WO2023243327A1 - Oxide sintered body and method for producing oxide sintered body - Google Patents

Oxide sintered body and method for producing oxide sintered body Download PDF

Info

Publication number
WO2023243327A1
WO2023243327A1 PCT/JP2023/019096 JP2023019096W WO2023243327A1 WO 2023243327 A1 WO2023243327 A1 WO 2023243327A1 JP 2023019096 W JP2023019096 W JP 2023019096W WO 2023243327 A1 WO2023243327 A1 WO 2023243327A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
lita
oxide sintered
oxide
lithium
Prior art date
Application number
PCT/JP2023/019096
Other languages
French (fr)
Japanese (ja)
Inventor
順二 秋本
邦光 片岡
英錫 金
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2023243327A1 publication Critical patent/WO2023243327A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/02Production of homogeneous polycrystalline material with defined structure directly from the solid state
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/14Phosphates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to an oxide sintered body having high lithium ion conductivity and a method for manufacturing the oxide sintered body.
  • Lithium-ion secondary batteries are widely used as power sources for small electronic devices such as smartphones and notebook computers.
  • lithium ion secondary batteries are expected to be used as power sources for large-scale hybrid vehicles and electric vehicles, and as stationary storage batteries.
  • research and development is progressing on all-solid-state lithium-ion secondary batteries, lithium-air batteries, all-solid-state lithium-sulfur batteries, etc. that do not use flammable electrolytes. Solid electrolytes used in these electrochemical devices are required to have high lithium ion conductivity.
  • Non-Patent Documents 1 to 3 The crystal structure of LiTa 2 PO 8 is different from other lithium ion conductors. Precise crystal structure analysis has revealed that the skeleton structure of LiTa 2 PO 8 is constructed from TaO 6 octahedrons and PO 4 tetrahedra, and that lithium ions occupy the gaps between these. Since the arrangement of lithium forms a three-dimensional conduction path, LiTa 2 PO 8 enables good lithium ion conduction similar to that of garnet-type materials.
  • Patent Documents 1 to 3 and Non-Patent Document 4 attempts have been made to improve the characteristics by elemental substitution of Ta using LiTa 2 PO 8 as the basic composition. It has been reported that the bulk lithium ion conductivity of the LiTa 2 PO 8 sintered body is improved by this element substitution.
  • the firing temperature when producing the element-substituted LiTa 2 PO 8 sintered body was 1200° C. or lower, similar to the firing temperature when producing the LiTa 2 PO 8 sintered body.
  • the crystal structure of the element-substituted LiTa 2 PO 8 sintered body is described as a monoclinic structure, which is the same as the crystal structure of the LiTa 2 PO 8 sintered body, and the detailed lithium occupied sites and lithium ion conduction paths are Not only was there no mention of the difference between the two, but there was no consideration even of predicting the difference.
  • LiTa 2 PO 8 contains lithium and phosphoric acid as main elements, which easily volatilize at high temperatures.
  • the upper limit of the firing temperature when producing LiTa 2 PO 8 has been set at 1200°C. Therefore, studies have been conducted to determine what type of lithium-occupied crystal structure the LiTa 2 PO 8 sintered body produced by firing at temperatures exceeding 1200°C has, and how the lithium ion conductive properties change. It was impossible to predict that there would be a change in the crystal structure.
  • the present application was made in view of these circumstances, and provides an oxide sintered body with a crystal structure that can further increase lithium ion conductivity, and a method for manufacturing the oxide sintered body that can construct the crystal structure.
  • the challenge is to provide.
  • the inventors of the present application carefully investigated the relationship between the firing temperature and crystal structure of the target LiTa 2 PO 8 , as well as starting materials and synthesis methods suitable for high-temperature firing. As a result, it was surprisingly found that calcination at temperatures exceeding 1200°C produces a crystalline phase with a lithium occupation mode that is advantageous for faster lithium ion diffusion. Furthermore, by firing in a closed system that can suppress the volatilization of lithium and phosphoric acid at high temperatures, LiTa 2 PO 8 can be fired without decomposing even when fired at 1300°C, and by such high-temperature firing, It has been found that the grain growth of LiTa 2 PO 8 becomes remarkable, and a sintered body and single crystal body having high bulk lithium ion conductivity can be obtained.
  • the total lithium ion conductivity of the dense sintered body of the high-temperature phase of (sometimes simply referred to as "element substituted product” is an element substituted product in which the Li composition is changed as necessary) is 2. ⁇ 10 ⁇ 4 S/cm or more, and the operation of an all-solid-state battery was confirmed, which was equipped with a solid electrolyte produced by low-temperature sintering using powder obtained by pulverizing the dense sintered body.
  • the oxide sintered body of the present application is an oxide sintered body containing lithium, tantalum, and phosphorus, has a monoclinic crystal structure belonging to space group C2/c, and has a 4b seat at the Wyckoff position. (0.5,0,0) is not occupied by lithium.
  • the method for producing an oxide sintered body of the present application includes a sintering step of firing an oxide containing lithium, tantalum, and phosphorus at a temperature higher than 1200°C and lower than 1400°C.
  • the electrochemical device of the present application includes a solid electrolyte including the oxide sintered body of the present application, and a pair of electrodes sandwiching the solid electrolyte.
  • an oxide sintered body having a crystalline phase that exhibits higher lithium ion conductivity can be obtained.
  • FIG. 1 is a conceptual diagram of an all-solid-state lithium ion secondary battery that is an example of the electrochemical device of the present application.
  • 3 is a graph showing AC impedance measurement results of the LiTa 2 PO 8 sintered body obtained in Example 5.
  • 7 is a graph showing AC impedance measurement results of the LiTa 1.9 Bi 0.1 PO 8 sintered body obtained in Example 7.
  • the oxide sintered body of the embodiment of the present application contains lithium, tantalum, and phosphorus.
  • the oxide sintered body of this embodiment has a monoclinic crystal structure belonging to space group C2/c, and lithium does not occupy the 4b position (0.5, 0, 0) at the Wyckoff position. .
  • Lithium occupies only three or more 8f seats at the Wyckoff location. The lithium occupied seats may be occupied in a disorderly manner.
  • the oxide sintered body of this embodiment is an oxide sintered body represented by the general formula LiTa 2-x M x PO 8 (M is Bi or Sb, 0 ⁇ x ⁇ 0.2 (the same applies hereinafter)). , for example, LiTa 1.9 Bi 0.1 PO 8 , LiTa 1.8 Bi 0.2 PO 8 , LiTa 1.9 Sb 0.1 PO 8 , and LiTa 1.8 Sb 0.2 PO 8 . Further, as the oxide sintered body of this embodiment, an oxide sintered body represented by the general formula Li 1+y Ta 2-y Hf y PO 8 (0 ⁇ y ⁇ 0.2 (the same applies hereinafter)), for example, , Li 1.1 Ta 1.9 Hf 0.1 PO 8 and Li 1.2 Ta 1.8 Hf 0.2 PO 8 .
  • LiTa 2 PO 8 In addition to bismuth, antimony, and hafnium, examples of the element that replaces Ta in LiTa 2 PO 8 include titanium, niobium, molybdenum, zirconium, tungsten, boron, aluminum, silicon, germanium, and gallium. Moreover, LiTa2PO8 is mentioned as an oxide sintered compact of this embodiment .
  • LiTa 2 PO 8 is preferably composed of primary particles with a diameter of 50 ⁇ m to 100 ⁇ m. The particle size of the primary particles, that is, the primary particle size, can be measured using, for example, a scanning electron microscope. In order to obtain even higher lithium ion conductivity, LiTa 2 PO 8 is preferably single crystal.
  • the method for manufacturing an oxide sintered body according to the embodiment of the present application includes a sintering step.
  • a raw material oxide (hereinafter sometimes referred to as "raw material oxide”) is fired at a temperature higher than 1200°C and lower than 1400°C.
  • the raw material oxide is an oxide containing lithium, tantalum, and phosphorus.
  • oxides containing lithium, tantalum, and phosphorus include oxides represented by the general formula LiTa 2-x M x PO 8 , oxides represented by the general formula Li 1+y Ta 2-y Hf y PO 8 , and amorphous LiTa 2 PO 8 .
  • Amorphous LiTa 2 PO 8 has excellent moldability, which is a concept that includes moldability.
  • the raw material oxide is obtained by dissolving various raw material compounds, such as metal salts and phosphoric acid compounds, in respective solvents, mixing these solutions to precipitate a precipitate, and firing the precipitate.
  • various raw material compounds such as metal salts and phosphoric acid compounds
  • solution synthesis such as ordinary solid phase synthesis, coprecipitation method, sol-gel method, complex polymerization method, and hydrothermal synthesis method, as well as vacuum evaporation method, sputtering method, pulsed laser deposition method, and chemical vapor phase reaction method, etc.
  • Raw material oxides can also be produced by gas phase reaction synthesis.
  • the raw material oxide can also be produced by applying a mechanochemical reaction such as ball milling.
  • the various raw material compounds are not particularly limited as long as they contain lithium, tantalum, or phosphorus.
  • raw material compounds that can be used include oxides, carbonates, hydroxides, nitrates, ammonium salts, ammonium hydrogen salts, halides such as chlorides, and oxidized chlorides.
  • the raw material oxide can be produced, for example, by the following procedure. First, a raw material compound is dissolved in a solvent. This solvent is not particularly limited as long as it can uniformly mix the raw material compounds. Examples of the solvent include alcoholic solvents such as methanol, ethanol, hexanol, and propanol, organic solvents such as aromatic compounds and ethers, and water.
  • the desired raw material oxide is obtained.
  • firing method may be performed using an electrically heated muffle furnace, a mantle heater, or the like.
  • the firing temperature is preferably 350° C. or higher to obtain powder of the raw material oxide, and may be 500° C. or higher and 1000° C. or lower.
  • container used for firing and glass beakers, non-alumina ceramic containers, and the like can be used.
  • gold containers, platinum containers, alumina containers, etc. can be used.
  • the firing atmosphere is not particularly limited, and is usually an oxidizing gas atmosphere such as oxygen or air.
  • the firing time can be set depending on the firing temperature, etc., as long as residual substances such as nitrogen, chlorine, and carbon derived from various raw material compounds can be volatilized.
  • the raw material oxide may be pulverized if necessary, and the firing temperature may be changed and re-fired.
  • the degree of pulverization can be adjusted depending on the firing temperature, etc. LiTa 2 PO 8 or its element substituted product produced by this aqueous solution synthesis method can be used as the raw material oxide.
  • the raw material oxide may be prepared by calcining a mixture of Li, Ta, P, and an oxide containing only a part of the substitution element.
  • this mixture of oxides a plurality of oxides are mixed so as to have a composition ratio of LiTa 2 PO 8 and its element substituted product after synthesis of the oxide sintered body.
  • the pre-calcination temperature can be set depending on the composition of the oxide mixture, but is usually 500°C to 1200°C, preferably 900°C to 1000°C.
  • the pre-calcination atmosphere is not particularly limited, and is usually an argon gas atmosphere, a nitrogen gas atmosphere, an oxygen gas atmosphere, or an air atmosphere.
  • the pre-baking time can be set depending on the pre-baking temperature, etc.
  • the main firing atmosphere is not particularly limited, and is usually an argon gas atmosphere, a nitrogen gas atmosphere, an oxygen gas atmosphere, or an air atmosphere.
  • the material of the crucible into which the pulverized raw material oxide is placed during main firing is stable at high temperatures of 1200°C or higher, and the volatilization of lithium, phosphoric acid, bismuth, gallium, etc. at high temperatures is suppressed.
  • platinum, alumina, or zirconia for example, platinum, alumina, or zirconia.
  • the raw material oxide to be fired there are no particular restrictions on the form of the raw material oxide to be fired, and it may be a powder, a plate-shaped compact formed by hydrostatic pressure or uniaxial pressure, or a plate-shaped body produced by coating or film-forming technology. Examples include membrane bodies. Coating techniques include screen printing, electrophoresis (EPD), doctor blading, spray coating, inkjet, and spin coating. Film deposition techniques include vapor deposition, sputtering, chemical vapor deposition (CVD), electrochemical vapor deposition, ion beam, laser ablation, atmospheric plasma deposition, and reduced pressure plasma deposition. can be mentioned.
  • a plate-like body or a film body of the raw material oxide may be produced using a method such as hot pressing, hot isostatic pressing, or electrical sintering.
  • the obtained oxide sintered body may be pulverized by a known method if necessary, and the main firing may be repeated.
  • the degree of pulverization can be set depending on the main firing temperature and the like.
  • a molded body of the raw material oxide may be produced from a powdered raw material oxide that has been fired once.
  • the oxide sintered body obtained by the main firing can be used as a solid electrolyte material for electrochemical devices such as all-solid lithium ion secondary batteries.
  • a solid electrolyte material may be produced by pulverizing the oxide sintered body, then molding and firing it again. Further, a molded body may be produced by mixing or compounding the powder of the oxide sintered body and another electrolyte material.
  • the oxide sintered body is a bulk sintered body (including a single crystal body), a molded body, or a coated film body, it can be used as a solid electrolyte as it is.
  • an electrochemical device Since the oxide sintered body of the present application has excellent lithium ion conductivity, it can be used as a solid electrolyte for electrochemical devices such as all-solid lithium ion secondary batteries, lithium air batteries, and lithium sulfur batteries.
  • An all-solid-state lithium ion secondary battery as an example of an electrochemical device includes a solid electrolyte including the oxide sintered body of the present application and a pair of electrodes sandwiching the solid electrolyte. Note that the pair of electrodes does not need to directly sandwich the solid electrolyte.
  • FIG. 1 conceptually shows an all-solid-state lithium ion secondary battery that is an example of an electrochemical device according to an embodiment of the present application.
  • the all-solid lithium ion secondary battery includes an exterior 1, a positive electrode tab 2, a positive electrode current collector 3, a positive electrode 4, a separator 5, a negative electrode 6, a negative electrode current collector 7, and a negative electrode tab 8.
  • the oxide sintered body of the present application can be used as a part of the positive electrode 4 or the negative electrode 6, or the separator 5.
  • LiOH.H 2 O manufactured by Kojundo Kagaku Kenkyusho, 99% up (the same applies hereinafter)
  • a LiOH aqueous solution was dissolved in 100 mL of ion-exchanged water to obtain a LiOH aqueous solution.
  • this TaCl 5 solution and this NH 4 H 2 PO 4 aqueous solution were sequentially added and mixed at 80°C. Note that this mixed solution contains LiOH in an amount of 1.1 mol times that of the composition LiTa 2 PO 8 , that is, an excess of 10 mol %.
  • the grown grains were selected from this sintered body, and the crystal structure was examined using a single crystal X-ray diffraction device (Rigaku Corporation, R-AXIS RAPID-II (hereinafter the same)). As a result, it was confirmed that the grains were monoclinic and belonged to space group C2/c.
  • the single crystal X-ray diffraction pattern is shown in FIG.
  • Single crystal X-ray diffraction data were collected, and the crystal structure of this sintered body was analyzed using the crystal structure analysis program JANA2006. As a result, it was confirmed that the lithium arrangement of Non-Patent Document 1 and Non-Patent Document 2 could not be refined, and that lithium did not occupy the 4b seat (0.5, 0, 0) at the Wyckoff position.
  • FIG. 4 shows an electron microscope image of the fractured surface of this sintered body
  • FIG. 5 shows an electron microscope image of a single crystal body selected from this sintered body.
  • FIG. 4 shows that this sintered body is a bulk body without clear grain boundaries.
  • Example 2 Synthesis of LiTa 2 PO 8 single crystal with a new crystal structure (calcined at 1310°C)
  • a LiTa 2 PO 8 single crystal was obtained in the same manner as in Example 1, except that the firing temperature was changed from 1205°C to 1310°C.
  • a single crystal was extracted from this single crystal, and its crystal structure was examined using a single crystal X-ray diffractometer. As a result, it was confirmed that this single crystal was monoclinic and belonged to space group C2/c.
  • Comparative Example 1 Synthesis of LiTa 2 PO 8 sintered body (1050°C firing) Li 2 CO 3 (manufactured by Rare Metallic, 99.9% (the same below)), Ta 2 O 5 (manufactured by Rare Metallic, 99.99% (the same below)), and (NH 4 ) 2 HPO 4 (manufactured by Fujifilm Wa (manufactured by Hikari Pure Chemical Industries, Ltd., Reagent Special Grade (hereinafter the same)) were weighed so that the material ratio (so-called molar ratio) of Li:Ta:P was 1.1:2:1.
  • This raw material was pulverized in anhydrous ethanol, collected and dried, and then pre-calcined for 4 hours at 900°C to 950°C using an electric furnace.
  • the obtained calcined body was ball-milled and dried to obtain a raw material oxide powder.
  • This powder was uniaxially pressed using a tablet molding machine to obtain a molded body.
  • This molded body was fired in air at 1050° C. for 6 hours using an electric furnace to obtain a LiTa 2 PO 8 sintered body (see Non-Patent Document 2).
  • Example 4 Synthesis of LiTa 2 PO 8 sintered body with a new crystal structure (calcined at 1310°C, raw material oxide for solid phase synthesis)
  • a LiTa 2 PO 8 sintered body was obtained in the same manner as in Example 3, except that the firing temperature was changed from 1205°C to 1310°C.
  • the crystal structure of this sintered body was examined using a powder X-ray diffractometer, it was found to be almost a single phase of LiTa 2 PO 8 , which has a monoclinic crystal structure belonging to the space group C2/c, and it does not decompose even when fired at high temperatures. It has become clear that these sintered bodies can be synthesized without using The powder X-ray diffraction patterns of these sintered bodies are shown in FIG. 7 ("1310° C.” in the figure).
  • the peak positions of the sintered bodies of Example 3 and Example 4 are shifted to the lower angle side compared to the peak position of the sintered body of Comparative Example 1. It was confirmed that From the above results, the sintered bodies of Examples 3 and 4 have a skeleton structure formed by tantalum, phosphorus, and oxygen that is unchanged from the sintered body of Comparative Example 1, but the local structure around lithium is This suggests that the lattice volume is expanding. This result confirms that the local arrangement of lithium is changed by firing at a temperature higher than 1200°C.
  • the lithium ion conductivity of this sintered body was calculated in the same manner as in Comparative Example 1. From the measurement results at room temperature, the total lithium ion conductivity was calculated to be 2.1 ⁇ 10 ⁇ 4 S/cm, which was higher than the total lithium ion conductivity of the previously reported LiTa 2 PO 8 sintered body of Comparative Example 1. A Nyquist plot obtained from the results of this impedance measurement is shown in FIG. From the above, two-step sintering in which the temperature is raised to over 1200°C, then lowered and fired at 1050°C maintains the crystal structure of the high temperature phase over 1200°C, producing a sintered body with higher conductivity. It has become clear that it can be produced.
  • Example 6 Synthesis of LiTa 2 PO 8 sintered body with new crystal structure (1208°C firing, raw material oxide for solution synthesis)
  • a molded body was obtained in the same manner as in Example 1.
  • this molded body was heated to 1208° C. in air, fired for 5 minutes, and cooled to obtain a sintered precursor.
  • This sintered precursor was then fired in an oxygen atmosphere at 1000° C. for 12 hours using a vacuum gas displacement electric furnace to obtain a LiTa 2 PO 8 sintered body.
  • Example 7 Synthesis of LiTa 1.9 Bi 0.1 PO 8 sintered body with new crystal structure (raw material oxide for solid phase synthesis) Li 2 CO 3 , Ta 2 O 5 , Bi 2 O 3 (manufactured by Rare Metallic, 99.99%), and (NH 4 ) 2 HPO 4 were prepared at a material ratio of Li:Ta:Bi:P of 1.1. :1.9:0.1:1. After pulverizing and mixing them using an agate mortar, they were heated in an electric furnace at 450° C. for 4 hours and then at 600° C. for 4 hours to decompose the ammonium salt and obtain a raw material oxide.
  • This raw material oxide was pulverized in anhydrous ethanol, recovered and dried, and then uniaxially pressed using a tablet molding machine to obtain a molded product.
  • This molded body was heated to 1208° C. in air using an electric furnace, and then the temperature was lowered and fired at 900° C. for 6 hours to obtain a LiTa 1.9 Bi 0.1 PO 8 sintered body.
  • the lithium ion conductivity of this sintered body was calculated in the same manner as in Comparative Example 1. From the measurement results at room temperature, the total lithium ion conductivity was calculated to be 1.3 ⁇ 10 ⁇ 3 S/cm, which was higher than the total lithium ion conductivity of the previously reported LiTa 2 PO 8 sintered body. This is due to the fact that this sintered body maintains a high-temperature phase crystal structure, the effect of substituting a part of Ta with Bi, and the improvement in sinterability due to BiPO4 functioning as a sintering aid. it is conceivable that. A Nyquist plot obtained from the results of this impedance measurement is shown in FIG.
  • Example 8 Synthesis of LiTa 1.9 Bi 0.1 PO 8 sintered body with new crystal structure (raw material oxide for solution synthesis)
  • dissolve 1.3612 g of TaCl 5 and 0.0631 g of BiCl 3 manufactured by Kojundo Kagaku Kenkyusho, 99.99% (the same applies hereinafter)
  • 50 mL of absolute ethanol to create a TaCl 5 /BiCl 3 solution.
  • 0.2301 g of NH 4 H 2 PO 4 was dissolved in 50 mL of ion exchange water to obtain an aqueous NH 4 H 2 PO 4 solution.
  • LiOH ⁇ H 2 O 0.0923 g was dissolved in 100 mL of ion exchange water to obtain a LiOH aqueous solution. While stirring this LiOH aqueous solution with a stirrer, this TaCl 5 .BiCl 3 solution and this NH 4 H 2 PO 4 aqueous solution were sequentially added and mixed at 80°C. Note that this mixed solution contains 1.1 times the amount of LiOH, that is, a 10 mol % excess of LiOH compared to the composition LiTa 1.9 Bi 0.1 PO 8 .
  • This mixed solution was dried at 120° C. for 15 hours, the dried solidified powder was collected, and the solidified powder was lightly ground in an agate mortar.
  • This pulverized powder was fired for 12 hours at 500°C in an oxygen atmosphere using a vacuum gas displacement electric furnace to obtain a white powder of LiTa 1.9 Bi 0.1 PO 8 , which is an amorphous raw material.
  • This white powder was wet ball milled using a planetary ball mill, and then uniaxially pressed using a tablet molding machine to obtain a molded product. Using an electric furnace, this molded body was heated to 1208° C. in air, fired for 5 minutes, and cooled to obtain a sintered precursor.
  • This sintered precursor was then fired in an oxygen atmosphere at 1000° C. for 12 hours using a vacuum gas displacement electric furnace to obtain a LiTa 1.9 Bi 0.1 PO 8 sintered body.
  • the main phase was a LiTa 2 PO 8 type crystal structure that was monoclinic and belonged to space group C2/c.
  • BiPO 4 phase was generated as an impurity phase in this sintered body. This BiPO 4 phase precipitated as a liquid phase during high-temperature calcination and then functioned as a sintering aid through phase separation.
  • Example 9 Synthesis of LiTa 1.8 Bi 0.2 PO 8 sintered body with new crystal structure
  • a LiTa 1.8 Bi 0.2 PO 8 sintered body was obtained in the same manner as in Example 8 except for the following.
  • the intermediate mixed solution contains 1.1 times the amount of LiOH, that is, 10 mol % excess of LiOH compared to the composition LiTa 1.8 Bi 0.2 PO 8 .
  • the crystal structure of this sintered body was examined using a powder X-ray diffractometer, it was confirmed that the main phase was a LiTa 2 PO 8 type crystal structure that was monoclinic and belonged to space group C2/c.
  • Example 10 Synthesis of Li 1.1 Ta 1.9 Hf 0.1 PO 8 sintered body with new crystal structure 1.3612 g of TaCl 5 and 0.0641 g of HfCl in 50 mL of absolute ethanol under dry environment 4 (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., 99.9% (the same applies hereinafter)) to obtain a TaCl 5 /HfCl 4 solution.
  • 0.2301 g of NH 4 H 2 PO 4 was dissolved in 50 mL of ion exchange water to obtain an aqueous NH 4 H 2 PO 4 solution.
  • 0.1016 g of LiOH.H 2 O was dissolved in 100 mL of ion-exchanged water to obtain a LiOH aqueous solution.
  • this LiOH aqueous solution While stirring this LiOH aqueous solution with a stirrer, this TaCl 5 .HfCl 4 solution and this NH 4 H 2 PO 4 aqueous solution were sequentially added and mixed at 80°C. Note that this mixed solution contains 1.1 times the amount of LiOH, that is, a 10 mol% excess of LiOH compared to the composition Li 1.1 Ta 1.9 Hf 0.1 PO 8 .
  • This mixed solution was dried at 120° C. for 15 hours, the dried solidified powder was collected, and the solidified powder was lightly ground in an agate mortar.
  • this pulverized powder was fired at 600°C in an oxygen atmosphere for 12 hours to obtain a white powder of Li 1.1 Ta 1.9 Hf 0.1 PO 8 , which is an amorphous raw material. I got a body.
  • This white powder was wet ball milled using a planetary ball mill, and then uniaxially pressed using a tablet molding machine to obtain a molded product.
  • this molded body was heated to 1208° C. in air, fired for 5 minutes, and cooled to obtain a sintered precursor.
  • this sintered precursor was fired at 1000°C in an oxygen atmosphere for 12 hours to obtain a Li 1.1 Ta 1.9 Hf 0.1 PO 8 sintered body. .
  • Example 11 Synthesis of Li 1.2 Ta 1.8 Hf 0.2 PO 8 sintered body having a new crystal structure
  • the amount of TaCl 5 used was 1.2896 g
  • the amount of HfCl 4 used was 0.1281 g
  • a Li 1.2 Ta 1.8 Hf 0.2 PO 8 sintered body was obtained in the same manner as in Example 8, except that the amount of LiOH ⁇ H 2 O used was changed to 0.1108 g.
  • the mixed solution in the middle contains 1.1 times the amount of LiOH, that is, 10 mol % excess of LiOH compared to the composition Li 1.2 Ta 1.8 Hf 0.2 PO 8 .
  • the reasons why the total lithium ion conductivity of the sintered bodies of Examples 10 and 11 were high were that the crystal structure of the high temperature phase was maintained, the expansion of the crystal lattice due to Hf substitution, and the carrier concentration (lithium amount). and the improvement in sinterability due to LiTa 3 O 8 functioning as a sintering aid. Furthermore, the activation energy estimated from the temperature dependence of the total lithium ion conductivity was calculated to be 0.34 eV for the sintered body of Example 10 and 0.315 eV for the sintered body of Example 11. The activation energy of the LiTa 2 PO 8 sintered body of No. 6 was smaller than that of the LiTa 2 PO 8 sintered body. That is, it has become clear that substitution of Ta for Hf improves lithium ion conductivity at low temperatures such as -20°C.
  • Example 12 Synthesis of LiTa 1.8 Sb 0.2 PO 8 with a new crystal structure 1.2896 g TaCl 5 and 0.09125 g SbCl 3 (Fujifilm Wako Pure Chemical Industries, Ltd.) in 50 mL absolute ethanol in a dry environment A TaCl 5/SbCl 3 solution was obtained by dissolving TaCl 5 /SbCl 3 solution.
  • 0.2301 g of NH 4 H 2 PO 4 was dissolved in 50 mL of ion exchange water to obtain an aqueous NH 4 H 2 PO 4 solution.
  • 0.0923 g of LiOH ⁇ H 2 O was dissolved in 100 mL of ion exchange water to obtain a LiOH aqueous solution.
  • this LiOH aqueous solution While stirring this LiOH aqueous solution with a stirrer, this TaCl 5 .SbCl 3 solution and this NH 4 H 2 PO 4 aqueous solution were sequentially added and mixed at 80°C. Note that this mixed solution contains 1.1 times as much LiOH, ie, 10 mol% excess, as compared to the composition LiTa 1.8 Sb 0.2 PO 8 .
  • This mixed solution was dried at 120° C. for 15 hours, the dried solidified powder was collected, and the solidified powder was lightly ground in an agate mortar.
  • This pulverized powder was fired for 12 hours at 500°C in an oxygen atmosphere using a vacuum gas displacement electric furnace to obtain a white powder of LiTa 1.8 Sb 0.2 PO 8 , which is an amorphous raw material.
  • This white powder was wet ball milled using a planetary ball mill, and then uniaxially pressed using a tablet molding machine to obtain a molded product. Using an electric furnace, this molded body was heated to 1208° C. in air, fired for 5 minutes, and cooled to obtain a sintered precursor. This sintered precursor was then fired in an oxygen atmosphere at 1000° C. for 12 hours using a vacuum gas displacement electric furnace to obtain a LiTa 1.8 Sb 0.2 PO 8 sintered body.
  • the lithium ion conductivity of this sintered body was calculated in the same manner as in Comparative Example 1. From the measurement results at room temperature, the total lithium ion conductivity was calculated to be 4.3 ⁇ 10 -4 S/cm, which is higher than the previously reported total lithium ion conductivity of the LiTa 1.8 Sb 0.2 PO 8 sintered body. Ta.
  • Example 13 Production of composite positive electrode LiTa 2 PO 8 (LTPO) sintered body and LiTa 1.9 Bi 0.1 PO 8 (LTBPO) sintered body obtained in Example 6, Example 7, and Example 10 , Li 1.1 Ta 1.9 Hf 0.1 PO 8 (LTHPO) sintered bodies were respectively pulverized to produce a composite positive electrode that was used as an electrolyte of the composite positive electrode.
  • LiCoO 2 Cellseed C-5H, manufactured by Nihon Kagaku Kogyo
  • the mixture was mixed using a tablet molding machine.
  • a green compact was produced using uniaxial pressure. This compacted compact was baked at 600° C. for 2 hours in an argon gas atmosphere to produce the composite positive electrode sintered compact.
  • the resistance value of the produced composite positive electrode molded body was calculated from the arc of the Nyquist plot using a frequency response analyzer. From the measurement results at room temperature, the ionic resistance of the green compact was approximately 1 ⁇ 10 7 ⁇ . Although these values are high in terms of ionic resistance, it is clear that a conductive path is maintained within the composite positive electrode and that an increase in interfacial resistance with the positive electrode active material is suppressed.
  • FIG. 18 shows a powder X-ray diffraction pattern measured by crushing the composite positive electrode.
  • the solid electrolyte of the present invention can be used as a composite positive electrode of an all-solid-state battery.
  • Example 14 Production of all-solid-state battery
  • the sintered body obtained in Example 1 was pulverized to obtain a white powder.
  • This white powder was wet-ball-milled using a planetary ball mill, and then dried to produce a dense sintered body consisting of an electrolyte layer and a composite electrode layer using LiTa 2 PO 8 sintered body powder. That is, this LiTa 2 PO 8 sintered body powder was filled into a hot press mold (manufactured by As One) with a diameter of 10 mm ⁇ , and held at 400 ° C. and 374 MPa for 2 hours using a heat press machine (manufactured by As One). A disk-shaped dense sintered body with a thickness of about 0.3 mm was obtained.
  • This dense sintered body and mold constitute a composite electrode layer comprising a solid electrolyte layer and one electrode layer. Furthermore, a lithium ion conductive polymer electrolyte sheet and a metal lithium sheet (thickness: 0.2 mm), which will become the other electrode layer, are successively pasted on the surface of the exposed solid electrolyte layer to create an all-solid-state battery. did. A constant current charge/discharge test (current density 3 mA/g) was conducted on this all-solid battery at 60° C. using a charge/discharge test device (manufactured by Hokuto Denko, HJ1020mSD8). As a result, the capacity corresponding to the charge/discharge reaction was observed, confirming the operation of the all-solid-state battery.
  • LiTa 2 PO 8 having the novel crystal structure of the present application and its element substituted product, an electrolyte member having high lithium ion conductivity can be produced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Conductive Materials (AREA)

