WO2023032271A1 - 導光板、画像表示装置、及び導光板の製造方法 - Google Patents

導光板、画像表示装置、及び導光板の製造方法 Download PDF

Info

Publication number
WO2023032271A1
WO2023032271A1 PCT/JP2022/009627 JP2022009627W WO2023032271A1 WO 2023032271 A1 WO2023032271 A1 WO 2023032271A1 JP 2022009627 W JP2022009627 W JP 2022009627W WO 2023032271 A1 WO2023032271 A1 WO 2023032271A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide plate
light guide
reflecting
plate according
image
Prior art date
Application number
PCT/JP2022/009627
Other languages
English (en)
French (fr)
Inventor
聡 今井
一磨 相木
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN202280058604.4A priority Critical patent/CN117881998A/zh
Priority to KR1020247008318A priority patent/KR20240052774A/ko
Priority to JP2023545029A priority patent/JPWO2023032271A1/ja
Publication of WO2023032271A1 publication Critical patent/WO2023032271A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers

Definitions

  • the present technology relates to a light guide plate, an image display device, and a method for manufacturing a light guide plate.
  • an image emitting unit including a display element for displaying a two-dimensional image and arranged in a frame of eyeglasses, and an image emitting unit arranged in the vicinity of at least one eyeglass lens and wearing the eyeglasses on the head of an observer.
  • the reflective portion is a reflective member having a positive refractive power, and the effective luminous flux emitted from the image emitting portion and reaching the observer's eyeball has an optical axis cross section parallel to the plane of incidence of the optical axis with respect to the reflective portion,
  • a spectacles-type image display device characterized in that the width of the effective luminous flux in the direction perpendicular to the optical axis is minimized at the reflecting portion.
  • a light guide plate for propagating and projecting incident image light comprising: an incident surface for incident image light; and a plurality of partial reflection surfaces for reflecting a part of the image light are arranged in the propagation direction of the image light at a predetermined angle, inside the interior sandwiched between the inner reflection surface of and the first and second inner reflection surfaces. and a partially reflective surface array, and a uniformizing means for uniformizing the intensity distribution of image light reflected by the partially reflective surface array and projected from the light guide plate. disclosed.
  • JP 2011-53367 A Japanese Patent Application Laid-Open No. 2020-118840
  • Patent Document 1 it is explained that since the area of the reflective portion is very small, it is possible to prevent the external field of vision from being blocked. However, if the area of the reflective portion is made very small, when the observer's pupil diameter changes due to the surrounding environment of the observer or the brightness of the displayed image, there is a problem that the brightness of the displayed image tends to be uneven. be.
  • Patent Document 2 describes that incident image light is propagated while being totally reflected inside the light guide plate. However, since the light is affected by the reflecting surface every time it undergoes total reflection, the reflecting surface must be manufactured with high precision. As a result, there is a problem that the manufacturing cost increases.
  • the main purpose of the present technology is to provide a light guide plate, an image display device, and a light guide plate manufacturing method that reduce manufacturing costs while reducing luminance unevenness of a displayed image.
  • the present technology includes a transparent member made of a transparent material, a plurality of reflection units arranged inside the transparent member for projecting image light onto a pupil of an observer, and a projection optical system.
  • the transparent member has an incident portion on which the image light is incident, a first surface arranged on the observer side, and a transparent member facing the first surface and receiving the image light incident from the incident portion. and a reflecting second surface, wherein the projection optical system reflects the image light reflected by the second surface to the respective reflecting portions, and the reflecting portions reflect the image light.
  • the reflective portion may be inclined at substantially the same angle with respect to the first surface.
  • the reflective portions may have substantially the same optical properties.
  • the reflector may have a metal thin film or a dielectric multilayer film.
  • the reflecting section may be arranged at a position corresponding to the angle of view of the image light.
  • the reflecting portion may have a vertical width of 0.7 mm or more when viewed from the observer side.
  • the reflecting section may have a lower reflectance than the other surface.
  • the reflecting section may have an air layer.
  • the projection optical system may have a reflecting film formed in a concave shape.
  • the second surface may totally internally reflect the image light only once.
  • the transparent member may contain plastic.
  • the transparent member may include two or more members facing each other, and the reflecting section may be arranged between the respective members.
  • the transparent member includes a first member and a second member that face each other, and the first member faces the first surface and has a plurality of protrusions and has a sawtooth roof shape. and the second member has a second fitting portion that faces the second surface and fits with the first fitting portion. and the reflecting portion may be arranged in the first fitting portion or the second fitting portion.
  • the apex angles of the plurality of projections of each of the first fitting portion and the second fitting portion may decrease as the distance from the projection optical system increases.
  • a convex lens may be further provided, and the convex lens may be arranged on the optical axis of the image light incident on the incident portion.
  • the present technology provides an image display device including an image display unit that projects image light, and the light guide plate.
  • the image display section may include a self-luminous element.
  • the present technology includes forming at least one surface of a transparent member made of a transparent material into a serrated roof shape having a plurality of convex portions, and forming the surface formed into a sawtooth shape.
  • the present technology it is possible to provide a light guide plate, an image display device, and a light guide plate manufacturing method that reduce manufacturing costs while reducing luminance unevenness of a displayed image.
  • the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • FIG. 1 is a simplified diagram showing a configuration of a light guide plate 1 according to an embodiment of the present technology
  • FIG. 1 is a simplified side view showing a configuration of a light guide plate 1 according to an embodiment of the present technology
  • FIG. 1 is a simplified side view showing a configuration of a light guide plate 1 according to an embodiment of the present technology
  • FIG. 5 is a graph showing simulation results of the light guide plate 1 according to an embodiment of the present technology
  • 1 is a simplified diagram showing a configuration of a light guide plate 1 according to an embodiment of the present technology
  • FIG. 1 is a simplified front view showing a configuration of a light guide plate 1 according to an embodiment of the present technology
  • FIG. 1 is a simplified front view showing a configuration of a light guide plate 1 according to an embodiment of the present technology
  • FIG. 1 is a simplified diagram showing a configuration of a light guide plate 1 according to an embodiment of the present technology
  • FIG. 1 is a simplified diagram showing the configuration of an image display device 100 according to an embodiment of the present technology
  • FIG. It is a flow chart which shows an example of a manufacturing method of light guide plate 1 concerning one embodiment of this art.
  • substantially parallel means not only being completely parallel, but also being substantially parallel, that is, including a state deviated by, for example, several percent from the completely parallel state.
  • substantially parallel means not only being completely parallel, but also being substantially parallel, that is, including a state deviated by, for example, several percent from the completely parallel state.
  • abbreviations means not only being completely parallel, but also being substantially parallel, that is, including a state deviated by, for example, several percent from the completely parallel state.
  • abbreviations Each figure is a schematic diagram and is not necessarily strictly illustrated.
  • a light guide plate according to an embodiment of the present technology is arranged in front of an observer's eyes and projects image light onto the pupils of the observer.
  • the light guide plate may be provided in a head mounted display (HMD) worn on the user's head.
  • the light guide plate may be arranged at a predetermined location as infrastructure.
  • the light guide plate includes a transparent member made of a transparent material, a plurality of reflecting portions arranged inside the transparent member for projecting image light onto a pupil of an observer, and a projection optical system.
  • the transparent member has an incident portion on which the image light is incident, a first surface arranged on the observer side, and the transparent member facing the first surface and receiving the incident light from the incident portion.
  • the projection optical system reflects the image light reflected by the second surface to each of the reflection sections; are arranged side by side in a direction in which image light is incident, are inclined at a predetermined angle with respect to the first surface, and the area of the reflecting portions and/or the interval between the reflecting portions are It changes according to the distance from the projection optical system, the area increases as the distance increases, and the distance decreases as the distance increases.
  • FIG. 1 is a simplified diagram showing the configuration of a light guide plate 1 according to an embodiment of the present technology.
  • FIG. 1A is a simplified front view showing the configuration of a light guide plate 1 according to one embodiment of the present technology.
  • FIG. 1B is a simplified side view showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
  • a light guide plate 1 As shown in FIG. 1, a light guide plate 1 according to an embodiment of the present technology includes a transparent member 10 made of a transparent material and arranged inside the transparent member 10 to observe image lights V1 and V2. A projection optical system 14 and a plurality of reflection units 20 for projecting light onto a person's pupil E are provided.
  • the transparent member 10 may be made of transparent or translucent plastic, glass, resin, or the like.
  • the transparent member 10 has an incident portion 13 on which the image lights V1 and V2 are incident, a first surface 11, and a second surface 12. As shown in FIG.
  • the first surface 11 is arranged on the observer side.
  • the second surface 12 is arranged to face the first surface 11 and reflects the image light incident from the incident portion 13 .
  • the projection optical system 14 is arranged to face the incident section 13 and reflects the image lights V1 and V2 reflected by the second surface 12 to the respective reflecting sections 20 .
