WO2023031336A1 - Dispositif et procédé de remplissage de réservoir de gaz sous pression - Google Patents

Dispositif et procédé de remplissage de réservoir de gaz sous pression Download PDF

Info

Publication number
WO2023031336A1
WO2023031336A1 PCT/EP2022/074338 EP2022074338W WO2023031336A1 WO 2023031336 A1 WO2023031336 A1 WO 2023031336A1 EP 2022074338 W EP2022074338 W EP 2022074338W WO 2023031336 A1 WO2023031336 A1 WO 2023031336A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer fluid
distributor
heat
heat transfer
heat exchanger
Prior art date
Application number
PCT/EP2022/074338
Other languages
English (en)
Inventor
Etienne Werlen
David VEMPAIRE
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to KR1020247010877A priority Critical patent/KR20240057429A/ko
Priority to CA3230438A priority patent/CA3230438A1/fr
Publication of WO2023031336A1 publication Critical patent/WO2023031336A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0329Valves manually actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0332Safety valves or pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0335Check-valves or non-return valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0382Constructional details of valves, regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0394Arrangement of valves, regulators, filters in direct contact with the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0367Localisation of heat exchange
    • F17C2227/0388Localisation of heat exchange separate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/07Applications for household use
    • F17C2270/0736Capsules, e.g. CO2