Abstract

The present invention provides: an oxide sintered body which has a crystal structure that is capable of enhancing the lithium ion conductivity; and a method for producing an oxide sintered body, the method being capable of building the crystal structure. This oxide sintered body contains lithium, tantalum and phosphorus, while having a crystal structure belonging to the monoclinic space group C2/c; and lithium atoms do not occupy the Wyckoff position 4b (0.5, 0, 0). This method for producing an oxide sintered body comprises a sintering step in which an oxide that contains lithium, tantalum and phosphorus is fired at a temperature that is higher than 1200°C but not higher than 1400°C.

Description

酸化物焼結体および酸化物焼結体の製造方法Oxide sintered body and method for producing oxide sintered body
 本願は、高いリチウムイオン伝導性を有する酸化物焼結体およびこの酸化物焼結体の製造方法に関する。 The present application relates to an oxide sintered body having high lithium ion conductivity and a method for manufacturing the oxide sintered body.
 リチウムイオン二次電池は、スマートフォンおよびノート型パソコンなどの小型電子機器用の電源として広く採用されている。近年、リチウムイオン二次電池は、大型用途であるハイブリット自動車および電気自動車用の電源、ならびに定置型蓄電池としての用途展開が期待されている。さらに、安全性および高いエネルギー密度の観点から、可燃性の電解液を使用しない全固体リチウムイオン二次電池、リチウム空気電池、および全固体リチウム硫黄電池などの研究開発が進められている。これらの電気化学デバイスに用いられる固体電解質には、高いリチウムイオン伝導性が要求される。 Lithium-ion secondary batteries are widely used as power sources for small electronic devices such as smartphones and notebook computers. In recent years, lithium ion secondary batteries are expected to be used as power sources for large-scale hybrid vehicles and electric vehicles, and as stationary storage batteries. Furthermore, from the viewpoint of safety and high energy density, research and development is progressing on all-solid-state lithium-ion secondary batteries, lithium-air batteries, all-solid-state lithium-sulfur batteries, etc. that do not use flammable electrolytes. Solid electrolytes used in these electrochemical devices are required to have high lithium ion conductivity.
 最近、リチウムタンタルリン酸化合物LiTaPOが高いリチウムイオン伝導性を示すことが報告されている(非特許文献1~非特許文献3)。LiTaPOの結晶構造は、他のリチウムイオン伝導体と異なる。TaO八面体とPO四面体からLiTaPOの骨格構造が構築され、これらの間隙にリチウムイオンが占有することが、精密な結晶構造解析によって明らかとなっている。リチウムの配列が3次元的な伝導経路を構築しているので、LiTaPOでは、ガーネット型材料と同様の良好なリチウムイオン伝導が可能となっている。 Recently, it has been reported that lithium tantalum phosphate compound LiTa 2 PO 8 exhibits high lithium ion conductivity (Non-Patent Documents 1 to 3). The crystal structure of LiTa 2 PO 8 is different from other lithium ion conductors. Precise crystal structure analysis has revealed that the skeleton structure of LiTa 2 PO 8 is constructed from TaO 6 octahedrons and PO 4 tetrahedra, and that lithium ions occupy the gaps between these. Since the arrangement of lithium forms a three-dimensional conduction path, LiTa 2 PO 8 enables good lithium ion conduction similar to that of garnet-type materials.
 一方、LiTaPOを基本組成として、Taの元素置換によって特性の改善が試みられている(特許文献1~特許文献3および非特許文献4)。LiTaPO焼結体のバルクリチウムイオン導電率は、この元素置換によって向上することが報告されている。元素置換されたLiTaPO焼結体を作製するときの焼成温度は、LiTaPO焼結体を作製するときの焼成温度と同様に1200℃以下であった。元素置換されたLiTaPO焼結体の結晶構造は、LiTaPO焼結体の結晶構造と同じ単斜晶系の構造として記載されており、詳細なリチウム占有席およびリチウムイオン伝導経路の差異については、言及がないばかりか、違いを予測することすら検討されていなかった。 On the other hand, attempts have been made to improve the characteristics by elemental substitution of Ta using LiTa 2 PO 8 as the basic composition (Patent Documents 1 to 3 and Non-Patent Document 4). It has been reported that the bulk lithium ion conductivity of the LiTa 2 PO 8 sintered body is improved by this element substitution. The firing temperature when producing the element-substituted LiTa 2 PO 8 sintered body was 1200° C. or lower, similar to the firing temperature when producing the LiTa 2 PO 8 sintered body. The crystal structure of the element-substituted LiTa 2 PO 8 sintered body is described as a monoclinic structure, which is the same as the crystal structure of the LiTa 2 PO 8 sintered body, and the detailed lithium occupied sites and lithium ion conduction paths are Not only was there no mention of the difference between the two, but there was no consideration even of predicting the difference.
 通常、LiTaPO焼結体を作製するためには、高温焼成の手法が用いられる。しかし、LiTaPOは、高温で揮発しやすいリチウムおよびリン酸を主要元素として含有する。これらの揮発による組成ずれと分解による不純物相の生成を抑えるため、LiTaPOを作製するときの焼成温度は、1200℃が上限とされていた。したがって、1200℃を超える温度で焼成して生成したLiTaPO焼結体が、どのようなリチウム占有席を有する結晶構造を有するか、リチウムイオン導電特性がどのように変化するか検討されておらず、結晶構造変化があることを予測するのも不可能であった。 Usually, a high temperature firing method is used to produce a LiTa 2 PO 8 sintered body. However, LiTa 2 PO 8 contains lithium and phosphoric acid as main elements, which easily volatilize at high temperatures. In order to suppress the composition shift due to these volatilization and the generation of impurity phases due to decomposition, the upper limit of the firing temperature when producing LiTa 2 PO 8 has been set at 1200°C. Therefore, studies have been conducted to determine what type of lithium-occupied crystal structure the LiTa 2 PO 8 sintered body produced by firing at temperatures exceeding 1200°C has, and how the lithium ion conductive properties change. It was impossible to predict that there would be a change in the crystal structure.
特開2020-194773号公報Japanese Patent Application Publication No. 2020-194773 特開2021-38100号公報Japanese Patent Application Publication No. 2021-38100 特開2021-38099号公報JP 2021-38099 Publication
 本願は、このような事情に鑑みてなされたものであり、リチウムイオン伝導性をより高くできる結晶構造を備える酸化物焼結体と、その結晶構造を構築できる酸化物焼結体の製造方法を提供することを課題とする。 The present application was made in view of these circumstances, and provides an oxide sintered body with a crystal structure that can further increase lithium ion conductivity, and a method for manufacturing the oxide sintered body that can construct the crystal structure. The challenge is to provide.
 本願発明者らは、目的のLiTaPOの焼成温度と結晶構造の関係、および高温焼成に適する出発原料と合成方法について精査した。その結果、驚くべきことに、1200℃を超える温度での焼成で、より高速なリチウムイオン拡散に有利なリチウムの占有方式をもつ結晶相が生成することを見出した。さらに、リチウムおよびリン酸の高温での揮発が抑制できる密閉系での焼成によって、1300℃で焼成しても分解することなくLiTaPOが焼成可能であること、このような高温焼成によって、LiTaPOの粒成長が顕著となり、高いバルクリチウムイオン導電率を有する焼結体と単結晶体が得られることを見出した。 The inventors of the present application carefully investigated the relationship between the firing temperature and crystal structure of the target LiTa 2 PO 8 , as well as starting materials and synthesis methods suitable for high-temperature firing. As a result, it was surprisingly found that calcination at temperatures exceeding 1200°C produces a crystalline phase with a lithium occupation mode that is advantageous for faster lithium ion diffusion. Furthermore, by firing in a closed system that can suppress the volatilization of lithium and phosphoric acid at high temperatures, LiTa 2 PO 8 can be fired without decomposing even when fired at 1300°C, and by such high-temperature firing, It has been found that the grain growth of LiTa 2 PO 8 becomes remarkable, and a sintered body and single crystal body having high bulk lithium ion conductivity can be obtained.
 さらに、LiTaPOの化学組成の検討を進め、Ta席に異種元素を置換することでリチウムイオン拡散に有利なリチウム量にできることと、元素添加に伴って液相が形成され、1200℃を超える高温焼成で焼結助剤として機能し、焼結性が改善できることを見出した。その結果、このような製造方法で作製されたLiTaPOおよびLiTaPOのTaを他の元素に置換し、必要に応じてLi組成量を変更した元素置換体(以下、Taを他の元素に置換し、必要に応じてLi組成量を変更した元素置換体を、単に「元素置換体」と記載することがある)の高温相の緻密焼結体の全リチウムイオン導電率が2×10-4S/cm以上であることと、その緻密焼結体を粉砕処理した粉体を用いて低温焼結で作製された固体電解質を備える全固体電池の電池動作を確認した。 Furthermore, we continued to study the chemical composition of LiTa 2 PO 8 , and found that by substituting a different element in the Ta site, the amount of lithium can be made favorable for lithium ion diffusion, and that a liquid phase is formed with the addition of the element, and that it can be heated to 1200 °C. It has been found that sintering properties can be improved by functioning as a sintering aid at higher temperature firings. As a result, we replaced Ta in LiTa 2 PO 8 and LiTa 2 PO 8 produced by such a manufacturing method with other elements, and changed the Li composition as necessary to produce element-substituted products (hereinafter, Ta is replaced with other elements). The total lithium ion conductivity of the dense sintered body of the high-temperature phase of (sometimes simply referred to as "element substituted product" is an element substituted product in which the Li composition is changed as necessary) is 2. ×10 −4 S/cm or more, and the operation of an all-solid-state battery was confirmed, which was equipped with a solid electrolyte produced by low-temperature sintering using powder obtained by pulverizing the dense sintered body.
 本願の酸化物焼結体は、リチウム、タンタル、およびリンを含有する酸化物焼結体であって、単斜晶系で空間群C2/cに属する結晶構造を有し、ワイコフ位置で4b席(0.5,0,0)にリチウムが占有していない。本願の酸化物焼結体の製造方法は、1200℃より高く1400℃以下の温度でリチウム、タンタル、およびリンを含有する酸化物を焼成する焼結工程を有する。本願の電気化学デバイスは、本願の酸化物焼結体を備える固体電解質と、固体電解質を挟む一対の電極を有する。 The oxide sintered body of the present application is an oxide sintered body containing lithium, tantalum, and phosphorus, has a monoclinic crystal structure belonging to space group C2/c, and has a 4b seat at the Wyckoff position. (0.5,0,0) is not occupied by lithium. The method for producing an oxide sintered body of the present application includes a sintering step of firing an oxide containing lithium, tantalum, and phosphorus at a temperature higher than 1200°C and lower than 1400°C. The electrochemical device of the present application includes a solid electrolyte including the oxide sintered body of the present application, and a pair of electrodes sandwiching the solid electrolyte.
 本願によれば、より高いリチウムイオン伝導性が発現する結晶相を備える酸化物焼結体が得られる。 According to the present application, an oxide sintered body having a crystalline phase that exhibits higher lithium ion conductivity can be obtained.
本願の電気化学デバイスの一例である全固体リチウムイオン二次電池の概念図。FIG. 1 is a conceptual diagram of an all-solid-state lithium ion secondary battery that is an example of the electrochemical device of the present application. 実施例1で得られたLiTaPO焼結体から選別した単結晶を用いた単結晶X線回折パターン。Single crystal X-ray diffraction pattern using a single crystal selected from the LiTa 2 PO 8 sintered body obtained in Example 1. 実施例1で得られたLiTaPO焼結体から選別した単結晶を用いた単結晶X線結晶構造解析の結果から得られた結晶構造モデル。A crystal structure model obtained from the results of single crystal X-ray crystal structure analysis using a single crystal selected from the LiTa 2 PO 8 sintered body obtained in Example 1. 実施例1で得られたLiTaPO焼結体の破断面の電子顕微鏡像。An electron microscope image of a fractured surface of the LiTa 2 PO 8 sintered body obtained in Example 1. 実施例1で得られたLiTaPO焼結体から選別した単結晶体の電子顕微鏡像。An electron microscope image of a single crystal body selected from the LiTa 2 PO 8 sintered body obtained in Example 1. 実施例2で得られたLiTaPO単結晶体の実体顕微鏡像。A stereoscopic microscope image of the LiTa 2 PO 8 single crystal obtained in Example 2. 比較例1、実施例3、および実施例4で得られたLiTaPO焼結体の粉末X線回折パターンとその部分拡大図。Powder X-ray diffraction patterns and partially enlarged views of LiTa 2 PO 8 sintered bodies obtained in Comparative Example 1, Example 3, and Example 4. 比較例1で得られたLiTaPO焼結体の破断面の電子顕微鏡像。An electron microscope image of a fractured surface of the LiTa 2 PO 8 sintered body obtained in Comparative Example 1. 実施例5で得られたLiTaPO焼結体の粉末X線回折パターン。Powder X-ray diffraction pattern of the LiTa 2 PO 8 sintered body obtained in Example 5. 実施例5で得られたLiTaPO焼結体の交流インピーダンス測定結果を示すグラフ。3 is a graph showing AC impedance measurement results of the LiTa 2 PO 8 sintered body obtained in Example 5. 実施例6で得られたLiTaPO焼結体の粉末X線回折パターン。Powder X-ray diffraction pattern of the LiTa 2 PO 8 sintered body obtained in Example 6. 実施例7で得られたLiTa1.9Bi0.1PO焼結体の粉末X線回折パターン。Powder X-ray diffraction pattern of the LiTa 1.9 Bi 0.1 PO 8 sintered body obtained in Example 7. 実施例7で得られたLiTa1.9Bi0.1PO焼結体の破断面の電子顕微鏡像。An electron microscope image of a fractured surface of the LiTa 1.9 Bi 0.1 PO 8 sintered body obtained in Example 7. 実施例7で得られたLiTa1.9Bi0.1PO焼結体の交流インピーダンス測定結果を示すグラフ。7 is a graph showing AC impedance measurement results of the LiTa 1.9 Bi 0.1 PO 8 sintered body obtained in Example 7. 実施例9で得られたLiTa1.8Bi0.2PO焼結体の粉末X線回折パターン。Powder X-ray diffraction pattern of the LiTa 1.8 Bi 0.2 PO 8 sintered body obtained in Example 9. 実施例10で得られたLi1.1Ta1.9Hf0.1PO焼結体の粉末X線回折パターン。Powder X-ray diffraction pattern of the Li 1.1 Ta 1.9 Hf 0.1 PO 8 sintered body obtained in Example 10. 実施例12で得られたLiTa1.8Sb0.2PO焼結体の粉末X線回折パターン。Powder X-ray diffraction pattern of the LiTa 1.8 Sb 0.2 PO 8 sintered body obtained in Example 12. 実施例13で得られた複合正極焼結体の粉末X線回折パターン。Powder X-ray diffraction pattern of the composite positive electrode sintered body obtained in Example 13.
(酸化物焼結体)
 本願の実施形態の酸化物焼結体は、リチウム、タンタル、およびリンを含有する。本実施形態の酸化物焼結体は、単斜晶系で空間群C2/cに属する結晶構造を有し、ワイコフ位置で4b席(0.5,0,0)にリチウムが占有していない。リチウムの占有席が、ワイコフ位置で3つ以上の8f席にのみ占有していることが好ましい。リチウムの占有席が無秩序化した占有となっていてもよい。
(oxide sintered body)
The oxide sintered body of the embodiment of the present application contains lithium, tantalum, and phosphorus. The oxide sintered body of this embodiment has a monoclinic crystal structure belonging to space group C2/c, and lithium does not occupy the 4b position (0.5, 0, 0) at the Wyckoff position. . Preferably, Lithium occupies only three or more 8f seats at the Wyckoff location. The lithium occupied seats may be occupied in a disorderly manner.
 本実施形態の酸化物焼結体としては、一般式LiTa2-xPO(MはBiまたはSb、0≦x≦0.2(以下同じ))で表される酸化物焼結体、例えば、LiTa1.9Bi0.1PO、LiTa1.8Bi0.2PO、LiTa1.9Sb0.1PO、およびLiTa1.8Sb0.2POが挙げられる。また、本実施形態の酸化物焼結体としては、一般式Li1+yTa2-yHfPO(0≦y≦0.2(以下同じ))で表される酸化物焼結体、例えば、Li1.1Ta1.9Hf0.1POおよびLi1.2Ta1.8Hf0.2POが挙げられる。 The oxide sintered body of this embodiment is an oxide sintered body represented by the general formula LiTa 2-x M x PO 8 (M is Bi or Sb, 0≦x≦0.2 (the same applies hereinafter)). , for example, LiTa 1.9 Bi 0.1 PO 8 , LiTa 1.8 Bi 0.2 PO 8 , LiTa 1.9 Sb 0.1 PO 8 , and LiTa 1.8 Sb 0.2 PO 8 . Further, as the oxide sintered body of this embodiment, an oxide sintered body represented by the general formula Li 1+y Ta 2-y Hf y PO 8 (0≦y≦0.2 (the same applies hereinafter)), for example, , Li 1.1 Ta 1.9 Hf 0.1 PO 8 and Li 1.2 Ta 1.8 Hf 0.2 PO 8 .
 なお、LiTaPOのTaを置換する元素としては、ビスマス、アンチモン、およびハフニウム以外に、チタン、ニオブ、モリブデン、ジルコニウム、タングステン、ホウ素、アルミニウム、ケイ素、ゲルマニウム、およびガリウムが例示できる。また、本実施形態の酸化物焼結体としてはLiTaPOが挙げられる。より高いリチウムイオン導電性を得るため、LiTaPOは、直径50μm~100μmの一次粒子から構成されることが好ましい。一次粒子の粒径、すなわち一次粒子サイズは、例えば、走査電子顕微鏡を用いて測定できる。さらに高いリチウムイオン導電性を得るため、LiTaPOは単結晶であることが好ましい。 In addition to bismuth, antimony, and hafnium, examples of the element that replaces Ta in LiTa 2 PO 8 include titanium, niobium, molybdenum, zirconium, tungsten, boron, aluminum, silicon, germanium, and gallium. Moreover, LiTa2PO8 is mentioned as an oxide sintered compact of this embodiment . In order to obtain higher lithium ion conductivity, LiTa 2 PO 8 is preferably composed of primary particles with a diameter of 50 μm to 100 μm. The particle size of the primary particles, that is, the primary particle size, can be measured using, for example, a scanning electron microscope. In order to obtain even higher lithium ion conductivity, LiTa 2 PO 8 is preferably single crystal.
(酸化物焼結体の製造方法)
 本願の実施形態の酸化物焼結体の製造方法は、焼結工程を備えている。焼結工程では、1200℃より高く1400℃以下の温度で原料の酸化物(以下「原料酸化物」と記載することがある)を焼成する。原料酸化物は、リチウム、タンタル、およびリンを含有する酸化物である。リチウム、タンタル、およびリンを含有する酸化物としては、一般式LiTa2-xPOで表される酸化物、一般式Li1+yTa2-yHfPOで表される酸化物、および非晶質LiTaPOなどが挙げられる。非晶質LiTaPOは、成型性を含む概念である成形性に優れる。
