WO2023030971A1 - Heat exchanger for refrigerant loop - Google Patents

Heat exchanger for refrigerant loop Download PDF

Info

Publication number
WO2023030971A1
WO2023030971A1 PCT/EP2022/073512 EP2022073512W WO2023030971A1 WO 2023030971 A1 WO2023030971 A1 WO 2023030971A1 EP 2022073512 W EP2022073512 W EP 2022073512W WO 2023030971 A1 WO2023030971 A1 WO 2023030971A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubes
heat exchanger
exchange surface
inlet
heat
Prior art date
Application number
PCT/EP2022/073512
Other languages
French (fr)
Inventor
Gael Durbecq
Kamel Azzouz
Jeremy Blandin
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2023030971A1 publication Critical patent/WO2023030971A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00921Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant does not change and there is an extra subcondenser, e.g. in an air duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/321Control means therefor for preventing the freezing of a heat exchanger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3227Cooling devices using compression characterised by the arrangement or the type of heat exchanger, e.g. condenser, evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0471Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Definitions

  • TITLE HEAT EXCHANGER OF A REFRIGERANT LOOP.
  • the present invention relates to a refrigerant loop intended for the circulation of a refrigerant fluid and applied to a heating, ventilation and/or air conditioning installation for a motor vehicle, and more particularly for electric cars or hybrid cars.
  • An electric or hybrid car has a refrigerant fluid loop in order to vary the temperature inside its passenger compartment, and in particular to heat it in winter and to cool it in summer.
  • the temperature of the passenger compartment is modified in particular by means of the refrigerant fluid circulating in the refrigerant fluid loop between a heat exchange device arranged in the vehicle in the vicinity of the passenger compartment, and a heat exchanger located in contact with the ambient air, in front of the vehicle.
  • the coolant circulating in the coolant loop absorbs or releases calories at the heat exchanger or the heat exchange device depending on the heating or cooling needs of the passenger compartment.
  • the heat exchanger located on the front of the vehicle enables the exchange of calories between the coolant which circulates in tubes arranged one above the other and spaced from one another by spacers, and a flow of air, coming from from outside the vehicle and passing through said heat exchanger between the tubes at the spacers.
  • a problem with such a heat exchanger placed on the front of the vehicle then lies in its operation as an evaporator, when the temperature differential tends to heat the flow of humid air and create droplets of condensation which are deposited on the surface of the heat exchanger. 'heat exchanger. If the temperature of the refrigerant circulating in the tubes is too low, and the spacers between the tubes are too cold by thermal conduction, the cooling of the condensation droplets may form frost locally on the spacers between the heat exchanger tubes. heat. Such presence of frost generates obstacles to the passage of air through the heat exchanger and therefore tends to reduce the thermal capacities of the heat exchanger.
  • the present invention aims to remedy this drawback, by proposing a refrigerant loop, and more particularly a heat exchanger, making it possible to limit the formation of frost on the latter.
  • the invention therefore makes it possible to increase the thermal capacities of the heat exchanger and therefore of the refrigerant fluid loop.
  • the invention therefore relates to a heat exchanger for a refrigerant loop, comprising a heat exchange surface, the heat exchange surface comprising a plurality of tubes, the heat exchanger being characterized in that it comprises at least a first refrigerant circuit consisting of a first part of the plurality of tubes, a first inlet manifold fluidly connected to the first part of the plurality of tubes and a first outlet manifold fluidly connected to the first part of the plurality of tubes, the heat exchanger comprising at least a second refrigerant circuit consisting of a second part of the plurality of tubes, a second inlet manifold fluidly connected to the second part of the plurality of tubes and a second outlet manifold fluidly connected to the second part of the plurality of tubes, the first part of the plurality of tubes and the second part of the plurality of tubes being fluidly distinct from each other, the first inlet manifold being disposed at a first end of the heat exchange surface and the second manifold input being disposed at a second end
  • the refrigerant fluid loop can be arranged within a vehicle, for example electric or hybrid, in order to heat or cool a passenger compartment of said vehicle, in particular via an exchange of calories within the heat exchanger between the refrigerant fluid and an external air flow, the heat exchange surface being intended to be traversed by this external air flow.
  • the refrigerant fluid loop may consist of a reversible heat pump and the heat exchanger may be an evapo-condenser within which the refrigerant fluid circulates. More specifically, the heat exchanger comprises the heat exchange surface within which heat exchanges take place between the flow of air passing through said exchange surface, and the refrigerant fluid circulating within the plurality of tubes of said exchange surface, the coolant capturing or transferring calories to the air flow depending on the configuration of the coolant loop, intended to heat or cool the passenger compartment.
  • the tubes are stacked along a stacking direction, with a space left between two neighboring tubes to allow airflow through the heat exchange surface.
  • These tubes are configured to channel the refrigerant fluid along a direction of main elongation of the tubes and they are each fluidly connected to inlet chambers allowing the supply of refrigerant fluid and outlet chambers allowing the evacuation of this coolant.
  • the first inlet manifold and the second inlet manifold respectively of the first circuit and of the second circuit are fluidically connected to a first portion of the refrigerant fluid loop, said first portion being to be considered as the portion connecting a heat exchanger, which may consist of a condenser or an evaporator depending on the operating configuration of the control loop, to the heat exchanger and borrowed in this direction by the refrigerant fluid.
  • This first portion may in particular comprise at least one compressor or one expansion member.
  • a branch is formed on the first portion of the refrigerant loop and the refrigerant therein circulates is split into two flows directed respectively towards the first inlet collector and towards the second inlet collector.
  • the first outlet manifold and the second outlet manifold respectively of the first circuit and of the second circuit are fluidically connected to a second portion of the refrigerant fluid loop, the second portion of the refrigerant fluid loop being to be considered as the portion connecting the heat exchanger to the previously mentioned heat exchanger, which may consist of a condenser or an evaporator depending on the operating configuration of the control loop, and borrowed in this direction by the refrigerant fluid.
  • This second portion may in particular comprise at least one compressor or one expansion device.
  • a connection is formed between the two outlet manifolds and the second portion of the refrigerant fluid loop so that the two flows leaving the outlet manifolds converge towards the second portion of the refrigerant fluid loop.
  • the coolant entering the heat exchanger is colder than the flow of air passing through said heat exchanger, said coolant having been expanded by the expansion device upstream of the heat exchanger inlet.
  • the flow of air coming from outside the vehicle has a low temperature, it is understood that said flow of air is intended to transfer its calories to the refrigerant in order to heat it.
  • the refrigerant fluid is heated as it circulates through the plurality of tubes, from the inlet manifold to the outlet manifold.
  • the portion of refrigerant intended to enter the exchange surface via the first inlet manifold being intended to circulate in the opposite direction to that of the circulation of the portion of refrigerant fluid intended to enter the exchange surface via the second inlet manifold.
  • the circulation of the refrigerant fluid in the first circuit and the circulation of the fluid refrigerant in the second circuit are in opposite directions, allowing a better distribution of the temperature gradient of the refrigerant fluid in the exchange surface.
  • the temperature of the exchange surface is thus more homogeneous, so that the formation of frost on said exchange surface of the heat exchanger is limited.
  • At least one tube of the first circuit is arranged between two tubes of the second circuit along the stacking direction of the tubes.
  • the tubes of the first part of the plurality of tubes and the tubes of the second part of the plurality of tubes are mixed within the stack of tubes forming the heat exchange surface. This allows a better distribution of the temperature of the refrigerant fluid within the exchange surface of the heat exchanger.
  • the tubes of the first part of the plurality of tubes are arranged alternately with the tubes of the second part of the plurality of tubes in the stacking direction of the tubes.
  • a tube from the first part of the plurality of tubes is placed between two tubes from the second part of the plurality of tubes in the stacking direction, and vice versa.
  • At least two tubes of the first part of the plurality of tubes, successive along the stacking direction of the tubes, are separated from each other along the stacking direction of the tubes, by at least two tubes of the second part of the plurality of tubes.
  • the first outlet manifold is arranged at the second end of the heat exchange surface and the second outlet manifold is arranged at the first end of the heat exchange surface opposite the second end along the direction of main elongation of the plurality of tubes.
  • the input collector and the output collector of the first circuit are at ends opposite each other of the surface of exchange, along the direction of main elongation of the plurality of tubes.
  • the first input manifold and the second output manifold form an assembly disposed at the first end of the exchange surface, the assembly formed by the first output manifold and the second output manifold entry being disposed at the second end of the exchange surface.
  • the collectors of the first circuit face each other along the main direction of elongation of the tubes and the collectors of the second circuit face each other along the direction of main elongation of the tubes.
  • the collectors positioned at the same end of the heat exchange surface are aligned along a line secant to a main plane of the heat exchange surface. More precisely, the collectors positioned at the same end of the heat exchange surface are aligned along a straight line perpendicular to the main plane of the heat exchange surface.
  • the heat exchanger comprises a plurality of heat dissipation members extending along the main direction of elongation of the tubes, each heat dissipation member being placed between at least two tubes of the plurality of tubes along their stacking direction.
  • the heat dissipation members can be, for example and in a non-limiting way, fins, making it possible to increase, by heat conduction between the tubes and these fins, the calorie exchange surface for the air flow passing through the exchanger heat.
  • the first inlet manifold and the second inlet manifold are configured to be fluidically connected in a common manner to an expansion member of the first portion of the refrigerant fluid loop. It is understood that the branch formed on the first portion of the refrigerant fluid loop which is connected to each of the inlet manifolds to supply an equivalent quantity of refrigerant fluid to the first circuit and the second circuit, can be arranged downstream of the expansion member, that is to say between this expansion member and the heat exchanger, so that the portions of refrigerant circulating in each circuit is evenly expanded.
  • the invention also relates to a refrigerant fluid loop comprising at least one compressor, at least one heat exchanger, at least one heat exchanger according to any one of the preceding characteristics, an outlet of the compressor being fluidly connected to the heat, at least one outlet of the heat exchanger being fluidly connected to the heat exchanger or to an inlet of the compressor, and at least one first expansion member is arranged between the heat exchanger and the heat exchanger and to the at least one second expansion member is arranged between the compressor and the heat exchanger.
  • the latter comprises at least one refrigerant inlet channel in the heat exchanger and an outlet channel for the refrigerant fluid from the heat exchanger, the inlet manifolds of the heat exchanger being fluidically connected to the coolant fluid inlet channel and the heat exchanger outlet manifolds being fluidically connected to the coolant fluid outlet channel.
  • the inlet channel for the coolant in the first inlet manifold and in the second inlet manifold is arranged at the outlet of the expansion device present on the first portion of the coolant loop.
  • the outlet channel, fluidically connected to the first outlet manifold and to the second outlet manifold, is fluidically connected to the compressor or to the heat exchanger depending on the configuration of use of the refrigerant fluid loop.
  • FIG i is a schematic view of a refrigerant loop according to a first configuration
  • FIG 2 is a schematic view of the refrigerant loop of Figure i according to a second configuration
  • FIG 3 is a schematic representation of a heat exchanger of the refrigerant loop of Figures 1 and 2, comprising a first circuit and a second circuit and a heat exchange surface comprising a plurality of tubes distributed in a first part and a second part;
  • FIG 4 is a perspective view of an embodiment of the heat exchanger of Figure 3, comprising the first circuit and the second circuit and a heat exchange surface comprising a plurality of tubes distributed in a first part and a second part;
  • FIG 5 is a close-up view of the heat exchange surface illustrating several neighboring tubes and several heat dissipation devices respectively arranged between two tubes.
  • Figures 1 and 2 illustrate a refrigerant fluid loop 1 according to one aspect of the invention intended to equip a vehicle, electric or hybrid, in order to heat or cool a passenger compartment of the vehicle, by means of a first flow of air 101 directed towards the passenger compartment of the vehicle.
  • the refrigerant loop 1 comprises at least one heat exchanger 2 specific to the invention, and here comprises, in the example illustrated in FIGS. 1 and 2, a compressor 4, a heat exchanger 6, an evaporator 8 and at least at least one expansion member 10.
  • the heat exchanger 2 is advantageously arranged at the front of the vehicle in order to be crossed by a second flow of air 102 coming from outside the vehicle.
  • the refrigerant fluid passes through the heat exchanger 2 within which it transfers calories to the second flow of air 102 passing through said heat exchanger 2, such that the refrigerant fluid leaves the heat exchanger 2 in the liquid state whereas it entered the gaseous state.
