WO2023030257A1 - 功率确定方法、设备和存储介质 - Google Patents

功率确定方法、设备和存储介质 Download PDF

Info

Publication number
WO2023030257A1
WO2023030257A1 PCT/CN2022/115532 CN2022115532W WO2023030257A1 WO 2023030257 A1 WO2023030257 A1 WO 2023030257A1 CN 2022115532 W CN2022115532 W CN 2022115532W WO 2023030257 A1 WO2023030257 A1 WO 2023030257A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power reduction
terminal
communication node
offset
Prior art date
Application number
PCT/CN2022/115532
Other languages
English (en)
French (fr)
Inventor
印亚超
张楠
窦建武
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22863393.9A priority Critical patent/EP4340434A1/en
Priority to KR1020247001933A priority patent/KR20240021310A/ko
Publication of WO2023030257A1 publication Critical patent/WO2023030257A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18504Aircraft used as relay or high altitude atmospheric platform
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/283Power depending on the position of the mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the communication field, for example, to a power determination method, device and storage medium.
  • the transmission coverage of the terminal is relatively wide, and it will interfere with other terminal groups and neighbors.
  • the system is causing interference.
  • the terminal adopts a single maximum transmit power upper limit value in different states, resulting in high transmit power and increased interference.
  • Embodiments of the present application provide a power determination method, device, and storage medium, which reduce system interference and save power consumption of the first communication node.
  • An embodiment of the present application provides a method for determining power, which is applied to a first communication node, including:
  • Receive configuration information where the configuration information is used to indicate N sets of power reduction parameter sets of transmission power; determine the transmission power corresponding to the first communication node according to at least one power reduction parameter in the power reduction parameter sets.
  • An embodiment of the present application provides a power determination method applied to a second communication node, including:
  • Pre-configuring configuration information where the configuration information is used to indicate N sets of power reduction parameter sets of transmit power; sending the configuration information to the first communication node, so that the first communication node determines corresponding transmit power.
  • An embodiment of the present application provides a device for determining power, which is applied to a first communication node, including:
  • the receiver is configured to receive configuration information, and the configuration information is used to indicate N sets of power reduction parameter sets of transmission power; the first determination module is configured to determine the corresponding first power reduction parameter according to at least one power reduction parameter in the power reduction parameter set The transmit power of a communication node.
  • An embodiment of the present application provides a device for determining power, which is applied to a second communication node, including:
  • the pre-configuration module is configured to pre-configure configuration information, and the configuration information is used to indicate N sets of power reduction parameter sets of transmission power; the first transmitter is configured to send the configuration information to the first communication node, so that the second A communication node determines a corresponding transmit power.
  • An embodiment of the present application provides a dry communication device, including: a communication module, a memory, and one or more processors; the communication module is configured as a first terminal, a second terminal in a terminal group, and a second communication node
  • the memory is configured to store one or more programs; when the one or more programs are executed by the one or more processors, the one or more processors realize any of the above A method described in one embodiment.
  • An embodiment of the present application provides a storage medium, the storage medium stores a computer program, and when the computer program is executed by a processor, the method described in any one of the foregoing embodiments is implemented.
  • FIG. 1 is a schematic diagram of side link communication between two terminals in an NR system provided by related technologies
  • FIG. 2 is a flow chart of a method for determining power provided in an embodiment of the present application
  • FIG. 3 is a flow chart of another power determination method provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of communication between a network side and a terminal provided by an embodiment of the present application.
  • FIG. 5 is another schematic diagram of communication between the network side and the terminal provided by the embodiment of the present application.
  • Fig. 6 is a structural block diagram of a power determination device provided by an embodiment of the present application.
  • FIG. 7 is a structural block diagram of another power determination device provided by an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of side link communication between two terminals in an NR system provided by related technologies.
  • the terminal may be a drone.
  • two UAVs can communicate through the Physical Sidelink Broadcast Channel (PSBCH), the Physical Sidelink Shared Channel (PSSCH), the Physical Sidelink Control Channel ( Physical Sidelink Control Channel, PSCCH) and Physical Sidelink Feedback Channel (Physical Sidelink Feedback Channel, PSFCH) for communication.
  • PSBCH Physical Sidelink Broadcast Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSCCH Physical Sidelink Control Channel
  • PSFCH Physical Sidelink Feedback Channel
  • the transmission power of the side link can be determined by means of power control. Exemplarily, the ways of determining the transmission power are divided into the following situations:
  • P CMAX is the maximum transmission power
  • P O, S-SSB is the power target value of the receiving end of S-SSB, wherein, the value of P O, S-SSB can be provided by the high layer parameter dl-P0-PSBCH configuration, otherwise Equal to the maximum transmit power
  • ⁇ S-SSB is the partial path loss compensation factor of S-SSB, where the value of ⁇ S-SSB can be provided by the high layer parameter dl-Alpha-PSBCH configuration, otherwise it is equal to 1
  • PL is the estimated downlink path loss
  • P PSSCH (i) min(P CMAX ,P MAX,CBR ,min(P PSSCH,D (i),P PSSCH,SL (i)))
  • P CMAX is the maximum transmission power
  • P MAX,CBR is the power target value of the receiving end of PSSCH, wherein, the value of P MAX,CBR can be provided by the base station configuration, otherwise it is equal to the maximum transmission power
  • the high layer parameter dl-P0- PSSCH-PSCCH is provided, and the receiving end power target value of the downlink PSSCH
  • P PSSCH, SL (i) min(P CMAX , P MAX , CBR ).
  • P PSSCH (i) refers to the transmission power of PSSCH, and are the resource block numbers of PSCCH and PSSCH respectively.
  • P 0, PSFCH refers to the receiving end power target value of PSFCH, wherein, P 0, PSFCH can be provided by the high layer parameter dl-P0-PSFCH; ⁇ PSFCH refers to the partial path loss compensation factor of PSFCH, which can be obtained by The high layer parameter dl-Alpha-PSFCH is provided, otherwise it is 1; PL is the estimated downlink path loss.
  • the terminal adopts a single maximum transmission power as the upper limit of the maximum transmission power in different states, resulting in high transmission power and increased interference.
  • the embodiment of the present application provides a method for determining power, so as to correct the transmission power of the side link.
  • FIG. 2 is a flowchart of a method for determining power provided in an embodiment of the present application.
  • the power determining device may be the first communication node.
  • the first communication node may be the first terminal in the terminal group, or may be the second terminal in the terminal group.
  • this embodiment includes:
  • S210 Receive configuration information, where the configuration information is used to indicate N sets of power reduction parameter sets of transmit power.
  • the value of N is related to the number of terminals included in the terminal group. It can be understood that the value of N is equal to the number of terminals included in one terminal group.
  • the terminal refers to an unmanned aerial vehicle, that is, the terminal group is an unmanned aerial vehicle group composed of unmanned aerial vehicles. It can be understood that N is a positive integer greater than or equal to 2.
  • each terminal corresponds to a set of power reduction parameter sets.
  • the power reduction parameter set includes one or more power reduction parameters, and the power reduction parameter refers to a parameter that can realize power reduction.
  • the second communication node pre-configures the configuration information and sends the configuration information to the first communication node.
  • the first communication node determines the corresponding transmission power according to at least one corresponding power reduction parameter, thereby reducing the transmission power, thereby achieving the purpose of reducing system interference and saving power consumption of the first communication node.
  • the power reduction parameter set includes at least one of the following parameters:
  • the second communication node preconfigures the mapping relationship between the received signal quality and the first power reduction factor, the mapping relationship between the received signal quality and the second power reduction factor, and the relationship between the received signal quality and the power reduction amount The mapping relationship among them; then the mapping relationship between the first power reduction factor, the second power reduction factor and the power reduction amount and the quality of the received signal is sent to the first communication node, so that the first communication node determines according to the quality of the received signal Corresponding first power reduction factor, second power reduction factor and power reduction amount.
  • the offset of the first power reduction factor is used to determine the offset of the first power reduction factor of the relative position between different second terminals and the first terminal under the condition that the second terminal is controlled by the first terminal;
  • the second The power reduction factor offset is used to determine the offset of the second power reduction factor of the relative position between different second terminals and the first terminal when the second terminal is controlled by the first terminal;
  • the power reduction offset value It is used for determining the offset value of the power reduction amount of different relative positions of the second terminal and the first terminal under the condition that the first terminal controls the second terminal.
  • the second communication node preconfigures the mapping relationship between the relative position of the first terminal and the terminal group and the offset of the first power reduction factor, and the relative position of the first terminal and the terminal group and the second power reduction factor
  • the mapping relationship between the offsets, the mapping relationship between the relative position of the first terminal and the terminal group and the offset value of the power reduction amount, and then the first power reduction factor offset, the second power reduction factor offset and the mapping relationship between the power reduction amount offset value and the relative position of the first terminal and the terminal group are sent to the first communication node, so that the first communication node determines the corresponding first power according to the relative position of the first terminal and the terminal group Reduction Factor Offset, Second Power Reduction Factor Offset, and Power Reduction Amount Offset Values.
  • the first communication node's flight altitude is determined according to the mapping relationship between the pre-configured positioning altitude and the upper limit of the maximum transmission power.
  • the upper limit of the maximum transmit power exemplaryily, when the first communication node is on the ground, 26dBm may be used as the maximum transmit power upper limit; when the first communication node is in the air, 23dBm may be used as the maximum transmit power upper limit.
  • the upper limit value of the maximum transmission power of the first communication node is associated with different resource pools, wherein the resource pools include at least one of the following items: different numbers of time-frequency resources, and uplink types with different priorities , business types with different priorities.
  • the second communication node pre-configures the maximum transmission power offset value, and determines the maximum transmission power upper limit value corresponding to the first communication node according to the maximum transmission power and the maximum transmission power offset value.
  • the first power reduction factor and the first power reduction factor offset are used to indicate the reduction factor of the receiving end power target value; the second power reduction factor and the second power reduction factor offset are used to indicate the estimated The reduction factor of the downlink path loss; the power reduction amount and the power reduction amount offset value are used to indicate the reduction amount of the transmit power control part.
  • the transmission power can be corrected by the first power reduction factor, the second power reduction factor or the power reduction amount to obtain the reduced transmission power; the first power reduction factor and the first power reduction factor can also be used The combination of the offset, the combination of the second power reduction factor and the offset of the second power reduction factor, or the power reduction and the power reduction offset value correct the transmission power, so as to obtain the reduced transmission power.
  • the upper limit value of the maximum transmission power of the first communication node used to determine the transmission power may be determined in one of the following ways:
  • the current positioning position may include the current positioning height.
  • the first communication node may receive the maximum transmit power upper limit pre-configured by the second communication node, and determine the corresponding transmit power according to the maximum transmit power upper limit and at least one power reduction parameter; or directly according to The corresponding transmission power is determined by the upper limit value of the maximum transmission power corresponding to its own capability level and at least one power reduction parameter; the corresponding transmission power may also be determined according to the at least one power reduction parameter and the maximum transmission power directly preconfigured by the first communication node.
  • the second communication node may determine the corresponding transmission power according to the first The position information of the communication node (for example, the positioning height), the type of the first communication node, the resource pool where it is located, or the maximum transmission power upper limit value corresponding to the configuration of the maximum transmission power offset value, that is, the second communication node configures the first communication node Mapping relationships between location information (for example, positioning height), type of the first communication node, resource pool where it is located, or maximum transmission power offset value and maximum transmission power upper limit value respectively.
  • the first communication node may not receive the second communication node's advance
  • the configured maximum transmit power upper limit may also be understood as that the second communication node does not need to configure the maximum transmit power upper limit.
  • the type of the first communication node is related to the location of the first communication node, for example, the first communication node can fly in the air, then the type of the first communication node is an air flight device, such as an unmanned aerial vehicle; In another example, the first communication node can operate on the ground, and the type of the first communication node is a ground terminal device, such as a smart phone.
  • the first communication node when the first communication node determines the corresponding transmit power according to at least one power reduction parameter and the maximum transmit power directly preconfigured by the first communication node, the first communication node may (Modulation and Coding Scheme, MCS) directly pre-configures the maximum transmit power (that is, a fixed value), and takes the maximum transmit power as the maximum transmit power upper limit, and then determines it according to the maximum transmit power upper limit and at least one power reduction parameter corresponding transmit power.
  • MCS Modulation and Coding Scheme
  • the received signal quality includes at least one of the following items: Reference Signal Received Power (Reference Signal Received Power, RSRP), Path Loss (Path Loss, PL), Signal to Interference plus Noise Ratio (Signal to Interference plus Noise Ratio , SINR).
  • Reference Signal Received Power Reference Signal Received Power
  • RSRP Reference Signal Received Power
  • Path Loss Path Loss
  • PL Signal to Interference plus Noise Ratio
  • SINR Signal to Interference plus Noise Ratio
  • the bearer signaling of the power reduction parameter set includes one of the following: system information block (System Information Block, SIB), downlink control information (DownLink Control Information, DCI), radio resource control (Radio Resource Control, RRC) signaling.
  • SIB System Information Block
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • the second communication node sends the power reduction parameter set to the first communication node through the above bearer signaling.
  • the bearer signaling of the maximum transmit power upper limit also includes one of the following: SIB, DCI, and RRC signaling.
  • the method of determining the power reduction parameter includes one of the following:
  • the first power reduction factor of the first communication node is determined according to the detected received signal quality and the pre-configured mapping relationship between the received signal quality and the first power reduction factor ;
  • the power reduction parameter is the second power reduction factor, determine the second power reduction of the first communication node according to the detected received signal quality and the mapping relationship between the preconfigured received signal quality and the second power reduction factor Factor; in the case where the power reduction parameter is a power reduction amount, the power reduction amount of the first communication node is determined according to the detected received signal quality and the pre-configured mapping relationship between the received signal quality and the power reduction amount; in the power reduction
  • the parameter is the offset of the first power reduction factor, according to the relative position of the first terminal and the terminal group, and the pre-configured relative position of the first terminal and the terminal group and the first power reduction factor offset
  • the mapping relationship determines the first power reduction factor offset of the first communication node; when the power reduction parameter is the second power reduction factor offset, according to the relative position of the first power reduction factor offset, according to the relative position of the
  • the second communication node when the first communication node is directly controlled by the second communication node, the second communication node may be determined according to the detected received signal quality and the pre-configured mapping relationship between the received signal quality and the first power reduction factor.
  • a first power reduction factor of a communication node; the second power reduction factor of the first communication node may be determined according to the detected received signal quality and the mapping relationship between the pre-configured received signal quality and the second power reduction factor;
  • the detected received signal quality and the pre-configured mapping relationship between the received signal quality and the power reduction amount determine the power reduction amount of the first communication node.
  • the first terminal controls all the second terminals in the terminal group, the relative position of the first terminal and the terminal group, and the pre-configured relative position of the first terminal and the terminal group and the second
  • a mapping relationship between power reduction factor offsets determines the first power reduction factor offset of the first communication node; it can also be based on the relative position of the first terminal and the terminal group, and the pre-configured first terminal and terminal
  • the mapping relationship between the relative position of the group and the second power reduction factor offset determines the second power reduction factor offset of the first communication node; it can also be based on the relative position of the first terminal and the terminal group, and the pre-configured
  • the mapping relationship between the relative positions of the first terminal and the terminal group and the power reduction offset value determines the power reduction offset value of the first communication node.
  • the power reduction parameter of the first communication node is the power reduction parameter of the first terminal; the maximum transmit power upper limit of the first communication node The value is the upper limit value of the maximum transmission power of the first terminal.
  • the power determination method applied to the first communication node further includes:
  • the power reduction parameter of the terminal group determines the power reduction parameter corresponding to the second terminal in the terminal group; determines the maximum transmission power upper limit value of the second terminal in the terminal group according to the maximum transmission power upper limit value of the first terminal.
  • the first terminal when the second communication node directly controls all terminals (including the first terminal and the second terminal) in the terminal group, the first terminal receives the power reduction parameter set and the maximum transmission power transmitted by the second communication node. limit value, and detect the received signal quality to determine the respective first power reduction factor, second power reduction factor and power reduction amount of each terminal in the terminal group.