(Method for manufacturing oxide sintered body)
The method for manufacturing an oxide sintered body according to the embodiment of the present application includes a sintering step. In the sintering step, a raw material oxide (hereinafter sometimes referred to as "raw material oxide") is fired at a temperature higher than 1200°C and lower than 1400°C. The raw material oxide is an oxide containing lithium, tantalum, and phosphorus. Examples of oxides containing lithium, tantalum, and phosphorus include oxides represented by the general formula LiTa 2-x M x PO 8 , oxides represented by the general formula Li 1+y Ta 2-y Hf y PO 8 , and amorphous LiTa 2 PO 8 . Amorphous LiTa 2 PO 8 has excellent moldability, which is a concept that includes moldability.
 原料酸化物は、各種原料化合物、例えば金属塩およびリン酸化合物などをそれぞれ溶媒に溶解し、これらの溶液を混合して析出物を析出させ、この析出物を焼成して得られる。しかし、各種原料化合物の金属成分などが原子レベルで均一に混合でき、原料酸化物が生成できれば、原料酸化物の作製方法には特に制限がない。例えば、通常の固相合成、共沈法、ゾルゲル法、錯体重合法、および水熱合成法等の溶液合成、ならびに真空蒸着法、スパッタリング法、パルスレーザー堆積法、および化学気相反応法等の気相反応合成などでも原料酸化物が製造できる。また、ボールミル粉砕などのメカノケミカル反応を適用しても、原料酸化物が製造できる。 The raw material oxide is obtained by dissolving various raw material compounds, such as metal salts and phosphoric acid compounds, in respective solvents, mixing these solutions to precipitate a precipitate, and firing the precipitate. However, as long as the metal components of various raw material compounds can be mixed uniformly at the atomic level and the raw material oxide can be produced, there are no particular restrictions on the method for producing the raw material oxide. For example, solution synthesis such as ordinary solid phase synthesis, coprecipitation method, sol-gel method, complex polymerization method, and hydrothermal synthesis method, as well as vacuum evaporation method, sputtering method, pulsed laser deposition method, and chemical vapor phase reaction method, etc. Raw material oxides can also be produced by gas phase reaction synthesis. The raw material oxide can also be produced by applying a mechanochemical reaction such as ball milling.
 各種原料化合物は、リチウム、タンタル、またはリンを含有する化合物であれば特に制限がない。原料化合物としては、例えば酸化物、炭酸塩、水酸化物、硝酸塩、アンモニウム塩、水素アンモニウム塩、塩化物等のハロゲン化物、および酸化塩化物などが採用できる。原料酸化物は、例えば、以下の手順で作製できる。まず、原料化合物を溶媒に溶解させる。この溶媒は、原料化合物を均一に混合できれば特に制限がない。この溶媒としては、例えば、メタノール、エタノール、ヘキサノール、およびプロパノール等のアルコール系溶媒、芳香族化合物およびエーテル等の有機溶媒、ならびに水が挙げられる。 The various raw material compounds are not particularly limited as long as they contain lithium, tantalum, or phosphorus. Examples of raw material compounds that can be used include oxides, carbonates, hydroxides, nitrates, ammonium salts, ammonium hydrogen salts, halides such as chlorides, and oxidized chlorides. The raw material oxide can be produced, for example, by the following procedure. First, a raw material compound is dissolved in a solvent. This solvent is not particularly limited as long as it can uniformly mix the raw material compounds. Examples of the solvent include alcoholic solvents such as methanol, ethanol, hexanol, and propanol, organic solvents such as aromatic compounds and ethers, and water.
 原料化合物を溶媒に溶解させる温度は、室温以上溶媒の沸点以下であればよい。原料化合物と溶媒を混合してから静置して原料化合物の溶媒への溶解を待ってもよいし、溶解反応を加速するために、スターラーまたは攪拌機などを用いて原料化合物と溶媒の混合物を攪拌してもよい。つぎに、各原料化合物溶液を混合する。例えば、5価の塩化タンタル、5価の塩化ニオブ、4価の塩化ハフニウム、3価の塩化ビスマス、塩化アンチモンは、エタノールなどに溶解するが、その後、水溶液と混合することで、ゲル化した析出物を生じる。その状態で加熱することで、ゲル化析出物が乾燥して、原料酸化物の前駆体が生成する。加熱方法には特に制限がなく、ホットプレート、電気加熱型マッフル炉、およびマントルヒーターなどを用いて加熱してもよい。加熱温度は、50℃以上溶媒の沸点以下が好ましく、80℃以上溶媒の沸点以下がより好ましい。 The temperature at which the raw material compound is dissolved in the solvent may be at least room temperature and at most the boiling point of the solvent. You can mix the raw material compound and the solvent and then leave it to stand still to wait for the raw material compound to dissolve in the solvent, or you can stir the mixture of the raw material compound and the solvent using a stirrer or a stirrer to accelerate the dissolution reaction. You may. Next, the respective raw material compound solutions are mixed. For example, pentavalent tantalum chloride, pentavalent niobium chloride, tetravalent hafnium chloride, trivalent bismuth chloride, and antimony chloride dissolve in ethanol, etc., but when mixed with an aqueous solution afterwards, they form a gelled precipitate. bring about things. By heating in this state, the gelled precipitate is dried and a precursor of the raw material oxide is generated. The heating method is not particularly limited, and heating may be performed using a hot plate, an electrically heated muffle furnace, a mantle heater, or the like. The heating temperature is preferably 50°C or higher and lower than the boiling point of the solvent, more preferably 80°C or higher and lower than the boiling point of the solvent.
 そして、この前駆体を焼成することで目的とする原料酸化物が得られる。焼成方法には特に制限がなく、電気加熱型マッフル炉またはマントルヒーターなどを用いて焼成してもよい。焼成温度は、原料酸化物の粉末を得るために350℃以上が好ましく、500℃以上1000℃以下とすればよい。焼成に使用する容器には特に制限がなく、ガラスビーカーおよび非アルミナ系セラミックス容器などが使用でき、400℃以上の高温焼成では、金製容器、白金製容器、およびアルミナ製容器などが使用できる。焼成雰囲気には特に制限がなく、通常は酸素中または大気中などの酸化性ガス雰囲気である。 Then, by firing this precursor, the desired raw material oxide is obtained. There are no particular restrictions on the firing method, and firing may be performed using an electrically heated muffle furnace, a mantle heater, or the like. The firing temperature is preferably 350° C. or higher to obtain powder of the raw material oxide, and may be 500° C. or higher and 1000° C. or lower. There are no particular restrictions on the container used for firing, and glass beakers, non-alumina ceramic containers, and the like can be used. For high-temperature firing of 400° C. or higher, gold containers, platinum containers, alumina containers, etc. can be used. The firing atmosphere is not particularly limited, and is usually an oxidizing gas atmosphere such as oxygen or air.
 焼成時間は、各種原料化合物由来の窒素、塩素、および炭素等の残存物が揮発できれば、焼成温度等に応じて設定できる。焼成後の冷却方法にも特に制限がないが、通常は自然放冷(炉内放冷)または徐冷すればよい。焼成・冷却後は、必要に応じて原料酸化物を粉砕し、さらに焼成温度を変更して再焼成してもよい。粉砕の程度は、焼成温度などに応じて調節できる。この水溶液合成法で作製されたLiTaPOまたはその元素置換体が原料酸化物として使用できる。 The firing time can be set depending on the firing temperature, etc., as long as residual substances such as nitrogen, chlorine, and carbon derived from various raw material compounds can be volatilized. There are no particular restrictions on the cooling method after firing, but usually natural cooling (in-furnace cooling) or slow cooling may be used. After firing and cooling, the raw material oxide may be pulverized if necessary, and the firing temperature may be changed and re-fired. The degree of pulverization can be adjusted depending on the firing temperature, etc. LiTa 2 PO 8 or its element substituted product produced by this aqueous solution synthesis method can be used as the raw material oxide.
 なお、Li、Ta、P、および置換元素の一部のみを含む酸化物などの混合物を仮焼成して、原料酸化物を作製してもよい。この酸化物などの混合物は、酸化物焼結体の合成後にLiTaPOおよびその元素置換体の組成比となるように複数の酸化物が混合されている。仮焼成温度は、酸化物の混合物の組成によって設定することができるが、通常は500℃~1200℃、好ましくは900℃~1000℃である。また、仮焼成雰囲気は特に制限がなく、通常はアルゴンガス雰囲気、窒素ガス雰囲気、酸素ガス雰囲気、または大気雰囲気である。仮焼成時間は仮焼成温度などに応じて設定できる。 Note that the raw material oxide may be prepared by calcining a mixture of Li, Ta, P, and an oxide containing only a part of the substitution element. In this mixture of oxides, a plurality of oxides are mixed so as to have a composition ratio of LiTa 2 PO 8 and its element substituted product after synthesis of the oxide sintered body. The pre-calcination temperature can be set depending on the composition of the oxide mixture, but is usually 500°C to 1200°C, preferably 900°C to 1000°C. Further, the pre-calcination atmosphere is not particularly limited, and is usually an argon gas atmosphere, a nitrogen gas atmosphere, an oxygen gas atmosphere, or an air atmosphere. The pre-baking time can be set depending on the pre-baking temperature, etc.
 つぎに、原料酸化物を本焼成する。本焼成温度は1200℃より高く1400℃以下であり、好ましくは1205℃以上1300℃以下である。本焼成では、1200℃より高く1400℃以下の温度による一段階での焼結反応を進行させてもよいし、1200℃より高く1400℃以下にいったん昇温した後、1200℃以下の温度で焼結させる二段階での焼結反応を進行させてもよい。このときの二段階目の焼成温度は、通常は800℃以上1200℃以下、好ましくは850℃以上1050℃以下である。この二段階での焼成方法では、高温で液相を生成するビスマス、ガリウム、アルミニウム、またはホウ素などを置換元素として使用することで、一段階目の高温での焼結でリチウム塩などの液相が生成し、二段階目の低温での焼結でこのリチウム塩などの液相が焼結助剤として機能し、高い緻密性を有する酸化物焼結体が得られる。 Next, the raw material oxide is fired. The main firing temperature is higher than 1200°C and lower than 1400°C, preferably higher than 1205°C and lower than 1300°C. In the main firing, the sintering reaction may proceed in one step at a temperature higher than 1200°C and lower than 1400°C, or the temperature may be raised higher than 1200°C and lower than 1400°C, and then sintered at a temperature lower than 1200°C. The sintering reaction may proceed in two stages. The second stage firing temperature at this time is usually 800°C or more and 1200°C or less, preferably 850°C or more and 1050°C or less. In this two-step sintering method, by using bismuth, gallium, aluminum, or boron, which form a liquid phase at high temperatures, as a replacement element, the first step of high-temperature sintering produces a liquid phase such as lithium salt. is generated, and in the second stage of sintering at a low temperature, this liquid phase such as lithium salt functions as a sintering aid, resulting in a highly dense oxide sintered body.
 また、本焼成雰囲気は特に制限がなく、通常はアルゴンガス雰囲気、窒素ガス雰囲気、酸素ガス雰囲気、または大気雰囲気である。本焼成するときに、必要に応じて粉砕した原料酸化物を入れるるつぼの材質は、1200℃以上の高温で安定であり、かつ高温でのリチウム、リン酸、ビスマス、およびガリウムなどの揮発が抑制できればよく、例えば、白金、アルミナ、またはジルコニアである。 Further, the main firing atmosphere is not particularly limited, and is usually an argon gas atmosphere, a nitrogen gas atmosphere, an oxygen gas atmosphere, or an air atmosphere. The material of the crucible into which the pulverized raw material oxide is placed during main firing is stable at high temperatures of 1200°C or higher, and the volatilization of lithium, phosphoric acid, bismuth, gallium, etc. at high temperatures is suppressed. For example, platinum, alumina, or zirconia.
 本焼成する原料酸化物の形態には特に制限がなく、粉体、静水圧加圧または一軸加圧などの方法で加圧成形した板状成形体、および塗工技術または成膜技術で作製した膜体などが挙げられる。塗工技術としては、スクリーン印刷法、電気泳動(EPD)法、ドクターブレード法、スプレーコーティング法、インクジェット法、およびスピンコート法などが挙げられる。成膜技術としては、蒸着法、スパッタリング法、化学気相成長(CVD)法、電気化学気相成長法、イオンビーム法、レーザーアブレーション法、大気圧プラズマ成膜法、および減圧プラズマ成膜法などが挙げられる。 There are no particular restrictions on the form of the raw material oxide to be fired, and it may be a powder, a plate-shaped compact formed by hydrostatic pressure or uniaxial pressure, or a plate-shaped body produced by coating or film-forming technology. Examples include membrane bodies. Coating techniques include screen printing, electrophoresis (EPD), doctor blading, spray coating, inkjet, and spin coating. Film deposition techniques include vapor deposition, sputtering, chemical vapor deposition (CVD), electrochemical vapor deposition, ion beam, laser ablation, atmospheric plasma deposition, and reduced pressure plasma deposition. can be mentioned.
 また、熱プレス、熱間等方圧加圧、または通電焼結などの手法を用いて、原料酸化物の板状体または膜体などを作製してもよい。本焼成後は、得られた酸化物焼結体を必要に応じて公知の方法で粉砕し、さらに本焼成を繰り返してもよい。粉砕の程度は、本焼成温度などに応じて設定できる。また、粉体の原料酸化物を一度焼成したものから原料酸化物の成形体を作製してもよい。 Alternatively, a plate-like body or a film body of the raw material oxide may be produced using a method such as hot pressing, hot isostatic pressing, or electrical sintering. After the main firing, the obtained oxide sintered body may be pulverized by a known method if necessary, and the main firing may be repeated. The degree of pulverization can be set depending on the main firing temperature and the like. Alternatively, a molded body of the raw material oxide may be produced from a powdered raw material oxide that has been fired once.
(固体電解質材料)
 本焼成で得られた酸化物焼結体は、全固体リチウムイオン二次電池などの電気化学デバイスの固体電解質材料として使用できる。酸化物焼結体を粉砕処理してから、再度成形および焼成して、固体電解質材料を作製してもよい。また、酸化物焼結体の粉体と他の電解質材料を、混合または複合化して成形体を作製してもよい。一方、酸化物焼結体が塊状の焼結体(単結晶体を含む)、成形体、または塗工膜体であれば、そのまま固体電解質として使用できる。
(Solid electrolyte material)
The oxide sintered body obtained by the main firing can be used as a solid electrolyte material for electrochemical devices such as all-solid lithium ion secondary batteries. A solid electrolyte material may be produced by pulverizing the oxide sintered body, then molding and firing it again. Further, a molded body may be produced by mixing or compounding the powder of the oxide sintered body and another electrolyte material. On the other hand, if the oxide sintered body is a bulk sintered body (including a single crystal body), a molded body, or a coated film body, it can be used as a solid electrolyte as it is.
(正極部材)
 本願の酸化物焼結体は、電極中のリチウムイオン伝導性を確保するために、正極の構成部材として使用できる。すなわち、本願の酸化物焼結体と正極材料活物質を混合または複合化した成形体が正極部材である。正極材料活物質としては、一般的にリチウムイオン二次電池の正極材料として使用されている材料が使用できる。例えば、LiCoO、LiNiO、Li(Ni,Mn,Co)O、Li(Ni,Co,Al)O、LiMnO-Li(Ni,Mn,Co)O、Li(Ni,Mn)、Li(Co,Mn)、Li(Mn,Al)、LiFePO、LiMnPO、LiCoPO、およびLiNiPOなどの酸化物、硫黄、ならびに硫化リチウムなどが正極材料活物質として挙げられる。
(Positive electrode member)
The oxide sintered body of the present application can be used as a component of a positive electrode in order to ensure lithium ion conductivity in the electrode. That is, the positive electrode member is a molded product obtained by mixing or combining the oxide sintered body of the present application and the positive electrode material active material. As the positive electrode material active material, materials that are generally used as positive electrode materials for lithium ion secondary batteries can be used. For example, LiCoO 2 , LiNiO 2 , Li(Ni,Mn,Co)O 2 , Li(Ni,Co,Al)O 2 , Li 2 MnO 3 -Li(Ni,Mn,Co)O 2 , Li(Ni, Oxides such as Mn) 2O4 , Li(Co,Mn) 2O4 , Li(Mn,Al) 2O4 , LiFePO4 , LiMnPO4 , LiCoPO4 , and LiNiPO4 , sulfur, and lithium sulfide, etc. It is mentioned as a positive electrode material active material.
 また、2V以上の高い電圧でリチウムの脱離・挿入反応が可逆的に起こる物質が正極材料活物質として使用できる。さらに、正極と固体電解質材料の接合を改善するとともに、リチウムイオン伝導性を向上させるために、この正極部材は、ポリマー、酸化物、硫化物、水素化物、またはハロゲン化物などを含有していてもよい。また、正極中の電子伝導性を向上させる目的で、この正極部材は、カーボンブラック、カーボンナノチューブ、グラファイト、またはチタン酸化物などの導電助剤を含有していてもよい。 Further, a material in which a lithium desorption/insertion reaction occurs reversibly at a high voltage of 2 V or higher can be used as the positive electrode active material. Furthermore, in order to improve the bond between the positive electrode and the solid electrolyte material and to improve lithium ion conductivity, this positive electrode member may contain polymers, oxides, sulfides, hydrides, or halides. good. Further, for the purpose of improving the electron conductivity in the positive electrode, this positive electrode member may contain a conductive additive such as carbon black, carbon nanotubes, graphite, or titanium oxide.
(電気化学デバイス)
 本願の酸化物焼結体は、リチウムイオン伝導性に優れているため、全固体リチウムイオン二次電池、リチウム空気電池、およびリチウム硫黄電池などの電気化学デバイスの固体電解質として使用できる。電気化学デバイスの一例としての全固体リチウムイオン二次電池は、本願の酸化物焼結体を備える固体電解質と、この固体電解質を挟む一対の電極を備えている。なお、一対の電極は、固体電解質を直接挟んでいなくてもよい。
(electrochemical device)
