WO2023030087A1 - 一种逆流式间接露点蒸发冷却器 - Google Patents

一种逆流式间接露点蒸发冷却器 Download PDF

Info

Publication number
WO2023030087A1
WO2023030087A1 PCT/CN2022/114174 CN2022114174W WO2023030087A1 WO 2023030087 A1 WO2023030087 A1 WO 2023030087A1 CN 2022114174 W CN2022114174 W CN 2022114174W WO 2023030087 A1 WO2023030087 A1 WO 2023030087A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
wet
air
dry
evaporative cooler
Prior art date
Application number
PCT/CN2022/114174
Other languages
English (en)
French (fr)
Inventor
裴德纯
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2023030087A1 publication Critical patent/WO2023030087A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0035Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation

Definitions

  • the invention belongs to the technical field of air conditioning and refrigeration, in particular to a countercurrent indirect dew point evaporative cooler.
  • Air conditioners have been widely used in commercial buildings, residences, data centers, hospitals, schools, industrial premises, supermarkets, vehicles, etc. to control the temperature and humidity of the air to provide thermal comfort and a pleasant environment. As populations grow, incomes rise around the world, and global temperatures rise, so does the need for air conditioning. At the same time, the greenhouse gases produced during the use of traditional air conditioners also exacerbate climate change.
  • evaporative coolers offer many advantages such as high energy efficiency, low capital and operating costs, ease of installation and maintenance, no greenhouse gas emissions, and no heat rejection to the environment.
  • the working principle of the evaporative cooler is to use the large enthalpy of evaporation of water.
  • the temperature of the treated air is lowered by the evaporation of water.
  • Evaporative coolers are divided into direct evaporative coolers and indirect evaporative coolers.
  • the water and the air being processed are in direct contact. Evaporation of water cools the air. However, the reduction in the temperature of the treated air is affected with an increase in the humidity ratio.
  • an indirect evaporative cooler In an indirect evaporative cooler, the process air and water are separated by a separator capable of transferring heat but not mass. The treated air is cooled without any change in its humidity ratio. This is the unique advantage of indirect evaporative coolers. However, the processed air temperature of these coolers is thermodynamically limited below the wet bulb temperature of the working air. Therefore, this cooler is classified as an indirect wet bulb evaporative cooler.
  • Dr. Maisotsenko improved the indirect mesh bulb evaporative cooler into an indirect dew point evaporative cooler.
  • the processed air 100 is cooled in a drying tunnel 101, as shown in Fig. 1(a).
  • Part of the air 102 that has been cooled in the drying tunnel 101 is transferred to the wet tunnel 103 as working air 104 to drive water evaporation.
  • the working air 104 is cooled before contacting the water, the cooling potential becomes higher. Therefore, the working air 104 in the wet aisle 103 can reach the dew point temperature and can cool the processed air 100 in the dry aisle 101 to a temperature lower than the wet bulb temperature, as shown in the psychrometric diagram in FIG. 1( b ).
  • This technology came to be known as the M Cycle Cooling Technology.
  • the most famous M-cycle indirect evaporative cooler is the Colorado cooler, which is based on the cross-flow structure 200 shown in Fig. 2(a).
  • the processed air 201 flows through the drying channel 202 .
  • Part of the processed air 201 is diverted to the wet channel 204 through a series of through holes 203 to become working air.
  • Processed air 201 and working air are in a cross-flow configuration.
  • Exhaust air 205 and product air 206 are exhausted from the ends of the wet and dry aisles, respectively.
  • it has higher cooling efficiency than indirect wet bulb evaporative cooler.
  • an indirect dew-point evaporative cooler with a counter-flow configuration has been proposed and investigated (Fig. 2(b)).
  • the processed air 208 flows through the drying channel 209 and diverts to the working air 211 at the end of the drying channel 210 .
  • the processed air and the working air flow are in a countercurrent structure.
  • Exhaust gas 212 and product air 213 then exit the heat exchanger.
  • This counterflow indirect dew point evaporative cooler has higher cooling capacity and dew point efficiency than cross flow coolers.
  • both counterflow and crossflow indirect dew point evaporative coolers shown in Figure 2 have an inherent inherent problem. That is, the product air is suddenly diverted from the dry aisle to the wet aisle. Because of this, the working air is uneven and the pressure drop between the wet and dry channels is high. Therefore, more energy is required to drive the airflow. Therefore, the cooling performance and energy efficiency of these coolers are lower.
  • the present invention proposes a counter-flow indirect dew point evaporative cooler; in the evaporative cooler, product air can flow from the dry channel to the wet channel without changing its flow direction. This results in an evaporative cooler with more uniform airflow and uses less energy to drive the airflow in its channels; in turn, an indirect dew point evaporative cooler with better cooling performance, better energy efficiency, easier control, and Operability has been improved.
  • a counter-flow indirect dew point evaporative cooler including a plurality of working channels arranged in parallel, and the adjacent working channels are separated by a partition wall; along the direction of gas flow, each working channel is divided into a dry channel and a wet channel in sequence ;