Definitions

  • the invention relates to a device and a method for filling a pressurized gas tank.
  • the invention relates more particularly to a device for filling pressurized gas tanks comprising a distributor intended to supply a pressurized gas tank from a source of fluid, the device comprising a refrigeration system for cooling the flow of gas of the distributor, the refrigeration system comprising a refrigerant circuit such as brine and a heat exchanger providing heat exchange between the heat transfer fluid and the gas flow from the distributor, the heat transfer fluid circuit comprising, arranged in series in a loop, a reserve of heat transfer fluid, a member for circulating the heat transfer fluid in the circuit and at least one evaporator providing heat exchange between the heat transfer fluid and a cold source.
  • a refrigerant circuit such as brine
  • a heat exchanger providing heat exchange between the heat transfer fluid and the gas flow from the distributor
  • the heat transfer fluid circuit comprising, arranged in series in a loop, a reserve of heat transfer fluid, a member for circulating the heat transfer fluid in the circuit and at least one evaporator providing heat exchange between the heat transfer fluid and a cold source.
  • a first method of cooling hydrogen in or upstream of the distributor of a filling station consists in supplying a heat exchanger with an antifreeze heat transfer fluid, typically brine.
  • This heat transfer fluid or refrigerant
  • This heat transfer fluid is itself cooled in the evaporator of a refrigeration unit (see for example JP2015092108A).
  • This second embodiment is generally more efficient. Indeed, at a given brine temperature, the distributor's exchanger can be supplied at a lower temperature because the evaporator provides additional cooling by being inserted between the brine tank and the distributor's exchanger. In addition, for a given cooling target on hydrogen, the evaporator being supplied with hotter brine, the evaporation temperature of the refrigerant can be higher and therefore the coefficient of performance of the refrigeration unit is increased. Moreover, for a given compressor size on the refrigeration unit, the second embodiment makes it possible to cool the hydrogen at a lower temperature and/or to have more cooling power.
  • An object of the present invention is to overcome all or part of the drawbacks of the prior art noted above.
  • the device according to the invention is essentially characterized in that the circuit comprises a bypass portion and a set of valve(s) of diversion allowing all or part of the heat transfer fluid to avoid passing through the heat exchanger of the distributor to cool the heat transfer fluid in the reserve and to accumulate cold temperatures therein independently of the need for cold temperatures at the level of the distributor.
  • embodiments of the invention may include one or more of the following features:
  • the invention also relates to a method for filling a pressurized gas tank by means of a device according to any one of the characteristics above or below, in which a flow of gas is circulated in the distributor and through the heat exchanger and a flow of heat transfer fluid is also circulated in the heat transfer fluid circuit and passes into the heat exchanger (5) of the distributor.
  • the method comprises a step of circulating at least part of the heat transfer fluid in the bypass portion without passing through the heat exchanger of the distributor to cool the heat transfer fluid in the reserve and/or to reduce the cold power supplied to the heat exchanger.
  • the invention may also relate to any alternative device or method comprising any combination of the characteristics above or below within the scope of the claims.
  • FIG. 1 represents a schematic and partial view illustrating a possible example of structure and operation of the invention according to a fourth embodiment.
  • the device 1 for filling pressurized gas tanks illustrated is, for example, a pressurized hydrogen tank filling station.
  • This device 1 comprises a distributor 2 (flexible provided with a nozzle for example) intended to supply a reservoir 3 with pressurized gas from a source 4 of fluid (storage(s) and/or compressor(s) and/or Or other).
  • a source 4 of fluid storage(s) and/or compressor(s) and/or Or other).
  • the device 1 comprises a refrigeration system for cooling the flow of gas from the distributor 2.
  • This refrigeration system comprises a circuit 6 of heat transfer fluid such as brine and a heat exchanger 5 providing heat exchange between the flow of fluid heat transfer fluid and the gas flow from the distributor 2.
