WO2023032175A1 - Frequency characteristic prediction device and frequency characteristic prediction method - Google Patents

Frequency characteristic prediction device and frequency characteristic prediction method Download PDF

Info

Publication number
WO2023032175A1
WO2023032175A1 PCT/JP2021/032531 JP2021032531W WO2023032175A1 WO 2023032175 A1 WO2023032175 A1 WO 2023032175A1 JP 2021032531 W JP2021032531 W JP 2021032531W WO 2023032175 A1 WO2023032175 A1 WO 2023032175A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency characteristic
unit
frequency
motor control
control unit
Prior art date
Application number
PCT/JP2021/032531
Other languages
French (fr)
Japanese (ja)
Inventor
瑶 梁
亮太郎 恒木
賢一 高山
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2021/032531 priority Critical patent/WO2023032175A1/en
Priority to CN202180100783.9A priority patent/CN117678155A/en
Priority to DE112021007832.1T priority patent/DE112021007832T5/en
Priority to JP2021567992A priority patent/JP7022261B1/en
Publication of WO2023032175A1 publication Critical patent/WO2023032175A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/20Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors for controlling one motor used for different sequential operations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/07Speed loop, i.e. comparison of the motor speed with a speed reference
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a frequency characteristic prediction device and frequency characteristic prediction method, and more particularly to a frequency characteristic prediction device and frequency characteristic prediction method for predicting the frequency characteristics of machine tools or industrial machines.
  • a motor control device that moves the axis of a machine tool or industrial machine to a desired position is required to adjust the appropriate gain, filter characteristics, etc. according to the attitude (axis position) of the machine tool or industrial machine.
  • Patent Literature 1 describes a servo control device that automatically and appropriately adjusts control gains so that control characteristics are maintained even when a load or machine configuration is changed.
  • a servo control device includes a speed command generation unit, a torque command generation unit, a speed detection unit, a speed control loop, a speed control gain, a sine wave disturbance input unit, It includes an actual frequency characteristic calculator, a reference characteristic changer, a reference frequency characteristic calculator, and a control gain adjuster.
  • the sinusoidal disturbance input section changes frequency sequentially.
  • the reference frequency characteristic calculator sequentially calculates the reference frequency characteristic corresponding to the feature designated by the reference characteristic changing unit for each frequency.
  • the actual frequency characteristic calculator sequentially calculates the actual frequency characteristic of the control system for each frequency.
  • the reference frequency characteristic calculation unit stores a characteristic expression of the reference characteristic changing unit when the reference frequency characteristic and the actual frequency characteristic are most similar.
  • Patent Literature 2 describes a servomotor control device that shortens the machining time of a machined object by a machine tool and does not deteriorate the machining accuracy immediately after the feed axis of the machine tool switches from rapid feed operation to cutting feed operation.
  • a calculation coefficient setting unit sets a calculation coefficient for creating at least one of feedforward control information and feedback control information to a first value set for cutting feed operation. It is described that it is set to a value between the calculation coefficient value and a second calculation coefficient value for fast-forward operation that is smaller than the first calculation coefficient value.
  • the operation coefficient changing unit switches the operation command from the rapid traverse operation command to the cutting feed operation command at a second time point after the first time point, which is an arbitrary time point during the rapid traverse operation. Continuously changing the computational coefficient from a second value to a first computational coefficient value, if predicted at time 1, is described.
  • a first aspect of the present disclosure provides a motor control unit for moving an axis of a machine tool or industrial machine; a movement command generation unit that outputs a movement command to the motor control unit for changing the position of the shaft from the first position to the second position; a frequency characteristic measuring unit that measures the frequency characteristic of the machine tool or the industrial machine at the first position and the second position; a state switching unit that switches the state of the motor control unit at the first position; a frequency characteristic prediction unit that predicts the frequency characteristic of the machine tool or the industrial machine at the second position;
  • the frequency characteristic measuring unit measures, at the first position, a plurality of first frequency characteristics for a plurality of states switched by the state switching unit, and at the second position, among the plurality of states, measuring a second frequency characteristic for at least one of
  • the frequency characteristic prediction unit uses the plurality of first frequency characteristics and the second frequency characteristic to perform a first prediction regarding a state other than at least one of the plurality of states at the second position.
  • 3 is a frequency characteristic prediction device for predicting the
  • a second aspect of the present disclosure moves a position of an axis of a machine tool or an industrial machine to a first position by a motor control unit based on a first movement command, measuring a plurality of first frequency characteristics with respect to a plurality of states of the motor control unit at the first position; moving the position of the axis from the first position to the second position by the motor control unit based on a second movement command;
  • the frequency characteristic measuring unit measures a second frequency characteristic for at least one of the plurality of states; a frequency characteristic prediction unit, using the plurality of first frequency characteristics and the second frequency characteristics, by the frequency characteristic prediction unit, at least one of the plurality of states at the second position other than is a frequency characteristic prediction method for predicting a third frequency characteristic for the state of
  • the frequency characteristics can be predicted based on the measured frequency characteristics, the number of measurements can be reduced, and the measurement time can be shortened.
  • FIG. 1 is a block diagram showing a frequency characteristic prediction device according to a first embodiment of the present disclosure
  • FIG. It is a figure which shows the base used as the movable part which moves to the X-axis direction of a machine.
  • FIG. 4 is a diagram showing the setting of parameters for rapid feed and cutting feed at a representative measurement point and two measurement points on a table that is a movable part of a machine. 4 is a flow chart showing the operation of the frequency characteristic prediction device according to the first embodiment of the present disclosure;
  • FIG. 4 is a characteristic diagram showing gain characteristics in rapid feed and cutting feed measured at representative measurement points;
  • FIG. 4 is a characteristic diagram showing phase characteristics in rapid feed and cutting feed measured at representative measurement points;
  • FIG. 5 is a characteristic diagram showing the difference between the gain characteristics in rapid feed and the gain characteristics in cutting feed measured at representative measurement points.
  • FIG. 5 is a characteristic diagram showing the difference between the phase characteristics in rapid feed and the phase characteristics in cutting feed measured at representative measurement points.
  • FIG. 5 is a characteristic diagram showing fast-forward gain characteristics predicted at measurement points and fast-forward gain characteristics measured at measurement points;
  • FIG. 5 is a characteristic diagram showing fast-forward phase characteristics predicted at measurement points and fast-forward phase characteristics measured at measurement points;
  • FIG. 11 is a block diagram showing a frequency characteristic prediction device according to a second embodiment of the present disclosure;
  • FIG. It is a block diagram which shows the parameter adjustment part which functions as a machine-learning apparatus.
  • 1 is a block diagram showing a reference model;
  • FIG. 4 is a characteristic diagram showing input/output gain characteristics of a motor control unit of a reference model and input/output gain characteristics of the motor control unit before learning and after learning;
  • FIG. 4 is a block diagram showing an example in which a plurality of filters are directly connected to form a filter;
  • FIG. 2 shows two platforms that are movable parts that move in the X-axis and Y-axis directions of the machine.
  • FIG. 4 is a diagram showing the setting of parameters for rapid feed and cutting feed at one representative measurement point and eight measurement points; It is a figure which shows two bases used as the movable part which moves to X-axis direction and Y-axis direction of a machine, and the movable part which moves the main axis of a machine to Z-axis direction.
  • FIG. 4 is a diagram showing the setting of parameters for rapid feed and cutting feed at two representative measurement points and nine measurement points;
  • FIG. 3 shows a movable part that moves in the X-, Y- and Z-axis directions of the machine;
  • FIG. 4 is a diagram showing the setting of parameters for rapid feed and cutting feed at one representative measurement point and 26 measurement points;
  • FIG. 1 is a block diagram showing a frequency characteristic prediction device according to the first embodiment of the present disclosure.
  • the frequency characteristic prediction device 10A includes a motor control section 100, a movement command generation section 200, a frequency characteristic measurement section 300, a storage section 400, a frequency characteristic prediction section 500, and a state switching section 600.
  • One or more of the movement command generation unit 200 , the frequency characteristic measurement unit 300 , the storage unit 400 , the frequency characteristic prediction unit 500 , and the state switching unit 600 may be provided inside the motor control unit 100 .
  • the motor control section 100 includes a subtractor 110 , a speed control section 120 , a filter 130 , a current control section 140 and a motor 150 .
  • the subtractor 110, the speed control section 120, the filter 130, the current control section 140, and the motor 150 constitute a closed speed feedback loop servo system.
  • As the motor 150 a linear motor that performs linear motion, a motor that has a rotating shaft, or the like can be used.
  • a controlled object 700 driven by the motor 150 is, for example, a moving part of a machine tool or an industrial machine. Motor 150 may be provided as part of a machine tool or industrial machine.
  • the frequency characteristic prediction device 10A may be provided as part of a machine tool or industrial machine.
  • the subtractor 110 obtains the difference between the input speed command, which is the movement command, and the detected speed fed back, and outputs the difference to the speed control unit 120 as a speed deviation.
  • the speed control unit 120 performs PI control (Proportional-Integral Control), adds a value obtained by multiplying the speed deviation by an integral gain K1v and integrates it, and adds a value obtained by multiplying the speed deviation by a proportional gain K2v to obtain a torque command. Output to filter 130 .
  • PI control Proportional-Integral Control
  • the speed control unit 120 is not particularly limited to PI control, and may use other control such as PID control (Proportional-Integral-Differential Control). Equation 1 (shown as Equation 1 below) represents the transfer function H V (s) of the speed control section 120 .
  • a filter 130 is a filter that attenuates a specific frequency component, and for example, a notch filter, low-pass filter, or band-stop filter is used.
  • a machine such as a machine tool having a mechanical section driven by the motor 150 has a resonance point, and the resonance may increase in the motor control section 100 .
  • Resonance can be reduced by using a filter such as a notch filter.
  • the output of filter 130 is output to current control section 140 as a torque command.
  • Equation 2 (shown as Equation 2 below) represents the transfer function H F (s) of the notch filter as filter 130 .
  • the coefficient ⁇ in Equation 2 is the attenuation coefficient
  • the coefficient ⁇ c is the central angular frequency
  • the coefficient ⁇ is the fractional bandwidth.
  • Current control unit 140 generates a voltage command for driving motor 150 based on the torque command, and outputs the voltage command to motor 150 .
  • the motor 150 is a linear motor
  • the position of the movable portion is detected by a linear scale (not shown) provided on the motor 150
  • the detected speed value is obtained by differentiating the detected position value, and the detected speed is obtained.
  • the value is input to subtractor 110 as velocity feedback.
  • the motor 150 has a rotating shaft
  • the rotation angle position is detected by a rotary encoder (not shown) provided on the motor 150
  • the speed detection value is input to the subtractor 110 as speed feedback. In the following description, it is assumed that the motor 150 has a rotating shaft and the speed detection value is detected by a rotary encoder (not shown).
  • the motor control unit 100 is configured as described above. To adjust one or both of the integral gain K1v and the proportional gain K2v of the speed control unit 120 and/or each coefficient ⁇ c , ⁇ , ⁇ of the transfer function of the filter 130 of the motor control unit 100, the machine tool Or it is required to measure the frequency characteristics of industrial machines. The frequency characteristic of the machine tool or industrial machine can be found by measuring the frequency characteristic of the motor control section 100 .
  • one or both of the integral gain K1v and the proportional gain K2v of the speed control unit 120 and/or the coefficients ⁇ c , ⁇ , ⁇ of the transfer function of the filter 130 are referred to as parameters.
  • the frequency characteristic means the frequency characteristic of the motor control unit 100.
  • FIG. Further, when setting the parameters of the motor control unit 100 according to the state of the motor control unit 100 such as rapid feed and cutting feed, the parameters of the motor control unit 100 are set for each state. It is required to measure the frequency characteristics for each set parameter. Setting multiple parameters according to multiple states at all positions of the moving part of a machine tool or industrial machine (hereafter referred to as a machine) and measuring the frequency characteristics of each parameter increases the number of measurements and reduces the frequency characteristics. Longer measurement time.
  • the frequency characteristic prediction device 10A measures a plurality of frequency characteristics with a plurality of parameter settings only at representative measurement points, and at measurement points other than the representative measurement points, Frequency characteristics at least one of the plurality of parameter settings are measured, and frequency characteristics at parameter settings other than at least one of the plurality of parameter settings are predicted from the measured frequency characteristics.
  • the frequency characteristic prediction device 10A includes a movement command generation section 200, a frequency characteristic measurement section 300, a storage section 400, a frequency characteristic prediction section 500, and a state switching section 600.
  • the representative measurement point becomes the first position, and the measurement points other than the representative measurement point become the second position.
  • the parameters of the motor control unit 100 are preset by the user.
  • the motor control unit 100 moves the table 810, which is the movable part of the machine, in the X-axis direction by the motor 150 as shown in FIG.
  • the state switching unit 600 (to be described later) switches the parameters of fast feed and cutting feed in A1 and A3 to measure the frequency characteristics will be described as an example.
  • the position of the representative measurement point A2 is not particularly limited, it is preferably set in the center of the movable range of the table.
  • FIG. 2 is a diagram showing a table that is a movable part that moves in the X-axis direction of the machine. Fig.
  • FIG. 3 is a diagram showing the settings of rapid feed and cutting feed parameters at one representative measurement point (representative measurement point A2) and two measurement points (measurement points A1 and A3) on the table, which is the movable part of the machine. is.
  • a representative measurement point A2 for measuring frequency characteristics with two parameter settings of rapid feed and cutting feed is indicated by a black circle, and a measurement point A1 for measuring frequency characteristics with parameter settings for cutting feed.
  • A3 is circled.
  • the double-headed arrows at representative measurement point A2 and measurement points A1 and A3 shown in FIG. Points A1 and A3 indicate that the X-axis frequency characteristics are measured.
  • the movement command generation unit 200 outputs a fast-forward speed command to the subtractor 110 and the state switching unit 600 to move the table 810 to the position of the representative measurement point A2.
  • the motor control unit 100 is controlled based on the fast-forward speed command, and the platform 810 reaches the representative measurement point A2.
  • the state switching unit 600 sets the parameters of the motor control unit 100 for fast forward based on the speed command for fast forward. After that, the movement command generation unit 200 outputs the sine wave signal as the speed command Vcmd to the subtractor 110 of the motor control unit 100 and the frequency characteristic measurement unit 300 while changing the frequency.
  • the state switching unit 600 changes the parameters of the motor control unit 100 based on the speed command for cutting feed. for cutting feed.
  • the movement command generation unit 200 outputs a sine wave signal as a speed command Vcmd to the subtractor 110 and the frequency characteristic measurement unit 300 while changing the frequency.
  • the motor control unit 100 At the position of the representative measurement point A2, the motor control unit 100 first operates with a sine wave signal in which the frequency changes with the parameters for rapid feed as the speed command Vcmd.
  • a sine wave signal is used as the speed command Vcmd.
  • Velocity detection values Vfd1 and Vfd2 obtained by operating the motor control unit 100 with the fast feed parameter and the cutting parameter are input to the subtractor 110 and the frequency characteristic measurement unit 300 as velocity feedback.
  • the movement command generation unit 200 outputs a fast-forward speed command to the subtractor 110, the motor control unit 100 is controlled based on the fast-forward speed command, and the table 810 moves from the representative measurement point A2 to the measurement point A1 or A3. (change the position of the X-axis from the representative measurement point A2 to the measurement point A1 or A3).
  • the state switching unit 600 changes the parameter of the motor control unit 100 from cutting to rapid traverse based on the rapid traverse speed command.
  • the movement command generation unit 200 changes the speed command for rapid feed to the speed command for cutting feed when the table 810 reaches the measurement point A1 or A3, the state switching unit 600 switches the motor according to the speed command for cutting feed.
  • the parameters of the control unit 100 are changed for cutting feed.
  • the motor control unit 100 operates at the position of the measurement point A1 or A3 using a sine wave signal whose frequency changes as a speed command Vcmd, and the speed detection value obtained by operating the motor control unit 100 with parameters for cutting.
  • Vfd3 is input to subtractor 110 and frequency characteristic measuring section 300 as velocity feedback.
  • the setting of different parameters for rapid traverse and cutting feed is one or both of the integral gain K1v and the proportional gain K2v of the velocity control unit 120, and/or the coefficients ⁇ c and ⁇ of the transfer function of the filter 130. , ⁇ .
  • the frequency characteristic measurement unit 300 measures the frequency characteristics at the representative measurement point A2 when setting parameters for rapid feed and when setting parameters for cutting feed, which are switched by the state switching unit 600, and measures the frequency characteristics at the measurement point A1.
  • the operation of measuring the frequency characteristics when setting parameters for cutting feed and predicting the frequency characteristics when setting parameters for rapid feed at measurement point A1 will be described.
  • the frequency characteristic measuring unit 300 uses the speed command Vcmd of the sine wave signal and the speed detection value Vfd1 when setting the fast-forwarding parameters at the representative measurement point A2 to obtain the speed command Vcmd and the speed command Vcmd as input signals at each frequency. By obtaining the amplitude ratio (input/output gain) and the phase delay of the speed detection value Vfd1 as an output signal, the frequency characteristic f1 is measured and stored in the storage unit 400 . In addition, the frequency characteristic measuring unit 300 uses the speed command Vcmd and the speed detection value Vfd2 when setting parameters for cutting feed at the representative measurement point A2, and uses the speed command Vcmd as an input signal and the output speed command Vcmd at each frequency.
  • the frequency characteristic f2 is measured and stored in the storage unit 400 .
  • the storage unit 400 stores the frequency characteristic f1 at the representative measuring point A2 when setting the parameters for rapid feed and the frequency characteristic f2 at the representative measuring point A2 when setting the parameters for cutting feed.
  • the frequency characteristic f1 consists of a gain characteristic L 2F and a phase characteristic ⁇ G 2F .
  • the frequency characteristic f2 consists of a gain characteristic L 2C and a phase characteristic ⁇ G 2C .
  • the frequency characteristic f1 and the frequency characteristic f2 are a plurality of first frequency characteristics.
  • the frequency characteristic measuring unit 300 uses the speed command Vcmd as an input signal and the speed detection value as an output signal using the speed command Vcmd and the speed detection value Vfd3 when setting parameters for cutting feed at the measurement point A1.
  • the frequency characteristic f3 is measured and output to the frequency characteristic prediction section 500.
  • FIG. The frequency characteristic f3 consists of a gain characteristic L 1C and a phase characteristic ⁇ G 1C .
  • the frequency characteristic f3 becomes the second frequency characteristic.
  • the frequency characteristic measuring section 300 may change at least one of the amplitude of the speed command Vcmd serving as an input signal, the number of vibrations, and the vibration method.
  • the movement command generation unit 200 generates a signal such as a sine wave signal while changing the frequency, and vibrates the controlled object while changing the frequency.
  • the frequency characteristic measurement unit 300 can change at least one of the amplitude of the input signal (excitation input), the number of times of excitation, and the excitation method.
  • the excitation input is the amplitude of the input signal
  • the number of excitations is the number of cycles for exciting the machine at the same frequency
  • the excitation method is "normal mode" and "high precision mode".
  • the high-precision mode is a mode in which the high-frequency band excitation time is constant and the input phase is shifted while sweeping multiple times. Using this mode, the measurement accuracy in the high-frequency region of 1 kHz or higher can be improved. If the amplitude of the input signal is small, the mechanical response cannot be taken correctly due to the influence of the frictional force, so the mechanical characteristics cannot be correctly indicated. If the number of excitations is insufficient and the response of the machine is not a steady response but a transient response, the machine characteristics cannot be shown correctly. If the input time is short in the high frequency range, the response of the machine cannot be taken correctly, so the machine characteristics cannot be shown correctly.
  • the frequency characteristic measurement unit 300 changes at least one of the amplitude of the velocity command Vcmd, which is an input signal, the number of vibrations, and the vibration method, taking the above situation into account.
  • the frequency characteristic prediction unit 500 obtains from the storage unit 400 the fast feed frequency characteristic f1 (gain characteristic L2F and phase characteristic ⁇ G2F ) and the cutting feed frequency characteristic f2 (gain characteristic L2C and phase Read out the characteristic ⁇ G 2C ). Further, the frequency characteristic prediction unit 500 acquires the cutting feed frequency characteristic f3 (gain characteristic L 1C and phase characteristic ⁇ G 1C ) at the measurement point A1 from the frequency characteristic measurement unit 300 .
  • the frequency characteristic f3 measured by the frequency characteristic measuring section 300 may be stored in the storage section 400 and the frequency characteristic prediction section 500 may read the frequency characteristic f3 from the storage section 400 .
  • the frequency characteristic prediction unit 500 uses the rapid feed frequency characteristic f1 and the cutting feed frequency characteristic f2 at the representative measurement point A2, and the cutting feed frequency characteristic f3 at the measurement point A1, to determine the measurement point A1 , the predicted fast-forward frequency characteristic f4 (gain characteristic L 1F and phase characteristic ⁇ G 1F ) is calculated.
  • the predicted frequency characteristic f4 becomes the third frequency characteristic.
  • phase characteristic ⁇ G 1F ( ⁇ G 2F - ⁇ G 2C ) + ⁇ G 1C
  • ⁇ G 1F ( ⁇ G 1C - ⁇ G 2C ) + ⁇ G 2F
  • ⁇ G 1F ( ⁇ G 2F + ⁇ G 1C )- ⁇ G 2C .
  • the reason why the frequency characteristics of the measurement points A1 other than the representative measurement point A2 can be predicted using the above-mentioned formula 3 is as follows.
  • the frequency characteristics of the velocity loop velocity feedback loop
  • the presence or absence of the influence of the position dependence of the moving part of the machine, and the presence or absence of the influence of the difference in the state of rapid feed, cutting feed, etc. are determined by the speed control unit 120 and the filter 130
  • the current controller 140 and the controlled plant consisting of the motor 150 and the controlled object 700 are shown in Table 1.
  • Table 1 only the control plant has an effect on the frequency characteristics of the speed loop, and the speed control unit 120, the filter 130, and the current control unit 140 have no effect on the frequency characteristics of the speed loop. do not have.
  • the difference between the frequency characteristics of the two states at the same position for example, the difference between the frequency characteristics in rapid traverse and the frequency characteristics in cutting feed
  • the difference between the frequency characteristics of rapid traverse and the frequency characteristics of cutting feed at representative measuring points and the frequency characteristics of cutting feed at measuring points other than representative measuring points It is possible to predict the fast-forward frequency characteristics at the measurement point.
  • the method of predicting the fast-forward frequency characteristics at measurement points other than the representative measurement points is not particularly limited to the method using Equation 3, and other methods may be used.
  • the frequency characteristic prediction device 10A includes an arithmetic processing device such as a CPU (Central Processing Unit).
  • the frequency characteristic prediction device 10A also includes an auxiliary storage device such as a HDD (Hard Disk Drive) that stores various control programs such as application software and an OS (Operating System), and an arithmetic processing device that executes the program. It also has a main memory such as a random access memory (RAM) for storing temporarily needed data.
  • arithmetic processing device such as a CPU (Central Processing Unit).
  • the frequency characteristic prediction device 10A also includes an auxiliary storage device such as a HDD (Hard Disk Drive) that stores various control programs such as application software and an OS (Operating System), and an arithmetic processing device that executes the program. It also has a main memory such as a random access memory (RAM) for storing temporarily needed data.
  • RAM random access memory
  • the arithmetic processing unit reads the application software or the OS from the auxiliary storage device, and develops the read application software or OS in the main storage device, while performing arithmetic processing based on the application software or the OS. do Also, based on the result of this calculation, various hardware included in each device is controlled. This implements the functional blocks of the present embodiment. In other words, this embodiment can be realized by cooperation of hardware and software.
  • FIG. 4 is a flow chart showing the operation of the frequency characteristic prediction device.
  • step S11 the motor control unit 100 is controlled based on the fast-forward movement command from the movement command generation unit 200, and the table 810, which is the movable unit, moves to the representative measurement point A2.
  • step S12 the state switching unit 600 sets the parameters of the motor control unit 100 as fast-forward parameters based on the fast-forward movement command.
  • Step S12 may be performed simultaneously with step S11, or may be performed before step S11.
  • step S13 the movement command generation unit 200 outputs the speed command Vcmd, which is a sine wave signal whose frequency changes, to the motor control unit 100.
  • the frequency characteristic f1 is measured and stored in the storage unit 400 . do.
  • step S14 when the movement command generation unit 200 changes the speed command for rapid feed to the speed command for cutting feed, the state switching unit 600 changes the parameters of the motor control unit 100 for cutting feed based on the speed command for cutting feed. do.
  • step S15 the movement command generation unit 200 outputs a speed command Vcmd, which is a sinusoidal signal whose frequency changes, to the motor control unit 100.
  • a speed command Vcmd which is a sinusoidal signal whose frequency changes
  • the frequency characteristic f2 is measured and stored in the storage unit 400 .
  • the storage unit 400 stores the frequency characteristic f1 when setting the parameters for rapid feed and the frequency characteristic f2 when setting the parameters for cutting feed at the representative measurement point A2.