  • the flow direction of the airflow in the adjacent working channel is opposite, so the dry channel and the wet channel in the adjacent working channel are also set oppositely, so the air flow in the adjacent working channel is in a countercurrent configuration; set at the junction of the dry channel and the wet channel Product air outlet; the air to be processed enters the wet channel along a straight line from the dry channel to become working air, and the obtained product air is discharged from the product air outlet.
  • partition wall in the dry channel is a dry surface and needs to be kept dry; while the partition wall in the wet channel is a wet surface and needs to be kept wet.
  • partition wall is made of heat-conducting material, so that there is heat transfer between adjacent working channels, but there is no mass transfer between adjacent working channels.
  • partition walls are connected by airflow guides, so the partition walls and airflow guides form a working channel.
  • the bottom of the partition wall in the wet channel is provided with an extension part, and the extension part extends out of the wet channel from the airflow guide at the bottom and contacts with water, so water can be introduced into the inner wall of the wet channel from the extension part.
  • a clearance fit may be used between the extension part and the airflow guide at the bottom, or the capillary effect may be used to bring water into the partition wall of the wet channel.
  • partition wall of the wet channel is kept wet by spraying.
  • the product air outlet is set at the junction of the dry channel and the wet channel, and the product air outlet is only facing the dry channel section, so the product air outlet is used as the dividing line between the dry channel and the wet channel.
  • the outermost end of the dry passage is provided with an inlet for air to be treated, and the end of the wet passage is provided with an outlet for exhausting air.
  • the cooler designed in this application has more uniform airflow and smaller pressure drop, thus reducing energy consumption. Furthermore, by adjusting the cross-sections of the air outlets ([506] and [507]), the airflow ratio in the wet and dry channels can be easily controlled and optimized. This enables the cooler in this application to facilitate higher space velocities in its channels and higher dew point cooling efficiency. Therefore, the cooling performance and energy efficiency of the counterflow indirect dew point evaporative cooler designed in this application are higher.
  • Fig. 1 (a) is a working principle diagram of an existing indirect dew point evaporative cooler
  • Fig. 1 (b) is a schematic diagram of the relationship between temperature and humidity of an existing indirect dew point evaporative cooler
  • Fig. 2 (a) is a schematic diagram of a cross-flow structure of an existing indirect dew point evaporative cooler
  • Fig. 2 (a) is a schematic diagram of a counter-flow structure of an existing indirect dew point evaporative cooler
  • Fig. 3 is the working principle of the counterflow indirect dew point evaporative cooler of the present application
  • Figure 4 is a cross-sectional view of the counterflow indirect dew point evaporative cooler of the present application and the internal airflow configuration, wherein, 4(a) is a schematic diagram of the air that needs to be processed entering from the left end, and 4(b) is a schematic diagram that the air that needs to be processed enters from the right end.
  • Fig. 5 is a compact counterflow indirect dew point evaporative cooler of the present application.
  • the counterflow indirect dew point evaporative cooler consists of two cooling units, namely the first cooling unit 300 and the second cooling unit 301. Both the first cooling unit 300 and the second cooling unit 301 are composed of dry passages 302 and wet passages 303 arranged in parallel; in the same cooling unit, between the dry passages 302 and the wet passages 303, the partition between the two passages is realized. medium isolation.
  • the first cooling unit 300 and the second cooling unit 301 are arranged oppositely; specifically, the dry passage 302 in the first cooling unit 300 is arranged opposite to the wet passage 303 of the second cooling unit 301 and are located on the same straight line; the first cooling unit 300 The wet channel 303 of the second cooling unit 301 is opposite to the dry channel 302 and located on the same straight line.
  • the outermost end of the dry channel 302 of the first cooling unit 300 and the second cooling unit 301 (the right end of the upper part and the left end of the lower part of FIG.
  • the air 304 to be treated is input from the dry channel 302 of the first cooling unit 300 and the second cooling unit 301 respectively, and enters the second cooling unit 301 and the first cooling unit 301 along a straight line respectively.
  • the wet channel 303 of the cooling unit 300 is used as working air, and the working air entering the wet channel 303 is cooled by the evaporation of water in the wet channel 303; part of the cooled air is guided from the outlet of the product air 305 to the outlet of the heat exchanger to obtain the product Air 305; the remaining cooled air continues to flow into the wet channel 303 of the other half of the device to become working air; finally the exhaust air 306 leaves the cooler at the end of the wet channel carrying moisture.
  • the present application designs a counter-flow indirect dew point evaporative cooler, as shown in FIG. 4 .