  • the refrigerant is directed to a first organ of expansion ioa of the refrigerant loop i, for example an expansion valve, ensuring the expansion of the refrigerant fluid and the lowering of its temperature.
  • the refrigerant fluid is colder at the outlet of the first expansion member ioa than at the inlet.
  • the refrigerant fluid passes through the evaporator 8 and exchanges calories with the first law air flow passing through said evaporator 8. More precisely, the evaporator 8 is integrated into a casing of a heating installation of the vehicle which is configured to direct the first flow of law air which passes through the evaporator towards the passenger compartment of the vehicle, and the refrigerant fluid circulating in the evaporator is colder than the first flow law air flow when it passes through the evaporator so that the refrigerant fluid is able to capture the calories of the first law air flow in order to cool it before it enters the passenger compartment. During the exchange of calories in the evaporator 8, the refrigerant fluid therefore changes to the gaseous state when it captures the calories of the first law air flow, in particular by lowering its temperature change point. state by the first trigger member ioa.
  • the refrigerant fluid in gaseous form is directed to the compressor 4 which increases the pressure of the refrigerant fluid and therefore increases its temperature.
  • the refrigerant fluid then passes through the heat exchanger 6 without carrying out any heat exchange, said heat exchanger 6 not being, in this configuration of the refrigerant fluid loop 1, crossed by the first air flow 101.
  • the coolant is directed to a second expansion member 10b which, in this configuration of the coolant loop 1, is inactive, the coolant being directed to the heat exchanger 2 at the outlet of the second expansion device 10b.
  • the refrigerant passes through the compressor 4 in the gaseous state so that the latter increases the pressure and the temperature refrigerant fluid. Subsequently, the refrigerant passes through the heat exchanger 6 within which it exchanges calories with the first air flow 101 which in this configuration passes through the heat exchanger 6 before being directed towards the passenger compartment of the vehicle. More precisely, the refrigerant transfers these calories to the first air flow 101, then colder, so that said first law air flow is hotter after passing through the heat exchanger 6 so as to heat the vehicle interior.
  • the refrigerant At the outlet of heat exchanger 6, the refrigerant has become liquid but is colder than at the inlet of heat exchanger 6 and it is caused to pass through the second expansion device lob so that the latter further lowers the pressure and the temperature. refrigerant fluid. Subsequently, the refrigerant passes through the heat exchanger 2 in which it exchanges calories with the second air flow 102 passing through it. More precisely, the second air flow 102 is hotter than the refrigerant fluid, and the refrigerant fluid therefore picks up calories from said second air flow 102 during its passage through the heat exchanger 2 and comes out of this last in a gaseous state. Subsequently, the refrigerant, in gaseous state, is redirected to compressor 4.
  • the cold refrigerant which passes through the heat exchanger 2 captures calories from the second flow of air 102 from outside the vehicle, so that the temperature of the refrigerant increases as it progresses through the heat exchanger 2 from an inlet manifold to an outlet manifold.
  • the second air flow 102 is at a low temperature, so that the temperature of the refrigerant fluid may present a negative temperature at the inlet of the heat exchanger and the temperature of the components of this heat exchanger is particularly cold, liable to create frost if droplets of condensation from the second air flow is formed on the surface of the heat exchanger.
  • the heat exchanger 2 according to the invention, particularly visible in Figures 3 to 5, comprises a heat exchange surface 12, which extends in a main plane 14 longitudinal L and vertical V, and which is intended to be crossed by the second air flow 102 from outside the vehicle.
  • the heat exchanger 2 also comprises at least one inlet manifold 16 and at least one outlet manifold 18 of the refrigerant fluid connected to the surface exchange 12 so as to respectively allow the entry of the refrigerant into the exchange surface and the exit of the refrigerant from this exchange surface.
  • the heat exchange surface 12 comprises a plurality of tubes 20 stacked along a stacking direction E, here vertical V, and within which the refrigerant fluid circulates. More specifically, the plurality of tubes 20 is configured to channel the refrigerant fluid between the at least one inlet manifold 16 and the at least one outlet manifold 18 along a main elongation direction A of the tubes 20, here longitudinal L.
  • the exchange surface 12 of the heat exchanger 2 also comprises a plurality of heat dissipation members 22, visible in FIG. 5.
  • Each of these heat dissipation members 22 extends parallel to the direction of elongation main A of the tubes 20, from the at least one inlet manifold 16 to the at least one outlet manifold 18.
  • Each of the heat dissipation members 22 extends between two neighboring tubes 20 of the plurality of tubes 20 and makes it possible to increase the contact surface for the second air flow passing through the exchange surface 12, so as to increase the heat exchange performance.
  • the plurality of heat dissipation members 22 can take the form of spacers or fins.
  • the heat exchanger 2 comprises at least a first refrigerant circuit 24 and a second refrigerant circuit 26, visible in Figures 3 and 4.
  • the first refrigerant circuit 24 comprises in particular a first part 28a of the plurality of tubes 20, as well as a first inlet manifold 16a and a first outlet manifold 18a which are fluidically connected to the first part 28a of the plurality of tubes 20. It is understood that the first inlet manifold 16a makes it possible to distribute the refrigerant fluid in each of the tubes of the first part 28a, while the first outlet manifold 18a makes it possible to evacuate the refrigerant fluid once it has circulated through the tubes of the first part 28a.
  • first inlet manifold 16a is fluidically connected to a first portion 30a of the refrigerant fluid loop 1, visible in Figures 1 and 2, arranged between the heat exchanger 6, here in the form of a condenser, and the heat exchanger, and comprising the second expansion member lob, mentioned above.
  • first outlet manifold 18a is fluidically connected to a second portion 30b of the refrigerant fluid loop 1, connected to the evaporator 8 or to the compressor 4 depending on the configuration of the thermal regulation loop.
  • the second refrigerant circuit 26 comprises a second part 28b of the plurality of tubes 20 of refrigerant fluid, as well as a second inlet manifold 16b and a second outlet manifold 18b which are fluidly connected to the second part 28b of the plurality of tubes 20.
  • the second inlet manifold 16b makes it possible to distribute the refrigerant fluid in each of the tubes of the second part 28b, while the second outlet manifold 18b makes it possible to evacuate the refrigerant fluid once it has circulated through the tubes of the second part 28b.
  • the second inlet manifold 16b is fluidically connected to the first portion 30a of the refrigerant fluid loop 1 previously described and visible in Figures 1 and 2, while the second outlet manifold 18b is fluidically connected to the second portion 30b of the refrigerant loop 1.
  • the first part 28a of the plurality of tubes 20 and the second part 28b of the plurality of tubes 20 are fluidically distinct from each other.
  • the first inlet manifold 16a and the second inlet manifold 16b being configured to be fluidically connected to the same first portion 30a of the refrigerant loop, it is understood that this first portion comprises a branch with two branches to which are connected the first input collector 16a and the second input collector 16b.
  • the refrigerant fluid circulating in the first portion 30a of the refrigerant fluid loop is split on passing this branch into two flow portions circulating, one in the first circuit via the first inlet manifold and the other in the second circuit. via the second input collector.
  • the first inlet manifold 16a and the second inlet manifold 16b are configured to be fluidically connected in a common manner to the second expansion device of the refrigerant fluid loop. More precisely, we defines an inlet channel 32 for the coolant in the heat exchanger 2, visible in FIG. 3, and an outlet channel 34 for the coolant in the heat exchanger 2.
  • the inlet manifolds 16a, 16b are then fluidly connected to the inlet channel 32 of the refrigerant fluid while the outlet manifolds 18a, 18b are fluidically connected to the outlet channel 34 of the refrigerant fluid.
  • the inlet channel 32 of the refrigerant fluid extends between the second expansion member 10b and the inlet manifolds 16a, 16b, while the outlet channel 34 extends between the outlet manifolds 18a, 18b and the compressor 4 or the evaporator 8 depending on the configuration of the refrigerant loop 1.
  • the first inlet manifold 16a and the second inlet manifold 16b are arranged opposite one another along the main direction of elongation A of the tubes 20. More specifically, a first end 36a of the exchange surface 12 and a second end 36b of the exchange surface 12 are defined, opposite each other along the main direction of elongation A of said tubes 20, and the first inlet manifold 16a is arranged at the first end 36a of the exchange surface 12 while the second inlet manifold 16b is arranged at the second end 36b of the exchange surface 12.
  • first outlet manifold 18a is arranged at the second end 36b of the heat exchange surface 12 while the second outlet manifold 18b is arranged at the first end 36a of the exchange surface 12. then comprises that the first inlet collector 16a and the second outlet collector 18b form a set arranged at the first end 36a of the exchange surface 12 and that another set formed by the first outlet collector 18a and the second inlet collector 16b is arranged at the second end 36b of the exchange surface 12.
  • the first input collector 16a and the first output collector 18a of the first circuit 24 face each other in the direction of main elongation A of the tubes 20.
  • the second inlet manifold 16b and the second outlet manifold 18b of the second circuit 26 face each other in the direction of main elongation A of the tubes 20.
  • the first inlet collector 16a and the second outlet collector 18b positioned at the first end 36a of the exchange surface 12 are aligned along a line I secant to the main plane 14 of the exchange surface 12, said line I being for example perpendicular to said main plane 14. It should be considered that this characteristic applies mutatis mutandis to the first outlet collector 18a and to the second inlet collector 16b positioned at the second end 36b of the exchange surface 12.
  • inlet and outlet manifolds can be implemented according to the invention, since two inlet manifolds allowing two distinct supply zones of the same refrigerant are arranged at opposite ends of the heat exchange surface.
  • the inlet and outlet collectors forming an assembly arranged at one end of the heat exchange surface can be arranged so as to be aligned in the direction of main elongation.
  • a first direction Si of circulation corresponds to a circulation from the first end 36a of the exchange surface 12 towards the second end 36b of the exchange surface 12, that is to say from the first collector of inlet 16a to the first outlet collector 18a
  • a second direction S2 of circulation corresponds to a circulation from the second end 36b of the exchange surface 12 towards the first end 36b of the exchange surface 12, it that is to say from the second input collector 16b to the second output collector 18b.
  • first inlet manifold 16a and the first outlet manifold 18a are fluidly connected only to the inlet channel 32, to the first part 28a of the plurality of tubes 20 and to the outlet channel 34, while the second inlet manifold 16b and the second outlet manifold 18b are fluidically connected only to the inlet channel 32, to the second part 28b of the plurality of tubes 20 and to the outlet channel 34, the inlet channel 32 and the outlet channel 34 being common to these portions of refrigerant fluid caused to circulate in opposite directions within the heat exchange surface.
  • Such cross-circulation of the refrigerant fluid within the heat exchanger 2 advantageously makes it possible to obtain a better temperature distribution within the exchange surface 12.
  • the temperature gradient of the refrigerant fluid circulating within the first circuit 24 is opposed to the temperature gradient of the refrigerant fluid circulating within the second circuit 26, thus limiting the concentration of low or negative temperature in a localized zone of the exchange surface 12, which makes it possible to limit the formation of frost on said heat exchange surface 12.
  • At least one of the tubes 20 of the first circuit 24 is arranged between two tubes 20 of the second circuit 26 along the stacking direction E of the tubes 20, and/or at least one of the tubes 20 of the second circuit 26 is arranged between two tubes 20 of the first circuit 24 along the stacking direction E of the tubes 20.
  • Such an arrangement of the tubes 20 of the first circuit 24 and the tubes 20 of the second circuit 26, mixed with within the stack of tubes, is advantageous for better homogenizing the temperature of the components of the heat exchanger when the refrigerant fluid circulates within the heat exchange surface.
  • the tubes 20 of the first part 28a can advantageously be arranged alternately with the tubes 20 of the second part 28b, that is to say of the second circuit 26, following the stacking direction E of the tubes 20, in a configuration where a tube of the first part 28a extends into the stack of tubes just after a tube of the second part 28b, and vice versa.
  • the first and second parts of the plurality of tubes can be arranged with at least two tubes 20 of the first part 28a of the plurality of tubes 20, successive along the stacking direction E of the tubes 20, which are separated from each other along the stacking direction E of the tubes 20, by at least two tubes 20 of the second part 28b of the plurality of tubes 20.
  • the heat exchange surface is particular in that several tubes associated with a circuit are adjacent within the stack of tubes to form sets of tubes regularly distributed and separated by a single tube associated with the another circuit, so that the proportion of one circuit relative to the other within the heat exchange surface is thus increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The invention relates to a heat exchanger (2) for a refrigerant loop of a vehicle, which comprises an exchange surface (12) through which an air flow (102) is intended to pass and a plurality of tubes (20), the heat exchanger further comprising at least a first refrigerant circuit (24) consisting of a first portion (28a) of the plurality of tubes (20) and a first inlet manifold (16a) fluidically connected to said first portion (28a) of the plurality of tubes (20), and at least a second refrigerant circuit (26) consisting of a second portion (28b) of the plurality of tubes (20) and a second inlet manifold (16b) fluidically connected to the second portion (28b) of the plurality of tubes (20), the first inlet manifold (16a) and the second inlet manifold (16b) being opposite each other in a main elongation direction (A) of the tubes (20).