Since the oxide sintered body of the present application has excellent lithium ion conductivity, it can be used as a solid electrolyte for electrochemical devices such as all-solid lithium ion secondary batteries, lithium air batteries, and lithium sulfur batteries. An all-solid-state lithium ion secondary battery as an example of an electrochemical device includes a solid electrolyte including the oxide sintered body of the present application and a pair of electrodes sandwiching the solid electrolyte. Note that the pair of electrodes does not need to directly sandwich the solid electrolyte.
 また、本願の酸化物焼結体は、正極部材または負極部材にも使用できる。図1に、本願の実施形態の電気化学デバイスの一例である全固体リチウムイオン二次電池を概念的に示す。全固体リチウムイオン二次電池は、外装1と、正極タブ2と、正極集電体3と、正極4と、セパレータ5と、負極6と、負極集電体7と、負極タブ8を備えている。本願の酸化物焼結体は、正極4もしくは負極6の一部、またはセパレータ5に使用できる。 Furthermore, the oxide sintered body of the present application can also be used for a positive electrode member or a negative electrode member. FIG. 1 conceptually shows an all-solid-state lithium ion secondary battery that is an example of an electrochemical device according to an embodiment of the present application. The all-solid lithium ion secondary battery includes an exterior 1, a positive electrode tab 2, a positive electrode current collector 3, a positive electrode 4, a separator 5, a negative electrode 6, a negative electrode current collector 7, and a negative electrode tab 8. There is. The oxide sintered body of the present application can be used as a part of the positive electrode 4 or the negative electrode 6, or the separator 5.
実施例1:新しい結晶構造を有するLiTaPO焼結体の合成(1205℃焼成)
 ドライ環境下で、50mLの無水エタノールに1.4328gのTaCl(レアメタリック製、99.9%(以下同じ))を溶解させTaCl溶液を得た。50mLのイオン交換水に0.2301gのNHPO(和光純薬製、試薬特級(以下同じ))を溶解させNHPO水溶液を得た。100mLのイオン交換水に0.0923gのLiOH・HO(高純度化学研究所製、99%up(以下同じ))を溶解させLiOH水溶液を得た。このLiOH水溶液をスターラーで攪拌しながら、このTaCl溶液とこのNHPO水溶液を順次加えて80℃で混合した。なお、この混合溶液には、組成LiTaPOと比べて1.1モル倍、すなわち10mol%過剰のLiOHが含まれている。
Example 1: Synthesis of LiTa 2 PO 8 sintered body with new crystal structure (1205°C firing)
In a dry environment, 1.4328 g of TaCl 5 (manufactured by Rare Metallic, 99.9% (the same applies hereinafter)) was dissolved in 50 mL of absolute ethanol to obtain a TaCl 5 solution. 0.2301 g of NH 4 H 2 PO 4 (manufactured by Wako Pure Chemical Industries, Ltd., reagent grade (the same applies hereinafter)) was dissolved in 50 mL of ion-exchanged water to obtain an NH 4 H 2 PO 4 aqueous solution. 0.0923 g of LiOH.H 2 O (manufactured by Kojundo Kagaku Kenkyusho, 99% up (the same applies hereinafter)) was dissolved in 100 mL of ion-exchanged water to obtain a LiOH aqueous solution. While stirring this LiOH aqueous solution with a stirrer, this TaCl 5 solution and this NH 4 H 2 PO 4 aqueous solution were sequentially added and mixed at 80°C. Note that this mixed solution contains LiOH in an amount of 1.1 mol times that of the composition LiTa 2 PO 8 , that is, an excess of 10 mol %.
 この混合溶液を120℃で15時間乾燥させて、乾燥固化した粉体を回収し、メノウ乳鉢でこの固化粉体を軽く粉砕した。真空ガス置換型電気炉(デンケン・ハイデンタル製、KDF-75plus(以下同じ))を用い、酸素雰囲気中600℃にてこの粉砕粉体を12時間焼成して、非晶質原料であるLiTaPOの白色粉体を得た。遊星型ボールミル(フリッチュ製、P-7(以下同じ))を用いて、この白色粉体を湿式ボールミル粉砕した後、錠剤成型器(日本分光製(以下同じ))を用いて一軸加圧して成形体を得た。卓上型高温マッフル炉(山田電機製、SSFS-130-S(以下同じ))を用いて、この成形体を大気中1205℃にて240時間焼成してLiTaPO焼結体を得た。 This mixed solution was dried at 120° C. for 15 hours, the dried solidified powder was collected, and the solidified powder was lightly ground in an agate mortar. Using a vacuum gas displacement electric furnace (manufactured by Denken High Dental, KDF-75plus (the same applies hereinafter)), this pulverized powder was fired at 600°C in an oxygen atmosphere for 12 hours to obtain LiTa2 , an amorphous raw material. A white powder of PO 8 was obtained. This white powder is wet ball milled using a planetary ball mill (manufactured by Fritsch, P-7 (the same applies hereinafter)), and then molded by uniaxial pressure using a tablet molding machine (manufactured by JASCO (the same applies hereinafter)). I got a body. Using a tabletop high temperature muffle furnace (manufactured by Yamada Denki, SSFS-130-S (the same applies hereinafter)), this compact was fired in the air at 1205° C. for 240 hours to obtain a LiTa 2 PO 8 sintered body.
 この焼結体から粒成長した粒を選別し、単結晶X線回折装置(リガク製、R-AXIS RAPID―II(以下同じ))により結晶構造を調べた。その結果、この粒が単斜晶系で空間群C2/cに属することが確認された。単結晶X線回折パターンを図2に示す。単結晶X線回折データを収集し、結晶構造解析プログラムJANA2006を使用して、この焼結体の結晶構造解析を行った。その結果、非特許文献1および非特許文献2のリチウム配列では精密化できず、ワイコフ位置で4b席(0.5,0,0)にリチウムが占有していないことが確認できた。 The grown grains were selected from this sintered body, and the crystal structure was examined using a single crystal X-ray diffraction device (Rigaku Corporation, R-AXIS RAPID-II (hereinafter the same)). As a result, it was confirmed that the grains were monoclinic and belonged to space group C2/c. The single crystal X-ray diffraction pattern is shown in FIG. Single crystal X-ray diffraction data were collected, and the crystal structure of this sintered body was analyzed using the crystal structure analysis program JANA2006. As a result, it was confirmed that the lithium arrangement of Non-Patent Document 1 and Non-Patent Document 2 could not be refined, and that lithium did not occupy the 4b seat (0.5, 0, 0) at the Wyckoff position.
 さらに、非特許文献1および非特許文献2と異なる8f席にリチウムが配列していることが明らかとなった。非特許文献1および非特許文献2と異なり、5つの8f席を導入したモデルにより、解析の信頼性を示すR値3.2%で決定されたこの焼結体の結晶構造モデルを図3に示す。また、卓上型走査電子顕微鏡(日本電子製、JCM-6000(以下同じ))を用いてこの焼結体を形成している一次粒子サイズを調べたところ、50μm~100μm程度であった。この焼結体の破断面の電子顕微鏡像を図4に、この焼結体から選別した単結晶体の電子顕微鏡像を図5にそれぞれ示す。図4は、この焼結体が明瞭な粒界がないバルク体であることを示している。 Furthermore, it became clear that lithium was arranged in the 8f seat, which is different from Non-Patent Documents 1 and 2. Figure 3 shows the crystal structure model of this sintered body, which was determined with an R value of 3.2%, which indicates the reliability of the analysis, using a model that introduced five 8f seats, unlike Non-Patent Documents 1 and 2. show. In addition, the size of the primary particles forming this sintered body was examined using a desktop scanning electron microscope (manufactured by JEOL Ltd., JCM-6000 (hereinafter the same)), and it was found to be about 50 μm to 100 μm. FIG. 4 shows an electron microscope image of the fractured surface of this sintered body, and FIG. 5 shows an electron microscope image of a single crystal body selected from this sintered body. FIG. 4 shows that this sintered body is a bulk body without clear grain boundaries.
実施例2:新しい結晶構造を有するLiTaPO単結晶体の合成(1310℃焼成)
 焼成温度を1205℃から1310℃に変更した点を除いて、実施例1と同様にしてLiTaPO単結晶体を得た。この単結晶体から割り出すことで単結晶を取り出し、単結晶X線回折装置により結晶構造を調べた。その結果、この単結晶が単斜晶系で空間群C2/cに属することが確認された。単結晶X線回折データを収集し、実施例1と同様にして結晶構造解析を行った結果、非特許文献1および非特許文献2のリチウム配列では精密化できず、ワイコフ位置で4b席(0.5,0,0)にリチウムが占有していないことが確認できた。
Example 2: Synthesis of LiTa 2 PO 8 single crystal with a new crystal structure (calcined at 1310°C)
A LiTa 2 PO 8 single crystal was obtained in the same manner as in Example 1, except that the firing temperature was changed from 1205°C to 1310°C. A single crystal was extracted from this single crystal, and its crystal structure was examined using a single crystal X-ray diffractometer. As a result, it was confirmed that this single crystal was monoclinic and belonged to space group C2/c. As a result of collecting single crystal X-ray diffraction data and performing crystal structure analysis in the same manner as in Example 1, it was found that the lithium arrangement in Non-Patent Documents 1 and 2 could not be refined, and that the 4b position (0 .5, 0, 0) was confirmed not to be occupied by lithium.
 さらに、非特許文献1および非特許文献2とは異なる8f席にリチウムが配列していることが明らかとなった。以上より、1200℃より高い温度で焼成して得られるLiTaPO焼結体は、既報の構造モデルでは説明できない新しい結晶構造を有することが確認できた。また、実体顕微鏡(LEICA製、S8APO)を用いてこの単結晶体の結晶サイズを調べたところ、100μm~500μm程度であった。選別した単結晶の実体顕微鏡像を図6に示す。なお、図6中の一目盛は0.1mmである。 Furthermore, it has become clear that lithium is arranged in the 8f seat, which is different from Non-Patent Documents 1 and 2. From the above, it was confirmed that the LiTa 2 PO 8 sintered body obtained by firing at a temperature higher than 1200° C. has a new crystal structure that cannot be explained by previously reported structural models. Further, when the crystal size of this single crystal was examined using a stereomicroscope (manufactured by LEICA, S8APO), it was approximately 100 μm to 500 μm. A stereomicroscopic image of the selected single crystal is shown in FIG. Note that one scale in FIG. 6 is 0.1 mm.
比較例1:LiTaPO焼結体の合成(1050℃焼成)
 LiCO(レアメタリック製、99.9%(以下同じ))、Ta(レアメタリック製、99.99%(以下同じ))、および(NHHPO(富士フイルム和光純薬製、試薬特級(以下同じ))を、Li:Ta:Pの物質量比(いわゆるモル比)が1.1:2:1となるようにそれぞれ秤量した。メノウ乳鉢を用いてこれらを粉砕・混合した後、電気炉(ヤマト科学製、FP100(以下同じ))を用いて、450℃で4時間、600℃で4時間順次加熱し、アンモニウム塩を分解させて原料を得た。
Comparative Example 1: Synthesis of LiTa 2 PO 8 sintered body (1050°C firing)
Li 2 CO 3 (manufactured by Rare Metallic, 99.9% (the same below)), Ta 2 O 5 (manufactured by Rare Metallic, 99.99% (the same below)), and (NH 4 ) 2 HPO 4 (manufactured by Fujifilm Wa (manufactured by Hikari Pure Chemical Industries, Ltd., Reagent Special Grade (hereinafter the same)) were weighed so that the material ratio (so-called molar ratio) of Li:Ta:P was 1.1:2:1. After crushing and mixing them using an agate mortar, they were heated sequentially at 450°C for 4 hours and at 600°C for 4 hours using an electric furnace (Yamato Scientific, FP100 (the same applies hereinafter)) to decompose the ammonium salt. The raw material was obtained.
 無水エタノール中でこの原料を粉砕し、回収・乾燥した後、電気炉を用いて900℃~950℃で4時間仮焼成した。得られた仮焼成体をボールミル粉砕し、乾燥させて原料酸化物の粉末を得た。錠剤成型器を用いてこの粉末を一軸加圧して成形体を得た。電気炉を用いて、この成形体を空気中1050℃にて6時間焼成してLiTaPO焼結体を得た(非特許文献2参照)。粉末X線回折装置(リガク製、SmartLab(以下同じ))により、この焼結体の結晶構造を調べたところ、非特許文献1~非特許文献3のとおり、単斜晶系で空間群C2/cに属する結晶構造を有するLiTaPOのほぼ単一相であることが確認された。この粉末X線回折パターンを図7に示す(図中「1050℃」)。また、卓上型走査電子顕微鏡を用いてこの焼結体の一次粒子の粒子サイズを調べたところ数μm程度であった。この焼結体の破断面の電子顕微鏡像を図8に示す。 This raw material was pulverized in anhydrous ethanol, collected and dried, and then pre-calcined for 4 hours at 900°C to 950°C using an electric furnace. The obtained calcined body was ball-milled and dried to obtain a raw material oxide powder. This powder was uniaxially pressed using a tablet molding machine to obtain a molded body. This molded body was fired in air at 1050° C. for 6 hours using an electric furnace to obtain a LiTa 2 PO 8 sintered body (see Non-Patent Document 2). When the crystal structure of this sintered body was investigated using a powder X-ray diffractometer (manufactured by Rigaku, SmartLab (hereinafter the same)), it was found that it was monoclinic and had a space group C2/ It was confirmed that it was almost a single phase of LiTa 2 PO 8 having a crystal structure belonging to c. This powder X-ray diffraction pattern is shown in FIG. 7 ("1050° C." in the figure). Further, when the particle size of the primary particles of this sintered body was examined using a desktop scanning electron microscope, it was found to be approximately several μm. FIG. 8 shows an electron microscope image of the fractured surface of this sintered body.
 また、この焼結体について、周波数応答アナライザ(FRA)(ソーラトロン社製、1260型(以下同じ))を用いて、ナイキストプロットの円弧より抵抗値を求め、この抵抗値からリチウムイオン導電率を算出した。なお、周波数32MHz~100Hz、振幅電圧100mVの条件でインピーダンス測定し、ブロッキング電極にはAu電極を用いた(以下同じ)。室温における測定結果から、全リチウムイオン導電率は2.1×10-4S/cmと算出され、概ね既報の報告値と一致していた。 For this sintered body, the resistance value was determined from the arc of the Nyquist plot using a frequency response analyzer (FRA) (manufactured by Solartron, Model 1260 (the same applies hereinafter)), and the lithium ion conductivity was calculated from this resistance value. did. The impedance was measured under the conditions of a frequency of 32 MHz to 100 Hz and an amplitude voltage of 100 mV, and an Au electrode was used as the blocking electrode (the same applies hereinafter). From the measurement results at room temperature, the total lithium ion conductivity was calculated to be 2.1×10 −4 S/cm, which generally agreed with previously reported values.
実施例3:新しい結晶構造を有するLiTaPO焼結体の合成(1205℃焼成、固相合成の原料酸化物)
 比較例1で得られた固相合成の仮焼結体を用いて、さらに高温焼成で焼結体を合成した。比較例1の仮焼結体(直径:約9mm、厚み:1.0~1.3mm)を白金製の容器に入れ、卓上型高温マッフル炉で大気中1205℃にて4時間焼成してLiTaPO焼結体を得た。粉末X線回折装置によりこの焼結体の結晶構造を調べたところ、単斜晶系で空間群C2/cに属する結晶構造を有するLiTaPOのほぼ単一相であり、高温焼成でも分解しないでこれらの焼結体が合成可能であることが明らかとなった。これらの焼結体の粉末X線回折パターンを図7に示す(図中「1205℃」)。
Example 3: Synthesis of LiTa 2 PO 8 sintered body with new crystal structure (calcined at 1205°C, raw material oxide for solid phase synthesis)
Using the solid-phase synthesized temporary sintered body obtained in Comparative Example 1, a sintered body was further synthesized by high-temperature firing. The pre-sintered body of Comparative Example 1 (diameter: approximately 9 mm, thickness: 1.0 to 1.3 mm) was placed in a platinum container and fired in the air at 1205°C for 4 hours in a tabletop high-temperature muffle furnace to obtain LiTa. A 2PO8 sintered body was obtained. When the crystal structure of this sintered body was examined using a powder X-ray diffractometer, it was found to be almost a single phase of LiTa 2 PO 8 , which has a monoclinic crystal structure belonging to the space group C2/c, and it does not decompose even when fired at high temperatures. It has become clear that these sintered bodies can be synthesized without using The powder X-ray diffraction patterns of these sintered bodies are shown in FIG. 7 ("1205° C." in the figure).
実施例4:新しい結晶構造を有するLiTaPO焼結体の合成(1310℃焼成、固相合成の原料酸化物)
 1205℃での焼成を1310℃での焼成に変更した点を除いて、実施例3と同様にしてLiTaPO焼結体を得た。粉末X線回折装置によりこの焼結体の結晶構造を調べたところ、単斜晶系で空間群C2/cに属する結晶構造を有するLiTaPOのほぼ単一相であり、高温焼成でも分解しないでこれらの焼結体が合成可能であることが明らかとなった。これらの焼結体の粉末X線回折パターンを図7に示す(図中「1310℃」)。
Example 4: Synthesis of LiTa 2 PO 8 sintered body with a new crystal structure (calcined at 1310°C, raw material oxide for solid phase synthesis)
A LiTa 2 PO 8 sintered body was obtained in the same manner as in Example 3, except that the firing temperature was changed from 1205°C to 1310°C. When the crystal structure of this sintered body was examined using a powder X-ray diffractometer, it was found to be almost a single phase of LiTa 2 PO 8 , which has a monoclinic crystal structure belonging to the space group C2/c, and it does not decompose even when fired at high temperatures. It has become clear that these sintered bodies can be synthesized without using The powder X-ray diffraction patterns of these sintered bodies are shown in FIG. 7 ("1310° C." in the figure).
 図7に示すそれぞれのXRDパターンを詳しく見ていくと、実施例3および実施例4の焼結体のピーク位置は、比較例1の焼結体のピーク位置と比べて、低角側にシフトしていることが確認された。以上の結果から、実施例3および実施例4の焼結体は、タンタル、リン、および酸素が形成する骨格構造が比較例1の焼結体から変化していないものの、リチウム周りの局所構造が変化したため、格子体積の膨張が起こっていることが示唆された。この結果は、1200℃より高い温度で焼成することによって、リチウムの局所配列が変化していることを裏付けている。 Looking at each XRD pattern shown in FIG. 7 in detail, the peak positions of the sintered bodies of Example 3 and Example 4 are shifted to the lower angle side compared to the peak position of the sintered body of Comparative Example 1. It was confirmed that From the above results, the sintered bodies of Examples 3 and 4 have a skeleton structure formed by tantalum, phosphorus, and oxygen that is unchanged from the sintered body of Comparative Example 1, but the local structure around lithium is This suggests that the lattice volume is expanding. This result confirms that the local arrangement of lithium is changed by firing at a temperature higher than 1200°C.
実施例5:新しい結晶構造を有するLiTaPO焼結体の合成(1208℃焼成、固相合成の原料酸化物)