  • the counter-flow indirect dew point evaporative cooler designed in this application includes a plurality of working channels arranged in parallel, and the adjacent working channels are separated by a partition wall 405, and the partition wall 405 can make heat exist between two adjacent working channels transfer, but there will be no mass transfer.
  • Adjacent partition walls 405 are connected by airflow guides 406 , so the partition walls 405 and airflow guides 406 form a working channel.
  • each working channel is divided into a dry channel 403 and a wet channel 404 in sequence; a product air outlet 409 is set at the junction of the dry channel 403 and the wet channel 404, and the product air outlet 409 is only facing the dry channel 403 section, It cannot face the wet channel 404; therefore, the product air outlet 409 is used as the dividing line between the dry channel 403 and the wet channel 404.
  • an exhaust air outlet 411 is provided at the end of the wet channel 404.
  • the dry channel 403 and the wet channel 404 between the adjacent working channels are arranged oppositely, so the airflow in the adjacent working channels is in a counter-flow configuration.
  • the partition wall 405 in the dry passage 403 is a dry surface 408, which needs to be kept dry; while the partition wall 405 in the wet passage 404 is a wet surface 410, so it needs to be kept moist.
  • the wet passage The bottom of the partition wall 405 in 404 is provided with an extension part 412, and the extension part 412 extends out of the wet channel 404 from the flow guide 406 at the bottom and contacts with water, so water can be introduced into the inner wall of the wet channel 404 from the extension part 412 .
  • a clearance fit between the extension 412 and the bottom flow guide 406 may be used, capillary effect to bring water into a layer of hollow material (eg fabric, fiber, etc.) channels, or generate water droplets mixed into the working airflow and many other ways.
  • the outermost end of the dry channel 403 of each working channel is provided with an inlet 407 for air to be processed, and the air to be processed is injected into each dry channel 403 from the inlet 407 on both sides of the cooler.
  • the process air needs to enter the dry channel 403 first; in the dry channel 403 , the process air needs to contact the dry wall surface 408 of the dry channel 403 .
  • a part of the air is diverted away from the product air outlet 409 as product air, and the remaining air continues to flow into the wet channel 404. In the wet channel 404, the air directly contacts the wet surface 410 of the wet channel 404.
  • the air in the channel 404 is used as the working gas to cool down the air to be treated in the adjacent dry channel 403 ; finally the working gas in the wet channel 404 carries moisture and becomes waste gas and leaves from the exhaust air outlet 411 at the end of the wet channel.
  • the counterflow indirect dew point evaporative cooler 400 can be divided into a first cooling unit 401 and a second cooling unit 402; as shown in FIG. They are discharged from the right side respectively, and in Fig. 4(b) it is necessary to process the air to enter from all the dry passages 403 on the right side and to be discharged from the left side after passing through the wet passages 404, thus forming a counter-flow configuration.
  • the cooler designed in this application has more uniform airflow and smaller pressure drop. Therefore, the cooling performance and energy efficiency of the counterflow indirect dew point evaporative cooler designed in this application are higher.
  • the working channel of the cooler is arranged horizontally, so the air in the working channel also flows in the horizontal direction, and the exhaust air and product air are discharged from bottom to top.
  • the invention also includes other configurations in which the heat exchangers, wet and dry channels, and airflow have different directions, as long as the cooling principle shown in FIG. 3 is complied with.
  • the heat exchanger is horizontal, the wet and dry channels are vertical, the air to be treated is horizontal, and the discharge air and product air are bottom to top.
  • the invention also includes other configurations in which the heat exchangers, wet and dry channels, and airflows have different directions, as long as they comply with the cooling principle shown in FIG. 3 .
  • the counterflow indirect dew point evaporative cooler 500 of the present application includes one or more working channels 501 , and its structure and airflow configuration are shown in FIG. 4 .
  • This cooler comprises the following other components: one or more air blowers 502 are arranged at the air inlet 503, and utilize the air blowers 502 to input the air that needs to be processed to the working channel 501; ), the airflow ratio in wet and dry aisles can be easily controlled and optimized. This enables the cooler in this application to facilitate higher space velocities in its channels and higher dew point cooling efficiency.
  • One or more water containers 504 are provided at the bottom of the system for storing and supplying water to the wet channels.
  • the enclosure and support structure 505, eg, provides mechanical strength and support for other components, protects the system, directs airflow in the correct direction, and prevents unwanted air leakage or air bypassing the heat exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明公开了一种逆流式间接露点蒸发冷却器,包括多条平行设置的工作通道,相邻工作通道之间通过分隔壁进行隔离;沿气体流动方向,将每一条工作通道内部依次分为干通道和湿通道;相邻工作通道内的气流流动方向相反,故相邻工作通道内的干通道和湿通道也相反设置,因此相邻工作通道内的气流呈逆流配置;在干通道与湿通道的交界处设置产品空气出口;需要处理的空气沿直线自干通道进入湿通道成为工作空气,其中获得的产品空气自产品空气出口排出;在本申请所设计的逆流式间接露点蒸发冷却器内,空气从干通道进入湿通道成为工作空气时是沿直线流动的,故在同一个工作通道内气流的方向不会发生改变,故本装置在工作时具有气流更均匀、压降更小等优点。