Description

TITRE : ECHANGEUR DE CHALEUR D'UNE BOUCLE DE FLUIDE REFRIGERANT. TITLE: HEAT EXCHANGER OF A REFRIGERANT LOOP.
La présente invention concerne une boucle de fluide réfrigérant destinée à la circulation d’un fluide réfrigérant et appliquée à une installation de chauffage, de ventilation et/ ou de climatisation pour véhicule automobile, et plus particulièrement pour des voitures électriques ou des voitures hybrides. The present invention relates to a refrigerant loop intended for the circulation of a refrigerant fluid and applied to a heating, ventilation and/or air conditioning installation for a motor vehicle, and more particularly for electric cars or hybrid cars.
Une voiture électrique ou hybride comporte une boucle de fluide réfrigérant afin de faire varier la température à l’intérieur de son habitacle, et notamment pour le réchauffer en période hivernale et pour le refroidir en période estivale. La température de l’habitacle est notamment modifiée au moyen du fluide réfrigérant circulant dans la boucle de fluide réfrigérant entre un dispositif d’échange thermique disposé dans le véhicule au voisinage de l’habitacle, et un échangeur de chaleur situé au contact de l’air ambiant, en face avant du véhicule. Ainsi, le fluide réfrigérant circulant dans la boucle de fluide réfrigérant absorbe ou cède des calories au niveau de l’échangeur de chaleur ou du dispositif d’échange thermique en fonction des besoins de chauffage ou de refroidissement de l’habitacle. L’utilisation d’un compresseur et le cas échéant d’un détendeur est notamment nécessaire pour modifier la pression du fluide réfrigérant dans la boucle de fluide réfrigérant afin de modifier thermodynamiquement la température du fluide réfrigérant amené à passer par la suite à travers le dispositif d’échange thermique et l’échangeur de chaleur. An electric or hybrid car has a refrigerant fluid loop in order to vary the temperature inside its passenger compartment, and in particular to heat it in winter and to cool it in summer. The temperature of the passenger compartment is modified in particular by means of the refrigerant fluid circulating in the refrigerant fluid loop between a heat exchange device arranged in the vehicle in the vicinity of the passenger compartment, and a heat exchanger located in contact with the ambient air, in front of the vehicle. Thus, the coolant circulating in the coolant loop absorbs or releases calories at the heat exchanger or the heat exchange device depending on the heating or cooling needs of the passenger compartment. The use of a compressor and, where appropriate, of an expansion valve is in particular necessary to modify the pressure of the refrigerant fluid in the refrigerant fluid loop in order to thermodynamically modify the temperature of the refrigerant fluid subsequently caused to pass through the device. heat exchanger and heat exchanger.
L’échangeur de chaleur situé en face avant du véhicule permet l’échange de calories entre le fluide réfrigérant qui circule dans des tubes disposés les uns au- dessus des autres et espacés entre eux par des intercalaires, et un flux d’air, provenant de l’extérieur du véhicule et traversant ledit échangeur de chaleur entre les tubes au niveau des intercalaires. The heat exchanger located on the front of the vehicle enables the exchange of calories between the coolant which circulates in tubes arranged one above the other and spaced from one another by spacers, and a flow of air, coming from from outside the vehicle and passing through said heat exchanger between the tubes at the spacers.
Dans les véhicules électriques ou hybrides, il est connu de configurer la boucle de fluide réfrigérant et l’échangeur de chaleur en face avant pour former une pompe à chaleur réversible au sein de laquelle l’échangeur de chaleur est apte à fonctionner en mode condenseur, en été, pour assurer le refroidissement de l’habitacle via le dispositif d’échange thermique formant un évaporateur dans l’installation de chauffage, de ventilation et/ou de climatisation, et à fonctionner en mode évaporateur, en hiver, pour assurer le chauffage dans l’habitacle via le dispositif d’échange thermique formant un condenseur. In electric or hybrid vehicles, it is known to configure the refrigerant loop and the heat exchanger on the front face to form a reversible heat pump in which the heat exchanger is able to operate in condenser mode, in summer, to ensure the cooling of the passenger compartment via the heat exchange device forming an evaporator in the heating, ventilation and/or air conditioning installation, and to operate in evaporator mode, in winter, to ensure heating in the passenger compartment via the device heat exchange forming a condenser.
Un problème d’un tel échangeur de chaleur placé en face avant du véhicule réside alors dans son fonctionnement en évaporateur, lorsque le différentiel de température tend à réchauffer le flux d’air humide et créer des gouttelettes de condensation qui se déposent en surface de l’échangeur de chaleur. Si la température du fluide réfrigérant circulant dans les tubes est trop basse, et que par conduction thermique les intercalaires entre les tubes sont trop froids, le refroidissement des gouttelettes de condensation peut former du givre localement sur les intercalaires entre les tubes de l’échangeur de chaleur. Une telle présence de givre génère des obstacles au passage d’air à travers l’échangeur de chaleur et tend donc à diminuer les capacités thermiques de l’échangeur de chaleur. A problem with such a heat exchanger placed on the front of the vehicle then lies in its operation as an evaporator, when the temperature differential tends to heat the flow of humid air and create droplets of condensation which are deposited on the surface of the heat exchanger. 'heat exchanger. If the temperature of the refrigerant circulating in the tubes is too low, and the spacers between the tubes are too cold by thermal conduction, the cooling of the condensation droplets may form frost locally on the spacers between the heat exchanger tubes. heat. Such presence of frost generates obstacles to the passage of air through the heat exchanger and therefore tends to reduce the thermal capacities of the heat exchanger.
La présente invention vise à remédier à cet inconvénient, en proposant une boucle de fluide réfrigérant, et plus particulièrement un échangeur de chaleur, permettant de limiter la formation de givre sur ce dernier. L’invention permet donc d’augmenter les capacités thermiques de l’échangeur de chaleur et donc de la boucle de fluide réfrigérant. The present invention aims to remedy this drawback, by proposing a refrigerant loop, and more particularly a heat exchanger, making it possible to limit the formation of frost on the latter. The invention therefore makes it possible to increase the thermal capacities of the heat exchanger and therefore of the refrigerant fluid loop.
L’invention porte donc sur un échangeur de chaleur pour une boucle de fluide réfrigérant, comprenant une surface d’échange de chaleur, la surface d’échange de chaleur comprenant une pluralité de tubes, l’échangeur de chaleur étant caractérisé en ce qu’il comprend au moins un premier circuit de fluide réfrigérant constitué d’une première partie de la pluralité de tubes, d’un premier collecteur d’entrée fluidiquement connecté à la première partie de la pluralité de tubes et d’un premier collecteur de sortie fluidiquement connecté à la première partie de la pluralité de tubes, l’échangeur de chaleur comprenant au moins un deuxième circuit de fluide réfrigérant constitué d’une deuxième partie de la pluralité de tubes, d’un deuxième collecteur d’entrée fluidiquement connecté à la deuxième partie de la pluralité de tubes et d’un deuxième collecteur de sortie fluidiquement connecté à la deuxième partie de la pluralité de tubes, la première partie de la pluralité de tubes et la deuxième partie de la pluralité de tubes étant fluidiquement distinctes l’une de l’autre, le premier collecteur d’entrée étant disposé à une première extrémité de la surface d’échange de chaleur et le deuxième collecteur d’entrée étant disposé à une deuxième extrémité de la surface d’échange de chaleur opposée à la première extrémité. The invention therefore relates to a heat exchanger for a refrigerant loop, comprising a heat exchange surface, the heat exchange surface comprising a plurality of tubes, the heat exchanger being characterized in that it comprises at least a first refrigerant circuit consisting of a first part of the plurality of tubes, a first inlet manifold fluidly connected to the first part of the plurality of tubes and a first outlet manifold fluidly connected to the first part of the plurality of tubes, the heat exchanger comprising at least a second refrigerant circuit consisting of a second part of the plurality of tubes, a second inlet manifold fluidly connected to the second part of the plurality of tubes and a second outlet manifold fluidly connected to the second part of the plurality of tubes, the first part of the plurality of tubes and the second part of the plurality of tubes being fluidly distinct from each other, the first inlet manifold being disposed at a first end of the heat exchange surface and the second manifold input being disposed at a second end of the heat exchange surface opposite the first end.
La boucle de fluide réfrigérant peut être disposée au sein d’un véhicule, par exemple électrique ou hybride, afin de réchauffer ou refroidir un habitacle dudit véhicule, notamment via un échange de calories au sein de l’échangeur de chaleur entre le fluide réfrigérant et un flux d’air extérieur, la surface d’échange de chaleur étant destinée à être traversée par ce flux d’air extérieur. The refrigerant fluid loop can be arranged within a vehicle, for example electric or hybrid, in order to heat or cool a passenger compartment of said vehicle, in particular via an exchange of calories within the heat exchanger between the refrigerant fluid and an external air flow, the heat exchange surface being intended to be traversed by this external air flow.
La boucle de fluide réfrigérant peut consister en une pompe à chaleur réversible et l’échangeur de chaleur peut être un évapo-condenseur au sein duquel circule le fluide réfrigérant. De manière plus précise, l’échangeur de chaleur comprend la surface d’échange de chaleur au sein de laquelle s’effectuent les échanges de calories entre le flux d’air traversant ladite surface d’échange, et le fluide réfrigérant circulant au sein de la pluralité de tubes de ladite surface d’échange, le fluide réfrigérant captant ou cédant des calories au flux d’air en fonction de la configuration de la boucle de fluide réfrigérant, destinée à chauffer ou refroidir l’habitacle. The refrigerant fluid loop may consist of a reversible heat pump and the heat exchanger may be an evapo-condenser within which the refrigerant fluid circulates. More specifically, the heat exchanger comprises the heat exchange surface within which heat exchanges take place between the flow of air passing through said exchange surface, and the refrigerant fluid circulating within the plurality of tubes of said exchange surface, the coolant capturing or transferring calories to the air flow depending on the configuration of the coolant loop, intended to heat or cool the passenger compartment.
Les tubes sont empilés le long d’une direction d’empilement, avec un espace laissé entre deux tubes voisins pour laisser passage au flux d’air traversant la surface d’échange de chaleur. Ces tubes sont configurés pour canaliser le fluide réfrigérant le long d’une direction d’allongement principal des tubes et ils sont reliés chacun fluidiquement à des chambres d’entrée permettant l’alimentation en fluide réfrigérant et des chambres de sortie permettant l’évacuation de ce fluide réfrigérant. The tubes are stacked along a stacking direction, with a space left between two neighboring tubes to allow airflow through the heat exchange surface. These tubes are configured to channel the refrigerant fluid along a direction of main elongation of the tubes and they are each fluidly connected to inlet chambers allowing the supply of refrigerant fluid and outlet chambers allowing the evacuation of this coolant.
Le premier collecteur d’entrée et le deuxième collecteur d’entrée respectivement du premier circuit et du deuxième circuit sont fluidiquement reliés à une première portion de la boucle de fluide réfrigérant, ladite première portion étant à considérer comme la portion reliant un échangeur thermique, qui peut consister en un condenseur ou un évaporateur selon la configuration de fonctionnement de la boucle de régulation, à l’échangeur de chaleur et empruntée en ce sens par le fluide réfrigérant. Cette première portion peut notamment comporter au moins un compresseur ou un organe de détente. Un embranchement est formé sur la première portion de la boucle de fluide réfrigérant et le fluide réfrigérant qui y circule est scindé en deux flux dirigés respectivement vers le premier collecteur d’entrée et vers le deuxième collecteur d’entrée. The first inlet manifold and the second inlet manifold respectively of the first circuit and of the second circuit are fluidically connected to a first portion of the refrigerant fluid loop, said first portion being to be considered as the portion connecting a heat exchanger, which may consist of a condenser or an evaporator depending on the operating configuration of the control loop, to the heat exchanger and borrowed in this direction by the refrigerant fluid. This first portion may in particular comprise at least one compressor or one expansion member. A branch is formed on the first portion of the refrigerant loop and the refrigerant therein circulates is split into two flows directed respectively towards the first inlet collector and towards the second inlet collector.