  • the projection optical system 14 can be arranged inside or outside the transparent member 10 .
  • the respective reflecting portions 20 are arranged side by side in the direction in which the image lights V1 and V2 are incident. In this embodiment, since the image lights V1 and V2 are incident downward from above, the direction in which the image lights V1 and V2 are incident is the vertical direction. Although four reflecting portions 20 (a first reflecting portion 21, a second reflecting portion 22, a third reflecting portion 23, and a fourth reflecting portion 24) are shown in this figure as an example, The number of units 20 is not particularly limited.
  • Each reflecting part 20 is inclined at a predetermined angle with respect to the first surface 11 . Thereby, the observer can see the outside world on the other side of the light guide plate through the gap between the reflecting portions 20 .
  • the first image light V1 incident from the incident portion 13 is reflected in this order via the second surface 12, the projection optical system 14, and the second reflecting portion 22, and is projected onto the observer's pupil E. .
  • the second image light V2, which has the same field angle as the first image light V1 is reflected in this order via the second surface 12, the projection optical system 14, and the third reflection unit 23, and is reflected by the observer's pupil E. projected to
  • the image light incident from above is reflected and converted into parallel light, but parallel image light may be projected from below.
  • each reflecting section 20 changes according to the distance from the projection optical system 14 .
  • the area increases as the distance increases. The reason for this will be explained.
  • the light amount of the image light reaching the first reflecting portion 21 having the longest distance may be attenuated by being blocked by the reflecting portions 22 to 24 having a shorter distance than the first reflecting portion 21 .
  • the area of the first reflecting portion 21 is larger than that of the reflecting portions 22 to 24 whose distance is shorter than that of the first reflecting portion 21, the amount of image light reflected by the first reflecting portion 21 is are substantially the same as the other reflecting portions 22-24.
  • the amount of image light reaching the second reflecting section 22, which is the second longest from the projection optical system 14 is blocked by the reflecting sections 23 and 24, which are shorter than the second reflecting section 22.
  • the amount of image light reflected by the second reflecting portion 22 is are substantially the same as the other reflecting portions 23 and 24 .
  • the shorter the distance from the projection optical system 14 is, the smaller the areas of the reflecting portions 23 and 24 are.
  • the intervals between the reflecting portions 20 may be substantially the same.
  • the interval is the distance of a straight line in the vertical direction connecting the central axes of the respective reflecting portions 20 in the horizontal direction.
  • each reflecting section 20 is inclined at substantially the same angle with respect to the first surface 11 .
  • the reflecting portions 20 are all inclined at an angle ⁇ . Accordingly, it is possible to prevent the image light reflected by each reflecting section 20 from being mixed.
  • the respective reflecting portions 20 have approximately the same optical characteristics. As a result, the amount of image light reflected by each of the reflecting portions 20 becomes substantially the same. As a result, luminance unevenness is reduced.
  • the optical properties include, for example, reflectance, transmittance, absorptance, and gloss.
  • Each reflecting part 20 preferably has a metal thin film or a dielectric multilayer film.
  • This metal thin film or dielectric multilayer film is arranged on the surface that reflects the image light. Thereby, a high reflectance can be easily obtained. Even if the amount of light projected by the light source section is small, each reflecting section 20 can project sufficiently bright image light onto the pupil E of the observer. Observers can clearly recognize images not only indoors but also under sunlight. Furthermore, the reflection part 20 can be manufactured at low cost by performing vacuum deposition using a vacuum deposition device.
  • Metals include, for example, aluminum, chromium, silver, or gold.
  • each reflecting part 20 has a lower reflectance (higher absorption) than the other surface. That is, it is preferable that the surface opposite to the surface reflecting the image light has a lower reflectance than the surface reflecting the image light. Accordingly, when the image light incident from the incident portion 13 is directed directly toward each of the reflecting portions 20, it is possible to suppress the reflection of the image light by each of the reflecting portions 20. FIG. As a result, generation of stray light can be suppressed.
  • FIG. 2 is a simplified side view showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
  • the third image light V3 and the fourth image light V4 which constitute the angle of view above the image, are used to observe the second surface 12 and the projection optical system 14.
  • the light is reflected in this order through the near side of the observer, reflected by the first reflecting section 21 and the second reflecting section 22, and projected onto the pupil E of the observer.
  • each reflecting section 20 is arranged at a position corresponding to the angle of view of the image light. As a result, the observer can see a wide-angle image in the entire field of view.
  • each reflecting section 20 since the light amount of the image light reflected by each reflecting section 20 is substantially the same, substantially the same light amount is projected onto the observer's pupil E regardless of the angle of view of the image light. As a result, luminance unevenness is reduced.
  • each reflecting part 20 has a width of 0.7 mm or more in the vertical direction when viewed from the observer side. This will be described with reference to FIGS. 3 and 4.
  • FIG. FIG. 3 is a simplified side view showing the configuration of the light guide plate 1 according to one embodiment of the present technology. As shown in FIG. 3, for example, the fourth reflecting section 24 has a vertical width D when viewed from the observer side.
  • FIG. 4 is a graph showing simulation results of the light guide plate 1 according to one embodiment of the present technology.
  • the horizontal axis represents the vertical width D of the reflecting portion when viewed from the observer side.
  • the vertical axis is the contrast MTF (resolution) when the spatial frequency is 10 [cycle/degree]. Changes are plotted for each of the tangential and sagittal directions. As shown in FIG. 4, when the width D of the reflective portion is 1.5 mm or more, the contrast MTF asymptotically approaches a certain limit value. On the other hand, as the width D of the reflective portion becomes smaller, the contrast MTF drops sharply.
  • the width D of the reflective portion is preferably 0.7 mm or more.
  • the width D of the reflecting portion is preferably 0.7 mm or more.
  • the projection optical system 14 preferably has a reflecting film formed in a concave shape on the surface that reflects the image light. Due to the concave surface, the image light reflected at various angles by the second surface 12 is converted into substantially parallel image light by the projection optical system 14 . As a result, the image light is appropriately reflected by the reflection section 20 according to the angle of view of the image light.
  • the projection optical system 14 can be formed by vacuum-depositing a reflective film with a vacuum deposition device.
  • This reflective film includes a metal thin film, a dielectric multilayer film, or the like.
  • the transparent member 10 is made of a material having a refractive index. Since it has a refractive index, the second surface 12 of the transparent member 10 totally internally reflects the image light incident at an angle larger than the predetermined angle. A member for reflecting the second surface 12 is not required.
  • the second surface 12 internally totally reflects the image light incident from the incident portion 13 only once. If total internal reflection occurs a plurality of times, the reflecting surface must be manufactured with high precision because each time it undergoes total reflection, it will be affected by the reflecting surface. As a result, there is a problem that the manufacturing cost increases. On the other hand, in this embodiment, total internal reflection is performed only once. Therefore, the surface accuracy of the second surface 12 and the accuracy of parallelism between the first surface 11 and the second surface 12 do not have to be high. As a result, manufacturing costs are reduced.
  • the transparent member 10 is made of thermoplastic resin, for example, and can be manufactured inexpensively by injection molding or the like.
  • the transparent member 10 preferably contains plastic.
  • Plastics include, for example, cyclic polyolefin resins, cycloolefin copolymers, polycarbonate resins, acrylic resins, and optical polyester resins. Accordingly, the transparent member 10 can be manufactured at low cost by injection molding or the like. Furthermore, the weight of the transparent member 10 can be reduced.
  • a light guide plate includes a transparent member.
  • the transparent member includes two or more members facing each other, and the reflecting section is arranged between the respective members.
  • FIG. 5 is a simplified diagram showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
  • FIG. 5A is a simplified front view showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
  • FIG. 5B is a simplified side view showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
  • the light guide plate 1 includes a transparent member 10 made of a transparent material.
  • the transparent member 10 includes a first member 110 and a second member 120 facing each other.
  • the first member 110 is arranged near the observer.
  • the second member 120 is arranged far from the observer. Note that the number of members is not limited to two.
  • the first member 110 has a first fitting portion 111 facing the first surface 11 and having a plurality of protrusions and formed in a sawtooth roof shape.
  • the second member 120 has a second fitting portion 121 that faces the second surface 12 and fits with the first fitting portion 111 .
  • a reflecting portion 20 is arranged in the first fitting portion 111 or the second fitting portion 121 . All of the reflecting portions 20 are inclined at an angle ⁇ . Accordingly, it is possible to prevent the image light reflected by each reflecting section 20 from being mixed.
  • the apex angles of the plurality of projections of each of the first fitting portion 111 and the second fitting portion 121 decrease as the distance from the projection optical system 14 increases.
  • the apex angle ⁇ 2 of the convex portion on which the third reflecting portion 23 is arranged is smaller than the apical angle ⁇ 3 of the convex portion on which the fourth reflecting portion 24 is arranged.
  • the apex angle ⁇ 1 of the projection on which the second reflecting portion 22 is arranged is smaller than the apex angle ⁇ 2 of the projection on which the third reflecting portion 23 is arranged.
  • the apex angle ⁇ 2 of the projection on which the second reflecting portion 22 is arranged is smaller than the apex angle ⁇ 3 of the projection on which the third reflecting portion 23 is arranged.
