WO2023181418A1 - Regulation device for regulating control parameter, control system, and control parameter regulation method - Google Patents

Regulation device for regulating control parameter, control system, and control parameter regulation method Download PDF

Info

Publication number
WO2023181418A1
WO2023181418A1 PCT/JP2022/014696 JP2022014696W WO2023181418A1 WO 2023181418 A1 WO2023181418 A1 WO 2023181418A1 JP 2022014696 W JP2022014696 W JP 2022014696W WO 2023181418 A1 WO2023181418 A1 WO 2023181418A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment
unit
frequency characteristic
control
control parameter
Prior art date
Application number
PCT/JP2022/014696
Other languages
French (fr)
Japanese (ja)
Inventor
瑶 梁
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/014696 priority Critical patent/WO2023181418A1/en
Publication of WO2023181418A1 publication Critical patent/WO2023181418A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage

Definitions

  • the present invention relates to an adjustment device that adjusts control parameters of a motor control device that controls a motor, a control system including the adjustment device, and a control parameter adjustment method.
  • Control is used when optimizing control parameters such as motor gain and filter coefficients that satisfy preset stability conditions (stability margin, etc.) for motors used to drive machines such as machine tools, robots, or industrial machinery.
  • Set the parameters operate the motor control device to measure the frequency characteristics of the machine, adjust the control parameters, operate the motor control device and remeasure the frequency characteristics to check whether stability conditions are met. It was necessary to perform a series of adjustment processes multiple times.
  • Patent Document 1 describes a control parameter sensitivity analysis device for checking the adjustment results of control parameters in order to optimally adjust the control parameters of a motor control device used in semiconductor manufacturing equipment, machine tools, or industrial robots. has been done.
  • a control parameter sensitivity analysis device is a motor control device that includes a detection means that detects the amount of operation of a machine, a command device that generates a command signal, and a controller that drives a motor in response to the command signal.
  • an open-loop frequency response characteristic measuring means for obtaining an open-loop frequency response characteristic that does not include controller characteristics, a control model of a controller of a motor control device, and a closed-loop frequency measurement means for obtaining an open-loop frequency response characteristic that does not include controller characteristics; It is described that the apparatus includes a calculation means for calculating a response characteristic, and a sensitivity analysis device for performing sensitivity analysis on the relationship between a control parameter of a controller and a change in a closed-loop frequency response characteristic.
  • Patent Document 2 A control support device that adjusts at least one of the coefficients of at least one filter and the feedback gain (FG) (which serve as a control parameter) of a servo control unit (which serves as a motor control unit) that controls a motor is disclosed in Patent Document 2. It is described in 2. Patent Document 2 discloses that a control support device provides first information and second information including at least one of a feedback gain and a coefficient of at least one filter of a servo control device that controls a motor before and after adjustment.
  • FG feedback gain
  • At least one of the coefficient and feedback gain of the filter is determined based on the frequency characteristic and the measured frequency characteristic of the input/output gain and the input/output phase delay of the servo control device before adjustment of at least one of the coefficient and the feedback gain. It is described that estimated values of the frequency characteristics of the input/output gain and phase delay of the servo control device after adjustment are obtained.
  • a stability margin As a stability condition for a motor control device, if the stability margin (referring to gain margin and phase margin) is large, stability increases, but responsiveness decreases. On the other hand, when the stability margin is small, stability decreases but responsiveness increases.
  • the stability margin for a motor control device the user must check how the frequency characteristics of the motor control device change under multiple adjustment conditions, such as standard, stability-oriented, responsiveness-oriented, and custom conditions. You may want to determine the adjustment conditions depending on the situation. However, it takes a lot of time to repeat the process of adjusting control parameters such as motor gain and filter coefficients and determining frequency characteristics for each of a plurality of adjustment conditions. Therefore, it is desired to be able to confirm the results of adjusting the control parameters of the motor control device under a plurality of adjustment conditions by measuring the frequency characteristics once.
  • a first aspect of the present disclosure is an adjustment device that adjusts control parameters of a motor control unit that controls a motor, a frequency characteristic storage unit that stores frequency characteristics of the machine measured by operating the motor control unit having control parameters before adjustment; an adjustment condition setting unit that sets a plurality of adjustment conditions for adjusting the control parameters of the motor control unit; a frequency characteristic prediction unit that predicts the frequency characteristic of the machine after the control parameter is adjusted, using the control parameter before and after adjustment, and the frequency characteristic stored in the frequency characteristic storage unit; Adjusting the control parameters input to the frequency characteristic prediction unit in order to optimize the control parameters using the predicted frequency characteristics and one of the plurality of adjustment conditions set by the adjustment condition setting unit.
  • control parameter adjustment section a control parameter storage unit that stores the plurality of control parameters optimized for the plurality of adjustment conditions; an evaluation index calculation unit that calculates an evaluation index of the frequency characteristic from the predicted frequency characteristic corresponding to the optimized control parameter; a presentation unit that presents at least one of the predicted frequency characteristics and the evaluation index corresponding to the optimized control parameters for each adjustment condition of the plurality of adjustment conditions; a control parameter setting unit that sets a control parameter selected from the plurality of control parameters stored in the control parameter storage unit to the motor control unit; It is an adjustment device equipped with.
  • a second aspect of the present disclosure is an adjustment device that adjusts control parameters of a motor control unit that controls a motor, a frequency characteristic storage unit that stores frequency characteristics of the machine measured by operating the motor control unit having control parameters before adjustment; an adjustment condition setting unit that sets a plurality of adjustment conditions for adjusting the control parameters of the motor control unit; a frequency characteristic prediction unit that predicts the frequency characteristic of the machine after the control parameter is adjusted, using the control parameter before and after adjustment, and the frequency characteristic stored in the frequency characteristic storage unit; Adjusting the control parameters input to the frequency characteristic prediction unit in order to optimize the control parameters using the predicted frequency characteristics and one of the plurality of adjustment conditions set by the adjustment condition setting unit.
  • control parameter adjustment section to a control parameter storage unit that stores the plurality of control parameters optimized for the plurality of adjustment conditions; a time response prediction unit that predicts the first time response using the predicted frequency characteristics corresponding to the optimized control parameters; an evaluation index calculation unit that calculates an evaluation index of the first time response from the predicted first time response; a presentation unit that presents at least one of the first time response and the evaluation index for each adjustment condition of the plurality of adjustment conditions; a control parameter setting unit that sets a control parameter selected from the plurality of control parameters stored in the control parameter storage unit to the motor control unit; It is an adjustment device equipped with.
  • a third aspect of the present disclosure is a control system including a motor control unit that controls a motor, and the adjustment device of (1) or (2) above.
  • a fourth aspect of the present disclosure is a control parameter adjustment method for adjusting control parameters of a motor control unit that controls a motor, the method comprising:
  • the computer is a process of saving the frequency characteristics of the machine measured by operating the motor control unit having the control parameters before adjustment; a process of setting a plurality of adjustment conditions for adjusting the control parameters of the motor control unit; A process of predicting a frequency characteristic of the machine after adjusting the control parameter using the control parameter before and after adjustment and the saved frequency characteristic; A process of adjusting the control parameter in order to optimize the control parameter using the predicted frequency characteristic and one of the plurality of set adjustment conditions; a process of storing the plurality of control parameters optimized for the plurality of adjustment conditions; A process of calculating an evaluation index of the frequency characteristic from the predicted frequency characteristic corresponding to the optimized control parameter; a process of presenting at least one of the predicted frequency characteristics and the evaluation index corresponding to the optimized control parameters for each adjustment condition of the plurality of adjustment conditions; a process of setting a control parameter selected from the plurality of stored control parameters
  • a fifth aspect of the present disclosure is a control parameter adjustment method for adjusting control parameters of a motor control unit that controls a motor, the method comprising:
  • the computer is a process of saving the frequency characteristics of the machine measured by operating the motor control unit having the control parameters before adjustment; a process of setting a plurality of adjustment conditions for adjusting the control parameters of the motor control unit; A process of predicting a frequency characteristic of the machine after adjusting the control parameter using the control parameter before and after adjustment and the saved frequency characteristic; A process of adjusting the control parameter in order to optimize the control parameter using the predicted frequency characteristic and one of the plurality of set adjustment conditions; a process of storing the plurality of control parameters optimized for the plurality of adjustment conditions; a process of predicting a first time response using predicted frequency characteristics corresponding to the optimized control parameters; a process of calculating an evaluation index of the first time response from the predicted first time response; a process of presenting at least one of the first time response and the evaluation index for each adjustment condition of the plurality of adjustment conditions; a process of setting
  • each aspect of the present disclosure it is possible to obtain multiple frequency characteristics when control parameters such as the gain of the motor control unit and the coefficient of the filter are adjusted under multiple adjustment conditions by measuring the frequency characteristics once. .
  • control parameters such as the gain of the motor control unit and the coefficient of the filter are adjusted under multiple adjustment conditions by measuring the frequency characteristics once. .
  • multiple frequency characteristics and/or evaluation indices of multiple frequency characteristics you can easily compare the frequency characteristics and/or evaluation indices of frequency characteristics after adjustment under different adjustment conditions, and apply the control you want to apply. Parameters can be easily selected.
  • multiple time responses and/or multiple time response evaluation metrics predicted from multiple frequency characteristics you can easily evaluate the time response and/or time response evaluation metrics after adjustment under different adjustment conditions. You can easily select the control parameters you want to apply.
  • FIG. 1 is a block diagram showing a control system according to a first embodiment of the present disclosure.
  • FIG. 3 is a Bode diagram showing a gain margin, a phase margin, a maximum gain of closed-loop characteristics, and a maximum gain of a high frequency region.
  • FIG. 2 is a block diagram showing an example of the configuration of an adjustment section. It is a figure which shows an example of the setting screen of adjustment conditions.
  • FIG. 2 is a diagram showing a complex plane showing a unit circle on the complex plane and two circles forming a closed curve. It is.
  • FIG. 3 is a diagram showing a Nyquist locus, a unit circle, and a circle passing through a gain margin and a phase margin drawn on a complex plane.
  • Bode diagrams of open-loop frequency characteristics or closed-loop frequency characteristics for "before adjustment”, “standard”, and “stability emphasis”, and evaluation indicators regarding "before adjustment”, “standard”, and “stability emphasis” It is a figure which shows a screen. It is a Bode diagram shown in display field 502A. It is a Bode diagram shown in display field 502B. It is a Bode diagram shown in display field 502C. It is a Bode diagram showing open-loop frequency characteristics or closed-loop frequency characteristics regarding "Standard”, “Stability Emphasis”, “Responsivity Emphasis", and “Custom”. It is a figure which shows the setting screen of adjustment conditions. 5 is a flowchart showing the operation of the adjustment section.
  • FIG. 2 is a block diagram showing the configuration of a machine learning section.
  • FIG. 2 is a block diagram showing a closed-loop reference model.
  • FIG. 7 is a characteristic diagram showing the frequency characteristics of input/output gains of the motor control section of the reference model, and the motor control sections before and after learning.
  • FIG. 2 is a block diagram illustrating a configuration example of an adjustment section included in a control system according to a second embodiment of the present disclosure. It is a Bode diagram showing a first resonance mode and a second resonance mode.
  • FIG. 1 is a Bode diagram showing a first resonance mode and a second resonance mode.
  • FIG. 7 is a diagram showing a display screen displaying time responses regarding "before adjustment,” “standard,” and “emphasis on stability,” and evaluation indicators regarding "before adjustment,” “standard,” and “emphasis on stability.” It is a figure which shows the characteristic of the time response shown in 702 A of display columns. It is a figure which shows the characteristic of the time response shown in the display field 702B. It is a figure which shows the characteristic of the time response shown in display field 702C.
  • FIG. 2 is a block diagram showing an example of a filter configured by directly connecting a plurality of filters.
  • FIG. 2 is a block diagram showing another configuration example of the control system.
  • FIG. 1 is a block diagram showing a control system according to a first embodiment of the present disclosure.
  • the control system 10 includes a motor control section 100, a frequency generation section 200, a frequency characteristic measurement section 300, and an adjustment section 400.
  • the motor control section 100 corresponds to a motor control device
  • the adjustment section 400 corresponds to an adjustment device.
  • one or more of the frequency generation section 200, the frequency characteristic measurement section 300, and the adjustment section 400 may be provided within the motor control section 100.
  • the frequency characteristic measuring section 300 may be provided within the adjusting section 400.
  • the motor control section 100 includes a subtracter 110, a speed control section 120, a filter 130, a current control section 140, and a motor 150.
  • the subtracter 110, the speed control section 120, the filter 130, the current control section 140, and the motor 150 constitute a closed speed feedback loop servo system.
  • the motor 150 a linear motor that performs linear motion, a motor that has a rotating shaft, or the like can be used.
  • the object driven by the motor 150 is, for example, a mechanical part of a machine such as a machine tool, a robot, or an industrial machine.
  • the motor 150 may be provided as part of a machine tool, a robot, an industrial machine, or the like.
  • the control system 10 may be provided as part of a machine tool, a robot, an industrial machine, or the like. The details of the configuration of the motor control section 100 will be described later.
  • the frequency generation unit 200 outputs a sine wave signal as a speed command to the subtracter 110 and the frequency characteristic measurement unit 300 of the motor control unit 100 while changing the frequency.
  • the frequency characteristic measurement unit 300 detects a speed command (sine wave) as an input signal generated by the frequency generation unit 200 and a detection signal as an output signal output from a rotary encoder (not shown) provided on the motor 150. Using the velocity (sine wave) or the integral of the detected position (sine wave) that becomes the output signal output from the linear scale, the amplitude ratio (input The frequency characteristics of output gain) and phase delay are determined and output to adjustment section 400.
  • the obtained frequency characteristic is a closed-loop frequency characteristic Pc.
  • the frequency characteristic measurement section 300 calculates an open loop frequency characteristic Po from this frequency characteristic Pc, and outputs it to the adjustment section 400.
  • the adjustment unit 400 adjusts the gain of one or both of the integral gain K1v and the proportional gain K2v of the speed control unit 120, and the coefficients ⁇ c , ⁇ , of the transfer function of the filter 130, for each adjustment condition of the plurality of adjustment conditions.
  • the optimum value of at least one of ⁇ (which becomes a control parameter) is determined.
  • the plurality of adjustment conditions are, for example, two or more adjustment conditions of standard, stability-oriented, responsiveness-oriented, custom, etc., which are classified according to the characteristics of the frequency response. "Standard” is an intermediate setting between emphasis on stability and emphasis on responsiveness, and "Custom” is set arbitrarily by the user.
  • Each adjustment condition is a condition that places a limit on at least one of the gain margin, the phase margin, the maximum gain of the closed loop characteristic, and the maximum gain of the high frequency region.
  • FIG. 2 is a Bode diagram showing a gain margin, a phase margin, a maximum gain of closed-loop characteristics, and a maximum gain in a high frequency region.
  • Table 1 shows examples of limit values for gain margin, phase margin, maximum gain of closed-loop characteristics, and maximum gain in high frequency region in standard, stability-oriented, responsiveness-oriented, and custom.
  • the adjustment unit 400 For each adjustment condition, the adjustment unit 400 displays the frequency characteristics of the machine under the determined optimal control parameters, or calculates and displays evaluation indicators such as gain margin, phase margin, control band, etc. of the frequency characteristics. Then, the adjustment unit 400 allows the user to select a frequency characteristic or an evaluation index from a plurality of frequency characteristics or a plurality of evaluation indices displayed for each adjustment condition, and select an optimal frequency characteristic or evaluation index corresponding to the selected frequency characteristic or evaluation index.
  • the control parameters i.e., one or both of the integral gain K1v and the proportional gain K2v of the speed control unit 120, and the optimum value of at least one of the coefficients ⁇ c , ⁇ , and ⁇ of the transfer function of the filter 130 are set to the motor. The settings are made in the control unit 100.
  • the motor control section 100 includes a subtracter 110, a speed control section 120, a filter 130, a current control section 140, and a motor 150.
  • the subtracter 110 calculates the difference between the input speed command and the detected speed fed back, and outputs the difference to the speed control unit 120 as a speed deviation.
  • the speed control unit 120 performs PI control (Proportional-Integral Control), adds the value obtained by multiplying the speed deviation by an integral gain K1v and integrating the value, and the value obtained by multiplying the speed deviation by a proportional gain K2v, and outputs the result as a torque command. Output to filter 130.
  • Speed control section 120 includes a feedback gain. Note that the speed control unit 120 is not particularly limited to PI control, and may use other control, such as PID control (Proportional-Integral-Differential Control). Equation 1 (shown as Equation 1 below) represents a transfer function G V (s) of the speed control section 120.
  • the filter 130 is a filter that attenuates specific frequency components, such as a notch filter, a low-pass filter, or a bandstop filter. In a machine such as a machine tool that has a mechanical section driven by the motor 150, a resonance point exists, and resonance may increase in the motor control section 100. Resonance can be reduced by using a filter such as a notch filter.
  • the output of filter 130 is output to current control section 140 as a torque command.
  • Equation 2 (shown as Equation 2 below) represents a transfer function G F (s) of the notch filter as the filter 130.
  • the parameters indicate coefficients ⁇ c , ⁇ , and ⁇ .
  • Equation 2 the coefficient ⁇ is the damping coefficient, the coefficient ⁇ c is the central angular frequency, and the coefficient ⁇ is the fractional band.
  • Current control unit 140 generates a current command for driving motor 150 based on the torque command, and outputs the current command to motor 150.
  • the motor 150 is a linear motor
  • the position of the movable part is detected by a linear scale (not shown) provided on the motor 150, and a detected speed value is obtained by differentiating the detected position value, and the detected speed is calculated by differentiating the detected position value.
  • the value is input to subtractor 110 as velocity feedback. If the motor 150 has a rotating shaft, the rotational angular position is detected by a rotary encoder (not shown) provided on the motor 150, and the detected speed value is input to the subtracter 110 as speed feedback.
  • FIG. 3 is a block diagram showing an example of the configuration of the adjustment section.
  • the adjustment section 400 includes a frequency characteristic storage section 401, an adjustment condition setting section 402, a frequency characteristic prediction section 403, a control parameter adjustment section 404, a control parameter storage section 405, an evaluation index calculation section 406, and a presentation section. 407 and a control parameter setting section 408.
  • a frequency characteristic storage section 401 an adjustment condition setting section 402
  • a frequency characteristic prediction section 403 a control parameter adjustment section 404
  • a control parameter storage section 405 an evaluation index calculation section 406, and a presentation section. 407 and a control parameter setting section 408.
  • a control parameter setting section 408 Each part of the adjustment section 400 will be explained below.
  • the frequency characteristic storage unit 401 stores the closed-loop frequency characteristic Pc and the open-loop frequency characteristic Po of input/output gain and phase delay, which are output from the frequency characteristic measurement unit 300.
  • the closed-loop frequency characteristic Pc is the frequency characteristic of the machine acquired by the frequency characteristic measuring section 300 when the motor control section 100 operates with the control parameters before adjustment.
  • the adjustment condition setting unit 402 displays a setting screen for inputting adjustment conditions, and sets the gain margin and phase margin of the open loop circuit of the motor control unit 100 for each adjustment condition of the plurality of adjustment conditions input by the user. , the maximum gain of the closed-loop characteristic, and the maximum gain of the high frequency region (stability condition).
  • the gain margin, phase margin, maximum gain of closed loop characteristics, and maximum gain of high frequency region may be set in advance to predetermined values, or may be set arbitrarily by the user. In the following explanation, a case will be explained in which stability margins (gain margin and phase margin) are set.
  • the adjustment condition setting unit 402 outputs image data including a closed curve passing through a gain margin and a phase margin on a complex plane to the control parameter adjustment unit 404 for each adjustment condition based on a request from the control parameter adjustment unit 404.
  • the open loop circuit is comprised of the speed control section 120, filter 130, current control section 140, and motor 150 shown in FIG.
  • the adjustment condition setting unit 402 first displays a setting screen shown in FIG. 4, and the user selects an adjustment condition on the setting screen.
  • the user can adjust two or more of the four adjustment conditions shown in FIG. 4, for example, standard, stability-oriented, responsiveness-oriented, and custom, for cutting feed and rapid feed on the X-axis and Y-axis. Select each.
  • FIG. 4 shows how the user sequentially selects and sets standard and stability-oriented fast forwarding on the Y axis.
  • the adjustment condition setting unit 402 draws a unit circle whose circumference passes through (-1, 0) on the complex plane of FIG. A closed curve such as a circle that includes (-1, 0) on the plane inside is drawn, and image data including the closed curve is output to the control parameter adjustment unit 404 for each adjustment condition. What is output to the control parameter adjustment unit 404 does not need to be image data, but may be data that shows a closed curve such as a circle on at least a complex plane. In the following description, it is assumed that the adjustment condition setting unit 402 outputs image data to the control parameter adjustment unit 404.
  • FIG. 5 shows complex planes when the adjustment conditions are "standard” and "stability-oriented".
  • the adjustment condition setting unit 402 draws a circle C2 with a small diameter as a closed curve on a complex plane, and outputs the image data to the control parameter adjustment unit 404.
  • the adjustment condition is "emphasis on stability”
  • a circle C1 with a large diameter is drawn as a closed curve on a complex plane, and image data is output to the control parameter adjustment unit 404.
  • the point where the circle C1 or C2 intersects with the real axis determines the gain margin
  • the point where the circle C1 or C2 intersects with the unit circle determines the phase margin.
  • the stability margin referring to gain margin and phase margin
  • stability increases, and stability increases, but responsiveness decreases.
  • the centers of the circles C1 and C2 are on the real axis, but they do not have to be on the real axis.
  • the closed curve may be a closed curve other than a circle, such as a rhombus, a quadrilateral, or an ellipse.
  • the center of the circle C1 and the circle C2 is the same, but the center of the circle C1 and the center of the circle C2 may be different.
  • the frequency characteristic prediction unit 403 stores the transfer function G V (j ⁇ ) of the speed control unit 120 and/or the transfer function G F (j ⁇ ) of the filter 130 using the control parameters before adjustment. Note that the control parameters before adjustment are generated by the user in advance. If the operator has adjusted the control parameters in advance, the adjusted values may be used as "control parameters before adjustment.” Then, the frequency characteristic prediction unit 403 uses the transfer function G V (j ⁇ ) of the speed control unit 120 and/or the transfer function G F (j ⁇ ) of the filter 130 using the control parameters before adjustment. The frequency characteristic C 1 of the input/output gain and phase delay of the filter 120 and/or the filter 130 is calculated.
  • the frequency characteristic prediction unit 403 calculates the transfer function G V (j ⁇ ) and/or the speed control unit 120 using the adjusted control parameters that are adjusted based on the adjustment information output from the control parameter adjustment unit 404.
  • the frequency characteristic C 2 of the input/output gain and phase delay of the speed control unit 120 and/or the filter 130 is calculated using the transfer function G F (j ⁇ ) of the filter 130 .
  • the transfer function G V (j ⁇ ) of the speed control unit 120 and/or the transfer function G F (j ⁇ ) of the filter 130 using the adjusted control parameters is determined by replacing the unadjusted control parameters with the adjusted control parameters. You can get it at
  • Equation 3 Equation 3
  • Equation 4 Equation 4
  • the frequency characteristic prediction unit 403 obtains the calculated frequency characteristic C 1 and frequency characteristic C 2 .
  • the frequency characteristic prediction unit 403 further performs the following processing using the calculated frequency characteristic C 1 and frequency characteristic C 2 .
  • the frequency characteristic prediction unit 403 calculates the open loop frequency of the input/output gain and phase delay of the motor control unit 100 based on the frequency characteristic C 1 , the frequency characteristic C 2 and the open loop frequency characteristic Po acquired from the frequency characteristic storage unit 401. Find the estimated value Eo of the characteristic. Specifically, the frequency characteristic prediction unit 403 calculates the estimated value Eo of the open-loop frequency characteristic of the input/output gain and phase lag of the motor control unit 100 using the following equation 5 (shown as equation 5 below). demand.
  • the frequency characteristic C1 is the initial value. If the frequency characteristic C 2 of the state is G V (j ⁇ ), then n ⁇ G V (j ⁇ ) is obtained.
  • the frequency characteristic of the gain when the initial state is multiplied by n is expressed by adding 20log 10 (n) to the initial state gain, 20log 10
  • the frequency characteristic prediction unit 403 operates in conjunction with the control parameter adjustment unit 404, which will be described later, to optimize control parameters for each adjustment condition, obtain an optimized open-loop frequency characteristic or a closed-loop frequency characteristic (estimated value), It is output to the presentation section 407 and the evaluation index calculation section 406. Specifically, the frequency characteristic prediction unit 403 outputs the open-loop frequency characteristic or the closed-loop frequency characteristic (estimated value) corresponding to the optimized control parameter regarding “standard” to the presentation unit 407 and the evaluation index calculation unit 406. do.
  • the frequency characteristic prediction unit 403 displays the open-loop frequency characteristic or closed-loop frequency characteristic (estimated value) output from the frequency characteristic prediction unit 403, which corresponds to the optimized control parameter related to “emphasis on stability”, to the presentation unit 407. and output to the evaluation index calculation unit 406. Further, the frequency characteristic prediction unit 403 outputs the open-loop frequency characteristic or the closed-loop frequency characteristic output from the frequency characteristic storage unit 401 using the initial control parameters before adjustment to the presentation unit 407 and the evaluation index calculation unit 406. .
  • the frequency characteristic prediction unit 403 it is possible to calculate the estimated value Ec of the closed-loop frequency characteristic of the input/output gain and phase delay of the motor control unit 100 with the adjusted control parameters. This can be determined in a shorter time than when the motor control unit 100 is operated using parameters to actually detect the speed command and detected speed, and the frequency characteristic measuring unit 300 measures the closed-loop frequency characteristic.
  • the control parameter adjustment unit 404 acquires image data including a closed curve passing through a gain margin and a phase margin on a complex plane from the adjustment condition setting unit 402 .
  • the control parameter adjustment unit 404 first obtains image data in which a circle C2 with a small diameter corresponding to "Standard" is drawn on a complex plane as a closed curve, and then selects "Stability Emphasis". A description will be given assuming that image data is obtained in which the corresponding circle C1 with a large diameter is drawn on a complex plane as a closed curve. Further, the control parameter adjustment unit 404 receives the frequency characteristics (estimated value of the open-loop frequency characteristic or closed-loop frequency (estimated value of the characteristic).
  • the control parameter adjustment section 404 is created from the open-loop frequency characteristic H(j ⁇ )' (estimated value) or the frequency characteristic G(j ⁇ )' (estimated value) of the closed-loop frequency characteristic output from the frequency characteristic prediction section 403.
  • a Nyquist locus is drawn on a complex plane including a circle C2, which is a closed curve, and a unit circle. A method for creating a Nyquist trajectory will be described later.
  • FIG. 6 is a diagram illustrating a Nyquist locus, a unit circle, and a circle passing through a gain margin and a phase margin drawn on a complex plane.
  • the control parameter adjustment unit 404 adjusts the integral gain K1v and proportional gain K2v of the speed control unit 120 and the coefficients ⁇ c , ⁇ of the transfer function of the filter 130, which are control parameters, so that the Nyquist locus does not pass inside the circle C2. , ⁇ is output to the frequency characteristic prediction unit 403.
  • the control parameters are optimized so that the Nyquist locus does not pass inside the circle C2.
  • the control parameter adjustment unit 404 stores the optimized control parameters in the control parameter storage unit 405 as control parameters related to “standard”.
  • control parameter adjustment unit 404 After determining the control parameters related to "Standard", the control parameter adjustment unit 404 obtains image data in which a circle C1 with a large diameter corresponding to "Stability Emphasis" is drawn as a closed curve on a complex plane. Similarly to the control parameters related to "Standard", control parameters related to "Stability Emphasis" are determined and stored in the control parameter storage unit 405.
  • the frequency characteristic measuring unit 300 measures the closed-loop frequency characteristic measured by driving the motor control unit 100 using the initial control parameters (integral gain K1v, proportional gain K2v, and coefficients ⁇ c , ⁇ , ⁇ ) before adjustment. and the open-loop frequency characteristic calculated from this closed-loop frequency characteristic are stored in the frequency characteristic storage unit 401.
  • the frequency characteristic measuring section 300 calculates the open loop frequency characteristic from the closed loop frequency characteristic as follows.
  • the velocity feedback loop consists of a subtractor 110 and an open loop circuit with a transfer function H.
  • the open loop circuit is composed of the speed control section 120, the filter 130, the current control section 140, and the motor 150 shown in FIG.
  • the closed loop frequency characteristic G(j ⁇ 0 ) becomes c ⁇ e j ⁇ .
  • Control parameter storage unit 405 The control parameter storage unit 405 stores control parameters related to "standard” and control parameters related to "safety emphasis”.
  • the evaluation index calculation unit 406 calculates the evaluation index related to “before adjustment” and outputs it to the presentation unit 407.
  • the evaluation index related to "before adjustment” is, for example, the gain margin and phase margin calculated based on the open-loop frequency characteristics corresponding to the initial control parameters before adjustment, and the closed-loop frequency characteristics corresponding to the initial control parameters before adjustment. It is at least one of three control bands calculated based on frequency characteristics.
  • the evaluation index calculation unit 406 calculates the evaluation index regarding “standard” and outputs it to the presentation unit 407.
  • the evaluation index related to "Standard” is based on the gain margin and phase margin calculated based on the open-loop frequency characteristic corresponding to the control parameter related to "Standard", and the closed-loop frequency characteristic corresponding to the control parameter related to "Standard", for example. is at least one of the three control bands calculated by Furthermore, the evaluation index calculating unit 406 calculates an evaluation index related to “emphasis on stability” and outputs it to the presentation unit 407.
  • the evaluation index related to "emphasis on stability” corresponds to, for example, the gain margin and phase margin calculated based on the open-loop frequency characteristic corresponding to the control parameter related to "emphasis on stability", and the control parameter related to "emphasis on stability". at least one of the three control bands calculated based on the closed-loop frequency characteristics. Control band means the frequency where the gain intersects 0 dB or -3 dB.
  • the presentation unit 407 receives from the frequency characteristic prediction unit 403 the open-loop frequency characteristic and/or closed-loop frequency characteristic corresponding to the initial control parameters before adjustment, and the open-loop frequency characteristic and/or closed-loop frequency characteristic corresponding to the control parameter related to “standard”. A frequency characteristic and an open-loop frequency characteristic and/or a closed-loop frequency characteristic corresponding to a control parameter regarding "stability emphasis" are obtained. The presentation unit 407 also acquires, from the evaluation index calculation unit 406, an evaluation index related to “before adjustment”, an evaluation index related to “standard”, and an evaluation index related to “stability emphasis”.
  • the presenting unit 407 then displays the open-loop frequency characteristic and/or closed-loop frequency characteristic corresponding to the initial control parameter before adjustment, the open-loop frequency characteristic and/or closed-loop frequency characteristic corresponding to the control parameter regarding "standard”, and the " A Bode diagram is created from the open-loop frequency characteristics and/or closed-loop frequency characteristics corresponding to the control parameters related to "Stability Emphasis", and displayed on the screen together with evaluation indicators related to "Before Adjustment", "Standard", and "Stability Emphasis". to be displayed.
  • the presentation of the Bode diagram and the evaluation index by the presentation unit 407 is not limited to display on a display screen, but may also be presented on paper printed out by a printer or the like. In the following description, an example in which the presentation unit 407 displays on the display screen will be described.
  • FIG. 7 is a display screen displaying Bode diagrams of closed-loop frequency characteristics for "before adjustment”, “standard”, and “emphasis on stability” and evaluation indicators regarding "before adjustment”, “standard”, and “emphasis on stability”.
  • FIG. 7 all of the gain margin, phase margin, and control band are displayed, but one or two of the gain margin, phase margin, and control band may be displayed.
  • FIG. 7 in a table 501 displayed on a display screen 500, open-loop frequency characteristics and closed-loop frequency characteristics regarding "before adjustment”, “standard”, and “stability emphasis” are shown in display columns 502A, 502B, and 502C, respectively.
  • a Bode diagram is shown, and evaluation indicators regarding "before adjustment”, “standard”, and “stability emphasis” are shown in display columns 503A, 503B, and 503C, respectively.
  • FIGS. 8, 9, and 10 are Bode diagrams shown in display columns 502A, 502B, and 502C, respectively.
  • solid lines indicate closed-loop frequency characteristics
  • broken lines indicate open-loop frequency characteristics.
  • the gain margin and phase margin are calculated based on the open-loop frequency characteristics
  • the control band is calculated based on the closed-loop frequency characteristics. Therefore, when displaying all of the gain margin, phase margin, and control band in the display columns 503A, 503B, and 503C, the display columns 502A, 502B, and 502C should be opened as shown in FIGS.
  • a Bode diagram showing loop frequency characteristics and closed loop frequency characteristics is shown.
  • Bode diagrams showing open-loop frequency characteristics are shown in the display columns 502A, 502B, and 502C.
  • Bode diagrams showing closed-loop frequency characteristics are shown in display columns 502A, 502B, and 502C.
  • the presentation unit 407 displays Bode diagrams of open-loop frequency characteristics and closed-loop frequency characteristics regarding "before adjustment”, “standard”, and “stability emphasis”, and Bode diagrams regarding "before adjustment”, “standard”, and “stability emphasis”. Either one of the evaluation indicators may be displayed.
  • the presentation unit 407 may show open-loop frequency characteristics and/or closed-loop frequency characteristics regarding a plurality of adjustment conditions in one Bode diagram.
  • FIG. 11 is a Bode diagram in which the open-loop frequency characteristics and closed-loop frequency characteristics for "Standard” and "Stability Emphasis" are added to the open-loop frequency characteristics and closed-loop frequency characteristics for "Responsivity Emphasis" and "Custom”. .
  • FIG. 11 is a Bode diagram in which the open-loop frequency characteristics and closed-loop frequency characteristics for "Standard” and "Stability Emphasis" are added to the open-loop frequency characteristics and closed-loop frequency characteristics for "Responsivity Emphas
  • the presentation unit 407 does not need to display the Bode diagram of the open-loop frequency characteristic and/or the closed-loop frequency characteristic regarding “before adjustment” and the evaluation index regarding “before adjustment”. In this case, the evaluation index calculation unit 406 does not need to calculate the evaluation index regarding "before adjustment.”
  • Control parameter setting section 408 The user can select the open-loop frequency characteristics and/or closed-loop frequency characteristics corresponding to the initial control parameters "before adjustment” and the open-loop frequency characteristics corresponding to the "standard” control parameters displayed on the display screen of the presentation unit 407. and/or looking at open-loop frequency characteristics and/or closed-loop frequency characteristics corresponding to control parameters regarding closed-loop frequency characteristics and “stability-oriented”, and evaluation indicators regarding “before adjustment”, “standard”, and “stability-oriented”. , determine the adjustment conditions.
  • the control parameter setting unit 408 displays a setting screen shown in FIG. 12, and the user selects the determined adjustment condition on the setting screen. The user selects and inputs standard from among the four adjustment conditions shown in FIG. 12, for example, standard, stability-oriented, responsiveness-oriented, and custom. Then, the control parameter setting unit 408 reads out the control parameters related to “standard” from the control parameter storage unit 405 and sets them as control parameters for the motor control unit 100.
  • the user operates the motor control unit 100 set to the control parameters determined by the adjustment unit 400 of the present embodiment, and measures the frequency characteristics with the frequency characteristic measurement unit 300. The effectiveness of control parameters can be verified.
  • step S11 the closed-loop frequency characteristic and open-loop frequency characteristic of input/output gain and phase delay output from the frequency characteristic measurement section 300 are stored in the frequency characteristic storage section 401.
  • step S12 the adjustment condition setting unit 402 displays a setting screen for inputting adjustment conditions, and selects a plurality of open-loop circuits of the motor control unit 100 for each adjustment condition of the plurality of adjustment conditions input by the user.
  • step S13 the control parameter adjustment unit 404 outputs control parameter adjustment information to the frequency characteristic prediction unit 403, and the process moves to step S14.
  • step S14 the frequency characteristic prediction unit 403 calculates the frequency characteristics C1 and C2 using the control parameters before and after adjustment, which have already been explained, and uses the frequency characteristics C1 and C2 and the open loop frequency acquired from the frequency characteristic storage unit 401. Based on the characteristic Po, the open-loop frequency characteristic after adjustment of the control parameters under one of the plurality of adjustment conditions is predicted. After predicting the open-loop frequency characteristics, the open-loop frequency characteristics are also used to predict the closed-loop frequency characteristics.
  • step S15 the control parameter adjustment unit 404 determines whether stability conditions (stability margin, etc.) are satisfied.
  • step S16 the control parameter adjustment unit 404 stores the adjusted and optimized control parameters in the control parameter storage unit 405.
