WO2023030303A1 - 一种负泊松比水泥基复合材料及其制备方法 - Google Patents

一种负泊松比水泥基复合材料及其制备方法 Download PDF

Info

Publication number
WO2023030303A1
WO2023030303A1 PCT/CN2022/115797 CN2022115797W WO2023030303A1 WO 2023030303 A1 WO2023030303 A1 WO 2023030303A1 CN 2022115797 W CN2022115797 W CN 2022115797W WO 2023030303 A1 WO2023030303 A1 WO 2023030303A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
based composite
composite material
negative poisson
ratio
Prior art date
Application number
PCT/CN2022/115797
Other languages
English (en)
French (fr)
Inventor
马衍轩
朱鹏飞
宋晓辉
赵飞
刘进
张鹏
秦玲
崔祎菲
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Priority to KR1020247006000A priority Critical patent/KR102718765B1/ko
Publication of WO2023030303A1 publication Critical patent/WO2023030303A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • C04B28/065Calcium aluminosulfate cements, e.g. cements hydrating into ettringite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/245Curing concrete articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • C04B22/142Sulfates
    • C04B22/143Calcium-sulfate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • C04B24/14Peptides; Proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0032Controlling the process of mixing, e.g. adding ingredients in a quantity depending on a measured or desired value
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/32Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00181Mixtures specially adapted for three-dimensional printing (3DP), stereo-lithography or prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00974Uses not provided for elsewhere in C04B2111/00 for pyrotechnic applications, e.g. blasting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the field of cement-based composite materials, and in particular relates to a cement-based composite material with negative Poisson's ratio effect and anti-blast and anti-shock functions.
  • some toughening materials such as fibers are added to the concrete, which can greatly improve the brittleness of concrete members, but the cost is high and the strength does not change.
  • these three methods can only resist the impact energy of the explosion, but cannot offset or reduce the energy of the explosion, so the use efficiency is low.
  • the scope and prospects of its practical application are greatly limited due to expensive raw materials and cumbersome design processes.
  • the negative Poisson's ratio effect means that when stretched, the material expands laterally within the elastic range; while when compressed, the material shrinks laterally. Due to its negative Poisson's ratio effect, negative Poisson's ratio materials have excellent elastic modulus, fracture resistance and resilience toughness. From the perspective of mechanics, the basic problem of explosion is energy, not force. It is feasible to apply materials with negative Poisson's ratio effect to explosion-proof materials for infrastructure to reduce the threat of explosion accidents to the property and safety of the people of the country. If negative Poisson's ratio concrete can be prepared so that it expands laterally within the elastic range when stretched, and shrinks laterally when compressed, it can effectively resist shear force and greatly absorb externally released energy. energy.
  • the crystallization agent has an obvious effect on the nucleation and growth of crystals, and its essence is caused by the selective adsorption of the crystallization agent to each crystal face of the crystal.
  • the crystal growth rate can be changed, thereby change the crystal form.
  • the effective amount of the crystallization agent is very small, and a very small amount of the crystallization agent can play a role in regulating the crystal shape, but the type of the crystallization agent is different, or the amount of addition is different, and the crystallization results are not the same. Sometimes crystals are not even available at all.
  • Mordant is currently mainly used in modern crystal engineering, such as in the production process of raw materials, to change the crystal form of the drug without changing the crystal form of the drug and maintaining its efficacy, making it easy to filter, dry and produce preparations .
  • crystallization agent in the field of concrete, let alone the report on the preparation of negative Poisson's ratio concrete using the crystallization agent.
  • the invention provides a cement-based composite material with negative Poisson's ratio effect.
  • the cement-based composite material greatly improves the anti-explosion and impact resistance performance of the concrete material, and avoids secondary damage to the building structure and its internal personal property caused by the direct release of explosive products during the explosion process, thereby realizing the protection of the building structure and its internal personal property. Security for maximum protection.
  • a cement-based composite material having a negative Poisson's ratio effect comprising a negative Poisson's ratio structure uniformly dispersed therein.
  • the volume ratio of the negative Poisson's ratio structure in the cement-based composite material is 25%-40%.
  • the negative Poisson's ratio structure is a layered structure formed by the ordered arrangement of concave hexagonal unit cells.
  • the concave hexagonal unit cell includes two oppositely arranged angles, the angles are sunken to the inside of the hexagon, and two long sides arranged in parallel are arranged on both sides of the angles; the orderly arrangement is specifically , a plurality of concave hexagonal unit cells are connected end to end, and the long sides are overlapped and arranged in rows, and the concave hexagonal unit cells between two adjacent rows are arranged in a staggered manner, and are connected by pairwise overlapping of the sides of the included angle, Thus a layered structure is obtained.
  • the cement-based composite material described in this application uses the adsorption of the mordant to affect the crystal form, so that the crystal form of the composite cement hydration product is a dovetail twin crystal with a concave hexagonal structure, and is combined with each other to form a negative poise The unit crystal structure of the Sonny effect.
  • the cement-based composite material described in this application reduces its Poisson's ratio to negative through crystal micro-morphology design and has The negative Poisson's ratio effect greatly improves the energy absorption modulus, energy dissipation modulus and storage modulus, and improves the anti-knock and anti-shock performance.
  • the cement-based composite material is prepared from 1.2-2.4 parts by weight of a crystallization agent, 100 parts by weight of a cementitious material and 40-55 parts by weight of water.
  • the cementitious material consists of equal amounts of sulphoaluminate cement and aluminate cement.
  • the crystallization agent is organic acid type crystallization agent, inorganic type crystallization agent or glue type crystallization agent.
  • the organic acid crystallization agent is one or more of succinic acid, adipic acid or citric acid
  • the inorganic crystallization agent is sodium sulfate, calcium sulfate or sodium hydroxide