  • the heat exchanger 5 may include a conductive mass which can be pre-cooled by the heat transfer fluid to increase the thermal inertia of the cooling (and if necessary cool even without simultaneous passage of coolant).
  • the circuit 6 of heat transfer fluid is for example a closed loop and comprises, arranged in series in the loop, a reserve 7 of heat transfer fluid (for example a reserve of brine), a member 8 for circulating the heat transfer fluid in the circuit 6 (for example a pump) and an evaporator 9 providing heat exchange between the heat transfer fluid and a cold source 10 (for example a heat exchanger).
  • a reserve 7 of heat transfer fluid for example a reserve of brine
  • a member 8 for circulating the heat transfer fluid in the circuit 6 for example a pump
  • an evaporator 9 providing heat exchange between the heat transfer fluid and a cold source 10 (for example a heat exchanger).
  • the circuit comprises a bypass portion 11 and a set of bypass valve(s) 12 allowing all or part of the heat transfer fluid to avoid passing through the heat exchanger 5 of the distributor 2.
  • This bypass of the flow without passing into the heat exchanger 5 makes it possible to cool the heat transfer fluid in the reserve 7 and to accumulate there cold temperatures independently of the need for cold temperatures at the level of the distributor 2. That is to say that the circulation of the heat transfer fluid in the circuit without passing through the heat exchanger 5 makes it possible to cool this coolant.
  • This derivation also makes it possible to regulate the quantity of cold supplied to the hydrogen in the heat exchanger 5 . That is to say that this bypass makes it possible to control (reduce) the cold power supplied to the heat exchanger 5.
  • the evaporator 9 is located between the reserve 7 and the heat exchanger 5 of the distributor 5, downstream of the member 8 for circulating the fluid and upstream of the heat exchanger 5 of the distributor (according to the direction of circulation of the heat transfer fluid in the heat transfer fluid circuit 6).
  • the evaporator 9 is located between the heat exchanger 5 of the distributor 5 and the reserve 7, downstream from the heat exchanger 5 of the distributor 5 and upstream of the reserve 7 (according to the direction of circulation of the heat transfer fluid in the heat transfer fluid circuit 6).
  • the heat transfer fluid circuit 6 may comprise two evaporators 9, a first evaporator 9 located downstream of the reserve 7 and upstream of the heat exchanger 5, for example between the member 8 for circulating the fluid and the heat exchanger 5 of distributor 5 and a second evaporator 9 located between heat exchanger 5 of distributor 2 and reserve 7.
  • the device may comprise several distributors 2 intended to supply separate reservoirs 3 and for example simultaneously or not and each comprising a heat exchanger 5
  • the heat transfer fluid circuit 6 is common to the plurality of distributors 2 and comprises a set of parallel branches passing respectively through the various heat exchangers 5 and a set of valve(s) 13 for distributing to control the flow of coolant to the heat exchanger(s) 5.
  • the device 1 may comprise a bypass portion 11 and a set of valve(s) 12 as described above for each of the heat exchangers 5 .
  • the cold source comprises a loop circuit of a refrigerant which comprises a pump 16, evaporator 17, a reserve 18 of refrigerant then a passage in the evaporator 9 which cools the brine circulating in the circuit 6 of fluid coolant.
  • This type of cold source can be used in the other embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Dispositif et procédé de remplissage de réservoirs de gaz sous pression comprenant un distributeur (2) destiné à alimenter un réservoir (3) en gaz sous pression à partir d'une source (4) de fluide, le dispositif (1) comprenant un système de réfrigération pour refroidir le flux de gaz du distributeur (2), le système de réfrigération comprenant un circuit (6) de fluide frigorigène tel que de la saumure et un échangeur (5) de chaleur assurant un échange de chaleur entre le fluide caloporteur et le flux de gaz du distributeur (2), le circuit (6) de fluide caloporteur comprenant, disposés en série dans une boucle, une réserve (7) de fluide caloporteur, un organe (8) de mise en circulation du fluide caloporteur dans le circuit (6) et au moins un évaporateur (9) assurant un échange thermique entre le fluide caloporteur et une source (10) de froid, caractérisé en ce que le circuit comprend un portion (11) de dérivation et une ensemble de vanne(s) (12) de dérivation permettant à tout ou partie du fluide caloporteur d'éviter le passage dans l'échangeur (5) de chaleur du distributeur (2) pour refroidir le fluide caloporteur dans la réserve (7) et d'y accumuler des frigories indépendamment du besoin de frigories au niveau du distributeur (2).