Le premier collecteur de sortie et le deuxième collecteur de sortie respectivement du premier circuit et du deuxième circuit sont fluidiquement reliés à une deuxième portion de la boucle de fluide réfrigérant, la deuxième portion de la boucle de fluide réfrigérant étant à considérer comme la portion reliant l’échangeur de chaleur à l’échangeur thermique précédemment évoqué, qui peut consister en un condenseur ou un évaporateur selon la configuration de fonctionnement de la boucle de régulation, et empruntée en ce sens par le fluide réfrigérant. Cette deuxième portion peut notamment comporter au moins un compresseur ou un organe de détente. Un raccordement est formé entre les deux collecteurs de sortie et la deuxième portion de la boucle de fluide réfrigérant afin que les deux flux sortant des collecteurs de sortie convergent vers la deuxième portion de la boucle de fluide réfrigérant. The first outlet manifold and the second outlet manifold respectively of the first circuit and of the second circuit are fluidically connected to a second portion of the refrigerant fluid loop, the second portion of the refrigerant fluid loop being to be considered as the portion connecting the heat exchanger to the previously mentioned heat exchanger, which may consist of a condenser or an evaporator depending on the operating configuration of the control loop, and borrowed in this direction by the refrigerant fluid. This second portion may in particular comprise at least one compressor or one expansion device. A connection is formed between the two outlet manifolds and the second portion of the refrigerant fluid loop so that the two flows leaving the outlet manifolds converge towards the second portion of the refrigerant fluid loop.
Lorsque la boucle de fluide réfrigérant est dans une configuration où elle chauffe l’habitacle, le fluide réfrigérant entrant dans l’échangeur de chaleur est plus froid que le flux d’air traversant ledit échangeur de chaleur, ledit fluide réfrigérant ayant été détendu par l’organe de détente en amont de l’entrée de l’échangeur de chaleur. Ainsi, bien que le flux d’air en provenance de l’extérieur du véhicule présente une température basse, on comprend que ledit flux d’air est destiné à céder ses calories au fluide réfrigérant afin de le réchauffer. Le fluide réfrigérant est réchauffé au fur et à mesure qu’il circule dans la pluralité de tubes, depuis le collecteur d’entrée jusqu’au collecteur de sortie. When the coolant loop is in a configuration where it heats the passenger compartment, the coolant entering the heat exchanger is colder than the flow of air passing through said heat exchanger, said coolant having been expanded by the expansion device upstream of the heat exchanger inlet. Thus, although the flow of air coming from outside the vehicle has a low temperature, it is understood that said flow of air is intended to transfer its calories to the refrigerant in order to heat it. The refrigerant fluid is heated as it circulates through the plurality of tubes, from the inlet manifold to the outlet manifold.
On tire alors avantage du premier collecteur d’entrée et du deuxième collecteur d’entrée, et notamment de leur disposition particulière à des extrémités opposées de la surface d’échange, en ce qu’ils permettent d’éviter des gradients de température importants d’une extrémité à l’autre de la surface d’échange de chaleur, la portion de fluide réfrigérant destiné à pénétrer dans la surface d’échange via le premier collecteur d’entrée étant destiné à circuler en sens opposé à celui de la circulation de la portion de fluide réfrigérant destiné à pénétrer dans la surface d’échange via le deuxième collecteur d’entrée. De manière plus précise, la circulation du fluide réfrigérant dans le premier circuit et la circulation du fluide réfrigérant dans le deuxième circuit sont dans des sens inversés, permettant une meilleure répartition du gradient de température du fluide réfrigérant dans la surface d’échange. La température de la surface d’échange est ainsi plus homogène, de telle sorte qu’on limite la formation de givre sur ladite surface d’échange de l’échangeur de chaleur. Advantage is then taken of the first inlet collector and the second inlet collector, and in particular of their particular arrangement at opposite ends of the exchange surface, in that they make it possible to avoid significant temperature gradients d one end to the other of the heat exchange surface, the portion of refrigerant intended to enter the exchange surface via the first inlet manifold being intended to circulate in the opposite direction to that of the circulation of the portion of refrigerant fluid intended to enter the exchange surface via the second inlet manifold. More precisely, the circulation of the refrigerant fluid in the first circuit and the circulation of the fluid refrigerant in the second circuit are in opposite directions, allowing a better distribution of the temperature gradient of the refrigerant fluid in the exchange surface. The temperature of the exchange surface is thus more homogeneous, so that the formation of frost on said exchange surface of the heat exchanger is limited.
Selon une caractéristique de l’invention, au moins un tube du premier circuit est disposé entre deux tubes du deuxième circuit le long de la direction d’empilement des tubes. According to a characteristic of the invention, at least one tube of the first circuit is arranged between two tubes of the second circuit along the stacking direction of the tubes.
On comprend que les tubes de la première partie de la pluralité de tubes et les tubes de la deuxième partie de la pluralité de tubes sont mélangés au sein de l’empilement des tubes formant la surface d’échange de chaleur. On permet ainsi une meilleure répartition de la température du fluide réfrigérant au sein de la surface d’échange de l’échangeur de chaleur. It is understood that the tubes of the first part of the plurality of tubes and the tubes of the second part of the plurality of tubes are mixed within the stack of tubes forming the heat exchange surface. This allows a better distribution of the temperature of the refrigerant fluid within the exchange surface of the heat exchanger.
Selon une caractéristique de l’invention, les tubes de la première partie de la pluralité de tubes sont disposés en alternance avec les tubes de la deuxième partie de la pluralité de tubes suivant la direction d’empilement des tubes. Dit autrement, un tube de la première partie de la pluralité de tubes est disposé entre deux tubes de la deuxième partie de la pluralité de tubes suivant la direction d’empilement, et inversement. According to a feature of the invention, the tubes of the first part of the plurality of tubes are arranged alternately with the tubes of the second part of the plurality of tubes in the stacking direction of the tubes. In other words, a tube from the first part of the plurality of tubes is placed between two tubes from the second part of the plurality of tubes in the stacking direction, and vice versa.
De manière alternative, au moins deux tubes de la première partie de la pluralité de tubes, successifs suivant la direction d’empilement des tubes, sont séparés l’un de l’autre suivant la direction d’empilement des tubes, par au moins deux tubes de la deuxième partie de la pluralité de tubes. Alternatively, at least two tubes of the first part of the plurality of tubes, successive along the stacking direction of the tubes, are separated from each other along the stacking direction of the tubes, by at least two tubes of the second part of the plurality of tubes.
Selon une caractéristique de l’invention, le premier collecteur de sortie est disposé à la deuxième extrémité de la surface d’échange de chaleur et le deuxième collecteur de sortie est disposé à la première extrémité de la surface d’échange de chaleur opposée à la deuxième extrémité le long de la direction d’allongement principal de la pluralité de tubes. According to one characteristic of the invention, the first outlet manifold is arranged at the second end of the heat exchange surface and the second outlet manifold is arranged at the first end of the heat exchange surface opposite the second end along the direction of main elongation of the plurality of tubes.
On comprend alors que le collecteur d’entrée et le collecteur de sortie du premier circuit, respectivement le collecteur d’entrée et le collecteur de sortie du deuxième circuit, sont à des extrémités opposées l’une de l’autre de la surface d’échange, suivant la direction d’allongement principal de la pluralité de tubes. Selon une caractéristique de l’invention, le premier collecteur d’entrée et le deuxième collecteur de sortie forment un ensemble disposé à la première extrémité de la surface d’échange, l’ensemble formé par le premier collecteur de sortie et le deuxième collecteur d’entrée étant disposé à la deuxième extrémité de la surface d’échange. It is then understood that the input collector and the output collector of the first circuit, respectively the input collector and the output collector of the second circuit, are at ends opposite each other of the surface of exchange, along the direction of main elongation of the plurality of tubes. According to one characteristic of the invention, the first input manifold and the second output manifold form an assembly disposed at the first end of the exchange surface, the assembly formed by the first output manifold and the second output manifold entry being disposed at the second end of the exchange surface.
Selon une caractéristique de l’invention, les collecteurs du premier circuit sont en regard l’un de l’autre suivant la direction d’allongement principal des tubes et les collecteurs du deuxième circuit sont en regard l’un de l’autre suivant la direction d’allongement principal des tubes. According to one characteristic of the invention, the collectors of the first circuit face each other along the main direction of elongation of the tubes and the collectors of the second circuit face each other along the direction of main elongation of the tubes.
Selon une caractéristique de l’invention, les collecteurs positionnés à une même extrémité de la surface d’échange de chaleur sont alignés le long d’une droite sécante à un plan principal de la surface d’échange de chaleur. De manière plus précise, les collecteurs positionnés à une même extrémité de la surface d’échange de chaleur sont alignés le long d’une droite perpendiculaire au plan principal de la surface d’échange de chaleur. According to a characteristic of the invention, the collectors positioned at the same end of the heat exchange surface are aligned along a line secant to a main plane of the heat exchange surface. More precisely, the collectors positioned at the same end of the heat exchange surface are aligned along a straight line perpendicular to the main plane of the heat exchange surface.
Selon une caractéristique de l’invention, l’échangeur de chaleur comprend une pluralité d’organes de dissipation thermique s’étendant suivant la direction d’allongement principal des tubes, chaque organe de dissipation thermique étant disposé entre au moins deux tubes de la pluralité de tubes suivant leur direction d’empilement. Les organes de dissipation thermique peuvent être par exemple et de manière non limitative, des ailettes, permettant d’augmenter, par conduction thermique entre les tubes et ces ailettes, la surface d’échange de calories pour le flux d’air traversant l’échangeur de chaleur. According to one characteristic of the invention, the heat exchanger comprises a plurality of heat dissipation members extending along the main direction of elongation of the tubes, each heat dissipation member being placed between at least two tubes of the plurality of tubes along their stacking direction. The heat dissipation members can be, for example and in a non-limiting way, fins, making it possible to increase, by heat conduction between the tubes and these fins, the calorie exchange surface for the air flow passing through the exchanger heat.
Selon une caractéristique de l’invention, le premier collecteur d’entrée et le deuxième collecteur d’entrée sont configurés pour être fluidiquement reliés de manière commune à un organe de détente de la première portion de la boucle de fluide réfrigérant. On comprend que l’embranchement formé sur la première portion de la boucle de fluide réfrigérant qui est relié à chacun des collecteurs d’entrée pour alimenter en quantité équivalente de fluide réfrigérant le premier circuit et le deuxième circuit, peut être disposé en aval de l’organe de détente, c’est- à-dire entre cet organe de détente et l’échangeur de chaleur, de sorte que les portions de fluide réfrigérant circulant dans chaque circuit soit détendu de manière homogène. According to one characteristic of the invention, the first inlet manifold and the second inlet manifold are configured to be fluidically connected in a common manner to an expansion member of the first portion of the refrigerant fluid loop. It is understood that the branch formed on the first portion of the refrigerant fluid loop which is connected to each of the inlet manifolds to supply an equivalent quantity of refrigerant fluid to the first circuit and the second circuit, can be arranged downstream of the expansion member, that is to say between this expansion member and the heat exchanger, so that the portions of refrigerant circulating in each circuit is evenly expanded.
L’invention porte également sur une boucle de fluide réfrigérant comprenant au moins un compresseur, au moins un échangeur thermique, au moins un échangeur de chaleur selon l’une quelconque des caractéristiques précédentes, une sortie du compresseur étant raccordée fluidiquement à l’échangeur de chaleur, au moins une sortie de l’échangeur de chaleur étant raccordé fluidiquement à l’échangeur thermique ou à une entrée du compresseur, et au moins un premier organe de détente est disposé entre l’échangeur de chaleur et l’échangeur thermique et au moins un deuxième organe de détente est disposé entre le compresseur et l’échangeur de chaleur. The invention also relates to a refrigerant fluid loop comprising at least one compressor, at least one heat exchanger, at least one heat exchanger according to any one of the preceding characteristics, an outlet of the compressor being fluidly connected to the heat, at least one outlet of the heat exchanger being fluidly connected to the heat exchanger or to an inlet of the compressor, and at least one first expansion member is arranged between the heat exchanger and the heat exchanger and to the at least one second expansion member is arranged between the compressor and the heat exchanger.