  • step S16 the motor control unit 100 is controlled based on the fast-forward movement command from the movement command generation unit 200, and the table 810, which is the movable unit, moves to the measurement point A1.
  • the state switching unit 600 changes the parameters of the motor control unit 100 for fast forward based on the speed command for fast forward.
  • step S17 when the movement command generation unit 200 changes the speed command for rapid feed to the speed command for cutting feed, the state switching unit 600 changes the parameters of the motor control unit 100 for cutting feed based on the speed command for cutting feed. do.
  • the state switching unit 600 changes the parameter of the motor control unit 100 to fast feed. and step S17 becomes unnecessary.
  • step S18 the movement command generation unit 200 outputs the speed command Vcmd, which is a sine wave signal whose frequency changes, to the motor control unit 100 as a movement command, and the frequency characteristic measurement unit 300 generates an input signal Vcmd for each frequency.
  • the frequency characteristic f3 is measured and output to the frequency characteristic prediction unit 500 .
  • the frequency characteristic prediction unit 500 determines the rapid feed frequency characteristic f1 at the representative measurement point A2, the cutting feed frequency characteristic f2 at the representative measurement point A2, and the cutting feed frequency at the measurement point A1. Using the characteristic f3, a predicted fast-forward frequency characteristic f4 at the measurement point A1 is calculated. The fast-forward predicted frequency characteristic f4 can be calculated using Equation 3 as already described.
  • step S20 it is determined whether or not the prediction of the frequency characteristics has been completed at all the measurement points. The processing from step S16 to step S20 is performed until the prediction is completed. When the prediction of the frequency characteristics is completed at all measurement points, the process is terminated.
  • the frequency characteristics are measured only at the representative measurement point A2 when setting the parameters for fast-forwarding, and the frequency characteristics when setting the parameters for fast-forwarding are not measured at the measurement points A1 and A3. Measurement time can be shortened.
  • the cutting machine is a cutting machine shown in FIG. 18 which will be described later.
  • FIG. 5 is a characteristic diagram showing gain characteristics in rapid traverse and cutting feed measured at representative measurement points
  • FIG. 6 is a characteristic diagram showing phase characteristics in rapid traverse and cutting feed measured at representative measurement points.
  • FIG. 7 is a characteristic diagram showing the difference between the gain characteristics in rapid traverse and the gain characteristics in cutting feed measured at the representative measurement points
  • FIG. and is a characteristic diagram showing the difference from the phase characteristics in cutting feed.
  • the frequency characteristics prediction device measures the frequency characteristics in cutting feed at a measurement point away from the representative measurement point, and calculates the difference between the frequency characteristics in rapid traverse and the frequency characteristics in cutting feed.
  • FIG. 9 is a characteristic diagram showing the fast-forward gain characteristics predicted at the measurement points and the fast-forward gain characteristics measured at the measurement points.
  • FIG. 10 is a characteristic diagram showing phase characteristics of fast-forwarding. As shown in FIGS. 9 and 10, the fast-forward frequency characteristics predicted at the measurement points almost overlap with the fast-forward frequency characteristics actually measured at the measurement points. The prediction was found to be valid.
  • FIG. 11 is a block diagram showing a frequency characteristic prediction device according to the second embodiment of the present disclosure.
  • frequency characteristic prediction device 10B has a configuration in which parameter adjustment section 800 is added to frequency characteristic prediction device 10A shown in FIG.
  • the motor control unit 100 moves the table 810, which is the movable unit, in the X-axis direction by the motor 150 as shown in FIG. A case where the state switching unit 600, which will be described later, switches the parameters of rapid feed and cutting feed to measure the frequency characteristics at the representative measurement point A2 and the measurement points A1 and A3 shown in FIG.
  • the parameter adjustment unit 800 adjusts the parameters of the motor control unit 100 during rapid feed and cutting feed based on the frequency characteristics of rapid feed and cutting feed at the representative measurement point A2 measured by the frequency characteristic measurement unit 300. Further, the parameter adjustment unit 800 adjusts the parameters of the motor control unit 100 during cutting feed based on the frequency characteristic of the cutting feed at the measurement point A1 measured by the frequency characteristic measurement unit 300 . Furthermore, the parameter adjustment unit 800 adjusts the parameters of the motor control unit 100 during fast-forward based on the fast-forward frequency characteristic at the measurement point A1 predicted by the frequency characteristic prediction unit 500 .
  • the method of adjusting the parameters of the motor control unit 100 based on the frequency characteristics measured by the frequency characteristics measurement unit 300 and the frequency characteristics predicted by the frequency characteristics prediction unit 500 is not particularly limited.
  • An example using reinforcement learning will be described.
  • Reinforcement learning used in this embodiment is described, for example, in Japanese Patent Application Laid-Open No. 2020-177257.
  • machine learning can use reinforcement learning, it is not particularly limited to reinforcement learning, and for example, supervised learning may be used.
  • parameter adjustment section 800 that functions as a machine learning device will be referred to as parameter adjustment section 800A.
  • the parameter adjustment unit 800A acquires the frequency characteristics measured by the frequency characteristics measurement unit 300 or the frequency characteristics predicted by the frequency characteristics prediction unit 500, and the acquired frequency characteristics are the same as the target frequency characteristics or within a certain range. Then, the optimum values of the parameters of the motor control unit 100 are machine-learned (hereinafter, "machine learning” is referred to as “learning”). Then, the parameter adjustment unit 800A sets the parameters of the motor control unit 100, that is, the integral gain K1v, the proportional gain K2v, and the coefficients ⁇ c , ⁇ , and ⁇ of the transfer function of the filter 130 to optimum values.
  • machine learning is referred to as "learning”
  • the parameter adjustment unit 800A sets the parameters of the motor control unit 100, that is, the integral gain K1v, the proportional gain K2v, and the coefficients ⁇ c , ⁇ , and ⁇ of the transfer function of the
  • the parameter adjustment unit 800A sets the frequency characteristic (input/output gain and phase delay) measured by the frequency characteristic measurement unit 300 or the frequency characteristic (input/output gain and phase delay) predicted by the frequency characteristic prediction unit 500 as a state S, and sets the state Q-learning is performed in which adjustment of the parameter value related to S is action A.
  • Q-learning aims to select the action A with the highest value Q(S, A) from among possible actions A in a certain state S as the optimum action. do.
  • Parameter adjustment section 800A observes state information S including frequency characteristics measured by frequency characteristic measurement section 300 or frequency characteristics predicted by frequency characteristic prediction section 500, and determines action A.
  • FIG. The parameter adjustment unit 800A receives a reward each time action A is performed. Rewards will be discussed later.
  • the parameter adjustment unit 800A searches for the optimal action A that maximizes the total future reward by trial and error. By doing so, the parameter adjusting section 800A can select the optimum action A (that is, the optimum servo parameter value) for the state S.
  • parameter adjusting section 800A based on the frequency characteristics measured by frequency characteristic measuring section 300, the parameters of motor control section 100 are adjusted. is different from adjusting the parameters of Each operation will be described below.
  • FIG. 12 is a block diagram showing the configuration of parameter adjusting section 800A. In order to perform the above-described reinforcement learning, as shown in FIG. A section 805 is provided.
  • the state information acquisition unit 801 operates the motor control unit 100 using the adjusted parameters, and acquires the frequency characteristics (the gain characteristics of the input/output gains and the phase characteristics indicating the phase delay) measured by the frequency characteristics measurement unit 300. and output to the learning unit 802 .
  • State information acquisition section 801 acquires the frequency characteristic of motor control section 100 with parameters before adjustment from frequency characteristic measurement section 300 and outputs it to learning section 802 when Q learning is first started.
  • the frequency characteristic acquired from the frequency characteristic measurement unit 300 becomes the state information S.
  • FIG. Note that the parameters are shown as coefficients of the filter 130 in FIG.
  • the initial value parameters are generated in advance by the user. If the machine tool is adjusted in advance by the operator, the initial values of the parameters may be adjusted values.
  • a learning unit 802 is a part that learns the value Q(S, A) when a certain action A is selected under a certain state S.
  • the learning unit 802 includes a reward output unit 8021, a value function update unit 8022, and an action information generation unit 8023.
  • the reward output unit 8021 is a part that calculates a reward when action A is selected under a certain state S.
  • FIG. The reward output unit 8021 compares the input/output gain gs for each frequency when the initial value parameter is adjusted with the input/output gain value gb for each frequency of the preset reference model.
  • the reward output unit 8021 gives a negative reward when the input/output gain gs is greater than the input/output gain value gb of the reference model.
  • the reward output unit 8021 outputs a positive A reward is given, giving a negative reward when the phase lag increases and a zero reward when the phase lag does not change.
  • the reward output unit 8021 stores a reference model of input/output gains.
  • the reference model is a model of a motor controller that has ideal characteristics without resonance.
  • the reference model can be calculated from the inertia Ja, torque constant Kt , proportional gain Kp , integral gain KI , and differential gain KD of the model shown in FIG. 13, for example.
  • Inertia Ja is the sum of motor inertia and mechanical inertia.
  • the reference model has an area A, which is a frequency area in which an ideal input/output gain is obtained above a certain input/output gain, for example, -20 dB or above, and a frequency area below the certain input/output gain. and a region B which is a frequency region where In region A of FIG. 14, the ideal input/output gain of the reference model is indicated by curve MC 1 (thick line). In region B of FIG.
  • curve MC 11 the ideal virtual input/output gain of the reference model
  • straight line MC 12 the input/output gain of the reference model
  • curves RC 1 and RC 2 indicate the curves of input/output gains with respect to the motor control unit before and after learning, respectively.
  • the reward output unit 8021 gives a first negative reward when the input/output gain curve RC1 before learning exceeds the ideal input/output gain curve MC1 of the reference model.
  • the input/output gain of the reference model uses a straight line MC12 of a constant input/output gain (eg, -20 dB) instead of the ideal gain characteristic curve MC11 .
  • a first negative value is given as a reward.
  • D(S) is the phase delay that is the state variable related to the state information S, is denoted by D(S').
  • D(S)' the phase delay that is the state variable related to the state information S.
  • the method by which the reward output unit 8021 determines the reward based on the phase lag includes, for example, the following method.
  • the reward can be determined depending on whether the frequency at which the phase delay is 180 degrees increases, decreases, or remains the same.
  • the case where the phase delay is 180 degrees is taken up, but it is not particularly limited to 180 degrees, and other values may be used.
  • the state S changes to the state S' the phase delay increases if the curve changes so that the frequency at which the phase delay is 180 degrees becomes smaller.
  • the curve changes so that the frequency at which the phase delay is 180 degrees increases when the state S changes to the state S', the phase delay decreases.
  • the state S changes to state S′ when the frequency at which the phase delay is 180 degrees becomes small, the phase delay D(S) ⁇ phase delay D(S′) is defined, and the reward output unit 8021 sets the reward value to the second negative value. Note that the absolute value of the second negative value is made smaller than the first negative value.
  • the state S changes to state S′ when the frequency at which the phase delay is 180 degrees increases, the phase delay D(S) is defined as >phase delay D(S′), and the reward output A unit 8021 sets the reward value to a positive value.
  • phase delay D(S) is defined as the phase delay D(S′)
  • the reward output unit 8021 sets the reward value to a value of zero.
  • the method of determining the reward based on the phase lag is not limited to the above method. may use a method that rewards positive values and rewards zero when they are the same.
  • the reward output unit 8021 has been described above.
  • the value function updating unit 8022 performs Q-learning based on the state S, the action A, the state S′ when the action A is applied to the state S, and the reward obtained as described above.
  • the value function Q stored in the value function storage unit 804 is updated.
  • the value function Q may be updated by online learning, batch learning, or mini-batch learning.
  • Online learning is a learning method in which, by applying a certain action A to the current state S, the value function Q is updated immediately each time the state S transitions to a new state S'.
  • batch learning learning data is collected by applying a certain action A to the current state S, and by repeating the transition of the state S to a new state S′. This is a learning method in which the value function Q is updated using learning data.
  • mini-batch learning is a learning method intermediate between online learning and batch learning, in which the value function Q is updated every time learning data is accumulated to some extent.
  • the action information generation unit 8023 selects action A for the current state S in the process of Q learning.
  • the action information generation unit 8023 generates action information A in order to perform an operation (corresponding to action A in Q-learning) to adjust the value of the servo parameter in the process of Q-learning.
  • the action information generation unit 8023 calculates, for example, the integral gain K1v and the proportional gain K2v of the speed control unit 120 in the parameters included in the action A with respect to the adjusted parameters included in the state S, and each coefficient ⁇ c , ⁇ , ⁇ of the transfer function of filter 130 may be incrementally added or subtracted.
  • All of the integral gain K1v and proportional gain K2v of the speed control unit 120 and the coefficients ⁇ c , ⁇ , and ⁇ of the filter 130, which are parameters, may be modified. good.
  • the action information A may be generated and output to the action information output unit 803 in order to perform the operation of correcting the attenuation coefficient ⁇ .
  • the action information generation unit 8023 may use a greedy method for selecting the action A' with the highest value Q(S, A) among the values of the action A currently estimated, or a random action with a certain small probability ⁇ . A' is selected, and otherwise, a known method such as the ⁇ -greedy method of selecting the action A' with the highest value Q(S, A) may be used to select the action A'.
  • the action information output unit 803 is a part that transmits the action information A output from the learning unit 802 to the motor control unit 100 .
  • the current state S that is, the current setting in the motor control unit 100
  • the value function storage unit 804 is a storage device that stores the value function Q.
  • the value function Q may be stored as a table (hereinafter referred to as an action value table) for each state S and action A, for example.
  • Value function Q stored in value function storage unit 804 is updated by value function update unit 8022 .
  • the value function Q stored in the value function storage unit 804 may be shared with the parameter adjustment unit 800A of another machine tool. If the value function Q is shared by the parameter adjustment units 800A of a plurality of machine tools, it becomes possible to perform reinforcement learning in a distributed manner in the parameter adjustment units 800A of the respective machine tools, thereby increasing the efficiency of reinforcement learning. can be improved.
  • the optimized action information output unit 805 selects the action that maximizes the value Q(S, A) from the speed control unit 120 and the filter 130 .
  • Behavior information A (hereinafter referred to as “optimization behavior information”) is generated. More specifically, the optimized behavior information output unit 805 acquires the value function Q stored in the value function storage unit 804. FIG. This value function Q is updated by the value function updating unit 8022 performing Q learning as described above. Then, the optimized behavior information output unit 805 generates behavior information based on the value function Q, and outputs the generated behavior information to the speed control unit 120 and/or the filter 130 of the motor control unit 100 .
  • This optimization behavior information includes information for correcting the integral gain K1v and proportional gain K2v of the speed control unit 120 of the motor control unit 100 and/or each coefficient ⁇ c , ⁇ , ⁇ of the transfer function of the filter 130. .
  • the speed control unit 120 corrects the integral gain K1v and the proportional gain K2v based on this action information, and the filter 130 corrects each coefficient ⁇ c , ⁇ , ⁇ of the transfer function based on this action information.
  • the parameter adjustment unit 800A can optimize the parameters and simplify the adjustment of the parameters through the operations described above.
  • parameter adjustment section 800A is the same as the configuration shown in FIG.
  • the frequency characteristic measuring unit 300 measures the frequency characteristics during rapid feed at the representative measurement point A2, and measures the frequency characteristics during cutting feed at the representative measurement points A2 and A1. Measure. Using these frequency characteristics, the frequency characteristic prediction section 500 predicts the predicted fast-forward frequency characteristics at the measurement point A1. The parameters of the motor control section 100 when the predicted frequency characteristics during fast-forward are obtained are the same as the parameters of the motor control section 100 when setting the fast-forward at the representative measurement point A2.
  • the frequency characteristic prediction unit 500 associates the parameter of the motor control unit 100 at the time of fast-forward setting at the representative measurement point A2 with the predicted frequency characteristic at the time of fast-forward at the measurement point A1, and performs various parameters for each parameter. Stored in the storage unit in the frequency characteristic prediction unit 500 .
  • the state information acquisition unit 801 of the parameter adjustment unit 800A from the storage unit in the frequency characteristic prediction unit 500, selects a certain parameter at the representative measurement point and Get the frequency characteristics (gain and phase).
  • the behavior information output unit 803 designates another parameter stored in the storage unit within the frequency characteristic prediction unit 500 .
  • the state information acquisition unit 801 acquires another specified parameter and the frequency characteristics (gain and phase) of the fast-forward mode predicted by the other parameter from the storage unit in the frequency characteristics prediction unit 500 .
  • the learning operation of parameter adjustment section 800A other than the above operation is the same as the operation of parameter adjustment section 800A already described. By performing machine learning in this manner, optimum parameters corresponding to optimum frequency characteristics can be obtained.
  • a personal computer is equipped with a GPU (Graphics Processing Units), and a technique called GPGPU (General-Purpose computing on Graphics Processing Units) is used to perform arithmetic processing on the GPU. If you use it for , it will be possible to perform high-speed processing. Furthermore, in order to perform faster processing, multiple computers equipped with such GPUs are used to construct a computer cluster, and the multiple computers included in this computer cluster perform parallel processing. may
  • FIG. 15 is a block diagram showing an example of configuring a filter by directly connecting a plurality of filters.
  • filter 130 is configured by connecting m filters 130-1 to 130-m in series.
  • the parameter may be switched, and the parameter may be switched according to the driving conditions of the machine tool, such as emphasis on accuracy and emphasis on low heat generation.
  • parameters of each state of the plurality of states are the gain of the speed control unit 120 and the coefficient of the filter 130, but other parameters include the position loop gain, the gain of the current control unit 140, the PWM period, and the like. .
  • FIG. 16 shows two stages 810 and 820 which are movable parts moving in the X-axis direction and the Y-axis direction of the machine.
  • FIG. 17 is a diagram showing the setting of parameters for rapid feed and cutting feed at one representative measuring point A22 and eight measuring points A11 to A13, A21, A23 and A31 to A33.
  • a representative measurement point A22 for measuring frequency characteristics with two parameter settings of rapid feed and cutting feed is indicated by a black circle, and a measurement point A11 for measuring frequency characteristics with parameter settings for cutting feed.
  • ⁇ A13, A21, A23 and A31-A33 are circled.
  • the frequency characteristic prediction device 10A or frequency characteristic prediction device 10B is provided for each of the X-axis and Y-axis.
  • the frequency characteristic measuring unit 300 of the frequency characteristic prediction device 10A or the frequency characteristic prediction device 10B provided for the X-axis and the Y-axis, respectively, at the representative measurement point A22, at the time of parameter setting for rapid feed and parameter setting for cutting feed Frequency characteristics are measured at measuring points A11 to A13, A21, A23 and A31 to A33 when setting parameters for cutting feed. Then, the frequency characteristic prediction section 500 predicts the frequency characteristic at the time of setting parameters for fast-forwarding at measurement points A11 to A13, A21, A23 and A31 to A33.
  • FIG. 18 is a diagram showing two stages 810 and 820, which are movable parts that move in the X-axis and Y-axis directions of the machine, and a movable part 830 that moves the main shaft of the machine in the Z-axis direction.
  • FIG. 19 is a diagram showing the setting of parameters for rapid feed and cutting feed at two representative measurement points A22 and B33 and nine measurement points A11 to A13, A21, A23, A31 to A33 and C33.
  • representative measurement points A22 and B33 for measuring frequency characteristics with two parameter settings of rapid feed and cutting feed are indicated by black circles. Points A11-A13, A21, A23, A31-A33 and C33 are indicated by circles.
  • the movable part 830 which moves the main axis in the Z-axis direction, moves in one dimension (Z-axis direction) independently of the two stages 810 and 820. Measure the frequency characteristics.
  • only representative measurement point A22 and measurement point A33 show double-headed arrows for the X and Y axes, and for measurement points A11 to A13, A21, A23 and A31 to A32, double-headed arrows are omitted.
  • the X-axis and Y-axis frequency characteristics are measured at measurement points A11 to A33.
  • FIG. 19 only the measurement points A33, B33 and C33 are shown with double-headed arrows for the Z axis, indicating that the frequency characteristics are measured for the Z axis.
  • the frequency characteristic prediction device 10A or frequency characteristic prediction device 10B is provided for each of the X, Y and Z axes.
  • the frequency characteristic prediction section predicts the frequency characteristic at the time of setting parameters for fast-forwarding at measurement points A11 to A13, A21, A23, A31 to A33 and C33.
  • FIG. 20 is a diagram showing movable parts for moving the main shaft of the machine in the X-axis, Y-axis and Z-axis directions.
  • FIG. 21 shows the setting of parameters for rapid feed and cutting feed at one representative measuring point B22 and 26 measuring points A11 to A33, B11 to B13, B21, B23, B31 to B33 and C11 to C33. It is a diagram. In FIG.
  • a representative measurement point B22 for measuring frequency characteristics with two parameter settings of rapid feed and cutting feed is indicated by a black circle, and a measurement point A11 for measuring frequency characteristics with parameter settings for cutting feed.
  • ⁇ A33, B11-B13, B21, B23, B31-B33 and C11-C33 are indicated by circles.
  • the representative measurement point A22 shows double-headed arrows for the X, Y, and Z axes, and for the measurement points A11 to A33, B11 to B13, B21, B23, B31 to B33, and C11 to C33.
  • the double-headed arrows for the X-, Y-, and Z-axes are omitted.
  • the frequency characteristics of the X-axis, Y-axis and Z-axis are measured at all measurement points A11 to C33.
  • the frequency characteristic prediction device 10A or frequency characteristic prediction device 10B is provided for each of the X, Y and Z axes.
  • the frequency characteristic measuring unit 300 of the frequency characteristic prediction device 10A or the frequency characteristic prediction device 10B provided for each of the X-axis, Y-axis, and Z-axis measures the parameters for fast feed and for cutting feed at the representative measurement point B22.
  • the frequency characteristics during setting are measured at measurement points A11 to A33, B11 to B13, B21, B23, B31 to B33, and C11 to C33 during parameter setting for cutting feed.
  • the frequency characteristic predicting section predicts the frequency characteristic at the time of fast-forward parameter setting at measurement points A11 to A33, B11 to B13, B21, B23, B31 to B33, and C11 to C33.
  • the embodiments described above can be realized by hardware, software, or a combination thereof.
  • “implemented by software” means implemented by a computer reading and executing a program.
  • integrated circuits such as LSI (Large Scale Integrated circuit), ASIC (Application Specific Integrated Circuit), gate array, FPGA (Field Programmable Gate Array) ( IC).
  • a hard disk, ROM, or the like storing a program describing all or part of the operation of the machine learning unit shown in the flowchart
  • a computer composed of a storage unit, a DRAM that stores data necessary for calculation, a CPU, and a bus that connects each unit, information necessary for calculation is stored in the DRAM, and the program is executed by the CPU. be able to.
  • Computer readable media includes various types of tangible storage media.
  • Computer-readable media include, for example, magnetic recording media (e.g., hard disk drives), magneto-optical recording media (e.g., magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R/Ws, semiconductor memories (eg, mask ROM, PROM (programmable ROM), EPROM (erasable PROM), flash ROM, or RAM (random access memory)).
  • the frequency characteristic prediction device and frequency characteristic prediction method according to the present disclosure can take various embodiments having the following configurations, including the embodiments described above.
  • a motor control unit for example, motor control unit 100 for moving the axis of the machine tool or industrial machine
  • a movement command generation unit for example, movement command generation unit 200
  • a frequency characteristic measuring unit for example, a frequency characteristic measuring unit 300
  • a state switching unit for example, a state switching unit 600
  • a frequency characteristic prediction unit for example, a frequency characteristic prediction unit 500
  • the frequency characteristic measuring unit measures, at the first position, a plurality of first frequency characteristics for a plurality of states switched by the state switching unit, and at the second position, among the plurality of states, measuring a second frequency characteristic for at least one of
  • the frequency characteristic prediction unit uses the plurality of first frequency characteristics and the
  • the frequency characteristic prediction device comprising at least a storage unit (for example, storage unit 400) that stores the plurality of first frequency characteristics.
  • the movement command generation unit generates a signal whose frequency changes, inputs the signal to the motor control unit;
  • the frequency characteristic measuring unit uses the signal and the output signal of the motor control unit to obtain an amplitude ratio and a phase delay between the signal and the output signal for each frequency defined by the signal.
  • the frequency characteristic prediction device according to any one of (1) to (4) above, which measures frequency characteristics.
  • a parameter adjuster for example, parameter The frequency characteristic prediction device according to any one of (1) to (6) above, including an adjustment unit 800.
  • the parameters of the motor control section include at least one of a gain of a speed control section, a coefficient of a filter, a gain of a current control section, and a PWM period.
  • a frequency characteristic measuring unit e.g., frequency characteristic measuring unit 300
  • the frequency characteristic measuring unit measures a second frequency characteristic for at least one of the plurality of states
  • a frequency characteristic prediction unit for example, frequency characteristic prediction unit 500
  • a frequency characteristic prediction method for predicting a third frequency characteristic for a state other than at least one of the states of According to this frequency prediction method, the frequency characteristics can be predicted based on the measured frequency characteristics, the number of measurements can be reduced, and the measurement time can be shortened.
  • 10A, 10B frequency characteristic prediction device 100 motor control section 200 movement command generation section 300 frequency characteristic measurement section 400 storage section 500 frequency characteristic prediction section 600 state switching section 700 controlled object 800 parameter adjustment section