  • the colloidal mediator is one or more of gelatin or silica sol.
  • the preparation method of cement-based composite material as mentioned above comprises the following steps:
  • the surfactant is one or more of petroleum sulfonate (PS), disodium lauryl sulfosuccinate monoester (DLS) or monolauryl phosphate (MAP); the surfactant
  • PS petroleum sulfonate
  • DLS disodium lauryl sulfosuccinate monoester
  • MAP monolauryl phosphate
  • the negative Poisson's ratio structure can also be obtained by 3D printing technology.
  • the cement-based composite material of the present invention uses special cement sulphoaluminate cement and aluminate cement, combined with three types of crystallization agents, to change the crystal in the special cement-based composite material from a microscopic point of view structure, so that it has a negative Poisson's ratio structure, creating a new idea for preparing negative Poisson's ratio concrete materials, which is of great significance to the development of the industry.
  • the cement-based composite material of the present invention greatly reduces the Poisson's ratio through the design of the microscopic morphology of the crystal, making it have a negative Poisson's ratio effect, thereby greatly improving the energy absorption modulus, energy dissipation modulus and storage capacity. energy modulus.
  • the cement-based composite material described in the present invention can greatly improve the ability to resist and absorb the energy of the explosion load, and avoid the direct release of explosion products during the explosion process to cause secondary damage to the building structure and its internal personal property, thereby realizing the protection of the building.
  • the structure and its internal personal and property safety are protected to the maximum extent.
  • FIG. 1 is the microscopic crystal shape model of cement-based composite material.
  • Figure 1a is a schematic diagram of the structure of a concave hexagonal unit cell
  • Figure 1b is a schematic diagram of the deformation of a negative Poisson's ratio crystal structure when it is longitudinally compressed
  • Figure 1c is a deformation diagram of a negative Poisson's ratio crystal structure when it is longitudinally stretched schematic diagram.
  • Fig. 4 is the crystal unit concave structure topography diagram of the negative Poisson's ratio cement-based composite material described in the present application;
  • Fig. 5 is a schematic diagram of the deformation of the negative Poisson's ratio crystal structure of the cement-based composite material described in the present application when it is stretched transversely.
  • a cement-based composite material having a negative Poisson's ratio effect comprising a negative Poisson's ratio structure uniformly dispersed therein.
  • the negative Poisson's ratio structure is a layered structure formed by the ordered arrangement of concave hexagonal unit cells.
  • the concave hexagonal unit cell includes two oppositely arranged angles, the angles are sunken to the inside of the hexagon, and two long sides arranged in parallel are arranged on both sides of the angles; the orderly arrangement is specifically , a plurality of concave hexagonal unit cells are connected end to end, and the long sides are overlapped and arranged in rows, and the concave hexagonal unit cells between two adjacent rows are arranged in a staggered manner, and are connected by pairwise overlapping of the sides of the included angle, Thus a layered structure is obtained.
  • the volume ratio of the negative Poisson's ratio structure in the cement-based composite material is 40%.
  • the cement-based composite material is prepared from 1.8 parts by weight of a crystallization agent, 100 parts by weight of a cementitious material and 40 parts by weight of water.
  • the cementitious material consists of equal amounts of sulphoaluminate cement and aluminate cement.
  • the crystallization agent is calcium sulfate.
  • the preparation method of cement-based composite material as mentioned above comprises the following steps:
  • the surfactant is petroleum sulfonate (PS); the concentration of the surfactant solution is 15wt%.
  • test block Place the test block in a cool and dry place for 28 hours of primary curing, remove the formwork and send it to the curing box for secondary curing for 4 days, and then obtain a cement-based composite material with a negative Poisson's ratio effect.
  • an external stress is applied to the test block; the external stress is applied on the top and both sides of the test block, and the external stress is 2 ⁇ 10 -3 MPa.
  • the temperature of the curing box is uniformly reciprocated within the range of 10°C to 60°C, and the temperature control rate is 1°C/min.
  • Embodiment 2 Different from Embodiment 1,
  • a cement-based composite material having a negative Poisson's ratio effect comprising a negative Poisson's ratio structure uniformly dispersed therein.
  • the volume ratio of the negative Poisson's ratio structure in the cement-based composite material is 35%.
  • the cement-based composite material is prepared from 1.2 parts by weight of a crystallization agent, 100 parts by weight of a cementitious material and 48 parts by weight of water.
  • the cementitious material consists of equal amounts of sulphoaluminate cement and aluminate cement.
  • the crystallization agent is succinic acid.
  • the preparation method of cement-based composite material as mentioned above comprises the following steps:
  • the surfactant is petroleum sulfonate (PS); the concentration of the surfactant solution is 12wt%.
  • test block (4) Place the test block in a cool and dry place for 30 hours of primary curing, and then send it to the curing box for 4 days of secondary curing after demoulding, and then obtain a cement-based composite material with a negative Poisson's ratio effect.
  • an external stress is applied to the test block; the external stress is applied on the top and both sides of the test block, and the external stress is 1.8 ⁇ 10 -3 MPa.
  • the temperature of the curing box reciprocates evenly within the range of 10°C to 60°C, and the temperature control rate is 1.5°C/min.
  • Embodiment 3 Different from Embodiment 1,
  • a cement-based composite material having a negative Poisson's ratio effect comprising a negative Poisson's ratio structure uniformly dispersed therein.
  • the volume ratio of the negative Poisson's ratio structure in the cement-based composite material is 25%.
  • the cement-based composite material is prepared from 2.4 parts by weight of a crystallization agent, 100 parts by weight of a cementitious material and 50 parts by weight of water.
  • the cementitious material consists of equal amounts of sulphoaluminate cement and aluminate cement.
  • the described crystallization agent is gelatin.
  • the preparation method of cement-based composite material as mentioned above comprises the following steps:
  • the surfactant is disodium lauryl sulfosuccinate (DLS); the concentration of the surfactant solution is 10 wt%.
  • test block Place the test block in a cool and dry place for 24 hours of primary curing, remove the formwork and send it to the curing box for secondary curing for 3 days, and then obtain a cement-based composite material with a negative Poisson's ratio effect.