  • the second terminal receives the power reduction parameters of the first terminal and the maximum transmission power upper limit value of the first terminal sent by the first terminal, and according to the second terminal Determine the relative distance to the first terminal based on the location information of the first terminal, determine the power reduction parameter of the second terminal according to the power reduction parameter and the relative distance of the first terminal, and directly set the upper limit value of the maximum transmit power of the first terminal to It is used as the upper limit value of the maximum transmission power of the second terminal in the terminal group.
  • the first terminal broadcasts information to the second terminal in the terminal group through a master information block (Master Information Block, MIB).
  • MIB Master Information Block
  • determining the transmission power corresponding to the first communication node according to at least one power reduction parameter in the power reduction parameter set and the maximum transmission power upper limit value includes one of the following:
  • the transmit power corresponding to the first communication node Determine the transmit power corresponding to the first communication node according to the maximum transmit power upper limit value, the first power reduction factor, the receiving end power target value, the number of resource blocks, the partial path loss factor and the estimated downlink path loss; according to the maximum transmit power upper limit value, the receiving end power target value, the number of resource blocks, the partial path loss factor, the second power reduction factor and the estimated downlink path loss to determine the transmit power corresponding to the first communication node; according to the maximum transmit power upper limit value, the receiving end power target value, number of resource blocks, partial path loss factor, estimated downlink path loss and power reduction amount to determine the transmit power corresponding to the first communication node; according to the maximum transmit power upper limit value, the first power reduction factor, the first power reduction factor offset Determine the transmit power corresponding to the first communication node according to the maximum transmit power upper limit value, the receive end power target value, and the number of resource blocks , a partial path loss factor, a second power reduction factor, an offset of the second power reduction factor, and an
  • the upper limit value determines the corresponding transmission power; in the case that all the second terminals in the terminal group are controlled by the first terminal, the combination of the first power reduction factor and the first power reduction factor offset, the second power reduction The combination of the factor and the offset of the second power reduction factor, the combination of at least one of the combination of the power reduction amount and the offset value of the power reduction amount, and the maximum upper limit value of the transmission power determine the corresponding transmission power.
  • the first terminal and/or the second terminal under the same area identifier adopt the same power reduction parameter and maximum transmit power upper limit value.
  • the zone identifier (Identifier, ID) refers to the Zone ID.
  • the first terminal and the second terminal located in the same area, or both the first terminal and the second terminal use the same power reduction parameter and maximum transmission power upper limit value, thereby reducing the number of second communication nodes The cumbersome configuration process for the configuration information reduces the amount of data received by the first communication node.
  • FIG. 3 is a flowchart of another method for determining power provided in an embodiment of the present application.
  • This embodiment can be performed by a power determination device.
  • the power determining device may be the second communication node.
  • the second communication node may be a network side (for example, a base station, or a core network). As shown in Figure 3, this embodiment includes:
  • S310 Preconfigure configuration information, where the configuration information is used to indicate N sets of power reduction parameter sets of transmit power.
  • the second communication node pre-configures the configuration information, and sends the configuration information to the first communication node, so that the first communication node reduces the transmission power according to the corresponding power reduction parameter, so as to reduce the impact on the system Interfering and saving power consumption of the first communication node.
  • the power reduction parameter sets corresponding to each first communication node may be different.
  • the power reduction parameter set includes at least one of the following parameters:
  • the first power reduction factor and the first power reduction factor offset are used to indicate the reduction factor of the receiving end power target value; the second power reduction factor and the second power reduction factor offset are used to indicate the estimated The reduction factor of the downlink path loss; the power reduction amount and the power reduction amount offset value are used to indicate the reduction amount of the transmit power control part.
  • the bearer signaling of the power reduction parameter set and the maximum transmit power upper limit value includes one of the following: SIB, DCI, and RRC signaling.
  • the first communication node is used as the first terminal
  • the second communication node is the network side
  • the first terminal controls all the second terminals in the terminal group, and the power target value of the receiving end is reduced to
  • the process of determining the transmit power will be described.
  • the first terminal is the master drone
  • the second terminal is the slave drone, that is, the terminal group is a drone group.
  • FIG. 4 is a schematic diagram of communication between a network side and a terminal provided by an embodiment of the present application.
  • the network side sends the pre-configured power reduction parameter set and the maximum transmit power upper limit value to the first terminal, and then the first terminal sends the power reduction parameter set and the maximum transmit power upper limit value to the second terminal, So that the second terminal determines the corresponding transmit power.
  • the first terminal may directly use the received power reduction parameter set and the maximum transmission power upper limit value corresponding to its own capability level, or the received power reduction parameter set and the maximum transmission power directly configured in advance by the network side. Power, to determine the corresponding transmit power.
  • the process of determining the transmission power includes S11-S19.
  • the network side pre-configures the mapping relationship between the received signal quality and the first power reduction factor ⁇ reduce , and the mapping relationship between the offset of the first power reduction factor ⁇ reduce and the relative positions of the first terminal and the terminal group.
  • the received signal quality includes at least one of RSRP, PL and SINR.
  • Table 1 is a table of mapping relationship between received signal quality and first power reduction factor
  • Table 2 is a table of mapping relationship between offset value of first power reduction factor and relative position. The mapping relationship can be shown in the following table:
  • Table 1 The mapping relationship table between the received signal quality and the first power reduction factor
  • n in Table 1 is the threshold number of received signal quality.
  • m in Table 2 is the number of UAVs in the UAV group. It can be understood that the relative position between each UAV and the main UAV corresponds to a first power reduction factor offset.
  • the first power reduction factor is associated with an area identifier (ie, area ID).
  • area ID an area identifier
  • Table 3 is a mapping relationship table between the same area ID and the first power reduction factor.
  • the same area ID in the m areas uses the same first power reduction factor ⁇ reduce .
  • the network side pre-configures the mapping relationship between the maximum transmission power upper limit value P CAMX,level and the positioning height of the UAV. For example, if the UAV is in the air, P CAMX,level is PC3 (23dBm); if the UAV is on the ground, P CAMX, level is PC2 (26dBm), or as shown in Table 4 below. Table 4 is the mapping relationship between the different positioning heights of the UAV and the upper limit of the maximum transmission power.
  • Table 4 The mapping relationship between the positioning height of the UAV and the upper limit of the maximum transmission power
  • L is the number of different height thresholds.
  • the maximum transmit power upper limit value is associated with different resource pools, where the resource pools include at least one of different numbers of time-frequency resources, uplink types with different priorities, and service types with different priorities; for example, it may be The number of time-frequency resources is more, and the resource allocation of the PSSCH channel with higher priority than the PSCCH channel link type or the PWS public warning information with a higher business type priority is larger.
  • the base station communicates the mapping relationship between the received signal quality and ⁇ reduce , the mapping relationship between ⁇ reduce and the relative position of each slave drone in the master drone and the drone group, and P CAMX,level and The mapping relationship of positioning height; or, the mapping relationship between received signal quality and ⁇ reduce , the mapping relationship between ⁇ reduce and the relative position of the master UAV and each slave UAV in the UAV swarm, and the ⁇ offset sending master UAV
  • the signaling includes at least one of SIB, DCI, and RRC signaling.
  • the main UAV determines the quality of the received signal according to the detected received signal, and determines the first power reduction factor of the mapped main UAV according to the quality of the received signal
  • the main UAV determines the maximum transmission power upper limit value according to the current positioning height, different resource pools or the received maximum transmission power offset value ⁇ offset
  • the current positioning height of the main UAV can be determined through the positioning height of the Global Positioning System (GPS).
  • GPS Global Positioning System
  • the broadcast signal adopted by the master UAV to broadcast information to the slave UAVs in the UAV group is MIB.
  • the slave drone in the drone group receives the above broadcast information and calculates the relative distance ⁇ d according to its own GPS position information, and determines the first power reduction factor corresponding to the slave drone and the upper limit of the maximum transmit power
  • the transmission power of the drones in the drone group is:
  • the corrected transmission power is:
  • P PSSCH (i) min(P CMAX,level ,P MAX,CBR ,min(P PSSCH,D (i),P PSSCH,SL (i)))
  • the corrected transmission power is:
  • P PSSCH (i) refers to the transmission power of the modified PSSCH, and the meanings and values of other parameters are as described above.
  • the corrected transmission power is:
  • P PSFCH,one ⁇ ′ reduce ⁇ P O,PSFCH +10log 10 (2 ⁇ )+ ⁇ PSFCH ⁇ PL
  • ⁇ ' reduce and P CAMX,level are as described above, and other parameters are configured by the upper layers of the power control scheme in the NR system.
  • the first communication node is used as the first terminal, the second communication node is the network side, and the first terminal controls all the second terminals in the terminal group, and the downlink path loss PL is reduced to
  • the process of determining the transmit power will be described.
  • the first terminal is the master drone, and the second terminal is the slave drone, that is, the terminal group is a drone group.
  • the communication connection between the network side and the terminal is shown in FIG. 4 in the above embodiment.
  • the first terminal may directly use the received power reduction parameter set and the maximum transmission power upper limit value corresponding to its own capability level, or the received power reduction parameter set and the maximum transmission power directly configured in advance by the network side. Power, to determine the corresponding transmit power.
  • the process of determining the transmit power in this embodiment includes S21-S29.
  • the network side pre-configures the mapping relationship between the received signal quality and the second power reduction factor ⁇ reduce , and the mapping relationship between the second power reduction factor offset ⁇ reduce and the relative positions of the first terminal and the terminal group.
  • the received signal quality includes at least one of RSRP, PL and SINR.
  • Table 5 is a table of mapping relationship between received signal quality and second power reduction factor
  • Table 6 is a table of mapping relationship between offset value of second power reduction factor and relative position. The mapping relationship can be shown in the following table:
  • Table 5 The mapping relationship table between the received signal quality and the second power reduction factor
  • n in Table 5 is the threshold number of received signal quality.
  • m in Table 6 is the number of UAVs in the UAV group. It can be understood that the relative position between each UAV and the main UAV corresponds to a second power reduction factor offset.
  • the second power reduction factor is associated with an area identifier (ie, area ID).
  • Table 7 is a mapping relationship table between the same area ID and the second power reduction factor.
  • the same area ID in the m areas uses the same second power reduction factor ⁇ ' reduce .
  • the network side pre-configures the mapping relationship between the upper limit of the maximum transmission power P CAMX,level and the positioning height of the UAV. For example, if the UAV is in the air, the P CAMX,level is PC3 (23dBm) ; level is PC2 (26dBm), or as shown in Table 4 in the above embodiment.
  • pre-configure the maximum transmission power upper limit value associated with different resource pools; or, pre-configure the maximum transmission power offset value ⁇ offset , that is, the maximum transmission power upper limit value PCMAX,Level PCMAX + ⁇ offset .
  • the base station communicates the mapping relationship between the quality of the received signal and the ⁇ reduce , the mapping relationship between the ⁇ reduce and the relative position of the master drone and each slave drone in the drone group, and P CAMX,level and The mapping relationship of positioning height; or, the mapping relationship between received signal quality and ⁇ reduce , the mapping relationship between ⁇ reduce and the relative position of the master UAV and each slave UAV in the UAV swarm, and the ⁇ offset sending the master UAV
  • the signaling includes at least one of SIB, DCI, and RRC signaling.
  • the main UAV determines the quality of the received signal according to the detected received signal, and determines the second power reduction factor of the mapped main UAV according to the quality of the received signal
  • the main UAV determines the maximum transmission power upper limit value according to the current positioning height, different resource pools or the received maximum transmission power offset value ⁇ offset
  • the current positioning altitude of the main UAV can be determined through the GPS positioning altitude.
  • the main UAV broadcasts ⁇ reduce and and its position to the slave drones in the drone swarm.
  • the broadcast signal adopted by the master UAV to broadcast information to the slave UAVs in the UAV group is MIB.
  • the slave drone in the drone group receives the above broadcast information and calculates the relative distance ⁇ d according to its own GPS position information, and determines the second power reduction factor corresponding to the slave drone and the upper limit of the maximum transmit power
  • the transmission power of the drones in the drone group is:
  • the corrected transmission power is:
  • P PSSCH (i) min(P CMAX,level ,P MAX,CBR ,min(P PSSCH,D (i),P PSSCH,SL (i)))
  • the corrected transmission power is:
  • P PSSCH (i) refers to the transmission power of the modified PSSCH, and the meanings and values of other parameters are as described above.
  • the corrected transmission power is:
  • P PSFCH,one P O,PSFCH +10log 10 (2 ⁇ )+( ⁇ PSFCH - ⁇ ′ reduce ) ⁇ PL
  • ⁇ ′ reduce and P CAMX,level are as described above, and other parameters are configured by the upper layers of the power control scheme in the NR system.
  • the first communication node is used as the first terminal, and the second communication node is the network side, and the first terminal manages and controls all the second terminals in the terminal group, and the transmission power is reduced by the power reduction amount
  • the first terminal is the master drone
  • the second terminal is the slave drone, that is, the terminal group is a drone group.
  • the communication connection between the network side and the terminal is shown in FIG. 4 in the above embodiment.
  • the first terminal may directly use the received power reduction parameter set and the maximum transmission power upper limit value corresponding to its own capability level, or the received power reduction parameter set and the maximum transmission power directly configured in advance by the network side. Power, to determine the corresponding transmit power.
  • the process of determining the transmission power in this embodiment includes S31-S39.
  • the network side pre-configures the mapping relationship between the received signal quality and the power reduction amount ⁇ reduce , and the mapping relationship between the power reduction amount offset value ⁇ and the relative positions of the first terminal and the terminal group.
  • the received signal quality includes at least one of RSRP, PL and SINR.
  • Table 8 is a mapping relationship table between received signal quality and power reduction amount
  • Table 9 is a mapping relationship table between power reduction amount and relative position. The mapping relationship can be shown in the following table:
  • n in Table 8 is the threshold number of received signal quality.
  • m in Table 9 is the number of UAVs in the UAV group. It can be understood that the relative position between each drone and the main drone corresponds to a power reduction offset value.
  • the power reduction amount is associated with a region identifier (ie region ID).
  • region ID region identifier
  • Table 10 is a table of mapping relationship between the ID of the same area and the power reduction amount.
  • the same area ID in m areas uses the same power reduction amount ⁇ ' reduce .
  • the network side pre-configures the mapping relationship between the maximum transmission power upper limit P CAMX,level and the positioning height of the drone. For example, if the drone is in the air, the P CAMX,level is PC3 (23dBm); if the drone is on the ground, P CAMX, level is PC2 (26dBm), or as shown in Table 4 in the above embodiment.
  • pre-configure the maximum transmission power upper limit value associated with different resource pools; or, pre-configure the maximum transmission power offset value ⁇ offset , that is, the maximum transmission power upper limit value PCMAX,Level PCMAX + ⁇ offset .
  • the base station uses signaling to map the received signal quality to ⁇ reduce , the mapping relationship between ⁇ and the relative position of the master UAV and each slave UAV in the UAV group, and P CAMX,level and positioning Altitude mapping relationship; or, the mapping relationship between received signal quality and ⁇ reduce , the mapping relationship between ⁇ and the relative position of the master UAV and each slave UAV in the UAV group, and the ⁇ offset sending master UAV machine, the signaling includes at least one of SIB, DCI, and RRC signaling.
  • the main UAV determines the received signal quality according to the detected received signal, and determines the power reduction amount of the mapped main UAV according to the received signal quality
  • the main UAV determines the maximum transmission power upper limit value according to the current positioning height, different resource pools or the received maximum transmission power offset value ⁇ offset
  • the current positioning altitude of the main UAV can be determined through the GPS positioning altitude.
  • the main UAV broadcasts ⁇ and and its position to the slave drones in the drone swarm.
  • the broadcast signal adopted by the master UAV to broadcast information to the slave UAVs in the UAV group is MIB.
  • the slave drone in the drone group receives the above broadcast information and calculates the relative distance ⁇ d according to its own GPS position information, and determines the second power reduction factor corresponding to the slave drone and the upper limit of the maximum transmit power
  • the transmission power of the drones in the drone group is:
  • the corrected transmission power is:
  • P PSSCH (i) min(P CMAX,level ,P MAX,CBR ,min(P PSSCH,D (i),P PSSCH,SL (i)))
  • ⁇ ′ reduce and P CAMX,level are as mentioned above, PL is the estimated path loss, and other parameters are configured by the upper layers of the power control scheme in the NR system.
  • the corrected transmission power is:
  • P PSSCH (i) refers to the transmission power of the modified PSSCH, and the meanings and values of other parameters are as described above.
  • the corrected transmission power is:
  • P PSFCH,one P O,PSFCH +10log 10 (2 ⁇ )+ ⁇ PSFCH ⁇ PL- ⁇ ′ reduce
  • ⁇ ′ reduce and P CAMX,level are as mentioned above
  • PL is the path loss of the trajectory
  • other parameters are configured by the upper layers of the power control scheme in the NR system.
  • the first communication node is used as the first terminal, and the second communication node is the network side, and all terminals in the terminal group (ie, the first terminal and the second terminal) are directly managed by the network side, and the Taking the reduction of the power target value at the receiving end as an example, the process of determining the transmit power is described.
  • the first terminal is the master drone
  • the second terminal is the slave drone, that is, the terminal group is a drone group.
  • FIG. 5 is another schematic diagram of communication between a network side and a terminal provided by an embodiment of the present application.
  • the network side sends the pre-configured power reduction parameter set and the maximum transmission power upper limit value to the first terminal and the second terminal in the terminal group, so that the first terminal and the second terminal determine the corresponding transmission power.
  • the first terminal may directly use the received power reduction parameter set and the maximum transmission power upper limit value corresponding to its own capability level, or the received power reduction parameter set and the maximum transmission power directly configured in advance by the network side. Power, to determine the corresponding transmit power.