  • step S17 it is determined whether there are other adjustment conditions. If there are other adjustment conditions, the process returns to step S13, and if there are no other adjustment conditions, the process moves to step S18.
  • step S18 the presentation unit 407 displays the frequency characteristics under a plurality of adjustment conditions, and also displays the evaluation index calculated by the evaluation index calculation unit 406.
  • a plurality of frequency characteristics when control parameters such as motor gain and filter coefficients are adjusted under a plurality of adjustment conditions can be determined by one frequency characteristic measurement.
  • FIG. 14 is a block diagram showing a modification example in which the control parameter adjustment section 404 of the adjustment section 400 shown in FIG. 3 is replaced with a machine learning section 600.
  • the adjustment unit 400A is the same as the adjustment unit 400 shown in FIG. 3 except that the machine learning unit 600 is used as the control parameter adjustment unit 404.
  • the machine learning unit 600 performs reinforcement learning
  • the learning performed by the machine learning unit 600 is not particularly limited to reinforcement learning
  • the present invention is also applicable to cases where supervised learning is performed, for example. It is.
  • the machine learning unit 600 sets the estimated values of the input/output gain and phase delay output from the frequency characteristic prediction unit 403 as a state S, and sets the adjustment of the control parameter value related to the state S as an action A.Q Perform learning (Q-learning).
  • Q learning is to select the action A with the highest value Q(S, A) as the optimal action from among possible actions A in a certain state S. do.
  • an agent selects various actions A under a certain state S, and selects a better action based on the reward given for the action A at that time. By doing so, the correct value Q(S,A) is learned.
  • Equation 6 Equation 6
  • Equation 6 S t represents the state of the environment at time t, and A t represents the behavior at time t. Due to the action A t , the state changes to S t+1 . r t+1 represents the reward obtained by changing the state.
  • the term with max is the Q value when action A with the highest Q value known at that time is selected under state S t+1 multiplied by ⁇ .
  • is a parameter satisfying 0 ⁇ 1 and is called a discount rate.
  • is a learning coefficient and is in the range of 0 ⁇ 1.
  • Equation 6 above represents a method of updating the value Q(S t , A t ) of action A t in state S t based on the reward r t+1 returned as a result of trial A t .
  • the machine learning unit 600 determines the action A by observing the state information S including the frequency characteristics of the input/output gain and phase delay for each frequency estimated by the frequency characteristic prediction unit 403.
  • the machine learning unit 600 receives a reward each time it performs action A. The remuneration will be discussed later.
  • the machine learning unit 600 searches, for example, by trial and error for the optimal action A that maximizes the total reward over the future. By doing so, the machine learning unit 600 can select the optimal action A (that is, the optimal servo parameter value) for the state S.
  • FIG. 15 is a block diagram showing the configuration of the machine learning section 600.
  • the machine learning unit 600 includes a state information acquisition unit 601, a learning unit 602, a behavior information output unit 603, a value function storage unit 604, and an optimization behavior information output unit. 605.
  • the learning unit 602 includes a reward output unit 6021, a value function update unit 6022, and a behavior information generation unit 6023.
  • the state information acquisition unit 601 acquires from the frequency characteristic prediction unit 403 the estimated value of the frequency characteristic of the input/output gain and phase delay of the motor control unit 100 calculated using the adjusted control parameters, and outputs it to the learning unit 602. do.
  • This state information S corresponds to the environmental state S in Q learning.
  • the state information acquisition unit 601 acquires image data regarding a complex plane including a circle that is a closed curve and a unit circle from the adjustment condition setting unit 402 and outputs it to the learning unit 602.
  • the integral gain K1v and proportional gain K2v of the speed control unit 120 at the time when Q learning is first started, and the coefficients ⁇ c , ⁇ , and ⁇ of the transfer function of the filter 130 are generated by the user in advance.
  • the initial setting values of the integral gain K1v and proportional gain K2v of the speed control unit 120 and/or the coefficients ⁇ c , ⁇ , and ⁇ of the transfer function of the filter 130, created by the user are optimized by reinforcement learning. adjust to something. Note that if the operator has adjusted the machine tool in advance, the integral gain K1v, the proportional gain K2v, and the coefficients ⁇ c , ⁇ , and ⁇ may be machine learned using the adjusted values as initial values.
  • the learning unit 602 is a part that learns the value Q(S, A) when selecting a certain action A under a certain environmental state S.
  • the reward output unit 6021 of the learning unit 602 is a part that obtains a reward when action A is selected under a certain state S.
  • the reward output unit 6021 acquires image data regarding a complex plane including a circle that is a closed curve and a unit circle from the state information acquisition unit 601.
  • the reward output unit 6021 uses the input/output gain and phase delay obtained from the state information acquisition unit 601 to create a Nyquist trajectory by drawing the open-loop frequency characteristic H(j ⁇ ) on the acquired complex plane.
  • the method for creating the Nyquist trajectory has already been explained in the operation description of the adjustment section 400, so it will not be described here. In this way, a complex plane showing a circle passing through the Nyquist locus, the unit circle, and the gain margin and phase margin shown in FIG. 5 is obtained.
  • the Nyquist locus in the initial state before adjustment of the control parameters is determined by the reward output unit 6021, which acquires the open-loop frequency characteristic H(j ⁇ ) from the frequency characteristic storage unit 401 via the state information acquisition unit 601, and converts it into an open-loop frequency characteristic. It can be created by drawing H(j ⁇ ) on a complex plane.
  • the Nyquist trajectory in the process of Q learning is created by the reward output unit 6021 drawing the open-loop frequency characteristic H(j ⁇ )' or the closed-loop frequency characteristic G(j ⁇ )' output from the frequency characteristic prediction unit 403 on a complex plane. Can be created.
  • the radius of the circle is assumed to be the radius r
  • the shortest distance between the circle and the Nyquist locus is assumed to be the shortest distance d.
  • the shortest distance d is the shortest distance between the center of the circle and the Nyquist locus, but is not limited to this, and may be, for example, the shortest distance between the outer circumference of the circle and the Nyquist locus.
  • the reward output unit 6021 gives a negative reward when the shortest distance d is smaller than the radius r (d ⁇ r) and the Nyquist trajectory passes inside the closed curve.
  • the reward output unit 6021 gives a reward of zero value when the shortest distance d is equal to or larger than the radius r (d ⁇ r) and the Nyquist trajectory does not pass inside the circle.
  • the reward output unit 6021 sets the integral gain K1v of the speed control unit 120 such that the Nyquist locus does not pass inside the circle and the gain margin and phase margin are equal to or higher than the values set by the user.
  • the proportional gain K2v and the coefficients ⁇ c , ⁇ , and ⁇ of the transfer function of the filter 130 are searched by trial and error.
  • whether the Nyquist locus passes inside the circle that is a closed curve is determined based on the shortest distance between the circle and the Nyquist locus, but the method is not limited to this, and other methods may also be used. For example, the determination may be made based on whether the Nyquist locus touches or intersects with the outer circumference of a circle that is a closed curve.
  • the reward output unit 6021 gives the reward so that the feedback gain is as large as possible, exceeding the gain margin and phase margin determined by the user.
  • the reward output unit 6021 determines the reward so as to make the feedback gain as large as possible beyond the gain margin and phase margin determined by the user will be described below.
  • the remuneration output unit 6021 outputs the input/output gain and phase delay of the motor control unit 100 calculated using the adjusted control parameters output from the frequency characteristic prediction unit 403. Create a Bode diagram from and find the cutoff frequency.
  • the cutoff frequency is, for example, a frequency at which the gain characteristic of the Bode diagram becomes -3 dB or a frequency at which the phase characteristic becomes -180 degrees.
  • the reward output unit 6021 determines the reward so that the cutoff frequency becomes large. Specifically, the reward output unit 6021 corrects the integral gain K1v, the proportional gain K2v, and/or the coefficients ⁇ c , ⁇ , and ⁇ , and changes the cutoff frequency when the state S before the correction changes to the state S′. The reward is determined depending on whether fcut becomes larger, the same, or smaller. In the following description, the cutoff frequency fcut in state S is written as fcut(S), and the cutoff frequency fcut in state S' is written as fcut(S').
  • the integral gain K1v and proportional gain K2v of the speed control unit 120 and/or filter are searched by trial and error. By increasing the cutoff frequency fcut, the feedback gain increases and the response speed becomes faster.
  • the remuneration output unit 6021 calculates the input/output gain and phase delay of the motor control unit 100 using the adjusted control parameters output from the frequency characteristic prediction unit 403. , find the closed-loop transfer function G(j ⁇ ).
  • the reward output unit 6021 determines the reward so that the value of the evaluation function f becomes small.
  • the reward output unit 6021 corrects the integral gain K1v, the proportional gain K2v, and/or the coefficients ⁇ c , ⁇ , and ⁇ , and when the state S before the correction changes to the state S′, the evaluation function The reward is determined depending on whether the value of f becomes smaller, the same, or larger.
  • the value of the evaluation function f in the state S is written as f(S)
  • the value of the evaluation function f in the state S' is written as f(S').
  • the cut frequency of the closed-loop Bode diagram shown in FIG. 11 becomes larger.
  • the integral gain K1v and proportional gain K2v of the speed control unit 120 and the filter 130 are set so that the value of the evaluation function f becomes small when the Nyquist trajectory passes on a circle or outside the circle.
  • the coefficients ⁇ c , ⁇ , and ⁇ of the transfer function are searched by trial and error. As the value of the evaluation function f becomes smaller, the feedback gain increases and the response speed becomes faster.
  • the reward output unit 6021 gives a positive value reward as shortest distance d(S') ⁇ shortest distance d(S). .
  • the reward output unit 6021 gives a negative reward as shortest distance d(S')>shortest distance d(S). .
  • the integral gain K1v and proportional gain K2v of the speed control unit 120 and/or the coefficient ⁇ c of the transfer function of the filter 130 are adjusted such that the Nyquist locus passes on a circle or approaches the outer periphery of the circle. , ⁇ , and ⁇ are searched by trial and error. When the Nyquist locus passes on a circle or approaches the outer periphery of the circle, the feedback gain increases and the response speed becomes faster.
  • the method of determining the reward based on the information on the shortest distance d is not limited to the above method, and other methods can be applied.
  • the reward output unit 6021 determines the reward so as to suppress resonance by having a gain margin and a phase margin determined by the user.
  • the reward output unit 6021 stores a reference model of input/output gain.
  • the reference model is a model of a motor control unit that has ideal characteristics without resonance.
  • the reference model can be calculated from the inertia Ja, torque constant K t , proportional gain K p , integral gain K I , and differential gain K D of the model shown in FIG. 16, for example.
  • Inertia Ja is the sum of motor inertia and mechanical inertia.
  • FIG. 17 is a characteristic diagram showing the frequency characteristics of the input/output gain of the motor control section of the reference model and the motor control section 100 before and after learning.
  • the reference model has a frequency region FA that is an ideal input/output gain above a certain input/output gain, for example, -20 dB or above, and a frequency region below a certain input/output gain. It has a region FB which is a frequency region.
  • the ideal input/output gain of the reference model is shown by a curve MC 1 (thick line).
  • MC 1 thin line
  • the reward output unit 6021 outputs a negative reward if the pre-learning curve RC1 of the input/output gain for each frequency in the created frequency characteristic exceeds the ideal input/output gain curve MC1 of the reference model. give.
  • the input/output gain of the reference model is not the ideal gain characteristic curve MC11 , but a straight line MC12 with a constant value of input/output gain (for example, ⁇ 20 dB).
  • the input/output gain curve RC1 measured before learning exceeds the input/output gain straight line MC12 having a constant value, it may become unstable, and therefore a negative value is given as a reward.
  • the integral gain K1v and proportional gain K2v of the speed control section 120 and/or the coefficients ⁇ c , ⁇ , and ⁇ of the transfer function of the filter 130 are adjusted.
  • the gain and phase change depending on the bandwidth fw of the filter 130, and the gain and phase change depending on the attenuation coefficient k of the filter 130. Therefore, by adjusting the coefficients of the filter 130, the input/output gain can be adjusted.
  • the reward output unit 6021 converts this negative value reward into a value function. It is output to the update unit 6022. If the shortest distance d is equal to or larger than the radius r (d ⁇ r) and the Nyquist trajectory does not pass inside the circle, and a positive value reward is given, the reward output unit 6021 outputs the positive value. The reward is output to the value function update unit 6022.
  • the reward output unit 6021 adds a positive value reward that is given when the Nyquist trajectory does not pass inside the circle to this reward.
  • the total reward obtained by adding the above is output to the value function updating unit 6022.
  • weights may be given to the rewards. For example, if the stability of the servo system is important, the positive reward given when the Nyquist trajectory does not pass inside the circle is the reward given in three examples that take response speed into consideration or the example that takes resonance into account. It is possible to give a weight that makes it more important than the other item.
  • the reward output unit 6021 has been described above.
  • the value function updating unit 6022 performs Q learning based on the state S, the action A, the state S′ when the action A is applied to the state S, and the reward obtained as described above.
  • the value function Q stored in the value function storage unit 604 is updated.
  • the value function Q may be updated by online learning, batch learning, or mini-batch learning.
  • Online learning is a learning method in which, by applying a certain action A to the current state S, the value function Q is immediately updated each time the state S transitions to a new state S'.
  • batch learning collects learning data by applying a certain action A to the current state S, repeating the transition from state S to a new state S', and This is a learning method that updates the value function Q using learning data.
  • mini-batch learning is an intermediate learning method between online learning and batch learning, in which the value function Q is updated every time a certain amount of learning data is accumulated.
  • the behavior information generation unit 6023 selects behavior A in the Q learning process for the current state S.
  • the behavior information generation unit 6023 performs an operation (Q learning In order to cause the user to perform the action A (corresponding to action A in ), action information A is generated and the generated action information A is output to the action information output unit 603 .
  • the behavior information generation unit 6023 generates, for example, the integral gain K1v and proportional gain K2v of the speed control unit 120 and/or the coefficients ⁇ c , ⁇ of the transfer function of the filter 130, which are included in the state S.
  • the integral gain K1v and proportional gain K2v of the speed control unit 120 and the coefficients ⁇ c , ⁇ , and ⁇ of the transfer function of the filter 130, which are included in the action A, may be incrementally added to or subtracted from ⁇ .
  • the behavior information A may be generated and the generated behavior information A may be output to the behavior information output unit 603.
  • the behavior information generation unit 6023 uses the greedy method to select the behavior A′ with the highest value Q(S,A) among the currently estimated values of the behavior A, or randomly performs a behavior with a certain small probability ⁇ .
  • A' may be selected by a known method such as the ⁇ greedy method, in which the action A' with the highest value Q(S, A) is selected otherwise.
  • the behavior information output unit 603 is a part that transmits the behavior information A output from the learning unit 602 to the frequency characteristic prediction unit 403.
  • the filter 130 determines the current state S, that is, the currently set integral gain K1v and proportional gain K2v of the speed control unit 120 and/or each coefficient ⁇ c , ⁇ , based on this behavior information.
  • By slightly modifying ⁇ , a transition is made to the next state S' (that is, the modified integral gain K1v and proportional gain K2v of the speed control unit 120 and/or each coefficient of the filter 130).
  • the value function storage unit 604 is a storage device that stores the value function Q.
  • the value function Q may be stored as a table (hereinafter referred to as an action value table) for each state S and action A, for example.
  • the value function Q stored in the value function storage unit 604 is updated by the value function update unit 6022.
  • the value function Q stored in the value function storage unit 604 may be shared with other machine learning units 600. By sharing the value function Q among multiple machine learning units 600, it becomes possible to perform reinforcement learning in a distributed manner in each machine learning unit 600, which makes it possible to improve the efficiency of reinforcement learning. Become.
  • the optimization behavior information output unit 605 controls the speed control unit 120 and the filter 130 to perform an operation that maximizes the value Q(S, A) based on the value function Q updated by the value function update unit 6022 performing Q learning.
  • Behavior information A (hereinafter referred to as "optimized behavior information") for causing the behavior to occur is generated. More specifically, the optimization behavior information output unit 605 acquires the value function Q stored in the value function storage unit 604. This value function Q is updated by the value function updating unit 6022 by performing Q learning as described above. Then, the optimized behavior information output unit 605 generates behavior information based on the value function Q, and outputs the generated behavior information to the control parameter storage unit 405.
  • This optimization behavior information includes the integral gain K1v and proportional gain K2v of the speed control unit 120, and/or each of the transfer function of the filter 130, as well as the behavior information output by the behavior information output unit 603 in the process of Q learning. Information for modifying the coefficients ⁇ c , ⁇ , and ⁇ is included.
  • the machine learning unit 600 optimizes the integral gain K1v and the proportional gain K2v of the speed control unit 120 and/or the coefficients ⁇ c , ⁇ , and ⁇ of the transfer function of the filter 130, and can be operated so that the stability margin of is equal to or greater than a predetermined value.
  • the integral gain K1v and proportional gain K2v of the speed control section 120 and/or the coefficients ⁇ c , ⁇ , and ⁇ of the transfer function of the filter 130 are optimized, and the stability margin of the motor control section 100 is improved. It is possible to increase the feedback gain to a predetermined value or more and to increase the response speed and/or to suppress resonance. As described above, by using the machine learning unit 600 of the present disclosure, it is possible to simplify the gain of the speed control unit 120 and the parameter adjustment of the filter 130.
  • FIG. 18 is a block diagram illustrating a configuration example of the adjustment section included in the control system according to the second embodiment of the present disclosure.
  • the adjustment unit 400B shown in FIG. 18 differs from the adjustment unit 400 shown in FIG. 3 in that a time response prediction unit 409 and an evaluation index calculation unit 410 are provided.
  • the time response prediction unit 409, evaluation index calculation unit 410, presentation unit 407, and control parameter setting unit 408 will be described below.
  • the time response prediction unit 409 acquires the open-loop frequency characteristic/or the closed-loop frequency characteristic in the initial state before adjustment from the frequency characteristic prediction unit 403, and predicts the time response before adjustment (which becomes the second time response). do. Further, the time response prediction unit 409 acquires the open-loop frequency characteristic/or the closed-loop frequency characteristic corresponding to the optimized control parameter regarding the “standard”, and calculates the time response (first predict the time response of In addition, the time response prediction unit 409 acquires the open-loop frequency characteristic/or the closed-loop frequency characteristic corresponding to the optimized control parameter related to "emphasis on stability", and calculates the time response corresponding to the adjustment condition of "emphasis on stability".
  • a method of predicting a time response using frequency characteristics involves performing modal analysis using information on frequency characteristics to create a transfer function model P(s). When this transfer function model P(s) is subjected to inverse Laplace transform, a time domain model y(t) is obtained.
  • a method of predicting a time response using frequency characteristics is described in, for example, Japanese Patent No. 6,515,844.
  • the time response prediction unit 409 acquires the open-loop frequency characteristic/or the closed-loop frequency characteristic corresponding to the optimized control parameters related to "standard” and performs a modal analysis.
  • Modal analysis means estimating the modal frequency ⁇ and modal damping ratio ⁇ of mechanical vibration from frequency characteristics.
  • a model P(s) of the transfer function of Equation 7 (Equation 7 below) is created by modal analysis.
  • the first term on the right side of Equation 7 is a rigid body mode, and the second term is a resonance mode.
  • ⁇ n and ⁇ n represent the frequency and damping ratio of the n-th mode.
  • K 0 and K n are coefficients.
  • Equation 8 a principal component analysis is performed to obtain a transfer function model P(s) of Equation 8 (Equation 8 below).
  • Principal component analysis is the process of extracting only the main (dominant) mode from among the multiple modes obtained from mode analysis. Equations 7 and 8 above serve as a machine model when only the rigid mode and the first resonance mode are considered. Therefore, the characteristics of the machine can be expressed by a model with the minimum necessary degrees of freedom (modes).
  • FIG. 19 is a Bode diagram showing the first resonance mode and the second resonance mode, and Equations 7 and 8 are examples taking the first resonance mode into consideration. Furthermore, by inverse Laplace transform of Equation 8 above, a time domain model y(t) is obtained.
  • the evaluation index calculation unit 410 calculates at least one evaluation index (evaluation index related to "before adjustment") among rise time, overshoot amount, settling time, etc., based on the time response corresponding to "before adjustment”. and outputs it to the presentation section 407.
  • the evaluation index calculation unit 410 calculates at least one evaluation index (evaluation index related to "standard") among rise time, overshoot amount, settling time, etc., based on the time response corresponding to the "standard” adjustment condition. is calculated and output to the presentation unit 407.
  • the evaluation index calculation unit 410 calculates at least one evaluation index of rise time, overshoot amount, settling time, etc. ("stability") based on the time response corresponding to the "stability” adjustment condition. evaluation index) is calculated and output to the presentation unit 407.
  • the presentation unit 407 displays a display screen shown in FIG. 20, which will be described below, in addition to the display screen shown in FIG.
  • the presentation unit 407 acquires from the time response prediction unit 409 the time response “before adjustment”, the time response corresponding to the “standard” adjustment condition, and the time response corresponding to the “stability-oriented” adjustment condition.
  • the presentation unit 407 receives from the evaluation index calculation unit 406 the evaluation index related to the “before adjustment” time response, the evaluation index related to the time response corresponding to the “standard” adjustment condition, and the adjustment condition “emphasis on stability”.
  • the time response is, for example, a step response or an impulse response.
  • the presentation unit 407 creates time response characteristic diagrams from the time response before adjustment, the time response corresponding to the "standard” adjustment condition, and the time response corresponding to the "stability-oriented” adjustment condition, respectively, It is displayed on the display screen 700 together with the evaluation index regarding the time response “before adjustment”, the evaluation index regarding the time response corresponding to the “standard” adjustment condition, and the evaluation index regarding the time response corresponding to the “stability emphasis” adjustment condition.
  • the presentation unit 407 displays characteristic diagrams of time responses corresponding to "before adjustment”, “standard”, and “emphasis on stability", and evaluation indicators regarding "before adjustment", "standard”, and “emphasis on stability”. Either one may be displayed.
  • FIG. 20 shows characteristic diagrams of time responses corresponding to “before adjustment,” “standard,” and “stability emphasis,” and evaluation indicators regarding time responses corresponding to “before adjustment,” “standard,” and “stability emphasis.” It is a figure which shows the display screen which displayed . In FIG. 20, all of the rise time, overshoot amount, and settling time are displayed, but one or two of the rise time, overshoot amount, and settling time may be displayed. In FIG. 20, in a table 701 displayed on a display screen 700, time response characteristic diagrams corresponding to "before adjustment”, “standard”, and “stability emphasis” are shown in display columns 702A, 702B, and 702C, respectively.
  • FIG. 21, FIG. 22, and FIG. 23 are diagrams showing characteristics of time responses shown in display columns 702A, 702B, and 702C, respectively.
  • the presentation unit 407 may show time responses regarding a plurality of adjustment conditions in one characteristic diagram.
  • the presentation unit 407 may display the display screen shown in FIG. 20 alone or together with the display screen shown in FIG. 7.
  • the presentation section 407 may include a presentation section that displays the display screen shown in FIG. 20 and a presentation section that displays the display screen shown in FIG. 7. In this embodiment, when displaying only the display screen shown in FIG. 20 without displaying the display screen shown in FIG. It is not necessary to input the closed-loop frequency characteristic and/or the open-loop frequency characteristic.
  • the presentation unit 407 does not need to display the evaluation index for the time response related to "before adjustment” and the time response related to "before adjustment.”
  • the evaluation index calculation unit 410 does not need to calculate the evaluation index for the time response related to "before adjustment.”
  • Control parameter setting section 408 The user can view the time response characteristic diagram before adjustment, the time response characteristic diagram corresponding to the "standard” adjustment condition, and the time response characteristic diagram corresponding to the "stability emphasis" adjustment condition displayed on the display screen of the presentation unit 407.
  • the adjustment conditions are determined by looking at the diagram and the evaluation index regarding the time response corresponding to "before adjustment,””standard,” and "stability emphasis.”
  • the control parameter setting unit 408 displays a setting screen shown in FIG. 12, and the user views this setting screen and selects adjustment conditions. For example, the user selects and inputs "standard” from among the four adjustment conditions: standard, stability-oriented, responsiveness-oriented, and custom.
  • control parameter setting unit 408 reads out the control parameters related to “standard” from the control parameter storage unit 405 and sets them as control parameters for the motor control unit 100.
  • the presentation unit 407 displays the display screen shown in FIG. 7 and the display screen shown in FIG. 20 together, the user can view both display screens and select adjustment conditions.
  • control system 10 or any of the adjustment units 400, 400A, and 400B includes an arithmetic processing device such as a CPU (Central Processing Unit).
  • each of the control system 10 or the adjustment units 400, 400A, and 400B includes an auxiliary storage device such as an HDD (Hard Disk Drive) that stores various control programs such as application software or an OS (Operating System); It also includes a main storage device such as a RAM (Random Access Memory) for storing data temporarily required when the arithmetic processing unit executes a program.
  • arithmetic processing device such as a CPU (Central Processing Unit).
  • HDD Hard Disk Drive
  • OS Operating System
  • main storage device such as a RAM (Random Access Memory) for storing data temporarily required when the arithmetic processing unit executes a program.
  • the arithmetic processing unit reads the application software or OS from the auxiliary storage device, and deploys the loaded application software or OS in the main storage device. Arithmetic processing is performed based on the application software or OS. Also, based on this calculation result, various hardware included in each device is controlled. Thereby, the functional blocks of this embodiment are realized. In other words, this embodiment can be realized through cooperation between hardware and software.
  • a personal computer may be equipped with a GPU (Graphics Processing Units), and the GPU may be machined using a technology called GPGPU (General-Purpose computing on Graphics Processing Units). It is a good idea to use it for arithmetic processing associated with learning, as this will enable high-speed processing. Furthermore, in order to perform faster processing, multiple computers equipped with such GPUs are used to construct a computer cluster, and the multiple computers included in this computer cluster perform parallel processing. It's okay.
  • Each component included in the control system 10 and adjustment units 400, 400A, and 400B described above can be realized by hardware, software, or a combination thereof. Further, the control parameter adjustment method performed by the cooperation of each component included in the control system 10 and the adjustment units 400, 400A, and 400B can also be realized by hardware, software, or a combination thereof. .
  • being realized by software means being realized by a computer reading and executing a program.
  • Non-transitory computer-readable media include various types of tangible storage media.
  • Examples of non-transitory computer-readable media include magnetic recording media (e.g., hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, CD-R/ W, semiconductor memory (eg, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory)).
  • the program may also be supplied to the computer via various types of transitory computer readable media.
  • FIG. 24 is a block diagram showing an example of a filter configured by directly connecting a plurality of filters.
  • m is a natural number of 2 or more
  • the filter 130 is configured by connecting m filters 130-1 to 130-m in series.
  • Optimum values are determined by machine learning for the coefficients ⁇ c , ⁇ , and ⁇ of each of the m filters 130-1 to 130-m.
  • FIG. 25 is a block diagram showing another configuration example of the control system.
  • the control system 10A shown in FIG. 25 is different from the control system 10 shown in FIG. It is connected to n adjustment sections 400-1 to 400-n, and each is provided with a frequency generation section 200 and a frequency characteristic measurement section 300.
  • Adjusting sections 400-1 to 400-n have the same configuration as adjusting section 400, 400A, or 400B.
  • Motor control units 100-1 to 100-n each correspond to a motor control device, and adjustment units 400-1 to 400-n each correspond to an adjustment device.
  • the frequency generation section 200 and the frequency characteristic measurement section 300 may be provided outside the motor control sections 100-1 to 100-n.
  • the motor control section 100-1 and the adjustment section 400-1 are connected as a one-to-one pair so that they can communicate.
  • Motor control units 100-2 to 100-n and adjustment units 400-2 to 400-n are also connected in the same way as motor control unit 100-1 and adjustment unit 400-1.
  • n sets of motor control units 100-1 to 100-n and adjustment units 400-1 to 400-n are connected via a network 800.
  • 100-n and adjustment units 400-1 to 400-n the motor control unit and adjustment unit of each set may be directly connected via a connection interface.
  • the n sets of motor control units 100-1 to 100-n and adjustment units 400-1 to 400-n may be installed in the same factory, or may be installed in different factories. Good too.
  • the network 800 is, for example, a LAN (Local Area Network) built within a factory, the Internet, a public telephone network, or a combination thereof. There are no particular limitations on the specific communication method in the network 800 or whether it is a wired connection or a wireless connection.
  • LAN Local Area Network
  • the motor control units 100-1 to 100-n and the adjustment units 400-1 to 400-n are connected to each other in a one-to-one relationship for communication.
  • the adjustment unit may be communicably connected to a plurality of motor control units via the network 800.
  • a distributed processing system may be used in which each function of one adjustment unit is distributed to a plurality of servers as appropriate.
  • each function of one adjustment unit may be realized by using a virtual server function or the like on the cloud.
  • each adjustment may be such that the adjustment results among the units 400-1 to 400-n are shared. By doing so, it becomes possible to construct a more optimal model.
  • the adjustment device, control system, and control parameter adjustment method for adjusting control parameters can take various embodiments having the following configurations, including the embodiments described above.
  • An adjustment device for example, adjustment unit 400, 400A
  • a frequency characteristic storage unit for example, frequency characteristic storage unit 401
  • an adjustment condition setting section for example, adjustment condition setting section 402
  • a frequency characteristic prediction unit e.g., frequency characteristic prediction unit 403
  • control parameter adjustment unit for example, control parameter adjustment unit 404
  • control parameter storage unit for example, control parameter storage unit 405
  • an evaluation index calculation unit for example, evaluation index calculation unit 406
  • presentation unit for example, presentation unit 407
  • control parameter setting section for example, control parameter setting section 408 that sets a control parameter selected from the plurality of control parameters stored in the control parameter storage section in the motor control section; Adjustment device with.
  • this adjustment device by measuring the frequency characteristics once, it is possible to obtain a plurality of frequency characteristics when control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under a plurality of adjustment conditions.
  • control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under a plurality of adjustment conditions.
  • control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under a plurality of adjustment conditions.
  • An adjustment device for example, adjustment unit 400B that adjusts control parameters of a motor control unit that controls a motor
  • a frequency characteristic storage unit for example, frequency characteristic storage unit 401 that stores the frequency characteristics of the machine measured by operating the motor control unit having control parameters before adjustment
  • an adjustment condition setting section for example, adjustment condition setting section 402 that sets a plurality of adjustment conditions for adjusting the control parameters of the motor control section
  • a frequency characteristic prediction unit e.g., frequency characteristic prediction unit 403; Adjusting the control parameters input to the frequency characteristic prediction unit in order to optimize the control parameters using the predicted frequency characteristics and one of the plurality of adjustment conditions set by the adjustment condition setting unit.
  • control parameter adjustment unit for example, control parameter adjustment unit 404
  • control parameter storage unit for example, control parameter storage unit 405
  • time response prediction unit for example, time response prediction unit 409
  • evaluation index calculation unit e.g., evaluation index calculation unit 410
  • presentation unit for example, presentation unit 407
  • control parameter setting section for example, control parameter setting section 408 that sets a control parameter selected from the plurality of control parameters stored in the control parameter storage section in the motor control section; Adjustment device with.
  • this adjustment device by measuring the frequency characteristics once, it is possible to obtain a plurality of frequency characteristics when control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under a plurality of adjustment conditions.
  • control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under a plurality of adjustment conditions.
  • control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under a plurality of adjustment conditions.
  • the time response and/or time response evaluation index after adjustment under different adjustment conditions can be evaluated. You can easily compare and select the control parameters you want to apply.
  • the evaluation index calculation unit calculates an evaluation index of the measured frequency characteristic of the machine from the measured frequency characteristic of the machine, The adjustment device according to (1), wherein the presenting unit presents at least one of the measured frequency characteristic of the machine and an evaluation index of the measured frequency characteristic of the machine.
  • the time response prediction unit predicts a second time response using the measured frequency characteristics of the machine
  • the evaluation index calculation unit calculates an evaluation index of the second time response from the second time response
  • control parameter adjustment unit optimizes the control parameters using machine learning.
  • control parameter is at least one of a gain and a filter coefficient of the motor control unit.
  • a motor control unit for example, motor control unit 100 that controls the motor;
  • the adjustment device according to any one of (1) to (9) above, which adjusts control parameters of the motor control unit; control system with.
  • this control system by measuring the frequency characteristics once, it is possible to obtain a plurality of frequency characteristics when control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under a plurality of adjustment conditions.
  • control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under a plurality of adjustment conditions.
  • Parameters can be easily selected.
  • by checking multiple time responses and/or multiple time response evaluation metrics predicted from multiple frequency characteristics you can easily evaluate the time responses and/or time response evaluation metrics after adjustment under different adjustment conditions. You can easily select the control parameters you want to apply.
  • a frequency generation unit that generates a signal whose frequency changes and inputs the signal to the motor control unit; a frequency characteristic measurement unit that measures the frequency characteristics of the machine by measuring frequency characteristics of input/output gain and phase delay of the motor control unit based on the signal and the output signal of the motor control unit;
  • a control parameter adjustment method for adjusting control parameters of a motor control unit for example, motor control unit 100 that controls a motor, the method comprising:
  • the computer is a process of saving the frequency characteristics of the machine measured by operating the motor control unit having the control parameters before adjustment; a process of setting a plurality of adjustment conditions for adjusting the control parameters of the motor control unit; A process of predicting a frequency characteristic of the machine after adjusting the control parameter using the control parameter before and after adjustment and the saved frequency characteristic; A process of adjusting the control parameter in order to optimize the control parameter using the predicted frequency characteristic and one of the plurality of set adjustment conditions; a process of storing the plurality of control parameters optimized for the plurality of adjustment conditions; A process of calculating an evaluation index of the frequency characteristic from the predicted frequency characteristic corresponding to the optimized control parameter; A process of presenting at least one of a predicted frequency characteristic corresponding to the optimized control parameter and an evaluation index of the frequency characteristic for each adjustment condition of the plurality of adjustment conditions; a process of setting a control parameter selected from the plurality of
  • control parameter adjustment method by measuring the frequency characteristics once, it is possible to obtain multiple frequency characteristics when control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under multiple adjustment conditions. .
  • control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under multiple adjustment conditions.
  • a control parameter adjustment method for adjusting control parameters of a motor control unit for example, motor control unit 100 that controls a motor, the method comprising:
  • the computer is a process of saving the frequency characteristics of the machine measured by operating the motor control unit having the control parameters before adjustment; a process of setting a plurality of adjustment conditions for adjusting the control parameters of the motor control unit; A process of predicting a frequency characteristic of the machine after adjusting the control parameter using the control parameter before and after adjustment and the saved frequency characteristic; A process of adjusting the control parameter in order to optimize the control parameter using the predicted frequency characteristic and one of the plurality of set adjustment conditions; a process of storing the plurality of control parameters optimized for the plurality of adjustment conditions; a process of predicting a first time response using predicted frequency characteristics corresponding to the optimized control parameters; a process of calculating an evaluation index of the first time response from the predicted first time response; a process of presenting at least one of the first time response and the evaluation index for each adjustment condition of the plurality of adjustment conditions; a process of setting a
  • control parameter adjustment method by measuring the frequency characteristics once, it is possible to obtain multiple frequency characteristics when control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under multiple adjustment conditions. .
  • control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under multiple adjustment conditions.
  • control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under multiple adjustment conditions.
  • the time response and/or time response evaluation index after adjustment under different adjustment conditions can be evaluated. You can easily compare and select the control parameters you want to apply.
  • the computer a process of calculating an evaluation index of the measured frequency characteristic of the machine from the measured frequency characteristic of the machine; a process of presenting at least one of the measured frequency characteristic of the machine and an evaluation index of the measured frequency characteristic of the machine;
  • the computer A process of predicting a second time response using the measured frequency characteristics of the machine; a process of calculating an evaluation index of the second time response from the second time response; a process of presenting at least one of the second time response and an evaluation index of the second time response;