Description

一种逆流式间接露点蒸发冷却器 技术领域
本发明属于空调制冷技术领域,尤其是一种逆流式间接露点蒸发冷却器。
背景技术
空调已被广泛用于商业建筑、住宅、数据中心、医院、学校、工业用房、超市、交通工具等,用于控制空气的温度和湿度,以提供热舒适和宜人的环境。随着人口的增长,世界各地的收入增加,全球气温上升,对空调的需求也在增加。同时传统空调的使用过程中产生的温室气体也加剧气候变化。
为了降低传统空调系统的能耗和温室气体排放,人们提出了几种替代技术,如吸收/吸附式制冷机和蒸发式制冷机。在这些方法中,蒸发冷却器具有许多优点,例如高能效、低资本和运行成本、易于安装和维护、无温室气体排放和对环境无热排斥。
蒸发冷却器的工作原理是利用水的大蒸发焓。被处理空气的温度通过水的蒸发而降低。蒸发冷却器分为直接蒸发冷却器和间接蒸发冷却器。
在直接蒸发冷却器中,水和被处理空气直接接触。水的蒸发使空气冷却。然而,被处理空气温度的降低会随着湿度比的增加而受到影响。
在间接蒸发冷却器中,被处理空气和水通过能够传热但不能传质的分离器进行分离。被处理空气在其湿度比没有任何变化的情况下冷却。这是间接蒸发冷却器的独特优势。然而,这些冷却器的被处理空气温度受到热力学限制,低于工作空气的湿球温度。因此,这种冷却器被归类为间接式湿球蒸发冷却器。
后来,Maisotsenko博士将间接网状灯泡蒸发冷却器改进为间接露点蒸发冷却器。在间接露点蒸发冷却器中,被处理空气100在干燥通道101中冷却,如图1(a)所示。已在干燥通道101中冷却的空气102的一部分被转移到湿通道103,成为工作空气104,以驱动水蒸发。因为工作空气104在与水接触之前被冷却,所以冷却电势变得更高。因此,湿通道103中的工作空气104可达到露点温度,并可将干通道101中的被处理空气100冷却至低于湿球温度的温度,如图1(b)中的湿度图所示。这项技术后来被称为M循环冷却技术。
其中,最著名的M循环间接蒸发冷却器是科罗拉多冷却器,它基于图2(a)所示的横流结构200。被处理空气201流经干燥通道202。部分被处理空气201通过一系列通孔203分流至湿通道204,成为工作空气。被处理空气201和工作空气处于一种横流结构中。排 出的空气205和产品空气206分别从湿通道和干通道的末端排出。通过这种设计,它具有比间接湿球蒸发冷却器更高的冷却效率。然而,它仍然面临一些缺点:(1)产品空气由于很大比例的被处理空气在早期逐渐转入至湿通道而没有完全被冷却,(2)交叉流型导致换热器效率低。
为了解决由错流配置引起的问题,已经提出并研究了具有逆流结构的间接露点蒸发冷却器(图2(b))。被处理空气208流经干燥通道209并在干燥通道210的末端分流转向工作空气211。被处理空气和工作气流处于逆流结构。然后,废气212和产品空气213接着离开热交换器。这种逆流式间接露点蒸发冷却器比横流冷却器具有更高的冷却能力和露点效率。
然而,图2中所示的这些逆流和横流间接露点蒸发冷却器都存在一个固有内在问题。即产品空气突然从干通道转向湿通道。正因为如此,导致工作空气不均匀,干湿通道之间的压降较高。因此,需要更多的能量来驱动气流。所以,这些冷却器的冷却性能和能效都较低。
发明内容
为了解决现有技术中存在的不足,本发明提出了一种逆流式间接露点蒸发冷却器;在本蒸发冷却器中,产品空气可以从干通道流向湿通道,而无需改变其流动方向。由此使得蒸发冷却器具有更均匀的气流,并使用更少的能量驱动其通道中的气流;进而使间接露点蒸发冷却器具有更好的冷却性能、更好的能源效率、更容易控制,以及提高了操作性。
本发明所采用的技术方案如下:
一种逆流式间接露点蒸发冷却器,包括多条平行设置的工作通道,相邻工作通道之间通过分隔壁进行隔离;沿气体流动方向,将每一条工作通道内部依次分为干通道和湿通道;相邻工作通道内的气流流动方向相反,故相邻工作通道内的干通道和湿通道也相反设置,因此相邻工作通道内的气流呈逆流配置;在干通道与湿通道的交界处设置产品空气出口;需要处理空气沿直线自干通道进入湿通道成为工作空气,其中获得的产品空气自产品空气出口排出。