  • the apex angle ⁇ 1 of the projection on which the first reflecting portion 21 is arranged is smaller than the apex angle ⁇ 2 of the projection on which the second reflecting portion 22 is arranged.
  • the area of the reflecting section 20 changes according to the distance from the projection optical system 14 .
  • the distance is the distance of a straight line in the vertical direction that connects the center axis of each reflecting section 20 in the horizontal direction and the projection optical system 14 .
  • the distance from the projection optical system 14 to the fourth reflector 24 is L 4
  • the distance from the projection optical system 14 to the third reflector 23 is L 3
  • the distance from the projection optical system 14 to the second reflector 22 is L 4
  • the distance from the projection optical system 14 to the first reflecting section 21 is L 1 .
  • the distance increases in the order of L 4 , L 3 , L 2 and L 1 .
  • the area of each reflecting section 20 increases as the distance from the projection optical system 14 increases.
  • FIG. 6 is a simplified front view showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
  • the interval between the reflecting portions 20 changes according to the distance from the projection optical system 14 .
  • the interval is shorter as the distance is longer.
  • the distance between the first reflecting portion 21 and the second reflecting portion 22 is P 12
  • the distance between the second reflecting portion 22 and the third reflecting portion 23 is P 23
  • the distance between the third reflecting portion 23 and the fourth reflecting portion 23 is P 23
  • the distance from the reflecting portion 24 is P34 .
  • the intervals become shorter in the order of P 34 , P 23 and P 12 .
  • the reason for this will be explained.
  • the light amount of the image light reaching the first reflecting portion 21 having the longest distance may be attenuated by being blocked by the reflecting portions 22 to 24 having a shorter distance than the first reflecting portion 21 .
  • the interval P12 between the first reflecting portion 21 and the second reflecting portion 22 is shorter than the intervals P23 and P34 , the amount of image light reflected by the first reflecting portion 21 is are substantially the same as the other reflecting portions 22-24.
  • the amount of image light reaching the second reflecting section 22, which is the second longest from the projection optical system 14 is blocked by the reflecting sections 23 and 24, which are shorter than the second reflecting section 22.
  • the interval P23 between the second reflecting portion 22 and the third reflecting portion 23 is shorter than the interval P34 , the amount of image light reflected by the second reflecting portion 22 is It becomes substantially the same as the reflecting portions 23 and 24 . Likewise, the shorter the distance from the projection optical system 14, the longer the interval between the reflecting portions.
  • each reflecting section 20 since the light amount of the image light reflected by each reflecting section 20 is substantially the same, substantially the same light amount is projected onto the observer's pupil E regardless of the angle of view of the image light. As a result, luminance unevenness is reduced.
  • the areas of the respective reflecting portions 20 may be substantially the same.
  • FIG. 7 is a simplified front view showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
  • the area of each reflecting section 20 increases as the distance from the projection optical system 14 increases.
  • the distance increases in the order of L 4 , L 3 , L 2 and L 1 .
  • the area of each reflecting section 20 increases as the distance from the projection optical system 14 increases.
  • the distance between the respective reflecting portions 20 becomes shorter as the distance from the projection optical system 14 increases.
  • the intervals become shorter in the order of P 34 , P 23 and P 12 .
  • the amount of image light reflected by each of the reflecting portions 20 becomes substantially the same.
  • substantially the same amount of light is projected onto the observer's pupil E regardless of the angle of view of the image light.
  • luminance unevenness is reduced.
  • Each reflecting section 20 may have an air layer.
  • the air layer may be, for example, an air layer or a nitrogen layer. Since the air layer has a low refractive index, the image light is totally internally reflected at the interface between the air layer and the transparent member 10 . Since a member such as a metal film for reflecting image light is not required, the weight of the light guide plate 1 can be reduced.
  • the light guide plate according to an embodiment of the present technology may further include a convex lens, and the convex lens may be arranged on the optical axis of the image light incident on the incident section.
  • FIG. 8 is a simplified diagram showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
  • FIG. 8A is a simplified front view showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
  • FIG. 8B is a simplified side view showing the configuration of the light guide plate 1 according to one embodiment of the present technology.
  • the light guide plate 1 can further include a convex lens 3, as shown in FIG.
  • the convex lens 3 is arranged on the optical axis of the image light incident on the incident portion 13 .
  • a projection optical system composed of the convex lens 3 and the concave reflecting film 14 can further correct the aberration.
  • FIG. 9 is a simplified diagram showing the configuration of the image display device 100 according to one embodiment of the present technology.
  • FIG. 9A is a simplified front view showing the configuration of the image display device 100 according to one embodiment of the present technology.
  • FIG. 9B is a simplified side view showing the configuration of the image display device 100 according to one embodiment of the present technology.
  • an image display device 100 includes a video display unit 4 that projects video light, and the light guide plate 1 according to another embodiment described above.
  • the image display unit 4 converts image data into image light and projects the image light.
  • the image lights V1 and V2 projected by the image display unit 4 enter from the incident unit 13, are reflected in this order via the second surface 12, the projection optical system 14, and the second reflection unit 22, and are reflected by the observer. It is projected on the pupil E.
  • the image display unit 4 includes a self-luminous element.
  • a self-luminous element include, for example, organic EL elements and micro LED elements.
  • a method for manufacturing a light guide plate according to an embodiment of the present technology includes forming at least one surface of a transparent member made of a transparent material into a sawtooth roof shape having a plurality of protrusions; forming a reflective portion on the roof-shaped surface; and bonding two or more of the transparent members so that the sawtooth-shaped surfaces face each other; Each of the plurality of protrusions has a smaller apex angle as the distance from one side increases.
  • FIG. 10 is a flow chart showing an example of a method for manufacturing the light guide plate 1 according to an embodiment of the present technology.
  • At least one surface of a transparent member made of a transparent material has a sawtooth roof shape having a plurality of convex portions. (step S1), forming a reflective portion on the surface formed in a sawtooth shape (step S2), and forming two or more of the transparent members in a sawtooth shape and gluing the surfaces facing each other (step S3).
  • step S1 forming a reflective portion on the surface formed in a sawtooth shape
  • step S3 forming two or more of the transparent members in a sawtooth shape and gluing the surfaces facing each other.
  • Each of the plurality of protrusions has a smaller apex angle as the distance from one side increases.
  • this technique can also take the following structures.
  • a transparent member made of a transparent material; a plurality of reflecting portions arranged inside the transparent member for projecting image light onto the pupil of an observer; a projection optical system, and The transparent member is an incident portion into which the image light is incident; a first surface arranged on the observer side; a second surface facing the first surface and reflecting the image light incident from the incident portion;
  • the projection optical system reflects the image light reflected by the second surface to each of the reflecting portions, the reflecting portions are arranged side by side in a direction in which the image light is incident, and are inclined at a predetermined angle with respect to the first surface;
  • the area of the reflective portion and/or the distance between the reflective portions varies according to the distance from the projection optical system, The area is larger as the distance is longer, The light guide plate, wherein the distance is shorter as the distance is longer.
  • the reflecting portion is inclined at substantially the same angle with respect to the first surface;
  • the reflective portions have substantially the same optical characteristics, The light guide plate according to [1] or [2].
  • the reflective part has a metal thin film or a dielectric multilayer film, The light guide plate according to any one of [1] to [3].
  • the reflecting section is arranged at a position corresponding to the angle of view of the image light, The light guide plate according to any one of [1] to [4].
  • the reflective portion has a vertical width of 0.7 mm or more when viewed from the observer side. The light guide plate according to any one of [1] to [5].
  • one surface of the reflecting portion has a lower reflectance than the other surface;
  • the reflecting section has an air layer,
  • the projection optical system has a reflecting film formed in a concave shape, The light guide plate according to any one of [1] to [8].
  • the second surface totally internally reflects the image light only once.
  • the transparent member contains plastic, The light guide plate according to any one of [1] to [10].
  • the transparent member comprises two or more members facing each other, The reflecting portion is arranged between each of the members, The light guide plate according to any one of [1] to [11].
  • the transparent member comprises a first member and a second member facing each other, The first member has a first fitting portion facing the first surface and having a plurality of protrusions and formed in a sawtooth roof shape, The second member has a second fitting portion that faces the second surface and fits with the first fitting portion, The reflecting portion is arranged in the first fitting portion or the second fitting portion, The light guide plate according to any one of [1] to [12].
  • the apex angles of the plurality of convex portions of each of the first fitting portion and the second fitting portion decrease as the distance from the projection optical system increases.
  • It also has a convex lens, The convex lens is arranged on the optical axis of the image light incident on the incident part, The light guide plate according to any one of [1] to [14].
  • the image display unit includes a self-luminous element, The image display device according to [16].
  • Convex lens 4 Image display part 100
  • Image display device S1 Forming a sawtooth roof shape
  • S2 Forming a reflecting part S3 gluing a transparent member