 まず、比較例1と同様にして成形体を得た。つぎに、電気炉を用いて、この成形体を空気中で1208℃に昇温した後、降温して1050℃で6時間焼成してLiTaPO焼結体を得た。粉末X線回折装置によりこの焼結体の結晶構造を調べたところ、単斜晶系で空間群C2/cに属する結晶構造を有するLiTaPOの単一相であることが確認された。この粉末X線回折パターンを図9に示す。
Example 5: Synthesis of LiTa 2 PO 8 sintered body with new crystal structure (calcined at 1208°C, raw material oxide for solid phase synthesis)
First, a molded article was obtained in the same manner as in Comparative Example 1. Next, this molded body was heated to 1208° C. in air using an electric furnace, and then the temperature was lowered and fired at 1050° C. for 6 hours to obtain a LiTa 2 PO 8 sintered body. When the crystal structure of this sintered body was examined using a powder X-ray diffractometer, it was confirmed that it was a single phase of LiTa 2 PO 8 having a monoclinic crystal structure belonging to space group C2/c. This powder X-ray diffraction pattern is shown in FIG.
 さらに、得られた粉末X線回折データを用いて、リートベルト法(プログラム:Rietan-FP使用)によりこの焼結体の結晶構造解析を行い、詳細なリチウム配列を検討した。その結果、非特許文献1および非特許文献2のリチウム配列では精密化できず、ワイコフ位置で4b席(0.5,0,0)にはリチウムが占有していないことが確認できた。さらに、非特許文献1および非特許文献2と異なる8f席にリチウムが配列していることが明らかとなった。これらの構造解析の結果、この焼結体は、実施例1および実施例2の単結晶X線回折構造解析の結果と同等の結晶構造モデルが妥当であった。 Furthermore, using the obtained powder X-ray diffraction data, the crystal structure of this sintered body was analyzed by the Rietveld method (using the program: Rietan-FP), and the detailed lithium arrangement was investigated. As a result, it was confirmed that the lithium arrangement of Non-Patent Document 1 and Non-Patent Document 2 could not be refined, and that lithium did not occupy the 4b seat (0.5, 0, 0) at the Wyckoff position. Furthermore, it has become clear that lithium is arranged in the 8f seat, which is different from those in Non-Patent Document 1 and Non-Patent Document 2. As a result of these structural analyzes, a crystal structure model equivalent to the results of the single crystal X-ray diffraction structure analyzes of Examples 1 and 2 was appropriate for this sintered body.
 また、この焼結体について、比較例1と同様にしてリチウムイオン導電率を算出した。室温における測定結果から、全リチウムイオン導電率は2.1×10-4S/cmと算出され、比較例1の既報のLiTaPO焼結体の全リチウムイオン導電率よりも高かった。このインピーダンス測定の結果から得られたナイキストプロットを図10に示す。以上から、1200℃を超える温度にいったん昇温後、降温して1050℃で焼成する二段階焼結により、1200℃を超える高温相の結晶構造が維持され、より高い導電率の焼結体が作製可能であることが明らかとなった。 Furthermore, the lithium ion conductivity of this sintered body was calculated in the same manner as in Comparative Example 1. From the measurement results at room temperature, the total lithium ion conductivity was calculated to be 2.1×10 −4 S/cm, which was higher than the total lithium ion conductivity of the previously reported LiTa 2 PO 8 sintered body of Comparative Example 1. A Nyquist plot obtained from the results of this impedance measurement is shown in FIG. From the above, two-step sintering in which the temperature is raised to over 1200°C, then lowered and fired at 1050°C maintains the crystal structure of the high temperature phase over 1200°C, producing a sintered body with higher conductivity. It has become clear that it can be produced.
実施例6:新しい結晶構造を有するLiTaPO焼結体の合成(1208℃焼成、溶液合成の原料酸化物)
 まず、実施例1と同様にして成形体を得た。つぎに、電気炉を用いて、この成形体を空気中で1208℃に昇温して5分間焼成し、冷却して焼結前駆体を得た。そして、真空ガス置換型電気炉を用いて、この焼結前駆体を酸素雰囲気中1000℃にて12時間焼成してLiTaPO焼結体を得た。
Example 6: Synthesis of LiTa 2 PO 8 sintered body with new crystal structure (1208°C firing, raw material oxide for solution synthesis)
First, a molded body was obtained in the same manner as in Example 1. Next, using an electric furnace, this molded body was heated to 1208° C. in air, fired for 5 minutes, and cooled to obtain a sintered precursor. This sintered precursor was then fired in an oxygen atmosphere at 1000° C. for 12 hours using a vacuum gas displacement electric furnace to obtain a LiTa 2 PO 8 sintered body.
 粉末X線回折装置によりこの焼結体の結晶構造を調べたところ、単斜晶系で空間群C2/cに属する結晶構造を有するLiTaPOのほぼ単一相であることが確認された。この粉末X線回折パターンを図11に示す。また、この焼結体のSEM-EDS分析(日本電子製、JCM-6000(以下同じ))の結果、TaとPが検出され、Ta以外の金属元素は検出されなかった。さらに、誘導結合プラズマ(ICP)発光分光分析(Agilent製、Agilent5800(以下同じ))を用いてこの焼結体の定量分析を行った結果、ほぼ定比のLiTaPOの化学組成であることが確認された。 When the crystal structure of this sintered body was examined using a powder X-ray diffractometer, it was confirmed that it was almost a single phase of LiTa 2 PO 8 with a monoclinic crystal structure belonging to space group C2/c. . This powder X-ray diffraction pattern is shown in FIG. Furthermore, as a result of SEM-EDS analysis (manufactured by JEOL Ltd., JCM-6000 (hereinafter the same)) of this sintered body, Ta and P were detected, and no metal elements other than Ta were detected. Furthermore, quantitative analysis of this sintered body using inductively coupled plasma (ICP) emission spectrometry (manufactured by Agilent, Agilent 5800 (the same applies hereinafter)) revealed that the chemical composition was approximately stoichiometric LiTa 2 PO 8 . was confirmed.
 また、この焼結体について、比較例1と同様にしてリチウムイオン導電率を算出した。室温における測定結果から、全リチウムイオン導電率は5.2×10-4S/cmと算出され、既報のLiTaPO焼結体の全リチウムイオン導電率よりも高いことが明らかとなった。この焼結体の結晶構造が、より高いリチウムイオン導電特性を示すリチウム配列を形成しているためだと考えられる。 Furthermore, the lithium ion conductivity of this sintered body was calculated in the same manner as in Comparative Example 1. From the measurement results at room temperature, the total lithium ion conductivity was calculated to be 5.2 × 10 -4 S/cm, which was found to be higher than the previously reported total lithium ion conductivity of the LiTa 2 PO 8 sintered body. . This is thought to be because the crystal structure of this sintered body forms a lithium arrangement that exhibits higher lithium ion conductivity.
実施例7:新しい結晶構造を有するLiTa1.9Bi0.1PO焼結体の合成(固相合成の原料酸化物)
 LiCO、Ta、Bi(レアメタリック製、99.99%)、および(NHHPOを、Li:Ta:Bi:Pの物質量比が1.1:1.9:0.1:1となるようにそれぞれ秤量した。メノウ乳鉢を用いてこれらを粉砕・混合した後、電気炉を用いて、450℃で4時間、600℃で4時間順次加熱し、アンモニウム塩を分解させて原料酸化物を得た。無水エタノール中でこの原料酸化物を粉砕し、回収・乾燥した後、錠剤成型器を用いて一軸加圧して成形体を得た。電気炉を用いて、この成形体を空気中で1208℃に昇温した後、降温して900℃で6時間焼成してLiTa1.9Bi0.1PO焼結体を得た。
Example 7: Synthesis of LiTa 1.9 Bi 0.1 PO 8 sintered body with new crystal structure (raw material oxide for solid phase synthesis)
Li 2 CO 3 , Ta 2 O 5 , Bi 2 O 3 (manufactured by Rare Metallic, 99.99%), and (NH 4 ) 2 HPO 4 were prepared at a material ratio of Li:Ta:Bi:P of 1.1. :1.9:0.1:1. After pulverizing and mixing them using an agate mortar, they were heated in an electric furnace at 450° C. for 4 hours and then at 600° C. for 4 hours to decompose the ammonium salt and obtain a raw material oxide. This raw material oxide was pulverized in anhydrous ethanol, recovered and dried, and then uniaxially pressed using a tablet molding machine to obtain a molded product. This molded body was heated to 1208° C. in air using an electric furnace, and then the temperature was lowered and fired at 900° C. for 6 hours to obtain a LiTa 1.9 Bi 0.1 PO 8 sintered body.
 粉末X線回折装置によりこの焼結体の結晶構造を調べたところ、単斜晶系で空間群C2/cに属するLiTaPO型の結晶構造が主相であることが確認された。一方、この焼結体中には、不純物相としてBiPO相が生成していることが確認された。このBiPO相は、高温焼成で液相として析出した後、相分離によって焼結助剤として機能した。この粉末X線回折パターンを図12に示す。また、卓上型走査電子顕微鏡を用いてこの焼結体の一次粒子の粒子サイズを調べたところ数μm~10μm程度であった。この焼結体の破断面の電子顕微鏡像を図13に示す。比較例1の焼結体と比べると、主な焼成温度が1050℃から900℃に低温化しているにもかかわらず、粒成長が顕著であり、粒界に析出したBiPOが焼結助剤となっていることが確認された。 When the crystal structure of this sintered body was examined using a powder X-ray diffractometer, it was confirmed that the main phase was a LiTa 2 PO 8 type crystal structure that was monoclinic and belonged to space group C2/c. On the other hand, it was confirmed that BiPO 4 phase was generated as an impurity phase in this sintered body. This BiPO 4 phase precipitated as a liquid phase during high-temperature calcination and then functioned as a sintering aid through phase separation. This powder X-ray diffraction pattern is shown in FIG. Further, when the particle size of the primary particles of this sintered body was examined using a tabletop scanning electron microscope, it was found to be approximately several μm to 10 μm. An electron microscope image of the fractured surface of this sintered body is shown in FIG. Compared to the sintered body of Comparative Example 1, although the main sintering temperature was lowered from 1050°C to 900°C, grain growth was remarkable, and BiPO 4 precipitated at the grain boundaries was used as a sintering aid. It was confirmed that.
 また、この焼結体について、比較例1と同様にしてリチウムイオン導電率を算出した。室温における測定結果から、全リチウムイオン導電率は1.3×10-3S/cmと算出され、既報のLiTaPO焼結体の全リチウムイオン導電率よりも高かった。この焼結体が高温相の結晶構造を維持していること、Taの一部をBiに置換した効果、およびBiPOが焼結助剤として機能したことによる焼結性の向上が原因であると考えられる。このインピーダンス測定の結果から得られたナイキストプロットを図14に示す。 Furthermore, the lithium ion conductivity of this sintered body was calculated in the same manner as in Comparative Example 1. From the measurement results at room temperature, the total lithium ion conductivity was calculated to be 1.3×10 −3 S/cm, which was higher than the total lithium ion conductivity of the previously reported LiTa 2 PO 8 sintered body. This is due to the fact that this sintered body maintains a high-temperature phase crystal structure, the effect of substituting a part of Ta with Bi, and the improvement in sinterability due to BiPO4 functioning as a sintering aid. it is conceivable that. A Nyquist plot obtained from the results of this impedance measurement is shown in FIG.
実施例8:新しい結晶構造を有するLiTa1.9Bi0.1PO焼結体の合成(溶液合成の原料酸化物)
 ドライ環境下で、50mLの無水エタノールに1.3612gのTaClと0.0631gのBiCl(高純度化学研究所製、99.99%(以下同じ))を溶解させTaCl・BiCl溶液を得た。50mLのイオン交換水に0.2301gのNHPOを溶解させNHPO水溶液を得た。100mLのイオン交換水に0.0923gのLiOH・HOを溶解させLiOH水溶液を得た。このLiOH水溶液をスターラーで攪拌しながら、このTaCl・BiCl溶液とこのNHPO水溶液を順次加えて80℃で混合した。なお、この混合溶液には、組成LiTa1.9Bi0.1POと比べて1.1モル倍、すなわち10mol%過剰のLiOHが含まれている。
Example 8: Synthesis of LiTa 1.9 Bi 0.1 PO 8 sintered body with new crystal structure (raw material oxide for solution synthesis)
In a dry environment, dissolve 1.3612 g of TaCl 5 and 0.0631 g of BiCl 3 (manufactured by Kojundo Kagaku Kenkyusho, 99.99% (the same applies hereinafter)) in 50 mL of absolute ethanol to create a TaCl 5 /BiCl 3 solution. Obtained. 0.2301 g of NH 4 H 2 PO 4 was dissolved in 50 mL of ion exchange water to obtain an aqueous NH 4 H 2 PO 4 solution. 0.0923 g of LiOH·H 2 O was dissolved in 100 mL of ion exchange water to obtain a LiOH aqueous solution. While stirring this LiOH aqueous solution with a stirrer, this TaCl 5 .BiCl 3 solution and this NH 4 H 2 PO 4 aqueous solution were sequentially added and mixed at 80°C. Note that this mixed solution contains 1.1 times the amount of LiOH, that is, a 10 mol % excess of LiOH compared to the composition LiTa 1.9 Bi 0.1 PO 8 .
 この混合溶液を120℃で15時間乾燥させて、乾燥固化した粉体を回収し、メノウ乳鉢でこの固化粉体を軽く粉砕した。真空ガス置換型電気炉を用い、酸素雰囲気中500℃にてこの粉砕粉体を12時間焼成して、非晶質原料であるLiTa1.9Bi0.1POの白色粉体を得た。遊星型ボールミルを用いて、この白色粉体を湿式ボールミル粉砕した後、錠剤成型器を用いて一軸加圧して成形体を得た。電気炉を用いて、この成形体を空気中で1208℃に昇温して5分間焼成し、冷却して焼結前駆体を得た。 This mixed solution was dried at 120° C. for 15 hours, the dried solidified powder was collected, and the solidified powder was lightly ground in an agate mortar. This pulverized powder was fired for 12 hours at 500°C in an oxygen atmosphere using a vacuum gas displacement electric furnace to obtain a white powder of LiTa 1.9 Bi 0.1 PO 8 , which is an amorphous raw material. . This white powder was wet ball milled using a planetary ball mill, and then uniaxially pressed using a tablet molding machine to obtain a molded product. Using an electric furnace, this molded body was heated to 1208° C. in air, fired for 5 minutes, and cooled to obtain a sintered precursor.
 そして、真空ガス置換型電気炉を用いて、この焼結前駆体を酸素雰囲気中1000℃にて12時間焼成してLiTa1.9Bi0.1PO焼結体を得た。粉末X線回折装置によりこの焼結体の結晶構造を調べたところ、単斜晶系で空間群C2/cに属するLiTaPO型の結晶構造が主相であることが確認された。一方、この焼結体中には、不純物相としてBiPO相が生成していることが確認された。このBiPO相は、高温焼成で液相として析出した後、相分離によって焼結助剤として機能した。 This sintered precursor was then fired in an oxygen atmosphere at 1000° C. for 12 hours using a vacuum gas displacement electric furnace to obtain a LiTa 1.9 Bi 0.1 PO 8 sintered body. When the crystal structure of this sintered body was examined using a powder X-ray diffractometer, it was confirmed that the main phase was a LiTa 2 PO 8 type crystal structure that was monoclinic and belonged to space group C2/c. On the other hand, it was confirmed that BiPO 4 phase was generated as an impurity phase in this sintered body. This BiPO 4 phase precipitated as a liquid phase during high-temperature calcination and then functioned as a sintering aid through phase separation.
実施例9:新しい結晶構造を有するLiTa1.8Bi0.2PO焼結体の合成
 TaClの使用量を1.2896gに、BiClの使用量を0.1261gにそれぞれ変更した点を除いて、実施例8と同様にしてLiTa1.8Bi0.2PO焼結体を得た。なお、途中の混合溶液には、組成LiTa1.8Bi0.2POと比べて1.1モル倍、すなわち10mol%過剰のLiOHが含まれている。粉末X線回折装置によりこの焼結体の結晶構造を調べたところ、単斜晶系で空間群C2/cに属するLiTaPO型の結晶構造が主相であることが確認された。
Example 9: Synthesis of LiTa 1.8 Bi 0.2 PO 8 sintered body with new crystal structure A LiTa 1.8 Bi 0.2 PO 8 sintered body was obtained in the same manner as in Example 8 except for the following. Note that the intermediate mixed solution contains 1.1 times the amount of LiOH, that is, 10 mol % excess of LiOH compared to the composition LiTa 1.8 Bi 0.2 PO 8 . When the crystal structure of this sintered body was examined using a powder X-ray diffractometer, it was confirmed that the main phase was a LiTa 2 PO 8 type crystal structure that was monoclinic and belonged to space group C2/c.
 一方、この焼結体中には、Bi量の増大に伴い、不純物相としてBiPO相が顕著に存在することが確認された。このBiPO相は、高温焼成で液相として析出した後、相分離によって焼結助剤として機能したことを示している。この粉末X線回折パターンを図15に示す。また、この焼結体について、比較例1と同様にしてリチウムイオン導電率を算出した。室温における測定結果から、全リチウムイオン導電率は7.1×10-4S/cmと算出され、既報のLiTa1.8Bi0.2PO焼結体の全リチウムイオン導電率よりも高かった。 On the other hand, it was confirmed that in this sintered body, as the amount of Bi increased, BiPO 4 phase was significantly present as an impurity phase. This indicates that this BiPO 4 phase precipitated as a liquid phase during high-temperature calcination and then functioned as a sintering aid through phase separation. This powder X-ray diffraction pattern is shown in FIG. Furthermore, the lithium ion conductivity of this sintered body was calculated in the same manner as in Comparative Example 1. From the measurement results at room temperature, the total lithium ion conductivity was calculated to be 7.1 × 10 -4 S/cm, which is higher than the previously reported total lithium ion conductivity of the LiTa 1.8 Bi 0.2 PO 8 sintered body. Ta.
実施例10:新しい結晶構造を有するLi1.1Ta1.9Hf0.1PO焼結体の合成
 ドライ環境下で、50mLの無水エタノールに1.3612gのTaClと0.0641gのHfCl(富士フイルム和光純薬製、99.9%(以下同じ))を溶解させTaCl・HfCl溶液を得た。50mLのイオン交換水に0.2301gのNHPOを溶解させNHPO水溶液を得た。100mLのイオン交換水に0.1016gのLiOH・HOを溶解させLiOH水溶液を得た。このLiOH水溶液をスターラーで攪拌しながら、このTaCl・HfCl溶液とこのNHPO水溶液を順次加えて80℃で混合した。なお、この混合溶液には、組成Li1.1Ta1.9Hf0.1POと比べて1.1モル倍、すなわち10mol%過剰のLiOHが含まれている。
Example 10: Synthesis of Li 1.1 Ta 1.9 Hf 0.1 PO 8 sintered body with new crystal structure 1.3612 g of TaCl 5 and 0.0641 g of HfCl in 50 mL of absolute ethanol under dry environment 4 (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., 99.9% (the same applies hereinafter)) to obtain a TaCl 5 /HfCl 4 solution. 0.2301 g of NH 4 H 2 PO 4 was dissolved in 50 mL of ion exchange water to obtain an aqueous NH 4 H 2 PO 4 solution. 0.1016 g of LiOH.H 2 O was dissolved in 100 mL of ion-exchanged water to obtain a LiOH aqueous solution. While stirring this LiOH aqueous solution with a stirrer, this TaCl 5 .HfCl 4 solution and this NH 4 H 2 PO 4 aqueous solution were sequentially added and mixed at 80°C. Note that this mixed solution contains 1.1 times the amount of LiOH, that is, a 10 mol% excess of LiOH compared to the composition Li 1.1 Ta 1.9 Hf 0.1 PO 8 .