  • an external stress is applied to the test block; the external stress is applied on the top and both sides of the test block, and the external stress is 1.5 ⁇ 10 -3 MPa.
  • the temperature of the curing box is uniformly reciprocated within the range of 20°C to 40°C, and the temperature control rate is 0.5°C/min.
  • Embodiment 4 Different from Embodiment 1,
  • a cement-based composite material having a negative Poisson's ratio effect comprising a negative Poisson's ratio structure uniformly dispersed therein.
  • the volume ratio of the negative Poisson's ratio structure in the cement-based composite material is 30%.
  • the cement-based composite material is prepared from 2.4 parts by weight of a crystallization agent, 100 parts by weight of a cementitious material and 55 parts by weight of water.
  • the cementitious material consists of equal amounts of sulphoaluminate cement and aluminate cement.
  • the crystallization agent is citric acid.
  • the preparation method of cement-based composite material as mentioned above comprises the following steps:
  • the surfactant is monolauryl phosphate (MAP); the concentration of the surfactant solution is 12 wt%.
  • test block Place the test block in a cool and dry place for a primary curing for 28 hours, remove the formwork and send it to a curing box for a secondary curing for 3 days, and then obtain a cement-based composite material with a negative Poisson's ratio effect.
  • an external stress is applied to the test block; the external stress is applied on the top and both sides of the test block, and the external stress is 1.2 ⁇ 10 -3 MPaMPa.
  • the temperature of the curing box is evenly reciprocated within the range of 20°C to 40°C, and the temperature control rate is 1°C/min.
  • Embodiment 5 Different from Embodiment 1,
  • a cement-based composite material having a negative Poisson's ratio effect comprising a negative Poisson's ratio structure uniformly dispersed therein.
  • the volume ratio of the negative Poisson's ratio structure in the cement-based composite material is 35%.
  • the cement-based composite material is prepared from 1.9 parts by weight of a crystallization agent, 100 parts by weight of a cementitious material and 40 parts by weight of water.
  • the cementitious material consists of equal amounts of sulphoaluminate cement and aluminate cement.
  • the crystallization agent is sodium sulfate.
  • the preparation method of cement-based composite material as mentioned above comprises the following steps:
  • the surfactant is disodium lauryl sulfosuccinate (DLS); the concentration of the surfactant solution is 15 wt%.
  • test block Place the test block in a cool and dry place for 26 hours of primary curing, remove the formwork and send it to the curing box for secondary curing for 3-4 days to obtain a cement-based composite material with a negative Poisson's ratio effect.
  • an external stress is applied to the test block; the external stress is applied on the top and both sides of the test block, and the external stress is 2 ⁇ 10 -3 MPa.
  • the temperature of the curing box is uniformly reciprocated within the range of 10°C to 50°C, and the temperature control rate is 1°C/min.
  • Example 6 Characterization of the cement-based composite material prepared in Examples 1-5
  • Test block preparation The method described in Examples 1-5 was used to prepare cement slurry test blocks with specifications of 40mm ⁇ 40mm ⁇ 160mm and 40mm ⁇ 40mm ⁇ 40mm. At the same time, a control group test block of the same specification was prepared, and the control group test block was sulphoaluminate cement paste. Among them, the test block with a specification of 40mm ⁇ 40mm ⁇ 160mm is used for modulus test and strength test, and the test block with a specification of 40mm ⁇ 40mm ⁇ 40mm is used for Poisson’s ratio test.
  • the specific method of strength test prepare a test block with a specification of 40mm ⁇ 40mm ⁇ 160mm, and use a mechanical testing machine to measure its compressive strength and flexural strength according to the national standard "Standard for Test Methods of Mechanical Properties of Ordinary Concrete” GB/T50081-2016. Each group of test blocks is measured three times and the average value is obtained to obtain the final result of strength.
  • the Poisson's ratio of the known common cement-based material that is, the cement test block of the application control group
  • the Poisson's ratio-0.5 of the concave hexagonal negative Poisson's ratio structure can be obtained through calculation.
  • the volume ratio of a negative Poisson's ratio structure is 0.25, and the Poisson's ratio-0.5 of the concave hexagonal negative Poisson's ratio structure can be obtained through calculation.
  • the specific method of the energy absorption modulus test prepare a test block with a specification of 40mm ⁇ 40mm ⁇ 1600mm, and use a mechanical testing machine to perform a compression test along the axial direction to obtain the stress-strain ( ⁇ - ⁇ ) curve of the test block.
  • the maximum stress ⁇ m then according to the formula Calculate the absorption modulus of the material.
  • the specific method of the energy loss modulus test prepare a test block with a specification of 40mm ⁇ 40mm ⁇ 1600mm, and use a mechanical testing machine to perform a three-point bending test on it to obtain the maximum force value F max and the displacement change ⁇ L, and the known test block
  • the cement-based composite materials prepared in Examples 1-5 of the present application have an energy absorption modulus of 15.8 to 17.3 GPa, an energy dissipation modulus of 6.8 to 7.3 GPa, and a storage modulus of 20.2 to 22.4 GPa; while the control group
  • the energy absorption modulus of ordinary cement-based materials is 12.4GPa
  • the energy loss modulus is 5.3GPa
  • the storage modulus is 16.1GPa. It can be seen that compared with ordinary cement-based materials, the energy absorption modulus of the cement-based composite materials prepared in Examples 1-5 of the present application increased by 23.4% to 39.5%, and the energy loss modulus increased by 28.3% to 37.7%.
  • the storage modulus increased by 25.5% to 39.1%.
  • the cement-based composite materials prepared in Examples 1-5 of the present application through the design of crystal microscopic morphology, greatly reduce the Poisson's ratio until it is reduced to negative and have a negative Poisson's ratio effect; thus making the use of its construction
  • the building will greatly improve the ability to resist and absorb the energy of the explosion load, and avoid the secondary damage to the building structure and its internal personal property caused by the direct release of explosive products during the explosion process, so as to maximize the safety of the building structure and its internal personal property. protection of.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明提供了一种具备负泊松比效应的水泥基复合材料及其制备方法。所述水泥基复合材料包括均匀分散于其中的负泊松比结构。所述负泊松比结构为由内凹六边形单胞有序排列形成的层状结构。所述内凹六边形单胞包括相对设置的两个夹角,夹角向六边形的内侧凹陷,夹角的两侧设置平行设置的两条长边;所述的有序排列具体为,多个内凹六边形单胞首尾相连、长边两两重合排列成行,相邻两行之间的内凹六边形单胞交错排列,并通过夹角的侧边两两重合相连,从而得到层状结构。所述水泥基复合材料由1.2-2.4重量份媒晶剂、100重量份胶凝材料和40-55重量份水制备得到。所述水泥基复合材料大幅度提升了混凝土材料的抗爆抗冲击性能,实现了对建筑结构及其内部人身财产安全最大限度的保护。