Description

Dispositif et procédé de remplissage de réservoir de gaz sous pression
L’invention concerne un dispositif et un procédé de remplissage de réservoir de gaz sous pression.
L’invention concerne plus particulièrement un dispositif de remplissage de réservoirs de gaz sous pression comprenant un distributeur destiné à alimenter un réservoir en gaz sous pression à partir d’une source de fluide, le dispositif comprenant un système de réfrigération pour refroidir le flux de gaz du distributeur, le système de réfrigération comprenant un circuit de fluide frigorigène tel que de la saumure et un échangeur de chaleur assurant un échange de chaleur entre le fluide caloporteur et le flux de gaz du distributeur, le circuit de fluide caloporteur comprenant, disposés en série dans une boucle, une réserve de fluide caloporteur, un organe de mise en circulation du fluide caloporteur dans le circuit et au moins un évaporateur assurant un échange thermique entre le fluide caloporteur et une source de froid.
Un premier mode de refroidissement de l’hydrogène dans ou en amont du distributeur d’une station de remplissage consiste à alimenter un échangeur de chaleur avec un fluide caloporteur antigel, typiquement une saumure. Ce fluide caloporteur (ou frigorigène) est lui-même refroidi dans l’évaporateur d’un groupe frigorifique (cf. par exemple JP2015092108A).
Dans un second mode de réalisation, il y a une seule boucle à partir du réservoir de saumure passant successivement par l’évaporateur du groupe frigorifique et par l’échangeur du distributeur (cf. par exemple EP3457019A1).
Ce second mode de réalisation est généralement plus performant. En effet, à température de saumure donnée, on peut alimenter l’échangeur du distributeur à une température plus basse car l’évaporateur procure un refroidissement complémentaire en étant intercalé entre le réservoir de saumure et l’échangeur du distributeur. De plus, pour une cible de refroidissement donnée sur l’hydrogène, l’évaporateur étant alimenté en saumure plus chaude, la température d’évaporation du réfrigérant peut être plus haute et donc le coefficient de performance du groupe frigorifique se trouve augmenté. De plus, à taille de compresseur donné sur le groupe frigorifique, le deuxième mode de réalisation permet de refroidir l'hydrogène à plus basse température et/ou de disposer de plus de puissance de refroidissement.
Un but de la présente invention est de pallier tout ou partie des inconvénients de l’art antérieur relevés ci-dessus.
A cette fin, le dispositif selon l'invention, par ailleurs conforme à la définition générique qu’en donne le préambule ci-dessus, est essentiellement caractérisé en ce que le circuit comprend un portion de dérivation et une ensemble de vanne(s) de dérivation permettant à tout ou partie du fluide caloporteur d’éviter le passage dans l’échangeur de chaleur du distributeur pour refroidir le fluide caloporteur dans la réserve et d’y accumuler des frigories indépendamment du besoin de frigories au niveau du distributeur.
Par ailleurs, des modes de réalisation de l’invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes :
  • selon le sens de circulation du fluide caloporteur dans le circuit de fluide caloporteur, le au moins un évaporateur est situé entre la réserve et l’échangeur de chaleur du distributeur, en aval de l’organe de mise en circulation du fluide et en amont de l’échangeur de chaleur du distributeur,
  • selon le sens de circulation du fluide caloporteur dans le circuit de fluide caloporteur, le au moins un évaporateur est situé entre l’échangeur de chaleur du distributeur et la réserve, c’est-à-dire en aval de l’échangeur de chaleur du distributeur et en amont de la réserve,
  • le circuit de fluide caloporteur comprend deux évaporateurs disposés respectivement en amont et en aval de la réserve, un premier évaporateur situé entre la réserve et l’échangeur de chaleur du distributeur et un second évaporateur entre l’échangeur de chaleur du distributeur et la réserve,
  • le circuit de fluide caloporteur comprend une dérivation du au moins un évaporateur et un ensemble de vanne(s) pour permettre une alimentation directe de l’échangeur de chaleur du distributeur à partir de la réserve ?
  • le dispositif comprend plusieurs distributeurs destinés à alimenter des réservoirs distincts et comprenant chacun un échangeur de chaleur, le circuit de fluide caloporteur étant commun à la pluralité de distributeurs et comprenant un ensemble de branches parallèles transitant respectivement dans les différents échangeurs de chaleur et un ensemble de vanne(s) de répartition pour contrôler le flux de fluide caloporteur vers le ou les échangeurs de chaleur, le dispositif comprenant une portion de dérivation et un ensemble de vanne(s) pour tout ou partie des échangeurs de chaleur.
L’invention concerne également un procédé de remplissage de réservoir de gaz sous pression au moyen d’un dispositif selon l’une quelconque des caractéristiques ci-dessus ou ci-dessous, dans lequel un flux de gaz est mis en circulation dans le distributeur et au travers de l’échangeur de chaleur et un flux de fluide caloporteur est mis en circulation également dans le circuit de fluide caloporteur et passe dans l’échangeur (5) de chaleur du distributeur.
Selon des particularités possibles, le procédé comprend une étape de mise en circulation d’au moins une partie du fluide caloporteur dans la portion de dérivation sans passage dans l’échangeur de chaleur du distributeur pour refroidir le fluide caloporteur dans la réserve et/ou diminuer la puissance froide fournie à l’échangeur de chaleur.