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

In the present invention, a plurality of frequency characteristics for when a control parameter has been regulated by a plurality of regulation conditions is determined by a measurement of one instance of a frequency characteristic. The present invention comprises: a frequency characteristic storage unit that stores a frequency characteristic of a machine, where the frequency characteristic is measured by operating a motor control unit having a pre-regulation control parameter; a regulation condition recording unit that records a plurality of regulation conditions for regulating the control parameter; a frequency characteristic prediction unit that uses the pre-regulation and post-regulation control parameters and the stored frequency characteristic to predict a post-regulation frequency characteristic for the control parameter; a control parameter regulation unit that uses one of the plurality of recorded regulation conditions and the predicted frequency characteristic to regulate the control parameter of the frequency characteristic prediction unit in order to optimize the control parameter; and a control parameter setting unit that, in the motor control unit, sets a control parameter selected from a plurality of the control parameters.

Description

制御パラメータを調整する調整装置、制御システム及び制御パラメータ調整方法Adjustment device, control system, and control parameter adjustment method for adjusting control parameters
 本発明は、モータを制御するモータ制御装置の制御パラメータを調整する調整装置、調整装置を含む制御システム及び制御パラメータ調整方法に関する。 The present invention relates to an adjustment device that adjusts control parameters of a motor control device that controls a motor, a control system including the adjustment device, and a control parameter adjustment method.
 工作機械、ロボット又は産業機械等の機械の駆動に使用するモータにおいて、予め設定した安定条件(安定余裕等)を満たす、モータのゲイン、フィルタの係数等の制御パラメータの最適化を行う際、制御パラメータを設定し、モータの制御装置を動作させて機械の周波数特性を測定し、制御パラメータを調整し、モータの制御装置を動作させて周波数特性を再測定して安定条件を満たすかどうかを確認する、といった一連の調整プロセスを複数回実行する必要があった。 Control is used when optimizing control parameters such as motor gain and filter coefficients that satisfy preset stability conditions (stability margin, etc.) for motors used to drive machines such as machine tools, robots, or industrial machinery. Set the parameters, operate the motor control device to measure the frequency characteristics of the machine, adjust the control parameters, operate the motor control device and remeasure the frequency characteristics to check whether stability conditions are met. It was necessary to perform a series of adjustment processes multiple times.
 半導体製造装置、工作機械又は産業用ロボットに用いられるモータ制御装置の制御パラメータの調整を最適に行うために、制御パラメータの調整結果を確認するための制御パラメータ感度解析装置が、特許文献1に記載されている。
 特許文献1には、制御パラメータ感度解析装置が、機械の動作量を検出する検出手段と、指令信号を発生する指令器と、指令信号を受けて電動機を駆動する制御器とからなる電動機制御装置において、制御器の特性を含まない開ループ周波数応答特性を取得する開ループ周波数応答特性計測手段と、電動機制御装置の制御器の制御モデルと、計測した開ループ周波数応答特性と制御モデルから閉ループ周波数応答特性を算出する演算手段と、制御器の制御パラメータと閉ループ周波数応答特性の変化の関係を感度解析する感度解析装置と、を備えることが記載されている。
Patent Document 1 describes a control parameter sensitivity analysis device for checking the adjustment results of control parameters in order to optimally adjust the control parameters of a motor control device used in semiconductor manufacturing equipment, machine tools, or industrial robots. has been done.
Patent Document 1 discloses that a control parameter sensitivity analysis device is a motor control device that includes a detection means that detects the amount of operation of a machine, a command device that generates a command signal, and a controller that drives a motor in response to the command signal. , an open-loop frequency response characteristic measuring means for obtaining an open-loop frequency response characteristic that does not include controller characteristics, a control model of a controller of a motor control device, and a closed-loop frequency measurement means for obtaining an open-loop frequency response characteristic that does not include controller characteristics; It is described that the apparatus includes a calculation means for calculating a response characteristic, and a sensitivity analysis device for performing sensitivity analysis on the relationship between a control parameter of a controller and a change in a closed-loop frequency response characteristic.
 モータを制御するサーボ制御部(モータ制御部となる)の、少なくとも1つのフィルタの係数と、フィードバックゲイン(FG)と、の少なくとも一方(制御パラメータとなる)を調整する制御支援装置が、特許文献2に記載されている。
 特許文献2には、制御支援装置が、調整前後における、モータを制御するサーボ制御装置の少なくとも1つのフィルタの係数と、フィードバックゲインと、の少なくとも一方からなる第2の情報及び第1の情報を用いて、フィルタの係数及びフィードバックゲインの少なくとも一方の調整前後における、フィルタとフィードバックゲインとの入出力ゲイン及び位相遅れの周波数特性のうちの少なくとも一方の周波数特性を計算し、調整前後における少なくとも一方の周波数特性と、係数とフィードバックゲインとの少なくとも一方の調整前の、サーボ制御装置の入出力ゲイン及び入出力の位相遅れの測定した周波数特性と、に基づいてフィルタの係数及びフィードバックゲインの少なくとも一方の調整後のサーボ制御装置の入出力ゲイン及び位相遅れの周波数特性の推定値を求めることが記載されている。
A control support device that adjusts at least one of the coefficients of at least one filter and the feedback gain (FG) (which serve as a control parameter) of a servo control unit (which serves as a motor control unit) that controls a motor is disclosed in Patent Document 2. It is described in 2.
Patent Document 2 discloses that a control support device provides first information and second information including at least one of a feedback gain and a coefficient of at least one filter of a servo control device that controls a motor before and after adjustment. is used to calculate the frequency characteristics of at least one of the frequency characteristics of the input/output gain and phase delay between the filter and the feedback gain before and after adjusting at least one of the filter coefficient and feedback gain, and At least one of the coefficient and feedback gain of the filter is determined based on the frequency characteristic and the measured frequency characteristic of the input/output gain and the input/output phase delay of the servo control device before adjustment of at least one of the coefficient and the feedback gain. It is described that estimated values of the frequency characteristics of the input/output gain and phase delay of the servo control device after adjustment are obtained.
特開2005-275588号公報JP2005-275588A 国際公開第2021/251226号International Publication No. 2021/251226
 モータ制御装置の安定条件として安定余裕を設定する場合、安定余裕(ゲイン余裕と位相余裕をいう)が大きいと、安定性は増すが、応答性が低下する。一方、安定余裕が小さいと、安定性は低下するが、応答性が上がる。
 ユーザは、モータ制御装置の安定余裕を設定する場合、複数の調整条件、例えば、標準、安定性重視、応答性重視、カスタムの各条件で、モータ制御装置の周波数特性等がどのように変わるかにより、調整条件を決めたい場合がある。
 しかし、複数の調整条件ごとに、モータのゲイン、フィルタの係数等の制御パラメータを調整して周波数特性を求めるプロセスを繰り返すことは、多大な時間がかかる。
 よって、1回の周波数特性の測定で、複数の調整条件でモータ制御装置の制御パラメータを調整した結果を確認できることが望まれている。
When setting a stability margin as a stability condition for a motor control device, if the stability margin (referring to gain margin and phase margin) is large, stability increases, but responsiveness decreases. On the other hand, when the stability margin is small, stability decreases but responsiveness increases.
When setting the stability margin for a motor control device, the user must check how the frequency characteristics of the motor control device change under multiple adjustment conditions, such as standard, stability-oriented, responsiveness-oriented, and custom conditions. You may want to determine the adjustment conditions depending on the situation.
However, it takes a lot of time to repeat the process of adjusting control parameters such as motor gain and filter coefficients and determining frequency characteristics for each of a plurality of adjustment conditions.
Therefore, it is desired to be able to confirm the results of adjusting the control parameters of the motor control device under a plurality of adjustment conditions by measuring the frequency characteristics once.
 (1) 本開示の第1の態様は、モータを制御するモータ制御部の制御パラメータの調整を行う調整装置であって、
 調整前の制御パラメータを有する前記モータ制御部を動作させることで測定した機械の周波数特性を保存する周波数特性保存部と、
 前記モータ制御部の前記制御パラメータを調整するための複数の調整条件を設定する調整条件設定部と、
 調整前と調整後の前記制御パラメータと、前記周波数特性保存部に保存した前記周波数特性とを用いて、前記制御パラメータの調整後の前記機械の周波数特性を予測する周波数特性予測部と、
 予測した前記周波数特性と、前記調整条件設定部で設定した複数の調整条件のうちの一つを用いて、前記制御パラメータを最適化するために前記周波数特性予測部に入力する前記制御パラメータを調整する制御パラメータ調整部と、
 前記複数の調整条件に対して最適化された複数の前記制御パラメータを保存する制御パラメータ保存部と、
 最適化された制御パラメータに対応する予測された周波数特性から、該周波数特性の評価指標を計算する評価指標計算部と、
 前記最適化された制御パラメータに対応する、予測された周波数特性及び前記評価指標の少なくとも1つを、複数の調整条件の調整条件ごとに提示する提示部と、
 前記制御パラメータ保存部に保存された複数の前記制御パラメータから選択された制御パラメータを前記モータ制御部に設定する制御パラメータ設定部と、
 を備えた調整装置である。
(1) A first aspect of the present disclosure is an adjustment device that adjusts control parameters of a motor control unit that controls a motor,
a frequency characteristic storage unit that stores frequency characteristics of the machine measured by operating the motor control unit having control parameters before adjustment;
an adjustment condition setting unit that sets a plurality of adjustment conditions for adjusting the control parameters of the motor control unit;
a frequency characteristic prediction unit that predicts the frequency characteristic of the machine after the control parameter is adjusted, using the control parameter before and after adjustment, and the frequency characteristic stored in the frequency characteristic storage unit;
Adjusting the control parameters input to the frequency characteristic prediction unit in order to optimize the control parameters using the predicted frequency characteristics and one of the plurality of adjustment conditions set by the adjustment condition setting unit. a control parameter adjustment section,
a control parameter storage unit that stores the plurality of control parameters optimized for the plurality of adjustment conditions;
an evaluation index calculation unit that calculates an evaluation index of the frequency characteristic from the predicted frequency characteristic corresponding to the optimized control parameter;
a presentation unit that presents at least one of the predicted frequency characteristics and the evaluation index corresponding to the optimized control parameters for each adjustment condition of the plurality of adjustment conditions;
a control parameter setting unit that sets a control parameter selected from the plurality of control parameters stored in the control parameter storage unit to the motor control unit;
It is an adjustment device equipped with.
 (2) 本開示の第2の態様は、モータを制御するモータ制御部の制御パラメータの調整を行う調整装置であって、
 調整前の制御パラメータを有する前記モータ制御部を動作させることで測定した機械の周波数特性を保存する周波数特性保存部と、
 前記モータ制御部の前記制御パラメータを調整するための複数の調整条件を設定する調整条件設定部と、
 調整前と調整後の前記制御パラメータと、前記周波数特性保存部に保存した前記周波数特性とを用いて、前記制御パラメータの調整後の前記機械の周波数特性を予測する周波数特性予測部と、
 予測した前記周波数特性と、前記調整条件設定部で設定した複数の調整条件のうちの一つを用いて、前記制御パラメータを最適化するために前記周波数特性予測部に入力する前記制御パラメータを調整する制御パラメータ調整部と、
 前記複数の調整条件に対して最適化された複数の前記制御パラメータを保存する制御パラメータ保存部と、
 最適化された制御パラメータに対応する予測された周波数特性を用いて、第1の時間応答を予測する時間応答予測部と、
 予測した前記第1の時間応答から前記第1の時間応答の評価指標を計算する評価指標計算部と、
 前記第1の時間応答及び前記評価指標の少なくとも1つを、複数の調整条件の調整条件ごとに提示する提示部と、
 前記制御パラメータ保存部に保存された複数の前記制御パラメータから選択された制御パラメータを前記モータ制御部に設定する制御パラメータ設定部と、
 を備えた調整装置である。
(2) A second aspect of the present disclosure is an adjustment device that adjusts control parameters of a motor control unit that controls a motor,
a frequency characteristic storage unit that stores frequency characteristics of the machine measured by operating the motor control unit having control parameters before adjustment;
an adjustment condition setting unit that sets a plurality of adjustment conditions for adjusting the control parameters of the motor control unit;
a frequency characteristic prediction unit that predicts the frequency characteristic of the machine after the control parameter is adjusted, using the control parameter before and after adjustment, and the frequency characteristic stored in the frequency characteristic storage unit;
Adjusting the control parameters input to the frequency characteristic prediction unit in order to optimize the control parameters using the predicted frequency characteristics and one of the plurality of adjustment conditions set by the adjustment condition setting unit. a control parameter adjustment section to
a control parameter storage unit that stores the plurality of control parameters optimized for the plurality of adjustment conditions;
a time response prediction unit that predicts the first time response using the predicted frequency characteristics corresponding to the optimized control parameters;
an evaluation index calculation unit that calculates an evaluation index of the first time response from the predicted first time response;
a presentation unit that presents at least one of the first time response and the evaluation index for each adjustment condition of the plurality of adjustment conditions;
a control parameter setting unit that sets a control parameter selected from the plurality of control parameters stored in the control parameter storage unit to the motor control unit;
It is an adjustment device equipped with.
 (3) 本開示の第3の態様は、モータを制御するモータ制御部と、上記(1)又は(2)の調整装置と、を備えた制御システムである。 (3) A third aspect of the present disclosure is a control system including a motor control unit that controls a motor, and the adjustment device of (1) or (2) above.
 (4) 本開示の第4の態様は、モータを制御するモータ制御部の制御パラメータの調整を行う制御パラメータ調整方法であって、
 コンピュータが、
 調整前の制御パラメータを有する前記モータ制御部を動作させることで測定した機械の周波数特性を保存する処理と、
 前記モータ制御部の前記制御パラメータを調整するための複数の調整条件を設定する処理と、
 調整前と調整後の前記制御パラメータと、保存した前記周波数特性とを用いて、前記制御パラメータの調整後の前記機械の周波数特性を予測する処理と、
 予測した前記周波数特性と、設定した複数の調整条件のうちの一つを用いて、前記制御前記制御パラメータを最適化するために前記制御パラメータを調整する処理と、
 前記複数の調整条件に対して最適化された複数の前記制御パラメータを保存する処理と、
 最適化された制御パラメータに対応する予測された周波数特性から、該周波数特性の評価指標を計算する処理と、
 最適化された制御パラメータに対応する、予測された周波数特性及び前記評価指標の少なくとも1つを、複数の調整条件の調整条件ごとに提示する処理と、
 保存された複数の前記制御パラメータから選択された制御パラメータを前記モータ制御部に設定する処理と、
 を実行する、制御パラメータ調整方法である。
(4) A fourth aspect of the present disclosure is a control parameter adjustment method for adjusting control parameters of a motor control unit that controls a motor, the method comprising:
The computer is
a process of saving the frequency characteristics of the machine measured by operating the motor control unit having the control parameters before adjustment;
a process of setting a plurality of adjustment conditions for adjusting the control parameters of the motor control unit;
A process of predicting a frequency characteristic of the machine after adjusting the control parameter using the control parameter before and after adjustment and the saved frequency characteristic;
A process of adjusting the control parameter in order to optimize the control parameter using the predicted frequency characteristic and one of the plurality of set adjustment conditions;
a process of storing the plurality of control parameters optimized for the plurality of adjustment conditions;
A process of calculating an evaluation index of the frequency characteristic from the predicted frequency characteristic corresponding to the optimized control parameter;
a process of presenting at least one of the predicted frequency characteristics and the evaluation index corresponding to the optimized control parameters for each adjustment condition of the plurality of adjustment conditions;
a process of setting a control parameter selected from the plurality of stored control parameters in the motor control unit;
This is a control parameter adjustment method that executes.
 (5) 本開示の第5の態様は、モータを制御するモータ制御部の制御パラメータの調整を行う制御パラメータ調整方法であって、
 コンピュータが、
 調整前の制御パラメータを有する前記モータ制御部を動作させることで測定した機械の周波数特性を保存する処理と、
 前記モータ制御部の前記制御パラメータを調整するための複数の調整条件を設定する処理と、
 調整前と調整後の前記制御パラメータと、保存した前記周波数特性とを用いて、前記制御パラメータの調整後の前記機械の周波数特性を予測する処理と、
 予測した前記周波数特性と、設定した複数の調整条件のうちの一つを用いて、前記制御パラメータを最適化するために前記制御パラメータを調整する処理と、
 前記複数の調整条件に対して最適化された複数の前記制御パラメータを保存する処理と、
 最適化された制御パラメータに対応する予測された周波数特性を用いて、第1の時間応答を予測する処理と、
 予測した前記第1の時間応答から前記第1の時間応答の評価指標を計算する処理と、
 前記第1の時間応答及び前記評価指標の少なくとも1つを、複数の調整条件の調整条件ごとに提示する処理と、
 保存された複数の前記制御パラメータから選択された制御パラメータを前記モータ制御部に設定する処理と、
 を実行する、制御パラメータ調整方法である。
(5) A fifth aspect of the present disclosure is a control parameter adjustment method for adjusting control parameters of a motor control unit that controls a motor, the method comprising:
The computer is
a process of saving the frequency characteristics of the machine measured by operating the motor control unit having the control parameters before adjustment;
a process of setting a plurality of adjustment conditions for adjusting the control parameters of the motor control unit;
A process of predicting a frequency characteristic of the machine after adjusting the control parameter using the control parameter before and after adjustment and the saved frequency characteristic;
A process of adjusting the control parameter in order to optimize the control parameter using the predicted frequency characteristic and one of the plurality of set adjustment conditions;
a process of storing the plurality of control parameters optimized for the plurality of adjustment conditions;
a process of predicting a first time response using predicted frequency characteristics corresponding to the optimized control parameters;
a process of calculating an evaluation index of the first time response from the predicted first time response;
a process of presenting at least one of the first time response and the evaluation index for each adjustment condition of the plurality of adjustment conditions;
a process of setting a control parameter selected from the plurality of stored control parameters in the motor control unit;
This is a control parameter adjustment method that executes.
 本開示の各態様によれば、1回の周波数特性の測定で、複数の調整条件でモータ制御部のゲイン、フィルタの係数等の制御パラメータを調整した場合の複数の周波数特性を求めることができる。その結果、複数の周波数特性及び/又は複数の周波数特性の評価指標を確認することで、異なる調整条件での調整後の周波数特性及び/又は周波数特性の評価指標を簡単に比較し、適用したい制御パラメータを簡単に選択できる。また、複数の周波数特性から予測される複数の時間応答及び/又は複数の時間応答の評価指標を確認することで、異なる調整条件での調整後の時間応答及び/又は時間応答の評価指標を簡単に比較し、適用したい制御パラメータを簡単に選択できる。 According to each aspect of the present disclosure, it is possible to obtain multiple frequency characteristics when control parameters such as the gain of the motor control unit and the coefficient of the filter are adjusted under multiple adjustment conditions by measuring the frequency characteristics once. . As a result, by checking multiple frequency characteristics and/or evaluation indices of multiple frequency characteristics, you can easily compare the frequency characteristics and/or evaluation indices of frequency characteristics after adjustment under different adjustment conditions, and apply the control you want to apply. Parameters can be easily selected. In addition, by checking multiple time responses and/or multiple time response evaluation metrics predicted from multiple frequency characteristics, you can easily evaluate the time response and/or time response evaluation metrics after adjustment under different adjustment conditions. You can easily select the control parameters you want to apply.
本開示の第1実施形態の制御システムを示すブロック図である。FIG. 1 is a block diagram showing a control system according to a first embodiment of the present disclosure. ゲイン余裕、位相余裕、閉ループ特性の最大ゲイン、及び高周波領域の最大ゲインを示すボーデ線図である。FIG. 3 is a Bode diagram showing a gain margin, a phase margin, a maximum gain of closed-loop characteristics, and a maximum gain of a high frequency region. 調整部の一構成例を示すブロック図である。FIG. 2 is a block diagram showing an example of the configuration of an adjustment section. 調整条件の設定画面の一例を示す図である。It is a figure which shows an example of the setting screen of adjustment conditions. 複素平面上の単位円と、閉曲線となる2つの円とを示す複素平面を示す図である。である。FIG. 2 is a diagram showing a complex plane showing a unit circle on the complex plane and two circles forming a closed curve. It is. 複素平面上に描いた、ナイキスト軌跡、単位円、及びゲイン余裕と位相余裕を通る円を示す図である。FIG. 3 is a diagram showing a Nyquist locus, a unit circle, and a circle passing through a gain margin and a phase margin drawn on a complex plane. 「調整前」、「標準」及び「安定性重視」に関する開ループ周波数特性又は閉ループ周波数特性のボーデ線図及び、「調整前」、「標準」及び「安定性重視」に関する評価指標を表示した表示画面を示す図である。Display displaying Bode diagrams of open-loop frequency characteristics or closed-loop frequency characteristics for "before adjustment", "standard", and "stability emphasis", and evaluation indicators regarding "before adjustment", "standard", and "stability emphasis" It is a figure which shows a screen. 表示欄502Aに示されるボーデ線図である。It is a Bode diagram shown in display field 502A. 表示欄502Bに示されるボーデ線図である。It is a Bode diagram shown in display field 502B. 表示欄502Cに示されるボーデ線図である。It is a Bode diagram shown in display field 502C. 「標準」、「安定性重視」、「応答性重視」及び「カスタム」に関する開ループ周波数特性又は閉ループ周波数特性を示すボーデ線図である。It is a Bode diagram showing open-loop frequency characteristics or closed-loop frequency characteristics regarding "Standard", "Stability Emphasis", "Responsivity Emphasis", and "Custom". 調整条件の設定画面を示す図である。It is a figure which shows the setting screen of adjustment conditions. 調整部の動作を示すフローチャートである。5 is a flowchart showing the operation of the adjustment section. 制御パラメータ調整部を機械学習部に置き換えた調整部の変形例を示すブロック図である。It is a block diagram showing a modification of the adjustment section in which the control parameter adjustment section is replaced with a machine learning section. 機械学習部の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of a machine learning section. 閉ループの規範モデルを示すブロック線図である。FIG. 2 is a block diagram showing a closed-loop reference model. 規範モデルのモータ制御部と、学習前及び学習後のモータ制御部との入出力ゲインの周波数特性を示す特性図である。FIG. 7 is a characteristic diagram showing the frequency characteristics of input/output gains of the motor control section of the reference model, and the motor control sections before and after learning. 本開示の第2実施形態の制御システムに含まれる調整部の一構成例を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration example of an adjustment section included in a control system according to a second embodiment of the present disclosure. 第1共振モード、第2共振モードを示すボーデ線図である。It is a Bode diagram showing a first resonance mode and a second resonance mode. 「調整前」、「標準」及び「安定性重視」に関する時間応答及び、「調整前」「標準」及び「安定性重視」に関する評価指標を表示した表示画面を示す図である。FIG. 7 is a diagram showing a display screen displaying time responses regarding "before adjustment," "standard," and "emphasis on stability," and evaluation indicators regarding "before adjustment," "standard," and "emphasis on stability." 表示欄702Aに示される時間応答の特性を示す図である。It is a figure which shows the characteristic of the time response shown in 702 A of display columns. 表示欄702Bに示される時間応答の特性を示す図である。It is a figure which shows the characteristic of the time response shown in the display field 702B. 表示欄702Cに示される時間応答の特性を示す図である。It is a figure which shows the characteristic of the time response shown in display field 702C. 複数のフィルタを直接接続してフィルタを構成した例を示すブロック図である。FIG. 2 is a block diagram showing an example of a filter configured by directly connecting a plurality of filters. 制御システムの他の構成例を示すブロック図である。FIG. 2 is a block diagram showing another configuration example of the control system.
 以下、本開示の実施形態について図面を用いて詳細に説明する。
 (第1実施形態)
 図1は本開示の第1実施形態の制御システムを示すブロック図である。
 制御システム10は、モータ制御部100、周波数生成部200、周波数特性測定部300、及び調整部400を備えている。モータ制御部100はモータ制御装置に対応し、調整部400は調整装置に対応する。
 なお、周波数生成部200、周波数特性測定部300、及び調整部400のうちの一つ又は複数はモータ制御部100の内に設けられてもよい。周波数特性測定部300は調整部400内に設けられてもよい。
Hereinafter, embodiments of the present disclosure will be described in detail using the drawings.
(First embodiment)
FIG. 1 is a block diagram showing a control system according to a first embodiment of the present disclosure.
The control system 10 includes a motor control section 100, a frequency generation section 200, a frequency characteristic measurement section 300, and an adjustment section 400. The motor control section 100 corresponds to a motor control device, and the adjustment section 400 corresponds to an adjustment device.
Note that one or more of the frequency generation section 200, the frequency characteristic measurement section 300, and the adjustment section 400 may be provided within the motor control section 100. The frequency characteristic measuring section 300 may be provided within the adjusting section 400.
 モータ制御部100は、減算器110、速度制御部120、フィルタ130、電流制御部140、及びモータ150を備えている。減算器110、速度制御部120、フィルタ130、電流制御部140、及びモータ150は閉ループとなる速度フィードバックループのサーボ系を構成する。モータ150は、直線運動をするリニアモータ、又は回転軸を有するモータ等を用いることができる。モータ150によって駆動される対象は、例えば、工作機械、ロボット、又は産業機械等の機械の機構部である。モータ150は、工作機械、ロボット、産業機械等の一部として設けられてもよい。制御システム10は、工作機械、ロボット、産業機械等の一部として設けられてもよい。モータ制御部100の構成の詳細については後述する。 The motor control section 100 includes a subtracter 110, a speed control section 120, a filter 130, a current control section 140, and a motor 150. The subtracter 110, the speed control section 120, the filter 130, the current control section 140, and the motor 150 constitute a closed speed feedback loop servo system. As the motor 150, a linear motor that performs linear motion, a motor that has a rotating shaft, or the like can be used. The object driven by the motor 150 is, for example, a mechanical part of a machine such as a machine tool, a robot, or an industrial machine. The motor 150 may be provided as part of a machine tool, a robot, an industrial machine, or the like. The control system 10 may be provided as part of a machine tool, a robot, an industrial machine, or the like. The details of the configuration of the motor control section 100 will be described later.
 周波数生成部200は、周波数を変化させながら正弦波信号を速度指令として、モータ制御部100の減算器110及び周波数特性測定部300に出力する。 The frequency generation unit 200 outputs a sine wave signal as a speed command to the subtracter 110 and the frequency characteristic measurement unit 300 of the motor control unit 100 while changing the frequency.
 周波数特性測定部300は、周波数生成部200で生成された、入力信号となる速度指令(正弦波)と、モータ150に設けられたロータリーエンコーダ(図示せず)から出力された出力信号となる検出速度(正弦波)又はリニアスケールから出力される出力信号となる検出位置の積分(正弦波)とを用いて、速度指令により規定される周波数ごとに、入力信号と出力信号との振幅比(入出力ゲイン)と位相遅れとの周波数特性を求めて調整部400に出力する。求めた周波数特性は、閉ループの周波数特性Pcである。
 また、周波数特性測定部300は、この周波数特性Pcから開ループ周波数特性Poを計算して、調整部400に出力する。閉ループの周波数特性Pcは、開ループ周波数特性Poを用いて、Pc=Po/(1+Po)と示される。よって、開ループ周波数特性Poは、Po=Pc/(1-Pc)で求めることができる。
The frequency characteristic measurement unit 300 detects a speed command (sine wave) as an input signal generated by the frequency generation unit 200 and a detection signal as an output signal output from a rotary encoder (not shown) provided on the motor 150. Using the velocity (sine wave) or the integral of the detected position (sine wave) that becomes the output signal output from the linear scale, the amplitude ratio (input The frequency characteristics of output gain) and phase delay are determined and output to adjustment section 400. The obtained frequency characteristic is a closed-loop frequency characteristic Pc.
Furthermore, the frequency characteristic measurement section 300 calculates an open loop frequency characteristic Po from this frequency characteristic Pc, and outputs it to the adjustment section 400. The closed loop frequency characteristic Pc is expressed as Pc=Po/(1+Po) using the open loop frequency characteristic Po. Therefore, the open loop frequency characteristic Po can be determined by Po=Pc/(1-Pc).
 調整部400は、複数の調整条件の調整条件ごとに、速度制御部120の積分ゲインK1v及び比例ゲインK2vのうちの1つ又は両方のゲイン、及びフィルタ130の伝達関数の係数ω、τ、δの少なくとも一方(制御パラメータとなる)の最適値を求める。複数の調整条件は、例えば、周波数応答の特徴により分類される、標準、安定性重視、応答性重視、及びカスタム等の調整条件のうちの2つ又は3つ以上の調整条件である。「標準」は、安定重視と応答性重視との中間、「カスタム」は、ユーザが任意に設定する。
 各調整条件は、ゲイン余裕、位相余裕、閉ループ特性の最大ゲイン、及び高周波領域の最大ゲインの少なくとも1つに制限を設ける条件である。
 図2は、ゲイン余裕、位相余裕、閉ループ特性の最大ゲイン、及び高周波領域の最大ゲインを示すボーデ線図である。
 表1は、標準、安定性重視、応答性重視、及びカスタムにおける、ゲイン余裕、位相余裕、閉ループ特性の最大ゲイン、及び高周波領域の最大ゲインの制限値の一例を示している。
Figure JPOXMLDOC01-appb-T000001
 