Abstract

The present invention reduces the number of rounds of measurement and shortens the measurement time, by predicting frequency characteristics on the basis of measured frequency characteristics. This frequency characteristic prediction device comprises: a motor control unit that moves a shaft of a machine; a moving instruction generation unit that outputs a moving instruction for changing the position of the shaft from a first position to a second position; a frequency characteristic measurement unit that measures the frequency characteristics of the machine at the first and second positions: a state switching unit that switches the state of the motor control unit at the first position; and a frequency characteristic prediction unit that predicts the frequency characteristics of the machine at the second position. The frequency characteristic measurement unit measures a plurality of first frequency characteristics of a plurality of states to be switched at the first position, and measures a second frequency characteristic of at least one of the states at the second position. The frequency characteristic prediction unit predicts third frequency characteristics of a state other than at least one of the states at the second position by using the first frequency characteristics and second frequency characteristic.

Description

周波数特性予測装置及び周波数特性予測方法Frequency characteristic prediction device and frequency characteristic prediction method
 本発明は、周波数特性予測装置及び周波数特性予測方法に関し、特に、工作機械又は産業機械の周波数特性を予測する周波数特性予測装置及び周波数特性予測方法に関する。 The present invention relates to a frequency characteristic prediction device and frequency characteristic prediction method, and more particularly to a frequency characteristic prediction device and frequency characteristic prediction method for predicting the frequency characteristics of machine tools or industrial machines.
 工作機械又は産業機械の軸を所望の位置に移動させるモータ制御装置では、工作機械又は産業機械の姿勢(軸の位置)によって適切なゲイン、フィルタ特性等を調整することが求められる。 A motor control device that moves the axis of a machine tool or industrial machine to a desired position is required to adjust the appropriate gain, filter characteristics, etc. according to the attitude (axis position) of the machine tool or industrial machine.
 特許文献1には、積載物の変更や機械の構成の変更が生じても、制御特性が維持されるように制御ゲインが適切に自動調整されるサーボ制御装置が記載されている。
 具体的には、特許文献1には、サーボ制御装置が、速度指令作成部と、トルク指令作成部と、速度検出部と、速度制御ループと、速度制御ゲインと、正弦波外乱入力部と、実周波数特性算出部と、規範特性変更部と、規範周波数特性計算部と、制御ゲイン調整部と、を具備することが記載されている。正弦波外乱入力部は逐次周波数を変更する。規範周波数特性計算部は規範特性変更部の指定する特徴に対する規範周波数特性を周波数ごとに逐次算出する。実周波数特性算出部は制御系の実周波数特性を周波数ごとに逐次算出する。規範周波数特性計算部は、規範周波数特性と実周波数特性とが最も一致するときの規範特性変更部の特性式を記憶する。
Patent Literature 1 describes a servo control device that automatically and appropriately adjusts control gains so that control characteristics are maintained even when a load or machine configuration is changed.
Specifically, in Patent Document 1, a servo control device includes a speed command generation unit, a torque command generation unit, a speed detection unit, a speed control loop, a speed control gain, a sine wave disturbance input unit, It includes an actual frequency characteristic calculator, a reference characteristic changer, a reference frequency characteristic calculator, and a control gain adjuster. The sinusoidal disturbance input section changes frequency sequentially. The reference frequency characteristic calculator sequentially calculates the reference frequency characteristic corresponding to the feature designated by the reference characteristic changing unit for each frequency. The actual frequency characteristic calculator sequentially calculates the actual frequency characteristic of the control system for each frequency. The reference frequency characteristic calculation unit stores a characteristic expression of the reference characteristic changing unit when the reference frequency characteristic and the actual frequency characteristic are most similar.
 特許文献2には、工作機械による被加工対象の加工時間を短縮し、かつ、工作機械の送り軸が早送り動作から切削送り動作に切り替わる直後に加工精度が悪化しないサーボモータ制御装置が記載されている。
 具体的には、特許文献2には、演算係数設定部が、フィードフォワード制御情報とフィードバック制御情報のうちの少なくとも一方を作成するための演算係数を、切削送り動作用に設定される第1の演算係数値と第1の演算係数値より小さい早送り動作用の第2の演算係数値との間の値に設定することが記載されている。また特許文献2には、演算係数変更部が、早送り動作中の任意の時点である第1の時点の後の第2の時点において動作指令が早送り動作指令から切削送り動作指令に切り替わることが第1の時点で予測される場合、演算係数を第2の値から第1の演算係数値に連続的に変更することが記載されている。
Patent Literature 2 describes a servomotor control device that shortens the machining time of a machined object by a machine tool and does not deteriorate the machining accuracy immediately after the feed axis of the machine tool switches from rapid feed operation to cutting feed operation. there is
Specifically, in Patent Document 2, a calculation coefficient setting unit sets a calculation coefficient for creating at least one of feedforward control information and feedback control information to a first value set for cutting feed operation. It is described that it is set to a value between the calculation coefficient value and a second calculation coefficient value for fast-forward operation that is smaller than the first calculation coefficient value. Further, in Patent Document 2, the operation coefficient changing unit switches the operation command from the rapid traverse operation command to the cutting feed operation command at a second time point after the first time point, which is an arbitrary time point during the rapid traverse operation. Continuously changing the computational coefficient from a second value to a first computational coefficient value, if predicted at time 1, is described.
特開2018-128734号公報JP 2018-128734 A 特開2013-218552号公報JP 2013-218552 A
 モータ制御装置のゲイン、フィルタ特性を調整するためには、様々な姿勢の測定点でモータ制御装置のゲイン及び位相の周波数特性を測定することが求められる。
 また、切削送りのパラメータと早送りのパラメータの切替機能により、モータ制御装置の状態が複数ある場合、例えば切削送りと早送りの状態がある場合に、それぞれの状態で周波数特性を測定しようとすると、各状態×測定点の数分の測定が必要になり、測定時間が長くなってしまう。
 よって、測定した周波数特性に基づいて周波数特性を予測して、測定回数を削減し、測定時間を短縮できる周波数特性予測装置及び周波数特性予測方法が求められていた。
In order to adjust the gain and filter characteristics of the motor control device, it is required to measure the frequency characteristics of the gain and phase of the motor control device at various posture measurement points.
In addition, if there are multiple states of the motor control device, such as cutting feed and rapid feed, by switching the cutting feed parameter and rapid feed parameter, if you try to measure the frequency characteristics in each state, each Measurements for the number of states times the number of measurement points are required, resulting in a long measurement time.
Therefore, there is a demand for a frequency characteristic prediction apparatus and a frequency characteristic prediction method that can predict frequency characteristics based on measured frequency characteristics, reduce the number of measurements, and shorten the measurement time.
 (1) 本開示の第1の態様は、工作機械又は産業機械の軸を移動するためのモータ制御部と、
 前記軸の位置を第1の位置から第2の位置に変更するための移動指令を前記モータ制御部に出力する移動指令生成部と、
 前記第1の位置及び前記第2の位置で、前記工作機械又は前記産業機械の周波数特性を測定する周波数特性測定部と、
 前記第1の位置で、前記モータ制御部の状態を切り替える状態切替部と、
 前記第2の位置で、前記工作機械又は前記産業機械の周波数特性を予測する周波数特性予測部と、を備え、
 前記周波数特性測定部は、前記第1の位置で、前記状態切替部で切り換えられる複数の状態についての複数の第1の周波数特性を測定し、前記第2の位置で、前記複数の状態のうちの少なくとも1つについての第2の周波数特性を測定し、
 前記周波数特性予測部は、前記複数の第1の周波数特性と、前記第2の周波数特性とを用いて、前記第2の位置の前記複数の状態のうちの少なくとも1つ以外の状態についての第3の周波数特性を予測する、周波数特性予測装置である。
(1) A first aspect of the present disclosure provides a motor control unit for moving an axis of a machine tool or industrial machine;
a movement command generation unit that outputs a movement command to the motor control unit for changing the position of the shaft from the first position to the second position;
a frequency characteristic measuring unit that measures the frequency characteristic of the machine tool or the industrial machine at the first position and the second position;
a state switching unit that switches the state of the motor control unit at the first position;
a frequency characteristic prediction unit that predicts the frequency characteristic of the machine tool or the industrial machine at the second position;
The frequency characteristic measuring unit measures, at the first position, a plurality of first frequency characteristics for a plurality of states switched by the state switching unit, and at the second position, among the plurality of states, measuring a second frequency characteristic for at least one of
The frequency characteristic prediction unit uses the plurality of first frequency characteristics and the second frequency characteristic to perform a first prediction regarding a state other than at least one of the plurality of states at the second position. 3 is a frequency characteristic prediction device for predicting the frequency characteristic of .
 (2) 本開示の第2の態様は、第1の移動指令に基づいて、モータ制御部により工作機械又は産業機械の軸の位置を第1の位置に移動し、
 前記第1の位置で、周波数特性測定部により前記モータ制御部の複数の状態についての複数の第1の周波数特性を測定し、
 第2の移動指令に基づいて、前記モータ制御部により前記軸の位置を前記第1の位置から第2の位置に移動し、
 前記第2の位置で、前記周波数特性測定部により、前記複数の状態のうちの少なくとも1つについての第2の周波数特性を測定し、
 周波数特性予測部により、前記複数の第1の周波数特性と、前記第2の周波数特性とを用いて、周波数特性予測部により、前記第2の位置の前記複数の状態のうちの少なくとも1つ以外の状態についての第3の周波数特性を予測する、周波数特性予測方法である。
(2) A second aspect of the present disclosure moves a position of an axis of a machine tool or an industrial machine to a first position by a motor control unit based on a first movement command,
measuring a plurality of first frequency characteristics with respect to a plurality of states of the motor control unit at the first position;
moving the position of the axis from the first position to the second position by the motor control unit based on a second movement command;
At the second position, the frequency characteristic measuring unit measures a second frequency characteristic for at least one of the plurality of states;
a frequency characteristic prediction unit, using the plurality of first frequency characteristics and the second frequency characteristics, by the frequency characteristic prediction unit, at least one of the plurality of states at the second position other than is a frequency characteristic prediction method for predicting a third frequency characteristic for the state of
 本開示の各態様によれば、測定した周波数特性に基づいて周波数特性を予測して、測定回数を削減し、測定時間を短縮することができる。 According to each aspect of the present disclosure, the frequency characteristics can be predicted based on the measured frequency characteristics, the number of measurements can be reduced, and the measurement time can be shortened.
本開示の第1の実施形態の周波数特性予測装置を示すブロック図である。1 is a block diagram showing a frequency characteristic prediction device according to a first embodiment of the present disclosure; FIG. 機械のX軸方向に移動する可動部となる台を示す図である。It is a figure which shows the base used as the movable part which moves to the X-axis direction of a machine. 機械の可動部となる台の、代表測定点と2つの測定点における、早送り、切削送りのパラメータの設定の状態を示す図である。FIG. 4 is a diagram showing the setting of parameters for rapid feed and cutting feed at a representative measurement point and two measurement points on a table that is a movable part of a machine. 本開示の第1の実施形態の周波数特性予測装置の動作を示すフローチャートである。4 is a flow chart showing the operation of the frequency characteristic prediction device according to the first embodiment of the present disclosure; 代表測定点で測定した、早送り及び切削送りでのゲイン特性を示す特性図である。FIG. 4 is a characteristic diagram showing gain characteristics in rapid feed and cutting feed measured at representative measurement points; 代表測定点で測定した、早送り及び切削送りでの位相特性を示す特性図である。FIG. 4 is a characteristic diagram showing phase characteristics in rapid feed and cutting feed measured at representative measurement points; 代表測定点で測定した、早送りでのゲイン特性と、切削送りでのゲイン特性との差を示す特性図である。FIG. 5 is a characteristic diagram showing the difference between the gain characteristics in rapid feed and the gain characteristics in cutting feed measured at representative measurement points. 代表測定点で測定した、早送りでの位相特性と、切削送りでの位相特性との差を示す特性図である。FIG. 5 is a characteristic diagram showing the difference between the phase characteristics in rapid feed and the phase characteristics in cutting feed measured at representative measurement points. 測定点で予測した早送りのゲイン特性と、測定点で測定した早送りのゲイン特性とを示す特性図である。FIG. 5 is a characteristic diagram showing fast-forward gain characteristics predicted at measurement points and fast-forward gain characteristics measured at measurement points; 測定点で予測した早送りの位相特性と、測定点で測定した早送りの位相特性とを示す特性図である。FIG. 5 is a characteristic diagram showing fast-forward phase characteristics predicted at measurement points and fast-forward phase characteristics measured at measurement points; 本開示の第2の実施形態の周波数特性予測装置を示すブロック図である。FIG. 11 is a block diagram showing a frequency characteristic prediction device according to a second embodiment of the present disclosure; FIG. 機械学習装置として機能するパラメータ調整部を示すブロック図である。It is a block diagram which shows the parameter adjustment part which functions as a machine-learning apparatus. 規範モデルを示すブロック線図である。1 is a block diagram showing a reference model; FIG. 規範モデルのモータ制御部の入出力ゲイン特性と、学習前及び学習後のモータ制御部の入出力ゲイン特性を示す特性図である。FIG. 4 is a characteristic diagram showing input/output gain characteristics of a motor control unit of a reference model and input/output gain characteristics of the motor control unit before learning and after learning; 複数のフィルタを直接接続してフィルタを構成した例を示すブロック図である。FIG. 4 is a block diagram showing an example in which a plurality of filters are directly connected to form a filter; 機械のX軸方向及びY軸方向に移動する可動部となる2つの台を示す図である。FIG. 2 shows two platforms that are movable parts that move in the X-axis and Y-axis directions of the machine. 1つの代表測定点と、8つの測定点とにおける、早送り、切削送りのパラメータの設定の状態を示す図である。FIG. 4 is a diagram showing the setting of parameters for rapid feed and cutting feed at one representative measurement point and eight measurement points; 機械のX軸方向及びY軸方向に移動する可動部となる2つの台と、機械の主軸をZ軸方向に移動する可動部を示す図である。It is a figure which shows two bases used as the movable part which moves to X-axis direction and Y-axis direction of a machine, and the movable part which moves the main axis of a machine to Z-axis direction. 2つの代表測定点と、9つの測定点とにおける、早送り、切削送りのパラメータの設定の状態を示す図である。FIG. 4 is a diagram showing the setting of parameters for rapid feed and cutting feed at two representative measurement points and nine measurement points; 機械のX軸方向、Y軸方向及びZ軸方向に移動する可動部を示す図である。FIG. 3 shows a movable part that moves in the X-, Y- and Z-axis directions of the machine; 1つの代表測定点と、26個の測定点とにおける、早送り、切削送りのパラメータの設定の状態を示す図である。FIG. 4 is a diagram showing the setting of parameters for rapid feed and cutting feed at one representative measurement point and 26 measurement points;
(第1の実施形態)
 以下、本開示の実施形態について図面を用いて詳細に説明する。
 図1は本開示の第1の実施形態の周波数特性予測装置を示すブロック図である。
 周波数特性予測装置10Aは、モータ制御部100、移動指令生成部200、周波数特性測定部300、記憶部400、周波数特性予測部500、及び状態切替部600を備えている。
 なお、移動指令生成部200、周波数特性測定部300、記憶部400、周波数特性予測部500、及び状態切替部600のうちの一つ又は複数はモータ制御部100の内に設けられてもよい。
(First embodiment)
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing a frequency characteristic prediction device according to the first embodiment of the present disclosure.
The frequency characteristic prediction device 10A includes a motor control section 100, a movement command generation section 200, a frequency characteristic measurement section 300, a storage section 400, a frequency characteristic prediction section 500, and a state switching section 600.
One or more of the movement command generation unit 200 , the frequency characteristic measurement unit 300 , the storage unit 400 , the frequency characteristic prediction unit 500 , and the state switching unit 600 may be provided inside the motor control unit 100 .
 (モータ制御部100)
 モータ制御部100は、減算器110、速度制御部120、フィルタ130、電流制御部140、及びモータ150を備えている。減算器110、速度制御部120、フィルタ130、電流制御部140、及びモータ150は閉ループとなる速度フィードバックループのサーボ系を構成する。モータ150は、直線運動をするリニアモータ、回転軸を有するモータ等を用いることができる。モータ150によって駆動される制御対象700は、例えば、工作機械又は産業機械の可動部である。モータ150は、工作機械又は産業機械の一部として設けられてもよい。周波数特性予測装置10Aは、工作機械又は産業機械の一部として設けられてもよい。
(Motor control unit 100)
The motor control section 100 includes a subtractor 110 , a speed control section 120 , a filter 130 , a current control section 140 and a motor 150 . The subtractor 110, the speed control section 120, the filter 130, the current control section 140, and the motor 150 constitute a closed speed feedback loop servo system. As the motor 150, a linear motor that performs linear motion, a motor that has a rotating shaft, or the like can be used. A controlled object 700 driven by the motor 150 is, for example, a moving part of a machine tool or an industrial machine. Motor 150 may be provided as part of a machine tool or industrial machine. The frequency characteristic prediction device 10A may be provided as part of a machine tool or industrial machine.
 減算器110は、入力された、移動指令となる速度指令と、速度フィードバックされた検出速度との差を求め、その差を速度偏差として速度制御部120に出力する。 The subtractor 110 obtains the difference between the input speed command, which is the movement command, and the detected speed fed back, and outputs the difference to the speed control unit 120 as a speed deviation.
 速度制御部120は、PI制御(Proportional-Integral Control)を行い、速度偏差に積分ゲインK1vを乗じて積分した値と、速度偏差に比例ゲインK2vを乗じた値とを加算して、トルク指令としてフィルタ130に出力する。なお、速度制御部120は特に、PI制御に限定されず、他の制御、例えばPID制御(Proportional-Integral-Differential Control)を用いてもよい。
 数式1(以下に数1として示す)は、速度制御部120の伝達関数H(s)を示す。
Figure JPOXMLDOC01-appb-M000001
 