  • the process of determining the transmission power includes S41-S49.
  • the network side pre-configures the mapping relationship between the received signal quality and the first power reduction factor ⁇ reduce , and the maximum transmission power upper limit PCMAX,level of different positioning heights or different resource pools; or, the received signal quality and the first power
  • the mapping relationship of the reduction factor ⁇ reduce , and the maximum transmission power offset value ⁇ offset .
  • the received signal quality includes at least one of RSRP, PL and SINR.
  • the mapping relationship between the received signal quality and the first power reduction factor is shown in Table 1, and the mapping relationship between different positioning heights and the maximum transmission power upper limit value is shown in Table 4.
  • the first power reduction factor is associated with the area identifier (ie area ID), that is, the same area ID in the m areas uses the same first power reduction factor ⁇ ' reduce , as shown in Table 3.
  • the base station communicates the mapping relationship between received signal quality and ⁇ reduce , and the mapping relationship between P CAMX,level and positioning height through signaling; or, the mapping relationship between received signal quality and ⁇ reduce , and the ⁇ offset sending UAV group
  • the signaling includes at least one of SIB, DCI, and RRC signaling.
  • the UAV group receives the above information, and determines the first power reduction factor of each UAV according to the detected received signal quality, or, all terminals under the same area ID use the same first power reduction factor ⁇ ' reduce .
  • Each UAV in the UAV group determines the maximum transmission power upper limit PCMAX,level according to the positioning height, related configurations of different resource pools, or the received maximum transmission power offset value ⁇ offset .
  • the UAVs in the UAV group determine their transmit power according to their respective ⁇ ′ reduce and PCMAX,level .
  • the corrected transmission power is:
  • the corrected transmission power is:
  • P PSSCH (i) min(P CMAX,level ,P MAX,CBR ,min(P PSSCH,D (i),P PSSCH,SL (i)))
  • the corrected transmission power is:
  • P PSSCH (i) refers to the transmission power of the modified PSSCH, and the meanings and values of other parameters are as described above.
  • the corrected transmission power is:
  • P PSFCH,one ⁇ ′ reduce ⁇ P O,PSFCH +10log 10 (2 ⁇ )+ ⁇ PSFCH ⁇ PL
  • ⁇ ' reduce and P CAMX,level are as described above, and other parameters are configured by the upper layers of the power control scheme in the NR system.
  • the first communication node is used as the first terminal, and the second communication node is the network side, and all terminals in the terminal group (ie, the first terminal and the second terminal) are directly managed by the network side, and the Taking downlink path loss reduction as an example, the process of determining the transmit power is described.
  • the first terminal is the master drone
  • the second terminal is the slave drone, that is, the terminal group is a drone group.
  • the communication connection between the network side and the terminal is shown in FIG. 5 in the above embodiment.
  • the first terminal may directly use the received power reduction parameter set and the maximum transmission power upper limit value corresponding to its own capability level, or the received power reduction parameter set and the maximum transmission power directly configured in advance by the network side. Power, to determine the corresponding transmit power.
  • the process of determining the transmission power in this embodiment includes S51-S56.
  • the network side pre-configures the mapping relationship between the received signal quality and the second power reduction factor ⁇ reduce , and the maximum transmission power upper limit PCMAX,level of different positioning heights or different resource pools; or, the received signal quality and the second power
  • the mapping relationship of the reduction factor ⁇ reduce , and the maximum transmission power offset value ⁇ offset .
  • the received signal quality includes at least one of RSRP, PL and SINR.
  • the mapping relationship between the received signal quality and the second power reduction factor is shown in Table 5, and the mapping relationship between different positioning heights and the maximum transmission power upper limit value is shown in Table 4.
  • the second power reduction factor is associated with the area identifier (ie area ID), that is, the same area ID in the m areas uses the same second power reduction factor ⁇ ' reduce , as shown in Table 7.
  • the base station transmits the mapping relationship between received signal quality and ⁇ reduce , and the mapping relationship between P CAMX,level and positioning height through signaling; or, the mapping relationship between received signal quality and ⁇ reduce , and the ⁇ offset sending UAV group
  • the signaling includes at least one of SIB, DCI, and RRC signaling.
  • the drone group receives the above information, and determines the second power reduction factor of each drone according to the detected received signal quality, or, all terminals under the same area ID use the same second power reduction factor ⁇ ′ reduce .
  • Each UAV in the UAV group determines the maximum transmission power upper limit PCMAX,level according to the positioning height, related configurations of different resource pools, or the received maximum transmission power offset value ⁇ offset .
  • the UAVs in the UAV group determine their transmit power according to their respective ⁇ ′ reduce and PCMAX,level .
  • the corrected transmission power is:
  • the corrected transmission power is:
  • P PSSCH (i) min(P CMAX,level ,P MAX,CBR ,min(P PSSCH,D (i),P PSSCH,SL (i)))
  • the corrected transmission power is:
  • P PSSCH (i) refers to the transmission power of the modified PSSCH, and the meanings and values of other parameters are as described above.
  • the corrected transmission power is:
  • P PSFCH,one P O,PSFCH +10log 10 (2 ⁇ )+( ⁇ PSFCH - ⁇ ′ reduce ) ⁇ PL
  • ⁇ ′ reduce and P CAMX,level are as described above, and other parameters are configured by the upper layers of the power control scheme in the NR system.
  • the first communication node is used as the first terminal
  • the second communication node is the network side
  • the network side directly manages and controls all terminals in the terminal group (that is, the first terminal and the second terminal), and through
  • the power reduction amount is used as an example to reduce the transmission power, and the process of determining the transmission power is described.
  • the first terminal is the master drone
  • the second terminal is the slave drone, that is, the terminal group is a drone group.
  • the communication connection between the network side and the terminal is shown in FIG. 5 in the above embodiment.
  • the first terminal may directly use the received power reduction parameter set and the maximum transmission power upper limit value corresponding to its own capability level, or the received power reduction parameter set and the maximum transmission power directly configured in advance by the network side. Power, to determine the corresponding transmit power.
  • the process of determining the transmission power in this embodiment includes S61-S66.
  • the network side pre-configures the mapping relationship between the received signal quality and the power reduction amount ⁇ reduce , and the maximum transmission power upper limit PCMAX,level of different positioning heights or different resource pools; or, the received signal quality and the power reduction amount ⁇ reduce The mapping relationship of , and the maximum transmission power offset value ⁇ offset .
  • the received signal quality includes at least one of RSRP, PL and SINR.
  • the mapping relationship between the received signal quality and the power reduction amount ⁇ reduce is shown in Table 8, and the mapping relationship between different positioning heights and the upper limit of the maximum transmission power is shown in Table 4.
  • the power reduction amount is associated with the area identifier (ie, the area ID), that is, the same area ID in the m areas uses the same power reduction amount ⁇ reduce , as shown in Table 10.
  • the base station transmits the mapping relationship between received signal quality and ⁇ reduce , and the mapping relationship between P CAMX,level and positioning height through signaling; or, the mapping relationship between received signal quality and ⁇ reduce , and the ⁇ offset sending UAV group
  • the signaling includes at least one of SIB, DCI, and RRC signaling.
  • the UAV group receives the above information, and determines the power reduction ⁇ ′ reduce of each UAV according to the detected received signal quality, or all terminals under the same area ID use the same power reduction ⁇ ′ reduce .
  • Each UAV in the UAV group determines the maximum transmission power upper limit PCMAX,level according to the positioning height, related configurations of different resource pools, or the received maximum transmission power offset value ⁇ offset .
  • the UAVs in the UAV group determine their transmit power according to their respective ⁇ ′ reduce and PCMAX,level .
  • the corrected transmission power is:
  • the corrected transmission power is:
  • P PSSCH (i) min(P CMAX,level ,P MAX,CBR ,min(P PSSCH,D (i),P PSSCH,SL (i)))
  • the corrected transmission power is:
  • P PSSCH (i) refers to the transmission power of the modified PSSCH, and the meanings and values of other parameters are as described above.
  • the corrected transmission power is:
  • P PSFCH,one P O,PSFCH +10log 10 (2 ⁇ )+ ⁇ PSFCH ⁇ PL- ⁇ r , educe
  • ⁇ ′ reduce and P CAMX,level are as described above, and other parameters are configured by the upper layers of the power control scheme in the NR system.
  • FIG. 6 is a structural block diagram of a device for determining power provided in an embodiment of the present application. This embodiment is applied to a power determination device. Wherein, the power determining device may be the first communication node. As shown in FIG. 6 , this embodiment includes: a receiver 610 and a first determination module 620 .
  • the receiver 610 is configured to receive configuration information, and the configuration information is used to indicate N sets of power reduction parameter sets of transmission power; the first determination module 620 is configured to determine the corresponding first power reduction parameter according to at least one power reduction parameter in the power reduction parameter set The transmit power of a communication node.
  • the power reduction parameter set includes at least one of the following parameters:
  • the upper limit value of the maximum transmit power of the first communication node used to determine the transmit power may be determined in one of the following ways:
  • the first power reduction factor and the first power reduction factor offset are used to indicate the reduction factor of the receiving end power target value; the second power reduction factor and the second power reduction factor offset are used to indicate the estimated The reduction factor of the downlink path loss; the power reduction amount and the power reduction amount offset value are used to indicate the reduction amount of the transmit power control part.
  • the received signal quality includes at least one of the following: RSRP, PL, SINR.
  • the bearer signaling of the power reduction parameter set includes one of the following: SIB, DCI, and RRC signaling.
  • the method of determining the power reduction parameter includes one of the following:
  • the first power reduction factor of the first communication node is determined according to the detected received signal quality and the pre-configured mapping relationship between the received signal quality and the first power reduction factor ;
  • the power reduction parameter is the second power reduction factor, determine the second power reduction of the first communication node according to the detected received signal quality and the mapping relationship between the preconfigured received signal quality and the second power reduction factor Factor; in the case where the power reduction parameter is a power reduction amount, the power reduction amount of the first communication node is determined according to the detected received signal quality and the pre-configured mapping relationship between the received signal quality and the power reduction amount; in the power reduction
  • the parameter is the offset of the first power reduction factor, according to the relative position of the first terminal and the terminal group, and the pre-configured relative position of the first terminal and the terminal group and the first power reduction factor offset
  • the mapping relationship determines the first power reduction factor offset of the first communication node; when the power reduction parameter is the second power reduction factor offset, according to the relative position of the first power reduction factor offset, according to the relative position of the
  • the manner of determining the upper limit of the maximum transmission power includes one of the following:
  • the resource pool and the mapping relationship between the pre-configured maximum transmission power upper limit and different resource pools determine the maximum transmission power upper limit of the first communication node; determine the first communication node according to the maximum transmission power offset value and the pre-configured maximum transmission power The upper limit of the maximum transmit power of the node.
  • the power reduction parameter of the first communication node is the power reduction parameter of the first terminal; the maximum transmit power upper limit of the first communication node The value is the upper limit value of the maximum transmission power of the first terminal.
  • the device for determining power applied to the first communication node when the first communication node is the first terminal in the terminal group, the device for determining power applied to the first communication node further includes:
  • the second transmitter is configured to send the power reduction parameter of the first terminal and the maximum transmit power upper limit value of the first terminal to the second terminal in the terminal group;
  • the second determination module is configured to transmit the power reduction parameter of the first terminal to the second terminal in the terminal group;
  • the relative distance from the first terminal and the power reduction parameter of the first terminal determine the power reduction parameter corresponding to the second terminal in the terminal group;
  • the third determination module is configured to determine according to the maximum transmit power upper limit value of the first terminal The upper limit value of the maximum transmission power of the second terminal in the terminal group.
  • the first terminal broadcasts information to the second terminal in the terminal group through the MIB.
  • determining the transmission power corresponding to the first communication node according to at least one power reduction parameter in the power reduction parameter set and the maximum transmission power upper limit value includes one of the following:
  • the transmit power corresponding to the first communication node Determine the transmit power corresponding to the first communication node according to the maximum transmit power upper limit value, the first power reduction factor, the receiving end power target value, the number of resource blocks, the partial path loss factor and the estimated downlink path loss; according to the maximum transmit power upper limit value, the receiving end power target value, the number of resource blocks, the partial path loss factor, the second power reduction factor and the estimated downlink path loss to determine the transmit power corresponding to the first communication node; according to the maximum transmit power upper limit value, the receiving end power target value, number of resource blocks, partial path loss factor, estimated downlink path loss and power reduction amount to determine the transmit power corresponding to the first communication node; according to the maximum transmit power upper limit value, the first power reduction factor, the first power reduction factor offset Determine the transmit power corresponding to the first communication node according to the maximum transmit power upper limit value, the receive end power target value, and the number of resource blocks , a partial path loss factor, a second power reduction factor, an offset of the second power reduction factor, and an
  • the first terminal and/or the second terminal under the same area identifier adopt the same power reduction parameter and maximum transmit power upper limit value.
  • the power determination device provided in this embodiment is configured to implement the power determination method applied to the first communication node in the embodiment shown in FIG. 2 .
  • the implementation principle and technical effect of the power determination device provided in this embodiment are similar, and will not be repeated here.
  • FIG. 7 is a structural block diagram of another device for determining power provided in an embodiment of the present application. This embodiment is applied to a power determination device. Wherein, the power determining device may be the second communication node. As shown in FIG. 7 , this embodiment includes: a preconfiguration module 710 and a first transmitter 720 .
  • the pre-configuration module 710 is configured to pre-configure configuration information, and the configuration information is used to indicate N sets of power reduction parameter sets of transmission power; the first transmitter 720 is configured to send the configuration information to the first communication node, so that the first A communication node determines a corresponding transmit power.
  • the power reduction parameter set includes at least one of the following parameters:
  • the first power reduction factor and the first power reduction factor offset are used to indicate the reduction factor of the receiving end power target value; the second power reduction factor and the second power reduction factor offset are used to indicate the estimated The reduction factor of the downlink path loss; the power reduction amount and the power reduction amount offset value are used to indicate the reduction amount of the transmit power control part.
  • the bearer signaling of the power reduction parameter set and the maximum transmit power upper limit value includes one of the following: SIB, DCI, and RRC signaling.
  • the power determination device provided in this embodiment is configured to implement the power determination method applied to the second communication node in the embodiment shown in FIG. 3 .
  • the implementation principle and technical effect of the power determination device provided in this embodiment are similar, and will not be repeated here.
  • Fig. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the device provided by this application includes: a processor 810 , a memory 820 and a communication module 830 .
  • the number of processors 810 in the device may be one or more, and one processor 810 is taken as an example in FIG. 8 .
  • the number of storage 820 in the device may be one or more, and one storage 820 is taken as an example in FIG. 8 .
  • the processor 810, the memory 820, and the communication module 830 of the device may be connected through a bus or in other ways, and connection through a bus is taken as an example in FIG. 8 .
  • the device may be the first communication node (for example, the first terminal or the second terminal in the terminal group).
  • the memory 820 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the equipment in any embodiment of the present application (for example, the receiver 610 in the power determination device and the first determination module 620).
  • the memory 820 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to usage of the device, and the like.
  • the memory 820 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the memory 820 may further include memory located remotely from the processor 810, and these remote memories may be connected to the device through a network.
  • networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the communication module 830 is configured to perform communication interaction between the first terminal, the second terminal in the terminal group, and the second communication node.
  • the device provided above may be configured to execute the power determination method applied to the first communication node provided in any of the above embodiments, and have corresponding functions and effects.
  • the device provided above may be configured to execute the power determination method applied to the second communication node provided by any of the above embodiments, and have corresponding functions and effects.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions When executed by a computer processor, the computer-executable instructions are used to execute a method for determining power applied to a first communication node.
  • the method includes: receiving a configuration Information, the configuration information is used to indicate N sets of power reduction parameter sets of transmission power; determine the transmission power corresponding to the first communication node according to at least one power reduction parameter in the power reduction parameter set.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions When executed by a computer processor, the computer-executable instructions are used to execute a method for determining power applied to a second communication node.
  • the method includes: preconfiguring Configuration information, where the configuration information is used to indicate N sets of power reduction parameter sets of transmission power; sending the configuration information to the first communication node, so that the first communication node determines the corresponding transmission power.
  • user equipment covers any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser or a vehicle-mounted mobile station.
  • the various embodiments of the present application can be implemented in hardware or special purpose circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Instruction Set Architecture
  • Any logic flow block diagrams in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as but not limited to Read-Only Memory (ROM), Random Access Memory (RAM), Optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer readable media may include non-transitory storage media.
  • Data processors can be of any type suitable for the local technical environment, such as but not limited to general purpose computers, special purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architectures.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • processors based on multi-core processor architectures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开一种功率确定方法、设备和存储介质。应用于第一通信节点的功率确定方法包括:接收配置信息,所述配置信息用于指示发射功率的N组功率缩减参数集合;根据所述功率缩减参数集合中的至少一个功率缩减参数确定对应第一通信节点的发射功率。