Description

一种负泊松比水泥基复合材料及其制备方法 技术领域
本发明属于水泥基复合材料领域,具体地说,涉及一种具有负泊松比效应的抗爆抗冲击功能的水泥基复合材料。
背景技术
随着经济和科技的迅速发展,国家城市化水平逐渐提高,建筑物变得高层化和密集化,建筑物的抗爆抗冲击性能逐渐成为人们日益关注的话题。发生爆炸时,混凝土构件受到大荷载、不均匀的动载力而遭到破坏;而且混凝土构件破坏后,产生一些小的爆炸碎片,随着爆炸冲击波冲击到四面八方,对周围的人或建筑产生破坏,即二次破坏。但现有技术中的混凝土材料强度低、脆性大、易开裂,受到爆炸后极易碎裂,不能抗击高荷载的冲击以及损伤更大的二次破坏,从而大大限制了混凝土材料在抗爆领域的应用。
为了解决上述问题,避免爆炸载荷造成人身财产破坏,目前主要通过以下几种方法提高混凝土的抗爆抗冲击性能:(1)混凝土基体增强。具体是指通过增大堆积密度,使混凝土拥有超高的力学性能,以抵抗爆炸。但此种方法增大了混凝土的制备成本和施工难度,不利于实际应用。(2)增加抗爆防护板。具体是指给混凝土结构辅助一些抗爆钢板或其他抗爆结构。但这不仅加大了混凝土构件的制备成本,而且也会改变混凝土构件的原本结构,从而产生其他的风险。(3)掺加增韧材料。具体是向混凝土中添加一些纤维等增韧材料,这能大大改善混凝土构件的脆性,但是成本高,且强度没有改观。此外,这三种方法只能抵御爆炸冲击能量,而不能够抵消或减少爆炸能量,使用效率底。而且,由于原料昂贵和设计工艺繁琐等,也大大限制了其实际应用的范围和前景。
负泊松比效应,是指受拉伸时,材料在弹性范围内横向发生膨胀;而受压缩时,材料的横向反而发生收缩。负泊松比材料凭借其负泊松比效应,具备优异的弹性模量、抗断裂性能及回弹韧性。从力学角度分析,爆炸的基本问题是能,而非力。将具有负泊松比效应的材料应用到基础设施防爆材料,以降低爆炸事故对国家人民的财产和安全威胁,具有可行性。如果能制备出负泊松比混凝土,使其具备受拉伸时在弹性范围内横向发生膨胀,受压缩时材料的横向反而发生收缩的性能,就可以有效抵抗剪切力,大大吸收外部释放的能量。将这种具备防爆功能的混凝土应用于民用、军用建筑物墙体或工业运输管道中,在其经受爆炸载荷作用时,墙体或管道在爆炸脉冲的法向方向发生收缩而非延伸,能够有效的提高墙体或管道的抗冲击性能并减少爆炸荷载产生的破坏。但如何制备负泊松比混凝土,现有技术中尚未见相 关报道。
媒晶剂对晶体的成核、生长有明显的作用,其本质是由媒晶剂对晶体各个晶面的选择吸附造成的,通过与晶体表面结合和干扰台阶步骤,可以改变晶体生长速率,从而改变晶体形态。媒晶剂的有效作用量是非常小的,很少掺量的媒晶剂就能起到调控晶形的作用,但媒晶剂种类不同,或者添加的量不同,结晶所得晶体结果也不一样,有时甚至完全得不到晶体。媒晶剂目前主要应用于现代晶体工程学,如应用于原料药的生产过程,在不改变药物晶型并保持其药效的情况下,改变药物晶型,使其易于过滤、干燥和制剂生产。目前,尚没有将媒晶剂用于混凝土领域的报道,更没有关于利用媒晶剂制备负泊松比混凝土的报道。
发明内容
针对现有技术中混凝土材料所存在的问题,本发明提供了一种具备负泊松比效应的水泥基复合材料。所述水泥基复合材料大幅度提升了混凝土材料的抗爆抗冲击性能,避免爆炸过程中直接释放爆炸产物对建筑结构及其内部人身财产造成二次伤害,从而实现对建筑结构及其内部人身财产安全最大限度的保护。
本发明的技术方案:
具备负泊松比效应的水泥基复合材料,所述水泥基复合材料包括均匀分散于其中的负泊松比结构。所述水泥基复合材料中负泊松比结构的体积比为25%-40%。
所述负泊松比结构为由内凹六边形单胞有序排列形成的层状结构。所述内凹六边形单胞包括相对设置的两个夹角,夹角向六边形的内侧凹陷,夹角的两侧设置平行设置的两条长边;所述的有序排列具体为,多个内凹六边形单胞首尾相连、长边两两重合排列成行,相邻两行之间的内凹六边形单胞交错排列,并通过夹角的侧边两两重合相连,从而得到层状结构。本申请所述的水泥基复合材料,利用媒晶剂的吸附作用影响晶型,使复合水泥水化产物的晶体形态为内凹六边形结构的燕尾双晶,并相互结合堆积成为具有负泊松比效应的单位晶体结构。与现有技术中的硫铝酸盐水泥基材料或铝酸盐水泥基材料相比,本申请所述的水泥基复合材料,通过晶体微观形貌设计,将其泊松比值降低为负而具有负泊松比效应,大大提升了吸能模量、耗能模量和储能模量,提高了抗爆抗冲击的性能。
所述水泥基复合材料由1.2-2.4重量份媒晶剂、100重量份胶凝材料和40-55重量份水制备得到。所述胶凝材料由等量的硫铝酸盐水泥和铝酸盐水泥组成。所述的媒晶剂为有机酸类媒晶剂、无机类媒晶剂或者胶类媒晶剂。其中,所述的有机酸类媒晶剂为丁二酸、己二酸或柠檬酸中的一种或几种;所述的无机类媒晶剂为硫酸钠、硫酸钙或氢氧化钠中的一种或几种;所述的胶类媒晶剂为明胶或者硅溶胶中的一种或几种。
如前所述的水泥基复合材料的制备方法,包括以下步骤:
(1)称取适量的媒晶剂,将其放入表面活性剂溶液中浸泡润湿使其改性,然后放入水中溶解,以此保证媒晶剂在混合体系中的均匀分散。所述的表面活性剂为石油磺酸盐(PS)、月桂基磺化琥珀酸单酯二钠(DLS)或者单月桂基磷酸酯(MAP)中的一种或几种;所述表面活性剂溶液的浓度为10-15wt%。
(2)称取适量硫铝酸盐水泥和铝酸盐水泥,倒入搅拌锅中,低速搅拌至二者混合均匀;然后缓慢加入1/3~2/3水,低速搅拌至混合均匀;最后加入剩余的水,继续低速搅拌至混合均匀,得到水泥净浆。
(3)继续高速搅拌水泥净浆40-80s,促进水泥的起始水化速度;转为低速搅拌,缓冲高速搅拌至停机,然后迅速浇注入模,得到制品。
(4)将制品放置于阴凉干燥处进行一次养护24~30h,拆模后送入养护箱进行二次养护3~4天,即得到具备负泊松比效应的水泥基复合材料。其中,一次养护时,对制品施加外部应力;所述外部应力施加在制品的上方和两侧,所述外部应力为1×10 -3MPa~2×10 -3MPa。制品进行二次养护时,养护箱的温度在10℃~60℃之间均匀往复变动,控温速率为0.5~1.5℃/1min。其中,一次养护增加应力和二次养护调控温度的目的均是调控制品内部晶体的形成与堆积。
如前所述的具备负泊松比效应的水泥基复合材料,所述的负泊松比结构也可采用3D打印技术得到。
本发明的有益效果:
(1)本发明所述的水泥基复合材料,使用特种水泥硫铝酸盐水泥和铝酸盐水泥,结合三种类型的媒晶剂,从微观角度入手来改变特种水泥基复合材料中的晶体结构,使其具有负泊松比结构,开创了制备负泊松比混凝土材料的新思路,对于行业发展具有重要意义。