Selon une caractéristique de la boucle de fluide réfrigérant, celle-ci comprend au moins un canal d’entrée du fluide réfrigérant dans l’échangeur de chaleur et un canal de sortie du fluide réfrigérant de l’échangeur de chaleur, les collecteurs d’entrée de l’échangeur de chaleur étant fluidiquement reliés au canal d’entrée du fluide réfrigérant et les collecteurs de sortie de l’échangeur de chaleur étant fluidiquement reliés au canal de sortie du fluide réfrigérant. According to a feature of the refrigerant loop, the latter comprises at least one refrigerant inlet channel in the heat exchanger and an outlet channel for the refrigerant fluid from the heat exchanger, the inlet manifolds of the heat exchanger being fluidically connected to the coolant fluid inlet channel and the heat exchanger outlet manifolds being fluidically connected to the coolant fluid outlet channel.
On comprend par ailleurs que le canal d’entrée du fluide réfrigérant dans le premier collecteur d’entrée et dans le deuxième collecteur d’entrée est disposé en sortie de l’organe de détente présent sur la première portion de la boucle de fluide réfrigérant. Le canal de sortie, relié fluidiquement au premier collecteur de sortie et au deuxième collecteur de sortie, est fluidiquement relié au compresseur ou à l’échangeur thermique suivant la configuration d’utilisation de la boucle de fluide réfrigérant. It is also understood that the inlet channel for the coolant in the first inlet manifold and in the second inlet manifold is arranged at the outlet of the expansion device present on the first portion of the coolant loop. The outlet channel, fluidically connected to the first outlet manifold and to the second outlet manifold, is fluidically connected to the compressor or to the heat exchanger depending on the configuration of use of the refrigerant fluid loop.
D'autres caractéristiques, détails et avantages de l'invention ressortiront plus clairement à la lecture de la description donnée ci-après à titre indicatif en relation avec des dessins dans lesquels : Other characteristics, details and advantages of the invention will emerge more clearly on reading the description given below by way of indication in relation to the drawings in which:
[Fig i] est une vue schématique d’une boucle de fluide réfrigérant selon une première configuration ; [Fig i] is a schematic view of a refrigerant loop according to a first configuration;
[Fig 2] est une vue schématique de la boucle de fluide réfrigérant de la figure i selon une deuxième configuration ; [Fig 3] est une représentation schématique d’un échangeur de chaleur de la boucle de fluide réfrigérant des figures 1 et 2, comprenant un premier circuit et un deuxième circuit et une surface d’échange de chaleur comprenant une pluralité de tubes répartis en une première partie et une deuxième partie ; [Fig 2] is a schematic view of the refrigerant loop of Figure i according to a second configuration; [Fig 3] is a schematic representation of a heat exchanger of the refrigerant loop of Figures 1 and 2, comprising a first circuit and a second circuit and a heat exchange surface comprising a plurality of tubes distributed in a first part and a second part;
[Fig 4] est une vue en perspective d’un mode de réalisation de l’échangeur de chaleur de la figure 3, comprenant le premier circuit et le deuxième circuit et une surface d’échange de chaleur comprenant une pluralité de tubes répartis en une première partie et une deuxième partie ; [Fig 4] is a perspective view of an embodiment of the heat exchanger of Figure 3, comprising the first circuit and the second circuit and a heat exchange surface comprising a plurality of tubes distributed in a first part and a second part;
[Fig 5] est une vue rapprochée de la surface d’échange de chaleur illustrant plusieurs tubes voisins et plusieurs organes de dissipation thermique respectivement disposés entre deux tubes. [Fig 5] is a close-up view of the heat exchange surface illustrating several neighboring tubes and several heat dissipation devices respectively arranged between two tubes.
Il faut tout d’abord noter que si les figures exposent l’invention de manière détaillée pour sa mise en œuvre, ces figures peuvent bien entendu servir à mieux définir l’invention, le cas échéant. Il est également à noter que ces figures n’exposent que des exemples de réalisation de l’invention. Enfin, les mêmes repères désignent les mêmes éléments dans l'ensemble des figures. It should first be noted that if the figures expose the invention in detail for its implementation, these figures can of course be used to better define the invention, if necessary. It should also be noted that these figures only show exemplary embodiments of the invention. Finally, the same references designate the same elements in all the figures.
Les figures 1 et 2 illustrent une boucle de fluide réfrigérant 1 selon un aspect de l’invention destinée à équiper un véhicule, électrique ou hybride, afin de réchauffer ou refroidir un habitacle du véhicule, au moyen d’un premier flux d’air 101 dirigé vers l’habitacle du véhicule. Figures 1 and 2 illustrate a refrigerant fluid loop 1 according to one aspect of the invention intended to equip a vehicle, electric or hybrid, in order to heat or cool a passenger compartment of the vehicle, by means of a first flow of air 101 directed towards the passenger compartment of the vehicle.
La boucle de fluide réfrigérant 1 comprend au moins un échangeur de chaleur 2 spécifique de l’invention, et comprend ici, dans l’exemple illustré sur les figures 1 et 2, un compresseur 4, un échangeur thermique 6, un évaporateur 8 et au moins un organe de détente 10. L’échangeur de chaleur 2 est avantageusement disposé à l’avant du véhicule afin d’être traversé par un deuxième flux d’air 102 en provenance de l’extérieur du véhicule. The refrigerant loop 1 comprises at least one heat exchanger 2 specific to the invention, and here comprises, in the example illustrated in FIGS. 1 and 2, a compressor 4, a heat exchanger 6, an evaporator 8 and at least at least one expansion member 10. The heat exchanger 2 is advantageously arranged at the front of the vehicle in order to be crossed by a second flow of air 102 coming from outside the vehicle.
Dans une première configuration de la boucle de fluide réfrigérant 1, destinée à refroidir l’habitacle du véhicule et illustrée ici sur la figure 1, le fluide réfrigérant traverse l’échangeur de chaleur 2 au sein duquel il cède des calories au deuxième flux d’air 102 traversant ledit échangeur de chaleur 2, de telle sorte que le fluide réfrigérant sort de l’échangeur de chaleur 2 à l’état liquide alors qu’il est entré à l’état gazeux. Par la suite, le fluide réfrigérant est dirigé vers un premier organe de détente ioa de la boucle de fluide réfrigérant i, par exemple un détendeur, assurant la détente du fluide réfrigérant et l’abaissement de sa température. Ainsi, le fluide réfrigérant est plus froid en sortie du premier organe de détente ioa qu’en entrée. Suite à son passage par le premier organe de détente ioa, le fluide réfrigérant traverse l’évaporateur 8 et échange des calories avec le premier flux d’air loi traversant ledit évaporateur 8. De manière plus précise, l’évaporateur 8 s’intégre dans un boîtier d’une installation de chauffage du véhicule qui est configuré pour diriger le premier flux d’air loi qui traverse l’évaporateur vers l’habitacle du véhicule, et le fluide réfrigérant circulant dans l’évaporateur est plus froid que le premier flux d’air loi lorsque celui-ci travers l’évaporateur de sorte que le fluide réfrigérant est apte à capter les calories du premier flux d’air loi afin de le refroidir avant son entrée dans l’habitacle. Lors de l’échange de calories dans l’évaporateur 8, le fluide réfrigérant passe donc à l’état gazeux lorsqu’il capte les calories du premier flux d’air loi, notamment de par l’abaissement de son point de changement d’état par le premier organe de détente ioa. In a first configuration of the refrigerant fluid loop 1, intended to cool the passenger compartment of the vehicle and illustrated here in FIG. 1, the refrigerant fluid passes through the heat exchanger 2 within which it transfers calories to the second flow of air 102 passing through said heat exchanger 2, such that the refrigerant fluid leaves the heat exchanger 2 in the liquid state whereas it entered the gaseous state. Subsequently, the refrigerant is directed to a first organ of expansion ioa of the refrigerant loop i, for example an expansion valve, ensuring the expansion of the refrigerant fluid and the lowering of its temperature. Thus, the refrigerant fluid is colder at the outlet of the first expansion member ioa than at the inlet. Following its passage through the first expansion device ioa, the refrigerant fluid passes through the evaporator 8 and exchanges calories with the first law air flow passing through said evaporator 8. More precisely, the evaporator 8 is integrated into a casing of a heating installation of the vehicle which is configured to direct the first flow of law air which passes through the evaporator towards the passenger compartment of the vehicle, and the refrigerant fluid circulating in the evaporator is colder than the first flow law air flow when it passes through the evaporator so that the refrigerant fluid is able to capture the calories of the first law air flow in order to cool it before it enters the passenger compartment. During the exchange of calories in the evaporator 8, the refrigerant fluid therefore changes to the gaseous state when it captures the calories of the first law air flow, in particular by lowering its temperature change point. state by the first trigger member ioa.
Par la suite, en sortie d’évaporateur 8, le fluide réfrigérant sous forme gazeux est dirigé vers le compresseur 4 qui augmente la pression du fluide de réfrigérant et donc augmente sa température. Le fluide réfrigérant traverse ensuite l’échangeur thermique 6 sans effectuer d’échange de calories, ledit échangeur thermique 6 n’étant pas, dans cette configuration de la boucle de fluide réfrigérant 1, traversé par le premier flux d’air 101. En sortie de l’échangeur thermique 6, le fluide réfrigérant est dirigé vers un deuxième organe de détente 10b qui, dans cette configuration de la boucle de fluide réfrigérant 1, est inactif, le fluide réfrigérant étant dirigé vers l’échangeur de chaleur 2 en sortie du deuxième organe de détente 10b. Subsequently, at the outlet of the evaporator 8, the refrigerant fluid in gaseous form is directed to the compressor 4 which increases the pressure of the refrigerant fluid and therefore increases its temperature. The refrigerant fluid then passes through the heat exchanger 6 without carrying out any heat exchange, said heat exchanger 6 not being, in this configuration of the refrigerant fluid loop 1, crossed by the first air flow 101. At the outlet of the heat exchanger 6, the coolant is directed to a second expansion member 10b which, in this configuration of the coolant loop 1, is inactive, the coolant being directed to the heat exchanger 2 at the outlet of the second expansion device 10b.
Dans une deuxième configuration de la boucle de fluide réfrigérant 1, destinée à chauffer l’habitacle du véhicule et illustrée ici sur la figure 2, le fluide réfrigérant traverse le compresseur 4 à l’état gazeux afin que ce dernier augmente la pression et la température du fluide réfrigérant. Par la suite, le fluide réfrigérant traverse l’échangeur thermique 6 au sein duquel il échange des calories avec le premier flux d’air 101 qui dans cette configuration traverse l’échangeur thermique 6 avant d’être dirigé vers l’habitacle du véhicule. De manière plus précise, le fluide réfrigérant cède ces calories au premier flux d’air 101, alors plus froid, afin que ledit premier flux d’air loi soit plus chaud après avoir traversé l’échangeur thermique 6 de sorte à réchauffer l’habitacle du véhicule. In a second configuration of the refrigerant loop 1, intended to heat the passenger compartment of the vehicle and illustrated here in FIG. 2, the refrigerant passes through the compressor 4 in the gaseous state so that the latter increases the pressure and the temperature refrigerant fluid. Subsequently, the refrigerant passes through the heat exchanger 6 within which it exchanges calories with the first air flow 101 which in this configuration passes through the heat exchanger 6 before being directed towards the passenger compartment of the vehicle. More precisely, the refrigerant transfers these calories to the first air flow 101, then colder, so that said first law air flow is hotter after passing through the heat exchanger 6 so as to heat the vehicle interior.
En sortie d’échangeur thermique 6, le fluide réfrigérant est devenu liquide mais est plus froid qu’en entrée d’échangeur thermique 6 et il est amené à traverser le deuxième organe de détente lob afin que ce dernier abaisse encore la pression et la température du fluide réfrigérant. Par la suite le fluide réfrigérant traverse l’échangeur de chaleur 2 au sein duquel il échange des calories avec le deuxième flux d’air 102 le traversant. De manière plus précise, le deuxième flux d’air 102 est plus chaud que le fluide réfrigérant, et le fluide réfrigérant capte donc des calories dudit deuxième flux d’air 102 lors de son passage dans l’échangeur de chaleur 2 et ressort de ce dernier à l’état gazeux. Par la suite le fluide réfrigérant, à l’état gazeux, est redirigé vers le compresseur 4. At the outlet of heat exchanger 6, the refrigerant has become liquid but is colder than at the inlet of heat exchanger 6 and it is caused to pass through the second expansion device lob so that the latter further lowers the pressure and the temperature. refrigerant fluid. Subsequently, the refrigerant passes through the heat exchanger 2 in which it exchanges calories with the second air flow 102 passing through it. More precisely, the second air flow 102 is hotter than the refrigerant fluid, and the refrigerant fluid therefore picks up calories from said second air flow 102 during its passage through the heat exchanger 2 and comes out of this last in a gaseous state. Subsequently, the refrigerant, in gaseous state, is redirected to compressor 4.
