WO2023032271A1 - 導光板、画像表示装置、及び導光板の製造方法 - Google Patents
導光板、画像表示装置、及び導光板の製造方法 Download PDFInfo
- Publication number
- WO2023032271A1 WO2023032271A1 PCT/JP2022/009627 JP2022009627W WO2023032271A1 WO 2023032271 A1 WO2023032271 A1 WO 2023032271A1 JP 2022009627 W JP2022009627 W JP 2022009627W WO 2023032271 A1 WO2023032271 A1 WO 2023032271A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- guide plate
- light guide
- reflecting
- plate according
- image
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 230000003287 optical effect Effects 0.000 claims abstract description 68
- 210000001747 pupil Anatomy 0.000 claims abstract description 19
- 239000012780 transparent material Substances 0.000 claims abstract description 12
- 239000010408 film Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 230000007423 decrease Effects 0.000 claims description 6
- 239000004033 plastic Substances 0.000 claims description 6
- 229920003023 plastic Polymers 0.000 claims description 6
- 239000010409 thin film Substances 0.000 claims description 6
- 210000000887 face Anatomy 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 67
- 238000010586 diagram Methods 0.000 description 9
- 230000002238 attenuated effect Effects 0.000 description 4
- 210000001525 retina Anatomy 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- 210000005252 bulbus oculi Anatomy 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 210000003128 head Anatomy 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
- G02B6/0055—Reflecting element, sheet or layer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/02—Viewing or reading apparatus
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/10—Mirrors with curved faces
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2033—LED or laser light sources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/332—Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
- H04N13/344—Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/64—Constructional details of receivers, e.g. cabinets or dust covers
Definitions
- the present technology relates to a light guide plate, an image display device, and a method for manufacturing a light guide plate.
- an image emitting unit including a display element for displaying a two-dimensional image and arranged in a frame of eyeglasses, and an image emitting unit arranged in the vicinity of at least one eyeglass lens and wearing the eyeglasses on the head of an observer.
- the reflective portion is a reflective member having a positive refractive power, and the effective luminous flux emitted from the image emitting portion and reaching the observer's eyeball has an optical axis cross section parallel to the plane of incidence of the optical axis with respect to the reflective portion,
- a spectacles-type image display device characterized in that the width of the effective luminous flux in the direction perpendicular to the optical axis is minimized at the reflecting portion.
- a light guide plate for propagating and projecting incident image light comprising: an incident surface for incident image light; and a plurality of partial reflection surfaces for reflecting a part of the image light are arranged in the propagation direction of the image light at a predetermined angle, inside the interior sandwiched between the inner reflection surface of and the first and second inner reflection surfaces. and a partially reflective surface array, and a uniformizing means for uniformizing the intensity distribution of image light reflected by the partially reflective surface array and projected from the light guide plate. disclosed.
- JP 2011-53367 A Japanese Patent Application Laid-Open No. 2020-118840
- Patent Document 1 it is explained that since the area of the reflective portion is very small, it is possible to prevent the external field of vision from being blocked. However, if the area of the reflective portion is made very small, when the observer's pupil diameter changes due to the surrounding environment of the observer or the brightness of the displayed image, there is a problem that the brightness of the displayed image tends to be uneven. be.
- Patent Document 2 describes that incident image light is propagated while being totally reflected inside the light guide plate. However, since the light is affected by the reflecting surface every time it undergoes total reflection, the reflecting surface must be manufactured with high precision. As a result, there is a problem that the manufacturing cost increases.
- the main purpose of the present technology is to provide a light guide plate, an image display device, and a light guide plate manufacturing method that reduce manufacturing costs while reducing luminance unevenness of a displayed image.
- the present technology includes a transparent member made of a transparent material, a plurality of reflection units arranged inside the transparent member for projecting image light onto a pupil of an observer, and a projection optical system.
- the transparent member has an incident portion on which the image light is incident, a first surface arranged on the observer side, and a transparent member facing the first surface and receiving the image light incident from the incident portion. and a reflecting second surface, wherein the projection optical system reflects the image light reflected by the second surface to the respective reflecting portions, and the reflecting portions reflect the image light.
- the reflective portion may be inclined at substantially the same angle with respect to the first surface.
- the reflective portions may have substantially the same optical properties.
- the reflector may have a metal thin film or a dielectric multilayer film.
- the reflecting section may be arranged at a position corresponding to the angle of view of the image light.
- the reflecting portion may have a vertical width of 0.7 mm or more when viewed from the observer side.
- the reflecting section may have a lower reflectance than the other surface.
- the reflecting section may have an air layer.
- the projection optical system may have a reflecting film formed in a concave shape.
- the second surface may totally internally reflect the image light only once.
- the transparent member may contain plastic.
- the transparent member may include two or more members facing each other, and the reflecting section may be arranged between the respective members.
- the transparent member includes a first member and a second member that face each other, and the first member faces the first surface and has a plurality of protrusions and has a sawtooth roof shape. and the second member has a second fitting portion that faces the second surface and fits with the first fitting portion. and the reflecting portion may be arranged in the first fitting portion or the second fitting portion.
- the apex angles of the plurality of projections of each of the first fitting portion and the second fitting portion may decrease as the distance from the projection optical system increases.
- a convex lens may be further provided, and the convex lens may be arranged on the optical axis of the image light incident on the incident portion.
- the present technology provides an image display device including an image display unit that projects image light, and the light guide plate.
- the image display section may include a self-luminous element.
- the present technology includes forming at least one surface of a transparent member made of a transparent material into a serrated roof shape having a plurality of convex portions, and forming the surface formed into a sawtooth shape.
- the present technology it is possible to provide a light guide plate, an image display device, and a light guide plate manufacturing method that reduce manufacturing costs while reducing luminance unevenness of a displayed image.
