ground. After the crushing treatment, it was synthesized by heat treatment at 1050° C. again. From the results of XRD measurement of the synthetic powder, it was confirmed that the main phase was a monoclinic crystal phase similar to LiTa 2 PO 8 . Synthetic powder is dispersed in a mixed solvent of ethanol and toluene, and organic binder is mixed well to prepare a slurry. This slurry is spread on a PET film that has been subjected to surface release treatment with a doctor blade, and then heated and dried to form a green sheet. got Forty green sheets were laminated and pressure-bonded, and the small pieces were sintered at various temperatures in the atmosphere to be degreased and sintered. Au electrodes were formed on both sides of the sintered body by Au sputtering, and ion conductivity (total conductivity σ) was evaluated at 25° C. by an AC impedance method. The highest densification temperature was 950° C. and σ was 5.3×10 −5 S/cm.
 (実施例2)
 Li1+xTa2-xZrPOの組成においてx=0.2としたこと以外、実施例1と同様に合成粉および焼結体ペレットを得た。合成粉についてXRD測定を行なった結果から、LiTaPOと同様の単斜晶系の結晶相が主相であることが確認された。最も緻密化した温度は950℃であり、σは4.5×10-5S/cmであった。
(Example 2)
Synthetic powder and sintered pellets were obtained in the same manner as in Example 1, except that x=0.2 in the composition of Li 1+x Ta 2-x Zr x PO 8 . From the results of XRD measurement of the synthetic powder, it was confirmed that the main phase was a monoclinic crystal phase similar to LiTa 2 PO 8 . The maximum densification temperature was 950° C. and σ was 4.5×10 −5 S/cm.
 (実施例3)
 Li1+xTa2-xZrPOの組成においてx=0.3としたこと以外、実施例1と同様に合成粉および焼結体ペレットを得た。合成粉についてXRD測定を行なった結果から、LiTaPOと同様の単斜晶系の結晶相と二次相との混相が確認された。最も緻密化した温度は900℃であり、σは3.2×10-5S/cmであった。
(Example 3)
Synthetic powder and sintered pellets were obtained in the same manner as in Example 1, except that x=0.3 in the composition of Li 1+x Ta 2-x Zr x PO 8 . From the results of XRD measurement of the synthetic powder, a mixed phase of a monoclinic crystal phase and a secondary phase similar to LiTa 2 PO 8 was confirmed. The highest densification temperature was 900° C. and σ was 3.2×10 −5 S/cm.
 (比較例1)
 Li1+xTa2-xZrPOの組成においてx=0.5としたこと以外、実施例1と同様に合成粉および焼結体ペレットを得た。合成粉についてXRD測定を行なった結果から、LiTaPOと同様の単斜晶系の結晶相の他に、二次相に帰属される回折ピークが多数認められた。最も緻密化した温度は900℃であり、σは8.5×10-6S/cmであった。
(Comparative example 1)
A synthetic powder and a sintered pellet were obtained in the same manner as in Example 1, except that x=0.5 in the composition of Li 1+x Ta 2-x Zr x PO 8 . As a result of the XRD measurement of the synthetic powder, in addition to the monoclinic crystal phase similar to LiTa 2 PO 8 , many diffraction peaks attributed to secondary phases were observed. The highest densification temperature was 900° C. and σ was 8.5×10 −6 S/cm.
 (比較例2)