L’invention peut concerner également tout dispositif ou procédé alternatif comprenant toute combinaison des caractéristiques ci-dessus ou ci-dessous dans le cadre des revendications.
D’autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles :
représente une vue schématique et partielle illustrant un exemple possible de structure et de fonctionnement de l’invention selon un premier mode de réalisation,
représente une vue schématique et partielle illustrant un exemple possible de structure et de fonctionnement de l’invention selon un second mode de réalisation,
représente une vue schématique et partielle illustrant un exemple possible de structure et de fonctionnement de l’invention selon un troisième mode de réalisation,
représente une vue schématique et partielle illustrant un exemple possible de structure et de fonctionnement de l’invention selon un quatrième mode de réalisation.
Le dispositif 1 de remplissage de réservoirs de gaz sous pression illustré est par exemple une station de remplissage de réservoirs d’hydrogène sous pression. Ce dispositif 1 comprend un distributeur 2 (flexible muni d’une buse par exemple) destiné à alimenter un réservoir 3 en gaz sous pression à partir d’une source 4 de fluide (stockage(s) et/ou compresseur(s) et/ou autre).
Le dispositif 1 comprend un système de réfrigération pour refroidir le flux de gaz du distributeur 2. Ce système de réfrigération comprend un circuit 6 de fluide caloporteur tel que de la saumure et un échangeur 5 de chaleur assurant un échange de chaleur entre le flux de fluide caloporteur et le flux de gaz du distributeur 2. L’échangeur 5 de chaleur peut comporter une masse conductrice qui peut être pré-refroidie par le fluide caloporteur pour augmenter l’inertie thermique du refroidissement (et le cas échéant refroidir même sans passage simultané de fluide caloporteur).
Le circuit 6 de fluide caloporteur est par exemple une boucle fermée et comprend, disposés en série dans la boucle, une réserve 7 de fluide caloporteur (par exemple une réserve de saumure), un organe 8 de mise en circulation du fluide caloporteur dans le circuit 6 (par exemple une pompe) et un évaporateur 9 assurant un échange thermique entre le fluide caloporteur et une source 10 de froid (par exemple un échangeur de chaleur).
Le circuit comprend un portion 11 de dérivation et une ensemble de vanne(s) 12 de dérivation permettant à tout ou partie du fluide caloporteur d’éviter le passage dans l’échangeur 5 de chaleur du distributeur 2. Cette dérivation du flux sans passer dans l’échangeur 5 de chaleur permet de refroidir le fluide caloporteur dans la réserve 7 et d’y accumuler des frigories indépendamment du besoin de frigories au niveau du distributeur 2. C’est-à-dire que la circulation du fluide caloporteur dans le circuit sans passer par l’échangeur 5 de chaleur permet de refroidir ce fluide caloporteur. Cette dérivation permet également de réguler la quantité de froid apportée à l’hydrogène dans l’échangeur 5 de chaleur. C’est-à-dire que cette dérivation permet de contrôler (diminuer) la puissance froide fournie à l’échangeur 5 de chaleur.
A noter que, comme schématisé en pointillées à la , il est possible d’envisager également une telle dérivation 14 de l’évaporateur 9 et un ensemble de vanne(s) 15 pour permettre une alimentation directe de l’échangeur 5 de chaleur du distributeur 2 à partir de la réserve 7. Si l’évaporateur 9 s’est réchauffé suite à un arrêt prolongé, cela permettrait de ne pas réchauffer le fluide caloporteur le temps que le groupe frigorifique 10 démarre.
Dans le mode de réalisation de la , l’évaporateur 9 est situé entre la réserve 7 et l’échangeur 5 de chaleur du distributeur 5, en aval de l’organe 8 de mise en circulation du fluide et en amont de l’échangeur 5 de chaleur du distributeur (selon le sens de circulation du fluide caloporteur dans le circuit 6 de fluide caloporteur).
Dans le mode de réalisation de la , l’évaporateur 9 est situé entre l’échangeur 5 de chaleur du distributeur 5 et la réserve 7, en aval de l’échangeur 5 de chaleur du distributeur 5 et en amont de la réserve 7 (selon le sens de circulation du fluide caloporteur dans le circuit 6 de fluide caloporteur).
Comme illustré dans le mode de réalisation de la , le circuit 6 de fluide caloporteur peut comprendre deux évaporateurs 9, un premier évaporateur 9 situé en aval de la réserve 7 et en amont de l’échangeur 5 de chaleur, par exemple entre l’organe 8 de mise en circulation du fluide et l’échangeur 5 de chaleur du distributeur 5 et un second évaporateur 9 situé entre l’échangeur 5 de chaleur du distributeur 2 et la réserve 7.
Comme illustré dans le mode de réalisation de la , le dispositif peut comporter plusieurs distributeurs 2 destinés à alimenter des réservoirs 3 distincts et par exemple simultanément ou non et comprenant chacun un échangeur 5 de chaleur Le circuit 6 de fluide caloporteur est commun à la pluralité de distributeurs 2 et comprend un ensemble de branches parallèles transitant respectivement dans les différents échangeurs 5 de chaleur et un ensemble de vanne(s) 13 de répartition pour contrôler le flux de fluide caloporteur vers le ou les échangeurs 5 de chaleur. Comme illustré, le dispositif 1 peut comprendre une portion 11 de dérivation et une ensemble de vanne(s) 12 comme décrit ci-dessus pour chacun des échangeurs 5 de chaleur.
A noter que la détaille un peu plus un exemple non limitatif de la source 10 de froid. Dans cet exemple, la source de froid comprend un circuit en boucle d’un réfrigérant qui comprend une pompe 16, évaporateur 17, une réserve 18 de réfrigérant puis un passage dans l’évaporateur 9 qui refroidit la saumure circulant dans le circuit 6 de fluide caloporteur. Ce type de source de froid peut être utilisé dans les autres modes de réalisation.