The speed control unit 120 performs PI control (Proportional-Integral Control), adds a value obtained by multiplying the speed deviation by an integral gain K1v and integrates it, and adds a value obtained by multiplying the speed deviation by a proportional gain K2v to obtain a torque command. Output to filter 130 . Note that the speed control unit 120 is not particularly limited to PI control, and may use other control such as PID control (Proportional-Integral-Differential Control).
Equation 1 (shown as Equation 1 below) represents the transfer function H V (s) of the speed control section 120 .
Figure JPOXMLDOC01-appb-M000001
 フィルタ130は特定の周波数成分を減衰させるフィルタで、例えばノッチフィルタ、ローパスフィルタ又はバンドストップフィルタが用いられる。モータ150で駆動される機構部を有する工作機械等の機械では共振点が存在し、モータ制御部100で共振が増大する場合がある。ノッチフィルタ等のフィルタを用いることで共振を低減することができる。フィルタ130の出力はトルク指令として電流制御部140に出力される。
 数式2(以下に数2として示す)は、フィルタ130としてのノッチフィルタの伝達関数H(s)を示す。
 ここで、数式2の係数δは減衰係数、係数ωは中心角周波数、係数τは比帯域である。中心周波数をfc、帯域幅をfwとすると、係数ωはω=2πfc、係数τはτ=fw/fcで表される。各係数はフィルタの係数となる。
Figure JPOXMLDOC01-appb-M000002
A filter 130 is a filter that attenuates a specific frequency component, and for example, a notch filter, low-pass filter, or band-stop filter is used. A machine such as a machine tool having a mechanical section driven by the motor 150 has a resonance point, and the resonance may increase in the motor control section 100 . Resonance can be reduced by using a filter such as a notch filter. The output of filter 130 is output to current control section 140 as a torque command.
Equation 2 (shown as Equation 2 below) represents the transfer function H F (s) of the notch filter as filter 130 .
Here, the coefficient δ in Equation 2 is the attenuation coefficient, the coefficient ωc is the central angular frequency, and the coefficient τ is the fractional bandwidth. Assuming that the center frequency is fc and the bandwidth is fw, the coefficient ω c is expressed by ω c =2πfc and the coefficient τ is expressed by τ=fw/fc. Each coefficient becomes a coefficient of the filter.
Figure JPOXMLDOC01-appb-M000002
 電流制御部140はトルク指令に基づいてモータ150を駆動するための電圧指令を生成し、その電圧指令をモータ150に出力する。
 モータ150がリニアモータの場合、可動部の位置は、モータ150に設けられたリニアスケール(図示せず)によって検出され、位置検出値を微分することで速度検出値を求め、求められた速度検出値は速度フィードバックとして減算器110に入力される。
 モータ150が回転軸を有するモータの場合、回転角度位置は、モータ150に設けられたロータリーエンコーダ(図示せず)によって検出され、速度検出値は速度フィードバックとして減算器110に入力される。
 以下の説明では、モータ150が回転軸を有するモータであり、速度検出値はロータリーエンコーダ(図示せず)によって検出されるものとする。
Current control unit 140 generates a voltage command for driving motor 150 based on the torque command, and outputs the voltage command to motor 150 .
When the motor 150 is a linear motor, the position of the movable portion is detected by a linear scale (not shown) provided on the motor 150, the detected speed value is obtained by differentiating the detected position value, and the detected speed is obtained. The value is input to subtractor 110 as velocity feedback.
If the motor 150 has a rotating shaft, the rotation angle position is detected by a rotary encoder (not shown) provided on the motor 150, and the speed detection value is input to the subtractor 110 as speed feedback.
In the following description, it is assumed that the motor 150 has a rotating shaft and the speed detection value is detected by a rotary encoder (not shown).
 以上のようにモータ制御部100は構成される。
 モータ制御部100の、速度制御部120の積分ゲインK1vと比例ゲインK2vのうちの1つ又は両方、及び/又はフィルタ130の伝達関数の各係数ω、τ、δを調整するため、工作機械又は産業機械の周波数特性を測定することが求められる。工作機械又は産業機械の周波数特性はモータ制御部100の周波数特性を測定することで求められる。以下、速度制御部120の積分ゲインK1vと比例ゲインK2vのうちの1つ又は両方、及び/又はフィルタ130の伝達関数の各係数ω、τ、δを、パラメータと記す。
The motor control unit 100 is configured as described above.
To adjust one or both of the integral gain K1v and the proportional gain K2v of the speed control unit 120 and/or each coefficient ω c , τ, δ of the transfer function of the filter 130 of the motor control unit 100, the machine tool Or it is required to measure the frequency characteristics of industrial machines. The frequency characteristic of the machine tool or industrial machine can be found by measuring the frequency characteristic of the motor control section 100 . Hereinafter, one or both of the integral gain K1v and the proportional gain K2v of the speed control unit 120 and/or the coefficients ω c , τ, δ of the transfer function of the filter 130 are referred to as parameters.
 機械の可動部の異なる位置の機械特性の変化も含めて、モータ制御部100のパラメータを調整する場合には、各位置でモータ制御部100の周波数特性を測定することが求められる。以下の説明において、単に周波数特性と記すときは、周波数特性は、モータ制御部100の周波数特性を意味するものとする。
 また、早送り、切削送り等のモータ制御部100の状態に応じて、モータ制御部100のパラメータを設定する場合には、モータ制御部100のパラメータの設定を状態ごとに行うために、状態ごとに設定された各パラメータに対して、周波数特性を測定することが求められる。
 工作機械又は産業機械(以下、機械という)の可動部の全ての位置で、複数の状態に応じて複数のパラメータを設定し、各パラメータについて周波数特性を測定すると、測定回数が増え、周波数特性の測定時間が長くなる。
When adjusting parameters of the motor control unit 100, including changes in mechanical properties at different positions of the moving part of the machine, it is required to measure the frequency characteristics of the motor control unit 100 at each position. In the following description, when simply referred to as a frequency characteristic, the frequency characteristic means the frequency characteristic of the motor control unit 100. FIG.
Further, when setting the parameters of the motor control unit 100 according to the state of the motor control unit 100 such as rapid feed and cutting feed, the parameters of the motor control unit 100 are set for each state. It is required to measure the frequency characteristics for each set parameter.
Setting multiple parameters according to multiple states at all positions of the moving part of a machine tool or industrial machine (hereafter referred to as a machine) and measuring the frequency characteristics of each parameter increases the number of measurements and reduces the frequency characteristics. Longer measurement time.
 本実施形態では、周波数特性の測定時間を短くするために、周波数特性予測装置10Aは、代表測定点のみで複数のパラメータ設定で複数の周波数特性を測定し、代表測定点以外の測定点で、複数のパラメータ設定の少なくとも一つでの周波数特性を測定し、測定された、これらの周波数特性によって、複数のパラメータ設定の少なくとも一つ以外のパラメータ設定での周波数特性を予測する。そのために、周波数特性予測装置10Aは、移動指令生成部200、周波数特性測定部300、記憶部400、周波数特性予測部500、及び状態切替部600を備えている。代表測定点は第1の位置となり、代表測定点以外の測定点は第2の位置となる。
 本実施形態では、モータ制御部100のパラメータは、ユーザが予め設定する。
In this embodiment, in order to shorten the frequency characteristic measurement time, the frequency characteristic prediction device 10A measures a plurality of frequency characteristics with a plurality of parameter settings only at representative measurement points, and at measurement points other than the representative measurement points, Frequency characteristics at least one of the plurality of parameter settings are measured, and frequency characteristics at parameter settings other than at least one of the plurality of parameter settings are predicted from the measured frequency characteristics. For this purpose, the frequency characteristic prediction device 10A includes a movement command generation section 200, a frequency characteristic measurement section 300, a storage section 400, a frequency characteristic prediction section 500, and a state switching section 600. The representative measurement point becomes the first position, and the measurement points other than the representative measurement point become the second position.
In this embodiment, the parameters of the motor control unit 100 are preset by the user.
 以下の説明では、モータ制御部100が、モータ150により、図2に示すように、機械の可動部となる台810をX軸方向に移動させ、図3に示す、代表測定点A2と測定点A1,A3とで、後述する状態切替部600が早送り、切削送りのパラメータの切り替えを行って周波数特性を測定する場合を例にとって説明する。代表測定点A2の位置は特に限定されないが、台の可動範囲の中央に設定することが好ましい。
 図2は機械のX軸方向に移動する可動部となる台を示す図である。図3は機械の可動部となる台の、1つの代表測定点(代表測定点A2)と2つの測定点(測定点A1,A3)における、早送り、切削送りのパラメータの設定の状態を示す図である。図3においては、早送りと切削送りの2つのパラメータ設定での周波数特性を測定する代表測定点A2を黒で塗りつぶした丸で示し、切削送りのパラメータ設定での周波数特性を測定する測定点A1、A3を丸で示している。図3に示される、代表測定点A2及び測定点A1,A3での両方向矢印は、後述するように、周波数を変化させながら正弦波信号がモータ制御部100に印加され、代表測定点A2及び測定点A1,A3でX軸の周波数特性が測定されることを示している。
In the following description, the motor control unit 100 moves the table 810, which is the movable part of the machine, in the X-axis direction by the motor 150 as shown in FIG. A case in which the state switching unit 600 (to be described later) switches the parameters of fast feed and cutting feed in A1 and A3 to measure the frequency characteristics will be described as an example. Although the position of the representative measurement point A2 is not particularly limited, it is preferably set in the center of the movable range of the table.
FIG. 2 is a diagram showing a table that is a movable part that moves in the X-axis direction of the machine. Fig. 3 is a diagram showing the settings of rapid feed and cutting feed parameters at one representative measurement point (representative measurement point A2) and two measurement points (measurement points A1 and A3) on the table, which is the movable part of the machine. is. In FIG. 3, a representative measurement point A2 for measuring frequency characteristics with two parameter settings of rapid feed and cutting feed is indicated by a black circle, and a measurement point A1 for measuring frequency characteristics with parameter settings for cutting feed. A3 is circled. The double-headed arrows at representative measurement point A2 and measurement points A1 and A3 shown in FIG. Points A1 and A3 indicate that the X-axis frequency characteristics are measured.
 (移動指令生成部200及び状態切替部600)
 移動指令生成部200は、台810を代表測定点A2の位置に移動させるための、早送りの速度指令を減算器110及び状態切替部600に出力する。早送りの速度指令に基づいてモータ制御部100が制御され、台810が代表測定点A2に到達する。状態切替部600は、早送りの速度指令に基づいて、モータ制御部100のパラメータを早送り用に設定する。その後、移動指令生成部200は、周波数を変化させながら正弦波信号を速度指令Vcmdとして、モータ制御部100の減算器110、及び周波数特性測定部300に出力する。その後、代表測定点A2の位置で、移動指令生成部200が早送りの速度指令を切削送りの速度指令に変更すると、状態切替部600は、切削送りの速度指令に基づいてモータ制御部100のパラメータを切削送り用に変更する。移動指令生成部200は周波数を変化させながら正弦波信号を速度指令Vcmdとして減算器110及び周波数特性測定部300に出力する。
(Movement command generating unit 200 and state switching unit 600)
The movement command generation unit 200 outputs a fast-forward speed command to the subtractor 110 and the state switching unit 600 to move the table 810 to the position of the representative measurement point A2. The motor control unit 100 is controlled based on the fast-forward speed command, and the platform 810 reaches the representative measurement point A2. The state switching unit 600 sets the parameters of the motor control unit 100 for fast forward based on the speed command for fast forward. After that, the movement command generation unit 200 outputs the sine wave signal as the speed command Vcmd to the subtractor 110 of the motor control unit 100 and the frequency characteristic measurement unit 300 while changing the frequency. After that, at the position of the representative measurement point A2, when the movement command generation unit 200 changes the speed command for rapid feed to the speed command for cutting feed, the state switching unit 600 changes the parameters of the motor control unit 100 based on the speed command for cutting feed. for cutting feed. The movement command generation unit 200 outputs a sine wave signal as a speed command Vcmd to the subtractor 110 and the frequency characteristic measurement unit 300 while changing the frequency.
 モータ制御部100は、代表測定点A2の位置で、まず早送り用のパラメータで、周波数が変化する正弦波信号を速度指令Vcmdとして動作し、その後、切り替えられた切削用のパラメータで、周波数が変化する正弦波信号を速度指令Vcmdとして動作する。早送り用のパラメータ及び切削用のパラメータでモータ制御部100が動作することで得られた速度検出値Vfd1、Vfd2は、速度フィードバックとして減算器110及び周波数特性測定部300に入力される。 At the position of the representative measurement point A2, the motor control unit 100 first operates with a sine wave signal in which the frequency changes with the parameters for rapid feed as the speed command Vcmd. A sine wave signal is used as the speed command Vcmd. Velocity detection values Vfd1 and Vfd2 obtained by operating the motor control unit 100 with the fast feed parameter and the cutting parameter are input to the subtractor 110 and the frequency characteristic measurement unit 300 as velocity feedback.
 次に、移動指令生成部200は、早送りの速度指令を減算器110に出力し、早送りの速度指令に基づいてモータ制御部100が制御され、台810が代表測定点A2から測定点A1又はA3に移動する(X軸の位置を代表測定点A2から測定点A1又はA3に変更する)。状態切替部600は、早送りの速度指令に基づいてモータ制御部100のパラメータを切削用から早送り用に変更する。
 移動指令生成部200が、台810が測定点A1又はA3に到達したときに、早送りの速度指令を切削送りの速度指令に変更すると、状態切替部600は、切削送りの速度指令に基づいてモータ制御部100のパラメータを切削送り用に変更する。
 モータ制御部100は、測定点A1又はA3の位置で、周波数が変化する正弦波信号を速度指令Vcmdとして動作し、切削用のパラメータでモータ制御部100が動作することで得られた速度検出値Vfd3は、速度フィードバックとして減算器110及び周波数特性測定部300に入力される。
 なお、早送りと切削送りでの、異なるパラメータの設定は、速度制御部120の積分ゲインK1vと比例ゲインK2vのうちの1つ又は両方、及び/又はフィルタ130の伝達関数の各係数ω、τ、δを変更することで行われる。
Next, the movement command generation unit 200 outputs a fast-forward speed command to the subtractor 110, the motor control unit 100 is controlled based on the fast-forward speed command, and the table 810 moves from the representative measurement point A2 to the measurement point A1 or A3. (change the position of the X-axis from the representative measurement point A2 to the measurement point A1 or A3). The state switching unit 600 changes the parameter of the motor control unit 100 from cutting to rapid traverse based on the rapid traverse speed command.
When the movement command generation unit 200 changes the speed command for rapid feed to the speed command for cutting feed when the table 810 reaches the measurement point A1 or A3, the state switching unit 600 switches the motor according to the speed command for cutting feed. The parameters of the control unit 100 are changed for cutting feed.
The motor control unit 100 operates at the position of the measurement point A1 or A3 using a sine wave signal whose frequency changes as a speed command Vcmd, and the speed detection value obtained by operating the motor control unit 100 with parameters for cutting. Vfd3 is input to subtractor 110 and frequency characteristic measuring section 300 as velocity feedback.
It should be noted that the setting of different parameters for rapid traverse and cutting feed is one or both of the integral gain K1v and the proportional gain K2v of the velocity control unit 120, and/or the coefficients ω c and τ of the transfer function of the filter 130. , δ.
 (周波数特性測定部300及び記憶部400)
 以下の説明では、周波数特性測定部300が、代表測定点A2で、状態切替部600によって切替られる、早送り用のパラメータ設定時と切削送り用のパラメータ設定時における周波数特性を測定し、測定点A1で、切削送り用のパラメータ設定時における周波数特性を測定し、測定点A1での、早送り用のパラメータ設定時における周波数特性を予測する動作について説明する。
(Frequency characteristic measurement unit 300 and storage unit 400)
In the following description, the frequency characteristic measurement unit 300 measures the frequency characteristics at the representative measurement point A2 when setting parameters for rapid feed and when setting parameters for cutting feed, which are switched by the state switching unit 600, and measures the frequency characteristics at the measurement point A1. Next, the operation of measuring the frequency characteristics when setting parameters for cutting feed and predicting the frequency characteristics when setting parameters for rapid feed at measurement point A1 will be described.
 周波数特性測定部300は、代表測定点A2での早送り用のパラメータ設定時における、正弦波信号の速度指令Vcmdと速度検出値Vfd1とを用いて、各周波数で、入力信号となる速度指令Vcmdと出力信号となる速度検出値Vfd1の、振幅比(入出力ゲイン)及び位相遅れとを求めることで、周波数特性f1を測定して記憶部400に記憶する。
 また、周波数特性測定部300は、代表測定点A2での切削送り用のパラメータ設定時における、速度指令Vcmdと速度検出値Vfd2とを用いて、各周波数で、入力信号となる速度指令Vcmdと出力信号となる速度検出値Vfd2の、振幅比(入出力ゲイン)及び位相遅れとを求めることで、周波数特性f2を測定して記憶部400に記憶する。
 このようにして、記憶部400には、早送り用のパラメータ設定時における、代表測定点A2での周波数特性f1と、切削送り用のパラメータ設定時における、代表測定点A2での周波数特性f2とが記憶される。周波数特性f1は、ゲイン特性L2F及び位相特性∠G2Fからなる。周波数特性f2は、ゲイン特性L2C及び位相特性∠G2Cからなる。周波数特性f1と周波数特性f2とは、複数の第1の周波数特性となる。
The frequency characteristic measuring unit 300 uses the speed command Vcmd of the sine wave signal and the speed detection value Vfd1 when setting the fast-forwarding parameters at the representative measurement point A2 to obtain the speed command Vcmd and the speed command Vcmd as input signals at each frequency. By obtaining the amplitude ratio (input/output gain) and the phase delay of the speed detection value Vfd1 as an output signal, the frequency characteristic f1 is measured and stored in the storage unit 400 .
In addition, the frequency characteristic measuring unit 300 uses the speed command Vcmd and the speed detection value Vfd2 when setting parameters for cutting feed at the representative measurement point A2, and uses the speed command Vcmd as an input signal and the output speed command Vcmd at each frequency. By obtaining the amplitude ratio (input/output gain) and phase delay of the speed detection value Vfd2 as a signal, the frequency characteristic f2 is measured and stored in the storage unit 400 .
In this way, the storage unit 400 stores the frequency characteristic f1 at the representative measuring point A2 when setting the parameters for rapid feed and the frequency characteristic f2 at the representative measuring point A2 when setting the parameters for cutting feed. remembered. The frequency characteristic f1 consists of a gain characteristic L 2F and a phase characteristic ∠G 2F . The frequency characteristic f2 consists of a gain characteristic L 2C and a phase characteristic ∠G 2C . The frequency characteristic f1 and the frequency characteristic f2 are a plurality of first frequency characteristics.
 さらに、周波数特性測定部300は、測定点A1での切削送り用のパラメータ設定時における、速度指令Vcmdと速度検出値Vfd3とを用いて、入力信号となる速度指令Vcmdと出力信号となる速度検出値Vfd3の、振幅比(入出力ゲイン)及び位相遅れとを求めることで、周波数特性f3を測定して周波数特性予測部500に出力する。周波数特性f3は、ゲイン特性L1C及び位相特性∠G1Cからなる。周波数特性f3は第2の周波数特性となる。 Furthermore, the frequency characteristic measuring unit 300 uses the speed command Vcmd as an input signal and the speed detection value as an output signal using the speed command Vcmd and the speed detection value Vfd3 when setting parameters for cutting feed at the measurement point A1. By obtaining the amplitude ratio (input/output gain) and phase delay of the value Vfd3, the frequency characteristic f3 is measured and output to the frequency characteristic prediction section 500. FIG. The frequency characteristic f3 consists of a gain characteristic L 1C and a phase characteristic ∠G 1C . The frequency characteristic f3 becomes the second frequency characteristic.
 周波数特性測定部300は、入力信号となる速度指令Vcmdの振幅、加振回数及び加振方式の少なくとも1つを変更してもよい。
 移動指令生成部200は、周波数を変化させながら正弦波信号等の信号を発生し、周波数を変化させながら制御対象を加振する。
 周波数特性測定部300は、入力される信号(加振入力)の振幅、加振回数及び加振方式の少なくとも1つを変更することができる。
 ここで、加振入力は入力信号の振幅であり、加振回数は同じ周波数で機械を加振する周期数、加振方式は「通常のモード」と「高精度モード」である。
The frequency characteristic measuring section 300 may change at least one of the amplitude of the speed command Vcmd serving as an input signal, the number of vibrations, and the vibration method.
The movement command generation unit 200 generates a signal such as a sine wave signal while changing the frequency, and vibrates the controlled object while changing the frequency.
The frequency characteristic measurement unit 300 can change at least one of the amplitude of the input signal (excitation input), the number of times of excitation, and the excitation method.
Here, the excitation input is the amplitude of the input signal, the number of excitations is the number of cycles for exciting the machine at the same frequency, and the excitation method is "normal mode" and "high precision mode".
「高精度モード」は高周波数帯域加振時間を一定にして入力の位相をずらしながら複数回スイープというモードであり、このモードを用いて1kHz以上の高い周波数領域の測定精度は向上できる。
 入力信号の振幅は小さい場合、機械が摩擦力の影響で機械の応答は正しく取れないので、正しく機械の特性を示すことができない。
 加振動回数が足りなくて機械の応答は定常応答ではなく過渡応答の場合に、正しく機械の特性を示すことができない。
 高周波数領域で入力時間が短い場合、機械の応答は正しく取れないので、正しく機械の特性を示すことができない。
 周波数特性測定部300は、上記の状況を考慮して、入力信号となる速度指令Vcmdの振幅、加振回数及び加振方式の少なくとも1つを変更する。
The high-precision mode is a mode in which the high-frequency band excitation time is constant and the input phase is shifted while sweeping multiple times. Using this mode, the measurement accuracy in the high-frequency region of 1 kHz or higher can be improved.
If the amplitude of the input signal is small, the mechanical response cannot be taken correctly due to the influence of the frictional force, so the mechanical characteristics cannot be correctly indicated.
If the number of excitations is insufficient and the response of the machine is not a steady response but a transient response, the machine characteristics cannot be shown correctly.
If the input time is short in the high frequency range, the response of the machine cannot be taken correctly, so the machine characteristics cannot be shown correctly.
The frequency characteristic measurement unit 300 changes at least one of the amplitude of the velocity command Vcmd, which is an input signal, the number of vibrations, and the vibration method, taking the above situation into account.
 (周波数特性予測部)
 周波数特性予測部500は、記憶部400から、代表測定点A2での、早送りの周波数特性f1(ゲイン特性L2F及び位相特性∠G2F)と切削送りの周波数特性f2(ゲイン特性L2C及び位相特性∠G2C)とを読み出す。
 また、周波数特性予測部500は、周波数特性測定部300から、測定点A1での、切削送りの周波数特性f3(ゲイン特性L1C及び位相特性∠G1C)を取得する。周波数特性測定部300で測定された周波数特性f3が記憶部400に記憶され、周波数特性予測部500が記憶部400から周波数特性f3を読み出してもよい。
 そして、周波数特性予測部500は、代表測定点A2での、早送りの周波数特性f1及び切削送りの周波数特性f2と、測定点A1での、切削送りの周波数特性f3とを用いて、測定点A1での、早送りの予測周波数特性f4(ゲイン特性L1F及び位相特性∠G1F)を算出する。予測周波数特性f4は第3の周波数特性となる。
(Frequency characteristic prediction unit)
The frequency characteristic prediction unit 500 obtains from the storage unit 400 the fast feed frequency characteristic f1 (gain characteristic L2F and phase characteristic ∠G2F ) and the cutting feed frequency characteristic f2 (gain characteristic L2C and phase Read out the characteristic ∠G 2C ).
Further, the frequency characteristic prediction unit 500 acquires the cutting feed frequency characteristic f3 (gain characteristic L 1C and phase characteristic ∠G 1C ) at the measurement point A1 from the frequency characteristic measurement unit 300 . The frequency characteristic f3 measured by the frequency characteristic measuring section 300 may be stored in the storage section 400 and the frequency characteristic prediction section 500 may read the frequency characteristic f3 from the storage section 400 .
Then, the frequency characteristic prediction unit 500 uses the rapid feed frequency characteristic f1 and the cutting feed frequency characteristic f2 at the representative measurement point A2, and the cutting feed frequency characteristic f3 at the measurement point A1, to determine the measurement point A1 , the predicted fast-forward frequency characteristic f4 (gain characteristic L 1F and phase characteristic ∠G 1F ) is calculated. The predicted frequency characteristic f4 becomes the third frequency characteristic.
 具体的には、早送りの予測周波数特性f4となる、早送りのゲイン特性L1F及び位相特性∠G1Fは、数式3(以下に数3として示す)を用いて計算される。
Figure JPOXMLDOC01-appb-M000003
 