进一步,干通道内的分隔壁为干燥表面,需要保持干燥;而在湿通道内的分隔壁为湿表面,需要保持湿润。
进一步,分隔壁为导热材料,使相邻的工作通道之间存在热量传递,但是相邻的工作通道之间不存在质量传递。
进一步,相邻分隔壁之间通过气流引导件进行连接,故由分隔壁和气流引导件构成工 作通道。
进一步,湿通道内的分隔壁的底部设有延伸部,延伸部自底部的过气流引导件向外延伸出湿通道并与水接触,故水能自延伸部导入湿通道的内壁。
进一步,延伸部与底部的过气流引导件之间可以采用间隙配合或利用毛细管效应将水带入湿通道的分隔壁。
进一步,对湿通道的分隔壁采用喷淋的方式使其保持湿润。
进一步,所述产品空气出口设置在干通道与湿通道的交界处,且产品空气出口只对着干通道段,故以产品空气出口为干通道和湿通道的分界线。
进一步,在干通道的最外端设有需要处理空气的进入口,在湿通道的末端设置排出空气出口。
本发明的有益效果:
在本申请所设计的逆流式间接露点蒸发冷却器内,空气从干通道进入湿通道成为工作空气时是沿直线流动的,故在同一个工作通道内气流的方向不会发生改变;因此,与图1(a)所示的传统M循环蒸发冷却器相比,本应用中设计的冷却器具有更均匀的气流和更小的压降,从而降低了能耗。此外,通过调整出风口([506]和[507])的横截面,可以轻松控制和优化湿通道和干通道中的气流比率。这使得该应用中的冷却器能够促进其通道中的更高空速和更高的露点冷却效率。因此,本申请所设计的逆流间接露点蒸发冷却器的冷却性能和能效更高。
附图说明
图1中,图1(a)是现有间接露点蒸发冷却器的工作原理图,图1(b)是现有间接露点蒸发冷却器温度与湿度关系示意图;
图2中,图2(a)是现有间接露点蒸发冷却器的错流结构示意图,图2(a)是现有间接露点蒸发冷却器的逆流结构示意图;
图3是本申请逆流式间接露点蒸发冷却器的工作原理;
图4是本申请逆流式间接露点蒸发冷却器剖视图及内部气流配置,其中,4(a)是需要处理空气从左端进入示意图,4(b)是需要处理空气从右端进入示意图。
图5是本申请一种紧凑型逆流间接露点蒸发冷却器。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不 用于限定本发明。
本申请所设计的一种逆流式间接露点蒸发冷却器的工作的原理如图3所示,逆流式间接露点蒸发冷却器由两个冷却单元组成,分别是第一冷却单元300和第二冷却单元301。第一冷却单元300和第二冷却单元301均由平行设置的干通道302和湿通道303构成;在同一冷却单元内,干通道302和湿通道303之间由分隔板实现两个通道间的介质隔绝。第一冷却单元300和第二冷却单元301相对设置;具体地,第一冷却单元300中的干通道302与第二冷却单元301的湿通道303相对设置且位于同一直线上;第一冷却单元300的湿通道303与第二冷却单元301的干通道302相对设置且位于同一直线上。第一冷却单元300和第二冷却单元301的干通道302最外端(图3上部的右端以及下部的左端)为需处理空气304的输入口,在同一直线上的湿通道303和干通道302的对接处设置产品空气305的出口,第一冷却单元300和第二冷却单元301的湿通道303的最外端(图3上部的左端以及下部的右端)为设有排出空气306的排出口。结合图3,在该原理的冷却器工作过程中,需处理空气304分别从第一冷却单元300和第二冷却单元301的干通道302输入,分别沿直线依次进入第二冷却单元301和第一冷却单元300的湿通道303作为工作空气,进入湿通道303的工作空气通过湿通道303中水的蒸发来冷却;部分被冷却的空气从产品空气305的出口导向至热交换器的出口,获得产品空气305;剩余被冷却的空气继续流入另一半装置的湿通道303,以成为工作空气;最后排出空气306携带水分在湿通道的尾端离开冷却器。
基于上述原理,本申请设计了一种逆流式间接露点蒸发冷却器,如图4所示。本申请所设计的逆流式间接露点蒸发冷却器包括多条平行设置的工作通道,相邻工作通道之间通过分隔壁405进行隔离,分隔壁405可以使相邻的两条工作通道之间存在热量传递,但是不会存在质量传递。相邻分隔壁405之间通过气流引导件406进行连接,故由分隔壁405和气流引导件406构成工作通道。