Claims (8)

  1. Dispositif de remplissage de réservoirs de gaz sous pression comprenant un distributeur (2) destiné à alimenter un réservoir (3) en gaz sous pression à partir d’une source (4) de fluide, le dispositif (1) comprenant un système de réfrigération pour refroidir le flux de gaz du distributeur (2), le système de réfrigération comprenant un circuit (6) de fluide frigorigène tel que de la saumure et un échangeur (5) de chaleur assurant un échange de chaleur entre le fluide caloporteur et le flux de gaz du distributeur (2), le circuit (6) de fluide caloporteur comprenant, disposés en série dans une boucle, une réserve (7) de fluide caloporteur, un organe (8) de mise en circulation du fluide caloporteur dans le circuit (6) et au moins un évaporateur (9) assurant un échange thermique entre le fluide caloporteur et une source (10) de froid, caractérisé en ce que le circuit comprend un portion (11) de dérivation et une ensemble de vanne(s) (12) de dérivation permettant à tout ou partie du fluide caloporteur d’éviter le passage dans l’échangeur (5) de chaleur du distributeur (2) pour refroidir le fluide caloporteur dans la réserve (7) et d’y accumuler des frigories indépendamment du besoin de frigories au niveau du distributeur (2).
  2. Dispositif selon la revendication 1, caractérisé en ce que, selon le sens de circulation du fluide caloporteur dans le circuit (6) de fluide caloporteur, le au moins un évaporateur (9) est situé entre la réserve (7) et l’échangeur (5) de chaleur du distributeur (5), en aval de l’organe (8) de mise en circulation du fluide et en amont de l’échangeur (5) de chaleur du distributeur (2).
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que, selon le sens de circulation du fluide caloporteur dans le circuit (6) de fluide caloporteur, le au moins un évaporateur (9) est situé entre l’échangeur (5) de chaleur du distributeur (2) et la réserve (7), c’est-à-dire en aval de l’échangeur (5) de chaleur du distributeur (5) et en amont de la réserve (7).
  4. Dispositif selon l’une quelconque des revendication 1 à 3, caractérisé en ce que le circuit (6) de fluide caloporteur comprend deux évaporateurs (9) disposés respectivement en amont et en aval de la réserve (7), un premier évaporateur (9) situé entre la réserve (7) et l’échangeur (5) de chaleur du distributeur (2) et un second évaporateur (9) entre l’échangeur (5) de chaleur du distributeur (2) et la réserve (7).
  5. Dispositif selon l’une quelconque des revendication 1 à 4, caractérisé en ce que le circuit (6) de fluide caloporteur comprend une dérivation du au moins un évaporateur (9) et un ensemble de vanne(s) pour permettre une alimentation directe de l’échangeur (5) de chaleur du distributeur (2) à partir de la réserve (7).
  6. Dispositif selon l’une quelconque des revendication 1 à 5, caractérisé en ce qu’il comprend plusieurs distributeurs (2) destinés à alimenter des réservoirs (3) distincts et comprenant chacun un échangeur (5) de chaleur, le circuit (6) de fluide caloporteur étant commun à la pluralité de distributeurs (2) et comprenant un ensemble de branches parallèles transitant respectivement dans les différents échangeurs (5) de chaleur et un ensemble de vanne(s) (13) de répartition pour contrôler le flux de fluide caloporteur vers le ou les échangeurs (5) de chaleur, le dispositif (1) comprenant une portion (11) de dérivation et un ensemble de vanne(s) (12) pour tout ou partie des échangeurs (5) de chaleur.
  7. Procédé de remplissage de réservoir de gaz sous pression au moyen d’un dispositif selon l’une quelconque des revendications précédentes, dans lequel un flux de gaz est mis en circulation dans le distributeur (2) et au travers de l’échangeur (5) de chaleur et un flux de fluide caloporteur est mis en circulation également dans le circuit (6) de fluide caloporteur et passe dans l’échangeur (5) de chaleur du distributeur (2).
  8. Procédé selon la revendication 7, caractérisé en ce qu’il comprend une étape de mise en circulation d’au moins une partie du fluide caloporteur dans la portion (11) de dérivation sans passage dans l’échangeur (5) de chaleur du distributeur (2) pour refroidir le fluide caloporteur dans la réserve (7) et/ou diminuer la puissance froide fournie à l’échangeur (5) de chaleur.
PCT/EP2022/074338 2021-09-06 2022-09-01 Dispositif et procédé de remplissage de réservoir de gaz sous pression WO2023031336A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247010877A KR20240057429A (ko) 2021-09-06 2022-09-01 가압 가스 탱크를 충전하는 장치 및 방법
CA3230438A CA3230438A1 (fr) 2021-09-06 2022-09-01 Dispositif et procede de remplissage de reservoir de gaz sous pression