The adjustment unit 400 adjusts the gain of one or both of the integral gain K1v and the proportional gain K2v of the speed control unit 120, and the coefficients ω c , τ, of the transfer function of the filter 130, for each adjustment condition of the plurality of adjustment conditions. The optimum value of at least one of δ (which becomes a control parameter) is determined. The plurality of adjustment conditions are, for example, two or more adjustment conditions of standard, stability-oriented, responsiveness-oriented, custom, etc., which are classified according to the characteristics of the frequency response. "Standard" is an intermediate setting between emphasis on stability and emphasis on responsiveness, and "Custom" is set arbitrarily by the user.
Each adjustment condition is a condition that places a limit on at least one of the gain margin, the phase margin, the maximum gain of the closed loop characteristic, and the maximum gain of the high frequency region.
FIG. 2 is a Bode diagram showing a gain margin, a phase margin, a maximum gain of closed-loop characteristics, and a maximum gain in a high frequency region.
Table 1 shows examples of limit values for gain margin, phase margin, maximum gain of closed-loop characteristics, and maximum gain in high frequency region in standard, stability-oriented, responsiveness-oriented, and custom.
Figure JPOXMLDOC01-appb-T000001
 調整部400は、調整条件ごとに、求めた最適な制御パラメータにおける機械の周波数特性を表示又は、その周波数特性のゲイン余裕、位相余裕、制御帯域等の評価指標を計算して表示する。そして、調整部400は、ユーザが、調整条件ごとに表示された複数の周波数特性又は複数の評価指標から、周波数特性又は評価指標を選択し、選択された周波数特性又は評価指標に対応する、最適な制御パラメータ、即ち、速度制御部120の積分ゲインK1v及び比例ゲインK2vのうちの1つ又は両方のゲイン、及びフィルタ130の伝達関数の係数ω、τ、δの少なくとも一方の最適値をモータ制御部100に設定する。 For each adjustment condition, the adjustment unit 400 displays the frequency characteristics of the machine under the determined optimal control parameters, or calculates and displays evaluation indicators such as gain margin, phase margin, control band, etc. of the frequency characteristics. Then, the adjustment unit 400 allows the user to select a frequency characteristic or an evaluation index from a plurality of frequency characteristics or a plurality of evaluation indices displayed for each adjustment condition, and select an optimal frequency characteristic or evaluation index corresponding to the selected frequency characteristic or evaluation index. The control parameters, i.e., one or both of the integral gain K1v and the proportional gain K2v of the speed control unit 120, and the optimum value of at least one of the coefficients ω c , τ, and δ of the transfer function of the filter 130 are set to the motor. The settings are made in the control unit 100.
 以下、モータ制御部100及び調整部400について更に詳細に説明する。
<モータ制御部100>
 既に説明したように、モータ制御部100は、減算器110、速度制御部120、フィルタ130、電流制御部140、及びモータ150を備えている。
The motor control section 100 and adjustment section 400 will be explained in more detail below.
<Motor control unit 100>
As already explained, the motor control section 100 includes a subtracter 110, a speed control section 120, a filter 130, a current control section 140, and a motor 150.
 減算器110は、入力された速度指令と速度フィードバックされた検出速度との差を求め、その差を速度偏差として速度制御部120に出力する。 The subtracter 110 calculates the difference between the input speed command and the detected speed fed back, and outputs the difference to the speed control unit 120 as a speed deviation.
 速度制御部120は、PI制御(Proportional-Integral Control)を行い、速度偏差に積分ゲインK1vを乗じて積分した値と、速度偏差に比例ゲインK2vを乗じた値とを加算して、トルク指令としてフィルタ130に出力する。速度制御部120はフィードバックゲインを含む。なお、速度制御部120は特に、PI制御に限定されず、他の制御、例えばPID制御(Proportional-Integral-Differential Control)を用いてもよい。
 数式1(以下に数1として示す)は、速度制御部120の伝達関数G(s)を示す。
Figure JPOXMLDOC01-appb-M000002
The speed control unit 120 performs PI control (Proportional-Integral Control), adds the value obtained by multiplying the speed deviation by an integral gain K1v and integrating the value, and the value obtained by multiplying the speed deviation by a proportional gain K2v, and outputs the result as a torque command. Output to filter 130. Speed control section 120 includes a feedback gain. Note that the speed control unit 120 is not particularly limited to PI control, and may use other control, such as PID control (Proportional-Integral-Differential Control).
Equation 1 (shown as Equation 1 below) represents a transfer function G V (s) of the speed control section 120.
Figure JPOXMLDOC01-appb-M000002
 フィルタ130は、特定の周波数成分を減衰させるフィルタで、例えばノッチフィルタ、ローパスフィルタ又はバンドストップフィルタが用いられる。モータ150で駆動される機構部を有する工作機械等の機械では共振点が存在し、モータ制御部100で共振が増大する場合がある。ノッチフィルタ等のフィルタを用いることで共振を低減することができる。フィルタ130の出力はトルク指令として電流制御部140に出力される。
 数式2(以下に数2として示す)は、フィルタ130としてのノッチフィルタの伝達関数G(s)を示す。パラメータは係数ω、τ、δを示す。
 数式2の係数δは減衰係数、係数ωは中心角周波数、係数τは比帯域である。中心周波数をfc、帯域幅をfwとすると、係数ωはω=2πfc、係数τはτ=fw/fcで表される。
Figure JPOXMLDOC01-appb-M000003
 
The filter 130 is a filter that attenuates specific frequency components, such as a notch filter, a low-pass filter, or a bandstop filter. In a machine such as a machine tool that has a mechanical section driven by the motor 150, a resonance point exists, and resonance may increase in the motor control section 100. Resonance can be reduced by using a filter such as a notch filter. The output of filter 130 is output to current control section 140 as a torque command.
Equation 2 (shown as Equation 2 below) represents a transfer function G F (s) of the notch filter as the filter 130. The parameters indicate coefficients ω c , τ, and δ.
In Equation 2, the coefficient δ is the damping coefficient, the coefficient ω c is the central angular frequency, and the coefficient τ is the fractional band. When the center frequency is fc and the bandwidth is fw, the coefficient ω c is expressed as ω c =2πfc, and the coefficient τ is expressed as τ = fw/fc.
Figure JPOXMLDOC01-appb-M000003
 電流制御部140は、トルク指令に基づいてモータ150を駆動するための電流指令を生成し、その電流指令をモータ150に出力する。
 モータ150がリニアモータの場合、可動部の位置は、モータ150に設けられたリニアスケール(図示せず)によって検出され、位置検出値を微分することで速度検出値を求め、求められた速度検出値は速度フィードバックとして減算器110に入力される。
 モータ150が回転軸を有するモータの場合、回転角度位置は、モータ150に設けられたロータリーエンコーダ(図示せず)によって検出され、速度検出値は速度フィードバックとして減算器110に入力される。
Current control unit 140 generates a current command for driving motor 150 based on the torque command, and outputs the current command to motor 150.
When the motor 150 is a linear motor, the position of the movable part is detected by a linear scale (not shown) provided on the motor 150, and a detected speed value is obtained by differentiating the detected position value, and the detected speed is calculated by differentiating the detected position value. The value is input to subtractor 110 as velocity feedback.
If the motor 150 has a rotating shaft, the rotational angular position is detected by a rotary encoder (not shown) provided on the motor 150, and the detected speed value is input to the subtracter 110 as speed feedback.
<調整部400>
 図3は調整部の一構成例を示すブロック図である。図3に示すように、調整部400は、周波数特性保存部401、調整条件設定部402、周波数特性予測部403、制御パラメータ調整部404、制御パラメータ保存部405、評価指標計算部406、提示部407及び制御パラメータ設定部408を備えている。
 以下、調整部400の各部について説明する。
<Adjustment section 400>
FIG. 3 is a block diagram showing an example of the configuration of the adjustment section. As shown in FIG. 3, the adjustment section 400 includes a frequency characteristic storage section 401, an adjustment condition setting section 402, a frequency characteristic prediction section 403, a control parameter adjustment section 404, a control parameter storage section 405, an evaluation index calculation section 406, and a presentation section. 407 and a control parameter setting section 408.
Each part of the adjustment section 400 will be explained below.
 (周波数特性保存部401)
 周波数特性保存部401には、周波数特性測定部300から出力される、入出力ゲインと位相遅れとの閉ループ周波数特性Pc及び開ループ周波数特性Poが保存される。閉ループ周波数特性Pcは、調整前の制御パラメータでモータ制御部100が動作することで、周波数特性測定部300によって取得された機械の周波数特性である。
(Frequency characteristic storage section 401)
The frequency characteristic storage unit 401 stores the closed-loop frequency characteristic Pc and the open-loop frequency characteristic Po of input/output gain and phase delay, which are output from the frequency characteristic measurement unit 300. The closed-loop frequency characteristic Pc is the frequency characteristic of the machine acquired by the frequency characteristic measuring section 300 when the motor control section 100 operates with the control parameters before adjustment.
 (調整条件設定部402)
 調整条件設定部402は、調整条件の入力のための設定画面を表示し、ユーザによって入力された複数の調整条件の調整条件ごとに、モータ制御部100の開ループの回路のゲイン余裕、位相余裕、閉ループ特性の最大ゲイン、及び高周波領域の最大ゲインの少なくとも1つ(安定条件)を設定する。ゲイン余裕、位相余裕、閉ループ特性の最大ゲイン、及び高周波領域の最大ゲインは、予め所定の値に設定されてもよいし、ユーザによって任意に設定されてもよい。以下の説明では、安定余裕(ゲイン余裕と位相余裕)が設定された場合について説明する。
 調整条件設定部402は、ユーザによって複数の調整条件が入力されると、複数の調整条件が入力された旨を制御パラメータ調整部404に通知する。
(Adjustment condition setting section 402)
The adjustment condition setting unit 402 displays a setting screen for inputting adjustment conditions, and sets the gain margin and phase margin of the open loop circuit of the motor control unit 100 for each adjustment condition of the plurality of adjustment conditions input by the user. , the maximum gain of the closed-loop characteristic, and the maximum gain of the high frequency region (stability condition). The gain margin, phase margin, maximum gain of closed loop characteristics, and maximum gain of high frequency region may be set in advance to predetermined values, or may be set arbitrarily by the user. In the following explanation, a case will be explained in which stability margins (gain margin and phase margin) are set.
When a plurality of adjustment conditions are input by the user, the adjustment condition setting unit 402 notifies the control parameter adjustment unit 404 that the plurality of adjustment conditions have been input.
 調整条件設定部402は、複素平面上でゲイン余裕及び位相余裕を通る閉曲線を含む画像データを、制御パラメータ調整部404からの要求に基づいて、調整条件ごとに制御パラメータ調整部404に出力する。開ループの回路は、図1に示した、速度制御部120、フィルタ130、電流制御部140、及びモータ150によって構成される。
 具体的に説明すると、調整条件設定部402は、まず、図4に示す設定画面を表示し、ユーザが設定画面の調整条件を選択する。ユーザは、図4に示される、例えば、標準、安定性重視、応答性重視、及びカスタムの4つの調整条件のうち2又は3以上の調整条件を、X軸及びY軸の切削送りと早送りについてそれぞれ選択する。図4では、ユーザはY軸の早送りについて、標準、安定性重視を順次選択して、設定する様子を示している。
The adjustment condition setting unit 402 outputs image data including a closed curve passing through a gain margin and a phase margin on a complex plane to the control parameter adjustment unit 404 for each adjustment condition based on a request from the control parameter adjustment unit 404. The open loop circuit is comprised of the speed control section 120, filter 130, current control section 140, and motor 150 shown in FIG.
Specifically, the adjustment condition setting unit 402 first displays a setting screen shown in FIG. 4, and the user selects an adjustment condition on the setting screen. The user can adjust two or more of the four adjustment conditions shown in FIG. 4, for example, standard, stability-oriented, responsiveness-oriented, and custom, for cutting feed and rapid feed on the X-axis and Y-axis. Select each. FIG. 4 shows how the user sequentially selects and sets standard and stability-oriented fast forwarding on the Y axis.
 次に、調整条件設定部402は、図5の複素平面上に円周が(-1,0)を通る単位円を描き、調整条件に基づく安定余裕に基づいて、この単位円と交わり、複素平面上の(-1,0)を内側に含む、円等の閉曲線を描き、閉曲線を含む画像データを調整条件ごとに制御パラメータ調整部404に出力する。制御パラメータ調整部404に出力するのは画像データなくともよく、少なくとも複素平面上で円等の閉曲線を示すデータであればよい。以下の説明では、調整条件設定部402が画像データを制御パラメータ調整部404に出力するものとする。 Next, the adjustment condition setting unit 402 draws a unit circle whose circumference passes through (-1, 0) on the complex plane of FIG. A closed curve such as a circle that includes (-1, 0) on the plane inside is drawn, and image data including the closed curve is output to the control parameter adjustment unit 404 for each adjustment condition. What is output to the control parameter adjustment unit 404 does not need to be image data, but may be data that shows a closed curve such as a circle on at least a complex plane. In the following description, it is assumed that the adjustment condition setting unit 402 outputs image data to the control parameter adjustment unit 404.
 図5では、調整条件が、「標準」である場合と、「安定性重視」である場合の複素平面を示している。
 調整条件設定部402は、調整条件が「標準」である場合は、直径の小さい円C2を閉曲線として複素平面上に描画し、画像データを制御パラメータ調整部404に出力する。また、調整条件が「安定性重視」である場合は、直径の大きい円C1を閉曲線として複素平面上に描画し、画像データを制御パラメータ調整部404に出力する。
 円C1又は円C2と実軸とが交わる点がゲイン余裕を決め、円C1又は円C2と単位円とが交わる点が位相余裕を決める。円の直径が大きくなると、安定余裕(ゲイン余裕と位相余裕をいう)が大きくなり、安定性は増すが、応答性が低下する。
FIG. 5 shows complex planes when the adjustment conditions are "standard" and "stability-oriented".
When the adjustment condition is “standard”, the adjustment condition setting unit 402 draws a circle C2 with a small diameter as a closed curve on a complex plane, and outputs the image data to the control parameter adjustment unit 404. Further, when the adjustment condition is "emphasis on stability", a circle C1 with a large diameter is drawn as a closed curve on a complex plane, and image data is output to the control parameter adjustment unit 404.
The point where the circle C1 or C2 intersects with the real axis determines the gain margin, and the point where the circle C1 or C2 intersects with the unit circle determines the phase margin. As the diameter of the circle increases, the stability margin (referring to gain margin and phase margin) increases, and stability increases, but responsiveness decreases.
 図5では、円C1と円C2の中心は実軸上にあるが、実軸上になくともよい。閉曲線は、円以外の閉曲線、例えば菱形、四角形、又は楕円等であってもよい。図5では、円C1と円C2との中心は共通となっているが、円C1の中心と円C2の中心とは異なってもよい。 In FIG. 5, the centers of the circles C1 and C2 are on the real axis, but they do not have to be on the real axis. The closed curve may be a closed curve other than a circle, such as a rhombus, a quadrilateral, or an ellipse. In FIG. 5, the center of the circle C1 and the circle C2 is the same, but the center of the circle C1 and the center of the circle C2 may be different.
 (周波数特性予測部403)
 周波数特性予測部403は、調整前の制御パラメータを用いた、速度制御部120の伝達関数G(jω)及び/又はフィルタ130の伝達関数G(jω)を保存している。
 なお、調整前の制御パラメータは、予めユーザが生成するようにする。予め操作者が制御パラメータを調整している場合には、調整済の値を「調整前の制御パラメータ」としてもよい。
 そして、周波数特性予測部403は、調整前の制御パラメータを用いた、速度制御部120の伝達関数G(jω)及び/又はフィルタ130の伝達関数G(jω)を用いて、速度制御部120及び/又はフィルタ130の入出力ゲインと位相遅れとの周波数特性Cを計算する。また、周波数特性予測部403は、制御パラメータ調整部404から出力される調整情報に基づいて調整された、調整後の制御パラメータを用いた、速度制御部120の伝達関数G(jω)及び/又はフィルタ130の伝達関数G(jω)を用いて、速度制御部120及び/又はフィルタ130の入出力ゲインと位相遅れとの周波数特性Cを計算する。調整後の制御パラメータを用いた、速度制御部120の伝達関数G(jω)及び/又はフィルタ130の伝達関数G(jω)は、調整前の制御パラメータを調整後の制御パラメータに置き換えることで得ることができる。
(Frequency characteristic prediction unit 403)
The frequency characteristic prediction unit 403 stores the transfer function G V (jω) of the speed control unit 120 and/or the transfer function G F (jω) of the filter 130 using the control parameters before adjustment.
Note that the control parameters before adjustment are generated by the user in advance. If the operator has adjusted the control parameters in advance, the adjusted values may be used as "control parameters before adjustment."
Then, the frequency characteristic prediction unit 403 uses the transfer function G V (jω) of the speed control unit 120 and/or the transfer function G F (jω) of the filter 130 using the control parameters before adjustment. The frequency characteristic C 1 of the input/output gain and phase delay of the filter 120 and/or the filter 130 is calculated. Further, the frequency characteristic prediction unit 403 calculates the transfer function G V (jω) and/or the speed control unit 120 using the adjusted control parameters that are adjusted based on the adjustment information output from the control parameter adjustment unit 404. Alternatively, the frequency characteristic C 2 of the input/output gain and phase delay of the speed control unit 120 and/or the filter 130 is calculated using the transfer function G F (jω) of the filter 130 . The transfer function G V (jω) of the speed control unit 120 and/or the transfer function G F (jω) of the filter 130 using the adjusted control parameters is determined by replacing the unadjusted control parameters with the adjusted control parameters. You can get it at
 例えば、速度制御部120の伝達関数G(jω)の積分ゲインK1vと比例ゲインK2vを調整前の値からn倍(nは整数)したときの周波数特性は、調整前の周波数特性をG(jω)とすると、n×G(jω)となる。ボード線図上では、ゲインと位相はそれぞれ、数式3(以下に数3として示す)及び数式4(以下に数4として示す)によって示される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 
For example, the frequency characteristic when the integral gain K1v and proportional gain K2v of the transfer function G V (jω) of the speed control unit 120 are multiplied by n (n is an integer) from the value before adjustment is the frequency characteristic before adjustment G V (jω), then n×G V (jω). On the Bode diagram, the gain and phase are respectively expressed by Equation 3 (hereinafter shown as Equation 3) and Equation 4 (hereinafter shown as Equation 4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 以上のようにして、周波数特性予測部403は、計算された周波数特性Cと周波数特性Cとを求める。 As described above, the frequency characteristic prediction unit 403 obtains the calculated frequency characteristic C 1 and frequency characteristic C 2 .
 周波数特性予測部403は、計算された周波数特性Cと周波数特性Cとを用いて以下の処理を更に行う。
 周波数特性予測部403は、周波数特性C、周波数特性C及び周波数特性保存部401から取得した開ループ周波数特性Poに基づいて、モータ制御部100の入出力ゲインと位相遅れとの開ループ周波数特性の推定値Eoを求める。
 具体的には、周波数特性予測部403は、以下の数式5(以下に数5として示す)を用いて、モータ制御部100の入出力ゲインと位相遅れとの開ループ周波数特性の推定値Eoを求める。
Figure JPOXMLDOC01-appb-M000006
 
 また、周波数特性予測部403は、閉ループ周波数特性の推定値Ecを、開ループ周波数特性の推定値Eoを用いて、Ec=Eo/(1+Eo)によって計算する。
 なお、モータ制御部100の入出力ゲインと位相遅れとの周波数特性の推定値Eoは、上記数式5、すなわち、Eo=C-C+Poを用いて算出できるが、周波数特性予測部403が行う計算は、Eo=(C-C)+Po、Eo=(Po-C)+C、E=(Po+C)-Cのいずれでもよい。
 以下、周波数特性予測部403が、式Eo=(C-C)+Poによって、開ループ周波数特性の推定値Eoを求める場合について更に説明する。
The frequency characteristic prediction unit 403 further performs the following processing using the calculated frequency characteristic C 1 and frequency characteristic C 2 .
The frequency characteristic prediction unit 403 calculates the open loop frequency of the input/output gain and phase delay of the motor control unit 100 based on the frequency characteristic C 1 , the frequency characteristic C 2 and the open loop frequency characteristic Po acquired from the frequency characteristic storage unit 401. Find the estimated value Eo of the characteristic.
Specifically, the frequency characteristic prediction unit 403 calculates the estimated value Eo of the open-loop frequency characteristic of the input/output gain and phase lag of the motor control unit 100 using the following equation 5 (shown as equation 5 below). demand.
Figure JPOXMLDOC01-appb-M000006