 出発物質をLiPOとTaとZrOとNHPOとして結晶性LiTaPOを合成したこと以外、実施例1と同様に合成粉および焼結体ペレットを得た。合成粉についてXRD測定を行なった結果から、単斜晶系の結晶相が主相であることが確認された。最も緻密化した温度は1050℃であり、σは6.2×10-5S/cmであった。
(Comparative example 2)
Synthetic powder and sintered pellets were obtained in the same manner as in Example 1, except that crystalline LiTa2PO8 was synthesized using Li3PO4 , Ta2O5 , ZrO2 , and NH4H2PO4 as starting materials . rice field. From the results of XRD measurement of the synthetic powder, it was confirmed that the monoclinic crystal phase was the main phase. The highest densification temperature was 1050° C. and σ was 6.2×10 −5 S/cm.
 実施例1~実施例3および比較例1,2の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the results of Examples 1 to 3 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000001
 焼結性については、最も緻密化した温度(緻密化温度)が950℃以下であれば合格「〇」と判定し、950℃を上回っていれば不合格「×」と判定した。イオン伝導性については、イオ伝導率が1.0×10-5S/cm以上であれば合格「〇」と判定し、1.0×10-5S/cm未満であれば不合格「×」と判定した。焼結性およびイオン伝導性のいずれも合格と判定された場合には、総合判定を合格「〇」とした。焼結性およびイオン伝導性の少なくともいずれかが不合格と判定された場合には、総合判定を不合格「×」とした。 Regarding the sinterability, if the most densified temperature (densification temperature) was 950°C or less, it was judged to be acceptable, and if it exceeded 950°C, it was judged to be unsatisfactory. Regarding the ionic conductivity, if the ionic conductivity is 1.0 × 10 -5 S / cm or more, it is judged to be passed "○", and if it is less than 1.0 × 10 -5 S / cm, it is judged to be unsatisfactory "× ” was determined. When both the sinterability and the ionic conductivity were determined to be acceptable, the comprehensive evaluation was made as "good". When at least one of the sinterability and ionic conductivity was judged to be unacceptable, the overall judgment was set as unacceptable "x".
 実施例1~3のいずれも総合判定が合格であった。これは、Li1+xTa2-xPOの組成式で表され、xは、0<x<0.5を満たし、MはTaよりも価数の低い金属元素である固体電解質を固体電解質層30の主成分セラミックとして用いたからであると考えられる。比較例1では、イオン伝導性が不合格となった。これは、xの値が大きすぎて二次相量が多くなったからであると考えられる。比較例2では、焼結性が不合格となった。これは、Li量が多くならないことで焼結温度が高くなってしまったからであると考えられる。 In all of Examples 1 to 3, the comprehensive judgment was acceptable. This is represented by a composition formula of Li 1+x Ta 2−x M x PO 8 , where x satisfies 0<x<0.5, and M is a metal element with a lower valence than Ta. This is probably because it was used as the main component ceramic of the electrolyte layer 30 . In Comparative Example 1, the ionic conductivity was rejected. It is considered that this is because the value of x was too large and the amount of secondary phases increased. In Comparative Example 2, the sinterability was rejected. It is considered that this is because the sintering temperature became high because the amount of Li was not increased.
 以上、本発明の実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and variations can be made within the scope of the gist of the present invention described in the scope of claims. Change is possible.