Description

功率确定方法、设备和存储介质 技术领域
本申请涉及通信领域,例如涉及一种功率确定方法、设备和存储介质。
背景技术
新空口(New Radio,NR)系统中,由于终端组的侧链路直接通信一般以视距(Line of Sight,LOS)信道为主,终端的传播覆盖范围较广,会对其它终端组以及邻系统造成干扰。同时,终端在不同状态下采用单一最大发射功率上限值,造成发射功率偏高,导致干扰增加。
发明内容
本申请实施例提供一种功率确定方法、设备和存储介质,降低了系统干扰和节省了第一通信节点的功耗。
本申请实施例提供一种功率确定方法,应用于第一通信节点,包括:
接收配置信息,所述配置信息用于指示发射功率的N组功率缩减参数集合;根据所述功率缩减参数集合中的至少一个功率缩减参数确定对应第一通信节点的发射功率。
本申请实施例提供一种功率确定方法,应用于第二通信节点,包括:
预配置配置信息,所述配置信息用于指示发射功率的N组功率缩减参数集合;将所述配置信息发送至第一通信节点,以使第一通信节点确定对应的发射功率。
本申请实施例提供一种功率确定装置,应用于第一通信节点,包括:
接收器,配置为接收配置信息,所述配置信息用于指示发射功率的N组功率缩减参数集合;第一确定模块,配置为根据所述功率缩减参数集合中的至少一个功率缩减参数确定对应第一通信节点的发射功率。
本申请实施例提供一种功率确定装置,应用于第二通信节点,包括:
预配置模块,配置为预配置配置信息,所述配置信息用于指示发射功率的N组功率缩减参数集合;第一发送器,配置为将所述配置信息发送至第一通信节点,以使第一通信节点确定对应的发射功率。
本申请实施例提供一种干通信设备,包括:通信模块,存储器,以及一个 或多个处理器;所述通信模块,配置为在第一终端、终端组中的第二终端和第二通信节点之间进行通信交互;所述存储器,配置为存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述任一实施例所述的方法。
本申请实施例提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述任一实施例所述的方法。
附图说明
图1是相关技术提供的一种NR系统中两个终端的侧链路通信示意图;
图2是本申请实施例提供的一种功率确定方法的流程图;
图3是本申请实施例提供的另一种功率确定方法的流程图;
图4是本申请实施例提供的一种网络侧与终端之间的通信示意图;
图5是本申请实施例提供的另一种网络侧与终端之间的通信示意图;
图6是本申请实施例提供的一种功率确定装置的结构框图;
图7是本申请实施例提供的另一种功率确定装置的结构框图;
图8是本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。以下结合实施例附图对本申请进行描述,所举实例仅用于解释本申请。
图1是相关技术提供的一种NR系统中两个终端的侧链路通信示意图。示例性地,终端可以为无人机。如图1所示,两个无人机可以通过物理侧链路广播信道(Physical Sidelink Broadcast Channel,PSBCH)、物理侧链路共享信道(Physical Sidelink Shared Channel,PSSCH)、物理侧链路控制信道(Physical Sidelink Control Channel,PSCCH)和物理侧链路反馈信道(Physical Sidelink Feedback Channel,PSFCH)进行通信。在NR系统中,侧链路的发射功率可以采用功控方式进行确定。示例性地,发射功率的确定方式分为下述几种情况:
其一,在采用侧链路同步信号(Sidelink Synchronization Signals,SSS)/PSBCH块(S-SS/PBSCH Block,S-SSB)的情况下,发射功率的计算公式如下:
Figure PCTCN2022115532-appb-000001
其中,P CMAX为最大发射功率;P O,S-SSB为S-SSB的接收端功率目标值,其中, P O,S-SSB的取值可以由高层参数dl-P0-PSBCH配置提供,否则等于最大发射功率;α S-SSB为S-SSB的部分路径损耗补偿因子,其中,α S-SSB的取值可以由高层参数dl-Alpha-PSBCH配置提供,否则等于1;PL为估计的下行路径损耗;
Figure PCTCN2022115532-appb-000002
为S-SSB的资源块数目。
其二,在采用PSSCH的情况下,发射功率的计算公式如下:
P PSSCH(i)=min(P CMAX,P MAX,CBR,min(P PSSCH,D(i),P PSSCH,SL(i)))
其中,P CMAX为最大发射功率;P MAX,CBR为PSSCH的接收端功率目标值,其中,P MAX,CBR的取值可以由基站配置提供,否则等于最大发射功率;如果高层参数dl-P0-PSSCH-PSCCH被提供,下行的PSSCH的接收端功率目标值
Figure PCTCN2022115532-appb-000003
如果高层参数sl-P0-PSSCH-PSCCH被提供,侧链路的PSSCH的接收端功率目标值P PSSCH,D(i)=min(P CMAX,P MAX,CBR,P PSSCH,SL(i));否则,P PSSCH,D(i)=min(P CMAX,P MAX,CBR)。
如果高层参数sl-P0-PSSCH-PSCCH被提供,下行的PSSCH的接收端功率目标值
Figure PCTCN2022115532-appb-000004
否则,P PSSCH,SL(i)=min(P CMAX,P MAX,CBR)。
其三,在采用PSCCH的情况下,发射功率的计算公式如下:
Figure PCTCN2022115532-appb-000005
其中,P PSSCH(i)指的是PSSCH的发射功率,
Figure PCTCN2022115532-appb-000006
Figure PCTCN2022115532-appb-000007
分别为PSCCH和PSSCH的资源块数目。
其四,在采用PSFCH的情况下,发射功率的计算公式如下:
如果高层参数dl-P0-PSFCH被提供,P PSFCH,one(i)=P O,PSFCH+10log 10(2 μ)+α PSFCH·PL。
其中,P O,PSFCH指的是PSFCH的接收端功率目标值,其中,P O,PSFCH可以由高层参数dl-P0-PSFCH被提供;α PSFCH指的是PSFCH的部分路径损耗补偿因子,可以由高层参数dl-Alpha-PSFCH提供,否则为1;PL为估计的下行路径损耗。
如上,终端在不同状态下采用单一的最大发射功率作为最大发射功率上限值,造成发射功率偏高,导致干扰增加。为了有效克服终端组之间的干扰以及降低终端的功耗,本申请实施例提供一种功率确定方法,实现对侧链路的发射功率进行修正。
在一实施例中,图2是本申请实施例提供的一种功率确定方法的流程图。本实施例可以由功率确定设备执行。其中,功率确定设备可以为第一通信节点。 示例性地,第一通信节点可以为终端组中的第一终端,也可以为终端组中的第二终端。如图2所示,本实施例包括:
S210、接收配置信息,配置信息用于指示发射功率的N组功率缩减参数集合。
其中,N的取值与终端组中所包含的终端数量有关。可以理解为,N的取值等于一个终端组中所包含的终端数量。在一实施例中,终端指的是无人机,即终端组是由无人机组成的无人机群。可以理解为,N为大于或等于2的正整数。在实际通信过程中,每个终端对应一组功率缩减参数集合。在实施例中,功率缩减参数集合中包括一个或多个功率缩减参数,功率缩减参数指的是可以实现功率缩减的参数。在实施例中,第二通信节点对配置信息进行预配置,并将配置信息发送至第一通信节点。
S220、根据功率缩减参数集合中的至少一个功率缩减参数确定对应第一通信节点的发射功率。
在实施例中,第一通信节点根据对应的至少一个功率缩减参数确定对应的发射功率,实现了对发射功率的缩减,从而达到了降低系统干扰和节省第一通信节点功耗的目的。
在一实施例中,功率缩减参数集合包括以下参数中的至少之一:
与接收信号质量相关联的第一功率缩减因子、第二功率缩减因子和功率缩减量;与第一终端和终端组的相对位置相关联的第一功率缩减因子偏移量、第二功率缩减因子偏移量和功率缩减量偏移值。
在实施例中,第二通信节点预配置接收信号质量与第一功率缩减因子之间的映射关系,接收信号质量与第二功率缩减因子之间的映射关系,以及接收信号质量与功率缩减量之间的映射关系;然后将第一功率缩减因子、第二功率缩减因子和功率缩减量分别与接收信号质量之间的映射关系发送至第一通信节点,以使第一通信节点根据接收信号质量确定对应的第一功率缩减因子、第二功率缩减因子和功率缩减量。
其中,第一功率缩减因子偏移量用于在由第一终端管控第二终端的情况下,确定不同第二终端与第一终端的相对位置的第一功率缩减因子的偏移量;第二功率缩减因子偏移量用于在由第一终端管控第二终端的情况下,确定不同第二终端与第一终端的相对位置的第二功率缩减因子的偏移量;功率缩减量偏移值用于在由第一终端管控第二终端的情况下,确定不同第二终端与第一终端的相对位置的功率缩减量的偏移值。在实施例中,第二通信节点预配置第一终端和终端组的相对位置与第一功率缩减因子偏移量之间的映射关系,第一终端和终 端组的相对位置与第二功率缩减因子偏移量之间的映射关系,第一终端和终端组的相对位置与功率缩减量偏移值之间的映射关系,然后将第一功率缩减因子偏移量、第二功率缩减因子偏移量和功率缩减量偏移值分别与第一终端和终端组的相对位置的映射关系发送至第一通信节点,以使第一通信节点根据第一终端和终端组的相对位置确定对应的第一功率缩减因子偏移量、第二功率缩减因子偏移量和功率缩减量偏移值。
在实施例中,在第一通信节点处于不同的飞行高度(即当前定位高度)的情况下,根据预先配置的定位高度与最大发射功率上限值之间的映射关系,确定第一通信节点的最大发射功率上限值。示例性地,在第一通信节点处于地面时,可以使用26dBm为最大发射功率上限值;在第一通信节点处于空中时,可以使用23dBm为最大发射功率上限值。在一实施例中,第一通信节点的最大发射功率上限值与不同资源池相关联,其中,资源池至少包括下述一项:不同数目的时频资源,不同优先级的上行链路类型,不同优先级的业务类型。示例性地,可以为时频资源数目更多、相比PSCCH信道链路类型优先级更高的PSSCH信道,或者,业务类型优先级更高的公共预警系统(Public Warning System,PWS)公共警报信息的资源分配更大的最大发射功率上限值。在实施例中,第二通信节点预配置最大发射功率偏移值,并根据最大发射功率和最大发射功率偏移值确定第一通信节点对应的最大发射功率上限值。
在一实施例中,第一功率缩减因子和第一功率缩减因子偏移量用于指示接收端功率目标值的缩减系数;第二功率缩减因子和第二功率缩减因子偏移量用于指示估计的下行路径损耗的缩减系数;功率缩减量和功率缩减量偏移值用于指示发射功率控制部分的缩减量。在实施例中,可以通过第一功率缩减因子、第二功率缩减因子或功率缩减量对发射功率进行修正,以得到缩减之后的发射功率;也可以通过第一功率缩减因子和第一功率缩减因子偏移量的组合,第二功率缩减因子和第二功率缩减因子偏移量的组合,或者,功率缩减量和功率缩减量偏移值对发射功率进行修正,以得到缩减之后的发射功率。
在一实施例中,用于确定发射功率的第一通信节点的最大发射功率上限值可以依照下述之一方式确定:
根据所述第一通信节点的当前定位位置以及预先配置的最大发射功率上限值与所述第一通信节点的定位高度之间的映射关系确定第一通信节点的最大发射功率上限值;根据所述最大发射功率所在资源池和预先配置的最大发射功率上限值与不同资源池的映射关系确定第一通信节点的最大发射功率上限值;根据所述最大发射功率偏移值和预先配置的最大发射功率确定第一通信节点的最大发射功率上限值;根据预配置的最大发射功率确定第一通信节点的最大发射 功率上限值。其中,当前定位位置可以包括当前定位高度。
在一实施例中,第一通信节点可以接收第二通信节点预先配置的最大发射功率上限值,并根据最大发射功率上限值和至少一个功率缩减参数确定对应的发射功率;也可以直接根据自身能力等级对应的最大发射功率上限值和至少一个功率缩减参数确定对应的发射功率;也可以根据至少一个功率缩减参数和第一通信节点直接预配置的最大发射功率确定对应的发射功率。
在实施例中,在第一通信节点根据接收到的第二通信节点预先配置的最大发射功率上限值和至少一个功率缩减参数确定对应的发射功率的情况下,第二通信节点可以根据第一通信节点的位置信息(比如,定位高度)、第一通信节点的类型、所在资源池或最大发射功率偏移值配置对应的最大发射功率上限值,即第二通信节点配置第一通信节点的位置信息(比如,定位高度)、第一通信节点的类型、所在资源池或最大发射功率偏移值分别与最大发射功率上限值之间的映射关系。
在一实施例中,在第一通信节点根据自身能力等级对应的最大发射功率上限值和至少一个功率缩减参数确定对应的发射功率的情况下,第一通信节点可以不接收第二通信节点预先配置的最大发射功率上限值,也可以理解为,第二通信节点无需配置最大发射功率上限值。
在一实施例中,第一通信节点的类型与第一通信节点所在位置有关,比如,第一通信节点可以在空中飞行,则第一通信节点的类型为空中飞行设备,比如,无人机;又如,第一通信节点可以在地面运行,则第一通信节点的类型为地面终端设备,比如,智能手机等。
在一实施例中,在第一通信节点根据至少一个功率缩减参数和第一通信节点直接预配置的最大发射功率确定对应的发射功率的情况下,第一通信节点可以根据信道指令或调制编码策略(Modulation and Coding Scheme,MCS)直接预配置最大发射功率(即为一个定值),并将最大发射功率作为最大发射功率上限值,然后根据最大发射功率上限值和至少一个功率缩减参数确定对应的发射功率。
在一实施例中,接收信号质量至少包括下述一项:参考信号接收功率(Reference Signal Received Power,RSRP)、路径损耗(Path Loss,PL)、信号与干扰加噪声比(Signal to Interference plusNoise Ratio,SINR)。
在一实施例中,功率缩减参数集合的承载信令包括下述之一:系统信息块(System Information Block,SIB)、下行控制信息(DownLink Control Information,DCI)、无线资源控制(Radio Resource Control,RRC)信令。在实施例中,第二 通信节点通过上述承载信令将功率缩减参数集合发送至第一通信节点。在一实施例中,最大发射功率上限值的承载信令也包括下述之一:SIB、DCI、RRC信令。
在一实施例中,功率缩减参数的确定方式,包括下述之一:
在功率缩减参数为第一功率缩减因子的情况下,根据检测到的接收信号质量以及预先配置的接收信号质量与第一功率缩减因子之间的映射关系确定第一通信节点的第一功率缩减因子;在功率缩减参数为第二功率缩减因子的情况下,根据检测到的接收信号质量以及预先配置的接收信号质量与第二功率缩减因子之间的映射关系确定第一通信节点的第二功率缩减因子;在功率缩减参数为功率缩减量的情况下,根据检测到的接收信号质量以及预先配置的接收信号质量与功率缩减量之间的映射关系确定第一通信节点的功率缩减量;在功率缩减参数为第一功率缩减因子偏移量的情况下,根据第一终端和终端组的相对位置,以及预先配置的第一终端和终端组的相对位置与第一功率缩减因子偏移量之间的映射关系确定第一通信节点的第一功率缩减因子偏移量;在功率缩减参数为第二功率缩减因子偏移量的情况下,根据第一终端和终端组的相对位置,以及预先配置的第一终端和终端组的相对位置与第二功率缩减因子偏移量之间的映射关系确定第一通信节点的第二功率缩减因子偏移量;在功率缩减参数为功率缩减量偏移值的情况下,根据第一终端和终端组的相对位置,以及预先配置的第一终端和终端组的相对位置与功率缩减量偏移值之间的映射关系确定第一通信节点的功率缩减量偏移值。
在一实施例中,在第一通信节点直接由第二通信节点管控的情况下,可以根据检测到的接收信号质量以及预先配置的接收信号质量与第一功率缩减因子之间的映射关系确定第一通信节点的第一功率缩减因子;可以根据检测到的接收信号质量以及预先配置的接收信号质量与第二功率缩减因子之间的映射关系确定第一通信节点的第二功率缩减因子;可以根据检测到的接收信号质量以及预先配置的接收信号质量与功率缩减量之间的映射关系确定第一通信节点的功率缩减量。
在一实施例中,在第一终端管控终端组中的所有第二终端的情况下,可以根据第一终端和终端组的相对位置,以及预先配置的第一终端和终端组的相对位置与第一功率缩减因子偏移量之间的映射关系确定第一通信节点的第一功率缩减因子偏移量;也可以根据根据第一终端和终端组的相对位置,以及预先配置的第一终端和终端组的相对位置与第二功率缩减因子偏移量之间的映射关系确定第一通信节点的第二功率缩减因子偏移量;也可以根据第一终端和终端组的相对位置,以及预先配置的第一终端和终端组的相对位置与功率缩减量偏移 值之间的映射关系确定第一通信节点的功率缩减量偏移值。
在一实施例中,在第一通信节点为终端组中的第一终端的情况下,第一通信节点的功率缩减参数为第一终端的功率缩减参数;第一通信节点的最大发射功率上限值为第一终端的最大发射功率上限值。
在一实施例中,在第一通信节点为终端组中的第一终端的情况下,应用于第一通信节点的功率确定方法,还包括:
将第一终端的功率缩减参数和第一终端的最大发射功率上限值发送至终端组中的第二终端;根据预先确定的第二终端与第一终端之间的相对距离,以及第一终端的功率缩减参数确定终端组中对应第二终端的功率缩减参数;根据第一终端的最大发射功率上限值确定终端组中的第二终端的最大发射功率上限值。
在实施例中,在第二通信节点直接管控终端组中所有终端(包括第一终端和第二终端)的情况下,第一终端接收第二通信节点发送的功率缩减参数集合和最大发射功率上限值,并检测接收信号质量确定终端组中每个终端各自的第一功率缩减因子、第二功率缩减因子和功率缩减量。在第一终端管控终端组中的所有第二终端的情况下,第二终端接收第一终端发送的第一终端的功率缩减参数和第一终端的最大发射功率上限值,并根据第二终端自身位置信息确定与第一终端之间的相对距离,以及根据第一终端的功率缩减参数和相对距离,确定该第二终端的功率缩减参数,以及直接将第一终端的最大发射功率上限值作为终端组中的第二终端的最大发射功率上限值。
在一实施例中,第一终端通过主信息块(Master Information Block,MIB)向终端组中的第二终端广播信息。
在一实施例中,根据功率缩减参数集合中的至少一个功率缩减参数和最大发射功率上限值确定对应第一通信节点的发射功率,包括下述之一:
根据最大发射功率上限值、第一功率缩减因子、接收端功率目标值、资源块数目、部分路径损耗因子和估计的下行路径损耗确定对应第一通信节点的发射功率;根据最大发射功率上限值、接收端功率目标值、资源块数目、部分路径损耗因子、第二功率缩减因子和估计的下行路径损耗确定对应第一通信节点的发射功率;根据最大发射功率上限值、接收端功率目标值、资源块数目、部分路径损耗因子、估计的下行路径损耗和功率缩减量确定对应第一通信节点的发射功率;根据最大发射功率上限值、第一功率缩减因子、第一功率缩减因子偏移量、接收端功率目标值、资源块数目、部分路径损耗因子和估计的下行路径损耗确定对应第一通信节点的发射功率;根据最大发射功率上限值、接收端功率目标值、资源块数目、部分路径损耗因子、第二功率缩减因子、第二功率 缩减因子偏移量和估计的下行路径损耗确定对应第一通信节点的发射功率;根据最大发射功率上限值、接收端功率目标值、资源块数目、部分路径损耗因子、估计的下行路径损耗、功率缩减量和功率缩减量偏移值确定对应第一通信节点的发射功率。
在实施例中,在由第一通信节点直接管控终端组中的所有终端的情况下,可以通过第一功率缩减因子、第二功率缩减因子和功率缩减量中的至少之一,以及最大发射功率上限值确定对应的发射功率;在由第一终端管控终端组中的所有第二终端的情况下,可以通过第一功率缩减因子和第一功率缩减因子偏移量的组合、第二功率缩减因子和第二功率缩减因子偏移量的组合,以及,功率缩减量和功率缩减量偏移值的组合中的至少之一组合,以及最大发射功率上限值确定对应的发射功率。