(2)本发明所述的水泥基复合材料,通过晶体微观形貌设计,大大降低泊松比值,使其负泊松比效应,从而大幅度提升了吸能模量,耗能模量和储能模量。
(3)本发明所述的水泥基复合材料,可大幅提升抵抗并吸收爆炸载荷能量的能力,避免爆炸过程中直接释放爆炸产物对建筑结构及其内部人身财产造成二次伤害,从而实现对建筑结构及其内部人身财产安全最大限度的保护。
附图说明
附图1为水泥基复合材料的微观晶体形貌模型。其中,图1a为内凹六边形单元晶胞的结构示意图;图1b为负泊松比晶体结构纵向受压缩时的形变示意图;图1c为负泊松比晶体结构纵向受拉伸时的形变示意图。
附图2为本申请所述的的水泥基材料制备过程中内凹晶体结构的演变过程。
附图3为100%硫铝酸盐水泥基材料(图3a)、本申请所述的负泊松比水泥基复合材料(图3b)以及100%铝酸盐水泥基材料(图3c)的泊松比对比图;
图4是本申请所述的的负泊松比水泥基复合材料的晶体单元内凹结构形貌图;
图5为本申请所述的水泥基复合材料的负泊松比晶体结构横向受拉伸时的形变示意图。
具体实施方式
下面结合实施例对本发明做进一步的说明。
实施例1:
具备负泊松比效应的水泥基复合材料,所述水泥基复合材料包括均匀分散于其中的负泊松比结构。所述负泊松比结构为由内凹六边形单胞有序排列形成的层状结构。所述内凹六边形单胞包括相对设置的两个夹角,夹角向六边形的内侧凹陷,夹角的两侧设置平行设置的两条长边;所述的有序排列具体为,多个内凹六边形单胞首尾相连、长边两两重合排列成行,相邻两行之间的内凹六边形单胞交错排列,并通过夹角的侧边两两重合相连,从而得到层状结构。所述水泥基复合材料中负泊松比结构的体积比为40%。
所述水泥基复合材料由1.8重量份媒晶剂、100重量份胶凝材料和40重量份水制备得到。所述胶凝材料由等量的硫铝酸盐水泥和铝酸盐水泥组成。所述的媒晶剂为硫酸钙。
如前所述的水泥基复合材料的制备方法,包括以下步骤:
(1)称取适量的媒晶剂,将其放入表面活性剂溶液中浸泡润湿使其改性,然后放入水中溶解,以此保证媒晶剂在混凝体系中的均匀分散。所述的表面活性剂为石油磺酸盐(PS);所述表面活性剂溶液的浓度为15wt%。
(2)称取适量硫铝酸盐水泥和铝酸盐水泥,倒入搅拌锅中,低速搅拌(140±5r/min)至二者混合均匀;然后缓慢加入2/3的水,低速搅拌至混合均匀;最后加入剩余的水,继续低速搅拌至混合均匀,得到水泥净浆。
(3)继续高速搅拌(285±10r/min)水泥净浆60s,促进水泥的起始水化速度;转为低速搅拌,缓冲高速搅拌至停机,然后迅速浇注入模,得到试块。
(4)将试块放置于阴凉干燥处进行一次养护28h,拆模后送入养护箱进行二次养护4天,即得到具备负泊松比效应的水泥基复合材料。其中,一次养护时,对试块施加外部应力;所述外部应力施加在试块的上方和两侧,所述外部应力为2×10 -3MPa。试块进行二次养护时,养护箱的温度在10℃~60℃范围内均匀往复变动,控温速率为1℃/min。
实施例2:与实施例1不同的是,
具备负泊松比效应的水泥基复合材料,所述水泥基复合材料包括均匀分散于其中的负泊 松比结构。所述水泥基复合材料中负泊松比结构的体积比为35%。
所述水泥基复合材料由1.2重量份媒晶剂、100重量份胶凝材料和48重量份水制备得到。所述胶凝材料由等量的硫铝酸盐水泥和铝酸盐水泥组成。所述的媒晶剂为丁二酸。
如前所述的水泥基复合材料的制备方法,包括以下步骤:
(1)称取适量的媒晶剂,将其放入表面活性剂溶液中浸泡润湿使其改性,然后放入水中溶解,以此保证媒晶剂在混凝体系中的均匀分散。所述的表面活性剂为石油磺酸盐(PS);所述表面活性剂溶液的浓度为12wt%。
(2)称取适量硫铝酸盐水泥和铝酸盐水泥,倒入搅拌锅中,低速搅拌(140±5r/min)至二者混合均匀;然后缓慢加入2/3的水,低速搅拌至混合均匀;最后加入剩余的水,继续低速搅拌至混合均匀,得到水泥净浆。
(3)继续高速搅拌(285±10r/min)水泥净浆80s,促进水泥的起始水化速度;转为低速搅拌,缓冲高速搅拌至停机,然后迅速浇注入模,得到试块。
(4)将试块放置于阴凉干燥处进行一次养护30h,拆模后送入养护箱进行二次养护4天,即得到具备负泊松比效应的水泥基复合材料。其中,一次养护时,对试块施加外部应力;所述外部应力施加在试块的上方和两侧,所述外部应力为1.8×10 -3MPa。试块进行二次养护时,养护箱的温度在10℃~60℃范围内均匀往复变动,控温速率为1.5℃/min。
实施例3:与实施例1不同的是,
具备负泊松比效应的水泥基复合材料,所述水泥基复合材料包括均匀分散于其中的负泊松比结构。所述水泥基复合材料中负泊松比结构的体积比为25%。
所述水泥基复合材料由2.4重量份媒晶剂、100重量份胶凝材料和50重量份水制备得到。所述胶凝材料由等量的硫铝酸盐水泥和铝酸盐水泥组成。所述的媒晶剂为明胶。
如前所述的水泥基复合材料的制备方法,包括以下步骤:
(1)称取适量的媒晶剂,将其放入表面活性剂溶液中浸泡润湿使其改性,然后放入水中溶解,以此保证媒晶剂在混凝体系中的均匀分散。所述的表面活性剂为月桂基磺化琥珀酸单酯二钠(DLS);所述表面活性剂溶液的浓度为10wt%。
(2)称取适量硫铝酸盐水泥和铝酸盐水泥,倒入搅拌锅中,低速搅拌(140±5r/min)至二者混合均匀;然后缓慢加入1/2的水,低速搅拌至混合均匀;最后加入剩余的水,继续低速搅拌至混合均匀,得到水泥净浆。
(3)继续高速搅拌(285±10r/min)水泥净浆40s,促进水泥的起始水化速度;转为低速搅拌,缓冲高速搅拌至停机,然后迅速浇注入模,得到试块。
(4)将试块放置于阴凉干燥处进行一次养护24h,拆模后送入养护箱进行二次养护3天,即得到具备负泊松比效应的水泥基复合材料。其中,一次养护时,对试块施加外部应力;所述外部应力施加在试块的上方和两侧,所述外部应力为1.5×10 -3MPa。试块进行二次养护时,养护箱的温度在20℃~40℃范围内均匀往复变动,控温速率为0.5℃/min。
实施例4:与实施例1不同的是,
具备负泊松比效应的水泥基复合材料,所述水泥基复合材料包括均匀分散于其中的负泊松比结构。所述水泥基复合材料中负泊松比结构的体积比为30%。
所述水泥基复合材料由2.4重量份媒晶剂、100重量份胶凝材料和55重量份水制备得到。所述胶凝材料由等量的硫铝酸盐水泥和铝酸盐水泥组成。所述的媒晶剂为柠檬酸。
如前所述的水泥基复合材料的制备方法,包括以下步骤:
(1)称取适量的媒晶剂,将其放入表面活性剂溶液中浸泡润湿使其改性,然后放入水中溶解,以此保证媒晶剂在混凝体系中的均匀分散。所述的表面活性剂为单月桂基磷酸酯(MAP);所述表面活性剂溶液的浓度为12wt%。
(2)称取适量硫铝酸盐水泥和铝酸盐水泥,倒入搅拌锅中,低速搅拌(140±5r/min)至二者混合均匀;然后缓慢加入12的水,低速搅拌至混合均匀;最后加入剩余的水,继续低速搅拌至混合均匀,得到水泥净浆。
(3)继续高速搅拌(285±10r/min)水泥净浆60s,促进水泥的起始水化速度;转为低速搅拌,缓冲高速搅拌至停机,然后迅速浇注入模,得到试块。
(4)将试块放置于阴凉干燥处进行一次养护28h,拆模后送入养护箱进行二次养护3天,即得到具备负泊松比效应的水泥基复合材料。其中,一次养护时,对试块施加外部应力;所述外部应力施加在试块的上方和两侧,所述外部应力为1.2×10 -3MPaMPa。试块进行二次养护时,养护箱的温度在20℃~40℃范围内均匀往复变动,控温速率为1℃/min。
实施例5:与实施例1不同的是,
具备负泊松比效应的水泥基复合材料,所述水泥基复合材料包括均匀分散于其中的负泊松比结构。所述水泥基复合材料中负泊松比结构的体积比为35%。
所述水泥基复合材料由1.9重量份媒晶剂、100重量份胶凝材料和40重量份水制备得到。所述胶凝材料由等量的硫铝酸盐水泥和铝酸盐水泥组成。所述的媒晶剂为硫酸钠。
如前所述的水泥基复合材料的制备方法,包括以下步骤:
(1)称取适量的媒晶剂,将其放入表面活性剂溶液中浸泡润湿使其改性,然后放入水中 溶解,以此保证媒晶剂在混凝体系中的均匀分散。所述的表面活性剂为月桂基磺化琥珀酸单酯二钠(DLS);所述表面活性剂溶液的浓度为15wt%。
(2)称取适量硫铝酸盐水泥和铝酸盐水泥,倒入搅拌锅中,低速搅拌(140±5r/min)至二者混合均匀;然后缓慢加入2/3的水,低速搅拌至混合均匀;最后加入剩余的水,继续低速搅拌至混合均匀,得到水泥净浆。
(3)继续高速搅拌(285±10r/min)水泥净浆80s,促进水泥的起始水化速度;转为低速搅拌,缓冲高速搅拌至停机,然后迅速浇注入模,得到试块。
(4)将试块放置于阴凉干燥处进行一次养护26h,拆模后送入养护箱进行二次养护3-4天,即得到具备负泊松比效应的水泥基复合材料。其中,一次养护时,对试块施加外部应力;所述外部应力施加在试块的上方和两侧,所述外部应力为2×10 -3MPa。试块进行二次养护时,养护箱的温度在10℃~50℃范围内均匀往复变动,控温速率为1℃/min。
实施例6:对实施例1-5制备的水泥基复合材料进行表征
试块制备:采用实施例1-5所述的方法制备规格为40mm×40mm×160mm和40mm×40mm×40mm的水泥净浆试块。同时,制备相同规格的对照组试块,所述对照组试块为硫铝酸盐水泥净浆。其中,规格为40mm×40mm×160mm的试块用于模量测试与强度测试,而规格为40mm×40mm×40mm的试块用于泊松比测试。
强度测试的具体方法:准备规格为40mm×40mm×160mm的试块,依据国家标准《普通混凝土力学性能试验方法标准》GB/T50081-2016,采用力学试验机测量其抗压强度和抗折强度,每组试块测量三次取均值,得到强度的最终结果。
泊松比测试的具体方法:准备规格为40mm×40mm×40mm的试块,采用力学试验机对其加载,在达到其最大强度的60%时停止加载;测量此时净浆试块的横向应变(ε x)和纵向应变(ε y),根据公式ν=-ε xy计算得到泊松比值。已知普通水泥基材料(即本申请对照组的水泥试块)的泊松比为0.25,内凹六边形负泊松比结构的泊松比值-0.5,经计算可得净浆试块中负泊松比结构的体积比。
吸能模量测试的具体方法:准备规格为40mm×40mm×1600mm的试块,利用力学试验机沿轴方向对其进行压缩试验,得到试块的应力-应变(σ-ε)曲线,已知最大应力σ m,然后根据公式
Figure PCTCN2022115797-appb-000001
计算得到材料的吸能模量。
耗能模量测试的具体方法:准备规格为40mm×40mm×1600mm的试块,利用力学试验机对其进行三点弯曲试验,得到最大力值F max和位移变化量△L,并且已知试块宽度a,厚度 h,以及刀口跨距L,根据公式E=L 3△L/4ah 3F max,计算得到材料的耗能模量。
储能模量测试的具体方法:准备规格为40mm×40mm×1600mm的试块,沿轴向对其施加外力,已知试块截面积S、长度L,受力后测出其轴向变形△L,根据公式E=(F/S)/(△L/L),计算得到材料的储能模量。
表1 实施例1-5制备的水泥基复合材料和对照组的表征结果
Figure PCTCN2022115797-appb-000002
由表1可知,本申请实施例1-5制备的水泥基复合材料中,负泊松比结构的体积比为25%~40%,泊松比值为-0.05~0.05。而对照组的普通水泥材料中没有负泊松比结构,其泊松比值为0.25。由此可知,本申请实施例1-5制备的水泥基复合材料,通过晶体微观形貌设计,大大降低泊松比值。
此外,本申请实施例1-5制备的水泥基复合材料,吸能模量为15.8~17.3GPa,耗能模量为6.8~7.3GPa,储能模量为20.2~22.4GPa;而对照组的普通水泥基材料的吸能模量为12.4GPa,耗能模量为5.3GPa,储能模量为16.1GPa。由此可知,与普通水泥基材料相比,本申请实施例1-5制备的水泥基复合材料的吸能模量增加了23.4%~39.5%,耗能模量增加了28.3%~37.7%,储能模量增加了25.5%~39.1%。这说明,本申请实施例1-5制备的水泥基复合材料抵抗爆炸冲击能量的能力得到了显著的提升。同时,本申请实施例1-5制备的水泥基复合材料的抗压强度为25.1~26.8Mpa,抗折强度为5.1~5.7Mpa;与对照组的普通水泥基材料(抗压强度为19.6MPa,抗折强度为4.1MPa)相比,抗压强度增加了28.1%~34.2%,抗折强度增加了24.4%~39.0%;说明其抵抗静态荷载的能力也得到了显著提升。
综上可知,本申请实施例1-5制备的水泥基复合材料,通过晶体微观形貌设计,使其泊松比值大大降低,直至降为负而具有负泊松比效应;从而使得采用其构筑的建筑物,将大幅提升抵抗并吸收爆炸载荷能量的能力,避免爆炸过程中直接释放爆炸产物对建筑结构及其内部人身财产造成二次伤害,从而实现对建筑结构及其内部人身财产安全最大限度的保护。