On comprend par ailleurs que lors de l’utilisation de la boucle de fluide réfrigérant 1 dans la deuxième configuration, qui réchauffe l’habitacle du véhicule, le fluide réfrigérant froid qui traverse l’échangeur de chaleur 2 capte des calories du deuxième flux d’air 102 en provenance de l’extérieur du véhicule, de telle sorte que la température du fluide réfrigérant augmente à mesure que celui-ci progresse dans l’échangeur de chaleur 2 depuis un collecteur d’entrée vers un collecteur de sortie. De plus, il convient de considérer que lors de l’utilisation de la boucle de fluide réfrigérant 1 dans la deuxième configuration qui réchauffe l’habitacle, c’est- à-dire en période hivernale, le deuxième flux d’air 102 est à une température basse, de sorte que la température du fluide réfrigérant peut présenter une température négative en entrée de l’échangeur de chaleur et la température des composants de cet échangeur de chaleur est particulièrement froide, susceptible de créer du givre si des gouttelettes de condensation du deuxième flux d’air se forme en surface de l’échangeur de chaleur. It is also understood that during the use of the refrigerant loop 1 in the second configuration, which heats the passenger compartment of the vehicle, the cold refrigerant which passes through the heat exchanger 2 captures calories from the second flow of air 102 from outside the vehicle, so that the temperature of the refrigerant increases as it progresses through the heat exchanger 2 from an inlet manifold to an outlet manifold. In addition, it should be considered that when using the refrigerant fluid loop 1 in the second configuration which heats the passenger compartment, that is to say in the winter period, the second air flow 102 is at a low temperature, so that the temperature of the refrigerant fluid may present a negative temperature at the inlet of the heat exchanger and the temperature of the components of this heat exchanger is particularly cold, liable to create frost if droplets of condensation from the second air flow is formed on the surface of the heat exchanger.
L’échangeur de chaleur 2 selon l’invention, particulièrement visible aux figures 3 à 5, comprend une surface d’échange 12 de chaleur, qui s’étend dans un plan principal 14 longitudinal L et vertical V, et qui est destinée à être traversée par le deuxième flux d’air 102 en provenance de l’extérieur du véhicule. L’échangeur de chaleur 2 comprend également au moins un collecteur d’entrée 16 et au moins un collecteur de sortie 18 du fluide réfrigérant reliés fluidiquement à la surface d’échange 12 de manière à permettre respectivement l’entrée du fluide réfrigérant dans la surface d’échange et la sortie du fluide réfrigérant de cette surface d’échange. The heat exchanger 2 according to the invention, particularly visible in Figures 3 to 5, comprises a heat exchange surface 12, which extends in a main plane 14 longitudinal L and vertical V, and which is intended to be crossed by the second air flow 102 from outside the vehicle. The heat exchanger 2 also comprises at least one inlet manifold 16 and at least one outlet manifold 18 of the refrigerant fluid connected to the surface exchange 12 so as to respectively allow the entry of the refrigerant into the exchange surface and the exit of the refrigerant from this exchange surface.
La surface d’échange 12 de chaleur comprend une pluralité de tubes 20 empilés le long d’une direction d’empilement E, ici verticale V, et au sein de laquelle circule le fluide réfrigérant. De manière plus précise, la pluralité de tubes 20 est configurée pour canaliser le fluide réfrigérant entre l’au moins un collecteur d’entrée 16 et l’au moins un collecteur de sortie 18 le long d’une direction d’allongement principal A des tubes 20, ici longitudinale L. The heat exchange surface 12 comprises a plurality of tubes 20 stacked along a stacking direction E, here vertical V, and within which the refrigerant fluid circulates. More specifically, the plurality of tubes 20 is configured to channel the refrigerant fluid between the at least one inlet manifold 16 and the at least one outlet manifold 18 along a main elongation direction A of the tubes 20, here longitudinal L.
La surface d’échange 12 de l’échangeur de chaleur 2 comprend par ailleurs une pluralité d’organes de dissipation thermique 22, visible à la figure 5. Chacun de ces organes de dissipation thermique 22 s’étend parallèlement à la direction d’allongement principal A des tubes 20, depuis l’au moins un collecteur d’entrée 16 jusqu’à l’au moins un collecteur de sortie 18. Chacun des organes de dissipation thermique 22 s’étend entre deux tubes 20 voisins de la pluralité de tubes 20 et permet d’augmenter la surface de contact pour le deuxième flux d’air traversant la surface d’échange 12, de manière à augmenter les performances d’échange de chaleur. Selon un exemple de l’invention, la pluralité d’organes de dissipation thermique 22 peut prendre la forme d’intercalaires ou encore d’ailettes. The exchange surface 12 of the heat exchanger 2 also comprises a plurality of heat dissipation members 22, visible in FIG. 5. Each of these heat dissipation members 22 extends parallel to the direction of elongation main A of the tubes 20, from the at least one inlet manifold 16 to the at least one outlet manifold 18. Each of the heat dissipation members 22 extends between two neighboring tubes 20 of the plurality of tubes 20 and makes it possible to increase the contact surface for the second air flow passing through the exchange surface 12, so as to increase the heat exchange performance. According to an example of the invention, the plurality of heat dissipation members 22 can take the form of spacers or fins.
Selon l’invention, l’échangeur de chaleur 2 comprend au moins un premier circuit de fluide réfrigérant 24 et un deuxième circuit de fluide réfrigérant 26, visibles aux figures 3 et 4. According to the invention, the heat exchanger 2 comprises at least a first refrigerant circuit 24 and a second refrigerant circuit 26, visible in Figures 3 and 4.
Le premier circuit de fluide réfrigérant 24 comporte notamment une première partie 28a de la pluralité de tubes 20, ainsi qu’un premier collecteur d’entrée 16a et un premier collecteur de sortie 18a qui sont fluidiquement reliés à la première partie 28a de la pluralité de tubes 20. On comprend que le premier collecteur d’entrée 16a permet de distribuer le fluide réfrigérant dans chacun des tubes de la première partie 28a, tandis que le premier collecteur de sortie 18a permet d’évacuer le fluide réfrigérant une fois qu’il a circulé à travers les tubes de la première partie 28a. The first refrigerant circuit 24 comprises in particular a first part 28a of the plurality of tubes 20, as well as a first inlet manifold 16a and a first outlet manifold 18a which are fluidically connected to the first part 28a of the plurality of tubes 20. It is understood that the first inlet manifold 16a makes it possible to distribute the refrigerant fluid in each of the tubes of the first part 28a, while the first outlet manifold 18a makes it possible to evacuate the refrigerant fluid once it has circulated through the tubes of the first part 28a.
De manière plus précise, le premier collecteur d’entrée 16a est fluidiquement relié à une première portion 30a de la boucle de fluide réfrigérant 1, visible aux figures 1 et 2, agencée entre l’échangeur thermique 6, ici sous forme de condenseur, et l’échangeur de chaleur, et comportant le deuxième organe de détente lob, évoqué précédemment. Par ailleurs le premier collecteur de sortie 18a est fluidiquement relié à une deuxième portion 30b de la boucle de fluide réfrigérant 1, reliée à l’évaporateur 8 ou au compresseur 4 selon la configuration de la boucle de régulation thermique. More specifically, the first inlet manifold 16a is fluidically connected to a first portion 30a of the refrigerant fluid loop 1, visible in Figures 1 and 2, arranged between the heat exchanger 6, here in the form of a condenser, and the heat exchanger, and comprising the second expansion member lob, mentioned above. Furthermore, the first outlet manifold 18a is fluidically connected to a second portion 30b of the refrigerant fluid loop 1, connected to the evaporator 8 or to the compressor 4 depending on the configuration of the thermal regulation loop.
Le deuxième circuit de fluide réfrigérant 26 comporte une deuxième partie 28b de la pluralité de tubes 20 de fluide réfrigérant, ainsi qu’un deuxième collecteur d’entrée 16b et un deuxième collecteur de sortie 18b qui sont fluidiquement reliés à la deuxième partie 28b de la pluralité de tubes 20. Conformément à ce qui a été décrit précédemment, le deuxième collecteur d’entrée 16b permet de distribuer le fluide réfrigérant dans chacun des tubes de la deuxième partie 28b, tandis que le deuxième collecteur de sortie 18b permet d’évacuer le fluide réfrigérant une fois qu’il a circulé à travers les tubes de la deuxième partie 28b. The second refrigerant circuit 26 comprises a second part 28b of the plurality of tubes 20 of refrigerant fluid, as well as a second inlet manifold 16b and a second outlet manifold 18b which are fluidly connected to the second part 28b of the plurality of tubes 20. In accordance with what has been described previously, the second inlet manifold 16b makes it possible to distribute the refrigerant fluid in each of the tubes of the second part 28b, while the second outlet manifold 18b makes it possible to evacuate the refrigerant fluid once it has circulated through the tubes of the second part 28b.
Le deuxième collecteur d’entrée 16b est fluidiquement relié à la première portion 30a de la boucle de fluide réfrigérant 1 précédemment décrite et visible aux figures 1 et 2, tandis que le deuxième collecteur de sortie 18b est fluidiquement relié à la deuxième portion 30b de la boucle de fluide réfrigérant 1. The second inlet manifold 16b is fluidically connected to the first portion 30a of the refrigerant fluid loop 1 previously described and visible in Figures 1 and 2, while the second outlet manifold 18b is fluidically connected to the second portion 30b of the refrigerant loop 1.
La première partie 28a de la pluralité de tubes 20 et la deuxième partie 28b de la pluralité de tubes 20 sont fluidiquement distinctes l’une de l’autre. Le premier collecteur d’entrée 16a et le deuxième collecteur d’entrée 16b étant configurés pour être fluidiquement reliés à la même première portion 30a de la boucle de fluide réfrigérant, on comprend que cette première portion comporte un embranchement à deux branches sur lesquelles sont raccordées le premier collecteur d’entrée 16 a et le deuxième collecteur d’entrée 16b. Le fluide réfrigérant circulant dans la première portion 30a de la boucle de fluide réfrigérant est scindé au passage de cet embranchement en deux portions de flux circulant l’une dans le premier circuit via le premier collecteur d’entrée et l’autre dans le deuxième circuit via le deuxième collecteur d’entrée. The first part 28a of the plurality of tubes 20 and the second part 28b of the plurality of tubes 20 are fluidically distinct from each other. The first inlet manifold 16a and the second inlet manifold 16b being configured to be fluidically connected to the same first portion 30a of the refrigerant loop, it is understood that this first portion comprises a branch with two branches to which are connected the first input collector 16a and the second input collector 16b. The refrigerant fluid circulating in the first portion 30a of the refrigerant fluid loop is split on passing this branch into two flow portions circulating, one in the first circuit via the first inlet manifold and the other in the second circuit. via the second input collector.
Le premier collecteur d’entrée 16a et le deuxième collecteur d’entrée 16b sont configurés pour être fluidiquement reliés de manière commune au deuxième organe de détente de la boucle de fluide réfrigérant. De manière plus précise, on définit un canal d’entrée 32 du fluide réfrigérant dans l’échangeur de chaleur 2, visible à la figure 3, et un canal de sortie 34 du fluide réfrigérant de l’échangeur de chaleur 2. Les collecteurs d’entrée 16a, 16b sont alors fluidiquement reliés au canal d’entrée 32 du fluide réfrigérant tandis que les collecteurs de sortie 18a, 18b sont fluidiquement reliés au canal de sortie 34 du fluide réfrigérant. En d’autres termes, le canal d’entrée 32 du fluide réfrigérant s’étend entre le deuxième organe de détente 10b et les collecteurs d’entrée 16a, 16b, tandis que le canal de sortie 34 s’étend entre les collecteurs de sortie 18a, 18b et le compresseur 4 ou l’évaporateur 8 suivant la configuration de la boucle de fluide réfrigérant 1. The first inlet manifold 16a and the second inlet manifold 16b are configured to be fluidically connected in a common manner to the second expansion device of the refrigerant fluid loop. More precisely, we defines an inlet channel 32 for the coolant in the heat exchanger 2, visible in FIG. 3, and an outlet channel 34 for the coolant in the heat exchanger 2. The inlet manifolds 16a, 16b are then fluidly connected to the inlet channel 32 of the refrigerant fluid while the outlet manifolds 18a, 18b are fluidically connected to the outlet channel 34 of the refrigerant fluid. In other words, the inlet channel 32 of the refrigerant fluid extends between the second expansion member 10b and the inlet manifolds 16a, 16b, while the outlet channel 34 extends between the outlet manifolds 18a, 18b and the compressor 4 or the evaporator 8 depending on the configuration of the refrigerant loop 1.
Tel que cela est particulièrement visible aux figures 3 et 4, le premier collecteur d’entrée 16a et le deuxième collecteur d’entrée 16b sont disposés à l’opposé l’un de l’autre suivant la direction d’allongement principal A des tubes 20. De manière plus précise, on définit une première extrémité 36a de la surface d’échange 12 et une deuxième extrémité 36b de la surface d’échange 12, opposées l’une de l’autre suivant la direction d’allongement principal A desdits tubes 20, et le premier collecteur d’entrée 16a est disposé à la première extrémité 36a de la surface d’échange 12 tandis que le deuxième collecteur d’entrée 16b est disposé à la deuxième extrémité 36b de la surface d’échange 12. As is particularly visible in Figures 3 and 4, the first inlet manifold 16a and the second inlet manifold 16b are arranged opposite one another along the main direction of elongation A of the tubes 20. More specifically, a first end 36a of the exchange surface 12 and a second end 36b of the exchange surface 12 are defined, opposite each other along the main direction of elongation A of said tubes 20, and the first inlet manifold 16a is arranged at the first end 36a of the exchange surface 12 while the second inlet manifold 16b is arranged at the second end 36b of the exchange surface 12.