 なお、周波数特性予測部500が行うゲイン特性L1Fの計算は、L1F=(L2F-L2C)+L1C、L1F=(L1C-L2C)+L2F、及びL1F=(L2F+L1C)-L2Cのうちのいずれでもよい。
 また、周波数特性予測部500が行う位相特性∠G1Fの計算は、∠G1F=(∠G2F-∠G2C)+∠G1C、∠G1F=(∠G1C-∠G2C)+∠G2F、及び∠G1F=(∠G2F+∠G1C)-∠G2Cのうちのいずれでもよい。
Specifically, the fast-forward gain characteristic L 1F and the phase characteristic ∠G 1F , which are the fast-forward predicted frequency characteristic f4, are calculated using Equation 3 (shown as Equation 3 below).
Figure JPOXMLDOC01-appb-M000003

Note that the calculation of the gain characteristic L 1F performed by the frequency characteristic prediction unit 500 is L 1F = (L 2F - L 2C ) + L 1C , L 1F = (L 1C - L 2C ) + L 2F , and L 1F = (L 2F +L 1C )−L 2C .
Further, the calculation of the phase characteristic ∠G 1F performed by the frequency characteristic prediction unit 500 is ∠G 1F = (∠G 2F - ∠G 2C ) + ∠G 1C , ∠G 1F = (∠G 1C - ∠G 2C ) + ∠G 2F and ∠G 1F =(∠G 2F +∠G 1C )-∠G 2C .
 上記数式3を用いて、代表測定点A2以外の測定点A1の周波数特性を予測できるのは、以下の理由による。
 速度ループ(速度フィードバックループ)の周波数特性についての、機械の可動部の位置依存性の影響の有無、及び早送り、切削送り等の状態での違いの影響の有無は、速度制御部120、フィルタ130、電流制御部140、及びモータ150及び制御対象700からなる制御プラントに対して、表1に示される。
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、位置依存性は、制御プラントのみ、速度ループの周波数特性への影響があり、速度制御部120、フィルタ130及び電流制御部140については速度ループの周波数特性への影響がない。そのため、同じ位置での、2つの状態の周波数特性の差分、例えば早送りにおける周波数特性と切削送りにおける周波数特性の差は、位置依存性が認められない。
 そのため、代表測定点での、早送りでの周波数特性と切削送りでの周波数特性の差分と、代表測定点以外の測定点で切削送りでの周波数特性とを加算することで、代表測定点以外の測定点での、早送りでの周波数特性を予測することができる。
 代表測定点以外の測定点での、早送りでの周波数特性を予測する方法は、特に数式3を用いた方法に限定されず、他の方法を用いてもよい。
The reason why the frequency characteristics of the measurement points A1 other than the representative measurement point A2 can be predicted using the above-mentioned formula 3 is as follows.
Regarding the frequency characteristics of the velocity loop (velocity feedback loop), the presence or absence of the influence of the position dependence of the moving part of the machine, and the presence or absence of the influence of the difference in the state of rapid feed, cutting feed, etc. are determined by the speed control unit 120 and the filter 130 , the current controller 140 and the controlled plant consisting of the motor 150 and the controlled object 700 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
As shown in Table 1, only the control plant has an effect on the frequency characteristics of the speed loop, and the speed control unit 120, the filter 130, and the current control unit 140 have no effect on the frequency characteristics of the speed loop. do not have. Therefore, the difference between the frequency characteristics of the two states at the same position, for example, the difference between the frequency characteristics in rapid traverse and the frequency characteristics in cutting feed, does not depend on the position.
Therefore, by adding the difference between the frequency characteristics of rapid traverse and the frequency characteristics of cutting feed at representative measuring points and the frequency characteristics of cutting feed at measuring points other than representative measuring points, It is possible to predict the fast-forward frequency characteristics at the measurement point.
The method of predicting the fast-forward frequency characteristics at measurement points other than the representative measurement points is not particularly limited to the method using Equation 3, and other methods may be used.
 以上、測定点A1で、早送り用のパラメータ設定時における周波数特性を予測する動作について説明したが、同様に、測定点A3で、早送り用のパラメータ設定時における周波数特性を予測する動作を行うことができる。 The operation of estimating the frequency characteristics when setting the fast-forward parameters at the measurement point A1 has been described above. can.
 以上、周波数特性予測装置10Aに含まれる機能ブロックについて説明した。
 これらの機能ブロックを実現するために、周波数特性予測装置10Aは、CPU(Central Processing Unit)等の演算処理装置を備える。また、周波数特性予測装置10Aは、アプリケーションソフトウェア及びOS(Operating System)等の各種の制御用プログラムを格納したHDD(Hard Disk Drive)等の補助記憶装置や、演算処理装置がプログラムを実行する上で一時的に必要とされるデータを格納するためのRAM(Random Access Memory)といった主記憶装置も備える。
The functional blocks included in the frequency characteristic prediction device 10A have been described above.
In order to implement these functional blocks, the frequency characteristic prediction device 10A includes an arithmetic processing device such as a CPU (Central Processing Unit). The frequency characteristic prediction device 10A also includes an auxiliary storage device such as a HDD (Hard Disk Drive) that stores various control programs such as application software and an OS (Operating System), and an arithmetic processing device that executes the program. It also has a main memory such as a random access memory (RAM) for storing temporarily needed data.
 そして、周波数特性予測装置10Aにおいて、演算処理装置が補助記憶装置からアプリケーションソフトウェア又はOSを読み込み、読み込んだアプリケーションソフトウェア又はOSを主記憶装置に展開させながら、これらのアプリケーションソフトウェア又はOSに基づいた演算処理を行なう。また、この演算結果に基づいて、各装置が備える各種のハードウェアを制御する。これにより、本実施形態の機能ブロックは実現される。つまり、本実施形態は、ハードウェアとソフトウェアが協働することにより実現することができる。 Then, in the frequency characteristic prediction device 10A, the arithmetic processing unit reads the application software or the OS from the auxiliary storage device, and develops the read application software or OS in the main storage device, while performing arithmetic processing based on the application software or the OS. do Also, based on the result of this calculation, various hardware included in each device is controlled. This implements the functional blocks of the present embodiment. In other words, this embodiment can be realized by cooperation of hardware and software.
 次に、周波数特性予測装置10Aの動作についてフローチャートを用いて説明する。図4は周波数特性予測装置の動作を示すフローチャートである。 Next, the operation of the frequency characteristic prediction device 10A will be explained using a flowchart. FIG. 4 is a flow chart showing the operation of the frequency characteristic prediction device.
 ステップS11において、移動指令生成部200からの、早送りの移動指令に基づいて、モータ制御部100が制御され、可動部となる台810は代表測定点A2に移動する。 In step S11, the motor control unit 100 is controlled based on the fast-forward movement command from the movement command generation unit 200, and the table 810, which is the movable unit, moves to the representative measurement point A2.
 ステップS12において、状態切替部600は、早送りの移動指令に基づいて、モータ制御部100のパラメータを早送りのパラメータとする。ステップS12はステップS11と同時に行われてもよく、ステップS11の前に行われてもよい。 In step S12, the state switching unit 600 sets the parameters of the motor control unit 100 as fast-forward parameters based on the fast-forward movement command. Step S12 may be performed simultaneously with step S11, or may be performed before step S11.
 ステップS13において、移動指令生成部200は、周波数が変化する正弦波信号となる速度指令Vcmdを、モータ制御部100に出力し、周波数特性測定部300は、各周波数ごとに、入力信号となる速度指令Vcmdと出力信号となる速度検出値Vfd1の、振幅比(入出力ゲイン)及び位相遅れとを求めることで、周波数特性f1を測定して記憶部400に記憶する。
する。
In step S13, the movement command generation unit 200 outputs the speed command Vcmd, which is a sine wave signal whose frequency changes, to the motor control unit 100. By obtaining the amplitude ratio (input/output gain) and the phase delay between the command Vcmd and the speed detection value Vfd1 as the output signal, the frequency characteristic f1 is measured and stored in the storage unit 400 .
do.
 ステップS14において、移動指令生成部200が早送りの速度指令を切削送りの速度指令に変更すると、状態切替部600は、切削送りの速度指令に基づいてモータ制御部100のパラメータを切削送り用に変更する。 In step S14, when the movement command generation unit 200 changes the speed command for rapid feed to the speed command for cutting feed, the state switching unit 600 changes the parameters of the motor control unit 100 for cutting feed based on the speed command for cutting feed. do.
 ステップS15において、移動指令生成部200は、周波数が変化する正弦波信号となる速度指令Vcmdを、モータ制御部100に出力し、周波数特性測定部300は、各周波数ごとに、入力信号となる速度指令Vcmdと出力信号となる速度検出値Vfd2の、振幅比(入出力ゲイン)及び位相遅れとを求めることで、周波数特性f2を測定して記憶部400に記憶する。
 このようにして、記憶部400には、代表測定点A2での、早送り用のパラメータ設定時における周波数特性f1と、切削送り用のパラメータ設定時における周波数特性f2とが記憶される。
In step S15, the movement command generation unit 200 outputs a speed command Vcmd, which is a sinusoidal signal whose frequency changes, to the motor control unit 100. By obtaining the amplitude ratio (input/output gain) and the phase delay between the command Vcmd and the speed detection value Vfd2 as the output signal, the frequency characteristic f2 is measured and stored in the storage unit 400 .
In this manner, the storage unit 400 stores the frequency characteristic f1 when setting the parameters for rapid feed and the frequency characteristic f2 when setting the parameters for cutting feed at the representative measurement point A2.
 ステップS16において、移動指令生成部200からの、早送りの移動指令に基づいて、モータ制御部100が制御され、可動部となる台810は測定点A1に移動する。状態切替部600は、早送りの速度指令に基づいてモータ制御部100のパラメータを早送り用に変更する。 In step S16, the motor control unit 100 is controlled based on the fast-forward movement command from the movement command generation unit 200, and the table 810, which is the movable unit, moves to the measurement point A1. The state switching unit 600 changes the parameters of the motor control unit 100 for fast forward based on the speed command for fast forward.
 ステップS17において、移動指令生成部200が早送りの速度指令を切削送りの速度指令に変更すると、状態切替部600は、切削送りの速度指令に基づいてモータ制御部100のパラメータを切削送り用に変更する。なお、可動部となる台810が代表測定点A2から測定点A1に移動する場合、切削送りで移動すれば、ステップS16において、状態切替部600は、モータ制御部100のパラメータを早送り用に変更する必要がなく、またステップS17は不要となる。 In step S17, when the movement command generation unit 200 changes the speed command for rapid feed to the speed command for cutting feed, the state switching unit 600 changes the parameters of the motor control unit 100 for cutting feed based on the speed command for cutting feed. do. When the table 810, which is the movable part, moves from the representative measurement point A2 to the measurement point A1, if it moves by cutting feed, in step S16, the state switching unit 600 changes the parameter of the motor control unit 100 to fast feed. and step S17 becomes unnecessary.
 ステップS18において、移動指令生成部200は、周波数が変化する正弦波信号となる速度指令Vcmdを移動指令として、モータ制御部100に出力し、周波数特性測定部300は、各周波数ごとに、入力信号となる速度指令Vcmdと出力信号となる速度検出値Vfd2の、振幅比(入出力ゲイン)及び位相遅れとを求めることで、周波数特性f3を測定して周波数特性予測部500に出力する。 In step S18, the movement command generation unit 200 outputs the speed command Vcmd, which is a sine wave signal whose frequency changes, to the motor control unit 100 as a movement command, and the frequency characteristic measurement unit 300 generates an input signal Vcmd for each frequency. By obtaining the amplitude ratio (input/output gain) and the phase delay between the speed command Vcmd as the output signal and the speed detection value Vfd2 as the output signal, the frequency characteristic f3 is measured and output to the frequency characteristic prediction unit 500 .
 ステップS19において、周波数特性予測部500は、代表測定点A2での、早送りの周波数特性f1と、代表測定点A2での、切削送りの周波数特性f2と、測定点A1での、切削送りの周波数特性f3とを用いて、測定点A1での、早送りの予測周波数特性f4を算出する。早送りの予測周波数特性f4の算出は、既に説明したように数式3を用いて行うことができる。 In step S19, the frequency characteristic prediction unit 500 determines the rapid feed frequency characteristic f1 at the representative measurement point A2, the cutting feed frequency characteristic f2 at the representative measurement point A2, and the cutting feed frequency at the measurement point A1. Using the characteristic f3, a predicted fast-forward frequency characteristic f4 at the measurement point A1 is calculated. The fast-forward predicted frequency characteristic f4 can be calculated using Equation 3 as already described.
 ステップS20において、全ての測定点で、周波数特性の予測が完了したかどうかを判断し、完了していない場合には、ステップS16に戻り、代表測定点を除く全ての測定点で、周波数特性の予測が完了するまで、ステップS16からステップS20までの処理を行う。全ての測定点で、周波数特性の予測が完了した場合は処理を終了する。 In step S20, it is determined whether or not the prediction of the frequency characteristics has been completed at all the measurement points. The processing from step S16 to step S20 is performed until the prediction is completed. When the prediction of the frequency characteristics is completed at all measurement points, the process is terminated.
 以上、測定点A1で、早送り用のパラメータ設定時における周波数特性を予測する動作について説明したが、同様に、測定点A3で、早送り用のパラメータ設定時における周波数特性を予測する動作を行うことができる。 The operation of estimating the frequency characteristics when setting the fast-forward parameters at the measurement point A1 has been described above. can.
 本実施形態では、早送り用のパラメータ設定時における周波数特性を測定するのは代表測定点A2のみで、測定点A1、A3では、早送り用のパラメータ設定時における周波数特性を測定しないので、周波数特性の測定時間を短縮することができる。 In this embodiment, the frequency characteristics are measured only at the representative measurement point A2 when setting the parameters for fast-forwarding, and the frequency characteristics when setting the parameters for fast-forwarding are not measured at the measurement points A1 and A3. Measurement time can be shortened.
 以下、本実施形態の周波数特性予測装置を切削加工機に用いて、周波数特性を予測した実施例について説明する。切削加工機は後述する図18に示す切削加工機である。
 切削加工機の可動部となる台をX軸方向に移動させて、代表測定点をX軸方向の可動範囲の中央に設定して、周波数特性予測装置が、代表測定点で、早送り及び切削送りでの周波数特性を測定し、早送りでの周波数特性と切削送りでの周波数特性との差を求めた。
An example in which frequency characteristics are predicted using the frequency characteristics prediction device of the present embodiment in a cutting machine will be described below. The cutting machine is a cutting machine shown in FIG. 18 which will be described later.
Move the table, which is the movable part of the cutting machine, in the X-axis direction, set the representative measurement point at the center of the movable range in the X-axis direction, and the frequency characteristic prediction device predicts rapid traverse and cutting feed at the representative measurement point. Then, the difference between the frequency characteristics in rapid traverse and the frequency characteristics in cutting feed was obtained.
 図5は、代表測定点で測定した、早送り及び切削送りでのゲイン特性を示す特性図であり、図6は代表測定点で測定した、早送り及び切削送りでの位相特性を示す特性図である。図7は、代表測定点で測定した、早送りでのゲイン特性と、切削送りでのゲイン特性との差を示す特性図であり、図8は代表測定点で測定した、早送りでの位相特性と、切削送りでの位相特性との差を示す特性図である。
 次に、周波数特性予測装置は、代表測定点から離れた測定点で、切削送りでの周波数特性を測定し、この周波数特性に、早送りでの周波数特性と切削送りでの周波数特性との差を加えて、代表測定点から離れた測定点での、早送りでの周波数特性を予測した。比較のために、代表測定点から離れた測定点での、早送りでの周波数特性を実際に測定した。
 図9は、測定点で予測した早送りのゲイン特性と、測定点で測定した早送りのゲイン特性とを示す特性図であり、図10は測定点で予測した早送りの位相特性と、測定点で測定した早送りの位相特性とを示す特性図である。
 図9及び図10に示すように、測定点で予測した早送りの周波数特性と、測定点で実際に測定した早送りの周波数特性とは、ほぼ重なり、本実施形態の周波数特性予測装置による周波数特性の予測が有効であることが分かった。
FIG. 5 is a characteristic diagram showing gain characteristics in rapid traverse and cutting feed measured at representative measurement points, and FIG. 6 is a characteristic diagram showing phase characteristics in rapid traverse and cutting feed measured at representative measurement points. . FIG. 7 is a characteristic diagram showing the difference between the gain characteristics in rapid traverse and the gain characteristics in cutting feed measured at the representative measurement points, and FIG. , and is a characteristic diagram showing the difference from the phase characteristics in cutting feed.
Next, the frequency characteristics prediction device measures the frequency characteristics in cutting feed at a measurement point away from the representative measurement point, and calculates the difference between the frequency characteristics in rapid traverse and the frequency characteristics in cutting feed. In addition, we predicted the fast-forward frequency characteristics at a measurement point distant from the representative measurement point. For comparison, we actually measured the fast-forward frequency characteristics at a measurement point away from the representative measurement point.
FIG. 9 is a characteristic diagram showing the fast-forward gain characteristics predicted at the measurement points and the fast-forward gain characteristics measured at the measurement points. FIG. FIG. 10 is a characteristic diagram showing phase characteristics of fast-forwarding.
As shown in FIGS. 9 and 10, the fast-forward frequency characteristics predicted at the measurement points almost overlap with the fast-forward frequency characteristics actually measured at the measurement points. The prediction was found to be valid.
(第2の実施形態)
 第1の実施形態では、代表測定点以外の測定点で、早送り時の周波数特性を予測する例について説明した。本実施形態では、周波数特性測定部300で測定した周波数特性又は周波数特性予測部500で予測した周波数特性に基づいて、モータ制御部100のパラメータを調整するパラメータ調整部を備えた周波数特性予測装置について説明する。
(Second embodiment)
In the first embodiment, an example of estimating the frequency characteristics during fast forward at measurement points other than the representative measurement points has been described. In the present embodiment, a frequency characteristic prediction device having a parameter adjustment unit that adjusts the parameters of the motor control unit 100 based on the frequency characteristics measured by the frequency characteristic measurement unit 300 or the frequency characteristics predicted by the frequency characteristic prediction unit 500. explain.
 図11は本開示の第2の実施形態の周波数特性予測装置を示すブロック図である。図11において、図1の示した構成部材と同一構成部材については同一符号を付して説明を省略する。
 図11に示すように、周波数特性予測装置10Bは、図1に示した周波数特性予測装置10Aにパラメータ調整部800を加えた構成となっている。
 以下の説明では、第1の実施形態の説明と同様に、モータ制御部100が、モータ150により、図2に示すように、可動部となる台810をX軸方向に移動させ、図3に示す、代表測定点A2と測定点A1,A3とで、後述する状態切替部600が早送り、切削送りのパラメータの切り替えを行って周波数特性を測定する場合を例にとって説明する。
FIG. 11 is a block diagram showing a frequency characteristic prediction device according to the second embodiment of the present disclosure. In FIG. 11, the same constituent members as those shown in FIG.
As shown in FIG. 11, frequency characteristic prediction device 10B has a configuration in which parameter adjustment section 800 is added to frequency characteristic prediction device 10A shown in FIG.
In the following description, as in the description of the first embodiment, the motor control unit 100 moves the table 810, which is the movable unit, in the X-axis direction by the motor 150 as shown in FIG. A case where the state switching unit 600, which will be described later, switches the parameters of rapid feed and cutting feed to measure the frequency characteristics at the representative measurement point A2 and the measurement points A1 and A3 shown in FIG.
 パラメータ調整部800は、周波数特性測定部300で測定した、代表測定点A2での、早送りと切削送りの周波数特性に基づいて、早送り時及び切削送り時のモータ制御部100のパラメータを調整する。
 また、パラメータ調整部800は、周波数特性測定部300で測定した、測定点A1での、切削送りの周波数特性に基づいて、切削送り時のモータ制御部100のパラメータを調整する。
 さらに、パラメータ調整部800は、周波数特性予測部500で予測した、測定点A1での早送りの周波数特性に基づいて、早送り時のモータ制御部100のパラメータを調整する。
The parameter adjustment unit 800 adjusts the parameters of the motor control unit 100 during rapid feed and cutting feed based on the frequency characteristics of rapid feed and cutting feed at the representative measurement point A2 measured by the frequency characteristic measurement unit 300.
Further, the parameter adjustment unit 800 adjusts the parameters of the motor control unit 100 during cutting feed based on the frequency characteristic of the cutting feed at the measurement point A1 measured by the frequency characteristic measurement unit 300 .
Furthermore, the parameter adjustment unit 800 adjusts the parameters of the motor control unit 100 during fast-forward based on the fast-forward frequency characteristic at the measurement point A1 predicted by the frequency characteristic prediction unit 500 .
 周波数特性測定部300で測定した周波数特性、及び周波数特性予測部500で予測した周波数特性に基づいて、モータ制御部100のパラメータを調整する方法は、特に限定されないが、以下の説明では、機械学習として強化学習を用いた例について説明する。本実施形態で用いる強化学習は、例えば、特開2020-177257号公報において記載されている。機械学習は強化学習を用いることができるが、特に強化学習に限定されず、例えば、教師あり学習を行ってもよい。 The method of adjusting the parameters of the motor control unit 100 based on the frequency characteristics measured by the frequency characteristics measurement unit 300 and the frequency characteristics predicted by the frequency characteristics prediction unit 500 is not particularly limited. An example using reinforcement learning will be described. Reinforcement learning used in this embodiment is described, for example, in Japanese Patent Application Laid-Open No. 2020-177257. Although machine learning can use reinforcement learning, it is not particularly limited to reinforcement learning, and for example, supervised learning may be used.
 以下、機械学習装置として機能するパラメータ調整部800をパラメータ調整部800Aと記す。
 パラメータ調整部800Aは、周波数特性測定部300で測定した周波数特性又は周波数特性予測部500で予測した周波数特性を取得し、取得した周波数特性が目標となる周波数特性と同一又は一定範囲内となるように、モータ制御部100のパラメータの最適値を機械学習(以下、「機械学習」を「学習」という)する。そして、パラメータ調整部800Aは、モータ制御部100のパラメータ、すなわち、積分ゲインK1vと比例ゲインK2v、及びフィルタ130の伝達関数の各係数ω、τ、δを最適値に設定する。
 パラメータ調整部800Aによるパラメータ調整は出荷前に行われるが、出荷後に再学習を行ってもよい。
Hereinafter, parameter adjustment section 800 that functions as a machine learning device will be referred to as parameter adjustment section 800A.
The parameter adjustment unit 800A acquires the frequency characteristics measured by the frequency characteristics measurement unit 300 or the frequency characteristics predicted by the frequency characteristics prediction unit 500, and the acquired frequency characteristics are the same as the target frequency characteristics or within a certain range. Then, the optimum values of the parameters of the motor control unit 100 are machine-learned (hereinafter, "machine learning" is referred to as "learning"). Then, the parameter adjustment unit 800A sets the parameters of the motor control unit 100, that is, the integral gain K1v, the proportional gain K2v, and the coefficients ω c , τ, and δ of the transfer function of the filter 130 to optimum values.
Although the parameter adjustment by the parameter adjustment section 800A is performed before shipment, re-learning may be performed after shipment.
<パラメータ調整部800A>
 パラメータ調整部800Aは、周波数特性測定部300で測定した周波数特性(入出力ゲインと位相遅れ)又は周波数特性予測部500で予測した周波数特性(入出力ゲインと位相遅れ)を状態Sとして、当該状態Sに係る、パラメータの値の調整を行動Aとする、Q学習(Q-learning)を行う。当業者にとって周知のように、Q学習は、或る状態Sのとき、取り得る行動Aのなかから、価値Q(S,A)の最も高い行動Aを最適な行動として選択することを目的とする。
<Parameter adjustment unit 800A>
The parameter adjustment unit 800A sets the frequency characteristic (input/output gain and phase delay) measured by the frequency characteristic measurement unit 300 or the frequency characteristic (input/output gain and phase delay) predicted by the frequency characteristic prediction unit 500 as a state S, and sets the state Q-learning is performed in which adjustment of the parameter value related to S is action A. As is well known to those skilled in the art, Q-learning aims to select the action A with the highest value Q(S, A) from among possible actions A in a certain state S as the optimum action. do.
 パラメータ調整部800Aは、周波数特性測定部300で測定した周波数特性又は周波数特性予測部500で予測した周波数特性を含む状態情報Sを観測して、行動Aを決定する。パラメータ調整部800Aは、行動Aをするたびに報酬が返ってくる。報酬については後述する。
 Q学習では、パラメータ調整部800Aは、例えば、将来にわたっての報酬の合計が最大になる最適な行動Aを試行錯誤的に探索する。そうすることで、パラメータ調整部800Aは、状態Sに対して、最適な行動A(すなわち、最適なサーボパラメータの値)を選択することが可能となる。
Parameter adjustment section 800A observes state information S including frequency characteristics measured by frequency characteristic measurement section 300 or frequency characteristics predicted by frequency characteristic prediction section 500, and determines action A. FIG. The parameter adjustment unit 800A receives a reward each time action A is performed. Rewards will be discussed later.