- the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
- FIG. 1 is a simplified diagram showing a configuration of a light guide plate 1 according to an embodiment of the present technology
- FIG. 1 is a simplified side view showing a configuration of a light guide plate 1 according to an embodiment of the present technology
- FIG. 1 is a simplified side view showing a configuration of a light guide plate 1 according to an embodiment of the present technology
- FIG. 5 is a graph showing simulation results of the light guide plate 1 according to an embodiment of the present technology
- 1 is a simplified diagram showing a configuration of a light guide plate 1 according to an embodiment of the present technology
- FIG. 1 is a simplified front view showing a configuration of a light guide plate 1 according to an embodiment of the present technology
- FIG. 1 is a simplified front view showing a configuration of a light guide plate 1 according to an embodiment of the present technology
- FIG. 1 is a simplified diagram showing a configuration of a light guide plate 1 according to an embodiment of the present technology
- FIG. 1 is a simplified diagram showing the configuration of an image display device 100 according to an embodiment of the present technology
- FIG. It is a flow chart which shows an example of a manufacturing method of light guide plate 1 concerning one embodiment of this art.
- substantially parallel means not only being completely parallel, but also being substantially parallel, that is, including a state deviated by, for example, several percent from the completely parallel state.
- substantially parallel means not only being completely parallel, but also being substantially parallel, that is, including a state deviated by, for example, several percent from the completely parallel state.
- abbreviations means not only being completely parallel, but also being substantially parallel, that is, including a state deviated by, for example, several percent from the completely parallel state.
- abbreviations Each figure is a schematic diagram and is not necessarily strictly illustrated.
- a light guide plate according to an embodiment of the present technology is arranged in front of an observer's eyes and projects image light onto the pupils of the observer.
- the light guide plate may be provided in a head mounted display (HMD) worn on the user's head.
- the light guide plate may be arranged at a predetermined location as infrastructure.
- the light guide plate includes a transparent member made of a transparent material, a plurality of reflecting portions arranged inside the transparent member for projecting image light onto a pupil of an observer, and a projection optical system.
- the transparent member has an incident portion on which the image light is incident, a first surface arranged on the observer side, and the transparent member facing the first surface and receiving the incident light from the incident portion.
- the projection optical system reflects the image light reflected by the second surface to each of the reflection sections; are arranged side by side in a direction in which image light is incident, are inclined at a predetermined angle with respect to the first surface, and the area of the reflecting portions and/or the interval between the reflecting portions are It changes according to the distance from the projection optical system, the area increases as the distance increases, and the distance decreases as the distance increases.
- FIG. 1 is a simplified diagram showing the configuration of a light guide plate 1 according to an embodiment of the present technology.
- FIG. 1A is a simplified front view showing the configuration of a light guide plate 1 according to one embodiment of the present technology.
- FIG. 1B is a simplified side view showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
- a light guide plate 1 As shown in FIG. 1, a light guide plate 1 according to an embodiment of the present technology includes a transparent member 10 made of a transparent material and arranged inside the transparent member 10 to observe image lights V1 and V2. A projection optical system 14 and a plurality of reflection units 20 for projecting light onto a person's pupil E are provided.
- the transparent member 10 may be made of transparent or translucent plastic, glass, resin, or the like.
- the transparent member 10 has an incident portion 13 on which the image lights V1 and V2 are incident, a first surface 11, and a second surface 12. As shown in FIG.
- the first surface 11 is arranged on the observer side.
- the second surface 12 is arranged to face the first surface 11 and reflects the image light incident from the incident portion 13 .
- the projection optical system 14 is arranged to face the incident section 13 and reflects the image lights V1 and V2 reflected by the second surface 12 to the respective reflecting sections 20 .
- the projection optical system 14 can be arranged inside or outside the transparent member 10 .
- the respective reflecting portions 20 are arranged side by side in the direction in which the image lights V1 and V2 are incident. In this embodiment, since the image lights V1 and V2 are incident downward from above, the direction in which the image lights V1 and V2 are incident is the vertical direction. Although four reflecting portions 20 (a first reflecting portion 21, a second reflecting portion 22, a third reflecting portion 23, and a fourth reflecting portion 24) are shown in this figure as an example, The number of units 20 is not particularly limited.
- Each reflecting part 20 is inclined at a predetermined angle with respect to the first surface 11 . Thereby, the observer can see the outside world on the other side of the light guide plate through the gap between the reflecting portions 20 .
- the first image light V1 incident from the incident portion 13 is reflected in this order via the second surface 12, the projection optical system 14, and the second reflecting portion 22, and is projected onto the observer's pupil E. .
- the second image light V2, which has the same field angle as the first image light V1 is reflected in this order via the second surface 12, the projection optical system 14, and the third reflection unit 23, and is reflected by the observer's pupil E. projected to
- the image light incident from above is reflected and converted into parallel light, but parallel image light may be projected from below.
- each reflecting section 20 changes according to the distance from the projection optical system 14 .
- the area increases as the distance increases. The reason for this will be explained.
- the light amount of the image light reaching the first reflecting portion 21 having the longest distance may be attenuated by being blocked by the reflecting portions 22 to 24 having a shorter distance than the first reflecting portion 21 .
- the area of the first reflecting portion 21 is larger than that of the reflecting portions 22 to 24 whose distance is shorter than that of the first reflecting portion 21, the amount of image light reflected by the first reflecting portion 21 is are substantially the same as the other reflecting portions 22-24.
- the amount of image light reaching the second reflecting section 22, which is the second longest from the projection optical system 14 is blocked by the reflecting sections 23 and 24, which are shorter than the second reflecting section 22.
- the amount of image light reflected by the second reflecting portion 22 is are substantially the same as the other reflecting portions 23 and 24 .
- the shorter the distance from the projection optical system 14 is, the smaller the areas of the reflecting portions 23 and 24 are.
- the intervals between the reflecting portions 20 may be substantially the same.
- the interval is the distance of a straight line in the vertical direction connecting the central axes of the respective reflecting portions 20 in the horizontal direction.
- each reflecting section 20 is inclined at substantially the same angle with respect to the first surface 11 .