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

本発明は、表示画像の輝度むらを低減しつつ製造コストを低減することを目的とする。 本発明の導光板(1)は、透明材料により形成されている透明部材(10)と、前記透明部材(10)の内部に配置されており、映像光を観察者の瞳(E)に投射する複数の反射部(20)と、投射光学系(14)と、を備えており、前記透明部材(10)は、前記映像光が入射される入射部(13)と、前記観察者側に配される第1の面(11)と、前記第1の面(11)に対向し、前記入射部(13)より入射される映像光を反射する第2の面(12)と、を有しており、前記投射光学系(14)は、前記第2の面(12)が反射した前記映像光をそれぞれの前記反射部(20)に反射し、前記反射部(20)は、前記映像光が入射される方向に並んで配置されており、前記第1の面(11)に対して所定の角度(φ)で傾斜しており、前記反射部(20)の面積、及び/又は、前記反射部(20)同士の間隔が、前記投射光学系(14)からの距離に応じて変化しており、前記面積が、前記距離が長いほど大きくなっており、前記間隔が、前記距離が長いほど短くなっている。

Description

導光板、画像表示装置、及び導光板の製造方法
 本技術は、導光板、画像表示装置、及び導光板の製造方法に関する。
 従来、観察者の視界に映る現実世界に画像を重ねて表示する拡張現実(Augmented Reality:AR)が体験できる画像表示装置が知られている。
 例えば特許文献1では、「2次元画像を表示する表示素子を含み眼鏡のフレーム部に配置される画像射出部と、少なくとも一方の眼鏡レンズ近傍に配置され、前記眼鏡を観察者の頭部に装着した状態で、前記画像射出部から射出した画像光を、該観察者の眼球へ向けて反射させ、前記2次元画像の虚像を該観察者が観察できるように構成した反射部とを備え、前記反射部は正の屈折力を持つ反射部材であり、前記画像射出部から射出して前記観察者の眼球へ至る有効光束は、前記反射部に対する光軸の入射面と平行な光軸断面で、該有効光束の光軸垂直方向の幅が前記反射部にて最小になるように構成したことを特徴とする眼鏡型画像表示装置」が開示されている。
 例えば特許文献2では、「入射した映像光を伝搬し投射する導光板であって、映像光を入射する入射面と、入射した映像光を全反射させながら伝搬する略平行な第1および第2の内面反射面と、前記第1および第2の内面反射面に挟まれた内部に、映像光の一部を反射する複数の部分反射面が所定の角度傾斜して映像光の伝搬方向に配列された部分反射面アレイと、を備え、前記部分反射面アレイにより反射され、当該導光板から投射される映像光の強度分布を均一化する均一化手段を有することを特徴とする導光板」が開示されている。
特開2011-53367号公報 特開2020-118840号公報
 特許文献1では、反射部の面積が非常に小さいため、外界視界が遮られることが防止できると説明されている。しかし、反射部の面積を非常に小さくすると、観察者の周囲の環境や表示される画像の明るさにより観察者の瞳孔径が変化したとき、表示される画像の輝度むらが生じやすいという問題がある。
 特許文献2では、入射した映像光を導光板の内部に全反射させながら伝搬させることが説明されている。しかし、全反射する度に反射面の影響を受けるため、反射面は高精度に製造される必要がある。その結果、製造コストが増大するという問題がある。
 そこで、本技術は、表示画像の輝度むらを低減しつつ製造コストを低減する導光板、画像表示装置、及び導光板の製造方法を提供することを主目的とする。
 本技術は、透明材料により形成されている透明部材と、前記透明部材の内部に配置されており、映像光を観察者の瞳に投射する複数の反射部と、投射光学系と、を備えており、
 前記透明部材は、前記映像光が入射される入射部と、前記観察者側に配される第1の面と、前記第1の面に対向し、前記入射部より入射される前記映像光を反射する第2の面と、を有しており、前記投射光学系は、前記第2の面が反射した前記映像光をそれぞれの前記反射部に反射し、前記反射部は、前記映像光が入射される方向に並んで配置されており、前記第1の面に対して所定の角度で傾斜しており、前記反射部の面積、及び/又は、前記反射部同士の間隔が、前記投射光学系からの距離に応じて変化しており、前記面積が、前記距離が長いほど大きくなっており、前記間隔が、前記距離が長いほど短くなっている、導光板を提供する。
 前記反射部は、前記第1の面に対して略同一の角度で傾斜していてよい。
 前記反射部は、略同一の光学特性を有していてよい。
 前記反射部は、金属薄膜又は誘電体多層膜を有していてよい。
 前記反射部は、前記映像光の画角に応じた位置に配されていてよい。
 前記反射部は、前記観察者側から見たときの上下方向の幅が0.7mm以上であってよい。
 前記反射部の一方の面は、他方の面よりも反射率が低くてよい。
 前記反射部は、気層を有していてよい。
 前記投射光学系は、凹面状に形成されている反射膜を有していてよい。
 前記第2の面は、前記映像光を1回だけ内部全反射してよい。
 前記透明部材は、プラスチックを含んでいてよい。
 前記透明部材は、互いに対向する2つ以上の部材を備えており、それぞれの前記部材の間に、前記反射部が配されていてよい。
 前記透明部材は、互いに対向する第1の部材及び第2の部材を備えており、前記第1の部材は、前記第1の面に対向し、複数の凸部を有しており鋸屋根形状に形成されている第1の嵌合部を有しており、前記第2の部材は、前記第2の面に対向し、前記第1の嵌合部と嵌合する第2の嵌合部を有しており、前記第1の嵌合部又は前記第2の嵌合部には、前記反射部が配されていてよい。
 前記第1の嵌合部及び前記第2の嵌合部のそれぞれが有する複数の凸部の頂角は、前記投射光学系からの距離が長いほど小さくなっていてよい。
 凸レンズをさらに備えており、前記凸レンズは、前記入射部に入射される映像光の光軸上に配されていてよい。
 また、本技術は、映像光を投射する映像表示部と、前記導光板と、を備えている、画像表示装置を提供する。
 前記映像表示部は、自発光素子を備えていてよい。
 また、本技術は、透明材料により形成されている透明部材の少なくとも1つの面を、複数の凸部を有している鋸屋根形状に形成することと、鋸屋根形状に形成されている前記面に反射部を形成することと、2つ以上の前記透明部材を、鋸屋根形状に形成されている前記面が互いに対向させて接着することと、を含み、前記複数の凸部のそれぞれは、一辺からの距離が長いほど頂角が小さくなっている、導光板の製造方法を提供する。
 本技術によれば、表示画像の輝度むらを低減しつつ製造コストを低減する導光板、画像表示装置、及び導光板の製造方法を提供できる。なお、ここに記載された効果は、必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術の一実施形態に係る導光板1の構成を示す簡略図である。 本技術の一実施形態に係る導光板1の構成を示す簡略側面図である。 本技術の一実施形態に係る導光板1の構成を示す簡略側面図である。 本技術の一実施形態に係る導光板1のシミュレーション結果を示すグラフである。 本技術の一実施形態に係る導光板1の構成を示す簡略図である。 本技術の一実施形態に係る導光板1の構成を示す簡略正面図である。 本技術の一実施形態に係る導光板1の構成を示す簡略正面図である。 本技術の一実施形態に係る導光板1の構成を示す簡略図である。 本技術の一実施形態に係る画像表示装置100の構成を示す簡略図である。 本技術の一実施形態に係る導光板1の製造方法の一例を示すフローチャートである。
 以下、本発明を実施するための好適な実施形態について図面を参照して説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が限定されることはない。また、本発明は、下記の実施例及びその変形例のいずれかを組み合わせることができる。
 以下の実施形態の説明において、略平行、略直交のような「略」を伴った用語で構成を説明することがある。例えば、略平行とは、完全に平行であることを意味するだけでなく、実質的に平行である、すなわち、完全に平行な状態から例えば数%程度ずれた状態を含むことも意味する。他の「略」を伴った用語についても同様である。また、各図は模式図であり、必ずしも厳密に図示されたものではない。
 特に断りがない限り、図面において、「上」とは図中の上方向又は上側を意味し、「下」とは、図中の下方向又は下側を意味し、「左」とは図中の左方向又は左側を意味し、「右」とは図中の右方向又は右側を意味する。また、図面については、同一又は同等の要素又は部材には同一の符号を付し、重複する説明は省略する。
 説明は以下の順序で行う。
 1.第1の実施形態(導光板の例1)