Further, the frequency characteristic prediction unit 403 calculates the estimated value Ec of the closed-loop frequency characteristic using the estimated value Eo of the open-loop frequency characteristic by Ec=Eo/(1+Eo).
Note that the estimated value Eo of the frequency characteristic of the input/output gain and phase delay of the motor control section 100 can be calculated using the above formula 5, that is, Eo = C 2 - C 1 + Po, but the frequency characteristic prediction section 403 The calculation to be performed may be Eo=(C 2 −C 1 )+Po, Eo=(Po−C 1 )+C 2 , or E=(Po+C 2 )−C 1 .
A case in which the frequency characteristic prediction unit 403 calculates the estimated value Eo of the open-loop frequency characteristic using the formula Eo=(C 2 -C 1 )+Po will be further described below.
 例えば、上述したように、速度制御部120の伝達関数G(jω)の積分ゲインK1vと比例ゲインK2vを調整前の値からn倍(nは整数)したときの周波数特性Cは、初期状態の周波数特性CをG(jω)とすると、n×G(jω)となる。
 ボード線図で示される、初期状態からn倍したときのゲインの周波数特性は、数式4に示すように、初期状態のゲインとなる20log10|G(jω)|に20log10(n)を加えた周波数特性となる。ボード線図で示される、初期状態からn倍したときの位相の周波数特性は、tan-1(n)=0であるため、数式4に示すように、初期状態の位相周波数特性と変わらない。
 よって、調整前の状態からn倍したときの周波数特性は、ボード線図のゲイン線図のみ変化し、数式3に示す20log10(n)が、調整前の状態からn倍したときの周波数特性と調整前の状態の周波数特性との2つの周波数特性の差分(C-C)となる。
For example, as described above, when the integral gain K1v and proportional gain K2v of the transfer function G V (jω) of the speed control unit 120 are multiplied by n (n is an integer) from the value before adjustment, the frequency characteristic C1 is the initial value. If the frequency characteristic C 2 of the state is G V (jω), then n×G V (jω) is obtained.
The frequency characteristic of the gain when the initial state is multiplied by n, shown in the Bode diagram, is expressed by adding 20log 10 (n) to the initial state gain, 20log 10 | G V (jω)|, as shown in Equation 4. It becomes the added frequency characteristic. The frequency characteristic of the phase when multiplied by n from the initial state shown in the Bode diagram is tan −1 (n)=0, so as shown in Equation 4, it is not different from the phase frequency characteristic of the initial state.
Therefore, the frequency characteristic when the state before adjustment is multiplied by n is that only the gain diagram of the Bode plot changes, and 20log 10 (n) shown in Formula 3 is the frequency characteristic when the state before adjustment is multiplied by n. and the frequency characteristic in the state before adjustment (C 2 −C 1 ).
 周波数特性予測部403は、周波数特性保存部401から、入出力ゲインと位相遅れとの開ループ周波数特性Poを読み出し、この開ループ周波数特性Poに、差分(C-C)を加算して、開ループ周波数特性の推定値Eoを求める。そして、周波数特性予測部403は、閉ループ周波数特性の推定値Ecを、開ループ周波数特性の推定値Eoを用いてEc=((C-C)+Po)(1+(C-C)+Po)によって求める。 The frequency characteristic prediction unit 403 reads the open-loop frequency characteristic Po of input/output gain and phase delay from the frequency characteristic storage unit 401, adds the difference (C 2 −C 1 ) to this open-loop frequency characteristic Po, and calculates the difference (C 2 −C 1 ). , find the estimated value Eo of the open-loop frequency characteristic. Then, the frequency characteristic prediction unit 403 calculates the estimated value Ec of the closed-loop frequency characteristic by using the estimated value Eo of the open-loop frequency characteristic, Ec=((C 2 −C 1 )+Po)(1+(C 2 −C 1 ) +Po).
 周波数特性予測部403は、後述する制御パラメータ調整部404との間の動作で、調整条件ごとに制御パラメータを最適化し、最適化された開ループ周波数特性又は閉ループ周波数特性(推定値)を求め、提示部407及び評価指標計算部406に出力する。
 具体的には、周波数特性予測部403は、「標準」に関する最適化された制御パラメータに対応する、開ループ周波数特性又は閉ループ周波数特性(推定値)を提示部407及び評価指標計算部406に出力する。
 また、周波数特性予測部403は、「安定性重視」に関する最適化された制御パラメータに対応する、周波数特性予測部403から出力された開ループ周波数特性又は閉ループ周波数特性(推定値)を提示部407及び評価指標計算部406に出力する。
 更に、周波数特性予測部403は、調整前の初期の制御パラメータを用いた、周波数特性保存部401から出力された開ループ周波数特性又は閉ループ周波数特性を提示部407及び評価指標計算部406に出力する。
The frequency characteristic prediction unit 403 operates in conjunction with the control parameter adjustment unit 404, which will be described later, to optimize control parameters for each adjustment condition, obtain an optimized open-loop frequency characteristic or a closed-loop frequency characteristic (estimated value), It is output to the presentation section 407 and the evaluation index calculation section 406.
Specifically, the frequency characteristic prediction unit 403 outputs the open-loop frequency characteristic or the closed-loop frequency characteristic (estimated value) corresponding to the optimized control parameter regarding “standard” to the presentation unit 407 and the evaluation index calculation unit 406. do.
In addition, the frequency characteristic prediction unit 403 displays the open-loop frequency characteristic or closed-loop frequency characteristic (estimated value) output from the frequency characteristic prediction unit 403, which corresponds to the optimized control parameter related to “emphasis on stability”, to the presentation unit 407. and output to the evaluation index calculation unit 406.
Further, the frequency characteristic prediction unit 403 outputs the open-loop frequency characteristic or the closed-loop frequency characteristic output from the frequency characteristic storage unit 401 using the initial control parameters before adjustment to the presentation unit 407 and the evaluation index calculation unit 406. .
 以上説明した、周波数特性予測部403を用いることで、調整後の制御パラメータでのモータ制御部100の入出力ゲインと位相遅れとの閉ループ周波数特性の推定値Ecを算出できるので、調整後の制御パラメータでモータ制御部100を動作させて速度指令と検出速度を実際に検出して周波数特性測定部300で閉ループ周波数特性を測定する場合に比べて、短時間で求めることができる。 By using the frequency characteristic prediction unit 403 described above, it is possible to calculate the estimated value Ec of the closed-loop frequency characteristic of the input/output gain and phase delay of the motor control unit 100 with the adjusted control parameters. This can be determined in a shorter time than when the motor control unit 100 is operated using parameters to actually detect the speed command and detected speed, and the frequency characteristic measuring unit 300 measures the closed-loop frequency characteristic.
 (制御パラメータ調整部404)
 制御パラメータ調整部404は、調整条件設定部402から、調整条件設定部402から、複素平面上でゲイン余裕及び位相余裕を通る閉曲線を含む画像データを取得する。
 以下の説明では、制御パラメータ調整部404が、まず、「標準」に対応する、直径の小さい円C2を閉曲線として複素平面上に描画した、画像データを取得し、次に「安定性重視」に対応する、直径の大きい円C1を閉曲線として複素平面上に描画した、画像データを取得するものとして説明する。
 また、制御パラメータ調整部404は、周波数特性予測部403から、調整後の制御パラメータに基づく、モータ制御部100の入出力ゲインと位相遅れとの周波数特性(開ループ周波数特性の推定値又は閉ループ周波数特性の推定値)を取得する。
(Control parameter adjustment unit 404)
The control parameter adjustment unit 404 acquires image data including a closed curve passing through a gain margin and a phase margin on a complex plane from the adjustment condition setting unit 402 .
In the following explanation, the control parameter adjustment unit 404 first obtains image data in which a circle C2 with a small diameter corresponding to "Standard" is drawn on a complex plane as a closed curve, and then selects "Stability Emphasis". A description will be given assuming that image data is obtained in which the corresponding circle C1 with a large diameter is drawn on a complex plane as a closed curve.
Further, the control parameter adjustment unit 404 receives the frequency characteristics (estimated value of the open-loop frequency characteristic or closed-loop frequency (estimated value of the characteristic).
 制御パラメータ調整部404は、周波数特性予測部403から出力される、開ループ周波数特性H(jω)’(推定値)又は閉ループ周波数特性の周波数特性G(jω)’(推定値)から作成されるナイキスト軌跡を、閉曲線となる円C2と単位円とを含む複素平面に描画する。ナイキスト軌跡を作成する方法については後述する。 The control parameter adjustment section 404 is created from the open-loop frequency characteristic H(jω)' (estimated value) or the frequency characteristic G(jω)' (estimated value) of the closed-loop frequency characteristic output from the frequency characteristic prediction section 403. A Nyquist locus is drawn on a complex plane including a circle C2, which is a closed curve, and a unit circle. A method for creating a Nyquist trajectory will be described later.
 図6は、複素平面上に描いた、ナイキスト軌跡、単位円、及びゲイン余裕と位相余裕を通る円を示す図である。
 制御パラメータ調整部404は、円C2の内側をナイキスト軌跡が通らないように、制御パラメータとなる、速度制御部120の積分ゲインK1vと比例ゲインK2v、及びフィルタ130の伝達関数の係数ω、τ、δの少なくとも一方を調整するための調整情報を、周波数特性予測部403に出力する。
 周波数特性予測部403及び制御パラメータ調整部404の間で、制御パラメータの調整を繰り返すことによって、円C2の内側をナイキスト軌跡が通らないように、制御パラメータを最適化する。制御パラメータ調整部404は、最適化された制御パラメータを、「標準」に関する制御パラメータとして制御パラメータ保存部405に保存する。
FIG. 6 is a diagram illustrating a Nyquist locus, a unit circle, and a circle passing through a gain margin and a phase margin drawn on a complex plane.
The control parameter adjustment unit 404 adjusts the integral gain K1v and proportional gain K2v of the speed control unit 120 and the coefficients ω c , τ of the transfer function of the filter 130, which are control parameters, so that the Nyquist locus does not pass inside the circle C2. , δ is output to the frequency characteristic prediction unit 403.
By repeating adjustment of the control parameters between the frequency characteristic prediction unit 403 and the control parameter adjustment unit 404, the control parameters are optimized so that the Nyquist locus does not pass inside the circle C2. The control parameter adjustment unit 404 stores the optimized control parameters in the control parameter storage unit 405 as control parameters related to “standard”.
 制御パラメータ調整部404は、「標準」に関する制御パラメータを求めた後に、「安定性重視」に対応する、直径の大きい円C1を閉曲線として複素平面上に描画した、画像データを取得して、「標準」に関する制御パラメータと同様に、「安定性重視」に関する制御パラメータを求めて、制御パラメータ保存部405に保存する。 After determining the control parameters related to "Standard", the control parameter adjustment unit 404 obtains image data in which a circle C1 with a large diameter corresponding to "Stability Emphasis" is drawn as a closed curve on a complex plane. Similarly to the control parameters related to "Standard", control parameters related to "Stability Emphasis" are determined and stored in the control parameter storage unit 405.
 以下、制御パラメータ調整部404が、ナイキスト軌跡を作成する方法について具体的に説明する。
 周波数特性測定部300は、調整前の初期の制御パラメータ(積分ゲインK1vと比例ゲインK2v、及び係数ω、τ、δ)を用いてモータ制御部100を駆動することで測定された閉ループ周波数特性と、この閉ループ周波数特性から計算した開ループ周波数特性とを周波数特性保存部401に保存する。
 周波数特性測定部300は、開ループ周波数特性を閉ループ周波数特性から次のように計算する。
 速度フィードバックループは、減算器110と、伝達関数Hの開ループの回路とから構成される。開ループの回路は、既に説明したように、図1に示した、速度制御部120、フィルタ130、電流制御部140、及びモータ150によって構成される。ある周波数ωのときの速度フィードバックループの入出力ゲインをc、位相遅れをθとしたとき、閉ループ周波数特性G(jω)はc・ejθとなる。閉ループ周波数特性G(jω)は、開ループ周波数特性H(jω)を用いて、G(jω)=H(jω)/(1+H(jω))と示される。よって、ある周波数ωのときの開ループ周波数特性H(jω)はH(jω)=G(jω)/(1-G(jω))=c・ejθ/(1-c・ejθ)で求めることができる。
The method by which the control parameter adjustment unit 404 creates the Nyquist trajectory will be specifically described below.
The frequency characteristic measuring unit 300 measures the closed-loop frequency characteristic measured by driving the motor control unit 100 using the initial control parameters (integral gain K1v, proportional gain K2v, and coefficients ω c , τ, δ) before adjustment. and the open-loop frequency characteristic calculated from this closed-loop frequency characteristic are stored in the frequency characteristic storage unit 401.
The frequency characteristic measuring section 300 calculates the open loop frequency characteristic from the closed loop frequency characteristic as follows.
The velocity feedback loop consists of a subtractor 110 and an open loop circuit with a transfer function H. As already explained, the open loop circuit is composed of the speed control section 120, the filter 130, the current control section 140, and the motor 150 shown in FIG. When the input/output gain of the velocity feedback loop at a certain frequency ω 0 is c, and the phase delay is θ, the closed loop frequency characteristic G(jω 0 ) becomes c·e . The closed-loop frequency characteristic G(jω 0 ) is expressed as G(jω 0 )=H(jω 0 ) /(1+H(jω 0 )) using the open-loop frequency characteristic H(jω 0 ). Therefore, the open loop frequency characteristic H(jω 0 ) at a certain frequency ω 0 is H(jω 0 )=G(jω 0 )/(1−G(jω 0 ))=c・e /(1−c・e ).
 周波数特性予測部403は、周波数特性保存部401から、調整前の初期の制御パラメータに基づく、開ループ周波数特性Po(Po=H(jω))又は閉ループ周波数特性Pc(Pc=G(jω))を読み出して、数式3を用いて、調整後の制御パラメータを用いたときの、開ループ周波数特性の推定値Eo又は閉ループ周波数特性の推定値Ecを求めて制御パラメータ調整部404に出力する。
 制御パラメータ調整部404は、周波数特性測定部300から得られた開ループ周波数特性の推定値Eo(Eo=H(jω)’)又は閉ループ周波数特性の推定値(Ec=G(jω)’)を複素平面に描画することでナイキスト軌跡を作成する。
The frequency characteristic prediction unit 403 obtains an open-loop frequency characteristic Po (Po=H(jω)) or a closed-loop frequency characteristic Pc (Pc=G(jω)) based on the initial control parameters before adjustment from the frequency characteristic storage unit 401. is read out, and using Equation 3, the estimated value Eo of the open-loop frequency characteristic or the estimated value Ec of the closed-loop frequency characteristic when using the adjusted control parameters is determined and output to the control parameter adjustment section 404.
The control parameter adjustment section 404 estimates the open-loop frequency characteristic Eo (Eo=H(jω)') or the closed-loop frequency characteristic estimate (Ec=G(jω)') obtained from the frequency characteristic measurement section 300. Create a Nyquist locus by drawing on the complex plane.
 (制御パラメータ保存部405)
 制御パラメータ保存部405は、「標準」に関する制御パラメータと、「安全性重視」に関する制御パラメータを保存する。
(Control parameter storage unit 405)
The control parameter storage unit 405 stores control parameters related to "standard" and control parameters related to "safety emphasis".
 (評価指標計算部406)
 評価指標計算部406は、「調整前」に関する評価指標を計算して提示部407に出力する。「調整前」に関する評価指標は、例えば、調整前の初期の制御パラメータに対応する開ループ周波数特性に基づいて計算された、ゲイン余裕と位相余裕及び、調整前の初期の制御パラメータに対応する閉ループ周波数特性に基づいて計算された制御帯域の3つのうちの少なくとも1つである。
 評価指標計算部406は、「標準」に関する評価指標を計算して提示部407に出力する。「標準」に関する評価指標は、例えば「標準」に関する制御パラメータに対応する開ループ周波数特性に基づいて計算された、ゲイン余裕と位相余裕及び、「標準」に関する制御パラメータに対応する閉ループ周波数特性に基づいて計算された制御帯域の3つのうちの少なくとも1つである。
 また、評価指標計算部406は、「安定性重視」に関する評価指標を計算して提示部407に出力する。「安定性重視」に関する評価指標は、例えば「安定性重視」に関する制御パラメータに対応する開ループ周波数特性に基づいて計算された、ゲイン余裕と位相余裕及び、「安定性重視」に関する制御パラメータに対応する閉ループ周波数特性に基づいて計算された制御帯域の3つのうちの少なくとも1つである。
 制御帯域とは、ゲインが0dB又は-3dBと交わる周波数を意味する。
(Evaluation index calculation unit 406)
The evaluation index calculation unit 406 calculates the evaluation index related to “before adjustment” and outputs it to the presentation unit 407. The evaluation index related to "before adjustment" is, for example, the gain margin and phase margin calculated based on the open-loop frequency characteristics corresponding to the initial control parameters before adjustment, and the closed-loop frequency characteristics corresponding to the initial control parameters before adjustment. It is at least one of three control bands calculated based on frequency characteristics.
The evaluation index calculation unit 406 calculates the evaluation index regarding “standard” and outputs it to the presentation unit 407. The evaluation index related to "Standard" is based on the gain margin and phase margin calculated based on the open-loop frequency characteristic corresponding to the control parameter related to "Standard", and the closed-loop frequency characteristic corresponding to the control parameter related to "Standard", for example. is at least one of the three control bands calculated by
Furthermore, the evaluation index calculating unit 406 calculates an evaluation index related to “emphasis on stability” and outputs it to the presentation unit 407. The evaluation index related to "emphasis on stability" corresponds to, for example, the gain margin and phase margin calculated based on the open-loop frequency characteristic corresponding to the control parameter related to "emphasis on stability", and the control parameter related to "emphasis on stability". at least one of the three control bands calculated based on the closed-loop frequency characteristics.
Control band means the frequency where the gain intersects 0 dB or -3 dB.
 (提示部407)
 提示部407は、周波数特性予測部403から、調整前の初期の制御パラメータに対応する開ループ周波数特性及び/又は閉ループ周波数特性、「標準」に関する制御パラメータに対応する開ループ周波数特性及び/又は閉ループ周波数特性、及び「安定性重視」に関する制御パラメータに対応する開ループ周波数特性及び/又は閉ループ周波数特性を取得する。また、提示部407は、評価指標計算部406から、「調整前」に関する評価指標、「標準」に関する評価指標及び「安定性重視」に関する評価指標を取得する。
 そして、提示部407は、調整前の初期の制御パラメータに対応する開ループ周波数特性及び/又は閉ループ周波数特性、「標準」に関する制御パラメータに対応する開ループ周波数特性及び/又は閉ループ周波数特性、及び「安定性重視」に関する制御パラメータに対応する開ループ周波数特性及び/又は閉ループ周波数特性から、それぞれボーデ線図を作成し、「調整前」、「標準」及び「安定性重視」に関する評価指標とともに表示画面に表示する。
 提示部407による、ボーデ線図及び評価指標の提示は、表示画面による表示に限らず、プリンター等により打ち出した紙による提示等であってもよい。以下の説明では、提示部407が表示画面によって表示する例について説明する。
(Presentation unit 407)
The presentation unit 407 receives from the frequency characteristic prediction unit 403 the open-loop frequency characteristic and/or closed-loop frequency characteristic corresponding to the initial control parameters before adjustment, and the open-loop frequency characteristic and/or closed-loop frequency characteristic corresponding to the control parameter related to “standard”. A frequency characteristic and an open-loop frequency characteristic and/or a closed-loop frequency characteristic corresponding to a control parameter regarding "stability emphasis" are obtained. The presentation unit 407 also acquires, from the evaluation index calculation unit 406, an evaluation index related to “before adjustment”, an evaluation index related to “standard”, and an evaluation index related to “stability emphasis”.
The presenting unit 407 then displays the open-loop frequency characteristic and/or closed-loop frequency characteristic corresponding to the initial control parameter before adjustment, the open-loop frequency characteristic and/or closed-loop frequency characteristic corresponding to the control parameter regarding "standard", and the " A Bode diagram is created from the open-loop frequency characteristics and/or closed-loop frequency characteristics corresponding to the control parameters related to "Stability Emphasis", and displayed on the screen together with evaluation indicators related to "Before Adjustment", "Standard", and "Stability Emphasis". to be displayed.
The presentation of the Bode diagram and the evaluation index by the presentation unit 407 is not limited to display on a display screen, but may also be presented on paper printed out by a printer or the like. In the following description, an example in which the presentation unit 407 displays on the display screen will be described.
 図7は、「調整前」、「標準」及び「安定性重視」に関する閉ループ周波数特性のボーデ線図及び、「調整前」、「標準」及び「安定性重視」に関する評価指標を表示した表示画面を示す図である。図7では、ゲイン余裕、位相余裕、及び制御帯域の全てを表示しているが、ゲイン余裕、位相余裕、及び制御帯域のうちの1つ又は2つを表示してもよい。
 図7において、表示画面500に表示される表501には、表示欄502A、502B、502Cにそれぞれ、「調整前」、「標準」及び「安定性重視」に関する開ループ周波数特性及び閉ループ周波数特性のボーデ線図が示され、表示欄503A、503B、503Cにそれぞれ、「調整前」、「標準」及び「安定性重視」に関する評価指標が示されている。
FIG. 7 is a display screen displaying Bode diagrams of closed-loop frequency characteristics for "before adjustment", "standard", and "emphasis on stability" and evaluation indicators regarding "before adjustment", "standard", and "emphasis on stability". FIG. In FIG. 7, all of the gain margin, phase margin, and control band are displayed, but one or two of the gain margin, phase margin, and control band may be displayed.
In FIG. 7, in a table 501 displayed on a display screen 500, open-loop frequency characteristics and closed-loop frequency characteristics regarding "before adjustment", "standard", and "stability emphasis" are shown in display columns 502A, 502B, and 502C, respectively. A Bode diagram is shown, and evaluation indicators regarding "before adjustment", "standard", and "stability emphasis" are shown in display columns 503A, 503B, and 503C, respectively.
 図8、図9、図10は、表示欄502A、502B、502Cにそれぞれ示されるボーデ線図である。図8、図9、図10において、実線は閉ループ周波数特性、破線は開ループ周波数特性を示しいる。
 上述したように、ゲイン余裕と位相余裕は開ループ周波数特性に基づいて計算され、制御帯域は閉ループ周波数特性に基づいて計算される。よって、表示欄503A、503B、503Cにゲイン余裕、位相余裕、及び制御帯域の全てを表示する場合には、図8、図9及び図10に示すように、表示欄502A、502B、502Cに開ループ周波数特性と閉ループ周波数特性とを示すボーデ線図が示される。
 ゲイン余裕と位相余裕のうちの一方又は両方のみを表示欄503A、503B、503Cに表示する場合には、表示欄502A、502B、502Cに開ループ周波数特性を示すボーデ線図が示される。制御帯域のみを表示欄503A、503B、503Cに表示する場合には、表示欄502A、502B、502Cに閉ループ周波数特性を示すボーデ線図が示される。
8, 9, and 10 are Bode diagrams shown in display columns 502A, 502B, and 502C, respectively. In FIGS. 8, 9, and 10, solid lines indicate closed-loop frequency characteristics, and broken lines indicate open-loop frequency characteristics.
As mentioned above, the gain margin and phase margin are calculated based on the open-loop frequency characteristics, and the control band is calculated based on the closed-loop frequency characteristics. Therefore, when displaying all of the gain margin, phase margin, and control band in the display columns 503A, 503B, and 503C, the display columns 502A, 502B, and 502C should be opened as shown in FIGS. A Bode diagram showing loop frequency characteristics and closed loop frequency characteristics is shown.
When displaying only one or both of the gain margin and the phase margin in the display columns 503A, 503B, and 503C, Bode diagrams showing open-loop frequency characteristics are shown in the display columns 502A, 502B, and 502C. When displaying only the control band in display columns 503A, 503B, and 503C, Bode diagrams showing closed-loop frequency characteristics are shown in display columns 502A, 502B, and 502C.
 提示部407は、「調整前」、「標準」及び「安定性重視」に関する、開ループ周波数特性及び閉ループ周波数特性のボーデ線図と、「調整前」、「標準」及び「安定性重視」に関する評価指標とのうち、いずれか一方を表示してもよい。
 提示部407は、複数の調整条件に関する開ループ周波数特性及び/又は閉ループ周波数特性を1つのボーデ線図に示してもよい。図11は、「標準」及び「安定性重視」に関する開ループ周波数特性及び閉ループ周波数特性に、「応答性重視」及び「カスタム」に関する開ループ周波数特性及び閉ループ周波数特性を加えたボーデ線図である。図11において、必要に応じて、複数の調整条件に関する開ループ周波数特性又は閉ループ周波数特性を1つのボーデ線図に示してもよいことは勿論である。
 このように、「標準」、「安定性重視」「応答性重視」及び「カスタム」の4つの調整条件の開ループ周波数特性及び/又は閉ループ周波数特性を1つのボーデ線図に示すことで、4つの調整条件の開ループ周波数特性及び/又は閉ループ周波数特性の比較が容易となる。
The presentation unit 407 displays Bode diagrams of open-loop frequency characteristics and closed-loop frequency characteristics regarding "before adjustment", "standard", and "stability emphasis", and Bode diagrams regarding "before adjustment", "standard", and "stability emphasis". Either one of the evaluation indicators may be displayed.
The presentation unit 407 may show open-loop frequency characteristics and/or closed-loop frequency characteristics regarding a plurality of adjustment conditions in one Bode diagram. FIG. 11 is a Bode diagram in which the open-loop frequency characteristics and closed-loop frequency characteristics for "Standard" and "Stability Emphasis" are added to the open-loop frequency characteristics and closed-loop frequency characteristics for "Responsivity Emphasis" and "Custom". . In FIG. 11, it is of course possible to show open-loop frequency characteristics or closed-loop frequency characteristics regarding a plurality of adjustment conditions in one Bode diagram, if necessary.
In this way, by showing the open-loop frequency characteristics and/or closed-loop frequency characteristics of the four adjustment conditions of "Standard", "Stability Emphasis", "Responsivity Emphasis", and "Custom" in one Bode diagram, it is possible to It becomes easy to compare open-loop frequency characteristics and/or closed-loop frequency characteristics under two adjustment conditions.
 なお、提示部407は、「調整前」に関する、開ループ周波数特性及び/又は閉ループ周波数特性のボーデ線図、並びに「調整前」に関する評価指標を表示しなくともよい。この場合、評価指標計算部406は「調整前」に関する評価指標を計算しなくともよい。 Note that the presentation unit 407 does not need to display the Bode diagram of the open-loop frequency characteristic and/or the closed-loop frequency characteristic regarding “before adjustment” and the evaluation index regarding “before adjustment”. In this case, the evaluation index calculation unit 406 does not need to calculate the evaluation index regarding "before adjustment."
 (制御パラメータ設定部408)
 ユーザは、提示部407の表示画面に表示された、「調整前」の初期の制御パラメータに対応する開ループ周波数特性及び/又は閉ループ周波数特性、「標準」に関する制御パラメータに対応する開ループ周波数特性及び/又は閉ループ周波数特性及び「安定性重視」に関する制御パラメータに対応する開ループ周波数特性及び/又は閉ループ周波数特性、並びに「調整前」、「標準」及び「安定性重視」に関する評価指標を見て、調整条件を決定する。
 制御パラメータ設定部408は、図12に示す設定画面を表示し、ユーザが設定画面の決定された調整条件を選択する。ユーザは、図12に示される、例えば、標準、安定性重視、応答性重視、及びカスタムの4つの調整条件のうちの条件から標準を選択して入力する。すると、制御パラメータ設定部408は、「標準」に関する制御パラメータを制御パラメータ保存部405から読み出して、モータ制御部100の制御パラメータとして設定する。
(Control parameter setting section 408)
The user can select the open-loop frequency characteristics and/or closed-loop frequency characteristics corresponding to the initial control parameters "before adjustment" and the open-loop frequency characteristics corresponding to the "standard" control parameters displayed on the display screen of the presentation unit 407. and/or looking at open-loop frequency characteristics and/or closed-loop frequency characteristics corresponding to control parameters regarding closed-loop frequency characteristics and “stability-oriented”, and evaluation indicators regarding “before adjustment”, “standard”, and “stability-oriented”. , determine the adjustment conditions.
The control parameter setting unit 408 displays a setting screen shown in FIG. 12, and the user selects the determined adjustment condition on the setting screen. The user selects and inputs standard from among the four adjustment conditions shown in FIG. 12, for example, standard, stability-oriented, responsiveness-oriented, and custom. Then, the control parameter setting unit 408 reads out the control parameters related to “standard” from the control parameter storage unit 405 and sets them as control parameters for the motor control unit 100.
 なお、ユーザは、本実施形態の調整部400で求めた制御パラメータに設定されたモータ制御部100を動作させて、周波数特性測定部300で周波数特性を測定することで、調整部400で求めた制御パラメータの有効性を検証することができる。 Note that the user operates the motor control unit 100 set to the control parameters determined by the adjustment unit 400 of the present embodiment, and measures the frequency characteristics with the frequency characteristic measurement unit 300. The effectiveness of control parameters can be verified.
 次に、図13のフローチャートを参照して本実施形態における調整部400の動作について説明をする。 Next, the operation of the adjustment section 400 in this embodiment will be explained with reference to the flowchart in FIG. 13.
 ステップS11において、周波数特性保存部401に、周波数特性測定部300から出力される、入出力ゲインと位相遅れとの、閉ループ周波数特性及び開ループ周波数特性が保存される。 In step S11, the closed-loop frequency characteristic and open-loop frequency characteristic of input/output gain and phase delay output from the frequency characteristic measurement section 300 are stored in the frequency characteristic storage section 401.
 ステップS12において、調整条件設定部402は、調整条件の入力のための設定画面を表示し、ユーザによって入力された複数の調整条件の調整条件ごとに、モータ制御部100の開ループの回路の複数の安定余裕(ゲイン余裕と位相余裕)を設定する。 In step S12, the adjustment condition setting unit 402 displays a setting screen for inputting adjustment conditions, and selects a plurality of open-loop circuits of the motor control unit 100 for each adjustment condition of the plurality of adjustment conditions input by the user. Set the stability margin (gain margin and phase margin) for
 ステップS13において、制御パラメータ調整部404は、制御パラメータの調整情報を周波数特性予測部403に出力し、ステップS14に移る。 In step S13, the control parameter adjustment unit 404 outputs control parameter adjustment information to the frequency characteristic prediction unit 403, and the process moves to step S14.
 ステップS14において、周波数特性予測部403は、既に説明した、調整前後の制御パラメータを用いた、周波数特性C1、C2を求め、周波数特性C1、C2と、周波数特性保存部401から取得した開ループ周波数特性Poに基づいて、複数の調整条件のうちの一の調整条件での、制御パラメータの調整後の開ループ周波数特性を予測する。開ループ周波数特性を予測した後、開ループ周波数特性を用いて閉ループ周波数特性も予測する。 In step S14, the frequency characteristic prediction unit 403 calculates the frequency characteristics C1 and C2 using the control parameters before and after adjustment, which have already been explained, and uses the frequency characteristics C1 and C2 and the open loop frequency acquired from the frequency characteristic storage unit 401. Based on the characteristic Po, the open-loop frequency characteristic after adjustment of the control parameters under one of the plurality of adjustment conditions is predicted. After predicting the open-loop frequency characteristics, the open-loop frequency characteristics are also used to predict the closed-loop frequency characteristics.
 ステップS15において、制御パラメータ調整部404は、安定条件(安定余裕等)を満たすかどうかを判断する。 In step S15, the control parameter adjustment unit 404 determines whether stability conditions (stability margin, etc.) are satisfied.
 ステップS16において、制御パラメータ調整部404は、調整されて、最適化された制御パラメータを制御パラメータ保存部405に保存する。
 ステップS17において、他の調整条件があるかどうかを判断し、他の調整条件がある場合には、ステップS13に戻り、他の調整条件がない場合には、ステップS18に移る。
 ステップS18において、提示部407は、複数の調整条件での周波数特性を表示するとともに、評価指標計算部406で計算された評価指標を表示する。
In step S16, the control parameter adjustment unit 404 stores the adjusted and optimized control parameters in the control parameter storage unit 405.
In step S17, it is determined whether there are other adjustment conditions. If there are other adjustment conditions, the process returns to step S13, and if there are no other adjustment conditions, the process moves to step S18.
In step S18, the presentation unit 407 displays the frequency characteristics under a plurality of adjustment conditions, and also displays the evaluation index calculated by the evaluation index calculation unit 406.
 以上説明した本実施形態によれば、1回の周波数特性の測定で、複数の調整条件でモータのゲイン、フィルタの係数等の制御パラメータを調整した場合の複数の周波数特性を求めることができる。その結果、複数の周波数特性及び/又は複数の周波数特性の評価指標を確認することで、異なる調整条件での調整後の周波数特性及び/又は周波数特性の評価指標を簡単に比較し、適用したい制御パラメータを簡単に選択することが可能となる。 According to the present embodiment described above, a plurality of frequency characteristics when control parameters such as motor gain and filter coefficients are adjusted under a plurality of adjustment conditions can be determined by one frequency characteristic measurement. As a result, by checking multiple frequency characteristics and/or evaluation indices of multiple frequency characteristics, you can easily compare the frequency characteristics and/or evaluation indices of frequency characteristics after adjustment under different adjustment conditions, and apply the control you want to apply. It becomes possible to easily select parameters.
<制御パラメータ調整部を機械学習部とした変形例>
 図14は図3に示した調整部400の制御パラメータ調整部404を機械学習部600に置き換えた変形例を示すブロック図である。
 調整部400Aは、制御パラメータ調整部404に機械学習部600を用いた点を除いて図3に示した調整部400と同じである。
 以下の説明では機械学習部600が強化学習を行う場合について説明するが、機械学習部600が行う学習は特に強化学習に限定されず、例えば、教師あり学習を行う場合にも本発明は適用可能である。
<Modified example in which the control parameter adjustment unit is a machine learning unit>
FIG. 14 is a block diagram showing a modification example in which the control parameter adjustment section 404 of the adjustment section 400 shown in FIG. 3 is replaced with a machine learning section 600.
The adjustment unit 400A is the same as the adjustment unit 400 shown in FIG. 3 except that the machine learning unit 600 is used as the control parameter adjustment unit 404.
In the following explanation, a case will be described in which the machine learning unit 600 performs reinforcement learning, but the learning performed by the machine learning unit 600 is not particularly limited to reinforcement learning, and the present invention is also applicable to cases where supervised learning is performed, for example. It is.
 機械学習部600は、周波数特性予測部403から出力される、入出力ゲインと位相遅れとの推定値を状態Sとして、当該状態Sに係る、制御パラメータの値の調整を行動Aとする、Q学習(Q-learning)を行う。当業者にとって周知のように、Q学習は、或る状態Sのとき、取り得る行動Aのなかから、価値Q(S,A)の最も高い行動Aを最適な行動として選択することを目的とする。 The machine learning unit 600 sets the estimated values of the input/output gain and phase delay output from the frequency characteristic prediction unit 403 as a state S, and sets the adjustment of the control parameter value related to the state S as an action A.Q Perform learning (Q-learning). As is well known to those skilled in the art, the purpose of Q learning is to select the action A with the highest value Q(S, A) as the optimal action from among possible actions A in a certain state S. do.
 具体的には、エージェント(機械学習装置)は、或る状態Sの下で様々な行動Aを選択し、その時の行動Aに対して、与えられる報酬に基づいて、より良い行動の選択をすることにより、正しい価値Q(S,A)を学習していく。 Specifically, an agent (machine learning device) selects various actions A under a certain state S, and selects a better action based on the reward given for the action A at that time. By doing so, the correct value Q(S,A) is learned.
 また、将来にわたって得られる報酬の合計を最大化したいので、最終的にQ(S,A)=E[Σ(γ)r]となるようにすることを目指す。ここでE[]は期待値を表し、tは時刻、γは後述する割引率と呼ばれるパラメータ、rは時刻tにおける報酬、Σは時刻tによる合計である。この式における期待値は、最適な行動に従って状態変化した場合の期待値である。このような価値Q(S,A)の更新式は、例えば、次の数式6(以下に数6として示す)により表すことができる。 Furthermore, since we want to maximize the total amount of rewards that can be obtained in the future, we aim to finally achieve Q(S,A)=E[Σ(γ t )r t ]. Here, E[ ] represents the expected value, t is time, γ is a parameter called a discount rate which will be described later, r t is the reward at time t, and Σ is the sum at time t. The expected value in this equation is the expected value when the state changes according to the optimal action. Such an update formula for the value Q(S, A) can be expressed, for example, by the following Equation 6 (shown as Equation 6 below).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 上記の数式6において、Sは、時刻tにおける環境の状態を表し、Aは、時刻tにおける行動を表す。行動Aにより、状態はSt+1に変化する。rt+1は、その状態の変化により得られる報酬を表している。また、maxの付いた項は、状態St+1の下で、その時に分かっている最もQ値の高い行動Aを選択した場合のQ値にγを乗じたものになる。ここで、γは、0<γ≦1のパラメータで、割引率と呼ばれる。また、αは、学習係数で、0<α≦1の範囲とする。 In Equation 6 above, S t represents the state of the environment at time t, and A t represents the behavior at time t. Due to the action A t , the state changes to S t+1 . r t+1 represents the reward obtained by changing the state. Moreover, the term with max is the Q value when action A with the highest Q value known at that time is selected under state S t+1 multiplied by γ. Here, γ is a parameter satisfying 0<γ≦1 and is called a discount rate. Further, α is a learning coefficient and is in the range of 0<α≦1.
 上述した数式6は、試行Aの結果、返ってきた報酬rt+1を元に、状態Sにおける行動Aの価値Q(S,A)を更新する方法を表している。 Equation 6 above represents a method of updating the value Q(S t , A t ) of action A t in state S t based on the reward r t+1 returned as a result of trial A t .
 機械学習部600は、周波数特性予測部403が推定した周波数ごとの入出力ゲインと位相遅れとの周波数特性を含む状態情報Sを観測して、行動Aを決定する。機械学習部600は、行動Aをするたびに報酬が返ってくる。報酬については後述する。
 Q学習では、機械学習部600は、例えば、将来にわたっての報酬の合計が最大になる最適な行動Aを試行錯誤的に探索する。そうすることで、機械学習部600は、状態Sに対して、最適な行動A(すなわち、最適なサーボパラメータの値)を選択することが可能となる。
The machine learning unit 600 determines the action A by observing the state information S including the frequency characteristics of the input/output gain and phase delay for each frequency estimated by the frequency characteristic prediction unit 403. The machine learning unit 600 receives a reward each time it performs action A. The remuneration will be discussed later.
In Q-learning, the machine learning unit 600 searches, for example, by trial and error for the optimal action A that maximizes the total reward over the future. By doing so, the machine learning unit 600 can select the optimal action A (that is, the optimal servo parameter value) for the state S.
 図15は機械学習部600の構成を示すブロック図である。
 上述した強化学習を行うために、図15に示すように、機械学習部600は、状態情報取得部601、学習部602、行動情報出力部603、価値関数記憶部604、及び最適化行動情報出力部605を備える。学習部602は報酬出力部6021、価値関数更新部6022、及び行動情報生成部6023を備える。
FIG. 15 is a block diagram showing the configuration of the machine learning section 600.
In order to perform the reinforcement learning described above, as shown in FIG. 15, the machine learning unit 600 includes a state information acquisition unit 601, a learning unit 602, a behavior information output unit 603, a value function storage unit 604, and an optimization behavior information output unit. 605. The learning unit 602 includes a reward output unit 6021, a value function update unit 6022, and a behavior information generation unit 6023.
 状態情報取得部601は、調整後の制御パラメータを用いて算出したモータ制御部100の入出力ゲインと位相遅れとの周波数特性の推定値を周波数特性予測部403から取得して学習部602に出力する。この状態情報Sは、Q学習における、環境状態Sに相当する。また、状態情報取得部601は、閉曲線となる円と単位円とを含む複素平面に関する画像データを調整条件設定部402から取得して学習部602に出力する。 The state information acquisition unit 601 acquires from the frequency characteristic prediction unit 403 the estimated value of the frequency characteristic of the input/output gain and phase delay of the motor control unit 100 calculated using the adjusted control parameters, and outputs it to the learning unit 602. do. This state information S corresponds to the environmental state S in Q learning. Further, the state information acquisition unit 601 acquires image data regarding a complex plane including a circle that is a closed curve and a unit circle from the adjustment condition setting unit 402 and outputs it to the learning unit 602.