- the reflecting portions 20 are all inclined at an angle ⁇ . Accordingly, it is possible to prevent the image light reflected by each reflecting section 20 from being mixed.
- the respective reflecting portions 20 have approximately the same optical characteristics. As a result, the amount of image light reflected by each of the reflecting portions 20 becomes substantially the same. As a result, luminance unevenness is reduced.
- the optical properties include, for example, reflectance, transmittance, absorptance, and gloss.
- Each reflecting part 20 preferably has a metal thin film or a dielectric multilayer film.
- This metal thin film or dielectric multilayer film is arranged on the surface that reflects the image light. Thereby, a high reflectance can be easily obtained. Even if the amount of light projected by the light source section is small, each reflecting section 20 can project sufficiently bright image light onto the pupil E of the observer. Observers can clearly recognize images not only indoors but also under sunlight. Furthermore, the reflection part 20 can be manufactured at low cost by performing vacuum deposition using a vacuum deposition device.
- Metals include, for example, aluminum, chromium, silver, or gold.
- each reflecting part 20 has a lower reflectance (higher absorption) than the other surface. That is, it is preferable that the surface opposite to the surface reflecting the image light has a lower reflectance than the surface reflecting the image light. Accordingly, when the image light incident from the incident portion 13 is directed directly toward each of the reflecting portions 20, it is possible to suppress the reflection of the image light by each of the reflecting portions 20. FIG. As a result, generation of stray light can be suppressed.
- FIG. 2 is a simplified side view showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
- the third image light V3 and the fourth image light V4 which constitute the angle of view above the image, are used to observe the second surface 12 and the projection optical system 14.
- the light is reflected in this order through the near side of the observer, reflected by the first reflecting section 21 and the second reflecting section 22, and projected onto the pupil E of the observer.
- each reflecting section 20 is arranged at a position corresponding to the angle of view of the image light. As a result, the observer can see a wide-angle image in the entire field of view.
- each reflecting section 20 since the light amount of the image light reflected by each reflecting section 20 is substantially the same, substantially the same light amount is projected onto the observer's pupil E regardless of the angle of view of the image light. As a result, luminance unevenness is reduced.
- each reflecting part 20 has a width of 0.7 mm or more in the vertical direction when viewed from the observer side. This will be described with reference to FIGS. 3 and 4.
- FIG. FIG. 3 is a simplified side view showing the configuration of the light guide plate 1 according to one embodiment of the present technology. As shown in FIG. 3, for example, the fourth reflecting section 24 has a vertical width D when viewed from the observer side.
- FIG. 4 is a graph showing simulation results of the light guide plate 1 according to one embodiment of the present technology.
- the horizontal axis represents the vertical width D of the reflecting portion when viewed from the observer side.
- the vertical axis is the contrast MTF (resolution) when the spatial frequency is 10 [cycle/degree]. Changes are plotted for each of the tangential and sagittal directions. As shown in FIG. 4, when the width D of the reflective portion is 1.5 mm or more, the contrast MTF asymptotically approaches a certain limit value. On the other hand, as the width D of the reflective portion becomes smaller, the contrast MTF drops sharply.
- the width D of the reflective portion is preferably 0.7 mm or more.
- the width D of the reflecting portion is preferably 0.7 mm or more.
- the projection optical system 14 preferably has a reflecting film formed in a concave shape on the surface that reflects the image light. Due to the concave surface, the image light reflected at various angles by the second surface 12 is converted into substantially parallel image light by the projection optical system 14 . As a result, the image light is appropriately reflected by the reflection section 20 according to the angle of view of the image light.
- the projection optical system 14 can be formed by vacuum-depositing a reflective film with a vacuum deposition device.
- This reflective film includes a metal thin film, a dielectric multilayer film, or the like.
- the transparent member 10 is made of a material having a refractive index. Since it has a refractive index, the second surface 12 of the transparent member 10 totally internally reflects the image light incident at an angle larger than the predetermined angle. A member for reflecting the second surface 12 is not required.
- the second surface 12 internally totally reflects the image light incident from the incident portion 13 only once. If total internal reflection occurs a plurality of times, the reflecting surface must be manufactured with high precision because each time it undergoes total reflection, it will be affected by the reflecting surface. As a result, there is a problem that the manufacturing cost increases. On the other hand, in this embodiment, total internal reflection is performed only once. Therefore, the surface accuracy of the second surface 12 and the accuracy of parallelism between the first surface 11 and the second surface 12 do not have to be high. As a result, manufacturing costs are reduced.
- the transparent member 10 is made of thermoplastic resin, for example, and can be manufactured inexpensively by injection molding or the like.
- the transparent member 10 preferably contains plastic.
- Plastics include, for example, cyclic polyolefin resins, cycloolefin copolymers, polycarbonate resins, acrylic resins, and optical polyester resins. Accordingly, the transparent member 10 can be manufactured at low cost by injection molding or the like. Furthermore, the weight of the transparent member 10 can be reduced.
- a light guide plate includes a transparent member.
- the transparent member includes two or more members facing each other, and the reflecting section is arranged between the respective members.
- FIG. 5 is a simplified diagram showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
- FIG. 5A is a simplified front view showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
- FIG. 5B is a simplified side view showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
- the light guide plate 1 includes a transparent member 10 made of a transparent material.
- the transparent member 10 includes a first member 110 and a second member 120 facing each other.
- the first member 110 is arranged near the observer.
- the second member 120 is arranged far from the observer. Note that the number of members is not limited to two.
- the first member 110 has a first fitting portion 111 facing the first surface 11 and having a plurality of protrusions and formed in a sawtooth roof shape.
- the second member 120 has a second fitting portion 121 that faces the second surface 12 and fits with the first fitting portion 111 .
- a reflecting portion 20 is arranged in the first fitting portion 111 or the second fitting portion 121 . All of the reflecting portions 20 are inclined at an angle ⁇ . Accordingly, it is possible to prevent the image light reflected by each reflecting section 20 from being mixed.
- the apex angles of the plurality of projections of each of the first fitting portion 111 and the second fitting portion 121 decrease as the distance from the projection optical system 14 increases.