 2.第2の実施形態(導光板の例2)
 3.第3の実施形態(導光板の例3)
 4.第4の実施形態(導光板の例4)
 5.第5の実施形態(導光板の例5)
 6.第6の実施形態(導光板の例6)
 7.第7の実施形態(画像表示装置の例)
 8.第8の実施形態(導光板の製造方法の例)
[1.第1の実施形態(導光板の例1)]
[(1)概要]
 本技術の一実施形態に係る導光板は、観察者の目の前に配され、映像光を観察者の瞳に投射する。前記導光板は、ユーザの頭部に装着されるヘッドマウントディスプレイ(HMD)に備えられることができる。あるいは、前記導光板は、インフラとして所定の場所に配置されてもよい。
 前記導光板は、透明材料により形成されている透明部材と、前記透明部材の内部に配置されており、映像光を観察者の瞳に投射する複数の反射部と、投射光学系と、を備えており、前記透明部材は、前記映像光が入射される入射部と、前記観察者側に配される第1の面と、前記第1の面に対向し、前記入射部より入射される前記映像光を反射する第2の面と、を有しており、前記投射光学系は、前記第2の面が反射した前記映像光をそれぞれの前記反射部に反射し、前記反射部は、前記映像光が入射される方向に並んで配置されており、前記第1の面に対して所定の角度で傾斜しており、前記反射部の面積、及び/又は、前記反射部同士の間隔が、前記投射光学系からの距離に応じて変化しており、前記面積が、前記距離が長いほど大きくなっており、前記間隔が、前記距離が長いほど短くなっている。
 本技術の一実施形態に係る導光板について図1を参照しつつ説明する。図1は、本技術の一実施形態に係る導光板1の構成を示す簡略図である。図1Aは、本技術の一実施形態に係る導光板1の構成を示す簡略正面図である。図1Bは、本技術の一実施形態に係る導光板1の構成を示す簡略側面図である。
 図1に示されるとおり、本技術の一実施形態に係る導光板1は、透明材料により形成されている透明部材10と、透明部材10の内部に配置されており、映像光V1、V2を観察者の瞳Eに投射する複数の反射部20と、投射光学系14と、を備えている。
 透明部材10は、透明又は半透明なプラスチック、ガラス、又は樹脂などにより形成されてよい。透明部材10は、映像光V1、V2が入射される入射部13と、第1の面11と、第2の面12と、を有している。第1の面11は、前記観察者側に配される。第2の面12は、第1の面11に対向して配されており、入射部13より入射される映像光を反射する。
 投射光学系14は、入射部13に対向して配されており、第2の面12が反射した映像光V1、V2をそれぞれの反射部20に反射する。投射光学系14は、透明部材10の内部又は外部に配されることができる。
 それぞれの反射部20は、映像光V1、V2が入射される方向に並んで配置されている。本実施形態では、映像光V1、V2が上から下に向かって入射されるため、映像光V1、V2が入射される方向は上下方向である。なお、この図では例として4つの反射部20(第1の反射部21、第2の反射部22、第3の反射部23、及び第4の反射部24)が示されているが、反射部20の数は特に限定されない。
 それぞれの反射部20は、第1の面11に対して所定の角度で傾斜している。これにより、観察者は、反射部20間の隙間から導光板の向こう側の外界を見ることができる。
 入射部13から入射された第1の映像光V1は、第2の面12、投射光学系14、及び第2の反射部22を介してこの順に反射され、観察者の瞳Eに投射される。第1の映像光V1と同一画角の第2の映像光V2は、第2の面12、投射光学系14、及び第3の反射部23を介してこの順に反射され、観察者の瞳Eに投射される。
 なお、本実施形態では、装置を小型化するため、上から入射される映像光を反射して 平行光に変換しているが、下から平行の映像光が投射されてもよい。
[(2)反射部]
 それぞれの反射部20の面積は、投射光学系14からの距離に応じて変化している。前記面積は、前記距離が長いほど大きくなっている。この理由について説明する。前記距離が最も長い第1の反射部21に到達する映像光の光量は、第1の反射部21よりも前記距離が短い反射部22~24に遮られることにより減衰するおそれがある。しかし、第1の反射部21の面積が、第1の反射部21よりも前記距離が短い反射部22~24よりも大きくなっているため、第1の反射部21が反射する映像光の光量は、その他の反射部22~24と略同一となる。同様に、投射光学系14からの距離が2番目に長い第2の反射部22に到達する映像光の光量は、第2の反射部22よりも前記距離が短い反射部23、24に遮られることにより減衰するおそれがある。しかし、第2の反射部22の面積が、第2の反射部22よりも前記距離が短い反射部23、24よりも大きくなっているため、第2の反射部22が反射する映像光の光量は、その他の反射部23、24と略同一となる。以下同様に、投射光学系14からの距離が短いほど、反射部23、24の面積が小さくなっている。
 なお、本実施形態では、反射部20同士の間隔は略同一であってよい。前記間隔は、それぞれの反射部20の左右方向の中心軸同士を結ぶ上下方向の直線の距離である。
 それぞれの反射部20は、第1の面11に対して略同一の角度で傾斜していることが好ましい。本実施形態では、反射部20は、いずれも角度Φで傾斜している。これにより、それぞれの反射部20により反射された映像光が混合されることが防止できる。
 それぞれの反射部20は、略同一の光学特性を有していることが好ましい。これにより、それぞれの反射部20が反射する映像光の光量が略同一となる。その結果、輝度むらが低減される。この光学特性には、例えば、反射率、透過率、吸収率、及び光沢度などが含まれる。
 それぞれの反射部20は、金属薄膜又は誘電体多層膜を有していることが好ましい。この金属薄膜又は誘電体多層膜は、映像光を反射する面に配される。これにより、高い反射率が容易に得られる。光源部が投射する光量が小さくても、それぞれの反射部20は、十分に明るい映像光を観察者の瞳Eに投射できる。観察者は、屋内だけでなく太陽光の元でも映像を明瞭に認識できる。さらに、真空蒸着装置により真空蒸着させることで、安価に反射部20を製造できる。なお、金属には、例えば、アルミニウム、クロミニウム、銀、又は金などが含まれる。
 それぞれの反射部20の一方の面は、他方の面よりも反射率が低い(吸収率が高い)ことが好ましい。つまり、映像光を反射する面の反対側の面は、映像光を反射する面よりも反射率が低いことが好ましい。これにより、入射部13より入射された映像光が直接それぞれの反射部20に向かった場合、それぞれの反射部20がこの映像光を反射することが抑制できる。その結果、迷光の発生が抑制できる。
 それぞれの反射部20は、映像光の画角に応じた位置に配されている。このことについて図2を参照しつつ説明する。図2は、本技術の一実施形態に係る導光板1の構成を示す簡略側面図である。図2Aに示されるとおり、映像光のうち、映像の上方の画角を構成する第3の映像光V3及び第4の映像光V4は、第2の面12の上方及び投射光学系14の観察者近方を介してこの順に反射され、第1の反射部21及び第2の反射部22により反射されて観察者の瞳Eに投射される。図2Bに示されるとおり、映像の下方の画角を構成する第5の映像光V5及び第6の映像光V6は、第2の面12の下方及び投射光学系14の観察者遠方を介してこの順に反射され、第3の反射部23及び第4の反射部24により反射されて観察者の瞳Eに投射される。このように、それぞれの反射部20は、映像光の画角に応じた位置に配されている。これにより、観察者は、視野全体に広い画角の映像を見ることができる。
 このように、それぞれの反射部20が反射する映像光の光量が略同一となっているため、映像光の画角によらず略同一の光量が観察者の瞳Eに投射される。その結果、輝度むらが低減される。
 それぞれの反射部20は、観察者側から見たときの上下方向の幅が0.7mm以上であることが好ましい。このことについて図3及び図4を参照しつつ説明する。図3は、本技術の一実施形態に係る導光板1の構成を示す簡略側面図である。図3に示されるとおり、例えば第4の反射部24において観察者側から見たときの上下方向の幅はDである。
 図4は、本技術の一実施形態に係る導光板1のシミュレーション結果を示すグラフである。図4において、横軸は、観察者側から見たときの上下方向の反射部の幅Dである。縦軸は、空間周波数が10[cycle/degree]であるときのコントラストMTF(解像度)である。タンジェンシャル方向及びサジタル方向のそれぞれについて、変化の様子がプロットされている。図4に示されるとおり、反射部の幅Dが1.5mm以上であるとき、コントラストMTFは一定の限界値に漸近している。一方、反射部の幅Dが小さくなると、コントラストMTFが急激に低下している。コントラストMTFの許容値を回折限界値の7割として、反射部の幅Dは0.7mm以上であることが好ましい。反射部の幅Dが0.7mm以上であることにより、回折の影響が低減される。その結果、映像光が観察者の瞳の網膜に投射されるとき、網膜において結像される映像の解像度の低下が防止できる。