Claims (8)

  1. 具备负泊松比效应的水泥基复合材料;其特征在于:所述水泥基复合材料包括均匀分散于其中的负泊松比结构,所述负泊松比结构为由内凹六边形单胞有序排列形成的层状结构;所述内凹六边形单胞包括相对设置的两个夹角,夹角向六边形的内侧凹陷,夹角的两侧设置平行设置的两条长边;所述的有序排列具体为,多个内凹六边形单胞首尾相连、长边两两重合排列成行,相邻两行之间的内凹六边形单胞交错排列,并通过夹角的侧边两两重合相连,从而得到层状结构;其中,所述水泥基复合材料中负泊松比结构的体积比为25%-40%;所述水泥基复合材料由1.2-2.4重量份媒晶剂、100重量份胶凝材料和40-55重量份水制备得到;所述胶凝材料由等量的硫铝酸盐水泥和铝酸盐水泥组成。
  2. 根据权利要求1所述的具备负泊松比效应的水泥基复合材料;其特征在于:所述的媒晶剂为有机酸类媒晶剂、无机类媒晶剂或者胶类媒晶剂。
  3. 根据权利要求2所述的具备负泊松比效应的水泥基复合材料;其特征在于:所述的有机酸类媒晶剂为丁二酸、己二酸或柠檬酸中的一种或几种;所述的无机类媒晶剂为硫酸钠、硫酸钙或氢氧化钠中的一种或几种;所述的胶类媒晶剂为明胶或者硅溶胶中的一种或几种。
  4. 如权利要求1-3中任意一项所述的水泥基复合材料的制备方法,其特征在于:包括以下步骤:
    (1)称取适量的媒晶剂,将其放入表面活性剂溶液中浸泡润湿使其改性;然后放入水中溶解;
    (2)称取适量硫铝酸盐水泥和铝酸盐水泥,倒入搅拌锅中,低速搅拌至二者混合均匀;然后缓慢加入1/3~2/3水,低速搅拌至混合均匀;最后加入剩余的水,继续低速搅拌至混合均匀,得到水泥净浆;
    (3)继续高速搅拌水泥净浆40-80s,促进水泥的起始水化速度;转为低速搅拌,缓冲高速搅拌至停机,然后迅速浇注入模,得到制品;
    (4)将制品放置于阴凉干燥处,进行一次养护24-30h,拆模后送入养护箱,进行二次养护3-4天,即得到具备负泊松比效应的水泥基复合材料。
  5. 根据权利要求4所述的水泥基复合材料的制备方法,其特征在于:步骤(1)所述的表面活性剂为石油磺酸盐、月桂基磺化琥珀酸单酯二钠或者单月桂基磷酸酯中的一种或几种;所述表面活性剂溶液的浓度为10-15wt%。
  6. 根据权利要求4所述的水泥基复合材料的制备方法,其特征在于:步骤(4)中制品养护时,对其施加外部应力;所述外部应力施加在制品的上方和两侧,所述外部应力为1×10 -3MPa~2×10 -3MPa。
  7. 根据权利要求4所述的水泥基复合材料的制备方法,其特征在于:步骤(4)中制品进行 二次养护时,养护箱的温度在10℃~60℃范围内均匀往复变动,控温速率为0.5~1.5℃/min。
  8. 如权利要求1所述的具备负泊松比效应的水泥基复合材料;其特征在于:所述的负泊松比结构也可采用3D打印技术得到。
PCT/CN2022/115797 2021-09-06 2022-08-30 一种负泊松比水泥基复合材料及其制备方法 WO2023030303A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247006000A KR102718765B1 (ko) 2021-09-06 2022-08-30 음의 포아송비를 갖는 시멘트계 복합재료 및 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111036103.XA CN113816676B (zh) 2021-09-06 2021-09-06 一种负泊松比水泥基复合材料及其制备方法
CN202111036103.X 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023030303A1 true WO2023030303A1 (zh) 2023-03-09