- the apex angle ⁇ 2 of the convex portion on which the third reflecting portion 23 is arranged is smaller than the apical angle ⁇ 3 of the convex portion on which the fourth reflecting portion 24 is arranged.
- the apex angle ⁇ 1 of the projection on which the second reflecting portion 22 is arranged is smaller than the apex angle ⁇ 2 of the projection on which the third reflecting portion 23 is arranged.
- the apex angle ⁇ 2 of the projection on which the second reflecting portion 22 is arranged is smaller than the apex angle ⁇ 3 of the projection on which the third reflecting portion 23 is arranged.
- the apex angle ⁇ 1 of the projection on which the first reflecting portion 21 is arranged is smaller than the apex angle ⁇ 2 of the projection on which the second reflecting portion 22 is arranged.
- the area of the reflecting section 20 changes according to the distance from the projection optical system 14 .
- the distance is the distance of a straight line in the vertical direction that connects the center axis of each reflecting section 20 in the horizontal direction and the projection optical system 14 .
- the distance from the projection optical system 14 to the fourth reflector 24 is L 4
- the distance from the projection optical system 14 to the third reflector 23 is L 3
- the distance from the projection optical system 14 to the second reflector 22 is L 4
- the distance from the projection optical system 14 to the first reflecting section 21 is L 1 .
- the distance increases in the order of L 4 , L 3 , L 2 and L 1 .
- the area of each reflecting section 20 increases as the distance from the projection optical system 14 increases.
- FIG. 6 is a simplified front view showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
- the interval between the reflecting portions 20 changes according to the distance from the projection optical system 14 .
- the interval is shorter as the distance is longer.
- the distance between the first reflecting portion 21 and the second reflecting portion 22 is P 12
- the distance between the second reflecting portion 22 and the third reflecting portion 23 is P 23
- the distance between the third reflecting portion 23 and the fourth reflecting portion 23 is P 23
- the distance from the reflecting portion 24 is P34 .
- the intervals become shorter in the order of P 34 , P 23 and P 12 .
- the reason for this will be explained.
- the light amount of the image light reaching the first reflecting portion 21 having the longest distance may be attenuated by being blocked by the reflecting portions 22 to 24 having a shorter distance than the first reflecting portion 21 .
- the interval P12 between the first reflecting portion 21 and the second reflecting portion 22 is shorter than the intervals P23 and P34 , the amount of image light reflected by the first reflecting portion 21 is are substantially the same as the other reflecting portions 22-24.
- the amount of image light reaching the second reflecting section 22, which is the second longest from the projection optical system 14 is blocked by the reflecting sections 23 and 24, which are shorter than the second reflecting section 22.
- the interval P23 between the second reflecting portion 22 and the third reflecting portion 23 is shorter than the interval P34 , the amount of image light reflected by the second reflecting portion 22 is It becomes substantially the same as the reflecting portions 23 and 24 . Likewise, the shorter the distance from the projection optical system 14, the longer the interval between the reflecting portions.
- each reflecting section 20 since the light amount of the image light reflected by each reflecting section 20 is substantially the same, substantially the same light amount is projected onto the observer's pupil E regardless of the angle of view of the image light. As a result, luminance unevenness is reduced.
- the areas of the respective reflecting portions 20 may be substantially the same.
- FIG. 7 is a simplified front view showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
- the area of each reflecting section 20 increases as the distance from the projection optical system 14 increases.
- the distance increases in the order of L 4 , L 3 , L 2 and L 1 .
- the area of each reflecting section 20 increases as the distance from the projection optical system 14 increases.
- the distance between the respective reflecting portions 20 becomes shorter as the distance from the projection optical system 14 increases.
- the intervals become shorter in the order of P 34 , P 23 and P 12 .
- the amount of image light reflected by each of the reflecting portions 20 becomes substantially the same.
- substantially the same amount of light is projected onto the observer's pupil E regardless of the angle of view of the image light.
- luminance unevenness is reduced.
- Each reflecting section 20 may have an air layer.
- the air layer may be, for example, an air layer or a nitrogen layer. Since the air layer has a low refractive index, the image light is totally internally reflected at the interface between the air layer and the transparent member 10 . Since a member such as a metal film for reflecting image light is not required, the weight of the light guide plate 1 can be reduced.
- the light guide plate according to an embodiment of the present technology may further include a convex lens, and the convex lens may be arranged on the optical axis of the image light incident on the incident section.
- FIG. 8 is a simplified diagram showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
- FIG. 8A is a simplified front view showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
- FIG. 8B is a simplified side view showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
- the light guide plate 1 can further include a convex lens 3, as shown in FIG.
- the convex lens 3 is arranged on the optical axis of the image light incident on the incident portion 13 .
- a projection optical system composed of the convex lens 3 and the concave reflecting film 14 can further correct the aberration.
- FIG. 9 is a simplified diagram showing the configuration of the image display device 100 according to one embodiment of the present technology.
- FIG. 9A is a simplified front view showing the configuration of the image display device 100 according to one embodiment of the present technology.
- FIG. 9B is a simplified side view showing the configuration of the image display device 100 according to one embodiment of the present technology.
- an image display device 100 includes a video display unit 4 that projects video light, and the light guide plate 1 according to another embodiment described above.
- the image display unit 4 converts image data into image light and projects the image light.
- the image lights V1 and V2 projected by the image display unit 4 enter from the incident unit 13, are reflected in this order via the second surface 12, the projection optical system 14, and the second reflection unit 22, and are reflected by the observer. It is projected on the pupil E.
- the image display unit 4 includes a self-luminous element.
- a self-luminous element include, for example, organic EL elements and micro LED elements.
- a method for manufacturing a light guide plate according to an embodiment of the present technology includes forming at least one surface of a transparent member made of a transparent material into a sawtooth roof shape having a plurality of protrusions; forming a reflective portion on the roof-shaped surface; and bonding two or more of the transparent members so that the sawtooth-shaped surfaces face each other; Each of the plurality of protrusions has a smaller apex angle as the distance from one side increases.