沿气体流动方向,将每一条工作通道内部依次分为干通道403和湿通道404;在干通道403与湿通道404的交界处设置产品空气出口409,且产品空气出口409只对着干通道403段,不能对着湿通道404;故以产品空气出口409为干通道403和湿通道404的分界线。在湿通道404的末端设置排出空气出口411。相邻工作通道之间的干通道403和湿通道404设置相反,故相邻工作通道内的气流呈逆流配置。
在干通道403内的分隔壁405为干燥表面408,需要保持干燥;而在湿通道404内的分隔壁405为湿表面410,故需要保持湿润,为了能够保证湿表面410保持湿润,故湿通 道404内的分隔壁405的底部设有延伸部412,延伸部412自底部的过气流引导件406向外延伸出湿通道404并与水接触,故水能自延伸部412导入湿通道404的内壁。延伸部412与底部的过气流引导件406之间可以采用间隙配合、毛细管效应将水带入隔板表面上的中空材料(例如织物、纤维等)层中、使用设备将水喷洒或滴入潮湿的渠道、或产生水滴混入工作气流中等多种方式。
每一条工作通道的干通道403的最外端设有需要处理空气的进入口407,由冷却器两侧的进入口407分别向每条干通道403内注入需要处理空气。需要处理空气先进入干通道403;在干通道403内,需要处理空气与干通道403的干燥壁表面408接触。在离开干通道403后,一部分空气作为产品空气从产品空气出口409被转移离开,剩余的空气继续流入湿通道404,在湿通道404内空气直接与湿通道404的湿表面410接触,此时湿通道404内的空气作为工作气体,可以对相邻干通道403内的需要处理空气进行降温冷却;最终湿通道404内的工作气体携带湿气成为废气从湿通道末端的排出空气出口411离开。可以将逆流式间接露点蒸发冷却器400分为第一冷却单元401和第二冷却单元402;如图4(a)所示,需要处理空气自左侧所有干通道403进入并经过湿通道404后分别从右侧排出,图4(b)则是需要处理空气自右侧所有干通道403进入并经过湿通道404后分别从左侧排出,由此形成逆流式配置。
在本申请所设计的逆流式间接露点蒸发冷却器内,空气从干通道403进入湿通道404成为工作空气时,并不会改变其方向;因此,与图1(a)所示的传统M循环蒸发冷却器相比,本申请所设计的冷却器的气流更均匀,压降更小。因此,本申请所设计的逆流间接露点蒸发冷却器的冷却性能和能效更高。
另外,在本实施例中,冷却器的工作通道是水平设置的,故工作通道内的空气也是沿水平方向流动的,排出空气和成品空气是从下到上的排出。然而,本发明还包括其他配置,其中热交换器、湿通道和干通道、气流具有不同的方向,只要符合图3所示的冷却原理即可。
在本实施例中,换热器是水平的,湿通道和干通道是垂直的,需处理的空气是水平的,排出空气和成品空气是从下到上的。然而,本发明还包括其他配置,其中热交换器、湿通道和干通道、气流具有不同的方向,只要它们符合图3所示的冷却原理即可。
在本申请的一个实施例中结构如图5所示,本申请的逆流式间接露点蒸发冷却器500,包括一个或多个工作通道501,其结构和气流配置如图4所示。该冷却器包括以下其他部件:一个或多个鼓风机502,设置在空气进口503处,利用鼓风机502向工作通道501输 入需要处理空气;通过调整出风口(左侧出风口506和右侧出风口507)的横截面,可以轻松控制和优化湿通道和干通道中的气流比率。这使得该应用中的冷却器能够促进其通道中的更高空速和更高的露点冷却效率。在系统底部设置一个或多个水容器504,用于储存和供应水到湿通道。外壳和支撑结构505,如为其他组件提供机械强度和支撑,保护系统,引导气流以正确的方向流动,防止不希望的空气泄漏或空气绕过热交换器。
以上实施例仅用于说明本发明的设计思想和特点,其目的在于使本领域内的技术人员能够了解本发明的内容并据以实施,本发明的保护范围不限于上述实施例。所以,凡依据本发明所揭示的原理、设计思路所作的等同变化或修饰,均在本发明的保护范围之内。