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2109311A FR3126744B1 (fr) 2021-09-06 2021-09-06 Dispositif et procédé de remplissage de réservoir de gaz sous pression
FRFR2109311 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023031336A1 true WO2023031336A1 (fr) 2023-03-09

Family

ID=77999209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/074338 WO2023031336A1 (fr) 2021-09-06 2022-09-01 Dispositif et procédé de remplissage de réservoir de gaz sous pression

Country Status (4)

Country Link
KR (1) KR20240057429A (fr)
CA (1) CA3230438A1 (fr)
FR (1) FR3126744B1 (fr)
WO (1) WO2023031336A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092108A (ja) 2014-11-27 2015-05-14 株式会社前川製作所 燃料ガスの充填制御方法とその装置
JP2015158213A (ja) * 2014-02-21 2015-09-03 株式会社神戸製鋼所 ガス供給システムおよび水素ステーション
US9574709B2 (en) * 2013-12-27 2017-02-21 Shinwa Controls Co., Ltd. Cooled-hydrogen supply station and hydrogen cooling apparatus
EP3457019A1 (fr) 2017-09-15 2019-03-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Dispositif d'alimentation en gaz et procédé de démarrage de fonctionnement d'un dispositif d'alimentation en gaz
US20200041070A1 (en) * 2018-08-01 2020-02-06 L'air Liquide, Societe Anonyme Pour L'etude Et L?Exploitation Des Procedes Georges Claude Device and process for refueling containers with pressurized gas
KR20210094731A (ko) * 2020-01-22 2021-07-30 주식회사 효성 가스공급시스템 및 이를 사용한 가스충전장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9574709B2 (en) * 2013-12-27 2017-02-21 Shinwa Controls Co., Ltd. Cooled-hydrogen supply station and hydrogen cooling apparatus
JP2015158213A (ja) * 2014-02-21 2015-09-03 株式会社神戸製鋼所 ガス供給システムおよび水素ステーション
JP2015092108A (ja) 2014-11-27 2015-05-14 株式会社前川製作所 燃料ガスの充填制御方法とその装置
EP3457019A1 (fr) 2017-09-15 2019-03-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Dispositif d'alimentation en gaz et procédé de démarrage de fonctionnement d'un dispositif d'alimentation en gaz
US20200041070A1 (en) * 2018-08-01 2020-02-06 L'air Liquide, Societe Anonyme Pour L'etude Et L?Exploitation Des Procedes Georges Claude Device and process for refueling containers with pressurized gas
KR20210094731A (ko) * 2020-01-22 2021-07-30 주식회사 효성 가스공급시스템 및 이를 사용한 가스충전장치