- FIG. 10 is a flow chart showing an example of a method for manufacturing the light guide plate 1 according to an embodiment of the present technology.
- At least one surface of a transparent member made of a transparent material has a sawtooth roof shape having a plurality of convex portions. (step S1), forming a reflective portion on the surface formed in a sawtooth shape (step S2), and forming two or more of the transparent members in a sawtooth shape and gluing the surfaces facing each other (step S3).
- step S1 forming a reflective portion on the surface formed in a sawtooth shape
- step S3 forming two or more of the transparent members in a sawtooth shape and gluing the surfaces facing each other.
- Each of the plurality of protrusions has a smaller apex angle as the distance from one side increases.
- this technique can also take the following structures.
- a transparent member made of a transparent material; a plurality of reflecting portions arranged inside the transparent member for projecting image light onto the pupil of an observer; a projection optical system, and The transparent member is an incident portion into which the image light is incident; a first surface arranged on the observer side; a second surface facing the first surface and reflecting the image light incident from the incident portion;
- the projection optical system reflects the image light reflected by the second surface to each of the reflecting portions, the reflecting portions are arranged side by side in a direction in which the image light is incident, and are inclined at a predetermined angle with respect to the first surface;
- the area of the reflective portion and/or the distance between the reflective portions varies according to the distance from the projection optical system, The area is larger as the distance is longer, The light guide plate, wherein the distance is shorter as the distance is longer.
- the reflecting portion is inclined at substantially the same angle with respect to the first surface;
- the reflective portions have substantially the same optical characteristics, The light guide plate according to [1] or [2].
- the reflective part has a metal thin film or a dielectric multilayer film, The light guide plate according to any one of [1] to [3].
- the reflecting section is arranged at a position corresponding to the angle of view of the image light, The light guide plate according to any one of [1] to [4].
- the reflective portion has a vertical width of 0.7 mm or more when viewed from the observer side. The light guide plate according to any one of [1] to [5].
- one surface of the reflecting portion has a lower reflectance than the other surface;
- the reflecting section has an air layer,
- the projection optical system has a reflecting film formed in a concave shape, The light guide plate according to any one of [1] to [8].
- the second surface totally internally reflects the image light only once.
- the transparent member contains plastic, The light guide plate according to any one of [1] to [10].
- the transparent member comprises two or more members facing each other, The reflecting portion is arranged between each of the members, The light guide plate according to any one of [1] to [11].
- the transparent member comprises a first member and a second member facing each other, The first member has a first fitting portion facing the first surface and having a plurality of protrusions and formed in a sawtooth roof shape, The second member has a second fitting portion that faces the second surface and fits with the first fitting portion, The reflecting portion is arranged in the first fitting portion or the second fitting portion, The light guide plate according to any one of [1] to [12].