在一实施例中,在同一区域标识下的第一终端和/或第二终端采用相同的功率缩减参数和最大发射功率上限值。其中,区域标识(Identifier,ID)指的是Zone ID。在实施例中,位于同一个区域中的第一终端、第二终端,或者,第一终端和第二终端均采用相同的功率缩减参数和最大发射功率上限值,从而减少了第二通信节点对配置信息的繁琐配置过程,以及降低了第一通信节点的数据接收量。
在一实施例中,图3是本申请实施例提供的另一种功率确定方法的流程图。本实施例可以由功率确定设备执行。其中,功率确定设备可以为第二通信节点。示例性地,第二通信节点可以为网络侧(比如,基站,或者,核心网)。如图3所示,本实施例包括:
S310、预配置配置信息,配置信息用于指示发射功率的N组功率缩减参数集合。
S320、将配置信息发送至第一通信节点,以使第一通信节点确定对应的发射功率。
在实施例中,第二通信节点对配置信息进行预配置,并将配置信息发送至第一通信节点,以使第一通信节点根据对应的功率缩减参数对发射功率进行缩减,以减少对系统的干扰和节省第一通信节点的功耗。可以理解为,每个第一通信节点对应的功率缩减参数集合可以是不同的。
在一实施例中,功率缩减参数集合包括以下参数中的至少之一:
与接收信号质量相关联的第一功率缩减因子、第二功率缩减因子和功率缩减量;与第一终端和终端组的相对位置相关联的第一功率缩减因子偏移量、第 二功率缩减因子偏移量和功率缩减量偏移值。
在一实施例中,第一功率缩减因子和第一功率缩减因子偏移量用于指示接收端功率目标值的缩减系数;第二功率缩减因子和第二功率缩减因子偏移量用于指示估计的下行路径损耗的缩减系数;功率缩减量和功率缩减量偏移值用于指示发射功率控制部分的缩减量。
在一实施例中,功率缩减参数集合和最大发射功率上限值的承载信令包括下述之一:SIB、DCI、RRC信令。
应用于第二通信节点的功率确定方法中涉及到的功率缩减参数、最大发射功率上限值的解释以及确定方式,均参见上述实施例中应用于第一通信节点的功率确定方法中相关内容的描述,在此不再一一赘述。
在一实施例中,以第一通信节点为第一终端,第二通信节点为网络侧,并且,由第一终端管控终端组中的所有第二终端,以及对接收端功率目标值进行缩减为例,对发射功率的确定过程进行说明。示例性地,第一终端为主无人机,第二终端为从无人机,即终端组为无人机群。
图4是本申请实施例提供的一种网络侧与终端之间的通信示意图。如图4所示,网络侧将预先配置的功率缩减参数集合和最大发射功率上限值发送至第一终端,然后第一终端向第二终端发送功率缩减参数集合和最大发射功率上限值,以使第二终端确定对应的发射功率。在一实施例中,第一终端可以直接采用接收到的功率缩减参数集合和自身能力等级对应的最大发射功率上限值,或者,接收到的功率缩减参数集合和网络侧预先直接配置的最大发射功率,确定对应的发射功率。在实施例中,发射功率的确定过程包括S11-S19。
S11、网络侧预先配置接收信号质量与第一功率缩减因子α reduce的映射关系,以及第一功率缩减因子偏移量Δα reduce与第一终端和终端组的相对位置之间的映射关系。其中,接收信号质量包括RSRP、PL和SINR中的至少之一。表1是接收信号质量与第一功率缩减因子之间的映射关系表,表2是第一功率缩减因子偏移值与相对位置之间的映射关系表。映射关系可以如下表所示:
表1接收信号质量与第一功率缩减因子之间的映射关系表
RSRP/PL/SINR 阈值1 阈值2 ... 阈值n
α reduce α reduce,1 α reduce,2 ... α reduce,n
其中,表1中的n为接收信号质量的门限数目。
表2相对位置与第一功率缩减因子偏移量之间的映射关系表
相对位置d d1 d2 ... dm
Δα reduce Δα reduce,1 Δα reduce,2 ... Δα reduce,m
其中,表2中的m为无人机群中无人机数目。可以理解为,每个无人机与主无人机之间的相对位置,均对应一个第一功率缩减因子偏移量。
在一实施例中,第一功率缩减因子与区域标识(即区域ID)相关联。表3是同一区域ID与第一功率缩减因子之间的映射关系表。
表3同一区域ID与第一功率缩减因子之间的映射关系表
Figure PCTCN2022115532-appb-000008
如表3所示,m个区域中的同一区域ID使用相同的第一功率缩减因子α reduce
S12、网络侧预配置最大发射功率上限值P CAMX,level与无人机定位高度的映射关系,如无人机在空中,P CAMX,level为PC3(23dBm);无人机在地面,P CAMX,level为PC2(26dBm),或者如下表4所示。表4是无人机的不同定位高度与最大发射功率上限值之间的映射关系。
表4无人机的定位高度与最大发射功率上限值之间的映射关系表
高度h ≤h1 (h1,h2] ... (hL-1,hL]
P CMAX,level P CMAX,1 P CMAX,2 ... P CMAX,L
其中,L是不同高度阈值数目。
或者,最大发射功率上限值与不同资源池相关联,其中,资源池包括不同数目的时频资源、不同优先级的上行链路类型、不同优先级的业务类型至少之一;例如,可以为时频资源数目更多、相比PSCCH信道链路类型优先级更高的PSSCH信道或者业务类型优先级高的PWS公共警报信息的资源分配更大的最大发射功率上限值;或者预配置最大发射功率偏移值Δ offset,即最大发射功率上限值P CMAX,Level=P CMAXoffset
S13、基站通过信令将接收信号质量与α reduce的映射关系,Δα reduce与主无人机和无人机群中每个从无人机的相对位置之间的映射关系,以及P CAMX,level与定位高度的映射关系;或者,接收信号质量与α reduce的映射关系,Δα reduce与主无人 机和无人机群中每个从无人机的相对位置之间的映射关系,以及Δ offset发送主无人机,所述信令包括SIB、DCI、RRC信令中至少之一。
S14、主无人机根据检测到的接收信号确定接收信号质量,并根据接收信号质量确定映射的主无人机的第一功率缩减因子
Figure PCTCN2022115532-appb-000009
S15、主无人机根据当前定位高度、不同资源池或者接收到的最大发射功率偏移值Δ offset确定最大发射功率上限值
Figure PCTCN2022115532-appb-000010
其中,主无人机的当前定位高度可以通过全球定位系统(Global Positioning System,GPS)定位高度确定。
S16、主无人机根据
Figure PCTCN2022115532-appb-000011
Figure PCTCN2022115532-appb-000012
确定其发射功率。
S17、主无人机广播
Figure PCTCN2022115532-appb-000013
Δα reduce
Figure PCTCN2022115532-appb-000014
以及其位置给无人机群中的从无人机。
其中,主无人机向无人机群中的从无人机广播信息所采用的广播信号为MIB。
S18、无人机群中的从无人机接收以上广播信息并根据自身GPS位置信息计算相对距离Δd,确定对应从无人机的第一功率缩减因子
Figure PCTCN2022115532-appb-000015
以及最大发射功率上限值
Figure PCTCN2022115532-appb-000016
S19、针对PSBCH的发射,无人机群中从无人机的发射功率为:
Figure PCTCN2022115532-appb-000017
其中,α′ reduce和P CAMX,level的取值及含义如前所述,其它参数由高层指示,取值及含义如前所述。
针对PSSCH的发射,修正后的发射功率为:
P PSSCH(i)=min(P CMAX,level,P MAX,CBR,min(P PSSCH,D(i),P PSSCH,SL(i)))
其中,
Figure PCTCN2022115532-appb-000018
Figure PCTCN2022115532-appb-000019
其中,α′ reduce和P CAMX,level的取值及含义如前所述,其它参数由NR系统中功率控制方案中高层配置。
针对PSCCH的发射,修正后的发射功率为:
Figure PCTCN2022115532-appb-000020
其中,P PSSCH(i)指的是修改正后的PSSCH的发射功率,其它参数的含义和取值如前所述。
针对PSFCH的发射,修正后的发射功率为:
P PSFCH,one=α′ reduce·P O,PSFCH+10log 10(2 μ)+α PSFCH·PL
其中,α′ reduce和P CAMX,level的取值及含义如前所述,其它参数由NR系统中功率控制方案中高层配置。
在一实施例中,以第一通信节点为第一终端,第二通信节点为网络侧,并且,由第一终端管控终端组中的所有第二终端,以及对下行的路径损耗PL进行缩减为例,对发射功率的确定过程进行说明。示例性地,第一终端为主无人机,第二终端为从无人机,即终端组为无人机群。在实施例中,网络侧和终端之间的通信连接见上述实施例中的图4。在一实施例中,第一终端可以直接采用接收到的功率缩减参数集合和自身能力等级对应的最大发射功率上限值,或者,接收到的功率缩减参数集合和网络侧预先直接配置的最大发射功率,确定对应的发射功率。本实施例中发射功率的确定过程包括S21-S29。
S21、网络侧预先配置接收信号质量与第二功率缩减因子β reduce的映射关系,以及第二功率缩减因子偏移量Δβ reduce与第一终端和终端组的相对位置之间的映射关系。其中,接收信号质量包括RSRP、PL和SINR中的至少之一。表5是接收信号质量与第二功率缩减因子之间的映射关系表,表6是第二功率缩减因子偏移值与相对位置之间的映射关系表。映射关系可以如下表所示:
表5接收信号质量与第二功率缩减因子之间的映射关系表
RSRP/PL/SINR 阈值1 阈值2 ... 阈值n
β reduce β reduce,1 β reduce,2 ... β reduce,n
其中,表5中的n为接收信号质量的门限数目。
表6相对位置与第二功率缩减因子偏移量之间的映射关系表
相对位置d d1 d2 ... dm
Δβ reduce Δβ reduce,1 Δβ reduce,2 ... Δβ reduce,m
其中,表6中的m为无人机群中无人机数目。可以理解为,每个无人机与主无人机之间的相对位置,均对应一个第二功率缩减因子偏移量。
在一实施例中,第二功率缩减因子与区域标识(即区域ID)相关联。表7是同一区域ID与第二功率缩减因子之间的映射关系表。
表7同一区域ID与第二功率缩减因子之间的映射关系表
Figure PCTCN2022115532-appb-000021
如表7所示,m个区域中的同一区域ID使用相同的第二功率缩减因子β′ reduce
S22、网络侧预配置最大发射功率上限P CAMX,level与无人机定位高度的映射关系,如无人机在空中,P CAMX,level为PC3(23dBm);无人机在地面,P CAMX,level为PC2(26dBm),或者如上述实施例中的表4所示。
或者,预配置与不同资源池关联的最大发射功率上限值;或者,预配置最大发射功率偏移值Δ offset,即最大发射功率上限值P CMAX,Level=P CMAXoffset
S23、基站通过信令将接收信号质量与β reduce的映射关系,Δβ reduce与主无人机和无人机群中每个从无人机的相对位置之间的映射关系,以及P CAMX,level与定位高度的映射关系;或者,接收信号质量与β reduce的映射关系,Δβ reduce与主无人机和无人机群中每个从无人机的相对位置之间的映射关系,以及Δ offset发送主无人机,所述信令包括SIB、DCI、RRC信令中至少之一。
S24、主无人机根据检测到的接收信号确定接收信号质量,并根据接收信号质量确定映射的主无人机的第二功率缩减因子
Figure PCTCN2022115532-appb-000022
S25、主无人机根据当前定位高度、不同资源池或者接收到的最大发射功率偏移值Δ offset确定最大发射功率上限值
Figure PCTCN2022115532-appb-000023
其中,主无人机的当前定位高度可以通过GPS定位高度确定。
S26、主无人机根据
Figure PCTCN2022115532-appb-000024
Figure PCTCN2022115532-appb-000025
确定其发射功率。
S27、主无人机广播
Figure PCTCN2022115532-appb-000026
Δβ reduce
Figure PCTCN2022115532-appb-000027
以及其位置给无人机群中的从无人机。
其中,主无人机向无人机群中的从无人机广播信息所采用的广播信号为MIB。
S28、无人机群中的从无人机接收以上广播信息并根据自身GPS位置信息计算相对距离Δd,确定对应从无人机的第二功率缩减因子
Figure PCTCN2022115532-appb-000028
以及最大发射功率上限值
Figure PCTCN2022115532-appb-000029
S29、针对PSBCH的发射,无人机群中从无人机的发射功率为:
Figure PCTCN2022115532-appb-000030
其中,β′ reduce和P CAMX,level的取值及含义如前所述,其它参数由高层指示,取 值及含义如前所述。
针对PSSCH的发射,修正后的发射功率为:
P PSSCH(i)=min(P CMAX,level,P MAX,CBR,min(P PSSCH,D(i),P PSSCH,SL(i)))
其中,
Figure PCTCN2022115532-appb-000031
Figure PCTCN2022115532-appb-000032
其中,β′ reduce和P CAMX,level的取值及含义如前所述,其它参数由NR系统中功率控制方案中高层配置。
针对PSCCH的发射,修正后的发射功率为:
Figure PCTCN2022115532-appb-000033
其中,P PSSCH(i)指的是修改正后的PSSCH的发射功率,其它参数的含义和取值如前所述。
针对PSFCH的发射,修正后的发射功率为:
P PSFCH,one=P O,PSFCH+10log 10(2 μ)+(α PSFCH-β′ reduce)·PL
其中,β′ reduce和P CAMX,level的取值及含义如前所述,其它参数由NR系统中功率控制方案中高层配置。
在一实施例中,以第一通信节点为第一终端,第二通信节点为网络侧,并且,由第一终端管控终端组中的所有第二终端,以及通过功率缩减量对发射功率进行缩减为例,对发射功率的确定过程进行说明。示例性地,第一终端为主无人机,第二终端为从无人机,即终端组为无人机群。在实施例中,网络侧和终端之间的通信连接见上述实施例中的图4。在一实施例中,第一终端可以直接采用接收到的功率缩减参数集合和自身能力等级对应的最大发射功率上限值,或者,接收到的功率缩减参数集合和网络侧预先直接配置的最大发射功率,确定对应的发射功率。本实施例中发射功率的确定过程包括S31-S39。
S31、网络侧预先配置接收信号质量与功率缩减量λ reduce的映射关系,以及功率缩减量偏移值Δλ与第一终端和终端组的相对位置之间的映射关系。其中,接收信号质量包括RSRP、PL和SINR中的至少之一。表8是接收信号质量与功率缩减量之间的映射关系表,表9是功率缩减量与相对位置之间的映射关系表。映射关系可以如下表所示:
表8接收信号质量与功率缩减量之间的映射关系表
RSRP/PL/SINR 阈值1 阈值2 ... 阈值n
λ reduce λ reduce,1 λ reduce,2 ... λ reduce,n
其中,表8中的n为接收信号质量的门限数目。
表9相对位置与功率缩减量偏移值之间的映射关系表
相对位置d d1 d2 ... dm
Δλ Δλ 1 Δλ 2 ... Δλ m
其中,表9中的m为无人机群中无人机数目。可以理解为,每个无人机与主无人机之间的相对位置,均对应一个功率缩减量偏移值。
在一实施例中,功率缩减量与区域标识(即区域ID)相关联。表10是同一区域ID与功率缩减量之间的映射关系表。
表10同一区域ID与功率缩减量之间的映射关系表
Figure PCTCN2022115532-appb-000034
如表10所示,m个区域中的同一区域ID使用相同的功率缩减量λ′ reduce
S32、网络侧预配置最大发射功率上限P CAMX,level与无人机定位高度的映射关系,如无人机在空中,P CAMX,level为PC3(23dBm);无人机在地面,P CAMX,level为PC2(26dBm),或者如上述实施例中的表4所示。
或者,预配置与不同资源池关联的最大发射功率上限值;或者,预配置最大发射功率偏移值Δ offset,即最大发射功率上限值P CMAX,Level=P CMAXoffset
S33、基站通过信令将接收信号质量与λ reduce的映射关系,Δλ与主无人机和无人机群中每个从无人机的相对位置之间的映射关系,以及P CAMX,level与定位高度的映射关系;或者,接收信号质量与λ reduce的映射关系,Δλ与主无人机和无人机群中每个从无人机的相对位置之间的映射关系,以及Δ offset发送主无人机,所述信令包括SIB、DCI、RRC信令中至少之一。
S34、主无人机根据检测到的接收信号确定接收信号质量,并根据接收信号质量确定映射的主无人机的功率缩减量
Figure PCTCN2022115532-appb-000035
S35、主无人机根据当前定位高度、不同资源池或者接收到的最大发射功率 偏移值Δ offset确定最大发射功率上限值
Figure PCTCN2022115532-appb-000036
其中,主无人机的当前定位高度可以通过GPS定位高度确定。
S36、主无人机根据
Figure PCTCN2022115532-appb-000037
Figure PCTCN2022115532-appb-000038
确定其发射功率。
S37、主无人机广播
Figure PCTCN2022115532-appb-000039
Δλ和
Figure PCTCN2022115532-appb-000040
以及其位置给无人机群中的从无人机。
其中,主无人机向无人机群中的从无人机广播信息所采用的广播信号为MIB。
S38、无人机群中的从无人机接收以上广播信息并根据自身GPS位置信息计算相对距离Δd,确定对应从无人机的第二功率缩减因子
Figure PCTCN2022115532-appb-000041
以及最大发射功率上限值
Figure PCTCN2022115532-appb-000042
S39、针对PSBCH的发射,无人机群中从无人机的发射功率为:
Figure PCTCN2022115532-appb-000043
其中,λ′ reduce和P CAMX,level的取值及含义如前所述,PL为估计的路径损耗,其它参数由高层指示,取值及含义如前所述。
针对PSSCH的发射,修正后的发射功率为:
P PSSCH(i)=min(P CMAX,level,P MAX,CBR,min(P PSSCH,D(i),P PSSCH,SL(i)))
其中,
Figure PCTCN2022115532-appb-000044
Figure PCTCN2022115532-appb-000045
其中,λ′ reduce和P CAMX,level的取值及含义如前所述,PL为估计的路径损耗,其它参数由NR系统中功率控制方案中高层配置。
针对PSCCH的发射,修正后的发射功率为:
Figure PCTCN2022115532-appb-000046
其中,P PSSCH(i)指的是修改正后的PSSCH的发射功率,其它参数的含义和取值如前所述。
针对PSFCH的发射,修正后的发射功率为:
P PSFCH,one=P O,PSFCH+10log 10(2 μ)+α PSFCH·PL-λ′ reduce
其中,λ′ reduce和P CAMX,level的取值及含义如前所述,PL为轨迹的路径损耗,其它参数由NR系统中功率控制方案中高层配置。
在一实施例中,以第一通信节点为第一终端,第二通信节点为网络侧,并且,直接由网络侧管控终端组中的所有终端(即第一终端和第二终端),以及对接收端功率目标值进行缩减为例,对发射功率的确定过程进行说明。示例性地,第一终端为主无人机,第二终端为从无人机,即终端组为无人机群。