Claims (9)

  1. 一种逆流式间接露点蒸发冷却器,其特征在于,包括多条平行设置的工作通道,相邻工作通道之间通过分隔壁(405)进行隔离;沿气体流动方向,将每一条工作通道内部依次分为干通道(403)和湿通道(404);相邻工作通道内的气流流动方向相反,故相邻工作通道内的干通道(403)和湿通道(404)也相反设置,因此相邻工作通道内的气流呈逆流配置;在干通道(403)与湿通道(404)的交界处设置产品空气出口(409);需要处理空气沿直线自干通道(403)进入湿通道(404)成为工作空气,其中获得的产品空气自产品空气出口(409)排出。
  2. 根据权利要求1所述的一种逆流式间接露点蒸发冷却器,其特征在于,干通道(403)内的分隔壁(405)为干燥表面(408),需要保持干燥;而在湿通道(404)内的分隔壁(405)为湿表面(410),需要保持湿润。
  3. 根据权利要求1或2所述的一种逆流式间接露点蒸发冷却器,其特征在于,分隔壁(405)为导热材料,使相邻的工作通道之间存在热量传递,但是相邻的工作通道之间不存在质量传递。
  4. 根据权利要求3所述的一种逆流式间接露点蒸发冷却器,其特征在于,相邻分隔壁(405)之间通过气流引导件(406)进行连接,故由分隔壁(405)和气流引导件(406)构成工作通道。
  5. 根据权利要求4所述的一种逆流式间接露点蒸发冷却器,其特征在于,湿通道(404)内的分隔壁(405)的底部设有延伸部(412),延伸部(412)自底部的过气流引导件(406)向外延伸出湿通道(404)并与水接触,故水能自延伸部(412)导入湿通道(404)的内壁。
  6. 根据权利要求5所述的一种逆流式间接露点蒸发冷却器,其特征在于,延伸部(412)与底部的过气流引导件(406)之间可以采用间隙配合或利用毛细管效应将水带入湿通道(404)的分隔壁(405)。
  7. 根据权利要求4所述的一种逆流式间接露点蒸发冷却器,其特征在于,对湿通道(404)的分隔壁(405)采用喷淋的方式使其保持湿润。
  8. 根据权利要求1所述的一种逆流式间接露点蒸发冷却器,其特征在于,所述产品空气出口(409)设置在干通道(403)与湿通道(404)的交界处,且产品空气出口(409)只对着干通道(403)段,故以产品空气出口(409)为干通道(403)和湿通道(404)的分界线。
  9. 根据权利要求1所述的一种逆流式间接露点蒸发冷却器,其特征在于,在干通道(403)的最外端设有需要处理空气的进入口(407),在湿通道(404)的末端设置排出空气出口(411)。
PCT/CN2022/114174 2021-09-06 2022-08-23 一种逆流式间接露点蒸发冷却器 WO2023030087A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111039497.4A CN113932333A (zh) 2021-09-06 2021-09-06 一种逆流式间接露点蒸发冷却器
CN202111039497.4 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023030087A1 true WO2023030087A1 (zh) 2023-03-09