- the apex angles of the plurality of convex portions of each of the first fitting portion and the second fitting portion decrease as the distance from the projection optical system increases.
- It also has a convex lens, The convex lens is arranged on the optical axis of the image light incident on the incident part, The light guide plate according to any one of [1] to [14].
- the image display unit includes a self-luminous element, The image display device according to [16].
- Convex lens 4 Image display part 100
- Image display device S1 Forming a sawtooth roof shape
- S2 Forming a reflecting part S3 gluing a transparent member
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Manufacturing & Machinery (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
前記透明部材は、前記映像光が入射される入射部と、前記観察者側に配される第1の面と、前記第1の面に対向し、前記入射部より入射される前記映像光を反射する第2の面と、を有しており、前記投射光学系は、前記第2の面が反射した前記映像光をそれぞれの前記反射部に反射し、前記反射部は、前記映像光が入射される方向に並んで配置されており、前記第1の面に対して所定の角度で傾斜しており、前記反射部の面積、及び/又は、前記反射部同士の間隔が、前記投射光学系からの距離に応じて変化しており、前記面積が、前記距離が長いほど大きくなっており、前記間隔が、前記距離が長いほど短くなっている、導光板を提供する。
前記反射部は、前記第1の面に対して略同一の角度で傾斜していてよい。
前記反射部は、略同一の光学特性を有していてよい。
前記反射部は、金属薄膜又は誘電体多層膜を有していてよい。
前記反射部は、前記映像光の画角に応じた位置に配されていてよい。
前記反射部は、前記観察者側から見たときの上下方向の幅が0.7mm以上であってよい。
前記反射部の一方の面は、他方の面よりも反射率が低くてよい。
前記反射部は、気層を有していてよい。
前記投射光学系は、凹面状に形成されている反射膜を有していてよい。
前記第2の面は、前記映像光を1回だけ内部全反射してよい。
前記透明部材は、プラスチックを含んでいてよい。
前記透明部材は、互いに対向する2つ以上の部材を備えており、それぞれの前記部材の間に、前記反射部が配されていてよい。
前記透明部材は、互いに対向する第1の部材及び第2の部材を備えており、前記第1の部材は、前記第1の面に対向し、複数の凸部を有しており鋸屋根形状に形成されている第1の嵌合部を有しており、前記第2の部材は、前記第2の面に対向し、前記第1の嵌合部と嵌合する第2の嵌合部を有しており、前記第1の嵌合部又は前記第2の嵌合部には、前記反射部が配されていてよい。
前記第1の嵌合部及び前記第2の嵌合部のそれぞれが有する複数の凸部の頂角は、前記投射光学系からの距離が長いほど小さくなっていてよい。
凸レンズをさらに備えており、前記凸レンズは、前記入射部に入射される映像光の光軸上に配されていてよい。
また、本技術は、映像光を投射する映像表示部と、前記導光板と、を備えている、画像表示装置を提供する。
前記映像表示部は、自発光素子を備えていてよい。
また、本技術は、透明材料により形成されている透明部材の少なくとも1つの面を、複数の凸部を有している鋸屋根形状に形成することと、鋸屋根形状に形成されている前記面に反射部を形成することと、2つ以上の前記透明部材を、鋸屋根形状に形成されている前記面が互いに対向させて接着することと、を含み、前記複数の凸部のそれぞれは、一辺からの距離が長いほど頂角が小さくなっている、導光板の製造方法を提供する。
1.第1の実施形態(導光板の例1)
2.第2の実施形態(導光板の例2)
3.第3の実施形態(導光板の例3)
4.第4の実施形態(導光板の例4)
5.第5の実施形態(導光板の例5)
6.第6の実施形態(導光板の例6)
7.第7の実施形態(画像表示装置の例)
8.第8の実施形態(導光板の製造方法の例)
[(1)概要]
本技術の一実施形態に係る導光板は、観察者の目の前に配され、映像光を観察者の瞳に投射する。前記導光板は、ユーザの頭部に装着されるヘッドマウントディスプレイ(HMD)に備えられることができる。あるいは、前記導光板は、インフラとして所定の場所に配置されてもよい。
それぞれの反射部20の面積は、投射光学系14からの距離に応じて変化している。前記面積は、前記距離が長いほど大きくなっている。この理由について説明する。前記距離が最も長い第1の反射部21に到達する映像光の光量は、第1の反射部21よりも前記距離が短い反射部22~24に遮られることにより減衰するおそれがある。しかし、第1の反射部21の面積が、第1の反射部21よりも前記距離が短い反射部22~24よりも大きくなっているため、第1の反射部21が反射する映像光の光量は、その他の反射部22~24と略同一となる。同様に、投射光学系14からの距離が2番目に長い第2の反射部22に到達する映像光の光量は、第2の反射部22よりも前記距離が短い反射部23、24に遮られることにより減衰するおそれがある。しかし、第2の反射部22の面積が、第2の反射部22よりも前記距離が短い反射部23、24よりも大きくなっているため、第2の反射部22が反射する映像光の光量は、その他の反射部23、24と略同一となる。以下同様に、投射光学系14からの距離が短いほど、反射部23、24の面積が小さくなっている。
投射光学系14は、映像光を反射する面に、凹面状に形成されている反射膜を有していることが好ましい。凹面状に形成されていることにより、第2の面12により種々の角度で反射された映像光が、投射光学系14により略平行の映像光に変換される。その結果、映像光の画角に応じた反射部20に適切に反射される。
透明部材10は、屈折率を有する材料により形成される。屈折率を有するため、透明部材10が有している第2の面12は、所定の角度よりも大きい角度で入射された映像光を内部全反射する。第2の面12に反射させるための部材は不要である。
本技術の一実施形態に係る導光板は、透明部材を備えている。前記透明部材は、互いに対向する2つ以上の部材を備えており、それぞれの前記部材の間に、前記反射部が配されている。
反射部同士の間隔が、投射光学系からの距離に応じて変化しており、前記間隔が、前記距離が長いほど短くなっていてよい。このことについて図6を参照しつつ説明する。図6は、本技術の一実施形態に係る導光板1の構成を示す簡略正面図である。
前記反射部の面積及び前記反射部同士の間隔が、前記投射光学系からの距離に応じて変化しており、前記面積が、前記距離が長いほど大きくなっており、前記間隔が、前記距離が長いほど短くなっていてよい。このことについて図7を参照しつつ説明する。図7は、本技術の一実施形態に係る導光板1の構成を示す簡略正面図である。
それぞれの反射部20は、気層を有していてよい。前記気層は、例えば空気層や窒素層などでありうる。前記気層は屈折率が低いため、前記気層と透明部材10との界面で映像光が内部全反射する。映像光を反射するための金属膜などの部材が不要となるため、導光板1の軽量化が可能となる。
本技術の一実施形態に係る導光板は、凸レンズをさらに備えており、前記凸レンズは、前記入射部に入射される映像光の光軸上に配されていてよい。このことについて図8を参照しつつ説明する。図8は、本技術の一実施形態に係る導光板1の構成を示す簡略図である。図8Aは、本技術の一実施形態に係る導光板1の構成を示す簡略正面図である。図8Bは、本技術の一実施形態に係る導光板1の構成を示す簡略側面図である。
本技術の一実施形態に係る画像表示装置は、映像光を投射する映像表示部と、上述した他の実施形態に係る前記導光板と、を備えている。本技術の一実施形態に係る画像表示装置について図9を参照しつつ説明する。図9は、本技術の一実施形態に係る画像表示装置100の構成を示す簡略図である。図9Aは、本技術の一実施形態に係る画像表示装置100の構成を示す簡略正面図である。図9Bは、本技術の一実施形態に係る画像表示装置100の構成を示す簡略側面図である。