Claims (11)

  1.  Li1+yTa2-xPOの組成式で表され、
     xは、0<x<0.5を満たし、
     Mは、Taよりも価数の低い元素であり、
     Mの価数をAとしたとき、y=(5-A)xであることを特徴とする固体電解質。
    Represented by the composition formula Li 1+y Ta 2-x M x PO 8 ,
    x satisfies 0<x<0.5,
    M is an element with a lower valence than Ta,
    A solid electrolyte characterized in that y=(5−A)x, where A is the valence of M.
  2.  Mは、Zr、Ti、Ge、Hf、Sn、Y、B、Al、Gaの少なくとも1種以上であることを特徴とする請求項1に記載の固体電解質。 The solid electrolyte according to claim 1, wherein M is at least one of Zr, Ti, Ge, Hf, Sn, Y, B, Al and Ga.
  3.  xは、0<x≦0.3を満たすことを特徴とする請求項1または請求項2に記載の固体電解質。 3. The solid electrolyte according to claim 1, wherein x satisfies 0<x≦0.3.
  4.  XRD測定の結果で、単斜晶に帰属する結晶構造を有することが確認されることを特徴とする請求項1から請求項3のいずれか一項に記載の固体電解質。 The solid electrolyte according to any one of claims 1 to 3, characterized in that it is confirmed to have a crystal structure belonging to a monoclinic system as a result of XRD measurement.
  5.  平均粒径が0.2μm以上、20μm以下であることを特徴とする請求項1から請求項4のいずれか一項に記載の固体電解質。 The solid electrolyte according to any one of claims 1 to 4, characterized in that the average particle size is 0.2 µm or more and 20 µm or less.
  6.  請求項1から請求項5のいずれか一項に記載の固体電解質を主成分として含む固体電解質層と、
     電極活物質を含み、前記固体電解質層の第1主面上に形成された第1電極と、
     電極活物質を含み、前記固体電解質層の前記第1主面に対向する第2主面上に形成された第2電極と、を備えることを特徴とする全固体電池。
    A solid electrolyte layer containing the solid electrolyte according to any one of claims 1 to 5 as a main component;
    a first electrode including an electrode active material and formed on the first main surface of the solid electrolyte layer;
    and a second electrode that includes an electrode active material and is formed on a second main surface of the solid electrolyte layer that faces the first main surface.
  7.  前記固体電解質層、前記第1電極および前記第2電極を一つの単位として、前記単位が複数積み重ねられたことを特徴とする請求項6に記載の全固体電池。 7. The all-solid-state battery according to claim 6, wherein the solid electrolyte layer, the first electrode, and the second electrode are used as one unit, and a plurality of the units are stacked.
  8.  前記第1電極および前記第2電極のうち、一方は正極活物質を含み、他方は負極活物質を含むことを特徴とする請求項6または請求項7に記載の全固体電池。 The all-solid-state battery according to claim 6 or 7, wherein one of the first electrode and the second electrode contains a positive electrode active material, and the other contains a negative electrode active material.
  9.  Liと、Taと、Pと、Taよりも価数の低い元素であるMと、を含む原料から、Li1+yTa2-xPOの組成式で表され、0<x<0.5の関係を満たし、Mの価数をAとしたときにy=(5-A)xである酸化物型の固体電解質を、1100℃以下で合成することを特徴とする固体電解質の製造方法。 A raw material containing Li, Ta, P, and M, which is an element with a lower valence than Ta, is represented by a composition formula of Li 1+y Ta 2-x M x PO 8 , where 0<x<0. A method for producing a solid electrolyte, characterized by synthesizing at 1100° C. or less an oxide-type solid electrolyte that satisfies the relationship of 5 and y=(5−A)x where A is the valence of M. .
  10.  Li1+yTa2-xPOの組成式で表され、0<x<0.5の関係を満たし、MがTaよりも価数の低い元素であり、Mの価数をAとしたときにy=(5-A)である固体電解質粉末を含むグリーンシートと、前記グリーンシートの第1主面上に形成された第1電極層用ペースト塗布物と、前記グリーンシートの第2主面上に形成された第2電極層用ペースト塗布物と、を有する積層体を用意する工程と、
     前記積層体を焼成する焼成工程と、を含むことを特徴とする全固体電池の製造方法。
    Represented by the composition formula Li 1+y Ta 2-x M x PO 8 , satisfying the relationship 0<x<0.5, M being an element with a lower valence than Ta, and the valence of M being A a green sheet containing a solid electrolyte powder where y=(5−A), a first electrode layer paste coating material formed on a first main surface of the green sheet, and a second main surface of the green sheet; a step of preparing a laminate having a second electrode layer paste coating formed on the surface;
    and a sintering step of sintering the laminate.
  11.  前記焼成工程における焼成温度を、500℃以上900℃以下にすることを特徴とする請求項10に記載の全固体電池の製造方法。
     