图5是本申请实施例提供的另一种网络侧与终端之间的通信示意图。如图5所示,网络侧将预先配置的功率缩减参数集合和最大发射功率上限值发送至终端组中的第一终端和第二终端,以使第一终端和第二终端确定对应的发射功率。在一实施例中,第一终端可以直接采用接收到的功率缩减参数集合和自身能力等级对应的最大发射功率上限值,或者,接收到的功率缩减参数集合和网络侧预先直接配置的最大发射功率,确定对应的发射功率。在实施例中,发射功率的确定过程包括S41-S49。
S41、网络侧预先配置接收信号质量与第一功率缩减因子α reduce的映射关系,以及不同定位高度或不同资源池的最大发射功率上限值P CMAX,level;或者,接收信号质量与第一功率缩减因子α reduce的映射关系,以及最大发射功率偏移值Δ offset。其中,接收信号质量包括RSRP、PL和SINR中的至少之一。其中,接收信号质量与第一功率缩减因子的映射关系见表1所示,以及不同定位高度与最大发射功率上限值之间的映射关系见表4所示。其中,第一功率缩减因子与区域标识(即区域ID)相关联,即m个区域中的同一区域ID使用相同的第一功率缩减因子α′ reduce,见表3所示。
S42、基站通过信令将接收信号质量与α reduce的映射关系,以及P CAMX,level与定位高度的映射关系;或者,接收信号质量与α reduce的映射关系,以及Δ offset发送无人机群中的每个无人机,所述信令包括SIB、DCI、RRC信令中至少之一。
S43、无人机群接收上述信息,并根据检测到的接收信号质量确定每个无人机的第一功率缩减因子,或者,同一区域ID下的所有终端使用相同的第一功率缩减因子α′ reduce
S44、无人机群中的每个无人机根据定位高度、不同资源池相关配置或者接收到的最大发射功率偏移值Δ offset确定最大发射功率上限值P CMAX,level
S45、无人机群中的无人机根据各自的α′ reduce和P CMAX,level确定其发射功率。
S46、针对PSBCH的发射,修正后的发射功率为:
Figure PCTCN2022115532-appb-000047
其中,α′ reduce和P CAMX,level的取值及含义如前所述,其它参数由高层指示,取值及含义如前所述。
针对PSSCH的发射,修正后的发射功率为:
P PSSCH(i)=min(P CMAX,level,P MAX,CBR,min(P PSSCH,D(i),P PSSCH,SL(i)))
其中,
Figure PCTCN2022115532-appb-000048
Figure PCTCN2022115532-appb-000049
其中,α′ reduce和P CAMX,level的取值及含义如前所述,其它参数由NR系统中功率控制方案中高层配置。
针对PSCCH的发射,修正后的发射功率为:
Figure PCTCN2022115532-appb-000050
其中,P PSSCH(i)指的是修改正后的PSSCH的发射功率,其它参数的含义和取值如前所述。
针对PSFCH的发射,修正后的发射功率为:
P PSFCH,one=α′ reduce·P O,PSFCH+10log 10(2 μ)+α PSFCH·PL
其中,α′ reduce和P CAMX,level的取值及含义如前所述,其它参数由NR系统中功率控制方案中高层配置。
在一实施例中,以第一通信节点为第一终端,第二通信节点为网络侧,并且,直接由网络侧管控终端组中的所有终端(即第一终端和第二终端),以及对下行的路径损耗进行缩减为例,对发射功率的确定过程进行说明。示例性地,第一终端为主无人机,第二终端为从无人机,即终端组为无人机群。在实施例中,网络侧和终端之间的通信连接见上述实施例中的图5。在一实施例中,第一终端可以直接采用接收到的功率缩减参数集合和自身能力等级对应的最大发射功率上限值,或者,接收到的功率缩减参数集合和网络侧预先直接配置的最大发射功率,确定对应的发射功率。本实施例中发射功率的确定过程包括S51-S56。
S51、网络侧预先配置接收信号质量与第二功率缩减因子β reduce的映射关系,以及不同定位高度或不同资源池的最大发射功率上限值P CMAX,level;或者,接收信号质量与第二功率缩减因子β reduce的映射关系,以及最大发射功率偏移值Δ offset。其中,接收信号质量包括RSRP、PL和SINR中的至少之一。其中,接收信号质量与第二功率缩减因子的映射关系见表5所示,以及不同定位高度与最大发射功率上限值之间的映射关系见表4所示。其中,第二功率缩减因子与区域标识(即区域ID)相关联,即m个区域中的同一区域ID使用相同的第二功率缩减因子β′ reduce,见表7所示。
S52、基站通过信令将接收信号质量与β reduce的映射关系,以及P CAMX,level与 定位高度的映射关系;或者,接收信号质量与β reduce的映射关系,以及Δ offset发送无人机群中的每个无人机,所述信令包括SIB、DCI、RRC信令中至少之一。
S53、无人机群接收上述信息,并根据检测到的接收信号质量确定每个无人机的第二功率缩减因子,或者,同一区域ID下的所有终端使用相同的第二功率缩减因子β′ reduce
S54、无人机群中的每个无人机根据定位高度、不同资源池相关配置或者接收到的最大发射功率偏移值Δ offset确定最大发射功率上限值P CMAX,level
S55、无人机群中的无人机根据各自的β′ reduce和P CMAX,level确定其发射功率。
S56、针对PSBCH的发射,修正后的发射功率为:
Figure PCTCN2022115532-appb-000051
其中,β′ reduce和P CAMX,level的取值及含义如前所述,其它参数由高层指示,取值及含义如前所述。
针对PSSCH的发射,修正后的发射功率为:
P PSSCH(i)=min(P CMAX,level,P MAX,CBR,min(P PSSCH,D(i),P PSSCH,SL(i)))
其中,
Figure PCTCN2022115532-appb-000052
Figure PCTCN2022115532-appb-000053
其中,β′ reduce和P CAMX,level的取值及含义如前所述,其它参数由NR系统中功率控制方案中高层配置。
针对PSCCH的发射,修正后的发射功率为:
Figure PCTCN2022115532-appb-000054
其中,P PSSCH(i)指的是修改正后的PSSCH的发射功率,其它参数的含义和取值如前所述。
针对PSFCH的发射,修正后的发射功率为:
P PSFCH,one=P O,PSFCH+10log 10(2 μ)+(α PSFCH-β′ reduce)·PL
其中,β′ reduce和P CAMX,level的取值及含义如前所述,其它参数由NR系统中功率控制方案中高层配置。
在一实施例中,以第一通信节点为第一终端,第二通信节点为网络侧,并且,直接由网络侧管控终端组中的所有终端(即第一终端和第二终端),以及通过功率缩减量对发射功率进行缩减为例,对发射功率的确定过程进行说明。 示例性地,第一终端为主无人机,第二终端为从无人机,即终端组为无人机群。在实施例中,网络侧和终端之间的通信连接见上述实施例中的图5。在一实施例中,第一终端可以直接采用接收到的功率缩减参数集合和自身能力等级对应的最大发射功率上限值,或者,接收到的功率缩减参数集合和网络侧预先直接配置的最大发射功率,确定对应的发射功率。本实施例中发射功率的确定过程包括S61-S66。
S61、网络侧预先配置接收信号质量与功率缩减量λ reduce的映射关系,以及不同定位高度或不同资源池的最大发射功率上限值P CMAX,level;或者,接收信号质量与功率缩减量λ reduce的映射关系,以及最大发射功率偏移值Δ offset。其中,接收信号质量包括RSRP、PL和SINR中的至少之一。其中,接收信号质量与功率缩减量λ reduce的映射关系见表8所示,以及不同定位高度与最大发射功率上限值之间的映射关系见表4所示。其中,功率缩减量与区域标识(即区域ID)相关联,即m个区域中的同一区域ID使用相同的功率缩减量λ reduce,见表10所示。
S62、基站通过信令将接收信号质量与λ reduce的映射关系,以及P CAMX,level与定位高度的映射关系;或者,接收信号质量与λ reduce的映射关系,以及Δ offset发送无人机群中的每个无人机,所述信令包括SIB、DCI、RRC信令中至少之一。
S63、无人机群接收上述信息,并根据检测到的接收信号质量确定每个无人机的功率缩减量λ′ reduce,或者,同一区域ID下的所有终端使用相同的功率缩减量λ′ reduce
S64、无人机群中的每个无人机根据定位高度、不同资源池相关配置或者接收到的最大发射功率偏移值Δ offset确定最大发射功率上限值P CMAX,level
S65、无人机群中的无人机根据各自的λ′ reduce和P CMAX,level确定其发射功率。
S66、针对PSBCH的发射,修正后的发射功率为:
Figure PCTCN2022115532-appb-000055
其中,λ′ reduce和P CAMX,level的取值及含义如前所述,其它参数由高层指示,取值及含义如前所述。
针对PSSCH的发射,修正后的发射功率为:
P PSSCH(i)=min(P CMAX,level,P MAX,CBR,min(P PSSCH,D(i),P PSSCH,SL(i)))
其中,
Figure PCTCN2022115532-appb-000056
Figure PCTCN2022115532-appb-000057
其中,λ′ reduce和P CAMX,level的取值及含义如前所述,其它参数由NR系统中功率控制方案中高层配置。
针对PSCCH的发射,修正后的发射功率为:
Figure PCTCN2022115532-appb-000058
其中,P PSSCH(i)指的是修改正后的PSSCH的发射功率,其它参数的含义和取值如前所述。
针对PSFCH的发射,修正后的发射功率为:
P PSFCH,one=P O,PSFCH+10log 10(2 μ)+α PSFCH·PL-λ r , educe
其中,λ′ reduce和P CAMX,level的取值及含义如前所述,其它参数由NR系统中功率控制方案中高层配置。
在一实施例中,图6是本申请实施例提供的一种功率确定装置的结构框图。本实施例应用于功率确定设备。其中,功率确定设备可以为第一通信节点。如图6所示,本实施例包括:接收器610和第一确定模块620。
其中,接收器610,配置为接收配置信息,配置信息用于指示发射功率的N组功率缩减参数集合;第一确定模块620,配置为根据功率缩减参数集合中的至少一个功率缩减参数确定对应第一通信节点的发射功率。
在一实施例中,功率缩减参数集合包括以下参数中的至少之一:
与接收信号质量相关联的第一功率缩减因子、第二功率缩减因子和功率缩减量;与第一终端和终端组的相对位置相关联的第一功率缩减因子偏移量、第二功率缩减因子偏移量和功率缩减量偏移值。
在一实施例中,用于确定所述发射功率的第一通信节点的最大发射功率上限值可以依照下述之一方式确定:
根据所述第一通信节点的当前定位位置以及预先配置的最大发射功率上限值与所述第一通信节点的定位高度之间的映射关系确定第一通信节点的最大发射功率上限值;根据所述最大发射功率所在资源池和预先配置的最大发射功率上限值与不同资源池的映射关系确定第一通信节点的最大发射功率上限值;根据所述最大发射功率偏移值和预先配置的最大发射功率确定第一通信节点的最大发射功率上限值;根据预配置的最大发射功率确定第一通信节点的最大发射功率上限值。
在一实施例中,第一功率缩减因子和第一功率缩减因子偏移量用于指示接收端功率目标值的缩减系数;第二功率缩减因子和第二功率缩减因子偏移量用于指示估计的下行路径损耗的缩减系数;功率缩减量和功率缩减量偏移值用于 指示发射功率控制部分的缩减量。
在一实施例中,接收信号质量至少包括下述一项:RSRP、PL、SINR。
在一实施例中,功率缩减参数集合的承载信令包括下述之一:SIB、DCI、RRC信令。
在一实施例中,功率缩减参数的确定方式,包括下述之一:
在功率缩减参数为第一功率缩减因子的情况下,根据检测到的接收信号质量以及预先配置的接收信号质量与第一功率缩减因子之间的映射关系确定第一通信节点的第一功率缩减因子;在功率缩减参数为第二功率缩减因子的情况下,根据检测到的接收信号质量以及预先配置的接收信号质量与第二功率缩减因子之间的映射关系确定第一通信节点的第二功率缩减因子;在功率缩减参数为功率缩减量的情况下,根据检测到的接收信号质量以及预先配置的接收信号质量与功率缩减量之间的映射关系确定第一通信节点的功率缩减量;在功率缩减参数为第一功率缩减因子偏移量的情况下,根据第一终端和终端组的相对位置,以及预先配置的第一终端和终端组的相对位置与第一功率缩减因子偏移量之间的映射关系确定第一通信节点的第一功率缩减因子偏移量;在功率缩减参数为第二功率缩减因子偏移量的情况下,根据第一终端和终端组的相对位置,以及预先配置的第一终端和终端组的相对位置与第二功率缩减因子偏移量之间的映射关系确定第一通信节点的第二功率缩减因子偏移量;在功率缩减参数为功率缩减量偏移值的情况下,根据第一终端和终端组的相对位置,以及预先配置的第一终端和终端组的相对位置与功率缩减量偏移值之间的映射关系确定第一通信节点的功率缩减量偏移值。
在一实施例中,最大发射功率上限值的确定方式,包括下述之一:
根据第一通信节点的当前定位位置以及预先配置的最大发射功率上限值与第一通信节点的定位高度之间的映射关系确定第一通信节点的最大发射功率上限值;根据最大发射功率所在资源池和预先配置的最大发射功率上限值与不同资源池的映射关系确定第一通信节点的最大发射功率上限值;根据最大发射功率偏移值和预先配置的最大发射功率确定第一通信节点的最大发射功率上限值。
在一实施例中,在第一通信节点为终端组中的第一终端的情况下,第一通信节点的功率缩减参数为第一终端的功率缩减参数;第一通信节点的最大发射功率上限值为第一终端的最大发射功率上限值。
在一实施例中,在第一通信节点为终端组中的第一终端的情况下,应用于第一通信节点的功率确定装置,还包括:
第二发送器,配置为将第一终端的功率缩减参数和第一终端的最大发射功 率上限值发送至终端组中的第二终端;第二确定模块,配置为根据预先确定的第二终端与第一终端之间的相对距离,以及第一终端的功率缩减参数确定终端组中对应第二终端的功率缩减参数;第三确定模块,配置为根据第一终端的最大发射功率上限值确定终端组中的第二终端的最大发射功率上限值。
在一实施例中,第一终端通过MIB向终端组中的第二终端广播信息。
在一实施例中,根据功率缩减参数集合中的至少一个功率缩减参数和最大发射功率上限值确定对应第一通信节点的发射功率,包括下述之一:
根据最大发射功率上限值、第一功率缩减因子、接收端功率目标值、资源块数目、部分路径损耗因子和估计的下行路径损耗确定对应第一通信节点的发射功率;根据最大发射功率上限值、接收端功率目标值、资源块数目、部分路径损耗因子、第二功率缩减因子和估计的下行路径损耗确定对应第一通信节点的发射功率;根据最大发射功率上限值、接收端功率目标值、资源块数目、部分路径损耗因子、估计的下行路径损耗和功率缩减量确定对应第一通信节点的发射功率;根据最大发射功率上限值、第一功率缩减因子、第一功率缩减因子偏移量、接收端功率目标值、资源块数目、部分路径损耗因子和估计的下行路径损耗确定对应第一通信节点的发射功率;根据最大发射功率上限值、接收端功率目标值、资源块数目、部分路径损耗因子、第二功率缩减因子、第二功率缩减因子偏移量和估计的下行路径损耗确定对应第一通信节点的发射功率;根据最大发射功率上限值、接收端功率目标值、资源块数目、部分路径损耗因子、估计的下行路径损耗、功率缩减量和功率缩减量偏移值确定对应第一通信节点的发射功率。
在一实施例中,在同一区域标识下的第一终端和/或第二终端采用相同的功率缩减参数和最大发射功率上限值。
本实施例提供的功率确定装置设置为实现图2所示实施例的应用于第一通信节点的功率确定方法,本实施例提供的功率确定装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,图7是本申请实施例提供的另一种功率确定装置的结构框图。本实施例应用于功率确定设备。其中,功率确定设备可以为第二通信节点。如图7所示,本实施例包括:预配置模块710和第一发送器720。
其中,预配置模块710,配置为预配置配置信息,配置信息用于指示发射功率的N组功率缩减参数集合;第一发送器720,配置为将配置信息发送至第一通信节点,以使第一通信节点确定对应的发射功率。
在一实施例中,功率缩减参数集合包括以下参数中的至少之一:
与接收信号质量相关联的第一功率缩减因子、第二功率缩减因子和功率缩减量;与第一终端和终端组的相对位置相关联的第一功率缩减因子偏移量、第二功率缩减因子偏移量和功率缩减量偏移值。
在一实施例中,第一功率缩减因子和第一功率缩减因子偏移量用于指示接收端功率目标值的缩减系数;第二功率缩减因子和第二功率缩减因子偏移量用于指示估计的下行路径损耗的缩减系数;功率缩减量和功率缩减量偏移值用于指示发射功率控制部分的缩减量。
在一实施例中,功率缩减参数集合和最大发射功率上限值的承载信令包括下述之一:SIB、DCI、RRC信令。
本实施例提供的功率确定装置设置为实现图3所示实施例的应用于第二通信节点的功率确定方法,本实施例提供的功率确定装置实现原理和技术效果类似,此处不再赘述。
图8是本申请实施例提供的一种通信设备的结构示意图。如图8所示,本申请提供的设备,包括:处理器810、存储器820和通信模块830。该设备中处理器810的数量可以是一个或者多个,图8中以一个处理器810为例。该设备中存储器820的数量可以是一个或者多个,图8中以一个存储器820为例。该设备的处理器810、存储器820和通信模块830可以通过总线或者其他方式连接,图8中以通过总线连接为例。在该实施例中,该设备为可以为第一通信节点(比如,终端组中的第一终端或第二终端)。
存储器820作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请任意实施例的设备对应的程序指令/模块(例如,功率确定装置中的接收器610和第一确定模块620)。存储器820可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器820可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器820可进一步包括相对于处理器810远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
通信模块830,配置为在第一终端、终端组中的第二终端和第二通信节点之间进行通信交互。
在通信设备为第一通信节点的情况下,上述提供的设备可设置为执行上述任意实施例提供的应用于第一通信节点的功率确定方法,具备相应的功能和效果。
在通信设备为第二通信节点的情况下,上述提供的设备可设置为执行上述任意实施例提供的应用于第二通信节点的功率确定方法,具备相应的功能和效果。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种应用于第一通信节点的功率确定方法,该方法包括:接收配置信息,配置信息用于指示发射功率的N组功率缩减参数集合;根据功率缩减参数集合中的至少一个功率缩减参数确定对应第一通信节点的发射功率。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种应用于第二通信节点的功率确定方法,该方法包括:预配置配置信息,配置信息用于指示发射功率的N组功率缩减参数集合;将配置信息发送至第一通信节点,以使第一通信节点确定对应的发射功率。
本领域内的技术人员应明白,术语用户设备涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc, DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (18)