本技術の一実施形態に係る導光板の製造方法は、透明材料により形成されている透明部材の少なくとも1つの面を、複数の凸部を有している鋸屋根形状に形成することと、鋸屋根形状に形成されている前記面に反射部を形成することと、2つ以上の前記透明部材を、鋸屋根形状に形成されている前記面が互いに対向させて接着することと、を含み、前記複数の凸部のそれぞれは、一辺からの距離が長いほど頂角が小さくなっている。
[1]
透明材料により形成されている透明部材と、
前記透明部材の内部に配置されており、映像光を観察者の瞳に投射する複数の反射部と、
投射光学系と、を備えており、
前記透明部材は、
前記映像光が入射される入射部と、
前記観察者側に配される第1の面と、
前記第1の面に対向し、前記入射部より入射される前記映像光を反射する第2の面と、を有しており、
前記投射光学系は、前記第2の面が反射した前記映像光をそれぞれの前記反射部に反射し、
前記反射部は、前記映像光が入射される方向に並んで配置されており、前記第1の面に対して所定の角度で傾斜しており、
前記反射部の面積、及び/又は、前記反射部同士の間隔が、前記投射光学系からの距離に応じて変化しており、
前記面積が、前記距離が長いほど大きくなっており、
前記間隔が、前記距離が長いほど短くなっている、導光板。
[2]
前記反射部は、前記第1の面に対して略同一の角度で傾斜している、
[1]に記載の導光板。
[3]
前記反射部は、略同一の光学特性を有している、
[1]又は[2]に記載の導光板。
[4]
前記反射部は、金属薄膜又は誘電体多層膜を有している、
[1]から[3]のいずれか一つに記載の導光板。
[5]
前記反射部は、前記映像光の画角に応じた位置に配されている、
[1]から[4]のいずれか一つに記載の導光板。
[6]
前記反射部は、前記観察者側から見たときの上下方向の幅が0.7mm以上である、
[1]から[5]のいずれか一つに記載の導光板。
[7]
前記反射部の一方の面は、他方の面よりも反射率が低い、
[1]から[6]のいずれか一つに記載の導光板。
[8]
前記反射部は、気層を有している、
[1]から[7]のいずれか一つに記載の導光板。
[9]
前記投射光学系は、凹面状に形成されている反射膜を有している、
[1]から[8]のいずれか一つに記載の導光板。
[10]
前記第2の面は、前記映像光を1回だけ内部全反射する、
[1]から[9]のいずれか一つに記載の導光板。
[11]
前記透明部材は、プラスチックを含む、
[1]から[10]のいずれか一つに記載の導光板。
[12]
前記透明部材は、互いに対向する2つ以上の部材を備えており、
それぞれの前記部材の間に、前記反射部が配されている、
[1]から[11]のいずれか一つに記載の導光板。
[13]
前記透明部材は、互いに対向する第1の部材及び第2の部材を備えており、
前記第1の部材は、前記第1の面に対向し、複数の凸部を有しており鋸屋根形状に形成されている第1の嵌合部を有しており、
前記第2の部材は、前記第2の面に対向し、前記第1の嵌合部と嵌合する第2の嵌合部を有しており、
前記第1の嵌合部又は前記第2の嵌合部には、前記反射部が配されている、
[1]から[12]のいずれか一つに記載の導光板。
[14]
前記第1の嵌合部及び前記第2の嵌合部のそれぞれが有する複数の凸部の頂角は、前記投射光学系からの距離が長いほど小さくなっている、
[13]に記載の導光板。
[15]
凸レンズをさらに備えており、
前記凸レンズは、前記入射部に入射される映像光の光軸上に配されている、
[1]から[14]のいずれか一つに記載の導光板。
[16]
映像光を投射する映像表示部と、
[1]から[15]のいずれか一つに記載の導光板と、を備えている、画像表示装置。
[17]
前記映像表示部は、自発光素子を備えている、
[16]に記載の画像表示装置。
[18]
透明材料により形成されている透明部材の少なくとも1つの面を、複数の凸部を有している鋸屋根形状に形成することと、
鋸屋根形状に形成されている前記面に反射部を形成することと、
2つ以上の前記透明部材を、鋸屋根形状に形成されている前記面が互いに対向させて接着することと、を含み、
前記複数の凸部のそれぞれは、一辺からの距離が長いほど頂角が小さくなっている、
導光板の製造方法。
10 透明部材
11 第1の面
12 第2の面
13 入射部
14 投射光学系
20 反射部
21 第1の反射部
22 第2の反射部
23 第3の反射部
24 第4の反射部
110 第1の部材
111 第1の嵌合部
120 第2の部材
121 第2の嵌合部
3 凸レンズ
4 映像表示部
100 画像表示装置
S1 鋸屋根形状に形成すること
S2 反射部を形成すること
S3 透明部材を接着すること
Claims (18)
- 透明材料により形成されている透明部材と、
前記透明部材の内部に配置されており、映像光を観察者の瞳に投射する複数の反射部と、
投射光学系と、を備えており、
前記透明部材は、
前記映像光が入射される入射部と、
前記観察者側に配される第1の面と、
前記第1の面に対向し、前記入射部より入射される前記映像光を反射する第2の面と、を有しており、
前記投射光学系は、前記第2の面が反射した前記映像光をそれぞれの前記反射部に反射し、
前記反射部は、前記映像光が入射される方向に並んで配置されており、前記第1の面に対して所定の角度で傾斜しており、
前記反射部の面積、及び/又は、前記反射部同士の間隔が、前記投射光学系からの距離に応じて変化しており、
前記面積が、前記距離が長いほど大きくなっており、
前記間隔が、前記距離が長いほど短くなっている、導光板。 - 前記反射部は、前記第1の面に対して略同一の角度で傾斜している、
請求項1に記載の導光板。 - 前記反射部は、略同一の光学特性を有している、
請求項1に記載の導光板。 - 前記反射部は、金属薄膜又は誘電体多層膜を有している、
請求項1に記載の導光板。 - 前記反射部は、前記映像光の画角に応じた位置に配されている、
請求項1に記載の導光板。 - 前記反射部は、前記観察者側から見たときの上下方向の幅が0.7mm以上である、
請求項1に記載の導光板。 - 前記反射部の一方の面は、他方の面よりも反射率が低い、
請求項1に記載の導光板。 - 前記反射部は、気層を有している、
請求項1に記載の導光板。 - 前記投射光学系は、凹面状に形成されている反射膜を有している、
請求項1に記載の導光板。 - 前記第2の面は、前記映像光を1回だけ内部全反射する、
請求項1に記載の導光板。 - 前記透明部材は、プラスチックを含む、
請求項1に記載の導光板。 - 前記透明部材は、互いに対向する2つ以上の部材を備えており、
それぞれの前記部材の間に、前記反射部が配されている、
請求項1に記載の導光板。 - 前記透明部材は、互いに対向する第1の部材及び第2の部材を備えており、
前記第1の部材は、前記第1の面に対向し、複数の凸部を有しており鋸屋根形状に形成されている第1の嵌合部を有しており、
前記第2の部材は、前記第2の面に対向し、前記第1の嵌合部と嵌合する第2の嵌合部を有しており、
前記第1の嵌合部又は前記第2の嵌合部には、前記反射部が配されている、
請求項1に記載の導光板。 - 前記第1の嵌合部及び前記第2の嵌合部のそれぞれが有する複数の凸部の頂角は、前記投射光学系からの距離が長いほど小さくなっている、
請求項13に記載の導光板。 - 凸レンズをさらに備えており、
前記凸レンズは、前記入射部に入射される映像光の光軸上に配されている、
請求項1に記載の導光板。 - 映像光を投射する映像表示部と、
請求項1に記載の導光板と、を備えている、画像表示装置。 - 前記映像表示部は、自発光素子を備えている、
請求項16に記載の画像表示装置。 - 透明材料により形成されている透明部材の少なくとも1つの面を、複数の凸部を有している鋸屋根形状に形成することと、
鋸屋根形状に形成されている前記面に反射部を形成することと、
2つ以上の前記透明部材を、鋸屋根形状に形成されている前記面が互いに対向させて接着することと、を含み、
前記複数の凸部のそれぞれは、一辺からの距離が長いほど頂角が小さくなっている、
導光板の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280058604.4A CN117881998A (zh) | 2021-09-06 | 2022-03-07 | 导光板、图像显示装置以及用于制造导光板的方法 |
KR1020247008318A KR20240052774A (ko) | 2021-09-06 | 2022-03-07 | 도광판, 화상 표시 장치, 및 도광판의 제조 방법 |