[(3)投射光学系]
 投射光学系14は、映像光を反射する面に、凹面状に形成されている反射膜を有していることが好ましい。凹面状に形成されていることにより、第2の面12により種々の角度で反射された映像光が、投射光学系14により略平行の映像光に変換される。その結果、映像光の画角に応じた反射部20に適切に反射される。
 投射光学系14は、真空蒸着装置により反射膜を真空蒸着させることで形成されることができる。この反射膜には、金属薄膜又は誘電体多層膜などが含まれる。
[(4)透明部材]
 透明部材10は、屈折率を有する材料により形成される。屈折率を有するため、透明部材10が有している第2の面12は、所定の角度よりも大きい角度で入射された映像光を内部全反射する。第2の面12に反射させるための部材は不要である。
 特に、第2の面12は、入射部13から入射された映像光を1回だけ内部全反射する。仮に内部全反射が複数回行われる場合、全反射する度に反射面の影響を受けるため、反射面は高精度に製造される必要がある。その結果、製造コストが増大するという問題がある。一方、本実施形態では、内部全反射が1回だけ行われる。そのため、第2の面12の面精度や、第1の面11と第2の面12との平行度の精度が高くなくてよい。その結果、製造コストが低減される。
 透明部材10は、例えば熱可塑性樹脂などが用いられ、射出成型などにより安価に製造できる。特に、透明部材10は、プラスチックを含むことが好ましい。プラスチックには、例えば、環状ポリオレフィン樹脂、シクロオレフィンコポリマー、ポリカーボネート樹脂、アクリル樹脂、及び光学用ポリエステル樹脂などが含まれる。これにより、透明部材10は、射出成型などにより安価に製造できる。さらに、透明部材10をより軽量化できる。
 本技術の第1の実施形態に係る導光板について説明した上記の内容は、技術的な矛盾が特にない限り、本技術の他の実施形態に適用できる。
[2.第2の実施形態(導光板の例2)]
 本技術の一実施形態に係る導光板は、透明部材を備えている。前記透明部材は、互いに対向する2つ以上の部材を備えており、それぞれの前記部材の間に、前記反射部が配されている。
 本技術の一実施形態に係る導光板について図5を参照しつつ説明する。図5は、本技術の一実施形態に係る導光板1の構成を示す簡略図である。図5Aは、本技術の一実施形態に係る導光板1の構成を示す簡略正面図である。図5Bは、本技術の一実施形態に係る導光板1の構成を示す簡略側面図である。
 図5に示されるとおり、本技術の一実施形態に係る導光板1は、透明材料により形成されている透明部材10を備えている。透明部材10は、互いに対向する第1の部材110及び第2の部材120を備えている。第1の部材110は、観察者の近方に配される。第2の部材120は、観察者の遠方に配される。なお、部材の数は2つに限定されない。
 第1の部材110は、第1の面11に対向し、複数の凸部を有しており鋸屋根形状に形成されている第1の嵌合部111を有している。第2の部材120は、第2の面12に対向し、第1の嵌合部111と嵌合する第2の嵌合部121を有している。
 第1の嵌合部111又は第2の嵌合部121には、反射部20が配されている。反射部20は、いずれも角度Φで傾斜している。これにより、それぞれの反射部20により反射された映像光が混合されることが防止できる。
 第1の嵌合部111及び第2の嵌合部121のそれぞれが有する複数の凸部の頂角は、投射光学系14からの距離が長いほど小さくなっている。第2の嵌合部121において、第3の反射部23が配されている凸部の頂角θ2は、第4の反射部24が配されている凸部の頂角θ3よりも小さくなっている。第2の嵌合部121において、第2の反射部22が配されている凸部の頂角θ1は、第3の反射部23が配されている凸部の頂角θ2よりも小さくなっている。
 第1の嵌合部111において、第2の反射部22が配されている凸部の頂角θ2は、第3の反射部23が配されている凸部の頂角θ3よりも小さくなっている。第1の嵌合部111において、第1の反射部21が配されている凸部の頂角θ1は、第2の反射部22が配されている凸部の頂角θ2よりも小さくなっている。
 このような構成により、反射部20の面積は、投射光学系14からの距離に応じて変化している。前記距離は、それぞれの反射部20の左右方向の中心軸と、投射光学系14と、を結ぶ上下方向の直線の距離である。投射光学系14からの第4の反射部24までの距離がL、投射光学系14からの第3の反射部23までの距離がL、投射光学系14からの第2の反射部22までの距離がL、投射光学系14からの第1の反射部21までの距離がLとなっている。L、L、L、Lの順に距離が長くなっている。それぞれの反射部20の面積は、投射光学系14からの距離が長いほど大きくなっている。
 本技術の第2の実施形態に係る導光板について説明した上記の内容は、技術的な矛盾が特にない限り、本技術の他の実施形態に適用できる。
[3.第3の実施形態(導光板の例3)]
 反射部同士の間隔が、投射光学系からの距離に応じて変化しており、前記間隔が、前記距離が長いほど短くなっていてよい。このことについて図6を参照しつつ説明する。図6は、本技術の一実施形態に係る導光板1の構成を示す簡略正面図である。
 図6に示されるとおり、本技術の一実施形態に係る導光板1は、反射部20同士の間隔が、投射光学系14からの距離に応じて変化している。前記間隔は、前記距離が長いほど短くなっている。
 第1の反射部21と第2の反射部22との間隔がP12、第2の反射部22と第3の反射部23との間隔がP23、第3の反射部23と第4の反射部24との間隔がP34となっている。P34、P23、P12の順に間隔が短くなっている。
 この理由について説明する。前記距離が最も長い第1の反射部21に到達する映像光の光量は、第1の反射部21よりも前記距離が短い反射部22~24に遮られることにより減衰するおそれがある。しかし、第1の反射部21と第2の反射部22との間隔P12が、間隔P23及び間隔P34よりも短くなっているため、第1の反射部21が反射する映像光の光量は、その他の反射部22~24と略同一となる。同様に、投射光学系14からの距離が2番目に長い第2の反射部22に到達する映像光の光量は、第2の反射部22よりも前記距離が短い反射部23、24に遮られることにより減衰するおそれがある。しかし、第2の反射部22と第3の反射部23との間隔P23が、間隔P34よりも短くなっているため、第2の反射部22が反射する映像光の光量は、その他の反射部23、24と略同一となる。以下同様に、投射光学系14からの距離が短いほど、反射部同士の間隔が長くなっている。
 このように、それぞれの反射部20が反射する映像光の光量が略同一となっているため、映像光の画角によらず略同一の光量が観察者の瞳Eに投射される。その結果、輝度むらが低減される。
 なお、本実施形態では、それぞれの反射部20の面積は略同一であってよい。
 本技術の第3の実施形態に係る導光板について説明した上記の内容は、技術的な矛盾が特にない限り、本技術の他の実施形態に適用できる。
[4.第4の実施形態(導光板の例4)]
 前記反射部の面積及び前記反射部同士の間隔が、前記投射光学系からの距離に応じて変化しており、前記面積が、前記距離が長いほど大きくなっており、前記間隔が、前記距離が長いほど短くなっていてよい。このことについて図7を参照しつつ説明する。図7は、本技術の一実施形態に係る導光板1の構成を示す簡略正面図である。
 図7に示されるとおり、本技術の一実施形態に係る導光板1は、それぞれの反射部20の面積が、投射光学系14からの距離が長いほど大きくなっている。L、L、L、Lの順に距離が長くなっている。それぞれの反射部20の面積は、投射光学系14からの距離が長いほど大きくなっている。
 さらに、それぞれの反射部20同士の間隔が、投射光学系14からの距離が長いほど短くなっている。P34、P23、P12の順に間隔が短くなっている。
 これにより、それぞれの反射部20が反射する映像光の光量が略同一となる。その結果、映像光の画角によらず略同一の光量が観察者の瞳Eに投射される。その結果、輝度むらが低減される。
 本技術の第4の実施形態に係る導光板について説明した上記の内容は、技術的な矛盾が特にない限り、本技術の他の実施形態に適用できる。
[5.第5の実施形態(導光板の例5)]
 それぞれの反射部20は、気層を有していてよい。前記気層は、例えば空気層や窒素層などでありうる。前記気層は屈折率が低いため、前記気層と透明部材10との界面で映像光が内部全反射する。映像光を反射するための金属膜などの部材が不要となるため、導光板1の軽量化が可能となる。