 なお、最初にQ学習を開始する時点での速度制御部120の積分ゲインK1vと比例ゲインK2v、及びフィルタ130の伝達関数の各係数ω、τ、δは、予めユーザが生成するようにする。本実施形態では、ユーザが作成した、速度制御部120の積分ゲインK1vと比例ゲインK2v、及び/又はフィルタ130の伝達関数の各係数ω、τ、δの初期設定値を、強化学習により最適なものに調整する。
 なお、積分ゲインK1v、比例ゲインK2v、及び係数ω、τ、δは予め操作者が工作機械を調整している場合には、調整済の値を初期値として機械学習してもよい。
Note that the integral gain K1v and proportional gain K2v of the speed control unit 120 at the time when Q learning is first started, and the coefficients ω c , τ, and δ of the transfer function of the filter 130 are generated by the user in advance. . In this embodiment, the initial setting values of the integral gain K1v and proportional gain K2v of the speed control unit 120 and/or the coefficients ω c , τ, and δ of the transfer function of the filter 130, created by the user, are optimized by reinforcement learning. adjust to something.
Note that if the operator has adjusted the machine tool in advance, the integral gain K1v, the proportional gain K2v, and the coefficients ω c , τ, and δ may be machine learned using the adjusted values as initial values.
 学習部602は、或る環境状態Sの下で、ある行動Aを選択する場合の価値Q(S,A)を学習する部分である。 The learning unit 602 is a part that learns the value Q(S, A) when selecting a certain action A under a certain environmental state S.
 まず、学習部602の報酬出力部6021について説明する。
 報酬出力部6021は、或る状態Sの下で、行動Aを選択した場合の報酬を求める部分である。
First, the reward output unit 6021 of the learning unit 602 will be explained.
The reward output unit 6021 is a part that obtains a reward when action A is selected under a certain state S.
 報酬出力部6021は、状態情報取得部601から閉曲線となる円と単位円とを含む複素平面に関する画像データを取得する。報酬出力部6021は、状態情報取得部601から得られた入出力ゲインと位相遅れを用い、開ループ周波数特性H(jω)を取得した複素平面に描画することでナイキスト軌跡を作成する。ナイキスト軌跡を作成する方法については、調整部400の動作説明において既に説明したので、ここでは省略する。このようにして、図5に示した、ナイキスト軌跡、単位円、及びゲイン余裕と位相余裕を通る円を示す複素平面が得られる。
 制御パラメータの調整前の初期状態のナイキスト軌跡は、報酬出力部6021が、状態情報取得部601介して周波数特性保存部401から、開ループ周波数特性H(jω)を取得して、開ループ周波数特性H(jω)を複素平面に描画することで作成できる。
 Q学習の過程におけるナイキスト軌跡は、報酬出力部6021が、周波数特性予測部403から出力される開ループ周波数特性H(jω)’又は閉ループ周波数特性G(jω)’を複素平面に描画することで作成できる。
The reward output unit 6021 acquires image data regarding a complex plane including a circle that is a closed curve and a unit circle from the state information acquisition unit 601. The reward output unit 6021 uses the input/output gain and phase delay obtained from the state information acquisition unit 601 to create a Nyquist trajectory by drawing the open-loop frequency characteristic H(jω) on the acquired complex plane. The method for creating the Nyquist trajectory has already been explained in the operation description of the adjustment section 400, so it will not be described here. In this way, a complex plane showing a circle passing through the Nyquist locus, the unit circle, and the gain margin and phase margin shown in FIG. 5 is obtained.
The Nyquist locus in the initial state before adjustment of the control parameters is determined by the reward output unit 6021, which acquires the open-loop frequency characteristic H(jω) from the frequency characteristic storage unit 401 via the state information acquisition unit 601, and converts it into an open-loop frequency characteristic. It can be created by drawing H(jω) on a complex plane.
The Nyquist trajectory in the process of Q learning is created by the reward output unit 6021 drawing the open-loop frequency characteristic H(jω)' or the closed-loop frequency characteristic G(jω)' output from the frequency characteristic prediction unit 403 on a complex plane. Can be created.
 以下の説明では、円の半径を半径r、円とナイキスト軌跡との最短距離を最短距離dとして説明する。ここでは最短距離dは円の中心とナイキスト軌跡との最短距離とするが、これに限定されず、例えば円の外周とナイキスト軌跡との最短距離としてもよい。 In the following explanation, the radius of the circle is assumed to be the radius r, and the shortest distance between the circle and the Nyquist locus is assumed to be the shortest distance d. Here, the shortest distance d is the shortest distance between the center of the circle and the Nyquist locus, but is not limited to this, and may be, for example, the shortest distance between the outer circumference of the circle and the Nyquist locus.
 報酬出力部6021は、最短距離dが半径rより小さく(d<r)、ナイキスト軌跡が閉曲線の内側を通る場合は負の値の報酬を与える。一方、報酬出力部6021は、最短距離dが半径rと等しいか又は大きく(d≧r)、ナイキスト軌跡が円の内側を通らない場合にはゼロの値の報酬を与える。 The reward output unit 6021 gives a negative reward when the shortest distance d is smaller than the radius r (d<r) and the Nyquist trajectory passes inside the closed curve. On the other hand, the reward output unit 6021 gives a reward of zero value when the shortest distance d is equal to or larger than the radius r (d≧r) and the Nyquist trajectory does not pass inside the circle.
 報酬出力部6021は、上記のように報酬を与えることで、円の内側をナイキスト軌跡が通らず、ゲイン余裕及び位相余裕をユーザの設定した値以上となる、速度制御部120の積分ゲインK1vと比例ゲインK2v、及びフィルタ130の伝達関数の係数ω、τ、δを試行錯誤的に探索する。 By giving the reward as described above, the reward output unit 6021 sets the integral gain K1v of the speed control unit 120 such that the Nyquist locus does not pass inside the circle and the gain margin and phase margin are equal to or higher than the values set by the user. The proportional gain K2v and the coefficients ω c , τ, and δ of the transfer function of the filter 130 are searched by trial and error.
 以上説明した例では、ナイキスト軌跡が閉曲線となる円の内側を通るかどうかを、円とナイキスト軌跡との最短距離に基づいて決めているが、この方法に限定されず他の方法を用いてもよく、例えば、ナイキスト軌跡が閉曲線となる円の外周と接する又は円と交わるか否かによって判断してもよい。 In the example explained above, whether the Nyquist locus passes inside the circle that is a closed curve is determined based on the shortest distance between the circle and the Nyquist locus, but the method is not limited to this, and other methods may also be used. For example, the determination may be made based on whether the Nyquist locus touches or intersects with the outer circumference of a circle that is a closed curve.
(応答速度を考慮した例)
 円上(d=r)、又は円の外側(d>r)をナイキスト軌跡が通る場合に、ナイキスト軌跡が円から離れるほどゲイン余裕と位相余裕は大きくなりサーボ系の安定度は増すが、フィードバックゲインが低下し応答速度は低下する。
 そこで、報酬出力部6021が、ユーザが決めたゲイン余裕と位相余裕以上で、フィードバックゲインをできる限り大きくなるように報酬を与えることが望ましい。以下、報酬出力部6021が、ユーザが決めたゲイン余裕と位相余裕以上で、フィードバックゲインをできる限り大きくするように報酬を決める方法の3つの例について説明する。
(Example considering response speed)
When the Nyquist trajectory passes on a circle (d=r) or outside the circle (d>r), the further the Nyquist trajectory is from the circle, the larger the gain margin and phase margin become, increasing the stability of the servo system, but the feedback The gain decreases and the response speed decreases.
Therefore, it is desirable that the reward output unit 6021 gives the reward so that the feedback gain is as large as possible, exceeding the gain margin and phase margin determined by the user. Three examples of how the reward output unit 6021 determines the reward so as to make the feedback gain as large as possible beyond the gain margin and phase margin determined by the user will be described below.
(1)カットオフ周波数に基づいて報酬を決める方法
 報酬出力部6021は、周波数特性予測部403から出力された、調整後の制御パラメータを用いて算出したモータ制御部100の入出力ゲインと位相遅れからボーデ線図を作成し、カットオフ周波数を求める。
 カットオフ周波数は、例えば、ボーデ線図のゲイン特性が-3dBとなる周波数、又は位相特性が-180度となる周波数である。
(1) Method for determining remuneration based on cut-off frequency The remuneration output unit 6021 outputs the input/output gain and phase delay of the motor control unit 100 calculated using the adjusted control parameters output from the frequency characteristic prediction unit 403. Create a Bode diagram from and find the cutoff frequency.
The cutoff frequency is, for example, a frequency at which the gain characteristic of the Bode diagram becomes -3 dB or a frequency at which the phase characteristic becomes -180 degrees.
 報酬出力部6021は、カットオフ周波数が大きくなるように報酬を決める。
 具体的には、報酬出力部6021は、積分ゲインK1vと比例ゲインK2v、及び/又は係数ω、τ、δを修正し、修正前の状態Sから状態S´となった場合にカットオフ周波数fcutが大きくなるか、同じか又は小さくなるかで報酬を決める。以下の説明において、状態Sのときのカットオフ周波数fcutをfcut(S)、状態S´のときのカットオフ周波数fcutをfcut(S´)と記載する。
The reward output unit 6021 determines the reward so that the cutoff frequency becomes large.
Specifically, the reward output unit 6021 corrects the integral gain K1v, the proportional gain K2v, and/or the coefficients ω c , τ, and δ, and changes the cutoff frequency when the state S before the correction changes to the state S′. The reward is determined depending on whether fcut becomes larger, the same, or smaller. In the following description, the cutoff frequency fcut in state S is written as fcut(S), and the cutoff frequency fcut in state S' is written as fcut(S').
 状態Sから状態S´となった場合に、カットオフ周波数fcutが大きくなったとき、報酬出力部6021は、カットオフ周波数fcut(S´)>カットオフ周波数fcut(S)として、正の値の報酬を与える。
 状態Sから状態S´となった場合に、カットオフ周波数fcutが変わらないとき、報酬出力部6021は、カットオフ周波数fcut(S´)=カットオフ周波数fcut(S)として、ゼロの値の報酬を与える。
 状態Sから状態S´となった場合に、カットオフ周波数fcutが小さくなったとき、報酬出力部6021は、カットオフ周波数fcut(S´)<カットオフ周波数fcut(S)として、負の値の報酬を与える。
When the state changes from state S to state S' and the cutoff frequency fcut becomes large, the reward output unit 6021 outputs a positive value as cutoff frequency fcut(S')>cutoff frequency fcut(S). Reward.
When the state changes from state S to state S' and the cutoff frequency fcut does not change, the reward output unit 6021 outputs a reward of zero value as cutoff frequency fcut(S')=cutoff frequency fcut(S). give.
When the state changes from state S to state S' and the cutoff frequency fcut becomes smaller, the reward output unit 6021 outputs a negative value as cutoff frequency fcut(S')<cutoff frequency fcut(S). Reward.
 以上のように報酬を決めることで、ナイキスト軌跡が円上又は円の外側を通る場合に、カットオフ周波数fcutが大きくなるように速度制御部120の積分ゲインK1vと比例ゲインK2v、及び/又はフィルタ130の伝達関数の係数ω、τ、δを試行錯誤的に探索する。
 カットオフ周波数fcutが大きくなることで、フィードバックゲインが増大し応答速度は速くなる。
By determining the reward as described above, the integral gain K1v and proportional gain K2v of the speed control unit 120 and/or filter The coefficients ω c , τ, and δ of the 130 transfer functions are searched by trial and error.
By increasing the cutoff frequency fcut, the feedback gain increases and the response speed becomes faster.
(2)閉ループ特性に基づいて報酬を決める方法
 報酬出力部6021は、周波数特性予測部403から出力された、調整後の制御パラメータを用いて算出したモータ制御部100の入出力ゲインと位相遅れから、閉ループの伝達関数G(jω)を求める。報酬出力部6021は、予め設定された周波数領域での評価関数fとして、f=Σ|1-G(jω)|を適用することができる。
 報酬出力部6021は、評価関数fの値が小さくなるように報酬を決める。
 具体的には、報酬出力部6021は、積分ゲインK1vと比例ゲインK2v、及び/又は係数ω、τ、δを修正し、修正前の状態Sから状態S´となった場合に、評価関数fの値が小さくなるか、同じか又は大きくなるかで報酬を決める。以下の説明において、状態Sのときの評価関数fの値をf(S)、状態S´のときの評価関数fの値をf(S´)と記載する。
 評価関数fの値が小さくなれば、図11に示す閉ループのボーデ線図のカット周波数が大きくなる。
(2) Method for determining remuneration based on closed-loop characteristics The remuneration output unit 6021 calculates the input/output gain and phase delay of the motor control unit 100 using the adjusted control parameters output from the frequency characteristic prediction unit 403. , find the closed-loop transfer function G(jω). The reward output unit 6021 can apply f=Σ|1−G(jω)| 2 as the evaluation function f in a preset frequency domain.
The reward output unit 6021 determines the reward so that the value of the evaluation function f becomes small.
Specifically, the reward output unit 6021 corrects the integral gain K1v, the proportional gain K2v, and/or the coefficients ω c , τ, and δ, and when the state S before the correction changes to the state S′, the evaluation function The reward is determined depending on whether the value of f becomes smaller, the same, or larger. In the following description, the value of the evaluation function f in the state S is written as f(S), and the value of the evaluation function f in the state S' is written as f(S').
As the value of the evaluation function f becomes smaller, the cut frequency of the closed-loop Bode diagram shown in FIG. 11 becomes larger.
 状態Sから状態S´となった場合に、評価関数fの値が小さくなったとき、報酬出力部6021は、評価関数の値f(S´)<評価関数の値f(S)として、正の値の報酬を与える。
 状態Sから状態S´となった場合に、評価関数fの値が変わらないとき、報酬出力部6021は、評価関数の値f(S´)=評価関数の値f(S)として、ゼロの値の報酬を与える。
 状態Sから状態S´となった場合に、評価関数fの値が大きくなったとき、報酬出力部6021は、評価関数の値f(S´)>評価関数の値f(S)として、負の値の報酬を与える。
When the value of the evaluation function f becomes smaller when the state changes from the state S to the state S', the reward output unit 6021 determines that the value of the evaluation function f(S')<the value of the evaluation function f(S), Give a reward of value.
If the value of the evaluation function f does not change when the state changes from the state S to the state S', the reward output unit 6021 sets the evaluation function value f(S')=the evaluation function value f(S) to be zero. Give value rewards.
When the value of the evaluation function f becomes large when the state changes from the state S to the state S', the reward output unit 6021 outputs a negative value as the evaluation function value f(S')>the evaluation function value f(S). Give a reward of value.
 以上のように報酬を決めることで、ナイキスト軌跡が円上又は円の外側を通る場合に、評価関数fの値が小さくなるように速度制御部120の積分ゲインK1vと比例ゲインK2v、及びフィルタ130の伝達関数の係数ω、τ、δを試行錯誤的に探索する。
 評価関数fの値が小さくなることで、フィードバックゲインが増大し応答速度は速くなる。
By determining the reward as described above, the integral gain K1v and proportional gain K2v of the speed control unit 120 and the filter 130 are set so that the value of the evaluation function f becomes small when the Nyquist trajectory passes on a circle or outside the circle. The coefficients ω c , τ, and δ of the transfer function are searched by trial and error.
As the value of the evaluation function f becomes smaller, the feedback gain increases and the response speed becomes faster.
(3)最短距離dが半径rに近づくように報酬を決める方法
 円上(d=r)、又は円の外側(d>r)をナイキスト軌跡が通る場合に、ナイキスト軌跡が閉曲線に近づくように報酬を決める。
 具体的には、報酬出力部6021は、積分ゲインK1vと比例ゲインK2v、及び/又は係数ω、τ、δを修正し、修正前の状態Sから状態S´となった場合に、円の中心とナイキスト軌跡との最短距離dが小さくなるか、同じか、又は大きくなるかで報酬を決める。以下の説明において、状態Sのときの最短距離dをd(s)、状態S´のときの最短距離dをd(s´)と記載する。
(3) A method to determine the reward so that the shortest distance d approaches the radius r When the Nyquist trajectory passes on a circle (d=r) or outside the circle (d>r), the Nyquist trajectory approaches a closed curve. Decide on compensation.
Specifically, the reward output unit 6021 corrects the integral gain K1v, the proportional gain K2v, and/or the coefficients ω c , τ, and δ, and when the state S before the correction changes to the state S′, the The reward is determined depending on whether the shortest distance d between the center and the Nyquist trajectory becomes smaller, the same, or larger. In the following description, the shortest distance d in state S is written as d(s), and the shortest distance d in state S' is written as d(s').
 状態Sから状態S´となった場合に、最短距離dが小さくなったとき、報酬出力部6021は、最短距離d(S´)<最短距離d(S)として、正の値の報酬を与える。
 状態Sから状態S´となった場合に、最短距離dが変わらないとき、報酬出力部6021は、最短距離d(S´)=最短距離d(S)として、ゼロの値の報酬を与える。
 状態Sから状態S´となった場合に、最短距離dが大きくなったとき、報酬出力部6021は、最短距離d(S´)>最短距離d(S)として、負の値の報酬を与える。
When the state changes from state S to state S', when the shortest distance d becomes smaller, the reward output unit 6021 gives a positive value reward as shortest distance d(S')<shortest distance d(S). .
When the state changes from the state S to the state S', if the shortest distance d does not change, the reward output unit 6021 gives a reward of zero as the shortest distance d(S')=the shortest distance d(S).
When the state changes from state S to state S', when the shortest distance d becomes larger, the reward output unit 6021 gives a negative reward as shortest distance d(S')>shortest distance d(S). .
 以上のように報酬を決めることで、ナイキスト軌跡が円上を通る又は円の外周に近づくように速度制御部120の積分ゲインK1vと比例ゲインK2v、及び/又はフィルタ130の伝達関数の係数ω、τ、δを試行錯誤的に探索する。
 ナイキスト軌跡が円上を通る又は円の外周に近づくことで、フィードバックゲインが増大し応答速度は速くなる。
 最短距離dの情報に基づいて報酬を決める方法は上記の方法に限定されず、他の方法を適用することができる。
By determining the reward as described above, the integral gain K1v and proportional gain K2v of the speed control unit 120 and/or the coefficient ω c of the transfer function of the filter 130 are adjusted such that the Nyquist locus passes on a circle or approaches the outer periphery of the circle. , τ, and δ are searched by trial and error.
When the Nyquist locus passes on a circle or approaches the outer periphery of the circle, the feedback gain increases and the response speed becomes faster.
The method of determining the reward based on the information on the shortest distance d is not limited to the above method, and other methods can be applied.
(共振を考慮した例)
 円上(d=r)、又は円の外側(d>r)をナイキスト軌跡が通る場合でも、制御対象となる機械の機械端の共振により入出力ゲインが増大する場合がある。
 そこで、報酬出力部6021は、ユーザが決めたゲイン余裕と位相余裕以上で、共振を抑制するように報酬を決めることが望ましい。以下、開ループ特性と規範モデルとの比較により報酬を決める方法について説明する。
(Example considering resonance)
Even when the Nyquist locus passes on a circle (d=r) or outside the circle (d>r), the input/output gain may increase due to resonance at the machine end of the machine to be controlled.
Therefore, it is desirable that the reward output unit 6021 determines the reward so as to suppress resonance by having a gain margin and a phase margin determined by the user. Below, we will explain how to determine rewards by comparing open-loop characteristics and a normative model.
 以下、報酬出力部6021が、作成した周波数特性における周波数ごとの入出力ゲインが規範モデルの入出力ゲインよりも大きい場合に、負の報酬を与える動作について図16及び図17を用いて説明する。 Hereinafter, an operation in which the reward output unit 6021 gives a negative reward when the input/output gain for each frequency in the created frequency characteristic is larger than the input/output gain of the reference model will be described using FIGS. 16 and 17.
 報酬出力部6021は、入出力ゲインの規範モデルを保存している。規範モデルは、共振のない理想的な特性を有するモータ制御部のモデルである。規範モデルは、例えば、図16に示すモデルのイナーシャJa、トルク定数K、比例ゲインK、積分ゲインK、微分ゲインKから計算で求めることができる。イナーシャJaはモータイナーシャと機械イナーシャとの加算値である。 The reward output unit 6021 stores a reference model of input/output gain. The reference model is a model of a motor control unit that has ideal characteristics without resonance. The reference model can be calculated from the inertia Ja, torque constant K t , proportional gain K p , integral gain K I , and differential gain K D of the model shown in FIG. 16, for example. Inertia Ja is the sum of motor inertia and mechanical inertia.
 図17は、規範モデルのモータ制御部と、学習前及び学習後のモータ制御部100との入出力ゲインの周波数特性を示す特性図である。図17の特性図に示すように、規範モデルは、一定の入出力ゲイン以上、例えば、-20dB以上での理想的な入出力ゲインとなる周波数領域である領域FAと、一定の入出力ゲイン未満となる周波数領域である領域FBとを備えている。図17の領域FAにおいて、規範モデルの理想的な入出力ゲインを曲線MC(太線)で示す。図17の領域FBにおいて、規範モデルの理想的な仮想入出力ゲインを曲線MC11(破線の太線)で示し、規範モデルの入出力ゲインを一定値として直線MC12(太線)で示す。図13の領域FA及びFBにおいて、学習前及び学習後のモータ制御部との入出力ゲインの曲線をそれぞれ曲線RC、RCで示す。 FIG. 17 is a characteristic diagram showing the frequency characteristics of the input/output gain of the motor control section of the reference model and the motor control section 100 before and after learning. As shown in the characteristic diagram of FIG. 17, the reference model has a frequency region FA that is an ideal input/output gain above a certain input/output gain, for example, -20 dB or above, and a frequency region below a certain input/output gain. It has a region FB which is a frequency region. In the region FA of FIG. 17, the ideal input/output gain of the reference model is shown by a curve MC 1 (thick line). In the region FB of FIG. 17, the ideal virtual input/output gain of the reference model is shown by a curve MC 11 (thick broken line), and the input/output gain of the reference model is shown as a constant value by a straight line MC 12 (thick line). In regions FA and FB in FIG. 13, input/output gain curves with the motor control unit before and after learning are shown by curves RC 1 and RC 2 , respectively.
 報酬出力部6021は、領域FAでは、作成した周波数特性における周波数ごとの入出力ゲインの学習前の曲線RCが規範モデルの理想的な入出力ゲインの曲線MCを超えた場合は負の報酬を与える。
 入出力ゲインが十分小さくなる周波数を超える領域FBでは、学習前の入出力ゲインの曲線RCが規範モデルの理想的な仮想入出力ゲインの曲線MC11を超えたとしても安定性への影響が小さくなる。そのため領域FBでは、上述したように、規範モデルの入出力ゲインは理想的なゲイン特性の曲線MC11ではなく、一定値の入出力ゲイン(例えば、-20dB)の直線MC12を用いる。しかし、学習前の測定した入出力ゲインの曲線RCが一定値の入出力ゲインの直線MC12を超えた場合には不安定になる可能性があるため、報酬として負の値を与える。
In the area FA, the reward output unit 6021 outputs a negative reward if the pre-learning curve RC1 of the input/output gain for each frequency in the created frequency characteristic exceeds the ideal input/output gain curve MC1 of the reference model. give.
In the region FB exceeding the frequency where the input/output gain is sufficiently small, even if the input/output gain curve RC1 before learning exceeds the ideal virtual input/output gain curve MC11 of the reference model, there is no effect on stability. becomes smaller. Therefore, in the region FB, as described above, the input/output gain of the reference model is not the ideal gain characteristic curve MC11 , but a straight line MC12 with a constant value of input/output gain (for example, −20 dB). However, if the input/output gain curve RC1 measured before learning exceeds the input/output gain straight line MC12 having a constant value, it may become unstable, and therefore a negative value is given as a reward.
 なお、入出力ゲインのゲインを調整する場合、速度制御部120の積分ゲインK1vと比例ゲインK2v、及び/又はフィルタ130の伝達関数の係数ω、τ、δを調整する。フィルタ130の特性は、フィルタ130の帯域幅fwによって、ゲイン及び位相が変わり、フィルタ130の減衰係数kによって、ゲイン及び位相が変わる。よって、フィルタ130の係数を調整することで入出力ゲインのゲインを調整することができる。 Note that when adjusting the input/output gain, the integral gain K1v and proportional gain K2v of the speed control section 120 and/or the coefficients ω c , τ, and δ of the transfer function of the filter 130 are adjusted. As for the characteristics of the filter 130, the gain and phase change depending on the bandwidth fw of the filter 130, and the gain and phase change depending on the attenuation coefficient k of the filter 130. Therefore, by adjusting the coefficients of the filter 130, the input/output gain can be adjusted.
 報酬出力部6021は、最短距離dが半径rより小さく(d<r)、ナイキスト軌跡が閉曲線の内側を通る場合で負の値の報酬を与えた場合は、この負の値の報酬を価値関数更新部6022に出力する。報酬出力部6021は、最短距離dが半径rと等しいか又は大きく(d≧r)、ナイキスト軌跡が円の内側を通らない場合で正の値の報酬を与えた場合は、この正の値の報酬を価値関数更新部6022に出力する。
 報酬出力部6021は、応答速度を考慮した3つの例又は共振を考慮した例で報酬を与えた場合は、この報酬に、ナイキスト軌跡が円の内側を通らない場合に与えられる正の値の報酬を加えた合計の報酬を価値関数更新部6022に出力する。
If the shortest distance d is smaller than the radius r (d<r) and the Nyquist locus passes inside a closed curve, and a negative value reward is given, the reward output unit 6021 converts this negative value reward into a value function. It is output to the update unit 6022. If the shortest distance d is equal to or larger than the radius r (d≧r) and the Nyquist trajectory does not pass inside the circle, and a positive value reward is given, the reward output unit 6021 outputs the positive value. The reward is output to the value function update unit 6022.
When the reward is given in the three examples that take response speed into consideration or the example that takes resonance into account, the reward output unit 6021 adds a positive value reward that is given when the Nyquist trajectory does not pass inside the circle to this reward. The total reward obtained by adding the above is output to the value function updating unit 6022.
 なお、報酬を加算する場合、報酬に重みを与えてもよい。例えば、サーボ系の安定性を重視する場合は、ナイキスト軌跡が円の内側を通らない場合に与えられる正の値の報酬は、応答速度を考慮した3つの例又は共振を考慮した例で与える報酬よりも重要度を高くするような重みを与えることができる。
 以上、報酬出力部6021について説明した。
Note that when adding rewards, weights may be given to the rewards. For example, if the stability of the servo system is important, the positive reward given when the Nyquist trajectory does not pass inside the circle is the reward given in three examples that take response speed into consideration or the example that takes resonance into account. It is possible to give a weight that makes it more important than the other item.
The reward output unit 6021 has been described above.
 価値関数更新部6022は、状態Sと、行動Aと、行動Aを状態Sに適用した場合の状態S´と、上記のようにして求めた報酬と、に基づいてQ学習を行うことにより、価値関数記憶部604が記憶する価値関数Qを更新する。
 価値関数Qの更新は、オンライン学習で行ってもよく、バッチ学習で行ってもよく、ミニバッチ学習で行ってもよい。
 オンライン学習は、或る行動Aを現在の状態Sに適用することにより、状態Sが新たな状態S´に遷移する都度、即座に価値関数Qの更新を行う学習方法である。また、バッチ学習は、或る行動Aを現在の状態Sに適用することにより、状態Sが新たな状態S´に遷移することを繰り返すことにより、学習用のデータを収集し、収集した全ての学習用データを用いて、価値関数Qの更新を行う学習方法である。更に、ミニバッチ学習は、オンライン学習と、バッチ学習の中間的な、ある程度学習用データが溜まるたびに価値関数Qの更新を行う学習方法である。
The value function updating unit 6022 performs Q learning based on the state S, the action A, the state S′ when the action A is applied to the state S, and the reward obtained as described above. The value function Q stored in the value function storage unit 604 is updated.
The value function Q may be updated by online learning, batch learning, or mini-batch learning.
Online learning is a learning method in which, by applying a certain action A to the current state S, the value function Q is immediately updated each time the state S transitions to a new state S'. In addition, batch learning collects learning data by applying a certain action A to the current state S, repeating the transition from state S to a new state S', and This is a learning method that updates the value function Q using learning data. Furthermore, mini-batch learning is an intermediate learning method between online learning and batch learning, in which the value function Q is updated every time a certain amount of learning data is accumulated.
 行動情報生成部6023は、現在の状態Sに対して、Q学習の過程における行動Aを選択する。行動情報生成部6023は、Q学習の過程において、速度制御部120の積分ゲインK1vと比例ゲインK2v、及び/又はフィルタ130の伝達関数の各係数ω、τ、δを修正する動作(Q学習における行動Aに相当)を行わせるために、行動情報Aを生成して、生成した行動情報Aを行動情報出力部603に対して出力する。
 より具体的には、行動情報生成部6023は、例えば、状態Sに含まれる、速度制御部120の積分ゲインK1vと比例ゲインK2v、及び/又はフィルタ130の伝達関数の各係数ω、τ、δに対して行動Aに含まれる、速度制御部120の積分ゲインK1vと比例ゲインK2v、及びフィルタ130の伝達関数の各係数ω、τ、δをインクレメンタルに加算又は減算してもよい。
The behavior information generation unit 6023 selects behavior A in the Q learning process for the current state S. In the process of Q learning, the behavior information generation unit 6023 performs an operation (Q learning In order to cause the user to perform the action A (corresponding to action A in ), action information A is generated and the generated action information A is output to the action information output unit 603 .
More specifically, the behavior information generation unit 6023 generates, for example, the integral gain K1v and proportional gain K2v of the speed control unit 120 and/or the coefficients ω c , τ of the transfer function of the filter 130, which are included in the state S. The integral gain K1v and proportional gain K2v of the speed control unit 120 and the coefficients ω c , τ, and δ of the transfer function of the filter 130, which are included in the action A, may be incrementally added to or subtracted from δ.
 なお、速度制御部120の積分ゲインK1vと比例ゲインK2v、及びフィルタ130の各係数ω、τ、δは全てを修正してもよいが、一部の係数を修正してもよい。フィルタ130の各係数ω、τ、δを修正する場合、例えば、共振を生ずる中心周波数fcは見つけやすく、中心周波数fcは特定しやすい。そこで、行動情報生成部6023は、中心周波数fcを仮に固定して、帯域幅fw及び減衰係数δを修正、すなわち、係数ω(=2πfc)を固定し、係数τ(=fw/fc)と及び減衰係数δを修正する動作を行わせるために、行動情報Aを生成して、生成した行動情報Aを行動情報出力部603に対して出力してもよい。 Note that all of the integral gain K1v and proportional gain K2v of the speed control unit 120 and the coefficients ω c , τ, and δ of the filter 130 may be modified, or some of the coefficients may be modified. When modifying the coefficients ω c , τ, and δ of the filter 130, for example, the center frequency fc that causes resonance is easy to find, and the center frequency fc is easy to specify. Therefore, the behavior information generation unit 6023 temporarily fixes the center frequency fc, modifies the bandwidth fw and the attenuation coefficient δ, that is, fixes the coefficient ω c (=2πfc), and fixes the coefficient τ (=fw/fc). In order to perform an operation of correcting the damping coefficient δ, the behavior information A may be generated and the generated behavior information A may be output to the behavior information output unit 603.
 また、行動情報生成部6023は、現在の推定される行動Aの価値の中で、最も価値Q(S,A)の高い行動A´を選択するグリーディ法や、ある小さな確率εでランダムに行動A´選択し、それ以外では最も価値Q(S,A)の高い行動A´を選択するεグリーディ法といった公知の方法により、行動A´を選択する方策を取るようにしてもよい。 In addition, the behavior information generation unit 6023 uses the greedy method to select the behavior A′ with the highest value Q(S,A) among the currently estimated values of the behavior A, or randomly performs a behavior with a certain small probability ε. A' may be selected by a known method such as the ε greedy method, in which the action A' with the highest value Q(S, A) is selected otherwise.
 行動情報出力部603は、学習部602から出力される行動情報Aを周波数特性予測部403に対して送信する部分である。フィルタ130は上述したように、この行動情報に基づいて、現在の状態S、すなわち現在設定されている、速度制御部120の積分ゲインK1vと比例ゲインK2v、及び/又は各係数ω、τ、δを微修正することで、次の状態S´(すなわち修正された、速度制御部120の積分ゲインK1vと比例ゲインK2v、及び/又はフィルタ130の各係数)に遷移する。 The behavior information output unit 603 is a part that transmits the behavior information A output from the learning unit 602 to the frequency characteristic prediction unit 403. As described above, the filter 130 determines the current state S, that is, the currently set integral gain K1v and proportional gain K2v of the speed control unit 120 and/or each coefficient ω c , τ, based on this behavior information. By slightly modifying δ, a transition is made to the next state S' (that is, the modified integral gain K1v and proportional gain K2v of the speed control unit 120 and/or each coefficient of the filter 130).
 価値関数記憶部604は、価値関数Qを記憶する記憶装置である。価値関数Qは、例えば状態S、行動A毎にテーブル(以下、行動価値テーブルと呼ぶ)として格納してもよい。価値関数記憶部604に記憶された価値関数Qは、価値関数更新部6022により更新される。また、価値関数記憶部604に記憶された価値関数Qは、他の機械学習部600との間で共有されるようにしてもよい。価値関数Qを複数の機械学習部600で共有するようにすれば、各機械学習部600にて分散して強化学習を行うことが可能となるので、強化学習の効率を向上させることが可能となる。 The value function storage unit 604 is a storage device that stores the value function Q. The value function Q may be stored as a table (hereinafter referred to as an action value table) for each state S and action A, for example. The value function Q stored in the value function storage unit 604 is updated by the value function update unit 6022. Further, the value function Q stored in the value function storage unit 604 may be shared with other machine learning units 600. By sharing the value function Q among multiple machine learning units 600, it becomes possible to perform reinforcement learning in a distributed manner in each machine learning unit 600, which makes it possible to improve the efficiency of reinforcement learning. Become.
 最適化行動情報出力部605は、価値関数更新部6022がQ学習を行うことにより更新した価値関数Qに基づいて、価値Q(S,A)が最大となる動作を速度制御部120及びフィルタ130に行わせるための行動情報A(以下、「最適化行動情報」と呼ぶ)を生成する。
 より具体的には、最適化行動情報出力部605は、価値関数記憶部604が記憶している価値関数Qを取得する。この価値関数Qは、上述したように価値関数更新部6022がQ学習を行うことにより更新したものである。そして、最適化行動情報出力部605は、価値関数Qに基づいて、行動情報を生成し、生成した行動情報を、制御パラメータ保存部405に対して出力する。この最適化行動情報には、行動情報出力部603がQ学習の過程において出力する行動情報と同様に、速度制御部120の積分ゲインK1vと比例ゲインK2v、及び/又はフィルタ130の伝達関数の各係数ω、τ、δを修正する情報が含まれる。
 機械学習部600は、以上の動作で、速度制御部120の積分ゲインK1vと比例ゲインK2v及び/又はフィルタ130の伝達関数の各係数ω、τ、δの最適化を行い、モータ制御部100の安定余裕が所定の値以上となるように動作させることができる。
 また、以上の動作で、速度制御部120の積分ゲインK1vと比例ゲインK2v及び/又はフィルタ130の伝達関数の各係数ω、τ、δの最適化を行い、モータ制御部100の安定余裕が所定の値以上とするとともに、フィードバックゲインを大きくして応答速度を高める、及び/又は共振を抑制するように動作させることができる。
 以上のように、本開示の機械学習部600を利用することで、速度制御部120のゲイン及びフィルタ130のパラメータ調整を簡易化することができる。
The optimization behavior information output unit 605 controls the speed control unit 120 and the filter 130 to perform an operation that maximizes the value Q(S, A) based on the value function Q updated by the value function update unit 6022 performing Q learning. Behavior information A (hereinafter referred to as "optimized behavior information") for causing the behavior to occur is generated.
More specifically, the optimization behavior information output unit 605 acquires the value function Q stored in the value function storage unit 604. This value function Q is updated by the value function updating unit 6022 by performing Q learning as described above. Then, the optimized behavior information output unit 605 generates behavior information based on the value function Q, and outputs the generated behavior information to the control parameter storage unit 405. This optimization behavior information includes the integral gain K1v and proportional gain K2v of the speed control unit 120, and/or each of the transfer function of the filter 130, as well as the behavior information output by the behavior information output unit 603 in the process of Q learning. Information for modifying the coefficients ω c , τ, and δ is included.
Through the above operations, the machine learning unit 600 optimizes the integral gain K1v and the proportional gain K2v of the speed control unit 120 and/or the coefficients ω c , τ, and δ of the transfer function of the filter 130, and can be operated so that the stability margin of is equal to or greater than a predetermined value.
In addition, with the above operation, the integral gain K1v and proportional gain K2v of the speed control section 120 and/or the coefficients ω c , τ, and δ of the transfer function of the filter 130 are optimized, and the stability margin of the motor control section 100 is improved. It is possible to increase the feedback gain to a predetermined value or more and to increase the response speed and/or to suppress resonance.
As described above, by using the machine learning unit 600 of the present disclosure, it is possible to simplify the gain of the speed control unit 120 and the parameter adjustment of the filter 130.
 (第2実施形態)
 図18は本開示の第2実施形態の制御システムに含まれる調整部の一構成例を示すブロック図である。
 図18に示す調整部400Bが図3に示す調整部400と異なる点は、時間応答予測部409及び評価指標計算部410が設けられていることである。
 以下、時間応答予測部409、評価指標計算部410、提示部407及び制御パラメータ設定部408について説明する。
(Second embodiment)
FIG. 18 is a block diagram illustrating a configuration example of the adjustment section included in the control system according to the second embodiment of the present disclosure.
The adjustment unit 400B shown in FIG. 18 differs from the adjustment unit 400 shown in FIG. 3 in that a time response prediction unit 409 and an evaluation index calculation unit 410 are provided.
The time response prediction unit 409, evaluation index calculation unit 410, presentation unit 407, and control parameter setting unit 408 will be described below.
(時間応答予測部409)
 時間応答予測部409は、周波数特性予測部403から、調整前の初期状態の開ループ周波数特性/又は閉ループ周波数特性を取得して、調整前の時間応答(第2の時間応答となる)を予測する。また、時間応答予測部409は、「標準」に関する最適化された制御パラメータに対応する開ループ周波数特性/又は閉ループ周波数特性を取得して、「標準」の調整条件に対応する時間応答(第1の時間応答となる)を予測する。また、時間応答予測部409は、「安定性重視」に関する最適化された制御パラメータに対応する開ループ周波数特性/又は閉ループ周波数特性を取得して、「安定性重視」の調整条件に対応する時間応答(第1の時間応答となる)を予測する。
 周波数特性を利用して、時間応答を予測する方法は、周波数特性の情報を用いてモード解析を行い、伝達関数のモデルP(s)を作成する。この伝達関数のモデルP(s)を逆ラプラス変換すると、時刻領域のモデルy(t)が得られる。周波数特性を利用して、時間応答を予測する方法は、例えば、特許第6515844号に記載されている。
(Time response prediction unit 409)
The time response prediction unit 409 acquires the open-loop frequency characteristic/or the closed-loop frequency characteristic in the initial state before adjustment from the frequency characteristic prediction unit 403, and predicts the time response before adjustment (which becomes the second time response). do. Further, the time response prediction unit 409 acquires the open-loop frequency characteristic/or the closed-loop frequency characteristic corresponding to the optimized control parameter regarding the “standard”, and calculates the time response (first predict the time response of In addition, the time response prediction unit 409 acquires the open-loop frequency characteristic/or the closed-loop frequency characteristic corresponding to the optimized control parameter related to "emphasis on stability", and calculates the time response corresponding to the adjustment condition of "emphasis on stability". Predict the response (which will be the first time response).
A method of predicting a time response using frequency characteristics involves performing modal analysis using information on frequency characteristics to create a transfer function model P(s). When this transfer function model P(s) is subjected to inverse Laplace transform, a time domain model y(t) is obtained. A method of predicting a time response using frequency characteristics is described in, for example, Japanese Patent No. 6,515,844.
 周波数特性を利用して、時間応答を予測する方法の一例を以下に説明する。
 時間応答予測部409は、「標準」に関する最適化された制御パラメータに対応する開ループ周波数特性/又は閉ループ周波数特性を取得し、モード解析を行う。モード解析とは、周波数特性から機械振動のモード振動数ω、モード減衰比ζを推測することである。
 例えば、モード解析により数式7(以下の数7)の伝達関数のモデルP(s)を作成する。数式7の右側の第一項は剛体モード、第二項は共振モードである。ωとζとは、第nモードの振動数と減衰比を示す。K、Kは係数である。
Figure JPOXMLDOC01-appb-M000008
 