  1. 一种功率确定方法,应用于第一通信节点,包括:
    接收配置信息,所述配置信息用于指示发射功率的N组功率缩减参数集合;
    根据所述功率缩减参数集合中的至少一个功率缩减参数确定对应所述第一通信节点的发射功率。
  2. 根据权利要求1所述的方法,其中,所述功率缩减参数集合包括以下参数中的至少之一:
    与接收信号质量相关联的第一功率缩减因子、第二功率缩减因子和功率缩减量;与第一终端和终端组的相对位置相关联的第一功率缩减因子偏移量、第二功率缩减因子偏移量和功率缩减量偏移值。
  3. 根据权利要求1所述的方法,其中,用于确定所述发射功率的所述第一通信节点的最大发射功率上限值可以依照下述之一方式确定:
    根据所述第一通信节点的当前定位位置以及预先配置的最大发射功率上限值与所述第一通信节点的定位高度之间的映射关系确定所述第一通信节点的最大发射功率上限值;
    根据所述最大发射功率所在资源池和预先配置的最大发射功率上限值与不同资源池的映射关系确定所述第一通信节点的最大发射功率上限值;
    根据所述最大发射功率偏移值和预先配置的最大发射功率确定所述第一通信节点的最大发射功率上限值;
    根据预配置的最大发射功率确定所述第一通信节点的最大发射功率上限值。
  4. 根据权利要求2所述的方法,其中,所述第一功率缩减因子和所述第一功率缩减因子偏移量用于指示接收端功率目标值的缩减系数;所述第二功率缩减因子和所述第二功率缩减因子偏移量用于指示估计的下行路径损耗的缩减系数;所述功率缩减量和所述功率缩减量偏移值用于指示发射功率控制部分的缩减量。
  5. 根据权利要求2所述的方法,其中,所述接收信号质量至少包括下述一项:参考信号接收功率RSRP、路损估计PL、信号干扰噪声比SINR。
  6. 根据权利要求2所述的方法,其中,所述功率缩减参数集合的承载信令包括下述之一:系统信息块SIB、下行控制信息DCI、无线资源控制RRC信令。
  7. 根据权利要求2所述的方法,其中,所述功率缩减参数的确定方式,包括下述之一:
    在所述功率缩减参数为所述第一功率缩减因子的情况下,根据检测到的接收信号质量以及预先配置的接收信号质量与第一功率缩减因子之间的映射关系 确定所述第一通信节点的第一功率缩减因子;
    在所述功率缩减参数为所述第二功率缩减因子的情况下,根据检测到的接收信号质量以及预先配置的接收信号质量与第二功率缩减因子之间的映射关系确定所述第一通信节点的第二功率缩减因子;
    在所述功率缩减参数为所述功率缩减量的情况下,根据检测到的接收信号质量以及预先配置的接收信号质量与功率缩减量之间的映射关系确定所述第一通信节点的功率缩减量;
    在所述功率缩减参数为所述第一功率缩减因子偏移量的情况下,根据所述第一终端和终端组的相对位置,以及预先配置的第一终端和终端组的相对位置与第一功率缩减因子偏移量之间的映射关系确定所述第一通信节点的第一功率缩减因子偏移量;
    在所述功率缩减参数为所述第二功率缩减因子偏移量的情况下,根据所述第一终端和终端组的相对位置,以及预先配置的第一终端和终端组的相对位置与第二功率缩减因子偏移量之间的映射关系确定所述第一通信节点的第二功率缩减因子偏移量;
    在所述功率缩减参数为所述功率缩减量偏移值的情况下,根据所述第一终端和终端组的相对位置,以及预先配置的第一终端和终端组的相对位置与功率缩减量偏移值之间的映射关系确定所述第一通信节点的功率缩减量偏移值。
  8. 根据权利要求1所述的方法,其中,在所述第一通信节点为所述终端组中的第一终端的情况下,所述第一通信节点的功率缩减参数为所述第一终端的功率缩减参数;所述第一通信节点的最大发射功率上限值为所述第一终端的最大发射功率上限值。
  9. 根据权利要求8所述的方法,其中,在所述第一通信节点为所述终端组中的第一终端的情况下,所述方法,还包括:
    将所述第一终端的功率缩减参数和所述第一终端的最大发射功率上限值发送至所述终端组中的第二终端;
    根据预先确定的所述第二终端与所述第一终端之间的相对距离,以及所述第一终端的功率缩减参数确定所述终端组中对应所述第二终端的功率缩减参数;
    根据所述第一终端的最大发射功率上限值确定所述终端组中的所述第二终端的最大发射功率上限值。
  10. 根据权利要求8所述的方法,其中,所述第一终端通过主信息块MIB向所述终端组中的第二终端广播信息。
  11. 根据权利要求2所述的方法,其中,所述根据所述功率缩减参数集合中的至少一个功率缩减参数确定对应所述第一通信节点的发射功率,包括下述之一:
    根据最大发射功率上限值、所述第一功率缩减因子、接收端功率目标值、资源块数目、部分路径损耗因子和估计的下行路径损耗确定对应所述第一通信节点的发射功率;
    根据最大发射功率上限值、接收端功率目标值、资源块数目、部分路径损耗因子、所述第二功率缩减因子和估计的下行路径损耗确定对应所述第一通信节点的发射功率;
    根据最大发射功率上限值、接收端功率目标值、资源块数目、部分路径损耗因子、估计的下行路径损耗和所述功率缩减量确定对应所述第一通信节点的发射功率;
    根据最大发射功率上限值、所述第一功率缩减因子、所述第一功率缩减因子偏移量、接收端功率目标值、资源块数目、部分路径损耗因子和估计的下行路径损耗确定对应所述第一通信节点的发射功率;
    根据最大发射功率上限值、接收端功率目标值、资源块数目、部分路径损耗因子、所述第二功率缩减因子、所述第二功率缩减因子偏移量和估计的下行路径损耗确定对应所述第一通信节点的发射功率;
    根据最大发射功率上限值、接收端功率目标值、资源块数目、部分路径损耗因子、估计的下行路径损耗、所述功率缩减量和所述功率缩减量偏移值确定对应所述第一通信节点的发射功率。
  12. 根据权利要求1-11任一项所述的方法,其中,在同一区域标识下的第一终端和/或第二终端采用相同的功率缩减参数和最大发射功率上限值。
  13. 一种功率确定方法,应用于第二通信节点,包括:
    预配置配置信息,所述配置信息用于指示发射功率的N组功率缩减参数集合;
    将所述配置信息发送至第一通信节点,以使所述第一通信节点确定对应的发射功率。
  14. 根据权利要求13所述的方法,其中,所述功率缩减参数集合包括以下参数中的至少之一:
    与接收信号质量相关联的第一功率缩减因子、第二功率缩减因子和功率缩减量;与第一终端和终端组的相对位置相关联的第一功率缩减因子偏移量、第 二功率缩减因子偏移量和功率缩减量偏移值。
  15. 根据权利要求14所述的方法,其中,所述第一功率缩减因子和所述第一功率缩减因子偏移量用于指示接收端功率目标值的缩减系数;所述第二功率缩减因子和所述第二功率缩减因子偏移量用于指示估计的下行路径损耗的缩减系数;所述功率缩减量和所述功率缩减量偏移值用于指示发射功率控制部分的缩减量。
  16. 根据权利要求14所述的方法,其中,所述功率缩减参数集合的承载信令包括下述之一:系统信息块SIB、下行控制信息DCI、无线资源控制RRC信令。
  17. 一种通信设备,包括:通信模块,存储器,以及至少一个处理器;
    所述通信模块,配置为在第一终端、终端组中的第二终端和第二通信节点之间进行通信交互;
    所述存储器,配置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如上述权利要求1-12或13-16中任一项所述的功率确定方法。
  18. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如上述权利要求1-12或13-16中任一项所述的功率确定方法。
PCT/CN2022/115532 2021-09-03 2022-08-29 功率确定方法、设备和存储介质 WO2023030257A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22863393.9A EP4340434A1 (en) 2021-09-03 2022-08-29 Power determination method, device and storage medium
KR1020247001933A KR20240021310A (ko) 2021-09-03 2022-08-29 전력 결정 방법, 설비 및 저장 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111033942.6A CN115767575A (zh) 2021-09-03 2021-09-03 功率确定方法、设备和存储介质
CN202111033942.6 2021-09-03