 本技術の第5の実施形態に係る導光板について説明した上記の内容は、技術的な矛盾が特にない限り、本技術の他の実施形態に適用できる。
[6.第6の実施形態(導光板の例6)]
 本技術の一実施形態に係る導光板は、凸レンズをさらに備えており、前記凸レンズは、前記入射部に入射される映像光の光軸上に配されていてよい。このことについて図8を参照しつつ説明する。図8は、本技術の一実施形態に係る導光板1の構成を示す簡略図である。図8Aは、本技術の一実施形態に係る導光板1の構成を示す簡略正面図である。図8Bは、本技術の一実施形態に係る導光板1の構成を示す簡略側面図である。
 図8に示されるとおり、本技術の一実施形態に係る導光板1は、凸レンズ3をさらに備えることができる。凸レンズ3は、入射部13に入射される映像光の光軸上に配されている。これにより、観察者の瞳Eに投射され、網膜において結像される映像がより鮮明になる。凸レンズ3及び凹面状に形成されている反射膜14により構成される投射光学系が、収差をさらに補正することができる。
 本技術の第6の実施形態に係る導光板について説明した上記の内容は、技術的な矛盾が特にない限り、本技術の他の実施形態に適用できる。
[7.第7の実施形態(画像表示装置の例)]
 本技術の一実施形態に係る画像表示装置は、映像光を投射する映像表示部と、上述した他の実施形態に係る前記導光板と、を備えている。本技術の一実施形態に係る画像表示装置について図9を参照しつつ説明する。図9は、本技術の一実施形態に係る画像表示装置100の構成を示す簡略図である。図9Aは、本技術の一実施形態に係る画像表示装置100の構成を示す簡略正面図である。図9Bは、本技術の一実施形態に係る画像表示装置100の構成を示す簡略側面図である。
 図9に示されるとおり、本技術の一実施形態に係る画像表示装置100は、映像光を投射する映像表示部4と、上述した他の実施形態に係る導光板1と、を備えている。
 映像表示部4は、映像データを映像光に変換して、前記映像光を投射する。映像表示部4が投射した映像光V1、V2は、入射部13から入射され、第2の面12、投射光学系14、及び第2の反射部22を介してこの順に反射され、観察者の瞳Eに投射される。
 映像表示部4は、自発光素子を備えていることが好ましい。これにより、映像表示部4の小型軽量化が可能となり、画像表示装置100の小型軽量化が可能になる。さらに、製造コストが低減される。自発光素子には、例えば有機EL素子やマイクロLED素子などが含まれる。
 本技術の第7の実施形態に係る画像表示装置について説明した上記の内容は、技術的な矛盾が特にない限り、本技術の他の実施形態に適用できる。
[8.第8の実施形態(導光板の製造方法の例)]
 本技術の一実施形態に係る導光板の製造方法は、透明材料により形成されている透明部材の少なくとも1つの面を、複数の凸部を有している鋸屋根形状に形成することと、鋸屋根形状に形成されている前記面に反射部を形成することと、2つ以上の前記透明部材を、鋸屋根形状に形成されている前記面が互いに対向させて接着することと、を含み、前記複数の凸部のそれぞれは、一辺からの距離が長いほど頂角が小さくなっている。
 本技術の一実施形態に係る導光板の製造方法について図10を参照しつつ説明する。図10は、本技術の一実施形態に係る導光板1の製造方法の一例を示すフローチャートである。
 図10に示されるとおり、本技術の一実施形態に係る導光板の製造方法は、透明材料により形成されている透明部材の少なくとも1つの面を、複数の凸部を有している鋸屋根形状に形成すること(ステップS1)と、鋸屋根形状に形成されている前記面に反射部を形成すること(ステップS2)と、2つ以上の前記透明部材を、鋸屋根形状に形成されている前記面が互いに対向させて接着すること(ステップS3)と、を含む。前記複数の凸部のそれぞれは、一辺からの距離が長いほど頂角が小さくなっている。
 本技術の第8の実施形態に係る画像表示装置について説明した上記の内容は、技術的な矛盾が特にない限り、本技術の他の実施形態に適用できる。
 なお、本技術に係る実施形態は、上述した各実施形態及に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 また、本技術は、以下のような構成を取ることもできる。
[1]
 透明材料により形成されている透明部材と、
 前記透明部材の内部に配置されており、映像光を観察者の瞳に投射する複数の反射部と、
 投射光学系と、を備えており、
 前記透明部材は、
 前記映像光が入射される入射部と、
 前記観察者側に配される第1の面と、
 前記第1の面に対向し、前記入射部より入射される前記映像光を反射する第2の面と、を有しており、
 前記投射光学系は、前記第2の面が反射した前記映像光をそれぞれの前記反射部に反射し、
 前記反射部は、前記映像光が入射される方向に並んで配置されており、前記第1の面に対して所定の角度で傾斜しており、
 前記反射部の面積、及び/又は、前記反射部同士の間隔が、前記投射光学系からの距離に応じて変化しており、
 前記面積が、前記距離が長いほど大きくなっており、
 前記間隔が、前記距離が長いほど短くなっている、導光板。
[2]
 前記反射部は、前記第1の面に対して略同一の角度で傾斜している、
 [1]に記載の導光板。
[3]
 前記反射部は、略同一の光学特性を有している、
 [1]又は[2]に記載の導光板。
[4]
 前記反射部は、金属薄膜又は誘電体多層膜を有している、
 [1]から[3]のいずれか一つに記載の導光板。
[5]
 前記反射部は、前記映像光の画角に応じた位置に配されている、
 [1]から[4]のいずれか一つに記載の導光板。
[6]
 前記反射部は、前記観察者側から見たときの上下方向の幅が0.7mm以上である、
 [1]から[5]のいずれか一つに記載の導光板。
[7]
 前記反射部の一方の面は、他方の面よりも反射率が低い、
 [1]から[6]のいずれか一つに記載の導光板。
[8]
 前記反射部は、気層を有している、
 [1]から[7]のいずれか一つに記載の導光板。
[9]
 前記投射光学系は、凹面状に形成されている反射膜を有している、
 [1]から[8]のいずれか一つに記載の導光板。
[10]
 前記第2の面は、前記映像光を1回だけ内部全反射する、
 [1]から[9]のいずれか一つに記載の導光板。
[11]
 前記透明部材は、プラスチックを含む、
 [1]から[10]のいずれか一つに記載の導光板。
[12]
 前記透明部材は、互いに対向する2つ以上の部材を備えており、
 それぞれの前記部材の間に、前記反射部が配されている、
 [1]から[11]のいずれか一つに記載の導光板。
[13]
 前記透明部材は、互いに対向する第1の部材及び第2の部材を備えており、
 前記第1の部材は、前記第1の面に対向し、複数の凸部を有しており鋸屋根形状に形成されている第1の嵌合部を有しており、
 前記第2の部材は、前記第2の面に対向し、前記第1の嵌合部と嵌合する第2の嵌合部を有しており、
 前記第1の嵌合部又は前記第2の嵌合部には、前記反射部が配されている、
 [1]から[12]のいずれか一つに記載の導光板。
[14]
 前記第1の嵌合部及び前記第2の嵌合部のそれぞれが有する複数の凸部の頂角は、前記投射光学系からの距離が長いほど小さくなっている、
 [13]に記載の導光板。
[15]
 凸レンズをさらに備えており、
 前記凸レンズは、前記入射部に入射される映像光の光軸上に配されている、
 [1]から[14]のいずれか一つに記載の導光板。
[16]
 映像光を投射する映像表示部と、
 [1]から[15]のいずれか一つに記載の導光板と、を備えている、画像表示装置。
[17]
 前記映像表示部は、自発光素子を備えている、
 [16]に記載の画像表示装置。
[18]
 透明材料により形成されている透明部材の少なくとも1つの面を、複数の凸部を有している鋸屋根形状に形成することと、
 鋸屋根形状に形成されている前記面に反射部を形成することと、
 2つ以上の前記透明部材を、鋸屋根形状に形成されている前記面が互いに対向させて接着することと、を含み、
 前記複数の凸部のそれぞれは、一辺からの距離が長いほど頂角が小さくなっている、
 導光板の製造方法。
 1 導光板
 10 透明部材
 11 第1の面
 12 第2の面
 13 入射部
 14 投射光学系
 20 反射部
 21 第1の反射部
 22 第2の反射部
 23 第3の反射部
 24 第4の反射部
 110 第1の部材
 111 第1の嵌合部
 120 第2の部材
 121 第2の嵌合部
 3 凸レンズ
 4 映像表示部
 100 画像表示装置
 S1 鋸屋根形状に形成すること
 S2 反射部を形成すること
 S3 透明部材を接着すること