Also Published As

Publication number Publication date
KR20240057429A (ko) 2024-05-02
CA3230438A1 (fr) 2023-03-09
FR3126744B1 (fr) 2023-08-25
FR3126744A1 (fr) 2023-03-10

Similar Documents

Publication Publication Date Title
US7207298B2 (en) Cooling system for an engine
EP0696968B1 (fr) Procede de climatisation de vehicule avec boucle de chauffage
FR2846280A1 (fr) Systeme de conditionnement d&#39;air pour vehicules
FR2589560A1 (fr) Circuit de refrigeration et circuit de pompe a chaleur, et procede de degivrage
US20070193717A1 (en) Heat exchanger for hydrogen-operated fuel supply systems
US4819454A (en) Liquid cryogenic vaporizer utilizing ambient air and a nonfired heat source
JP6806524B2 (ja) エアコンシステムと統合されたハイブリッド型インタークーラシステムおよびその制御方法
EP3465050B1 (fr) Procédé et dispositif de refroidissement d&#39;au moins une charge chaude à bord d&#39;un véhicule tel qu&#39;un aéronef à boucle fluide partiellement réversible
FR2829432A1 (fr) Dispositif de gestion thermique, notamment pour vehicule automobile equipe d&#39;une pile a combustible
US10677545B2 (en) Method of flowing coolant through exhaust heat recovery system after engine shutoff
WO2023031336A1 (fr) Dispositif et procédé de remplissage de réservoir de gaz sous pression
KR101324612B1 (ko) 천연가스 연료공급 시스템
KR20030044149A (ko) 엔진 냉각 시스템 및 방법
JPH0914587A (ja) 天然ガス焚きガスタービン複合サイクル発電所の燃料用lng気化装置
FR2872267A1 (fr) Dispositif de regulation de la temperature d&#39;un fluide a traiter et installation de regulation comprenant ce dispositif
FR2905310A1 (fr) Systeme de climatisation pour vehicule automobile
KR101324614B1 (ko) 천연가스 연료공급 시스템
KR101324613B1 (ko) 천연가스 연료공급 시스템
WO2020065193A1 (fr) Systeme de gestion de confort de passager
EP3459770B1 (fr) Transport cryogenique de produits thermosensibles valorisant le fuel operant le moteur du véhicule a l&#39;aide d&#39;un module eutectique de stockage du froid
FR3140414A1 (fr) Dispositif et procédé de remplissage de réservoir de gaz sous pression
CN115217574B (zh) 一种机油输送系统及机油温度的控制方法
FR3055660B1 (fr) Procede de regulation d’un debit dans un echangeur de chaleur de ligne de recirculation de gaz d’echappement d’un moteur
FR3075708B1 (fr) Procede de gestion du fonctionnement d&#39;un camion de transport frigorifique de produits thermosensibles du type a injection indirecte
JPH06313687A (ja) 蓄冷熱利用の液化天然ガス気化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22772495

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3230438

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20247010877

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022772495

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022772495

Country of ref document: EP

Effective date: 20240408