Publications (1)

Publication Number Publication Date
WO2023030257A1 true WO2023030257A1 (zh) 2023-03-09

Family

ID=85331965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115532 WO2023030257A1 (zh) 2021-09-03 2022-08-29 功率确定方法、设备和存储介质

Country Status (4)

Country Link
EP (1) EP4340434A1 (zh)
KR (1) KR20240021310A (zh)
CN (1) CN115767575A (zh)
WO (1) WO2023030257A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8838051B1 (en) * 2009-02-19 2014-09-16 Qualcomm Incorporated Transmitter beamforming power control
US20140341128A1 (en) * 2013-05-16 2014-11-20 Broadcom Corporation Method and Apparatus for Scaling Coverage
CN111480386A (zh) * 2017-12-15 2020-07-31 高通股份有限公司 针对新无线电频谱共享(nr-ss)的基于子带的随机接入和调度请求
US20210392674A1 (en) * 2020-06-10 2021-12-16 Qualcomm Incorporated Uplink power control for full duplex communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8838051B1 (en) * 2009-02-19 2014-09-16 Qualcomm Incorporated Transmitter beamforming power control
US20140341128A1 (en) * 2013-05-16 2014-11-20 Broadcom Corporation Method and Apparatus for Scaling Coverage
CN111480386A (zh) * 2017-12-15 2020-07-31 高通股份有限公司 针对新无线电频谱共享(nr-ss)的基于子带的随机接入和调度请求
US20210392674A1 (en) * 2020-06-10 2021-12-16 Qualcomm Incorporated Uplink power control for full duplex communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Power control for V2V", 3GPP DRAFT; R1-156429, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Anaheim, USA; 20151115 - 20151122, 15 November 2015 (2015-11-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051002895 *

Also Published As

Publication number Publication date
CN115767575A (zh) 2023-03-07
KR20240021310A (ko) 2024-02-16
EP4340434A1 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
US11330602B2 (en) Wireless communication method, network device, and terminal device
US11818748B2 (en) Method and device for performing BWP switching in wireless communication system
US20230387986A1 (en) Electronic devices and communication methods
US9247508B2 (en) Transmission power control for signals used by user equipment terminals for device-to-device services
US20200145125A1 (en) Communication mode control method and device
US11765663B2 (en) Method and device for controlling transmission power in wireless communication system
US10271289B2 (en) Power control method and user equipment in device to device communication in serving cell
KR102490599B1 (ko) Nr v2x에서 사이드링크 전송 전력을 제어하는 방법 및 장치
US11785558B2 (en) Power headroom report method and apparatus, and computer storage medium
CN105307256A (zh) 一种d2d发射功率控制方法及装置
CN114503458A (zh) 用于管理网络资源的系统、方法和装置
CN115066004A (zh) 电子设备和通信方法
US20220294499A1 (en) Information feedback method and device, information receiving method and device, and storage medium
CN104039000A (zh) 一种功率调整的方法及基站
WO2023030257A1 (zh) 功率确定方法、设备和存储介质
WO2021037639A1 (en) Power control
TW202031070A (zh) 用於無線通信的電子設備和方法、計算機可讀存儲介質
WO2022199534A1 (zh) 非地面网络的功率控制方法、装置、设备及可读存储介质
US20240015562A1 (en) Qos flow-related measurement
CN114747260B (zh) 上行发射功率控制方法及装置
US20220294495A1 (en) Electronic device and method in wireless communication system
JP6911200B2 (ja) サービス実行方法及び装置
EP4340433A1 (en) Power control method and apparatus, network node, terminal and storage medium
WO2023155077A1 (en) Systems and methods for power saving in a transmit-and-receive point (trp)
WO2023184419A1 (zh) 功率控制方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022863393

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022863393

Country of ref document: EP

Effective date: 20231213

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023027665

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20247001933

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247001933

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 112023027665

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231228

NENP Non-entry into the national phase

Ref country code: DE