In Q-learning, the parameter adjustment unit 800A, for example, searches for the optimal action A that maximizes the total future reward by trial and error. By doing so, the parameter adjusting section 800A can select the optimum action A (that is, the optimum servo parameter value) for the state S.
 パラメータ調整部800Aにおいて、周波数特性測定部300で測定した周波数特性に基づいて、モータ制御部100のパラメータを調整する動作と、周波数特性予測部500で予測した周波数特性に基づいて、モータ制御部100のパラメータを調整する動作とが異なる。以下、各動作について説明する。 In parameter adjusting section 800A, based on the frequency characteristics measured by frequency characteristic measuring section 300, the parameters of motor control section 100 are adjusted. is different from adjusting the parameters of Each operation will be described below.
(測定した周波数特性に基づいて、モータ制御部のパラメータを調整する場合)
 図12はパラメータ調整部800Aの構成を示すブロック図である。
 上述した強化学習を行うために、図12に示すように、パラメータ調整部800Aは、状態情報取得部801、学習部802、行動情報出力部803、価値関数記憶部804、及び最適化行動情報出力部805を備える。
(When adjusting the parameters of the motor control part based on the measured frequency characteristics)
FIG. 12 is a block diagram showing the configuration of parameter adjusting section 800A.
In order to perform the above-described reinforcement learning, as shown in FIG. A section 805 is provided.
 状態情報取得部801は、調整後のパラメータを用いてモータ制御部100が動作し、周波数特性測定部300で測定した周波数特性(入出力ゲインのゲイン特性と位相遅れを示す位相特性)を取得して学習部802に出力する。状態情報取得部801は、最初にQ学習を開始する時点において、調整前のパラメータでのモータ制御部100の周波数特性を周波数特性測定部300から取得して学習部802に出力する。周波数特性測定部300から取得した周波数特性は状態情報Sとなる。なお、図12では、パラメータはフィルタ130の係数として示している。 The state information acquisition unit 801 operates the motor control unit 100 using the adjusted parameters, and acquires the frequency characteristics (the gain characteristics of the input/output gains and the phase characteristics indicating the phase delay) measured by the frequency characteristics measurement unit 300. and output to the learning unit 802 . State information acquisition section 801 acquires the frequency characteristic of motor control section 100 with parameters before adjustment from frequency characteristic measurement section 300 and outputs it to learning section 802 when Q learning is first started. The frequency characteristic acquired from the frequency characteristic measurement unit 300 becomes the state information S. FIG. Note that the parameters are shown as coefficients of the filter 130 in FIG.
 なお、最初にQ学習を開始する時点において、初期値のパラメータは、予めユーザが生成するようにする。初期値のパラメータは予め操作者が工作機械を調整している場合には、調整済の値を初期値としてもよい。 It should be noted that, at the time when Q-learning is first started, the initial value parameters are generated in advance by the user. If the machine tool is adjusted in advance by the operator, the initial values of the parameters may be adjusted values.
 学習部802は、或る状態Sの下で、ある行動Aを選択する場合の価値Q(S,A)を学習する部分である。学習部802は報酬出力部8021、価値関数更新部8022、及び行動情報生成部8023を備える。 A learning unit 802 is a part that learns the value Q(S, A) when a certain action A is selected under a certain state S. The learning unit 802 includes a reward output unit 8021, a value function update unit 8022, and an action information generation unit 8023.
 報酬出力部8021は、或る状態Sの下で、行動Aを選択した場合の報酬を算出する部分である。
 報酬出力部8021は、初期値のパラメータを調整した場合において各周波数ごとの入出力ゲインgsを、予め設定した規範モデルの各周波数ごとの入出力ゲインの値gbと比較する。報酬出力部8021は、入出力ゲインgsが規範モデルの入出力ゲインの値gbよりも大きい場合には、負の報酬を与える。一方、報酬出力部8021は、入出力ゲインgsが規範モデルの入出力ゲインの値gb以下である場合には、状態Sから状態S´となった場合に、位相遅れが小さくなるときは正の報酬を与え、位相遅れが大きくなるときは負の報酬を与え、位相遅れが変わらないときはゼロの報酬を与える。
The reward output unit 8021 is a part that calculates a reward when action A is selected under a certain state S. FIG.
The reward output unit 8021 compares the input/output gain gs for each frequency when the initial value parameter is adjusted with the input/output gain value gb for each frequency of the preset reference model. The reward output unit 8021 gives a negative reward when the input/output gain gs is greater than the input/output gain value gb of the reference model. On the other hand, if the input/output gain gs is equal to or less than the input/output gain value gb of the reference model, the reward output unit 8021 outputs a positive A reward is given, giving a negative reward when the phase lag increases and a zero reward when the phase lag does not change.
 まず、報酬出力部8021が、入出力ゲインgsが規範モデルの入出力ゲインの値gbよりも大きい場合に、負の報酬を与える動作について図13及び図14を用いて説明する。
 報酬出力部8021は、入出力ゲインの規範モデルを保存している。規範モデルは、共振のない理想的な特性を有するモータ制御部のモデルである。規範モデルは、例えば、図13に示すモデルのイナーシャJa、トルク定数K、比例ゲインK、積分ゲインK、微分ゲインKから計算で求めることができる。イナーシャJaはモータイナーシャと機械イナーシャとの加算値である。
 図14は、規範モデルのモータ制御部の入出力ゲインの周波数特性と、学習前及び学習後のモータ制御部100の入出力ゲインの周波数特性を示す特性図である。図14の特性図に示すように、規範モデルは、一定の入出力ゲイン以上、例えば、-20dB以上での理想的な入出力ゲインとなる周波数領域である領域Aと、一定の入出力ゲイン未満となる周波数領域である領域Bとを備えている。図14の領域Aにおいて、規範モデルの理想的な入出力ゲインを曲線MC(太線)で示す。図14の領域Bにおいて、規範モデルの理想的な仮想入出力ゲインを曲線MC11(破線の太線)で示し、規範モデルの入出力ゲインを一定値として直線MC12(太線)で示す。図14の領域A及びBにおいて、学習前及び学習後のモータ制御部との入出力ゲインの曲線をそれぞれ曲線RC、RC2で示す。
First, the operation of the reward output unit 8021 to give a negative reward when the input/output gain gs is greater than the input/output gain value gb of the reference model will be described with reference to FIGS. 13 and 14. FIG.
The reward output unit 8021 stores a reference model of input/output gains. The reference model is a model of a motor controller that has ideal characteristics without resonance. The reference model can be calculated from the inertia Ja, torque constant Kt , proportional gain Kp , integral gain KI , and differential gain KD of the model shown in FIG. 13, for example. Inertia Ja is the sum of motor inertia and mechanical inertia.
FIG. 14 is a characteristic diagram showing the frequency characteristics of the input/output gain of the motor control unit of the reference model and the frequency characteristics of the input/output gain of the motor control unit 100 before learning and after learning. As shown in the characteristic diagram of FIG. 14, the reference model has an area A, which is a frequency area in which an ideal input/output gain is obtained above a certain input/output gain, for example, -20 dB or above, and a frequency area below the certain input/output gain. and a region B which is a frequency region where In region A of FIG. 14, the ideal input/output gain of the reference model is indicated by curve MC 1 (thick line). In region B of FIG. 14, the ideal virtual input/output gain of the reference model is indicated by curve MC 11 (thick dashed line), and the input/output gain of the reference model is indicated by straight line MC 12 (thick line) as a constant value. In areas A and B of FIG. 14, curves RC 1 and RC 2 indicate the curves of input/output gains with respect to the motor control unit before and after learning, respectively.
 報酬出力部8021は、領域Aでは、入出力ゲインの学習前の曲線RCが規範モデルの理想的な入出力ゲインの曲線MCを超えた場合は第1の負の報酬を与える。
 入出力ゲインが十分小さくなる周波数を超える領域Bでは、学習前の入出力ゲインの曲線RCが規範モデルの理想的な仮想入出力ゲインの曲線MC11を超えたとしても安定性への影響が小さくなる。そのため領域Bでは、上述したように、規範モデルの入出力ゲインは理想的なゲイン特性の曲線MC11ではなく、一定値の入出力ゲイン(例えば、-20dB)の直線MC12を用いる。しかし、学習前の入出力ゲインの曲線RCが一定値の入出力ゲインの直線MC12を超えた場合には不安定になる可能性があるため、報酬として第1の負の値を与える。
In region A, the reward output unit 8021 gives a first negative reward when the input/output gain curve RC1 before learning exceeds the ideal input/output gain curve MC1 of the reference model.
In the region B exceeding the frequency where the input/output gain becomes sufficiently small, even if the input/output gain curve RC1 before learning exceeds the ideal virtual input/output gain curve MC11 of the reference model, the stability is not affected. become smaller. Therefore, in region B, as described above, the input/output gain of the reference model uses a straight line MC12 of a constant input/output gain (eg, -20 dB) instead of the ideal gain characteristic curve MC11 . However, if the pre-learning input/output gain curve RC1 exceeds the constant input/output gain straight line MC12 , there is a possibility of instability, so a first negative value is given as a reward.
 次に、入出力ゲインgsが規範モデルの入出力ゲインの値gb以下である場合に、報酬出力部8021が、位相遅れに基づいて報酬を決める動作について説明する。
 以下の説明において、状態情報Sに係る状態変数である位相遅れをD(S)、行動情報A(サーボパラメータの値の調整)により状態Sから変化した状態S´に係る状態変数である位相遅れをD(S´)で示す。なお、最初にQ学習を開始する時点においては、位相遅れが求められていないため、周波数特性測定部300から取得した、初期値のサーボパラメータでモータ制御部100を動作させることで得られたモータ制御部100の位相遅れをD(S)として以下の報酬を決める。
Next, when the input/output gain gs is equal to or less than the input/output gain value gb of the reference model, the operation of the reward output unit 8021 to determine the reward based on the phase lag will be described.
In the following description, D(S) is the phase delay that is the state variable related to the state information S, is denoted by D(S'). At the time when the Q learning is first started, the phase delay is not obtained. The following reward is determined with the phase delay of the control unit 100 as D(S).
 報酬出力部8021が、位相遅れに基づいて報酬を決める方法は、例えば、以下の方法がある。
 状態Sから状態S´となった場合に、位相遅れが180度となる周波数が大きくなるか、小さくなるか、又は同じになるかで報酬を決めることができる。ここでは、位相遅れが180度の場合を取り上げたが、特に180度に限定されず他の値であってもよい。
 例えば、状態Sから状態S´となった場合に、位相遅れが180度となる周波数が小さくなるように曲線が変わると、位相遅れは大きくなる。一方、状態Sから状態S´となった場合に、位相遅れが180度となる周波数が大きくなるように曲線が変わると、位相遅れが小さくなる。
The method by which the reward output unit 8021 determines the reward based on the phase lag includes, for example, the following method.
When the state S changes to state S', the reward can be determined depending on whether the frequency at which the phase delay is 180 degrees increases, decreases, or remains the same. Here, the case where the phase delay is 180 degrees is taken up, but it is not particularly limited to 180 degrees, and other values may be used.
For example, when the state S changes to the state S', the phase delay increases if the curve changes so that the frequency at which the phase delay is 180 degrees becomes smaller. On the other hand, if the curve changes so that the frequency at which the phase delay is 180 degrees increases when the state S changes to the state S', the phase delay decreases.
 よって、状態Sから状態S´となった場合に、位相遅れが180度となる周波数が小さくなったとき、位相遅れD(S)<位相遅れD(S´)と定義して、報酬出力部8021は、報酬の値を第2の負の値とする。なお第2の負の値の絶対値は第1の負の値よりも小さくする。
 一方で、状態Sから状態S´となった場合に、位相遅れが180度となる周波数が大きくなったとき、位相遅れD(S)>位相遅れD(S´)と定義して、報酬出力部8021は、報酬の値を正の値とする。
 また、状態Sから状態S´となった場合に、位相遅れが180度となる周波数が変わらないとき、位相遅れD(S)=位相遅れD(S´)と定義して、報酬出力部8021は、報酬の値をゼロの値とする。
Therefore, when the state S changes to state S′, when the frequency at which the phase delay is 180 degrees becomes small, the phase delay D(S)<phase delay D(S′) is defined, and the reward output unit 8021 sets the reward value to the second negative value. Note that the absolute value of the second negative value is made smaller than the first negative value.
On the other hand, when the state S changes to state S′, when the frequency at which the phase delay is 180 degrees increases, the phase delay D(S) is defined as >phase delay D(S′), and the reward output A unit 8021 sets the reward value to a positive value.
Further, when the state S changes to the state S′, when the frequency at which the phase delay is 180 degrees does not change, the phase delay D(S) is defined as the phase delay D(S′), and the reward output unit 8021 sets the reward value to a value of zero.
 位相遅れに基づいて報酬を決める方法は上記の方法に限定されず、状態Sから状態S´となった場合に、位相余裕が小さくときは第2の負の値の報酬を与え、大きくなるときは正の値の報酬を与え、同じになるときはゼロの報酬を与える方法を用いてもよい。 The method of determining the reward based on the phase lag is not limited to the above method. may use a method that rewards positive values and rewards zero when they are the same.
 以上、報酬出力部8021について説明した。 The reward output unit 8021 has been described above.
 価値関数更新部8022は、状態Sと、行動Aと、行動Aを状態Sに適用した場合の状態S´と、上記のようにして求めた報酬と、に基づいてQ学習を行うことにより、価値関数記憶部804が記憶する価値関数Qを更新する。
 価値関数Qの更新は、オンライン学習で行ってもよく、バッチ学習で行ってもよく、ミニバッチ学習で行ってもよい。
 オンライン学習は、或る行動Aを現在の状態Sに適用することにより、状態Sが新たな状態S´に遷移する都度、即座に価値関数Qの更新を行う学習方法である。また、バッチ学習は、或る行動Aを現在の状態Sに適用することにより、状態Sが新たな状態S´に遷移することを繰り返すことにより、学習用のデータを収集し、収集した全ての学習用データを用いて、価値関数Qの更新を行う学習方法である。更に、ミニバッチ学習は、オンライン学習と、バッチ学習の中間的な、ある程度学習用データが溜まるたびに価値関数Qの更新を行う学習方法である。
The value function updating unit 8022 performs Q-learning based on the state S, the action A, the state S′ when the action A is applied to the state S, and the reward obtained as described above. The value function Q stored in the value function storage unit 804 is updated.
The value function Q may be updated by online learning, batch learning, or mini-batch learning.
Online learning is a learning method in which, by applying a certain action A to the current state S, the value function Q is updated immediately each time the state S transitions to a new state S'. In batch learning, learning data is collected by applying a certain action A to the current state S, and by repeating the transition of the state S to a new state S′. This is a learning method in which the value function Q is updated using learning data. Furthermore, mini-batch learning is a learning method intermediate between online learning and batch learning, in which the value function Q is updated every time learning data is accumulated to some extent.
 行動情報生成部8023は、現在の状態Sに対して、Q学習の過程における行動Aを選択する。行動情報生成部8023は、Q学習の過程において、サーボパラメータの値を調整する動作(Q学習における行動Aに相当)を行わせるために、行動情報Aを生成して、生成した行動情報Aを行動情報出力部803に対して出力する。
 より具体的には、行動情報生成部8023は、例えば、状態Sに含まれる、調整後のパラメータに対して行動Aに含まれる、パラメータにおける、速度制御部120の積分ゲインK1vと比例ゲインK2v、及びフィルタ130の伝達関数の各係数ω、τ、δをインクレメンタルに加算又は減算してもよい。
The action information generation unit 8023 selects action A for the current state S in the process of Q learning. The action information generation unit 8023 generates action information A in order to perform an operation (corresponding to action A in Q-learning) to adjust the value of the servo parameter in the process of Q-learning. Output to the action information output unit 803 .
More specifically, the action information generation unit 8023 calculates, for example, the integral gain K1v and the proportional gain K2v of the speed control unit 120 in the parameters included in the action A with respect to the adjusted parameters included in the state S, and each coefficient ω c , τ, δ of the transfer function of filter 130 may be incrementally added or subtracted.
 なお、パラメータとなる、速度制御部120の積分ゲインK1vと比例ゲインK2v、及びフィルタ130の各係数ω、τ、δは全てを修正してもよいが、一部の係数を修正してもよい。フィルタ130の各係数ω、τ、δを調整する場合、例えば、共振を生ずる中心周波数fcは見つけやすく、中心周波数fcは特定しやすい。そこで、行動情報生成部8023は、中心周波数fcを仮に固定して、帯域幅fw及び減衰係数δを修正、すなわち、係数ω(=2πfc)を固定し、係数τ(=fw/fc)と及び減衰係数δを修正する動作を行わせるために、行動情報Aを生成して、生成した行動情報Aを行動情報出力部803に対して出力してもよい。 All of the integral gain K1v and proportional gain K2v of the speed control unit 120 and the coefficients ω c , τ, and δ of the filter 130, which are parameters, may be modified. good. When adjusting the coefficients ω c , τ, δ of the filter 130, for example, it is easy to find the center frequency fc that causes resonance and to specify the center frequency fc. Therefore, the behavior information generation unit 8023 temporarily fixes the center frequency fc, corrects the bandwidth fw and the attenuation coefficient δ, that is, fixes the coefficient ω c (=2πfc), and modifies the coefficient τ (=fw/fc). and the action information A may be generated and output to the action information output unit 803 in order to perform the operation of correcting the attenuation coefficient δ.
 また、行動情報生成部8023は、現在の推定される行動Aの価値の中で、最も価値Q(S,A)の高い行動A´を選択するグリーディ法や、ある小さな確率εでランダムに行動A´選択し、それ以外では最も価値Q(S,A)の高い行動A´を選択するεグリーディ法といった公知の方法により、行動A´を選択する方策を取るようにしてもよい。 Further, the action information generation unit 8023 may use a greedy method for selecting the action A' with the highest value Q(S, A) among the values of the action A currently estimated, or a random action with a certain small probability ε. A' is selected, and otherwise, a known method such as the ε-greedy method of selecting the action A' with the highest value Q(S, A) may be used to select the action A'.
 行動情報出力部803は、学習部802から出力される行動情報Aをモータ制御部100に対して送信する部分である。上述したように、この行動情報に基づいて、現在の状態S、すなわち現在設定されている、モータ制御部100において、パラメータにおける、速度制御部120の積分ゲインK1vと比例ゲインK2v、及び/又は各係数ω、τ、δを調整することで、次の状態S´(すなわち調整された、速度制御部120の積分ゲインK1vと比例ゲインK2v、及び/又はフィルタ130の各係数)に遷移する。 The action information output unit 803 is a part that transmits the action information A output from the learning unit 802 to the motor control unit 100 . As described above, based on this behavior information, in the current state S, that is, the current setting in the motor control unit 100, the integral gain K1v and the proportional gain K2v of the speed control unit 120 and/or each Adjusting the coefficients ω c , τ, δ transitions to the next state S′ (that is, the adjusted integral gain K1v and proportional gain K2v of the speed control unit 120 and/or each coefficient of the filter 130).
 価値関数記憶部804は、価値関数Qを記憶する記憶装置である。価値関数Qは、例えば状態S、行動A毎にテーブル(以下、行動価値テーブルと呼ぶ)として格納してもよい。価値関数記憶部804に記憶された価値関数Qは、価値関数更新部8022により更新される。また、価値関数記憶部804に記憶された価値関数Qは、他の工作機械のパラメータ調整部800Aとの間で共有されるようにしてもよい。価値関数Qを複数の工作機械のパラメータ調整部800Aで共有するようにすれば、各工作機械のパラメータ調整部800Aにて分散して強化学習を行うことが可能となるので、強化学習の効率を向上させることが可能となる。 The value function storage unit 804 is a storage device that stores the value function Q. The value function Q may be stored as a table (hereinafter referred to as an action value table) for each state S and action A, for example. Value function Q stored in value function storage unit 804 is updated by value function update unit 8022 . Also, the value function Q stored in the value function storage unit 804 may be shared with the parameter adjustment unit 800A of another machine tool. If the value function Q is shared by the parameter adjustment units 800A of a plurality of machine tools, it becomes possible to perform reinforcement learning in a distributed manner in the parameter adjustment units 800A of the respective machine tools, thereby increasing the efficiency of reinforcement learning. can be improved.
 最適化行動情報出力部805は、価値関数更新部8022がQ学習を行うことにより更新した価値関数Qに基づいて、価値Q(S,A)が最大となる動作を速度制御部120及びフィルタ130に行わせるための行動情報A(以下、「最適化行動情報」と呼ぶ)を生成する。
 より具体的には、最適化行動情報出力部805は、価値関数記憶部804が記憶している価値関数Qを取得する。この価値関数Qは、上述したように価値関数更新部8022がQ学習を行うことにより更新したものである。そして、最適化行動情報出力部805は、価値関数Qに基づいて、行動情報を生成し、生成した行動情報をモータ制御部100の速度制御部120及び/又はフィルタ130に対して出力する。この最適化行動情報には、モータ制御部100の速度制御部120の積分ゲインK1vと比例ゲインK2v、及び/又はフィルタ130の伝達関数の各係数ω、τ、δを修正する情報が含まれる。
Based on the value function Q updated by the value function updating unit 8022 performing Q-learning, the optimized action information output unit 805 selects the action that maximizes the value Q(S, A) from the speed control unit 120 and the filter 130 . Behavior information A (hereinafter referred to as “optimization behavior information”) is generated.
More specifically, the optimized behavior information output unit 805 acquires the value function Q stored in the value function storage unit 804. FIG. This value function Q is updated by the value function updating unit 8022 performing Q learning as described above. Then, the optimized behavior information output unit 805 generates behavior information based on the value function Q, and outputs the generated behavior information to the speed control unit 120 and/or the filter 130 of the motor control unit 100 . This optimization behavior information includes information for correcting the integral gain K1v and proportional gain K2v of the speed control unit 120 of the motor control unit 100 and/or each coefficient ω c , τ, δ of the transfer function of the filter 130. .
 速度制御部120では、この行動情報に基づいて積分ゲインK1vと比例ゲインK2vが修正され、フィルタ130では、この行動情報に基づいて伝達関数の各係数ω、τ、δが修正される。 The speed control unit 120 corrects the integral gain K1v and the proportional gain K2v based on this action information, and the filter 130 corrects each coefficient ω c , τ, δ of the transfer function based on this action information.
 パラメータ調整部800Aは、以上の動作で、パラメータの最適化を行うことができ、パラメータの調整を簡易化することができる。 The parameter adjustment unit 800A can optimize the parameters and simplify the adjustment of the parameters through the operations described above.
(予測した周波数特性に基づいて、モータ制御部のパラメータを調整する場合)
 パラメータ調整部800Aの構成は図12に示した構成と同じである。
(When adjusting the parameters of the motor control part based on the predicted frequency characteristics)
The configuration of parameter adjustment section 800A is the same as the configuration shown in FIG.
 モータ制御部100のパラメータを種々変えて、周波数特性測定部300が、代表測定点A2で、早送り時の周波数特性を測定し、代表測定点A2及び測定点A1で、切削送り時の周波数特性を測定する。これらの周波数特性を用いて、周波数特性予測部500が、測定点A1での、予測した早送り時の周波数特性を予測する。予測した早送り時の周波数特性が得られるときの、モータ制御部100のパラメータは、代表測定点A2での早送り設定時のモータ制御部100のパラメータと同じである。 By changing various parameters of the motor control unit 100, the frequency characteristic measuring unit 300 measures the frequency characteristics during rapid feed at the representative measurement point A2, and measures the frequency characteristics during cutting feed at the representative measurement points A2 and A1. Measure. Using these frequency characteristics, the frequency characteristic prediction section 500 predicts the predicted fast-forward frequency characteristics at the measurement point A1. The parameters of the motor control section 100 when the predicted frequency characteristics during fast-forward are obtained are the same as the parameters of the motor control section 100 when setting the fast-forward at the representative measurement point A2.
 周波数特性予測部500は、代表測定点A2での早送り設定時のモータ制御部100のパラメータと、測定点A1での、予測した早送り時の周波数特性とを紐づけて、種々変えたパラメータごとに周波数特性予測部500内の記憶部に記憶する。 The frequency characteristic prediction unit 500 associates the parameter of the motor control unit 100 at the time of fast-forward setting at the representative measurement point A2 with the predicted frequency characteristic at the time of fast-forward at the measurement point A1, and performs various parameters for each parameter. Stored in the storage unit in the frequency characteristic prediction unit 500 .
 パラメータ調整部800Aの状態情報取得部801は、上述した強化学習を行うときに、周波数特性予測部500内の記憶部から、代表測定点での、あるパラメータと、そのパラメータで予測した早送り時の周波数特性(ゲインと位相)を取得する。
 行動情報出力部803は、周波数特性予測部500内の記憶部に記憶された別なパラメータを指定する。
When performing the above-described reinforcement learning, the state information acquisition unit 801 of the parameter adjustment unit 800A, from the storage unit in the frequency characteristic prediction unit 500, selects a certain parameter at the representative measurement point and Get the frequency characteristics (gain and phase).
The behavior information output unit 803 designates another parameter stored in the storage unit within the frequency characteristic prediction unit 500 .
 状態情報取得部801は周波数特性予測部500内の記憶部から、指定された別なパラメータと、その別のパラメータで予測した早送りモードの周波特性(ゲインと位相)とを取得する。
 以上の動作以外のパラメータ調整部800Aの学習動作は、既に説明したパラメータ調整部800Aの動作と同じである。
 このようにして機械学習を行うと、最適な周波数特性に対応する最適なパラメータが得られる。
The state information acquisition unit 801 acquires another specified parameter and the frequency characteristics (gain and phase) of the fast-forward mode predicted by the other parameter from the storage unit in the frequency characteristics prediction unit 500 .
The learning operation of parameter adjustment section 800A other than the above operation is the same as the operation of parameter adjustment section 800A already described.