De manière analogue, le premier collecteur de sortie 18a est disposé à la deuxième extrémité 36b de la surface d’échange 12 de chaleur tandis que le deuxième collecteur de sortie 18b est disposé à la première extrémité 36a de la surface d’échange 12. On comprend alors que le premier collecteur d’entrée 16a et le deuxième collecteur de sortie 18b forment un ensemble disposé à la première extrémité 36a de la surface d’échange 12 et qu’un autre ensemble formé par le premier collecteur de sortie 18a et le deuxième collecteur d’entrée 16b est disposé à la deuxième extrémité 36b de la surface d’échange 12. Similarly, the first outlet manifold 18a is arranged at the second end 36b of the heat exchange surface 12 while the second outlet manifold 18b is arranged at the first end 36a of the exchange surface 12. then comprises that the first inlet collector 16a and the second outlet collector 18b form a set arranged at the first end 36a of the exchange surface 12 and that another set formed by the first outlet collector 18a and the second inlet collector 16b is arranged at the second end 36b of the exchange surface 12.
Selon l’exemple de l’invention de la figure 4, le premier collecteur d’entrée 16a et le premier collecteur de sortie 18a du premier circuit 24 sont en regard l’un de l’autre suivant la direction d’allongement principal A des tubes 20. De même, le deuxième collecteur d’entrée 16b et le deuxième collecteur de sortie 18b du deuxième circuit 26 sont en regard l’un de l’autre suivant la direction d’allongement principal A des tubes 20. Par ailleurs, et toujours selon un exemple de l’invention, le premier collecteur d’entrée 16a et le deuxième collecteur de sortie 18b positionnés à la première extrémité 36a de la surface d’échange 12 sont alignés le long d’une droite I sécante au plan principal 14 de la surface d’échange 12, ladite droite I étant par exemple perpendiculaire audit plan principal 14. Il convient de considérer que cette caractéristique s’applique mutatis mutandis au premier collecteur de sortie 18a et au deuxième collecteur d’entrée 16b positionnés à la deuxième extrémité 36b de la surface d’échange 12. According to the example of the invention in FIG. 4, the first input collector 16a and the first output collector 18a of the first circuit 24 face each other in the direction of main elongation A of the tubes 20. Similarly, the second inlet manifold 16b and the second outlet manifold 18b of the second circuit 26 face each other in the direction of main elongation A of the tubes 20. Furthermore, and still according to an example of the invention, the first inlet collector 16a and the second outlet collector 18b positioned at the first end 36a of the exchange surface 12 are aligned along a line I secant to the main plane 14 of the exchange surface 12, said line I being for example perpendicular to said main plane 14. It should be considered that this characteristic applies mutatis mutandis to the first outlet collector 18a and to the second inlet collector 16b positioned at the second end 36b of the exchange surface 12.
D’autres agencements des collecteurs d’entrée et de sortie peuvent être mis en œuvre selon l’invention, dès lors que deux collecteurs d’entrée permettant deux zones d’alimentation distinctes d’un même fluide réfrigérant sont agencés à des extrémités opposés de la surface d’échange de chaleur. A titre d’exemple ici non représentés, les collecteurs d’entrée et de sortie formant un ensemble disposé à une extrémité de la surface d’échange de chaleur peuvent être agencés de manière à être alignés dans la direction d’allongement principal. Other arrangements of the inlet and outlet manifolds can be implemented according to the invention, since two inlet manifolds allowing two distinct supply zones of the same refrigerant are arranged at opposite ends of the heat exchange surface. By way of example not shown here, the inlet and outlet collectors forming an assembly arranged at one end of the heat exchange surface can be arranged so as to be aligned in the direction of main elongation.
On comprend de ce qui précède, que la circulation du fluide réfrigérant au sein de l’échangeur de chaleur 2, et plus particulièrement au sein de la surface d’échange 12, est croisée. Dit autrement, lors du fonctionnement de la boucle de fluide réfrigérant, le fluide réfrigérant est amené à circuler dans la pluralité de tubes 20 de la surface d’échange 12 de l’échangeur de chaleur 2 selon deux sens de circulation opposés. Plus précisément, un premier sens Si de circulation correspond à une circulation depuis la première extrémité 36a de la surface d’échange 12 vers la deuxième extrémité 36b de la surface d’échange 12, c’est-à- dire du premier collecteur d’entrée 16a vers le premier collecteur de sortie 18a, tandis qu’un deuxième sens S2 de circulation correspond à un circulation depuis la deuxième extrémité 36b de la surface d’échange 12 vers la première extrémité 36b de la surface d’échange 12, c’est-à-dire du deuxième collecteur d’entrée 16b vers le deuxième collecteur de sortie 18b. It is understood from the above that the circulation of the refrigerant fluid within the heat exchanger 2, and more particularly within the exchange surface 12, is crossed. In other words, during the operation of the refrigerant fluid loop, the refrigerant fluid is caused to circulate in the plurality of tubes 20 of the exchange surface 12 of the heat exchanger 2 according to two opposite directions of circulation. More precisely, a first direction Si of circulation corresponds to a circulation from the first end 36a of the exchange surface 12 towards the second end 36b of the exchange surface 12, that is to say from the first collector of inlet 16a to the first outlet collector 18a, while a second direction S2 of circulation corresponds to a circulation from the second end 36b of the exchange surface 12 towards the first end 36b of the exchange surface 12, it that is to say from the second input collector 16b to the second output collector 18b.
On comprend par ailleurs que le premier collecteur d’entrée 16a et le premier collecteur de sortie 18a sont reliés fluidiquement uniquement au canal d’entrée 32, à la première partie 28a de la pluralité de tubes 20 et au canal de sortie 34, tandis que le deuxième collecteur d’entrée 16b et le deuxième collecteur de sortie 18b sont reliés fluidiquement uniquement au canal d’entrée 32, à la deuxième partie 28b de la pluralité de tubes 20 et au canal de sortie 34, le canal d’entrée 32 et le canal de sortie 34 étant commun à ces portions de fluide réfrigérant amenées à circuler dans des sens opposés au sein de la surface d’échange de chaleur. It is further understood that the first inlet manifold 16a and the first outlet manifold 18a are fluidly connected only to the inlet channel 32, to the first part 28a of the plurality of tubes 20 and to the outlet channel 34, while the second inlet manifold 16b and the second outlet manifold 18b are fluidically connected only to the inlet channel 32, to the second part 28b of the plurality of tubes 20 and to the outlet channel 34, the inlet channel 32 and the outlet channel 34 being common to these portions of refrigerant fluid caused to circulate in opposite directions within the heat exchange surface.
Une telle circulation croisée du fluide réfrigérant au sein de l’échangeur de chaleur 2 permet avantageusement d’obtenir une meilleure répartition de la température au sein de la surface d’échange 12. En d’autres termes, le gradient de température du fluide réfrigérant circulant au sein du premier circuit 24 est opposé au gradient de température du fluide réfrigérant circulant au sein du deuxième circuit 26, limitant ainsi la concentration de température basse ou négative dans une zone localisée de la surface d’échange 12, ce qui permet de limiter la formation de givre sur ladite surface d’échange 12 de chaleur. Such cross-circulation of the refrigerant fluid within the heat exchanger 2 advantageously makes it possible to obtain a better temperature distribution within the exchange surface 12. In other words, the temperature gradient of the refrigerant fluid circulating within the first circuit 24 is opposed to the temperature gradient of the refrigerant fluid circulating within the second circuit 26, thus limiting the concentration of low or negative temperature in a localized zone of the exchange surface 12, which makes it possible to limit the formation of frost on said heat exchange surface 12.
Tel qu’illustré schématiquement sur la figure 3, au moins un des tubes 20 du premier circuit 24 est disposé entre deux tubes 20 du deuxième circuit 26 le long de la direction d’empilement E des tubes 20, et/ou au moins un des tubes 20 du deuxième circuit 26 est disposé entre deux tubes 20 du premier circuit 24 le long de la direction d’empilement E des tubes 20. Une telle disposition des tubes 20 du premier circuit 24 et des tubes 20 du deuxième circuit 26, mélangés au sein de l’empilement de tubes, est avantageuse pour mieux homogénéiser la température des composants de l’échangeur thermique lorsque le fluide réfrigérant circule au sein de la surface d’échange de chaleur. As illustrated schematically in FIG. 3, at least one of the tubes 20 of the first circuit 24 is arranged between two tubes 20 of the second circuit 26 along the stacking direction E of the tubes 20, and/or at least one of the tubes 20 of the second circuit 26 is arranged between two tubes 20 of the first circuit 24 along the stacking direction E of the tubes 20. Such an arrangement of the tubes 20 of the first circuit 24 and the tubes 20 of the second circuit 26, mixed with within the stack of tubes, is advantageous for better homogenizing the temperature of the components of the heat exchanger when the refrigerant fluid circulates within the heat exchange surface.
Plus particulièrement, et tel que cela est illustré sur la figure 4 et la figure 5, les tubes 20 de la première partie 28a, c’est-à-dire du premier circuit 24, peuvent être avantageusement disposés en alternance avec les tubes 20 de la deuxième partie 28b, c’est-à-dire du deuxième circuit 26, suivant la direction d’empilement E des tubes 20, dans une configuration où un tube de la première partie 28a s’étend dans l’empilement des tubes juste après un tube de la deuxième partie 28b, et inversement. More particularly, and as illustrated in FIG. 4 and FIG. 5, the tubes 20 of the first part 28a, that is to say of the first circuit 24, can advantageously be arranged alternately with the tubes 20 of the second part 28b, that is to say of the second circuit 26, following the stacking direction E of the tubes 20, in a configuration where a tube of the first part 28a extends into the stack of tubes just after a tube of the second part 28b, and vice versa.
De manière alternative, les première et deuxième parties de la pluralité de tubes peuvent être agencés avec au moins deux tubes 20 de la première partie 28a de la pluralité de tubes 20, successifs suivant la direction d’empilement E des tubes 20, qui sont séparés l’un de l’autre suivant la direction d’empilement E des tubes 20, par au moins deux tubes 20 de la deuxième partie 28b de la pluralité de tubes 20. On peut ainsi prévoir que la surface d’échange de chaleur est particulière en ce que plusieurs tubes associés à un circuit soient voisins au sein de l’empilement de tubes pour former des ensembles de tubes régulièrement répartis et séparés par un unique tube associé à l’autre circuit, de sorte que l’on augmente ainsi la proportion d’un circuit par rapport à l’autre au sein de la surface d’échange de chaleur. A titre d’exemple non limitatif, on peut prévoir que le premier circuit représente deux tiers de la superficie de la surface d’échange de chaleur et que le deuxième circuit représente un tiers de la superficie de la surface d’échange de chaleur, et il convient pour cela de prévoir un motif répétable dans l’empilement de tubes dans lequel deux tubes successifs associés au premier circuit suivent un unique tube associé au deuxième circuit. Alternatively, the first and second parts of the plurality of tubes can be arranged with at least two tubes 20 of the first part 28a of the plurality of tubes 20, successive along the stacking direction E of the tubes 20, which are separated from each other along the stacking direction E of the tubes 20, by at least two tubes 20 of the second part 28b of the plurality of tubes 20. It is thus possible to provide that the heat exchange surface is particular in that several tubes associated with a circuit are adjacent within the stack of tubes to form sets of tubes regularly distributed and separated by a single tube associated with the another circuit, so that the proportion of one circuit relative to the other within the heat exchange surface is thus increased. By way of non-limiting example, provision may be made for the first circuit to represent two thirds of the surface area of the heat exchange surface and for the second circuit to represent one third of the surface area of the heat exchange surface, and it is therefore necessary to provide a repeatable pattern in the stack of tubes in which two successive tubes associated with the first circuit follow a single tube associated with the second circuit.
L’invention telle qu’elle vient d’être décrite ne saurait toutefois se limiter aux moyens et configurations exclusivement décrits et illustrés, et s’applique également à tous moyens ou configurations, équivalents et à toute combinaison de tels moyens ou configurations. The invention as it has just been described cannot however be limited to the means and configurations exclusively described and illustrated, and also applies to all means or configurations, equivalents and to any combination of such means or configurations.