 次に、主成分分析を行い、数式8(以下の数8)の伝達関数のモデルP(s)を求める。主成分分析は、モード解析から得られた複数のモードの中、主要な(支配的な)モードだけ抽出することである。
Figure JPOXMLDOC01-appb-M000009
 
 
 
 上記の数式7及び数式8は、剛性モードと第一共振モードしか考えない場合の機械のモデルとなる。よって、機械の特性が必要最小限の自由度(モード)のモデルで表現することができる。
 図19は第1共振モード、第2共振モードを示すボーデ線図であり、数式7及び数式8は第1共振モードを考慮した例である。
 さらに、上記数式8を逆ラプラス変換すると時刻領域のモデルy(t)が得られる。
An example of a method for predicting a time response using frequency characteristics will be described below.
The time response prediction unit 409 acquires the open-loop frequency characteristic/or the closed-loop frequency characteristic corresponding to the optimized control parameters related to "standard" and performs a modal analysis. Modal analysis means estimating the modal frequency ω and modal damping ratio ζ of mechanical vibration from frequency characteristics.
For example, a model P(s) of the transfer function of Equation 7 (Equation 7 below) is created by modal analysis. The first term on the right side of Equation 7 is a rigid body mode, and the second term is a resonance mode. ω n and ζ n represent the frequency and damping ratio of the n-th mode. K 0 and K n are coefficients.
Figure JPOXMLDOC01-appb-M000008

Next, a principal component analysis is performed to obtain a transfer function model P(s) of Equation 8 (Equation 8 below). Principal component analysis is the process of extracting only the main (dominant) mode from among the multiple modes obtained from mode analysis.
Figure JPOXMLDOC01-appb-M000009



Equations 7 and 8 above serve as a machine model when only the rigid mode and the first resonance mode are considered. Therefore, the characteristics of the machine can be expressed by a model with the minimum necessary degrees of freedom (modes).
FIG. 19 is a Bode diagram showing the first resonance mode and the second resonance mode, and Equations 7 and 8 are examples taking the first resonance mode into consideration.
Furthermore, by inverse Laplace transform of Equation 8 above, a time domain model y(t) is obtained.
 (評価指標計算部410)
 評価指標計算部410は、「調整前」に対応する時間応答に基づいて、立上り時間、オーバシュート量、整定時間等のうちの少なくとも1つの評価指標(「調整前」に関する評価指標)を計算して提示部407に出力する。また、評価指標計算部410は、「標準」の調整条件に対応する時間応答に基づいて、立上り時間、オーバシュート量、整定時間等のうちの少なくとも1つの評価指標(「標準」に関する評価指標)を計算して提示部407に出力する。さらに、評価指標計算部410は、「安定性重視」の調整条件に対応する時間応答に基づいて、立上り時間、オーバシュート量、整定時間等のうちの少なくとも1つの評価指標(「安定性重視」に関する評価指標)を計算して提示部407に出力する。
(Evaluation index calculation unit 410)
The evaluation index calculation unit 410 calculates at least one evaluation index (evaluation index related to "before adjustment") among rise time, overshoot amount, settling time, etc., based on the time response corresponding to "before adjustment". and outputs it to the presentation section 407. In addition, the evaluation index calculation unit 410 calculates at least one evaluation index (evaluation index related to "standard") among rise time, overshoot amount, settling time, etc., based on the time response corresponding to the "standard" adjustment condition. is calculated and output to the presentation unit 407. Furthermore, the evaluation index calculation unit 410 calculates at least one evaluation index of rise time, overshoot amount, settling time, etc. ("stability") based on the time response corresponding to the "stability" adjustment condition. evaluation index) is calculated and output to the presentation unit 407.
 (提示部407)
 提示部407は、図7に示した表示画面とは別に以下に説明する図20に示す表示画面を表示する。
 提示部407は、時間応答予測部409から、「調整前」の時間応答、「標準」の調整条件に対応する時間応答及び「安定性重視」の調整条件に対応する時間応答を取得する。また、提示部407は、評価指標計算部406から、「調整前」の時間応答に関する評価指標、「標準」の調整条件に対応する時間応答に関する評価指標及び「安定性重視」の調整条件に対応する時間応答に関する評価指標を取得する。時間応答は、例えば、ステップ応答又はインパルス応答である。
 そして、提示部407は、調整前の時間応答、「標準」の調整条件に対応する時間応答及び「安定性重視」の調整条件に対応する時間応答から、それぞれ時間応答の特性図を作成し、「調整前」の時間応答に関する評価指標、「標準」の調整条件に対応する時間応答に関する評価指標及び「安定性重視」の調整条件に対応する時間応答に関する評価指標とともに表示画面700に表示する。
 提示部407は、「調整前」、「標準」及び「安定性重視」に対応する時間応答の特性図と、「調整前」、「標準」及び「安定性重視」に関する評価指標とのうち、いずれか一方を表示してもよい。
(Presentation unit 407)
The presentation unit 407 displays a display screen shown in FIG. 20, which will be described below, in addition to the display screen shown in FIG.
The presentation unit 407 acquires from the time response prediction unit 409 the time response “before adjustment”, the time response corresponding to the “standard” adjustment condition, and the time response corresponding to the “stability-oriented” adjustment condition. In addition, the presentation unit 407 receives from the evaluation index calculation unit 406 the evaluation index related to the “before adjustment” time response, the evaluation index related to the time response corresponding to the “standard” adjustment condition, and the adjustment condition “emphasis on stability”. Obtain evaluation metrics regarding time response. The time response is, for example, a step response or an impulse response.
Then, the presentation unit 407 creates time response characteristic diagrams from the time response before adjustment, the time response corresponding to the "standard" adjustment condition, and the time response corresponding to the "stability-oriented" adjustment condition, respectively, It is displayed on the display screen 700 together with the evaluation index regarding the time response “before adjustment”, the evaluation index regarding the time response corresponding to the “standard” adjustment condition, and the evaluation index regarding the time response corresponding to the “stability emphasis” adjustment condition.
The presentation unit 407 displays characteristic diagrams of time responses corresponding to "before adjustment", "standard", and "emphasis on stability", and evaluation indicators regarding "before adjustment", "standard", and "emphasis on stability". Either one may be displayed.
 図20は、「調整前」、「標準」及び「安定性重視」に対応する時間応答の特性図、並びに「調整前」、「標準」及び「安定性重視」に対応する時間応答に関する評価指標を表示した表示画面を示す図である。図20では、立上り時間、オーバシュート量、及び整定時間の全てを表示しているが、立上り時間、オーバシュート量、及び整定時間のうちの1つ又は2つを表示してもよい。
 図20において、表示画面700に表示される表701には、表示欄702A、702B、702Cにそれぞれ、「調整前」、「標準」及び「安定性重視」に対応する時間応答の特性図が示され、表示欄703A、703B、703Cにそれぞれ、「調整前」、「標準」及び「安定性重視」に対応する時間応答に関する評価指標が示されている。
 図21、図22、図23は、表示欄702A、702B、702Cにそれぞれ示される時間応答の特性を示す図である。
 提示部407は、複数の調整条件に関する時間応答を1つの特性図に示してもよい。
 提示部407は、図20に示した表示画面を単独で表示しても、図7に示した表示画面と併せて表示してもよい。また、提示部407は、図20に示した表示画面を表示する提示部と、図7に示した表示画面を表示する提示部とから構成してもよい。
 本実施形態において、図7に示した表示画面を表示せず、図20に示した表示画面のみを表示する場合、評価指標計算部406を設けなくともよく、周波数特性予測部403から提示部407へ閉ループ周波数特性及び/又は開ループ周波数特性を入力しなくともよい。
FIG. 20 shows characteristic diagrams of time responses corresponding to “before adjustment,” “standard,” and “stability emphasis,” and evaluation indicators regarding time responses corresponding to “before adjustment,” “standard,” and “stability emphasis.” It is a figure which shows the display screen which displayed . In FIG. 20, all of the rise time, overshoot amount, and settling time are displayed, but one or two of the rise time, overshoot amount, and settling time may be displayed.
In FIG. 20, in a table 701 displayed on a display screen 700, time response characteristic diagrams corresponding to "before adjustment", "standard", and "stability emphasis" are shown in display columns 702A, 702B, and 702C, respectively. In display columns 703A, 703B, and 703C, evaluation indicators related to time response corresponding to "before adjustment,""standard," and "stability emphasis" are shown, respectively.
FIG. 21, FIG. 22, and FIG. 23 are diagrams showing characteristics of time responses shown in display columns 702A, 702B, and 702C, respectively.
The presentation unit 407 may show time responses regarding a plurality of adjustment conditions in one characteristic diagram.
The presentation unit 407 may display the display screen shown in FIG. 20 alone or together with the display screen shown in FIG. 7. Furthermore, the presentation section 407 may include a presentation section that displays the display screen shown in FIG. 20 and a presentation section that displays the display screen shown in FIG. 7.
In this embodiment, when displaying only the display screen shown in FIG. 20 without displaying the display screen shown in FIG. It is not necessary to input the closed-loop frequency characteristic and/or the open-loop frequency characteristic.
 なお、提示部407は、「調整前」に関する時間応答、並びに「調整前」に関する時間応答についての評価指標を表示しなくともよい。この場合、評価指標計算部410は「調整前」に関する時間応答についての評価指標を計算しなくともよい。 Note that the presentation unit 407 does not need to display the evaluation index for the time response related to "before adjustment" and the time response related to "before adjustment." In this case, the evaluation index calculation unit 410 does not need to calculate the evaluation index for the time response related to "before adjustment."
 (制御パラメータ設定部408)
 ユーザは、提示部407の表示画面に表示された、調整前の時間応答特性図、「標準」の調整条件に対応する時間応答特性図及び「安定性重視」の調整条件に対応する時間応答特性図、並びに「調整前」、「標準」及び「安定性重視」に対応する時間応答に関する評価指標を見て、調整条件を決定する。
 制御パラメータ設定部408は、図12に示す設定画面を表示し、ユーザがこの設定画面を見て、調整条件を選択する。ユーザは、例えば、標準、安定性重視、応答性重視、及びカスタムの4つの調整条件のうちの条件から「標準」を選択して入力する。すると、制御パラメータ設定部408は、「標準」に関する制御パラメータを制御パラメータ保存部405から読み出して、モータ制御部100の制御パラメータとして設定する。
 提示部407が図7に示した表示画面と図20に示した表示画面と併せて表示した場合、ユーザは、両方の表示画面を見て、調整条件を選択することができる。
(Control parameter setting section 408)
The user can view the time response characteristic diagram before adjustment, the time response characteristic diagram corresponding to the "standard" adjustment condition, and the time response characteristic diagram corresponding to the "stability emphasis" adjustment condition displayed on the display screen of the presentation unit 407. The adjustment conditions are determined by looking at the diagram and the evaluation index regarding the time response corresponding to "before adjustment,""standard," and "stability emphasis."
The control parameter setting unit 408 displays a setting screen shown in FIG. 12, and the user views this setting screen and selects adjustment conditions. For example, the user selects and inputs "standard" from among the four adjustment conditions: standard, stability-oriented, responsiveness-oriented, and custom. Then, the control parameter setting unit 408 reads out the control parameters related to “standard” from the control parameter storage unit 405 and sets them as control parameters for the motor control unit 100.
When the presentation unit 407 displays the display screen shown in FIG. 7 and the display screen shown in FIG. 20 together, the user can view both display screens and select adjustment conditions.
 以上、制御システム10、並びに調整部400、400A及び400Bに含まれる機能ブロックについて説明した。
 これらの機能ブロックを実現するために、制御システム10、又は調整部400、400A及び400Bのいずれかは、CPU(Central Processing Unit)等の演算処理装置を備える。また、制御システム10、又は調整部400、400A及び400Bのいずれはは、アプリケーションソフトウェア又はOS(Operating System)等の各種の制御用プログラムを格納したHDD(Hard Disk Drive)等の補助記憶装置、及び演算処理装置がプログラムを実行する上で一時的に必要とされるデータを格納するためのRAM(Random Access Memory)といった主記憶装置も備える。
The functional blocks included in the control system 10 and the adjustment units 400, 400A, and 400B have been described above.
In order to realize these functional blocks, the control system 10 or any of the adjustment units 400, 400A, and 400B includes an arithmetic processing device such as a CPU (Central Processing Unit). In addition, each of the control system 10 or the adjustment units 400, 400A, and 400B includes an auxiliary storage device such as an HDD (Hard Disk Drive) that stores various control programs such as application software or an OS (Operating System); It also includes a main storage device such as a RAM (Random Access Memory) for storing data temporarily required when the arithmetic processing unit executes a program.
 そして、制御システム10、又は調整部400、400A及び400Bのいずれかにおいて、演算処理装置が補助記憶装置からアプリケーションソフトウェア又はOSを読み込み、読み込んだアプリケーションソフトウェア又はOSを主記憶装置に展開させながら、これらのアプリケーションソフトウェア又はOSに基づいた演算処理を行なう。また、この演算結果に基づいて、各装置が備える各種のハードウェアを制御する。これにより、本実施形態の機能ブロックは実現される。つまり、本実施形態は、ハードウェアとソフトウェアが協働することにより実現することができる。 Then, in either the control system 10 or the adjustment units 400, 400A, and 400B, the arithmetic processing unit reads the application software or OS from the auxiliary storage device, and deploys the loaded application software or OS in the main storage device. Arithmetic processing is performed based on the application software or OS. Also, based on this calculation result, various hardware included in each device is controlled. Thereby, the functional blocks of this embodiment are realized. In other words, this embodiment can be realized through cooperation between hardware and software.
 機械学習部600については機械学習に伴う演算量が多いため、例えば、パーソナルコンピュータにGPU(Graphics Processing Units)を搭載し、GPGPU(General-Purpose computing on Graphics Processing Units)と呼ばれる技術により、GPUを機械学習に伴う演算処理に利用するようにすると高速処理できるようになるのでよい。更には、より高速な処理を行うために、このようなGPUを搭載したコンピュータを複数台用いてコンピュータ・クラスターを構築し、このコンピュータ・クラスターに含まれる複数のコンピュータにて並列処理を行うようにしてもよい。 Since the machine learning unit 600 requires a large amount of calculations associated with machine learning, for example, a personal computer may be equipped with a GPU (Graphics Processing Units), and the GPU may be machined using a technology called GPGPU (General-Purpose computing on Graphics Processing Units). It is a good idea to use it for arithmetic processing associated with learning, as this will enable high-speed processing. Furthermore, in order to perform faster processing, multiple computers equipped with such GPUs are used to construct a computer cluster, and the multiple computers included in this computer cluster perform parallel processing. It's okay.
 上記の制御システム10、並びに調整部400、400A及び400Bに含まれる各構成部は、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。また、上記の制御システム10、並びに調整部400、400A及び400Bに含まれる各構成部のそれぞれの協働により行なわれる制御パラメータ調整方法も、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。 Each component included in the control system 10 and adjustment units 400, 400A, and 400B described above can be realized by hardware, software, or a combination thereof. Further, the control parameter adjustment method performed by the cooperation of each component included in the control system 10 and the adjustment units 400, 400A, and 400B can also be realized by hardware, software, or a combination thereof. . Here, being realized by software means being realized by a computer reading and executing a program.
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。 The program can be stored and delivered to a computer using various types of non-transitory computer readable media. Non-transitory computer-readable media include various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic recording media (e.g., hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, CD-R/ W, semiconductor memory (eg, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (random access memory)). The program may also be supplied to the computer via various types of transitory computer readable media.
 上述した実施形態は、本発明の好適な実施形態ではあるが、上記実施形態のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。 Although the embodiments described above are preferred embodiments of the present invention, the scope of the present invention is not limited to only the above embodiments, and various modifications may be made without departing from the gist of the present invention. It is possible to implement
 上述した実施形態では、1つのフィルタを設けた場合について説明したが、フィルタ130はそれぞれ異なる周波数帯域に対応する複数個のフィルタを直列に接続することで構成してもよい。図24は複数のフィルタを直接接続してフィルタを構成した例を示すブロック図である。図24において、m個(mは2以上の自然数)の共振点がある場合に、フィルタ130は、m個のフィルタ130-1~130-mを直列接続して構成する。m個のフィルタ130-1~130-mのそれぞれの係数ω、τ、δについて、最適値を機械学習により求めていく。 In the above-described embodiment, a case has been described in which one filter is provided, but the filter 130 may be configured by connecting a plurality of filters in series, each corresponding to a different frequency band. FIG. 24 is a block diagram showing an example of a filter configured by directly connecting a plurality of filters. In FIG. 24, when there are m resonance points (m is a natural number of 2 or more), the filter 130 is configured by connecting m filters 130-1 to 130-m in series. Optimum values are determined by machine learning for the coefficients ω c , τ, and δ of each of the m filters 130-1 to 130-m.
 また、制御システムの構成は図1の構成以外にも以下の構成がある。
<調整部がネットワークを介してモータ制御部の外部に設けられた変形例>
 図25は制御システムの他の構成例を示すブロック図である。図25に示す制御システム10Aが、図1に示した制御システム10と異なる点は、n(nは2以上の自然数)個のモータ制御部100-1~100-nが、ネットワーク800を介してn個の調整部400-1~400-nに接続されていること、及びそれぞれ周波数生成部200と周波数特性測定部300を備えていることである。
 調整部400-1~400-nは調整部400、400A、又は400Bと同じ構成を有している。モータ制御部100-1~100-nはそれぞれモータ制御装置に対応しており、調整部400-1~400-nはそれぞれ調整装置に対応している。なお、周波数生成部200と周波数特性測定部300の一方又は両方をモータ制御部100-1~100-nの外に設けてもよいことは勿論である。
In addition to the configuration shown in FIG. 1, the control system has the following configurations.
<Modified example in which the adjustment unit is provided outside the motor control unit via a network>
FIG. 25 is a block diagram showing another configuration example of the control system. The control system 10A shown in FIG. 25 is different from the control system 10 shown in FIG. It is connected to n adjustment sections 400-1 to 400-n, and each is provided with a frequency generation section 200 and a frequency characteristic measurement section 300.
Adjusting sections 400-1 to 400-n have the same configuration as adjusting section 400, 400A, or 400B. Motor control units 100-1 to 100-n each correspond to a motor control device, and adjustment units 400-1 to 400-n each correspond to an adjustment device. Note that, of course, one or both of the frequency generation section 200 and the frequency characteristic measurement section 300 may be provided outside the motor control sections 100-1 to 100-n.
 ここで、モータ制御部100-1と、調整部400-1とは1対1の組とされて、通信可能に接続されている。モータ制御部100-2~100-nと、調整部400-2~400-nについてもモータ制御部100-1と調整部400-1と同様に接続される。図25では、モータ制御部100-1~100-nと、調整部400-1~400-nとのn個の組は、ネットワーク800を介して接続されているが、モータ制御部100-1~100-nと、調整部400-1~400-nとのn個の組は、それぞれの組のモータ制御部と調整部とが接続インタフェースを介して直接接続されてもよい。これらモータ制御部100-1~100-nと調整部400-1~400-nとのn個の組は、例えば同じ工場に複数組設置されていてもよく、それぞれ異なる工場に設置されていてもよい。 Here, the motor control section 100-1 and the adjustment section 400-1 are connected as a one-to-one pair so that they can communicate. Motor control units 100-2 to 100-n and adjustment units 400-2 to 400-n are also connected in the same way as motor control unit 100-1 and adjustment unit 400-1. In FIG. 25, n sets of motor control units 100-1 to 100-n and adjustment units 400-1 to 400-n are connected via a network 800. 100-n and adjustment units 400-1 to 400-n, the motor control unit and adjustment unit of each set may be directly connected via a connection interface. For example, the n sets of motor control units 100-1 to 100-n and adjustment units 400-1 to 400-n may be installed in the same factory, or may be installed in different factories. Good too.
 なお、ネットワーク800は、例えば、工場内に構築されたLAN(Local Area Network)や、インターネット、公衆電話網、或いは、これらの組み合わせである。ネットワーク800における具体的な通信方式や、有線接続および無線接続のいずれであるか等については、特に限定されない。 Note that the network 800 is, for example, a LAN (Local Area Network) built within a factory, the Internet, a public telephone network, or a combination thereof. There are no particular limitations on the specific communication method in the network 800 or whether it is a wired connection or a wireless connection.
<システム構成の自由度>
 上述した実施形態では、モータ制御部100-1~100-nと、調整部400-1~400-nとはそれぞれ1対1の組とされて通信可能に接続されているが、例えば1台の調整部が複数のモータ制御部とネットワーク800を介して通信可能に接続されるようにしてもよい。
 その際、1台の調整部の各機能を、適宜複数のサーバに分散する、分散処理システムとしてもよい。また、クラウド上で仮想サーバ機能等を利用して、1台の調整部の各機能を実現してもよい。
<Freedom of system configuration>
In the embodiment described above, the motor control units 100-1 to 100-n and the adjustment units 400-1 to 400-n are connected to each other in a one-to-one relationship for communication. The adjustment unit may be communicably connected to a plurality of motor control units via the network 800.
In this case, a distributed processing system may be used in which each function of one adjustment unit is distributed to a plurality of servers as appropriate. Furthermore, each function of one adjustment unit may be realized by using a virtual server function or the like on the cloud.
 また、n台の同じ型名、同一仕様、又は同一シリーズのモータ制御部100-1~100-nとそれぞれ対応するn個の調整部400-1~400-nがあった場合に、各調整部400-1~400-nにおける調整結果を共有するように構成するようにしてもよい。そうすることで、より最適なモデルを構築することが可能となる。 In addition, if there are n motor control units 100-1 to 100-n of the same model name, same specification, or same series, and n adjustment units 400-1 to 400-n corresponding to each adjustment unit, each adjustment The configuration may be such that the adjustment results among the units 400-1 to 400-n are shared. By doing so, it becomes possible to construct a more optimal model.
 本開示による制御パラメータを調整する調整装置、制御システム及び制御パラメータ調整方法は、上述した実施形態を含め、次のような構成を有する各種各様の実施形態を取ることができる。
 (1) モータを制御するモータ制御部の制御パラメータの調整を行う調整装置(例えば、調整部400、400A)であって、
 調整前の制御パラメータを有する前記モータ制御部を動作させることで測定した機械の周波数特性を保存する周波数特性保存部(例えば、周波数特性保存部401)と、
 前記モータ制御部の前記制御パラメータを調整するための複数の調整条件を設定する調整条件設定部(例えば、調整条件設定部402)と、
 調整前と調整後の前記制御パラメータと、前記周波数特性保存部に保存した前記周波数特性とを用いて、前記制御パラメータの調整後の前記機械の周波数特性を予測する周波数特性予測部(例えば、周波数特性予測部403)と、
 予測した前記周波数特性と、前記調整条件設定部で設定した複数の調整条件のうちの一つを用いて、前記制御パラメータを最適化するために前記周波数特性予測部に入力する前記制御パラメータを調整する制御パラメータ調整部(例えば、制御パラメータ調整部404)と、
 前記複数の調整条件に対して最適化された複数の前記制御パラメータを保存する制御パラメータ保存部(例えば、制御パラメータ保存部405)と、
 最適化された制御パラメータに対応する予測された周波数特性から、該周波数特性の評価指標を計算する評価指標計算部(例えば、評価指標計算部406)と、
 最適化された制御パラメータに対応する、予測された周波数特性及び前記評価指標の少なくとも1つを、複数の調整条件の調整条件ごとに提示する提示部(例えば、提示部407)と、
 前記制御パラメータ保存部に保存された複数の前記制御パラメータから選択された制御パラメータを前記モータ制御部に設定する制御パラメータ設定部(例えば、制御パラメータ設定部408)と、
 を備えた調整装置。
 この調整装置によれば、1回の周波数特性の測定で、複数の調整条件でモータ制御部のゲイン、フィルタの係数等の制御パラメータを調整した場合の複数の周波数特性を求めることができる。その結果、複数の周波数特性及び/又は複数の周波数特性の評価指標を確認することで、異なる調整条件での調整後の周波数特性及び/又は周波数特性の評価指標を簡単に比較し、適用したい制御パラメータを簡単に選択できる。
The adjustment device, control system, and control parameter adjustment method for adjusting control parameters according to the present disclosure can take various embodiments having the following configurations, including the embodiments described above.
(1) An adjustment device (for example, adjustment unit 400, 400A) that adjusts control parameters of a motor control unit that controls a motor,
a frequency characteristic storage unit (for example, frequency characteristic storage unit 401) that stores the frequency characteristics of the machine measured by operating the motor control unit having control parameters before adjustment;
an adjustment condition setting section (for example, adjustment condition setting section 402) that sets a plurality of adjustment conditions for adjusting the control parameters of the motor control section;
A frequency characteristic prediction unit (e.g., frequency characteristic prediction unit 403);
Adjusting the control parameters input to the frequency characteristic prediction unit in order to optimize the control parameters using the predicted frequency characteristics and one of the plurality of adjustment conditions set by the adjustment condition setting unit. a control parameter adjustment unit (for example, control parameter adjustment unit 404),
a control parameter storage unit (for example, control parameter storage unit 405) that stores the plurality of control parameters optimized for the plurality of adjustment conditions;
an evaluation index calculation unit (for example, evaluation index calculation unit 406) that calculates an evaluation index of the frequency characteristic from the predicted frequency characteristic corresponding to the optimized control parameter;
a presentation unit (for example, presentation unit 407) that presents at least one of the predicted frequency characteristics and the evaluation index corresponding to the optimized control parameters for each adjustment condition of the plurality of adjustment conditions;
a control parameter setting section (for example, control parameter setting section 408) that sets a control parameter selected from the plurality of control parameters stored in the control parameter storage section in the motor control section;
Adjustment device with.
According to this adjustment device, by measuring the frequency characteristics once, it is possible to obtain a plurality of frequency characteristics when control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under a plurality of adjustment conditions. As a result, by checking multiple frequency characteristics and/or evaluation indices of multiple frequency characteristics, you can easily compare the frequency characteristics and/or evaluation indices of frequency characteristics after adjustment under different adjustment conditions, and apply the control you want to apply. Parameters can be easily selected.
(2) モータを制御するモータ制御部の制御パラメータの調整を行う調整装置(例えば、調整部400B)であって、
 調整前の制御パラメータを有する前記モータ制御部を動作させることで測定した機械の周波数特性を保存する周波数特性保存部(例えば、周波数特性保存部401)と、
 前記モータ制御部の前記制御パラメータを調整するための複数の調整条件を設定する調整条件設定部(例えば、調整条件設定部402)と、
 調整前と調整後の前記制御パラメータと、前記周波数特性保存部に保存した前記周波数特性とを用いて、前記制御パラメータの調整後の前記機械の周波数特性を予測する周波数特性予測部(例えば、周波数特性予測部403)と、
 予測した前記周波数特性と、前記調整条件設定部で設定した複数の調整条件のうちの一つを用いて、前記制御パラメータを最適化するために前記周波数特性予測部に入力する前記制御パラメータを調整する制御パラメータ調整部(例えば、制御パラメータ調整部404)と、
 前記複数の調整条件に対して最適化された複数の前記制御パラメータを保存する制御パラメータ保存部(例えば、制御パラメータ保存部405)と、
 最適化された制御パラメータに対応する予測された周波数特性を用いて、第1の時間応答を予測する時間応答予測部(例えば、時間応答予測部409)と、
 予測した前記第1の時間応答から前記第1の時間応答の評価指標を計算する評価指標計算部(例えば、評価指標計算部410)と、
 前記第1の時間応答及び前記評価指標の少なくとも1つを、複数の調整条件の調整条件ごとに提示する提示部(例えば、提示部407)と、
 前記制御パラメータ保存部に保存された複数の前記制御パラメータから選択された制御パラメータを前記モータ制御部に設定する制御パラメータ設定部(例えば、制御パラメータ設定部408)と、
 を備えた調整装置。
 この調整装置によれば、1回の周波数特性の測定で、複数の調整条件でモータ制御部のゲイン、フィルタの係数等の制御パラメータを調整した場合の複数の周波数特性を求めることができる。その結果、複数の周波数特性から予測される複数の時間応答及び/又は複数の時間応答の評価指標を確認することで、異なる調整条件での調整後の時間応答及び/又は時間応答の評価指標を簡単に比較し、適用したい制御パラメータを簡単に選択できる。
(2) An adjustment device (for example, adjustment unit 400B) that adjusts control parameters of a motor control unit that controls a motor,
a frequency characteristic storage unit (for example, frequency characteristic storage unit 401) that stores the frequency characteristics of the machine measured by operating the motor control unit having control parameters before adjustment;
an adjustment condition setting section (for example, adjustment condition setting section 402) that sets a plurality of adjustment conditions for adjusting the control parameters of the motor control section;
A frequency characteristic prediction unit (e.g., frequency characteristic prediction unit 403);
Adjusting the control parameters input to the frequency characteristic prediction unit in order to optimize the control parameters using the predicted frequency characteristics and one of the plurality of adjustment conditions set by the adjustment condition setting unit. a control parameter adjustment unit (for example, control parameter adjustment unit 404),
a control parameter storage unit (for example, control parameter storage unit 405) that stores the plurality of control parameters optimized for the plurality of adjustment conditions;
a time response prediction unit (for example, time response prediction unit 409) that predicts the first time response using the predicted frequency characteristics corresponding to the optimized control parameters;
an evaluation index calculation unit (e.g., evaluation index calculation unit 410) that calculates an evaluation index of the first time response from the predicted first time response;
a presentation unit (for example, presentation unit 407) that presents at least one of the first time response and the evaluation index for each adjustment condition of the plurality of adjustment conditions;
a control parameter setting section (for example, control parameter setting section 408) that sets a control parameter selected from the plurality of control parameters stored in the control parameter storage section in the motor control section;
Adjustment device with.
According to this adjustment device, by measuring the frequency characteristics once, it is possible to obtain a plurality of frequency characteristics when control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under a plurality of adjustment conditions. As a result, by checking multiple time responses and/or multiple time response evaluation indicators predicted from multiple frequency characteristics, the time response and/or time response evaluation index after adjustment under different adjustment conditions can be evaluated. You can easily compare and select the control parameters you want to apply.
 (3) 前記評価指標計算部は、前記測定した機械の周波数特性から、前記測定した機械の周波数特性の評価指標を計算し、
 前記提示部は、前記測定した機械の周波数特性及び前記測定した機械の周波数特性の評価指標の少なくとも1つを提示する、上記(1)に記載の調整装置。
(3) The evaluation index calculation unit calculates an evaluation index of the measured frequency characteristic of the machine from the measured frequency characteristic of the machine,
The adjustment device according to (1), wherein the presenting unit presents at least one of the measured frequency characteristic of the machine and an evaluation index of the measured frequency characteristic of the machine.
 (4) 前記時間応答予測部は、前記測定した機械の周波数特性を用いて、第2の時間応答を予測し、
 前記評価指標計算部は、前記第2の時間応答から前記第2の時間応答の評価指標を計算し、
 前記提示部は、前記第2の時間応答及び前記第2の時間応答の評価指標の少なくとも1つを提示する、上記(2)に記載の調整装置。
 