By performing machine learning in this manner, optimum parameters corresponding to optimum frequency characteristics can be obtained.
 機械学習を行うパラメータ調整部800Aについて演算量が多い場合、例えば、パーソナルコンピュータにGPU(Graphics Processing Units)を搭載し、GPGPU(General-Purpose computing on Graphics Processing Units)と呼ばれる技術により、GPUを演算処理に利用するようにすると高速処理できるようになるのでよい。更には、より高速な処理を行うために、このようなGPUを搭載したコンピュータを複数台用いてコンピュータ・クラスターを構築し、このコンピュータ・クラスターに含まれる複数のコンピュータにて並列処理を行うようにしてもよい。 When the amount of calculation is large for the parameter adjustment unit 800A that performs machine learning, for example, a personal computer is equipped with a GPU (Graphics Processing Units), and a technique called GPGPU (General-Purpose computing on Graphics Processing Units) is used to perform arithmetic processing on the GPU. If you use it for , it will be possible to perform high-speed processing. Furthermore, in order to perform faster processing, multiple computers equipped with such GPUs are used to construct a computer cluster, and the multiple computers included in this computer cluster perform parallel processing. may
 上述した各実施形態は、本発明の好適な実施形態ではあるが、上記実施形態のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。 The above-described embodiments are preferred embodiments of the present invention, but the scope of the present invention is not limited to the above-described embodiments, and various modifications are made without departing from the scope of the present invention. can be implemented in
 上述した各実施形態では、1つのフィルタを設けた場合について説明したが、フィルタ130はそれぞれ異なる周波数帯域に対応する複数個のフィルタを直列に接続することで構成してもよい。図15は複数のフィルタを直接接続してフィルタを構成した例を示すブロック図である。図15において、m個(mは2以上の自然数)の共振点がある場合に、フィルタ130は、m個のフィルタ130-1~130-mを直列接続して構成する。 In each of the above-described embodiments, the case where one filter is provided has been described, but the filter 130 may be configured by connecting in series a plurality of filters corresponding to different frequency bands. FIG. 15 is a block diagram showing an example of configuring a filter by directly connecting a plurality of filters. In FIG. 15, when there are m resonance points (where m is a natural number of 2 or more), filter 130 is configured by connecting m filters 130-1 to 130-m in series.
 また、パラメータの切り替えが生ずる複数の状態として、早送りと切削送りとでパラメータを切り替える例について説明したが、機械の停止時と移動時とでパラメータを切り替えてもよく、移動体の重量に応じてパラメータを切り替えてもよく、精度重視と低発熱重視等の工作機械の駆動条件に応じてパラメータを切り替えてもよい。 In addition, as multiple states in which parameter switching occurs, an example of switching parameters between rapid feed and cutting feed has been described. The parameter may be switched, and the parameter may be switched according to the driving conditions of the machine tool, such as emphasis on accuracy and emphasis on low heat generation.
 複数の状態の各状態のパラメータとして、速度制御部120のゲイン、フィルタ130の係数の例について説明したが、その他のパラメータとして、位置ループゲイン、電流制御部140のゲイン、PWM周期等が挙げられる。 Examples of the parameters of each state of the plurality of states are the gain of the speed control unit 120 and the coefficient of the filter 130, but other parameters include the position loop gain, the gain of the current control unit 140, the PWM period, and the like. .
 また、上述した各実施形態では、機械の可動部となる台が1次元に移動する場合の例について説明したが、以下に説明するように、機械の可動部が2次元に移動する場合、機械の可動部が3次元に移動する場合にも本発明は適用できる。 Further, in each of the above-described embodiments, an example in which the table, which is the movable portion of the machine, moves one-dimensionally has been described. The present invention can also be applied to the case where the movable portion of moves three-dimensionally.
<機械の可動部が2次元(X軸方向及びY軸方向)に移動する場合の例>
 図16は機械のX軸方向及びY軸方向に移動する可動部となる2つの台810、820を示す図である。図17は1つの代表測定点A22と、8つの測定点A11~A13,A21,A23及びA31~A33における、早送り、切削送りのパラメータの設定の状態を示す図である。図17においては、早送りと切削送りの2つのパラメータ設定での周波数特性を測定する代表測定点A22は黒で塗りつぶした丸で示され、切削送りのパラメータ設定での周波数特性を測定する測定点A11~A13,A21,A23及びA31~A33を丸で示されている。
<Example in which the movable part of the machine moves two-dimensionally (X-axis direction and Y-axis direction)>
FIG. 16 shows two stages 810 and 820 which are movable parts moving in the X-axis direction and the Y-axis direction of the machine. FIG. 17 is a diagram showing the setting of parameters for rapid feed and cutting feed at one representative measuring point A22 and eight measuring points A11 to A13, A21, A23 and A31 to A33. In FIG. 17, a representative measurement point A22 for measuring frequency characteristics with two parameter settings of rapid feed and cutting feed is indicated by a black circle, and a measurement point A11 for measuring frequency characteristics with parameter settings for cutting feed. ˜A13, A21, A23 and A31-A33 are circled.
 周波数特性予測装置10A又は周波数特性予測装置10Bは、X軸及びY軸についてそれぞれ設けられる。X軸及びY軸についてそれぞれ設けられた周波数特性予測装置10A又は周波数特性予測装置10Bの周波数特性測定部300が、代表測定点A22で、早送り用のパラメータ設定時と切削送り用のパラメータ設定時における周波数特性を測定し、測定点A11~A13,A21,A23及びA31~A33で、切削送り用のパラメータ設定時における周波数特性を測定する。そして、周波数特性予測部500が測定点A11~A13,A21,A23及びA31~A33で、早送り用のパラメータ設定時における周波数特性を予測する。図17に示される、代表測定点A22、測定点A11~A13,A21,A23及びA31~A33での両方向矢印は、X軸及びY軸について、周波数を変化させながら正弦波信号がモータ制御部100に印加され、代表測定点A22、測定点A11~A13,A21,A23及びA31~A33で周波数特性が測定されることを示している。 The frequency characteristic prediction device 10A or frequency characteristic prediction device 10B is provided for each of the X-axis and Y-axis. The frequency characteristic measuring unit 300 of the frequency characteristic prediction device 10A or the frequency characteristic prediction device 10B provided for the X-axis and the Y-axis, respectively, at the representative measurement point A22, at the time of parameter setting for rapid feed and parameter setting for cutting feed Frequency characteristics are measured at measuring points A11 to A13, A21, A23 and A31 to A33 when setting parameters for cutting feed. Then, the frequency characteristic prediction section 500 predicts the frequency characteristic at the time of setting parameters for fast-forwarding at measurement points A11 to A13, A21, A23 and A31 to A33. The double-headed arrows at representative measurement point A22, measurement points A11 to A13, A21, A23 and A31 to A33 shown in FIG. , and the frequency characteristics are measured at a representative measurement point A22, measurement points A11 to A13, A21, A23 and A31 to A33.
<機械の可動部となる2つの台が2次元(X軸方向及びY軸方向)に移動し、機械の主軸を移動する可動部が2つの台とは独立して1次元(Z軸方向)に移動する場合の例>
 図18は機械のX軸方向及びY軸方向に移動する可動部となる2つの台810、820と、機械の主軸をZ軸方向に移動する可動部830を示す図である。図19は2つの代表測定点A22,B33と、9つの測定点A11~A13,A21,A23,A31~A33及びC33における、早送り、切削送りのパラメータの設定の状態を示す図である。図19においては、早送りと切削送りの2つのパラメータ設定での周波数特性を測定する代表測定点A22、B33は黒で塗りつぶした丸で示され、切削送りのパラメータ設定での周波数特性を測定する測定点A11~A13,A21,A23,A31~A33及びC33は丸で示されている。主軸をZ軸方向に移動する可動部830は、2つの台810、820とは独立して1次元(Z軸方向)に移動するので、Z軸方向は、測定点A33、B33、C33でのみ周波数特性を測定する。図19においては、代表測定点A22及び測定点A33のみ、X軸及びY軸についての両方向矢印が示され、測定点A11~A13,A21,A23及びA31~A32についての、X軸及びY軸についての両方向矢印は省略されている。測定点A11~A33で、X軸及びY軸の周波数特性が測定される。また図19においては、測定点A33、B33及びC33のみ、Z軸についての両方向矢印が示され、Z軸について周波数特性が測定されることを示している。
<Two tables that are the moving parts of the machine move two-dimensionally (X-axis direction and Y-axis direction), and the moving part that moves the main axis of the machine is independent of the two tables and moves one-dimensionally (Z-axis direction).> Example when moving to>
FIG. 18 is a diagram showing two stages 810 and 820, which are movable parts that move in the X-axis and Y-axis directions of the machine, and a movable part 830 that moves the main shaft of the machine in the Z-axis direction. FIG. 19 is a diagram showing the setting of parameters for rapid feed and cutting feed at two representative measurement points A22 and B33 and nine measurement points A11 to A13, A21, A23, A31 to A33 and C33. In FIG. 19, representative measurement points A22 and B33 for measuring frequency characteristics with two parameter settings of rapid feed and cutting feed are indicated by black circles. Points A11-A13, A21, A23, A31-A33 and C33 are indicated by circles. The movable part 830, which moves the main axis in the Z-axis direction, moves in one dimension (Z-axis direction) independently of the two stages 810 and 820. Measure the frequency characteristics. In FIG. 19, only representative measurement point A22 and measurement point A33 show double-headed arrows for the X and Y axes, and for measurement points A11 to A13, A21, A23 and A31 to A32, double-headed arrows are omitted. The X-axis and Y-axis frequency characteristics are measured at measurement points A11 to A33. In FIG. 19, only the measurement points A33, B33 and C33 are shown with double-headed arrows for the Z axis, indicating that the frequency characteristics are measured for the Z axis.
 周波数特性予測装置10A又は周波数特性予測装置10Bは、X軸、Y軸及びZ軸についてそれぞれ設けられる。X軸、Y軸及びZ軸についてそれぞれ設けられた周波数特性予測装置10A又は周波数特性予測装置10Bの周波数特性測定部300が、代表測定点A22、B33で、早送り用のパラメータ設定時と切削送り用のパラメータ設定時における周波数特性を測定し、測定点A11~A13,A21,A23,A31~A33及びC33で、切削送り用のパラメータ設定時における周波数特性を測定する。そして、周波数特性予測部が、測定点A11~A13,A21,A23,A31~A33及びC33で、早送り用のパラメータ設定時における周波数特性を予測する。 The frequency characteristic prediction device 10A or frequency characteristic prediction device 10B is provided for each of the X, Y and Z axes. The frequency characteristic measuring unit 300 of the frequency characteristic prediction device 10A or the frequency characteristic prediction device 10B provided for the X-axis, Y-axis, and Z-axis, respectively, measures at representative measurement points A22 and B33 when setting parameters for rapid feed and for cutting feed. At measurement points A11 to A13, A21, A23, A31 to A33 and C33, the frequency characteristics at the time of parameter setting for cutting feed are measured. Then, the frequency characteristic prediction section predicts the frequency characteristic at the time of setting parameters for fast-forwarding at measurement points A11 to A13, A21, A23, A31 to A33 and C33.
<機械の主軸を移動する可動部が3次元(X軸方向、Y軸方向及びZ軸方向)に移動する場合の例>
 図20は機械の主軸をX軸方向、Y軸方向及びZ軸方向に移動する可動部を示す図である。図21は1つの代表測定点B22と、26個の測定点A11~A33,B11~B13,B21,B23,B31~B33及びC11~C33とにおける、早送り、切削送りのパラメータの設定の状態を示す図である。図21においては、早送りと切削送りの2つのパラメータ設定での周波数特性を測定する代表測定点B22は黒で塗りつぶした丸で示され、切削送りのパラメータ設定での周波数特性を測定する測定点A11~A33,B11~B13,B21,B23,B31~B33及びC11~C33は丸で示されている。
 図21においては、代表測定点A22のみ、X軸、Y軸及びZ軸についての両方向矢印が示され、測定点A11~A33、B11~B13,B21,B23,B31~B33、及びC11~C33についての、X軸、Y軸及びZ軸についての両方向矢印は省略されている。全測定点A11~C33で、X軸、Y軸及びZ軸の周波数特性が測定される。
 周波数特性予測装置10A又は周波数特性予測装置10Bは、X軸、Y軸及びZ軸についてそれぞれ設けられる。X軸、Y軸及びZ軸についてそれぞれ設けられた周波数特性予測装置10A又は周波数特性予測装置10Bの周波数特性測定部300が、代表測定点B22で、早送り用のパラメータ設定時と切削送り用のパラメータ設定時における周波数特性を測定し、測定点A11~A33、B11~B13,B21,B23,B31~B33、及びC11~C33で、切削送り用のパラメータ設定時における周波数特性を測定する。そして、周波数特性予測部が測定点A11~A33、B11~B13,B21,B23,B31~B33、及びC11~C33で、早送り用のパラメータ設定時における周波数特性を予測する。
<Example of a case where the movable part that moves the main shaft of the machine moves in three dimensions (X-axis direction, Y-axis direction, and Z-axis direction)>
FIG. 20 is a diagram showing movable parts for moving the main shaft of the machine in the X-axis, Y-axis and Z-axis directions. FIG. 21 shows the setting of parameters for rapid feed and cutting feed at one representative measuring point B22 and 26 measuring points A11 to A33, B11 to B13, B21, B23, B31 to B33 and C11 to C33. It is a diagram. In FIG. 21, a representative measurement point B22 for measuring frequency characteristics with two parameter settings of rapid feed and cutting feed is indicated by a black circle, and a measurement point A11 for measuring frequency characteristics with parameter settings for cutting feed. ˜A33, B11-B13, B21, B23, B31-B33 and C11-C33 are indicated by circles.
In FIG. 21, only the representative measurement point A22 shows double-headed arrows for the X, Y, and Z axes, and for the measurement points A11 to A33, B11 to B13, B21, B23, B31 to B33, and C11 to C33. , the double-headed arrows for the X-, Y-, and Z-axes are omitted. The frequency characteristics of the X-axis, Y-axis and Z-axis are measured at all measurement points A11 to C33.
The frequency characteristic prediction device 10A or frequency characteristic prediction device 10B is provided for each of the X, Y and Z axes. The frequency characteristic measuring unit 300 of the frequency characteristic prediction device 10A or the frequency characteristic prediction device 10B provided for each of the X-axis, Y-axis, and Z-axis measures the parameters for fast feed and for cutting feed at the representative measurement point B22. The frequency characteristics during setting are measured at measurement points A11 to A33, B11 to B13, B21, B23, B31 to B33, and C11 to C33 during parameter setting for cutting feed. Then, the frequency characteristic predicting section predicts the frequency characteristic at the time of fast-forward parameter setting at measurement points A11 to A33, B11 to B13, B21, B23, B31 to B33, and C11 to C33.
 また、以上説明した実施形態は、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。ハードウェアで構成する場合、各実施形態の一部又は全部を、例えば、LSI(Large Scale Integrated circuit)、ASIC(Application Specific Integrated Circuit)、ゲートアレイ、FPGA(Field Programmable Gate Array)等の集積回路(IC)で構成することができる。 Also, the embodiments described above can be realized by hardware, software, or a combination thereof. Here, "implemented by software" means implemented by a computer reading and executing a program. When configured by hardware, part or all of each embodiment, for example, integrated circuits such as LSI (Large Scale Integrated circuit), ASIC (Application Specific Integrated Circuit), gate array, FPGA (Field Programmable Gate Array) ( IC).
 また、上述した実施形態の一部又は全部をソフトウェアとハードウェアの組み合わせで構成する場合、フローチャートで示される機械学習部の動作の全部又は一部を記述したプログラムを記憶した、ハードディスク、ROM等の記憶部、演算に必要なデータを記憶するDRAM、CPU、及び各部を接続するバスで構成されたコンピュータにおいて、演算に必要な情報をDRAMに記憶し、CPUで当該プログラムを動作させることで実現することができる。 In addition, when part or all of the above-described embodiments are configured by a combination of software and hardware, a hard disk, ROM, or the like storing a program describing all or part of the operation of the machine learning unit shown in the flowchart In a computer composed of a storage unit, a DRAM that stores data necessary for calculation, a CPU, and a bus that connects each unit, information necessary for calculation is stored in the DRAM, and the program is executed by the CPU. be able to.
 プログラムは、様々なタイプのコンピュータ可読媒体(computer readable medium)を用いて格納され、コンピュータに供給することができる。コンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。コンピュータ可読媒体は、例えば、磁気記録媒体(例えば、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、又はRAM(random access memory))である。 Programs can be stored and supplied to computers using various types of computer readable media. Computer readable media includes various types of tangible storage media. Computer-readable media include, for example, magnetic recording media (e.g., hard disk drives), magneto-optical recording media (e.g., magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R/Ws, semiconductor memories (eg, mask ROM, PROM (programmable ROM), EPROM (erasable PROM), flash ROM, or RAM (random access memory)).
 本開示による周波数特性予測装置及び周波数特性予測方法は、上述した実施形態を含め、次のような構成を有する各種各様の実施形態を取ることができる。 The frequency characteristic prediction device and frequency characteristic prediction method according to the present disclosure can take various embodiments having the following configurations, including the embodiments described above.
 (1) 工作機械又は産業機械の軸を移動するためのモータ制御部(例えば、モータ制御部100)と、
 前記軸の位置を第1の位置から第2の位置に変更するための移動指令を前記モータ制御部に出力する移動指令生成部(例えば、移動指令生成部200)と、
 前記第1の位置及び前記第2の位置で、前記工作機械又は前記産業機械の周波数特性を測定する周波数特性測定部(例えば、周波数特性測定部300)と、
 前記第1の位置で、前記モータ制御部の状態を切り替える状態切替部(例えば、状態切替部600)と、
 前記第2の位置で、前記工作機械又は前記産業機械の周波数特性を予測する周波数特性予測部(例えば、周波数特性予測部500)と、を備え、
 前記周波数特性測定部は、前記第1の位置で、前記状態切替部で切り換えられる複数の状態についての複数の第1の周波数特性を測定し、前記第2の位置で、前記複数の状態のうちの少なくとも1つについての第2の周波数特性を測定し、
 前記周波数特性予測部は、前記複数の第1の周波数特性と、前記第2の周波数特性とを用いて、前記第2の位置の前記複数の状態のうちの少なくとも1つ以外の状態についての第3の周波数特性を予測する、周波数特性予測装置。
 この周波数予測装置によれば、測定した周波数特性に基づいて周波数特性を予測して、測定回数を削減し、測定時間を短縮することができる。
(1) a motor control unit (for example, motor control unit 100) for moving the axis of the machine tool or industrial machine;
a movement command generation unit (for example, movement command generation unit 200) that outputs a movement command for changing the position of the axis from the first position to the second position to the motor control unit;
a frequency characteristic measuring unit (for example, a frequency characteristic measuring unit 300) that measures the frequency characteristics of the machine tool or the industrial machine at the first position and the second position;
a state switching unit (for example, a state switching unit 600) that switches the state of the motor control unit at the first position;
a frequency characteristic prediction unit (for example, a frequency characteristic prediction unit 500) that predicts the frequency characteristics of the machine tool or the industrial machine at the second position;
The frequency characteristic measuring unit measures, at the first position, a plurality of first frequency characteristics for a plurality of states switched by the state switching unit, and at the second position, among the plurality of states, measuring a second frequency characteristic for at least one of
The frequency characteristic prediction unit uses the plurality of first frequency characteristics and the second frequency characteristic to perform a first prediction regarding a state other than at least one of the plurality of states at the second position. A frequency characteristic prediction device for predicting frequency characteristics of No. 3.
According to this frequency prediction device, the frequency characteristics can be predicted based on the measured frequency characteristics, the number of measurements can be reduced, and the measurement time can be shortened.
 (2) 少なくとも、前記複数の第1の周波数特性を記憶する記憶部(例えば、記憶部400)を備えた、上記(1)に記載の周波数特性予測装置。 (2) The frequency characteristic prediction device according to (1) above, comprising at least a storage unit (for example, storage unit 400) that stores the plurality of first frequency characteristics.
 (3) 前記複数の状態の間で、前記モータ制御部のゲイン、フィルタ係数、PWM周期の少なくとも一つの値が異なる、上記(1)又は(2)に記載の周波数特性予測装置。 (3) The frequency characteristic prediction device according to (1) or (2) above, wherein at least one value of the gain, filter coefficient, and PWM period of the motor control unit differs among the plurality of states.
 (4) 前記第1の位置は、前記軸の移動範囲の中央に設定される、上記(1)から(3)のいずれか1項に記載の周波数特性予測装置。 (4) The frequency characteristic prediction device according to any one of (1) to (3) above, wherein the first position is set at the center of the movement range of the axis.
 (5) 前記移動指令生成部は、周波数が変わる信号を生成し、前記信号を前記モータ制御部に入力し、
 前記周波数特性測定部は、前記信号と前記モータ制御部の出力信号とを用いて、前記信号により規定される各周波数ごとに、前記信号と前記出力信号との振幅比と位相遅れを求めることで周波数特性を測定する、上記(1)から(4)のいずれか1項に記載の周波数特性予測装置。
(5) the movement command generation unit generates a signal whose frequency changes, inputs the signal to the motor control unit;
The frequency characteristic measuring unit uses the signal and the output signal of the motor control unit to obtain an amplitude ratio and a phase delay between the signal and the output signal for each frequency defined by the signal. The frequency characteristic prediction device according to any one of (1) to (4) above, which measures frequency characteristics.
 (6) 前記周波数特性測定部は、前記信号の振幅、加振回数及び加振方式のうちの少なくとも1つを変更可能な、上記(5)に記載の周波数特性予測装置。 (6) The frequency characteristic prediction device according to (5) above, wherein the frequency characteristic measurement unit can change at least one of the amplitude of the signal, the number of vibrations, and the vibration method.
 (7) 前記複数の第1の周波数特性若しくは前記第2の周波数特性に基づいて、又は前記第3の周波数特性に基づいて、前記モータ制御部のパラメータを決定する、パラメータ調整部(例えば、パラメータ調整部800)を備えた、上記(1)から(6)のいずれか1項に記載の周波数特性予測装置。 (7) A parameter adjuster (for example, parameter The frequency characteristic prediction device according to any one of (1) to (6) above, including an adjustment unit 800).
 (8) 前記モータ制御部のパラメータは、速度制御部のゲイン、フィルタの係数、電流制御部のゲイン、及びPWM周期の少なくとも1つを含む、上記(7)に記載の周波数特性予測装置。 (8) The frequency characteristic prediction device according to (7) above, wherein the parameters of the motor control section include at least one of a gain of a speed control section, a coefficient of a filter, a gain of a current control section, and a PWM period.
 (9) 前記パラメータ調整部は、強化学習を用いて前記モータ制御部のパラメータを決定する、上記(7)又は(8)に記載の周波数特性予測装置。 (9) The frequency characteristic prediction device according to (7) or (8) above, wherein the parameter adjustment unit determines the parameters of the motor control unit using reinforcement learning.
 (10) 第1の移動指令に基づいて、モータ制御部(例えば、モータ制御部100)により工作機械又は産業機械の軸の位置を第1の位置に移動し、
 前記第1の位置で、周波数特性測定部(例えば、周波数特性測定部300)により前記モータ制御部の複数の状態についての複数の第1の周波数特性を測定し、
 第2の移動指令に基づいて、前記モータ制御部により前記軸の位置を前記第1の位置から第2の位置に移動し、
 前記第2の位置で、前記周波数特性測定部により、前記複数の状態のうちの少なくとも1つについての第2の周波数特性を測定し、
 周波数特性予測部(例えば、周波数特性予測部500)により、前記複数の第1の周波数特性と、前記第2の周波数特性とを用いて、周波数特性予測部により、前記第2の位置の前記複数の状態のうちの少なくとも1つ以外の状態についての第3の周波数特性を予測する、周波数特性予測方法。
 この周波数予測方法によれば、測定した周波数特性に基づいて周波数特性を予測して、測定回数を削減し、測定時間を短縮することができる。
(10) moving the position of the axis of the machine tool or the industrial machine to the first position by the motor control unit (for example, the motor control unit 100) based on the first movement command;
At the first position, a plurality of first frequency characteristics for a plurality of states of the motor control unit are measured by a frequency characteristic measuring unit (e.g., frequency characteristic measuring unit 300);
moving the position of the axis from the first position to the second position by the motor control unit based on a second movement command;
At the second position, the frequency characteristic measuring unit measures a second frequency characteristic for at least one of the plurality of states;
Using the plurality of first frequency characteristics and the second frequency characteristics, a frequency characteristic prediction unit (for example, frequency characteristic prediction unit 500) predicts the plurality of frequencies at the second position. A frequency characteristic prediction method for predicting a third frequency characteristic for a state other than at least one of the states of .
According to this frequency prediction method, the frequency characteristics can be predicted based on the measured frequency characteristics, the number of measurements can be reduced, and the measurement time can be shortened.
 10A、10B 周波数特性予測装置
 100 モータ制御部
 200 移動指令生成部
 300 周波数特性測定部
 400 記憶部
 500 周波数特性予測部
 600 状態切替部
 700 制御対象
 800 パラメータ調整部
10A, 10B frequency characteristic prediction device 100 motor control section 200 movement command generation section 300 frequency characteristic measurement section 400 storage section 500 frequency characteristic prediction section 600 state switching section 700 controlled object 800 parameter adjustment section