Claims

REVENDICATIONS
1. Echangeur de chaleur (2) pour une boucle de fluide réfrigérant (1), comprenant une surface d’échange (12) de chaleur, la surface d’échange (12) de chaleur comprenant une pluralité de tubes (20), l’échangeur de chaleur (2) étant caractérisé en ce qu’il comprend au moins un premier circuit (24) de fluide réfrigérant constitué d’une première partie (28a) de la pluralité de tubes (20), d’un premier collecteur d’entrée (16a) fluidiquement connecté à la première partie (28a) de la pluralité de tubes (20) et d’un premier collecteur de sortie (18a) fluidiquement connecté à la première partie (28a) de la pluralité de tubes (20), l’échangeur de chaleur (2) comprenant au moins un deuxième circuit (26) de fluide réfrigérant constitué d’une deuxième partie (28b) de la pluralité de tubes (20), d’un deuxième collecteur d’entrée (16b) fluidiquement connecté à la deuxième partie (28b) de la pluralité de tubes (20) et d’un deuxième collecteur de sortie (18b) fluidiquement connecté à la deuxième partie (28b) de la pluralité de tubes (20), la première partie (28a) de la pluralité de tubes (20) et la deuxième partie (28b) de la pluralité de tubes (20) étant fluidiquement distinctes l’une de l’autre, le premier collecteur d’entrée (16a) étant disposé à une première extrémité (36a) de la surface d’échange (12) de chaleur et le deuxième collecteur d’entrée (16b) étant disposé à une deuxième extrémité (36b) de la surface d’échange (12) de chaleur opposée à la première extrémité (36a). 1. Heat exchanger (2) for a refrigerant loop (1), comprising a heat exchange surface (12), the heat exchange surface (12) comprising a plurality of tubes (20), the heat exchanger (2) being characterized in that it comprises at least a first circuit (24) of refrigerant fluid consisting of a first part (28a) of the plurality of tubes (20), a first collector of inlet (16a) fluidly connected to the first part (28a) of the plurality of tubes (20) and a first outlet manifold (18a) fluidly connected to the first part (28a) of the plurality of tubes (20) , the heat exchanger (2) comprising at least a second refrigerant fluid circuit (26) consisting of a second part (28b) of the plurality of tubes (20), a second inlet manifold (16b) fluidly connected to the second part (28b) of the plurality of tubes (20) and a second outlet manifold (18b) fluidly connected to the second part e (28b) of the plurality of tubes (20), the first part (28a) of the plurality of tubes (20) and the second part (28b) of the plurality of tubes (20) being fluidly distinct from one another, the first inlet manifold (16a) being disposed at a first end (36a) of the heat exchange surface (12) and the second inlet manifold (16b) being disposed at a second end (36b ) of the heat exchange surface (12) opposite the first end (36a).
2. Echangeur de chaleur (2) selon la revendication précédente, dans lequel au moins un tube (20) du premier circuit (24) est disposé entre deux tubes (20) du deuxième circuit (26) le long de la direction d’empilement (E) des tubes (20). 2. Heat exchanger (2) according to the preceding claim, wherein at least one tube (20) of the first circuit (24) is disposed between two tubes (20) of the second circuit (26) along the stacking direction (E) tubes (20).
3. Echangeur de chaleur (2) selon l’une quelconques des revendications précédentes, dans lequel les tubes (20) de la première partie (28a) de la pluralité de tubes (20) sont disposés en alternance avec les tubes (20) de la deuxième partie (28b) de la pluralité de tubes (20) suivant la direction d’empilement (E) des tubes (20). 3. Heat exchanger (2) according to any one of the preceding claims, in which the tubes (20) of the first part (28a) of the plurality of tubes (20) are arranged alternately with the tubes (20) of the second part (28b) of the plurality of tubes (20) following the stacking direction (E) of the tubes (20).
4. Echangeur de chaleur (2) selon l’une quelconque des revendication 1 ou 2, dans lequel au moins deux tubes (20) de la première partie (28a) de la pluralité de tubes (20), successifs suivant la direction d’empilement (E) des tubes (20), sont séparés l’un de l’autre suivant la direction d’empilement (E) des tubes (20), par au moins deux tubes (20) de la deuxième partie (28b) de la pluralité de tubes (20). 4. Heat exchanger (2) according to any one of claims 1 or 2, wherein at least two tubes (20) of the first part (28a) of the plurality of tubes (20), successive in the direction of stack (E) of the tubes (20), are separated from each other along the stacking direction (E) of the tubes (20), by at least two tubes (20) of the second part (28b) of the plurality of tubes (20).
5. Echangeur de chaleur (2) selon l’une quelconque des revendications précédentes, dans lequel le premier collecteur de sortie (18a) est disposé à la première extrémité (36a) de la surface d’échange (12) de chaleur et le deuxième collecteur de sortie (18b) est disposé à la deuxième extrémité (36b) de la surface d’échange (12) de chaleur opposée à la première extrémité (36a) le long de la direction d’allongement principal (A) de la pluralité de tubes (20). 5. Heat exchanger (2) according to any one of the preceding claims, in which the first outlet manifold (18a) is arranged at the first end (36a) of the heat exchange surface (12) and the second outlet manifold (18b) is disposed at the second end (36b) of the heat exchange surface (12) opposite the first end (36a) along the main elongation direction (A) of the plurality of tubing (20).
6. Echangeur de chaleur (2) selon l’une quelconque des revendications précédentes, dans lequel le premier collecteur d’entrée (16a) et le deuxième collecteur de sortie (18b) forment un ensemble disposé à la première extrémité (36a) de la surface d’échange (12), l’ensemble formé par le premier collecteur de sortie (18a) et le deuxième collecteur d’entrée (16b) étant disposé à la deuxième extrémité (36b) de la surface d’échange (12). 6. Heat exchanger (2) according to any one of the preceding claims, in which the first inlet collector (16a) and the second outlet collector (18b) form an assembly disposed at the first end (36a) of the exchange surface (12), the assembly formed by the first outlet collector (18a) and the second inlet collector (16b) being arranged at the second end (36b) of the exchange surface (12).
7. Echangeur de chaleur (2) selon la revendication précédente, dans lequel les collecteurs (16a, 18a) du premier circuit (24) sont en regard l’un de l’autre suivant la direction d’allongement principal (A) des tubes (20) et les collecteurs (16b, 18b) du deuxième circuit (26) sont en regard l’un de l’autre suivant la direction d’allongement principal (A) des tubes (20). 7. Heat exchanger (2) according to the preceding claim, wherein the collectors (16a, 18a) of the first circuit (24) face each other in the direction of main elongation (A) of the tubes (20) and the collectors (16b, 18b) of the second circuit (26) face each other along the main direction of elongation (A) of the tubes (20).
8. Echangeur de chaleur (2) selon la revendication précédente, dans lequel les collecteurs (16, 18) positionnés à une même extrémité (36a, 36b) de la surface d’échange (12) de chaleur sont alignés le long d’une droite (I) sécante à un plan principal (14) de la surface d’échange (12) de chaleur. 8. Heat exchanger (2) according to the preceding claim, wherein the collectors (16, 18) positioned at the same end (36a, 36b) of the heat exchange surface (12) are aligned along a line (I) secant to a main plane (14) of the heat exchange surface (12).
9. Echangeur de chaleur (2) selon l’une quelconque des revendications précédentes, comprenant une pluralité d’organes de dissipation thermique (22), chaque organe de dissipation thermique (22) étant disposé suivant la direction d’allongement principal (A) des tubes (20) entre au moins deux tubes (20) de la pluralité de tubes (20) suivant leur direction d’empilement (E). 9. Heat exchanger (2) according to any one of the preceding claims, comprising a plurality of heat dissipation members (22), each heat dissipation member (22) being arranged in the direction of main elongation (A) tubes (20) between at least two tubes (20) of the plurality of tubes (20) along their stacking direction (E).
10. Echangeur de chaleur (2) selon l’une quelconque des revendications précédentes, dans lequel le premier collecteur d’entrée (16a) et le deuxième collecteur d’entrée (16b) sont configurés pour être fluidiquement reliés de manière 19 commune à un organe de détente (10, 10a, 10b) de la première portion (30a) de la boucle de fluide réfrigérant (1). 10. Heat exchanger (2) according to any one of the preceding claims, in which the first inlet manifold (16a) and the second inlet manifold (16b) are configured to be fluidically connected in a manner 19 common to an expansion member (10, 10a, 10b) of the first portion (30a) of the refrigerant loop (1).
11. Boucle de fluide réfrigérant (1) comprenant au moins un compresseur (4), au moins un évaporateur (8), au moins un échangeur de chaleur (2) selon l’une quelconque des revendications précédentes, une sortie du compresseur (4) étant raccordée fluidiquement à l’échangeur de chaleur (2), au moins une sortie de l’échangeur de chaleur (2) étant raccordée fluidiquement à l’évaporateur (8) ou à une entrée du compresseur (4), et au moins un premier organe de détente (10a) est disposé entre l’échangeur de chaleur (2) et l’évaporateur (8) et au moins un deuxième organe de détente (10b) est disposé entre le compresseur (4) et l’échangeur de chaleur (2). 11. Refrigerant fluid loop (1) comprising at least one compressor (4), at least one evaporator (8), at least one heat exchanger (2) according to any one of the preceding claims, an outlet of the compressor (4 ) being fluidically connected to the heat exchanger (2), at least one outlet of the heat exchanger (2) being fluidically connected to the evaporator (8) or to an inlet of the compressor (4), and at least a first expansion member (10a) is arranged between the heat exchanger (2) and the evaporator (8) and at least one second expansion member (10b) is arranged between the compressor (4) and the heat exchanger heat (2).
12. Boucle de fluide réfrigérant (1) selon la revendication précédente comprenant au moins un canal d’entrée (32) du fluide réfrigérant dans l’échangeur de chaleur (2) et un canal de sortie (34) du fluide réfrigérant de l’échangeur de chaleur (2), les collecteurs d’entrée (16) de l’échangeur de chaleur (2) étant fluidiquement reliés au canal d’entrée (32) du fluide réfrigérant et les collecteurs de sortie (18) de l’échangeur de chaleur (2) étant fluidiquement reliés au canal de sortie (34) du fluide réfrigérant. 12. Coolant loop (1) according to the preceding claim comprising at least one inlet channel (32) of the coolant in the heat exchanger (2) and an outlet channel (34) of the coolant of the heat exchanger (2), the inlet manifolds (16) of the heat exchanger (2) being fluidly connected to the inlet channel (32) of the refrigerant fluid and the outlet manifolds (18) of the exchanger heat (2) being fluidly connected to the outlet channel (34) of the refrigerant.
PCT/EP2022/073512 2021-09-03 2022-08-23 Heat exchanger for refrigerant loop WO2023030971A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2109215A FR3126764A1 (en) 2021-09-03 2021-09-03 HEAT EXCHANGER OF A REFRIGERANT LOOP.
FRFR2109215 2021-09-03

Publications (1)

Publication Number Publication Date
WO2023030971A1 true WO2023030971A1 (en) 2023-03-09

Family

ID=77999191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/073512 WO2023030971A1 (en) 2021-09-03 2022-08-23 Heat exchanger for refrigerant loop

Country Status (2)

Country Link
FR (1) FR3126764A1 (en)
WO (1) WO2023030971A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644685A (en) * 2013-12-26 2014-03-19 杭州三花微通道换热器有限公司 Heat exchanger and air conditioner with multiple refrigeration systems provided with heat exchanger
WO2018199782A1 (en) * 2017-04-24 2018-11-01 Mar-Bud Spółka Z Ograniczoną Odpowiedzialnością A heat exchange unit for devices with a heat pump, in particular an evaporator for manufacturing and storing ice
EP3435000A1 (en) * 2016-03-21 2019-01-30 Danfoss Micro Channel Heat Exchanger (Jiaxing) Co. Ltd. Heat exchanger and air-conditioning system
US20200191501A1 (en) * 2018-12-14 2020-06-18 Danfoss A/S Heat exchanger and air-conditioning system
US20200191490A1 (en) * 2018-12-14 2020-06-18 Danfoss A/S Heat exchanger and air-conditioning system
WO2020259671A1 (en) * 2019-06-28 2020-12-30 杭州三花微通道换热器有限公司 Heat exchanger, and air conditioning unit having multiple refrigeration systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644685A (en) * 2013-12-26 2014-03-19 杭州三花微通道换热器有限公司 Heat exchanger and air conditioner with multiple refrigeration systems provided with heat exchanger
EP3435000A1 (en) * 2016-03-21 2019-01-30 Danfoss Micro Channel Heat Exchanger (Jiaxing) Co. Ltd. Heat exchanger and air-conditioning system
WO2018199782A1 (en) * 2017-04-24 2018-11-01 Mar-Bud Spółka Z Ograniczoną Odpowiedzialnością A heat exchange unit for devices with a heat pump, in particular an evaporator for manufacturing and storing ice
US20200191501A1 (en) * 2018-12-14 2020-06-18 Danfoss A/S Heat exchanger and air-conditioning system
US20200191490A1 (en) * 2018-12-14 2020-06-18 Danfoss A/S Heat exchanger and air-conditioning system
WO2020259671A1 (en) * 2019-06-28 2020-12-30 杭州三花微通道换热器有限公司 Heat exchanger, and air conditioning unit having multiple refrigeration systems

Also Published As

Publication number Publication date
FR3126764A1 (en) 2023-03-10

Similar Documents

Publication Publication Date Title
EP2532544B1 (en) System for thermal conditioning of a passenger compartment and an electric battery
EP3781882B1 (en) Thermal conditioning device for a motor vehicle
WO2011157700A1 (en) Heat conditioning system for a motor vehicle
FR2808740A1 (en) Procedure and device, for regulating temperature of passenger compartment of vehicle, consists of heat pump, drawing heat from a cold source, to transfer to hot source, for flow to passenger compartment.
EP2720890B1 (en) Refrigerant circuit and method of controlling such a circuit
WO2020178536A1 (en) Temperature control device, in particular cooling device for a motor vehicle
WO2023030971A1 (en) Heat exchanger for refrigerant loop
EP3511182B1 (en) Air-conditioning system with five-channel valves, module and corresponding method
WO2023030975A1 (en) Heat exchanger for refrigerant loop
FR3126766A1 (en) HEAT EXCHANGER OF A REFRIGERANT LOOP.
FR3126760A1 (en) HEAT EXCHANGER OF A REFRIGERANT LOOP.
FR3073609B1 (en) CHANNEL FOR THERMAL EXCHANGER OF A MOTOR VEHICLE
FR3067796A1 (en) HEAT PUMP HEATING CIRCUIT FOR A MOTOR VEHICLE AND METHOD FOR MANAGING THE SAME
FR3126647A1 (en) HEAT TREATMENT MODULE WITH EXPANSION MECHANISM
FR3069490B1 (en) METHOD FOR MANAGING AN INDIRECT INDIRECT AIR CONDITIONING CIRCUIT OF A MOTOR VEHICLE
WO2023030791A1 (en) Heat exchanger for a coolant loop
FR2974623A1 (en) HEAT EXCHANGER FOR A VEHICLE AIR CONDITIONING SYSTEM
WO2023030977A1 (en) Heat exchanger for refrigerant loop
WO2023030972A1 (en) Heat exchanger for refrigerant fluid loop
FR3125113A1 (en) Module for refrigerant circuit
FR3043759A1 (en) THERMAL CONDITIONING CIRCUIT AND METHOD OF USING SAID THERMAL CONDITIONING CIRCUIT
FR2719810A1 (en) Heating system for vehicle passenger compartment
FR3133434A1 (en) Common plate of a thermal module of a refrigerant circuit
FR3126763A1 (en) HEAT EXCHANGER FOR REFRIGERANT LOOP
WO2023198872A1 (en) Internal heat exchanger with plates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22769892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22769892

Country of ref document: EP

Kind code of ref document: A1