(4) The time response prediction unit predicts a second time response using the measured frequency characteristics of the machine,
The evaluation index calculation unit calculates an evaluation index of the second time response from the second time response,
The adjustment device according to (2) above, wherein the presentation unit presents at least one of the second time response and the evaluation index of the second time response.
 (5) 前記制御パラメータ調整部は、機械学習を用いて前記制御パラメータを最適化する上記(1)から(4)のいずれかに記載の調整装置。 (5) The adjustment device according to any one of (1) to (4), wherein the control parameter adjustment unit optimizes the control parameters using machine learning.
 (6) 前記制御パラメータは、前記モータ制御部のゲイン及びフィルタ係数の少なくとも1つである、上記(1)から(5)のいずれかに記載の調整装置。 (6) The adjustment device according to any one of (1) to (5), wherein the control parameter is at least one of a gain and a filter coefficient of the motor control unit.
 (7) 前記評価指標は、ゲイン余裕、位相余裕、及び制御帯域のうちの少なくとも1つである、上記(1)又は(3)に記載の調整装置。 (7) The adjustment device according to (1) or (3) above, wherein the evaluation index is at least one of a gain margin, a phase margin, and a control band.
 (8) 前記時間応答は、ステップ応答又はインパルス応答である上記(2)又は(4)に記載の調整装置。 (8) The adjustment device according to (2) or (4) above, wherein the time response is a step response or an impulse response.
 (9) 前記時間応答の評価指標は、立ち上がり時間、オーバシュート量、及び整定時間のうちの少なくとも1つである、上記(2)、(4)又は(8)のいずれかに記載の調整装置。 (9) The adjustment device according to any one of (2), (4), or (8) above, wherein the time response evaluation index is at least one of a rise time, an overshoot amount, and a settling time. .
 (10) モータを制御するモータ制御部(例えば、モータ制御部100)と、
 前記モータ制御部の制御パラメータを調整する、上記(1)から(9)のいずれかに記載の調整装置と、
を備えた制御システム。
 この制御システムによれば、1回の周波数特性の測定で、複数の調整条件でモータ制御部のゲイン、フィルタの係数等の制御パラメータを調整した場合の複数の周波数特性を求めることができる。その結果、複数の周波数特性及び/又は複数の周波数特性の評価指標を確認することで、異なる調整条件での調整後の周波数特性及び/又は周波数特性の評価指標を簡単に比較し、適用したい制御パラメータを簡単に選択できる。又は、複数の周波数特性から予測される複数の時間応答及び/又は複数の時間応答の評価指標を確認することで、異なる調整条件での調整後の時間応答及び/又は時間応答の評価指標を簡単に比較し、適用したい制御パラメータを簡単に選択できる。
(10) A motor control unit (for example, motor control unit 100) that controls the motor;
The adjustment device according to any one of (1) to (9) above, which adjusts control parameters of the motor control unit;
control system with.
According to this control system, by measuring the frequency characteristics once, it is possible to obtain a plurality of frequency characteristics when control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under a plurality of adjustment conditions. As a result, by checking multiple frequency characteristics and/or multiple frequency characteristic evaluation indices, you can easily compare the frequency characteristics and/or frequency characteristic evaluation indices after adjustment under different adjustment conditions, and apply the control you want to apply. Parameters can be easily selected. Alternatively, by checking multiple time responses and/or multiple time response evaluation metrics predicted from multiple frequency characteristics, you can easily evaluate the time responses and/or time response evaluation metrics after adjustment under different adjustment conditions. You can easily select the control parameters you want to apply.
 (11) 周波数が変わる信号を生成し、前記信号を前記モータ制御部に入力する周波数生成部と、
 前記信号と前記モータ制御部の出力信号とに基づいて前記モータ制御部の入出力ゲイン及び位相遅れの周波数特性を測定することで、機械の周波数特性を測定する周波数特性測定部と、
を備えた、上記(10)に記載の制御システム。
(11) a frequency generation unit that generates a signal whose frequency changes and inputs the signal to the motor control unit;
a frequency characteristic measurement unit that measures the frequency characteristics of the machine by measuring frequency characteristics of input/output gain and phase delay of the motor control unit based on the signal and the output signal of the motor control unit;
The control system according to (10) above, comprising:
 (12) モータを制御するモータ制御部(例えば、モータ制御部100)の制御パラメータの調整を行う制御パラメータ調整方法であって、
 コンピュータが、
 調整前の制御パラメータを有する前記モータ制御部を動作させることで測定した機械の周波数特性を保存する処理と、
 前記モータ制御部の前記制御パラメータを調整するための複数の調整条件を設定する処理と、
 調整前と調整後の前記制御パラメータと、保存した前記周波数特性とを用いて、前記制御パラメータの調整後の前記機械の周波数特性を予測する処理と、
 予測した前記周波数特性と、設定した複数の調整条件のうちの一つを用いて、前記制御前記制御パラメータを最適化するために前記制御パラメータを調整する処理と、
 前記複数の調整条件に対して最適化された複数の前記制御パラメータを保存する処理と、
 最適化された制御パラメータに対応する予測された周波数特性から、該周波数特性の評価指標を計算する処理と、
 最適化された制御パラメータに対応する予測された周波数特性、及び前記周波数特性の評価指標の少なくとも1つを、複数の調整条件の調整条件ごとに提示する処理と、
 保存された複数の前記制御パラメータから選択された制御パラメータを前記モータ制御部に設定する処理と、
 を実行する、制御パラメータ調整方法。
 この制御パラメータ調整方法によれば、1回の周波数特性の測定で、複数の調整条件でモータ制御部のゲイン、フィルタの係数等の制御パラメータを調整した場合の複数の周波数特性を求めることができる。その結果、複数の周波数特性及び/又は複数の周波数特性の評価指標を確認することで、異なる調整条件での調整後の周波数特性及び/又は周波数特性の評価指標を簡単に比較し、適用したい制御パラメータを簡単に選択できる。
(12) A control parameter adjustment method for adjusting control parameters of a motor control unit (for example, motor control unit 100) that controls a motor, the method comprising:
The computer is
a process of saving the frequency characteristics of the machine measured by operating the motor control unit having the control parameters before adjustment;
a process of setting a plurality of adjustment conditions for adjusting the control parameters of the motor control unit;
A process of predicting a frequency characteristic of the machine after adjusting the control parameter using the control parameter before and after adjustment and the saved frequency characteristic;
A process of adjusting the control parameter in order to optimize the control parameter using the predicted frequency characteristic and one of the plurality of set adjustment conditions;
a process of storing the plurality of control parameters optimized for the plurality of adjustment conditions;
A process of calculating an evaluation index of the frequency characteristic from the predicted frequency characteristic corresponding to the optimized control parameter;
A process of presenting at least one of a predicted frequency characteristic corresponding to the optimized control parameter and an evaluation index of the frequency characteristic for each adjustment condition of the plurality of adjustment conditions;
a process of setting a control parameter selected from the plurality of stored control parameters in the motor control unit;
How to adjust control parameters.
According to this control parameter adjustment method, by measuring the frequency characteristics once, it is possible to obtain multiple frequency characteristics when control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under multiple adjustment conditions. . As a result, by checking multiple frequency characteristics and/or evaluation indices of multiple frequency characteristics, you can easily compare the frequency characteristics and/or evaluation indices of frequency characteristics after adjustment under different adjustment conditions, and apply the control you want to apply. Parameters can be easily selected.
 (13) モータを制御するモータ制御部(例えば、モータ制御部100)の制御パラメータの調整を行う制御パラメータ調整方法であって、
 コンピュータが、
 調整前の制御パラメータを有する前記モータ制御部を動作させることで測定した機械の周波数特性を保存する処理と、
 前記モータ制御部の前記制御パラメータを調整するための複数の調整条件を設定する処理と、
 調整前と調整後の前記制御パラメータと、保存した前記周波数特性とを用いて、前記制御パラメータの調整後の前記機械の周波数特性を予測する処理と、
 予測した前記周波数特性と、設定した複数の調整条件のうちの一つを用いて、前記制御パラメータを最適化するために前記制御パラメータを調整する処理と、
 前記複数の調整条件に対して最適化された複数の前記制御パラメータを保存する処理と、
 最適化された制御パラメータに対応する予測された周波数特性を用いて、第1の時間応答を予測する処理と、
 予測した前記第1の時間応答から前記第1の時間応答の評価指標を計算する処理と、
 前記第1の時間応答及び前記評価指標の少なくとも1つを、複数の調整条件の調整条件ごとに提示する処理と、
 保存された複数の前記制御パラメータから選択された制御パラメータを前記モータ制御部に設定する処理と、
 を実行する、制御パラメータ調整方法。
 この制御パラメータ調整方法によれば、1回の周波数特性の測定で、複数の調整条件でモータ制御部のゲイン、フィルタの係数等の制御パラメータを調整した場合の複数の周波数特性を求めることができる。その結果、複数の周波数特性から予測される複数の時間応答及び/又は複数の時間応答の評価指標を確認することで、異なる調整条件での調整後の時間応答及び/又は時間応答の評価指標を簡単に比較し、適用したい制御パラメータを簡単に選択できる。
(13) A control parameter adjustment method for adjusting control parameters of a motor control unit (for example, motor control unit 100) that controls a motor, the method comprising:
The computer is
a process of saving the frequency characteristics of the machine measured by operating the motor control unit having the control parameters before adjustment;
a process of setting a plurality of adjustment conditions for adjusting the control parameters of the motor control unit;
A process of predicting a frequency characteristic of the machine after adjusting the control parameter using the control parameter before and after adjustment and the saved frequency characteristic;
A process of adjusting the control parameter in order to optimize the control parameter using the predicted frequency characteristic and one of the plurality of set adjustment conditions;
a process of storing the plurality of control parameters optimized for the plurality of adjustment conditions;
a process of predicting a first time response using predicted frequency characteristics corresponding to the optimized control parameters;
a process of calculating an evaluation index of the first time response from the predicted first time response;
a process of presenting at least one of the first time response and the evaluation index for each adjustment condition of the plurality of adjustment conditions;
a process of setting a control parameter selected from the plurality of stored control parameters in the motor control unit;
How to adjust control parameters.
According to this control parameter adjustment method, by measuring the frequency characteristics once, it is possible to obtain multiple frequency characteristics when control parameters such as the gain of the motor control section and the coefficient of the filter are adjusted under multiple adjustment conditions. . As a result, by checking multiple time responses and/or multiple time response evaluation indicators predicted from multiple frequency characteristics, the time response and/or time response evaluation index after adjustment under different adjustment conditions can be evaluated. You can easily compare and select the control parameters you want to apply.
 (14) 前記コンピュータが、
 前記測定した機械の周波数特性から、前記測定した機械の周波数特性の評価指標を計算する処理と、
 前記測定した機械の周波数特性及び前記測定した機械の周波数特性の評価指標の少なくとも1つを提示する処理と、
 を実行する、上記(12)に記載の制御パラメータ調整方法。
(14) The computer:
a process of calculating an evaluation index of the measured frequency characteristic of the machine from the measured frequency characteristic of the machine;
a process of presenting at least one of the measured frequency characteristic of the machine and an evaluation index of the measured frequency characteristic of the machine;
The control parameter adjustment method according to (12) above, which performs the following.
 (15) 前記コンピュータが、
 前記測定した機械の周波数特性を用いて、第2の時間応答を予測する処理と、
 前記第2の時間応答から前記第2の時間応答の評価指標を計算する処理と、
 前記第2の時間応答及び前記第2の時間応答の評価指標の少なくとも1つを提示する処理と、
 を実行する、上記(13)に記載の制御パラメータ調整方法。
(15) The computer:
A process of predicting a second time response using the measured frequency characteristics of the machine;
a process of calculating an evaluation index of the second time response from the second time response;
a process of presenting at least one of the second time response and an evaluation index of the second time response;
The control parameter adjustment method according to (13) above, which performs the following.
 10、10A 制御システム
 100 モータ制御部
 110 減算器
 120 速度制御部
 130 フィルタ
 140 電流制御部
 150 モータ
 200 周波数生成部
 300 周波数特性測定部
 400、400A、400B 調整部
 401 周波数特性保存部
 402 調整条件設定部
 403 周波数特性予測部
 404 制御パラメータ調整部
 405 制御パラメータ保存部
 406 評価指標計算部
 407提示部
 408制御パラメータ設定部
 409 時間応答予測部
 410 評価指標計算部
 500 表示画面
 600 機械学習部
 601 状態情報取得部
 602 学習部
 603 行動情報出力部
 604 価値関数記憶部
 605 最適化行動情報出力部
 700 表示画面
 800 ネットワーク
10, 10A control system 100 motor control section 110 subtracter 120 speed control section 130 filter 140 current control section 150 motor 200 frequency generation section 300 frequency characteristic measurement section 400, 400A, 400B adjustment section 401 frequency characteristic storage section 402 adjustment condition setting section 403 Frequency characteristic prediction unit 404 Control parameter adjustment unit 405 Control parameter storage unit 406 Evaluation index calculation unit 407 Presentation unit 408 Control parameter setting unit 409 Time response prediction unit 410 Evaluation index calculation unit 500 Display screen 600 Machine learning unit 601 State information acquisition unit 602 Learning section 603 Behavior information output section 604 Value function storage section 605 Optimization behavior information output section 700 Display screen 800 Network

Claims (15)

  1.  モータを制御するモータ制御部の制御パラメータの調整を行う調整装置であって、
     調整前の制御パラメータを有する前記モータ制御部を動作させることで測定した機械の周波数特性を保存する周波数特性保存部と、
     前記モータ制御部の前記制御パラメータを調整するための複数の調整条件を設定する調整条件設定部と、
     調整前と調整後の前記制御パラメータと、前記周波数特性保存部に保存した前記周波数特性とを用いて、前記制御パラメータの調整後の前記機械の周波数特性を予測する周波数特性予測部と、
     予測した前記周波数特性と、前記調整条件設定部で設定した複数の調整条件のうちの一つを用いて、前記制御パラメータを最適化するために前記周波数特性予測部に入力する前記制御パラメータを調整する制御パラメータ調整部と、
     前記複数の調整条件に対して最適化された複数の前記制御パラメータを保存する制御パラメータ保存部と、
     最適化された制御パラメータに対応する予測された周波数特性から、該周波数特性の評価指標を計算する評価指標計算部と、
     前記最適化された制御パラメータに対応する、予測された周波数特性及び前記評価指標の少なくとも1つを、複数の調整条件の調整条件ごとに提示する提示部と、
     前記制御パラメータ保存部に保存された複数の前記制御パラメータから選択された制御パラメータを前記モータ制御部に設定する制御パラメータ設定部と、
     を備えた調整装置。
    An adjustment device that adjusts control parameters of a motor control unit that controls a motor, the adjustment device comprising:
    a frequency characteristic storage unit that stores frequency characteristics of the machine measured by operating the motor control unit having control parameters before adjustment;
    an adjustment condition setting unit that sets a plurality of adjustment conditions for adjusting the control parameters of the motor control unit;
    a frequency characteristic prediction unit that predicts the frequency characteristic of the machine after the control parameter is adjusted, using the control parameter before and after adjustment, and the frequency characteristic stored in the frequency characteristic storage unit;
    Adjusting the control parameters input to the frequency characteristic prediction unit in order to optimize the control parameters using the predicted frequency characteristics and one of the plurality of adjustment conditions set by the adjustment condition setting unit. a control parameter adjustment section,
    a control parameter storage unit that stores the plurality of control parameters optimized for the plurality of adjustment conditions;
    an evaluation index calculation unit that calculates an evaluation index of the frequency characteristic from the predicted frequency characteristic corresponding to the optimized control parameter;
    a presentation unit that presents at least one of the predicted frequency characteristics and the evaluation index corresponding to the optimized control parameters for each adjustment condition of the plurality of adjustment conditions;
    a control parameter setting unit that sets a control parameter selected from the plurality of control parameters stored in the control parameter storage unit to the motor control unit;
    Adjustment device with.
  2.  モータを制御するモータ制御部の制御パラメータの調整を行う調整装置であって、
     調整前の制御パラメータを有する前記モータ制御部を動作させることで測定した機械の周波数特性を保存する周波数特性保存部と、
     前記モータ制御部の前記制御パラメータを調整するための複数の調整条件を設定する調整条件設定部と、
     調整前と調整後の前記制御パラメータと、前記周波数特性保存部に保存した前記周波数特性とを用いて、前記制御パラメータの調整後の前記機械の周波数特性を予測する周波数特性予測部と、
     予測した前記周波数特性と、前記調整条件設定部で設定した複数の調整条件のうちの一つを用いて、前記制御パラメータを最適化するために前記周波数特性予測部に入力する前記制御パラメータを調整する制御パラメータ調整部と、
     前記複数の調整条件に対して最適化された複数の前記制御パラメータを保存する制御パラメータ保存部と、
     最適化された制御パラメータに対応する予測された周波数特性を用いて、第1の時間応答を予測する時間応答予測部と、
     予測した前記第1の時間応答から前記第1の時間応答の評価指標を計算する評価指標計算部と、
     前記第1の時間応答及び前記評価指標の少なくとも1つを、複数の調整条件の調整条件ごとに提示する提示部と、
     前記制御パラメータ保存部に保存された複数の前記制御パラメータから選択された制御パラメータを前記モータ制御部に設定する制御パラメータ設定部と、
     を備えた調整装置。
    An adjustment device that adjusts control parameters of a motor control unit that controls a motor,
    a frequency characteristic storage unit that stores frequency characteristics of the machine measured by operating the motor control unit having control parameters before adjustment;
    an adjustment condition setting unit that sets a plurality of adjustment conditions for adjusting the control parameters of the motor control unit;
    a frequency characteristic prediction unit that predicts the frequency characteristic of the machine after the control parameter is adjusted, using the control parameter before and after adjustment, and the frequency characteristic stored in the frequency characteristic storage unit;
    Adjusting the control parameters input to the frequency characteristic prediction unit in order to optimize the control parameters using the predicted frequency characteristics and one of the plurality of adjustment conditions set by the adjustment condition setting unit. a control parameter adjustment section,
    a control parameter storage unit that stores the plurality of control parameters optimized for the plurality of adjustment conditions;
    a time response prediction unit that predicts the first time response using the predicted frequency characteristics corresponding to the optimized control parameters;
    an evaluation index calculation unit that calculates an evaluation index of the first time response from the predicted first time response;
    a presentation unit that presents at least one of the first time response and the evaluation index for each adjustment condition of the plurality of adjustment conditions;
    a control parameter setting unit that sets a control parameter selected from the plurality of control parameters stored in the control parameter storage unit to the motor control unit;
    Adjustment device with.
  3.  前記評価指標計算部は、前記測定した機械の周波数特性から、前記測定した機械の周波数特性の評価指標を計算し、
     前記提示部は、前記測定した機械の周波数特性及び前記測定した機械の周波数特性の評価指標の少なくとも1つを提示する、請求項1に記載の調整装置。
    The evaluation index calculation unit calculates an evaluation index of the measured frequency characteristic of the machine from the measured frequency characteristic of the machine,
    The adjustment device according to claim 1, wherein the presenting unit presents at least one of the measured frequency characteristic of the machine and an evaluation index of the measured frequency characteristic of the machine.
  4.  前記時間応答予測部は、前記測定した機械の周波数特性を用いて、第2の時間応答を予測し、
     前記評価指標計算部は、前記第2の時間応答から前記第2の時間応答の評価指標を計算し、
     前記提示部は、前記第2の時間応答及び前記第2の時間応答の評価指標の少なくとも1つを提示する、請求項2に記載の調整装置。
    The time response prediction unit predicts a second time response using the measured frequency characteristics of the machine,
    The evaluation index calculation unit calculates an evaluation index of the second time response from the second time response,
    The adjustment device according to claim 2, wherein the presentation unit presents at least one of the second time response and an evaluation index of the second time response.
  5.  前記制御パラメータ調整部は、機械学習を用いて前記制御パラメータを最適化する請求項1から4のいずれか1項に記載の調整装置。 The adjustment device according to any one of claims 1 to 4, wherein the control parameter adjustment unit optimizes the control parameters using machine learning.
  6.  前記制御パラメータは、前記モータ制御部のゲイン及びフィルタ係数の少なくとも1つである、請求項1から5のいずれか1項に記載の調整装置。 The adjustment device according to any one of claims 1 to 5, wherein the control parameter is at least one of a gain and a filter coefficient of the motor control unit.
  7.  前記評価指標は、ゲイン余裕、位相余裕、及び制御帯域のうちの少なくとも1つである、請求項1又は3に記載の調整装置。 The adjustment device according to claim 1 or 3, wherein the evaluation index is at least one of a gain margin, a phase margin, and a control band.
  8.  前記時間応答は、ステップ応答又はインパルス応答である、請求項2又は4に記載の調整装置。 The adjustment device according to claim 2 or 4, wherein the time response is a step response or an impulse response.
  9.  前記時間応答の評価指標は、立ち上がり時間、オーバシュート量、及び整定時間のうちの少なくとも1つである、請求項2、4又は8に記載の調整装置。 The adjustment device according to claim 2, wherein the time response evaluation index is at least one of a rise time, an overshoot amount, and a settling time.
  10.  モータを制御するモータ制御部と、
     前記モータ制御部の制御パラメータを調整する、請求項1から9のいずれかに記載の調整装置と、
    を備えた制御システム。
    a motor control unit that controls the motor;
    The adjustment device according to any one of claims 1 to 9, which adjusts control parameters of the motor control unit;
    control system with.
  11.  周波数が変わる信号を生成し、前記信号を前記モータ制御部に入力する周波数生成部と、
     前記信号と前記モータ制御部の出力信号とに基づいて前記モータ制御部の入出力ゲイン及び位相遅れの周波数特性を測定することで、機械の周波数特性を測定する周波数特性測定部と、
    を備えた、請求項10に記載の制御システム。
    a frequency generation unit that generates a signal whose frequency changes and inputs the signal to the motor control unit;
    a frequency characteristic measurement unit that measures the frequency characteristics of the machine by measuring the frequency characteristics of the input/output gain and phase delay of the motor control unit based on the signal and the output signal of the motor control unit;
    The control system according to claim 10, comprising:
  12.  モータを制御するモータ制御部の制御パラメータの調整を行う制御パラメータ調整方法であって、
     コンピュータが、
     調整前の制御パラメータを有する前記モータ制御部を動作させることで測定した機械の周波数特性を保存する処理と、
     前記モータ制御部の前記制御パラメータを調整するための複数の調整条件を設定する処理と、
     調整前と調整後の前記制御パラメータと、保存した前記周波数特性とを用いて、前記制御パラメータの調整後の前記機械の周波数特性を予測する処理と、
     予測した前記周波数特性と、設定した複数の調整条件のうちの一つを用いて、前記制御前記制御パラメータを最適化するために前記制御パラメータを調整する処理と、
     前記複数の調整条件に対して最適化された複数の前記制御パラメータを保存する処理と、
     最適化された制御パラメータに対応する予測された周波数特性から、該周波数特性の評価指標を計算する処理と、
     最適化された制御パラメータに対応する、予測された周波数特性及び前記評価指標の少なくとも1つを、複数の調整条件の調整条件ごとに提示する処理と、
     保存された複数の前記制御パラメータから選択された制御パラメータを前記モータ制御部に設定する処理と、
     を実行する、制御パラメータ調整方法。
    A control parameter adjustment method for adjusting control parameters of a motor control unit that controls a motor, the method comprising:
    The computer is
    a process of saving the frequency characteristics of the machine measured by operating the motor control unit having the control parameters before adjustment;
    a process of setting a plurality of adjustment conditions for adjusting the control parameters of the motor control unit;
    A process of predicting a frequency characteristic of the machine after adjusting the control parameter using the control parameter before and after adjustment and the saved frequency characteristic;
    A process of adjusting the control parameter in order to optimize the control parameter using the predicted frequency characteristic and one of the plurality of set adjustment conditions;
    a process of storing the plurality of control parameters optimized for the plurality of adjustment conditions;
    A process of calculating an evaluation index of the frequency characteristic from the predicted frequency characteristic corresponding to the optimized control parameter;
    a process of presenting at least one of the predicted frequency characteristics and the evaluation index corresponding to the optimized control parameters for each adjustment condition of the plurality of adjustment conditions;
    a process of setting a control parameter selected from the plurality of stored control parameters in the motor control unit;
    How to adjust control parameters to perform.
  13.  モータを制御するモータ制御部の制御パラメータの調整を行う制御パラメータ調整方法であって、
     コンピュータが、
     調整前の制御パラメータを有する前記モータ制御部を動作させることで測定した機械の周波数特性を保存する処理と、
     前記モータ制御部の前記制御パラメータを調整するための複数の調整条件を設定する処理と、
     調整前と調整後の前記制御パラメータと、保存した前記周波数特性とを用いて、前記制御パラメータの調整後の前記機械の周波数特性を予測する処理と、
     予測した前記周波数特性と、設定した複数の調整条件のうちの一つを用いて、前記制御パラメータを最適化するために前記制御パラメータを調整する処理と、
     前記複数の調整条件に対して最適化された複数の前記制御パラメータを保存する処理と、
     最適化された制御パラメータに対応する予測された周波数特性を用いて、第1の時間応答を予測する処理と、
     予測した前記第1の時間応答から前記第1の時間応答の評価指標を計算する処理と、
     前記第1の時間応答及び前記評価指標の少なくとも1つを、複数の調整条件の調整条件ごとに提示する処理と、
     保存された複数の前記制御パラメータから選択された制御パラメータを前記モータ制御部に設定する処理と、
     を実行する、制御パラメータ調整方法。
    A control parameter adjustment method for adjusting control parameters of a motor control unit that controls a motor, the method comprising:
    The computer is
    a process of saving the frequency characteristics of the machine measured by operating the motor control unit having the control parameters before adjustment;
    a process of setting a plurality of adjustment conditions for adjusting the control parameters of the motor control unit;
    A process of predicting a frequency characteristic of the machine after adjusting the control parameter using the control parameter before and after adjustment and the saved frequency characteristic;
    A process of adjusting the control parameter in order to optimize the control parameter using the predicted frequency characteristic and one of the plurality of set adjustment conditions;
    a process of storing the plurality of control parameters optimized for the plurality of adjustment conditions;
    a process of predicting a first time response using predicted frequency characteristics corresponding to the optimized control parameters;
    a process of calculating an evaluation index of the first time response from the predicted first time response;
    a process of presenting at least one of the first time response and the evaluation index for each adjustment condition of the plurality of adjustment conditions;
    a process of setting a control parameter selected from the plurality of stored control parameters in the motor control unit;
    How to adjust control parameters.
  14.  前記コンピュータが、
     前記測定した機械の周波数特性から、前記測定した機械の周波数特性の評価指標を計算する処理と、
     前記測定した機械の周波数特性及び前記測定した機械の周波数特性の評価指標の少なくとも1つを提示する処理と、
     を実行する、請求項12に記載の制御パラメータ調整方法。
    The computer,
    a process of calculating an evaluation index of the measured frequency characteristic of the machine from the measured frequency characteristic of the machine;
    a process of presenting at least one of the measured frequency characteristics of the machine and an evaluation index of the measured frequency characteristics of the machine;
    13. The control parameter adjustment method according to claim 12.
  15.  前記コンピュータが、
     前記測定した機械の周波数特性を用いて、第2の時間応答を予測する処理と、
     前記第2の時間応答から前記第2の時間応答の評価指標を計算する処理と、
     前記第2の時間応答及び前記第2の時間応答の評価指標の少なくとも1つを提示する処理と、
     を実行する、請求項13に記載の制御パラメータ調整方法。
    The computer,
    A process of predicting a second time response using the measured frequency characteristics of the machine;
    a process of calculating an evaluation index of the second time response from the second time response;
    a process of presenting at least one of the second time response and an evaluation index of the second time response;
    14. The control parameter adjustment method according to claim 13.
PCT/JP2022/014696 2022-03-25 2022-03-25 Regulation device for regulating control parameter, control system, and control parameter regulation method WO2023181418A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014696 WO2023181418A1 (en) 2022-03-25 2022-03-25 Regulation device for regulating control parameter, control system, and control parameter regulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014696 WO2023181418A1 (en) 2022-03-25 2022-03-25 Regulation device for regulating control parameter, control system, and control parameter regulation method

Publications (1)

Publication Number Publication Date
WO2023181418A1 true WO2023181418A1 (en) 2023-09-28

Family

ID=88100393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014696 WO2023181418A1 (en) 2022-03-25 2022-03-25 Regulation device for regulating control parameter, control system, and control parameter regulation method

Country Status (1)

Country Link
WO (1) WO2023181418A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275588A (en) * 2004-03-23 2005-10-06 Yaskawa Electric Corp Motor controller control parameter sensitivity analyzing device
JP2018152950A (en) * 2017-03-10 2018-09-27 オムロン株式会社 Evaluation device, evaluation method, and control device
JP7022261B1 (en) * 2021-09-03 2022-02-17 ファナック株式会社 Frequency characteristic prediction device and frequency characteristic prediction method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275588A (en) * 2004-03-23 2005-10-06 Yaskawa Electric Corp Motor controller control parameter sensitivity analyzing device
JP2018152950A (en) * 2017-03-10 2018-09-27 オムロン株式会社 Evaluation device, evaluation method, and control device
JP7022261B1 (en) * 2021-09-03 2022-02-17 ファナック株式会社 Frequency characteristic prediction device and frequency characteristic prediction method

Similar Documents

Publication Publication Date Title
US10824121B2 (en) Machine learning device, servo motor controller, servo motor control system, and machine learning method
US20180373223A1 (en) Machine learning apparatus, servo control apparatus, servo control system, and machine learning method
US11592789B2 (en) Output device, control device, and method for outputting evaluation functions and machine learning results
JP6748135B2 (en) Machine learning device, servo control device, servo control system, and machine learning method
JP6860540B2 (en) Output device, control device, and learning parameter output method
US11521119B2 (en) Machine learning device, control device, and machine learning method
CN110658785B (en) Output device, control device, and method for outputting evaluation function value
US11256220B2 (en) Machine learning device, control device and machine learning method
JP6841801B2 (en) Machine learning equipment, control systems and machine learning methods
US20190317456A1 (en) Adjusting device and adjusting method
JP2018195018A (en) Machine learning apparatus, servo control system, and machine learning method
CN111552237B (en) Machine learning device, control device, and method for setting search range for machine learning
JP2020119295A (en) Machine learning system for optimizing filter coefficient, control device and machine learning method
JP2021039648A (en) Machine learning device, servo control device, servo control system and machine learning method
JP7000371B2 (en) Machine learning equipment, control systems and machine learning methods
WO2023181418A1 (en) Regulation device for regulating control parameter, control system, and control parameter regulation method
JP7469476B2 (en) Control support device, control system, and control support method
JP6856591B2 (en) Control device, CNC device and control method of control device
JP7381751B2 (en) Control support device, control device, and control support method
WO2023067787A1 (en) Stability margin setting support device, control system, and setting support method
WO2022065190A1 (en) Control assistance device, control system, and filter adjustment method
JP6740290B2 (en) Machine learning device, control device, and machine learning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933555

Country of ref document: EP

Kind code of ref document: A1