 この混合溶液を120℃で15時間乾燥させて、乾燥固化した粉体を回収し、メノウ乳鉢でこの固化粉体を軽く粉砕した。真空ガス置換型電気炉を用い、酸素雰囲気中600℃にてこの粉砕粉体を12時間焼成して、非晶質原料であるLi1.1Ta1.9Hf0.1POの白色粉体を得た。遊星型ボールミルを用いて、この白色粉体を湿式ボールミル粉砕した後、錠剤成型器を用いて一軸加圧して成形体を得た。電気炉を用いて、この成形体を空気中で1208℃に昇温して5分間焼成し、冷却して焼結前駆体を得た。そして、真空ガス置換型電気炉を用いて、この焼結前駆体を酸素雰囲気中1000℃にて12時間焼成してLi1.1Ta1.9Hf0.1PO焼結体を得た。 This mixed solution was dried at 120° C. for 15 hours, the dried solidified powder was collected, and the solidified powder was lightly ground in an agate mortar. Using a vacuum gas displacement electric furnace, this pulverized powder was fired at 600°C in an oxygen atmosphere for 12 hours to obtain a white powder of Li 1.1 Ta 1.9 Hf 0.1 PO 8 , which is an amorphous raw material. I got a body. This white powder was wet ball milled using a planetary ball mill, and then uniaxially pressed using a tablet molding machine to obtain a molded product. Using an electric furnace, this molded body was heated to 1208° C. in air, fired for 5 minutes, and cooled to obtain a sintered precursor. Then, using a vacuum gas displacement electric furnace, this sintered precursor was fired at 1000°C in an oxygen atmosphere for 12 hours to obtain a Li 1.1 Ta 1.9 Hf 0.1 PO 8 sintered body. .
 粉末X線回折装置によりこの焼結体の結晶構造を調べたところ、単斜晶系で空間群C2/cに属するLiTaPO型の結晶構造が主相であることが確認された。一方、この焼結体中には、LiTa相が生成していることが確認された。このLiTa相は、高温焼成で形成され、焼結助剤として機能した。この粉末X線回折パターンを図16に示す。また、この焼結体について、比較例1と同様にしてリチウムイオン導電率を算出した。室温における測定結果から、全リチウムイオン導電率は9.2×10-4S/cmと算出され、既報のLiTaPO焼結体の全リチウムイオン導電率よりも高かった。 When the crystal structure of this sintered body was examined using a powder X-ray diffractometer, it was confirmed that the main phase was a LiTa 2 PO 8 type crystal structure that was monoclinic and belonged to space group C2/c. On the other hand, it was confirmed that LiTa 3 O 8 phase was generated in this sintered body. This LiTa 3 O 8 phase was formed during high temperature firing and functioned as a sintering aid. This powder X-ray diffraction pattern is shown in FIG. Furthermore, the lithium ion conductivity of this sintered body was calculated in the same manner as in Comparative Example 1. From the measurement results at room temperature, the total lithium ion conductivity was calculated to be 9.2×10 −4 S/cm, which was higher than the total lithium ion conductivity of the previously reported LiTa 2 PO 8 sintered body.
実施例11:新しい結晶構造を有するLi1.2Ta1.8Hf0.2PO焼結体の合成
 TaClの使用量を1.2896gに、HfClの使用量を0.1281gに、LiOH・HOの使用量を0.1108gにそれぞれ変更した点を除いて、実施例8と同様にしてLi1.2Ta1.8Hf0.2PO焼結体を得た。なお、途中の混合溶液には、組成Li1.2Ta1.8Hf0.2POと比べて1.1モル倍、すなわち10mol%過剰のLiOHが含まれている。
Example 11: Synthesis of Li 1.2 Ta 1.8 Hf 0.2 PO 8 sintered body having a new crystal structure The amount of TaCl 5 used was 1.2896 g, the amount of HfCl 4 used was 0.1281 g, A Li 1.2 Ta 1.8 Hf 0.2 PO 8 sintered body was obtained in the same manner as in Example 8, except that the amount of LiOH·H 2 O used was changed to 0.1108 g. Note that the mixed solution in the middle contains 1.1 times the amount of LiOH, that is, 10 mol % excess of LiOH compared to the composition Li 1.2 Ta 1.8 Hf 0.2 PO 8 .
 粉末X線回折装置によりこの焼結体の結晶構造を調べたところ、単斜晶系で空間群C2/cに属するLiTaPO型の結晶構造が主相であることが確認された。一方、この焼結体中には、Hf置換量の増大に伴って、LiTa相が顕著に存在することが確認された。このLiTa相は、高温焼成で形成され、焼結助剤として機能した。また、Hf置換量の増大に伴って、粉末X線回折パターンのピーク位置が低角側にシフトすることが確認された。TaのHf置換によって、格子体積が増大したことが明らかとなった。 When the crystal structure of this sintered body was examined using a powder X-ray diffractometer, it was confirmed that the main phase was a LiTa 2 PO 8 type crystal structure that was monoclinic and belonged to space group C2/c. On the other hand, it was confirmed that LiTa 3 O 8 phase was significantly present in this sintered body as the amount of Hf substitution increased. This LiTa 3 O 8 phase was formed during high temperature firing and functioned as a sintering aid. Furthermore, it was confirmed that the peak position of the powder X-ray diffraction pattern shifted to the lower angle side as the amount of Hf substitution increased. It was revealed that the lattice volume increased by replacing Ta with Hf.
 この焼結体のSEM-EDS分析の結果、Ta、Hf、およびPが検出され、TaおよびHf以外の金属元素は検出されなかった。さらに、IPC発光分光分析を用いてこの焼結体の定量分析を行った結果、Hf置換に伴って、Li量が増加していることが確認された。すなわち、TaのHf置換によって、格子体積の増大だけではなく、キャリア濃度が高められていることが確認された。また、この焼結体について、比較例1と同様にしてリチウムイオン導電率を算出した。室温における測定結果から、全リチウムイオン導電率は1.1×10-3S/cmと算出され、既報のLiTaPO焼結体の全リチウムイオン導電率よりも高かった。 As a result of SEM-EDS analysis of this sintered body, Ta, Hf, and P were detected, and no metal elements other than Ta and Hf were detected. Furthermore, as a result of quantitative analysis of this sintered body using IPC emission spectroscopy, it was confirmed that the amount of Li increased with Hf substitution. That is, it was confirmed that not only the lattice volume was increased but also the carrier concentration was increased by Hf substitution of Ta. Furthermore, the lithium ion conductivity of this sintered body was calculated in the same manner as in Comparative Example 1. From the measurement results at room temperature, the total lithium ion conductivity was calculated to be 1.1×10 −3 S/cm, which was higher than the total lithium ion conductivity of the previously reported LiTa 2 PO 8 sintered body.
 実施例10および実施例11の焼結体の全リチウムイオン導電率が高かった原因として、高温相の結晶構造を維持していること、Hf置換による結晶格子の膨張とキャリア濃度(リチウム量)の増大の効果、およびLiTaが焼結助剤として機能したことによる焼結性の向上が挙げられる。また、全リチウムイオン導電率の温度依存性から見積もられた活性化エネルギーは、実施例10の焼結体で0.34eV、実施例11の焼結体で0.315eVと算出され、実施例6のLiTaPO焼結体の活性化エネルギーより小さかった。すなわち、TaのHf置換によって、-20℃などの低温でのリチウムイオン伝導性の改善が明らかとなった。 The reasons why the total lithium ion conductivity of the sintered bodies of Examples 10 and 11 were high were that the crystal structure of the high temperature phase was maintained, the expansion of the crystal lattice due to Hf substitution, and the carrier concentration (lithium amount). and the improvement in sinterability due to LiTa 3 O 8 functioning as a sintering aid. Furthermore, the activation energy estimated from the temperature dependence of the total lithium ion conductivity was calculated to be 0.34 eV for the sintered body of Example 10 and 0.315 eV for the sintered body of Example 11. The activation energy of the LiTa 2 PO 8 sintered body of No. 6 was smaller than that of the LiTa 2 PO 8 sintered body. That is, it has become clear that substitution of Ta for Hf improves lithium ion conductivity at low temperatures such as -20°C.
実施例12:新しい結晶構造を有するLiTa1.8Sb0.2POの合成
 ドライ環境下で、50mLの無水エタノールに1.2896gのTaClと0.09125gのSbCl(富士フイルム和光純薬製、試薬特級)を溶解させTaCl・SbCl溶液を得た。50mLのイオン交換水に0.2301gのNHPOを溶解させNHPO水溶液を得た。100mLのイオン交換水に0.0923gのLiOH・HOを溶解させLiOH水溶液を得た。このLiOH水溶液をスターラーで攪拌しながら、このTaCl・SbCl溶液とこのNHPO水溶液を順次加えて80℃で混合した。なお、この混合溶液には、組成LiTa1.8Sb0.2POと比べて1.1モル倍、すなわち10mol%過剰のLiOHが含まれている。
Example 12: Synthesis of LiTa 1.8 Sb 0.2 PO 8 with a new crystal structure 1.2896 g TaCl 5 and 0.09125 g SbCl 3 (Fujifilm Wako Pure Chemical Industries, Ltd.) in 50 mL absolute ethanol in a dry environment A TaCl 5/SbCl 3 solution was obtained by dissolving TaCl 5 /SbCl 3 solution. 0.2301 g of NH 4 H 2 PO 4 was dissolved in 50 mL of ion exchange water to obtain an aqueous NH 4 H 2 PO 4 solution. 0.0923 g of LiOH·H 2 O was dissolved in 100 mL of ion exchange water to obtain a LiOH aqueous solution. While stirring this LiOH aqueous solution with a stirrer, this TaCl 5 .SbCl 3 solution and this NH 4 H 2 PO 4 aqueous solution were sequentially added and mixed at 80°C. Note that this mixed solution contains 1.1 times as much LiOH, ie, 10 mol% excess, as compared to the composition LiTa 1.8 Sb 0.2 PO 8 .
 この混合溶液を120℃で15時間乾燥させて、乾燥固化した粉体を回収し、メノウ乳鉢でこの固化粉体を軽く粉砕した。真空ガス置換型電気炉を用い、酸素雰囲気中500℃にてこの粉砕粉体を12時間焼成して、非晶質原料であるLiTa1.8Sb0.2POの白色粉体を得た。遊星型ボールミルを用いて、この白色粉体を湿式ボールミル粉砕した後、錠剤成型器を用いて一軸加圧して成形体を得た。電気炉を用いて、この成形体を空気中で1208℃に昇温して5分間焼成し、冷却して焼結前駆体を得た。そして、真空ガス置換型電気炉を用いて、この焼結前駆体を酸素雰囲気中1000℃にて12時間焼成してLiTa1.8Sb0.2PO焼結体を得た。 This mixed solution was dried at 120° C. for 15 hours, the dried solidified powder was collected, and the solidified powder was lightly ground in an agate mortar. This pulverized powder was fired for 12 hours at 500°C in an oxygen atmosphere using a vacuum gas displacement electric furnace to obtain a white powder of LiTa 1.8 Sb 0.2 PO 8 , which is an amorphous raw material. . This white powder was wet ball milled using a planetary ball mill, and then uniaxially pressed using a tablet molding machine to obtain a molded product. Using an electric furnace, this molded body was heated to 1208° C. in air, fired for 5 minutes, and cooled to obtain a sintered precursor. This sintered precursor was then fired in an oxygen atmosphere at 1000° C. for 12 hours using a vacuum gas displacement electric furnace to obtain a LiTa 1.8 Sb 0.2 PO 8 sintered body.
 粉末X線回折装置によりこの焼結体の結晶構造を調べたところ、単斜晶系で空間群C2/cに属するLiTaPO型の結晶構造が主相であることが確認された。一方、この焼結体中には、不純物相としてTaPO相が生成していることが確認された。また、この粉末X線回折パターンのピーク位置が、LiTaPOのピーク位置と比べて、低角側にシフトすることが確認され、イオン半径がTaよりも小さいSbが置換したことが明らかとなった。この粉末X線回折パターンを図17に示す。また、この焼結体について、比較例1と同様にしてリチウムイオン導電率を算出した。室温における測定結果から、全リチウムイオン導電率は4.3×10-4S/cmと算出され、既報のLiTa1.8Sb0.2PO焼結体の全リチウムイオン導電率よりも高かった。 When the crystal structure of this sintered body was examined using a powder X-ray diffractometer, it was confirmed that the main phase was a LiTa 2 PO 8 type crystal structure that was monoclinic and belonged to space group C2/c. On the other hand, it was confirmed that TaPO 5 phase was generated as an impurity phase in this sintered body. It was also confirmed that the peak position of this powder X-ray diffraction pattern was shifted to the lower angle side compared to the peak position of LiTa 2 PO 8 , and it was clear that Sb, which has an ionic radius smaller than Ta, was substituted. became. This powder X-ray diffraction pattern is shown in FIG. Furthermore, the lithium ion conductivity of this sintered body was calculated in the same manner as in Comparative Example 1. From the measurement results at room temperature, the total lithium ion conductivity was calculated to be 4.3 × 10 -4 S/cm, which is higher than the previously reported total lithium ion conductivity of the LiTa 1.8 Sb 0.2 PO 8 sintered body. Ta.
実施例13:複合正極の作製
 実施例6、実施例7、実施例10で得られたLiTaPO(LTPO)焼結体、LiTa1.9Bi0.1PO(LTBPO)焼結体、Li1.1Ta1.9Hf0.1PO(LTHPO)焼結体をそれぞれ粉砕し、複合正極の電解質として使用した複合正極を作製した。正極活物質としては、LiCoO(日本化学工業製、セルシードC-5H)を用いて、電解質粉末とLiCoO粉末を重量比で1:1について、瑪瑙乳鉢を用いて混合したのち、錠剤成型器を用いて一軸加圧した圧粉体を作製した。この圧粉成形体をアルゴンガス雰囲気中600℃にて2時間焼成することにより、当該複合正極焼結成形体を作製した。
Example 13: Production of composite positive electrode LiTa 2 PO 8 (LTPO) sintered body and LiTa 1.9 Bi 0.1 PO 8 (LTBPO) sintered body obtained in Example 6, Example 7, and Example 10 , Li 1.1 Ta 1.9 Hf 0.1 PO 8 (LTHPO) sintered bodies were respectively pulverized to produce a composite positive electrode that was used as an electrolyte of the composite positive electrode. LiCoO 2 (Cellseed C-5H, manufactured by Nihon Kagaku Kogyo) was used as the positive electrode active material. After mixing the electrolyte powder and LiCoO 2 powder at a weight ratio of 1:1 using an agate mortar, the mixture was mixed using a tablet molding machine. A green compact was produced using uniaxial pressure. This compacted compact was baked at 600° C. for 2 hours in an argon gas atmosphere to produce the composite positive electrode sintered compact.
 作製された複合正極成形体について、周波数応答アナライザを用いて、ナイキストプロットの円弧より抵抗値を算出した。室温における測定結果から、圧粉体のイオン抵抗は概ね1×10Ωであった。これらの値はイオン抵抗としては高いものの、複合正極内で導電パスがとれていると共に、正極活物質との界面抵抗の増大が抑制できていることが明らかとなった。 The resistance value of the produced composite positive electrode molded body was calculated from the arc of the Nyquist plot using a frequency response analyzer. From the measurement results at room temperature, the ionic resistance of the green compact was approximately 1×10 7 Ω. Although these values are high in terms of ionic resistance, it is clear that a conductive path is maintained within the composite positive electrode and that an increase in interfacial resistance with the positive electrode active material is suppressed.
 複合正極を粉砕して測定した粉末X線回折パターンを図18に示す。いずれも本発明の新しい結晶構造を有するLiTaPO型相と、LiCoO相に由来する回折パターンのみが主相であり、反応生成物などがほとんど存在しないことが確認された。以上から、本発明の固体電解質は全固体電池の複合正極として使用できることが明らかとなった。 FIG. 18 shows a powder X-ray diffraction pattern measured by crushing the composite positive electrode. In both cases, it was confirmed that only the LiTa 2 PO 8 type phase having the new crystal structure of the present invention and the diffraction pattern derived from the LiCoO 2 phase were the main phases, and almost no reaction products were present. From the above, it has become clear that the solid electrolyte of the present invention can be used as a composite positive electrode of an all-solid-state battery.
実施例14:全固体電池の作製
 実施例1で得られた焼結体を粉砕して白色粉末を得た。遊星型ボールミルを用いて、この白色粉末を湿式ボールミル粉砕した後、乾燥して得たLiTaPO焼結体粉末を用いて、電解質層と複合電極層からなる緻密焼結体を作製した。すなわち、直径10mmΦの熱プレス用金型(アズワン製)にこのLiTaPO焼結体粉末を充填し、400℃で374MPaにて熱プレス装置(アズワン製)を用いて2時間保持して、厚さ約0.3mm程度の円板状の緻密焼結体を得た。
Example 14: Production of all-solid-state battery The sintered body obtained in Example 1 was pulverized to obtain a white powder. This white powder was wet-ball-milled using a planetary ball mill, and then dried to produce a dense sintered body consisting of an electrolyte layer and a composite electrode layer using LiTa 2 PO 8 sintered body powder. That is, this LiTa 2 PO 8 sintered body powder was filled into a hot press mold (manufactured by As One) with a diameter of 10 mmΦ, and held at 400 ° C. and 374 MPa for 2 hours using a heat press machine (manufactured by As One). A disk-shaped dense sintered body with a thickness of about 0.3 mm was obtained.
 この緻密焼結体と金型で、固体電解質層と一方の電極層を備える複合電極層を構成している。さらに、露出側の固体電解質層の表面に、リチウムイオン伝導性の高分子電解質シートと、他方の電極層となる金属リチウムシート(厚さ:0.2mm)を順次貼り付け、全固体電池を作製した。この全固体電池について、充放電試験装置(北斗電工製、HJ1020mSD8)を用いて60℃にて定電流充放電試験(電流密度3mA/g)を行った。その結果、充放電反応に対応する容量が観測でき、全固体電池の動作を確認した。 This dense sintered body and mold constitute a composite electrode layer comprising a solid electrolyte layer and one electrode layer. Furthermore, a lithium ion conductive polymer electrolyte sheet and a metal lithium sheet (thickness: 0.2 mm), which will become the other electrode layer, are successively pasted on the surface of the exposed solid electrolyte layer to create an all-solid-state battery. did. A constant current charge/discharge test (current density 3 mA/g) was conducted on this all-solid battery at 60° C. using a charge/discharge test device (manufactured by Hokuto Denko, HJ1020mSD8). As a result, the capacity corresponding to the charge/discharge reaction was observed, confirming the operation of the all-solid-state battery.
 本願の新規結晶構造を有するLiTaPOおよびその元素置換体を用いることで、高いリチウムイオン伝導性を有する電解質部材が作製できる。 By using LiTa 2 PO 8 having the novel crystal structure of the present application and its element substituted product, an electrolyte member having high lithium ion conductivity can be produced.