    11. The method for manufacturing an all-solid-state battery according to claim 10, wherein the firing temperature in the firing step is 500[deg.] C. or higher and 900[deg.] C. or lower.
PCT/JP2022/011205 2021-08-30 2022-03-14 Solid electrolyte, all-solid-state battery, method for manufacturing solid electrolyte, and method for manufacturing all-solid-state battery WO2023032294A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021139839A JP2023033898A (en) 2021-08-30 2021-08-30 Solid electrolyte, all-solid-state battery, method for producing solid electrolyte, and method for producing all-solid-state battery
JP2021-139839 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023032294A1 true WO2023032294A1 (en) 2023-03-09

Family

ID=85412470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011205 WO2023032294A1 (en) 2021-08-30 2022-03-14 Solid electrolyte, all-solid-state battery, method for manufacturing solid electrolyte, and method for manufacturing all-solid-state battery

Country Status (2)

Country Link
JP (1) JP2023033898A (en)
WO (1) WO2023032294A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243327A1 (en) * 2022-06-15 2023-12-21 国立研究開発法人産業技術総合研究所 Oxide sintered body and method for producing oxide sintered body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194773A (en) * 2019-05-24 2020-12-03 三星電子株式会社Samsung Electronics Co.,Ltd. Solid conductor, manufacturing method thereof, solid electrolyte including the same, and electrochemical element
JP2021038099A (en) * 2019-08-30 2021-03-11 昭和電工株式会社 Lithium ion-conducting oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194773A (en) * 2019-05-24 2020-12-03 三星電子株式会社Samsung Electronics Co.,Ltd. Solid conductor, manufacturing method thereof, solid electrolyte including the same, and electrochemical element
JP2021038099A (en) * 2019-08-30 2021-03-11 昭和電工株式会社 Lithium ion-conducting oxide

Also Published As

Publication number Publication date
JP2023033898A (en) 2023-03-13

Similar Documents

Publication Publication Date Title
JP6672848B2 (en) Lithium ion conductive oxide ceramic material having garnet type or garnet type similar crystal structure
JP6593459B2 (en) Solid electrolyte and all-solid battery
CN111699582B (en) All-solid battery
JP2018166020A (en) All-solid battery and manufacturing method thereof
JP6669268B2 (en) Solid electrolyte and all-solid battery
WO2013100002A1 (en) All-solid-state battery, and manufacturing method therefor
WO2023032294A1 (en) Solid electrolyte, all-solid-state battery, method for manufacturing solid electrolyte, and method for manufacturing all-solid-state battery
JP6801778B2 (en) All solid state battery
JP6897760B2 (en) All solid state battery
WO2022201755A1 (en) Solid electrolyte, all-solid-state battery, method for manufacturing solid electrolyte, and method for manufacturing all-solid-state battery
WO2022185710A1 (en) All-solid-state battery and manufacturing method thereof
JP7328790B2 (en) CERAMIC RAW MATERIAL POWDER, METHOD FOR MANUFACTURING ALL-SOLID BATTERY, AND ALL-SOLID BATTERY
JP7398297B2 (en) All-solid-state battery and its manufacturing method
JP2021190302A (en) Solid electrolyte, all-solid battery, solid electrolyte manufacturing method, and all-solid battery manufacturing method
WO2019163448A1 (en) All-solid battery
WO2024070429A1 (en) Negative electrode active material and all-solid-state battery
WO2023013132A1 (en) Negative electrode active material and all-solid-state battery
CN113363593B (en) All-solid-state battery and method for manufacturing same
WO2023053753A1 (en) All-solid-state battery, all-solid-state battery production method, raw material powder, and raw material powder production method
JP2020113376A (en) Positive electrode material for all-solid-state battery, all-solid-state battery, and manufacturing method of positive-electrode active material for all-solid-state battery
WO2023210188A1 (en) All-solid-state battery and method for manufacturing same
JP7205809B2 (en) Solid electrolyte sheet with electrodes
WO2023127283A1 (en) All-solid-state battery and method for producing same
WO2013175992A1 (en) All-solid-state battery
JP2019140065A (en) Method for manufacturing all-solid battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863884

Country of ref document: EP

Kind code of ref document: A1