Claims (10)

  1.  工作機械又は産業機械の軸を移動するためのモータ制御部と、
     前記軸の位置を第1の位置から第2の位置に変更するための移動指令を前記モータ制御部に出力する移動指令生成部と、
     前記第1の位置及び前記第2の位置で、前記工作機械又は前記産業機械の周波数特性を測定する周波数特性測定部と、
     前記第1の位置で、前記モータ制御部の状態を切り替える状態切替部と、
     前記第2の位置で、前記工作機械又は前記産業機械の周波数特性を予測する周波数特性予測部と、を備え、
     前記周波数特性測定部は、前記第1の位置で、前記状態切替部で切り換えられる複数の状態についての複数の第1の周波数特性を測定し、前記第2の位置で、前記複数の状態のうちの少なくとも1つについての第2の周波数特性を測定し、
     前記周波数特性予測部は、前記複数の第1の周波数特性と、前記第2の周波数特性とを用いて、前記第2の位置の前記複数の状態のうちの少なくとも1つ以外の状態についての第3の周波数特性を予測する、周波数特性予測装置。
    a motor control for moving an axis of a machine tool or industrial machine;
    a movement command generation unit that outputs a movement command to the motor control unit for changing the position of the shaft from the first position to the second position;
    a frequency characteristic measuring unit that measures the frequency characteristic of the machine tool or the industrial machine at the first position and the second position;
    a state switching unit that switches the state of the motor control unit at the first position;
    a frequency characteristic prediction unit that predicts the frequency characteristic of the machine tool or the industrial machine at the second position;
    The frequency characteristic measuring unit measures, at the first position, a plurality of first frequency characteristics for a plurality of states switched by the state switching unit, and at the second position, among the plurality of states, measuring a second frequency characteristic for at least one of
    The frequency characteristic prediction unit uses the plurality of first frequency characteristics and the second frequency characteristic to perform a first prediction regarding a state other than at least one of the plurality of states at the second position. A frequency characteristic prediction device for predicting frequency characteristics of No. 3.
  2.  少なくとも、前記複数の第1の周波数特性を記憶する記憶部を備えた、請求項1に記載の周波数特性予測装置。 2. The frequency characteristic prediction device according to claim 1, comprising a storage unit that stores at least the plurality of first frequency characteristics.
  3.  前記複数の状態の間で、前記モータ制御部のゲイン、フィルタ係数、PWM周期の少なくとも一つの値が異なる、請求項1又は2に記載の周波数特性予測装置。 The frequency characteristic prediction device according to claim 1 or 2, wherein at least one value of the gain, filter coefficient, and PWM period of the motor control unit differs among the plurality of states.
  4.  前記第1の位置は、前記軸の移動範囲の中央に設定される、請求項1から3のいずれか1項に記載の周波数特性予測装置。 The frequency characteristic prediction device according to any one of claims 1 to 3, wherein the first position is set at the center of the movement range of the axis.
  5.  前記移動指令生成部は、周波数が変わる信号を生成し、前記信号を前記モータ制御部に入力し、
     前記周波数特性測定部は、前記信号と前記モータ制御部の出力信号とを用いて、前記信号により規定される各周波数ごとに、前記信号と前記出力信号との振幅比と位相遅れを求めることで周波数特性を測定する、請求項1から4のいずれか1項に記載の周波数特性予測装置。
    The movement command generation unit generates a signal whose frequency changes, inputs the signal to the motor control unit,
    The frequency characteristic measuring unit uses the signal and the output signal of the motor control unit to obtain an amplitude ratio and a phase delay between the signal and the output signal for each frequency defined by the signal. 5. The frequency characteristic prediction device according to any one of claims 1 to 4, which measures frequency characteristics.
  6.  前記周波数特性測定部は、前記信号の振幅、加振回数及び加振方式のうちの少なくとも1つを変更可能な、請求項5に記載の周波数特性予測装置。 6. The frequency characteristic prediction device according to claim 5, wherein the frequency characteristic measurement unit can change at least one of the amplitude of the signal, the number of vibrations, and the vibration method.
  7.  前記複数の第1の周波数特性若しくは前記第2の周波数特性に基づいて、又は前記第3の周波数特性に基づいて、前記モータ制御部のパラメータを決定する、パラメータ調整部を備えた、請求項1から6のいずれか1項に記載の周波数特性予測装置。 2. A parameter adjustment unit that determines a parameter of the motor control unit based on the plurality of first frequency characteristics or the second frequency characteristics, or based on the third frequency characteristic. 7. The frequency characteristic prediction device according to any one of 6.
  8.  前記モータ制御部のパラメータは、速度制御部のゲイン、フィルタの係数、電流制御部のゲイン、及びPWM周期の少なくとも1つを含む、請求項7に記載の周波数特性予測装置。 8. The frequency characteristic prediction device according to claim 7, wherein the parameters of the motor control section include at least one of a speed control section gain, a filter coefficient, a current control section gain, and a PWM period.
  9.  前記パラメータ調整部は、強化学習を用いて前記モータ制御部のパラメータを決定する、請求項7又は8に記載の周波数特性予測装置。 The frequency characteristic prediction device according to claim 7 or 8, wherein the parameter adjustment unit determines parameters of the motor control unit using reinforcement learning.
  10.  第1の移動指令に基づいて、モータ制御部により工作機械又は産業機械の軸の位置を第1の位置に移動し、
     前記第1の位置で、周波数特性測定部により前記モータ制御部の複数の状態についての複数の第1の周波数特性を測定し、
     第2の移動指令に基づいて、前記モータ制御部により前記軸の位置を前記第1の位置から第2の位置に移動し、
     前記第2の位置で、前記周波数特性測定部により、前記複数の状態のうちの少なくとも1つについての第2の周波数特性を測定し、
     周波数特性予測部により、前記複数の第1の周波数特性と、前記第2の周波数特性とを用いて、周波数特性予測部により、前記第2の位置の前記複数の状態のうちの少なくとも1つ以外の状態についての第3の周波数特性を予測する、周波数特性予測方法。
    moving the position of the axis of the machine tool or the industrial machine to the first position by the motor control unit based on the first movement command;
    measuring a plurality of first frequency characteristics with respect to a plurality of states of the motor control unit at the first position;
    moving the position of the axis from the first position to the second position by the motor control unit based on a second movement command;
    At the second position, the frequency characteristic measuring unit measures a second frequency characteristic for at least one of the plurality of states;
    a frequency characteristic prediction unit, using the plurality of first frequency characteristics and the second frequency characteristics, by the frequency characteristic prediction unit, at least one of the plurality of states at the second position other than A frequency characteristic prediction method for predicting a third frequency characteristic for the state of
PCT/JP2021/032531 2021-09-03 2021-09-03 Frequency characteristic prediction device and frequency characteristic prediction method WO2023032175A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/032531 WO2023032175A1 (en) 2021-09-03 2021-09-03 Frequency characteristic prediction device and frequency characteristic prediction method
CN202180100783.9A CN117678155A (en) 2021-09-03 2021-09-03 Frequency characteristic prediction device and frequency characteristic prediction method
DE112021007832.1T DE112021007832T5 (en) 2021-09-03 2021-09-03 Frequency characteristic prediction device and frequency characteristic prediction method
JP2021567992A JP7022261B1 (en) 2021-09-03 2021-09-03 Frequency characteristic prediction device and frequency characteristic prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/032531 WO2023032175A1 (en) 2021-09-03 2021-09-03 Frequency characteristic prediction device and frequency characteristic prediction method

Publications (1)

Publication Number Publication Date
WO2023032175A1 true WO2023032175A1 (en) 2023-03-09

Family

ID=80997567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032531 WO2023032175A1 (en) 2021-09-03 2021-09-03 Frequency characteristic prediction device and frequency characteristic prediction method

Country Status (4)

Country Link
JP (1) JP7022261B1 (en)
CN (1) CN117678155A (en)
DE (1) DE112021007832T5 (en)
WO (1) WO2023032175A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181418A1 (en) * 2022-03-25 2023-09-28 ファナック株式会社 Regulation device for regulating control parameter, control system, and control parameter regulation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123018A (en) * 2008-11-21 2010-06-03 Mitsubishi Heavy Ind Ltd Servo control apparatus
JP2017022855A (en) * 2015-07-09 2017-01-26 ファナック株式会社 Servo control device having function for displaying online automatic adjustment situation of control system
JP2017068625A (en) * 2015-09-30 2017-04-06 ファナック株式会社 Servo control apparatus with function for measuring characteristics of learning controller

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5324679B1 (en) 2012-04-10 2013-10-23 ファナック株式会社 Servo motor control device for controlling a servo motor for driving a feed axis of a machine tool
JP6426770B2 (en) 2017-02-06 2018-11-21 ファナック株式会社 Servo controller
JP7000373B2 (en) 2019-04-15 2022-01-19 ファナック株式会社 Machine learning device, control device and machine learning method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123018A (en) * 2008-11-21 2010-06-03 Mitsubishi Heavy Ind Ltd Servo control apparatus
JP2017022855A (en) * 2015-07-09 2017-01-26 ファナック株式会社 Servo control device having function for displaying online automatic adjustment situation of control system
JP2017068625A (en) * 2015-09-30 2017-04-06 ファナック株式会社 Servo control apparatus with function for measuring characteristics of learning controller

Also Published As

Publication number Publication date
CN117678155A (en) 2024-03-08
JPWO2023032175A1 (en) 2023-03-09
JP7022261B1 (en) 2022-02-17
DE112021007832T5 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
JP6697491B2 (en) Machine learning device, servo motor control device, servo motor control system, and machine learning method
US20200133226A1 (en) Output device, control device and method of outputting learning parameter
JP7000373B2 (en) Machine learning device, control device and machine learning method
US11029650B2 (en) Machine learning device, control system, and machine learning method
US11507885B2 (en) Machine learning device, control device, and machine learning search range setting method
WO2023032175A1 (en) Frequency characteristic prediction device and frequency characteristic prediction method
JP6412071B2 (en) Motor control device, motor control method, and motor control program
CN111478682A (en) Machine learning system, control device, and machine learning method for optimizing filter coefficient
CN111722530B (en) Machine learning device, control system, and machine learning method
JP7469476B2 (en) Control support device, control system, and control support method
WO2021251226A1 (en) Control assist device, control device, and control assist method
JP3805476B2 (en) Motor control device
WO2022065190A1 (en) Control assistance device, control system, and filter adjustment method
JPH0695294B2 (en) Trajectory interpolation method for industrial robot
WO2019239594A1 (en) Numerical control device
WO2023067787A1 (en) Stability margin setting support device, control system, and setting support method
JP6870284B2 (en) Plant control regulator
US10901374B2 (en) Machine learning device, control device, and machine learning method
WO2023181418A1 (en) Regulation device for regulating control parameter, control system, and control parameter regulation method
WO2022186051A1 (en) Adjustment assistance device, control system, and adjustment assistance method
JP2001290506A (en) Method for identifying controlled system and controller, using identification result thereof
Zhang et al. Proportional (P)–proportional integral (PI) control parameter design and adjustment for improving cornering accuracies in CNC machine tools with linear motions
JPH02190911A (en) Method for controlling position and device for controlling operation of robot

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021567992

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956062

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112021007832

Country of ref document: DE