Claims (12)

  1.  リチウム、タンタル、およびリンを含有する酸化物焼結体であって、
     単斜晶系で空間群C2/cに属する結晶構造を有し、ワイコフ位置で4b席(0.5,0,0)にリチウムが占有していない酸化物焼結体。
    An oxide sintered body containing lithium, tantalum, and phosphorus,
    An oxide sintered body having a monoclinic crystal structure belonging to space group C2/c, and in which lithium does not occupy the 4b position (0.5,0,0) at the Wyckoff position.
  2.  請求項1において、
     一般式LiTa2-xPO(MはBiまたはSb、0≦x≦0.2)で表される酸化物焼結体。
    In claim 1,
    An oxide sintered body represented by the general formula LiTa 2-x M x PO 8 (M is Bi or Sb, 0≦x≦0.2).
  3.  請求項1において、
     一般式Li1+yTa2-yHfPO(0≦y≦0.2)で表される酸化物焼結体。
    In claim 1,
    An oxide sintered body represented by the general formula Li 1+y Ta 2-y Hf y PO 8 (0≦y≦0.2).
  4.  請求項1において、
     粒径50μm~100μmの一次粒子から構成されるLiTaPOである酸化物焼結体。
    In claim 1,
    An oxide sintered body of LiTa 2 PO 8 composed of primary particles with a particle size of 50 μm to 100 μm.
  5.  請求項4において、
     単結晶のLiTaPOである酸化物焼結体。
    In claim 4,
    An oxide sintered body that is single crystal LiTa 2 PO 8 .
  6.  請求項1から5のいずれかにおいて、
     リチウムの占有席が、ワイコフ位置で3つ以上の8f席にのみ占有している酸化物焼結体。
    In any one of claims 1 to 5,
    An oxide sintered body in which lithium occupies only three or more 8f seats at the Wyckoff position.
  7.  請求項1から5のいずれかにおいて、
     リチウムの占有席が、無秩序化した占有となっている酸化物焼結体。
    In any one of claims 1 to 5,
    An oxide sintered body in which lithium occupancy is disordered.
  8.  請求項1の酸化物焼結体の製造方法であって、
     1200℃より高く1400℃以下の温度でリチウム、タンタル、およびリンを含有する酸化物を焼成する焼結工程を有する酸化物焼結体の製造方法。
    A method for producing an oxide sintered body according to claim 1, comprising:
    A method for producing an oxide sintered body, comprising a sintering step of firing an oxide containing lithium, tantalum, and phosphorus at a temperature higher than 1200°C and lower than 1400°C.
  9.  請求項2の酸化物焼結体の製造方法であって、
     1200℃より高く1400℃以下の温度で一般式LiTa2-xPO(MはBiまたはSb、0≦x≦0.2)で表される酸化物を焼成する焼結工程を有する酸化物焼結体の製造方法。
    A method for producing an oxide sintered body according to claim 2, comprising:
    An oxidation process that includes a sintering step of firing an oxide represented by the general formula LiTa 2-x M x PO 8 (M is Bi or Sb, 0≦x≦0.2) at a temperature higher than 1200°C and lower than 1400°C. A method for producing a sintered body.
  10.  請求項3の酸化物焼結体の製造方法であって、
     1200℃より高く1400℃以下の温度で一般式Li1+yTa2-yHfPO(0≦y≦0.2)で表される酸化物を焼成する焼結工程を有する酸化物焼結体の製造方法。
    A method for producing an oxide sintered body according to claim 3, comprising:
    An oxide sintered body having a sintering process of firing an oxide represented by the general formula Li 1+y Ta 2-y Hf y PO 8 (0≦y≦0.2) at a temperature higher than 1200°C and lower than 1400°C. manufacturing method.
  11.  請求項8から10のいずれかにおいて、
     前記酸化物が非晶質である酸化物焼結体の製造方法。
    In any one of claims 8 to 10,
    A method for producing an oxide sintered body, wherein the oxide is amorphous.
  12.  請求項1から5のいずれかの酸化物焼結体を備える固体電解質と、
     前記固体電解質を挟む一対の電極と、
     を有する電気化学デバイス。
    A solid electrolyte comprising the oxide sintered body according to any one of claims 1 to 5,
    a pair of electrodes sandwiching the solid electrolyte;
    An electrochemical device with
PCT/JP2023/019096 2022-06-15 2023-05-23 Oxide sintered body and method for producing oxide sintered body WO2023243327A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022096477 2022-06-15
JP2022-096477 2022-06-15