Claims (18)

  1.  透明材料により形成されている透明部材と、
     前記透明部材の内部に配置されており、映像光を観察者の瞳に投射する複数の反射部と、
     投射光学系と、を備えており、
     前記透明部材は、
     前記映像光が入射される入射部と、
     前記観察者側に配される第1の面と、
     前記第1の面に対向し、前記入射部より入射される前記映像光を反射する第2の面と、を有しており、
     前記投射光学系は、前記第2の面が反射した前記映像光をそれぞれの前記反射部に反射し、
     前記反射部は、前記映像光が入射される方向に並んで配置されており、前記第1の面に対して所定の角度で傾斜しており、
     前記反射部の面積、及び/又は、前記反射部同士の間隔が、前記投射光学系からの距離に応じて変化しており、
     前記面積が、前記距離が長いほど大きくなっており、
     前記間隔が、前記距離が長いほど短くなっている、導光板。
  2.  前記反射部は、前記第1の面に対して略同一の角度で傾斜している、
     請求項1に記載の導光板。
  3.  前記反射部は、略同一の光学特性を有している、
     請求項1に記載の導光板。
  4.  前記反射部は、金属薄膜又は誘電体多層膜を有している、
     請求項1に記載の導光板。
  5.  前記反射部は、前記映像光の画角に応じた位置に配されている、
     請求項1に記載の導光板。
  6.  前記反射部は、前記観察者側から見たときの上下方向の幅が0.7mm以上である、
     請求項1に記載の導光板。
  7.  前記反射部の一方の面は、他方の面よりも反射率が低い、
     請求項1に記載の導光板。
  8.  前記反射部は、気層を有している、
     請求項1に記載の導光板。
  9.  前記投射光学系は、凹面状に形成されている反射膜を有している、
     請求項1に記載の導光板。
  10.  前記第2の面は、前記映像光を1回だけ内部全反射する、
     請求項1に記載の導光板。
  11.  前記透明部材は、プラスチックを含む、
     請求項1に記載の導光板。
  12.  前記透明部材は、互いに対向する2つ以上の部材を備えており、
     それぞれの前記部材の間に、前記反射部が配されている、
     請求項1に記載の導光板。
  13.  前記透明部材は、互いに対向する第1の部材及び第2の部材を備えており、
     前記第1の部材は、前記第1の面に対向し、複数の凸部を有しており鋸屋根形状に形成されている第1の嵌合部を有しており、
     前記第2の部材は、前記第2の面に対向し、前記第1の嵌合部と嵌合する第2の嵌合部を有しており、
     前記第1の嵌合部又は前記第2の嵌合部には、前記反射部が配されている、
     請求項1に記載の導光板。
  14.  前記第1の嵌合部及び前記第2の嵌合部のそれぞれが有する複数の凸部の頂角は、前記投射光学系からの距離が長いほど小さくなっている、
     請求項13に記載の導光板。
  15.  凸レンズをさらに備えており、
     前記凸レンズは、前記入射部に入射される映像光の光軸上に配されている、
     請求項1に記載の導光板。
  16.  映像光を投射する映像表示部と、
     請求項1に記載の導光板と、を備えている、画像表示装置。
  17.  前記映像表示部は、自発光素子を備えている、
     請求項16に記載の画像表示装置。
  18.  透明材料により形成されている透明部材の少なくとも1つの面を、複数の凸部を有している鋸屋根形状に形成することと、
     鋸屋根形状に形成されている前記面に反射部を形成することと、
     2つ以上の前記透明部材を、鋸屋根形状に形成されている前記面が互いに対向させて接着することと、を含み、
     前記複数の凸部のそれぞれは、一辺からの距離が長いほど頂角が小さくなっている、
     導光板の製造方法。
PCT/JP2022/009627 2021-09-06 2022-03-07 導光板、画像表示装置、及び導光板の製造方法 WO2023032271A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280058604.4A CN117881998A (zh) 2021-09-06 2022-03-07 导光板、图像显示装置以及用于制造导光板的方法
KR1020247008318A KR20240052774A (ko) 2021-09-06 2022-03-07 도광판, 화상 표시 장치, 및 도광판의 제조 방법
JP2023545029A JPWO2023032271A1 (ja) 2021-09-06 2022-03-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-144486 2021-09-06
JP2021144486 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023032271A1 true WO2023032271A1 (ja) 2023-03-09

Family

ID=85412380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009627 WO2023032271A1 (ja) 2021-09-06 2022-03-07 導光板、画像表示装置、及び導光板の製造方法

Country Status (4)

Country Link
JP (1) JPWO2023032271A1 (ja)
KR (1) KR20240052774A (ja)
CN (1) CN117881998A (ja)
WO (1) WO2023032271A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033975A1 (ja) * 2015-08-27 2017-03-02 コニカミノルタ株式会社 ホログラム記録構造,光学デバイス及び製造方法
JP2018109738A (ja) * 2016-12-28 2018-07-12 セイコーエプソン株式会社 光学素子および表示装置
JP2020118840A (ja) * 2019-01-23 2020-08-06 株式会社日立エルジーデータストレージ 導光板および映像表示装置
WO2020236862A1 (en) * 2019-05-20 2020-11-26 Facebook Technologies, Llc Optical waveguide beam splitter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8033265B2 (en) 2005-12-16 2011-10-11 Reisser Heinz-Gustav A Rotary piston internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033975A1 (ja) * 2015-08-27 2017-03-02 コニカミノルタ株式会社 ホログラム記録構造,光学デバイス及び製造方法
JP2018109738A (ja) * 2016-12-28 2018-07-12 セイコーエプソン株式会社 光学素子および表示装置
JP2020118840A (ja) * 2019-01-23 2020-08-06 株式会社日立エルジーデータストレージ 導光板および映像表示装置
WO2020236862A1 (en) * 2019-05-20 2020-11-26 Facebook Technologies, Llc Optical waveguide beam splitter

Also Published As

Publication number Publication date
JPWO2023032271A1 (ja) 2023-03-09
KR20240052774A (ko) 2024-04-23
CN117881998A (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
US11221486B2 (en) AR headsets with improved pinhole mirror arrays
CN106896501B (zh) 虚像显示装置
US9971158B2 (en) Virtual image display device
US9995938B2 (en) Spectacle lens for a display device that can be fitted on the head of a user and generates an image
KR20190063442A (ko) 광학 장치의 제조 방법
CN112327495B (zh) 导光体、虚像光学系统以及虚像显示装置
JP2011509417A (ja) 光導波路及び視覚用光学系
US10768430B2 (en) Display device and head-mounted display
KR102461573B1 (ko) 광학 장치의 제조 방법
CN112147786A (zh) 一种增强现实显示系统
US10466393B2 (en) Display device
US11175483B2 (en) Wide field of view head mounted display
WO2023032271A1 (ja) 導光板、画像表示装置、及び導光板の製造方法
JP6002172B2 (ja) 表示装置
JP2018054782A (ja) 光学素子および表示装置
CN114280786B (zh) 一种光波导元件及其构建方法、近眼显示设备
CN115793129A (zh) 导光部件、光学单元、虚像显示装置以及头戴式显示器
JP6963738B2 (ja) 導光部材、ライトガイド及び虚像表示装置
KR20230088894A (ko) 화상 표시 장치 및 도광판의 제조 방법
US20240353605A1 (en) Light guiding plate, image display apparatus, and method for manufacturing light guiding plate
JP6665566B2 (ja) 導光板及び表示装置
KR102438560B1 (ko) 직선 배치 광학 구조를 갖는 증강 현실용 광학 장치 및 광학 수단의 제조 방법
TWI761095B (zh) 頭戴式顯示裝置及其顯示系統
US20230337508A1 (en) Display device and wearable device including the same
JP2022020912A (ja) 導光部材および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863861

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545029

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18686800

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280058604.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247008318

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22863861

Country of ref document: EP

Kind code of ref document: A1