Family

ID=78914128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115797 WO2023030303A1 (zh) 2021-09-06 2022-08-30 一种负泊松比水泥基复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN113816676B (zh)
WO (1) WO2023030303A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116376225A (zh) * 2023-03-30 2023-07-04 华中科技大学 一种具有自愈合功能的轻质高刚度高阻尼材料及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113816676B (zh) * 2021-09-06 2022-05-31 青岛理工大学 一种负泊松比水泥基复合材料及其制备方法
CN115385635B (zh) * 2022-09-21 2024-03-08 南方科技大学 一种水泥复合材料用点阵结构、水泥复合材料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106495592A (zh) * 2016-11-07 2017-03-15 青岛理工大学 具有负泊松比效应的纤维增强多孔防爆混凝土及制备
CN106517941A (zh) * 2016-11-07 2017-03-22 青岛理工大学 空胞体结构以及其用于制备防爆多孔混凝土的方法
CN106630818A (zh) * 2016-11-07 2017-05-10 青岛理工大学 具有负泊松比效应的防爆多孔混凝土及其制备方法
JP2018058757A (ja) * 2016-09-29 2018-04-12 宇部興産株式会社 セメント系成形体用補強繊維及びその製造方法、それを用いた繊維補強セメント系成形体
EP3434656A1 (en) * 2017-07-27 2019-01-30 Basf Se Engineered cementitious composites comprising pbo fibers
CN110041019A (zh) * 2019-05-10 2019-07-23 南京工业大学 一种嵌合负泊松比泡沫的混凝土材料的制备方法
CN113816676A (zh) * 2021-09-06 2021-12-21 青岛理工大学 一种负泊松比水泥基复合材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633450B (zh) * 2012-05-17 2013-10-16 湖北格林森新型建材科技有限公司 一种具有负离子仿生功能的复合材料及其生产方法
CN102910886A (zh) * 2012-11-13 2013-02-06 张振民 一种硅钙轻体墙板和其制造方法
CN103396050B (zh) * 2013-08-09 2014-11-05 湖北格林森新型建材科技(应城)有限公司 一种无机生态木及其制备方法和应用
CN106499121B (zh) * 2016-11-07 2018-12-11 青岛理工大学 具有负泊松比效应的防爆钢筋混凝土及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058757A (ja) * 2016-09-29 2018-04-12 宇部興産株式会社 セメント系成形体用補強繊維及びその製造方法、それを用いた繊維補強セメント系成形体
CN106495592A (zh) * 2016-11-07 2017-03-15 青岛理工大学 具有负泊松比效应的纤维增强多孔防爆混凝土及制备
CN106517941A (zh) * 2016-11-07 2017-03-22 青岛理工大学 空胞体结构以及其用于制备防爆多孔混凝土的方法
CN106630818A (zh) * 2016-11-07 2017-05-10 青岛理工大学 具有负泊松比效应的防爆多孔混凝土及其制备方法
EP3434656A1 (en) * 2017-07-27 2019-01-30 Basf Se Engineered cementitious composites comprising pbo fibers
CN110041019A (zh) * 2019-05-10 2019-07-23 南京工业大学 一种嵌合负泊松比泡沫的混凝土材料的制备方法
CN113816676A (zh) * 2021-09-06 2021-12-21 青岛理工大学 一种负泊松比水泥基复合材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116376225A (zh) * 2023-03-30 2023-07-04 华中科技大学 一种具有自愈合功能的轻质高刚度高阻尼材料及其应用

Also Published As

Publication number Publication date
CN113816676B (zh) 2022-05-31
CN113816676A (zh) 2021-12-21
KR20240033077A (ko) 2024-03-12

Similar Documents

Publication Publication Date Title
WO2023030303A1 (zh) 一种负泊松比水泥基复合材料及其制备方法
Shaikh et al. Performance evaluation of Ultrahigh performance fibre reinforced concrete–A review
Zhang et al. Investigation of mechanical properties of PVA fiber-reinforced cementitious composites under the coupling effect of wet-thermal and chloride salt environment
Liu et al. Fire resistance of strain hardening cementitious composite with hybrid PVA and steel fibers
Kan et al. Effect of fineness and calcium content of fly ash on the mechanical properties of Engineered Cementitious Composites (ECC)
CN101648402B (zh) 一种利用赤泥生产加气砌块的方法
Zhang et al. Compressive stress–strain behavior of slag-based alkali-activated seawater coral aggregate concrete after exposure to seawater environments
CN112250390B (zh) 用于崩解炭质泥岩的纳米-纤维固化剂及制备、使用方法
Yao et al. Properties of hybrid basalt-polypropylene fiber reinforced mortar at different temperatures
Chen Basic mechanical properties and microstructural analysis of recycled concrete
Zhang et al. Mechanical properties of recycled aggregate concrete prepared from waste concrete treated at high temperature
CN110655344A (zh) 一种适用于强约束叠合墙内衬混凝土用防裂外加剂
Hussain et al. Effect of sustainable glass powder on the properties of reactive powder concrete with polypropylene fibers
Cheng et al. Investigation of the effects of styrene acrylate emulsion and vinyl acetate ethylene copolymer emulsion on the performance and microstructure of mortar
Jiao et al. Bond properties of alkali-activated slag concrete hollow block masonry with different mortar strength grades
Tang et al. Sisal fiber modified construction waste recycled brick as building material: Properties, performance and applications
Tang et al. Effectively reutilizing waste clay brick to prepare a novel green foam concrete base on a new two-step paste substitution method
Wang et al. Mechanical properties of recycled concrete reinforced by basalt fiber and nano-silica
Yang et al. Multi-scale characterization of SAP impact on self-healing behavior in UHPC under varied crack widths and environments
Li et al. Influence of basalt fiber and polypropylene fiber on the mechanical and durability properties of cement-based composite materials
KR102718765B1 (ko) 음의 포아송비를 갖는 시멘트계 복합재료 및 제조방법
Huo et al. Retarding the setting time of alkali-activated slag paste by processing the alkali activator into pills and capsules
Dai et al. Analysis of microstructure and compressive properties of full coral concrete under fiber reinforcement
Zhu et al. Printability and early mechanical properties of material composition modified 3D printing engineered cementitious composites based on the response surface methodology
Jiang et al. The combined effect of steel fiber and MgO on the deformation and mechanical properties of high-strength concrete

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247006000

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247006000

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22863438

Country of ref document: EP

Kind code of ref document: A1