Publications (1)

Publication Number Publication Date
WO2023243327A1 true WO2023243327A1 (en) 2023-12-21

Family

ID=89191075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019096 WO2023243327A1 (en) 2022-06-15 2023-05-23 Oxide sintered body and method for producing oxide sintered body

Country Status (1)

Country Link
WO (1) WO2023243327A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020194773A (en) * 2019-05-24 2020-12-03 三星電子株式会社Samsung Electronics Co.,Ltd. Solid conductor, manufacturing method thereof, solid electrolyte including the same, and electrochemical element
JP2021038100A (en) * 2019-08-30 2021-03-11 昭和電工株式会社 Lithium ion-conducting oxide
JP2021038099A (en) * 2019-08-30 2021-03-11 昭和電工株式会社 Lithium ion-conducting oxide
JP2021534064A (en) * 2018-08-16 2021-12-09 サムスン エレクトロニクス カンパニー リミテッド Ionic conductive solid electrolyte compound, its manufacturing method, and electrochemical device containing it
WO2022138804A1 (en) * 2020-12-25 2022-06-30 昭和電工株式会社 Lithium ion-conductive solid electrolyte, and all-solid-state battery
WO2022201755A1 (en) * 2021-03-26 2022-09-29 太陽誘電株式会社 Solid electrolyte, all-solid-state battery, method for manufacturing solid electrolyte, and method for manufacturing all-solid-state battery
JP2023033898A (en) * 2021-08-30 2023-03-13 太陽誘電株式会社 Solid electrolyte, all-solid-state battery, method for producing solid electrolyte, and method for producing all-solid-state battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021534064A (en) * 2018-08-16 2021-12-09 サムスン エレクトロニクス カンパニー リミテッド Ionic conductive solid electrolyte compound, its manufacturing method, and electrochemical device containing it
JP2020194773A (en) * 2019-05-24 2020-12-03 三星電子株式会社Samsung Electronics Co.,Ltd. Solid conductor, manufacturing method thereof, solid electrolyte including the same, and electrochemical element
JP2021038100A (en) * 2019-08-30 2021-03-11 昭和電工株式会社 Lithium ion-conducting oxide
JP2021038099A (en) * 2019-08-30 2021-03-11 昭和電工株式会社 Lithium ion-conducting oxide
WO2022138804A1 (en) * 2020-12-25 2022-06-30 昭和電工株式会社 Lithium ion-conductive solid electrolyte, and all-solid-state battery
WO2022201755A1 (en) * 2021-03-26 2022-09-29 太陽誘電株式会社 Solid electrolyte, all-solid-state battery, method for manufacturing solid electrolyte, and method for manufacturing all-solid-state battery
JP2023033898A (en) * 2021-08-30 2023-03-13 太陽誘電株式会社 Solid electrolyte, all-solid-state battery, method for producing solid electrolyte, and method for producing all-solid-state battery

Similar Documents

Publication Publication Date Title
Chen et al. Microstructural and electrochemical properties of Al-and Ga-doped Li7La3Zr2O12 garnet solid electrolytes
US20200194831A1 (en) Solid electrolyte sheet, method for manufacturing same, and sodium ion all-solid-state secondary cell
JP5299860B2 (en) All solid battery
Voskanyan et al. Entropy stabilization of TiO2–Nb2O5 Wadsley–Roth shear phases and their prospects for lithium-ion battery anode materials
Yen et al. Optimization of sintering process on Li1+ xAlxTi2-x (PO4) 3 solid electrolytes for all-solid-state lithium-ion batteries
Gao et al. Preparation of high-density garnet thin sheet electrolytes for all-solid-state Li-Metal batteries by tape-casting technique
Zhang et al. Lithium halide coating as an effective intergrain engineering for garnet-type solid electrolytes avoiding high temperature sintering
Liu et al. Preparation and chemical compatibility of lithium aluminum germanium phosphate solid electrolyte
JP2009140911A (en) All-solid battery
Sun et al. Local Li+ framework regulation of a garnet-type solid-state electrolyte
WO2022009811A1 (en) Sintered body electrode, battery member, sintered body electrode and battery member manufacturing methods, solid electrolyte precursor solution, solid electrolyte precursor, and solid electrolyte
Qin et al. Oriented attachment strategy toward enhancing ionic conductivity in garnet-type electrolytes for solid-state lithium batteries
Temeche et al. LiAlO2/LiAl5O8 membranes derived from flame-synthesized nanopowders as a potential electrolyte and coating material for all-solid-state batteries
Li et al. Enhanced ionic conductivity and electrochemical stability of Indium doping Li 1.3 Al 0.3 Ti 1.7 (PO 4) 3 solid electrolytes for all-solid-state lithium-ion batteries
KR20170098199A (en) Solid electrolyte, method for manufacturing the same, and all solid state rechargeable lithium battery including the same
Enkhbayar et al. Study of codoping effects of Ta5+ and Ga3+ on garnet Li7La3Zr2O12
Zallocco et al. Electrochemical stability of a NASICON solid electrolyte from the lithium aluminum germanium phosphate (LAGP) series
Ma et al. Enhanced critical current density of Garnet Li7La3Zr2O12 solid electrolyte by incorporation of LiBr
JP7285013B2 (en) Composite oxides and electrochemical devices using them as electrolyte materials
Lakshmi-Narayana et al. Pulsed laser–deposited Li 2 TiO 3 thin film electrodes for energy storage
Sakakura et al. Fabrication of oxide-based all-solid-state batteries by a sintering process based on function sharing of solid electrolytes
Shalaby et al. Solid-state lithium-ion battery: The key components enhance the performance and efficiency of anode, cathode, and solid electrolytes
Park et al. Synergistic effect of calcination and sintering on the reduction of grain boundary resistance of LATP solid electrolyte
WO2023243327A1 (en) Oxide sintered body and method for producing oxide sintered body
JP7274868B2 (en) Cathode material for all-solid-state battery, all-solid-state battery, and method for producing cathode active material for all-solid-state battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823627

Country of ref document: EP

Kind code of ref document: A1