JP2023545029A JPWO2023032271A1 (ja) | 2021-09-06 | 2022-03-07 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-144486 | 2021-09-06 | ||
JP2021144486 | 2021-09-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023032271A1 true WO2023032271A1 (ja) | 2023-03-09 |
Family
ID=85412380
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/009627 WO2023032271A1 (ja) | 2021-09-06 | 2022-03-07 | 導光板、画像表示装置、及び導光板の製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2023032271A1 (ja) |
KR (1) | KR20240052774A (ja) |
CN (1) | CN117881998A (ja) |
WO (1) | WO2023032271A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017033975A1 (ja) * | 2015-08-27 | 2017-03-02 | コニカミノルタ株式会社 | ホログラム記録構造,光学デバイス及び製造方法 |
JP2018109738A (ja) * | 2016-12-28 | 2018-07-12 | セイコーエプソン株式会社 | 光学素子および表示装置 |
JP2020118840A (ja) * | 2019-01-23 | 2020-08-06 | 株式会社日立エルジーデータストレージ | 導光板および映像表示装置 |
WO2020236862A1 (en) * | 2019-05-20 | 2020-11-26 | Facebook Technologies, Llc | Optical waveguide beam splitter |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8033265B2 (en) | 2005-12-16 | 2011-10-11 | Reisser Heinz-Gustav A | Rotary piston internal combustion engine |
-
2022
- 2022-03-07 KR KR1020247008318A patent/KR20240052774A/ko unknown
- 2022-03-07 JP JP2023545029A patent/JPWO2023032271A1/ja active Pending
- 2022-03-07 WO PCT/JP2022/009627 patent/WO2023032271A1/ja active Application Filing
- 2022-03-07 CN CN202280058604.4A patent/CN117881998A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017033975A1 (ja) * | 2015-08-27 | 2017-03-02 | コニカミノルタ株式会社 | ホログラム記録構造,光学デバイス及び製造方法 |
JP2018109738A (ja) * | 2016-12-28 | 2018-07-12 | セイコーエプソン株式会社 | 光学素子および表示装置 |
JP2020118840A (ja) * | 2019-01-23 | 2020-08-06 | 株式会社日立エルジーデータストレージ | 導光板および映像表示装置 |
WO2020236862A1 (en) * | 2019-05-20 | 2020-11-26 | Facebook Technologies, Llc | Optical waveguide beam splitter |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023032271A1 (ja) | 2023-03-09 |
KR20240052774A (ko) | 2024-04-23 |
CN117881998A (zh) | 2024-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11221486B2 (en) | AR headsets with improved pinhole mirror arrays | |
CN106896501B (zh) | 虚像显示装置 | |
US9971158B2 (en) | Virtual image display device | |
US9995938B2 (en) | Spectacle lens for a display device that can be fitted on the head of a user and generates an image | |
KR20190063442A (ko) | 광학 장치의 제조 방법 | |
CN112327495B (zh) | 导光体、虚像光学系统以及虚像显示装置 | |
JP2011509417A (ja) | 光導波路及び視覚用光学系 | |
US10768430B2 (en) | Display device and head-mounted display | |
KR102461573B1 (ko) | 광학 장치의 제조 방법 | |
CN112147786A (zh) | 一种增强现实显示系统 | |
US10466393B2 (en) | Display device | |
US11175483B2 (en) | Wide field of view head mounted display | |
WO2023032271A1 (ja) | 導光板、画像表示装置、及び導光板の製造方法 | |
JP6002172B2 (ja) | 表示装置 | |
JP2018054782A (ja) | 光学素子および表示装置 | |
CN114280786B (zh) | 一种光波导元件及其构建方法、近眼显示设备 | |
CN115793129A (zh) | 导光部件、光学单元、虚像显示装置以及头戴式显示器 | |
JP6963738B2 (ja) | 導光部材、ライトガイド及び虚像表示装置 | |
KR20230088894A (ko) | 화상 표시 장치 및 도광판의 제조 방법 | |
US20240353605A1 (en) | Light guiding plate, image display apparatus, and method for manufacturing light guiding plate | |
JP6665566B2 (ja) | 導光板及び表示装置 | |
KR102438560B1 (ko) | 직선 배치 광학 구조를 갖는 증강 현실용 광학 장치 및 광학 수단의 제조 방법 | |
TWI761095B (zh) | 頭戴式顯示裝置及其顯示系統 | |
US20230337508A1 (en) | Display device and wearable device including the same | |
JP2022020912A (ja) | 導光部材および表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22863861 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023545029 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18686800 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280058604.4 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 20247008318 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22863861 Country of ref document: EP Kind code of ref document: A1 |