Family

ID=79275121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114174 WO2023030087A1 (zh) 2021-09-06 2022-08-23 一种逆流式间接露点蒸发冷却器

Country Status (2)

Country Link
CN (1) CN113932333A (zh)
WO (1) WO2023030087A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113932333A (zh) * 2021-09-06 2022-01-14 江苏大学 一种逆流式间接露点蒸发冷却器
CN115096017B (zh) * 2022-05-30 2023-03-17 南京航空航天大学 一种结合毛细管的露点蒸发冷却器及方法
CN115247850B (zh) * 2022-07-26 2023-04-18 成都雅思欧科技有限公司 一种露点蒸发间接冷却式空调

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281631A1 (de) * 1986-04-22 1988-09-14 Odessky Inzhenerno-Stroitelny Institut Anlage für indirekte verdunstungskühlung der luft in einem objekt
CN1090920A (zh) * 1993-02-11 1994-08-17 兴马有限公司 蒸发空调机组
CN104534603A (zh) * 2015-01-23 2015-04-22 天津大学 内置分流结构的逆流板式露点间接蒸发冷却器及通道隔板
KR20150046635A (ko) * 2013-10-22 2015-04-30 이혁구 재생형 간접증발식 냉각방법 및 그 장치
CN113932333A (zh) * 2021-09-06 2022-01-14 江苏大学 一种逆流式间接露点蒸发冷却器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1043782A (zh) * 1988-12-26 1990-07-11 “伟大的十月革命五十周年”基辅综合技术研究所 空气间接蒸发冷却法
CN204593697U (zh) * 2015-04-07 2015-08-26 上海理工大学 直接和间接露点蒸发冷却装置
CN108362043A (zh) * 2018-01-04 2018-08-03 西安工程大学 管式露点间接蒸发冷却器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0281631A1 (de) * 1986-04-22 1988-09-14 Odessky Inzhenerno-Stroitelny Institut Anlage für indirekte verdunstungskühlung der luft in einem objekt
CN1090920A (zh) * 1993-02-11 1994-08-17 兴马有限公司 蒸发空调机组
KR20150046635A (ko) * 2013-10-22 2015-04-30 이혁구 재생형 간접증발식 냉각방법 및 그 장치
CN104534603A (zh) * 2015-01-23 2015-04-22 天津大学 内置分流结构的逆流板式露点间接蒸发冷却器及通道隔板
CN113932333A (zh) * 2021-09-06 2022-01-14 江苏大学 一种逆流式间接露点蒸发冷却器

Also Published As

Publication number Publication date
CN113932333A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
WO2023030087A1 (zh) 一种逆流式间接露点蒸发冷却器
Sajjad et al. A review of recent advances in indirect evaporative cooling technology
US4107940A (en) Evaporative refrigeration system
CN101317040B (zh) 露点冷却设备
US6497107B2 (en) Method and apparatus of indirect-evaporation cooling
US6178762B1 (en) Desiccant/evaporative cooling system
CN100551480C (zh) 除湿系统
US2825210A (en) Heat exchange apparatus
CN101846367B (zh) 一种热泵驱动的内冷型溶液除湿新风机组
JP2019511697A (ja) 多相プレート式熱交換器による空調
CN103370579A (zh) 用于调节空气的方法和设备
CN101975421A (zh) 一种热泵驱动的膜式液体除湿与蓄能装置
CN106091187A (zh) 一种除湿溶液冷凝热再生的低温热源吸收式耦合空调装置及调控方法
US4713943A (en) Evaporative cooler including an air-to-air counter-flow heat exchanger having a reverse temperature profile
Mohammed et al. Indirect evaporative cooling for buildings: A comprehensive patents review
CN107270443A (zh) 一种热泵驱动的双冷凝器多溶液循环空调机组
CN103140273A (zh) 除湿器和除湿方法
CN205593083U (zh) 一种适用湿热地区的多级中空纤维膜液体除湿装置
CN109485222B (zh) 一种热泵型分温区干燥系统
CN101592385A (zh) 纯逆流板翅式露点间接蒸发冷却与直接蒸发冷却复合空调
CN1328552C (zh) 一种室内空气环境调节方法
CN106255858A (zh) 混合热泵设备
CN108426361A (zh) 一种用于水蒸气热量回收的膜式全热交换器
KR20150046635A (ko) 재생형 간접증발식 냉각방법 및 그 장치
CN112923754A (zh) 一种基于露点间接蒸发预冷的空冷塔及其工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE