WO2023030063A1 - 基于多站协作的下行传输方法和相关装置 - Google Patents

基于多站协作的下行传输方法和相关装置 Download PDF

Info

Publication number
WO2023030063A1
WO2023030063A1 PCT/CN2022/113863 CN2022113863W WO2023030063A1 WO 2023030063 A1 WO2023030063 A1 WO 2023030063A1 CN 2022113863 W CN2022113863 W CN 2022113863W WO 2023030063 A1 WO2023030063 A1 WO 2023030063A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
dmrs
qcl
reference signals
indication information
Prior art date
Application number
PCT/CN2022/113863
Other languages
English (en)
French (fr)
Inventor
刘显达
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023030063A1 publication Critical patent/WO2023030063A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the communication field, and in particular to a downlink transmission method and related devices based on multi-station cooperation.
  • a network device such as a base station
  • QCL quasi co-location
  • DMRS demodulation reference signal
  • the QCL is assumed to be used to assist user equipment (user equipment, UE) to receive DMRS.
  • the UE can determine the crystal oscillator frequency for receiving the DMRS through the Doppler shift (doppler shift) indication information included in the QCL assumption, so as to align the crystal oscillator frequency of the network device to avoid inter-subcarrier interference (inter-subcarrier interference) in the received signal.
  • carrier interference, ICI carrier interference
  • the UE can determine the receiving moment of receiving the DMRS through the average delay (averagedelay) indication information included in the QCL hypothesis, so as to realize the compensation of the transmission delay caused by the propagation path to avoid inter symbol interference (inter symbol interference) generated by the received signal. , ISI), the reception performance suffers.
  • the UE can also use the delay spread (delay spread) and Doppler spread (doppler spread) indication information included in the QCL assumption to determine the Wiener filter coefficients used to receive the DMRS to more accurately estimate the channel and thus correct to demodulate the data.
  • the above indication information is indicated by configuring a QCL relationship between the DMRS and another reference signal (reference signal, RS).
  • Doppler shift and delay-related parameters can be pre-estimated through the measurement on another RS, and it is assumed that the large-scale characteristics of the channel under the propagation environment of another RS and the propagation environment of the DMRS are unchanged, so that The estimated parameters are applied to DMRS reception.
  • Multi-transmission reception point (Multi-TRP) coordinated transmission multiple transmission nodes complete data scheduling and transmission to the same UE through cooperative scheduling.
  • multiple transmission nodes can be connected to a central scheduler through optical fibers, so that the data transmission of multiple transmission nodes can be uniformly scheduled in a cooperative manner.
  • the overall throughput of the network and the rate of the UE at the cell edge can be improved.
  • the large-scale channel experienced by the signal (such as DMRS) received by the UE is synthesized by the transmission paths of two or more transmission reception points (TRP). How to accurately receive a large-scale channel signal synthesized by transmission paths of two or more transmission reception points TRP is a current research topic.
  • the embodiment of the present application discloses a multi-station cooperation-based downlink transmission method and a related device.
  • an embodiment of the present application provides a downlink transmission method based on multi-station cooperation, the method includes: a terminal device receives first indication information sent by a network device; A plurality of reference signals addressing a QCL relationship, and a QCL weight of each reference signal in the plurality of reference signals; receiving the first signal according to the first channel large-scale parameter; the first channel large-scale parameter using the A plurality of reference signals and a QCL weight of each reference signal in the plurality of reference signals are obtained.
  • a QCL relationship may be referred to as a QCL hypothesis.
  • the first signal is received according to the first channel large-scale parameter. Since the first channel large-scale parameter is obtained by using multiple reference signals and the QCL weight of each reference signal in the multiple reference signals, the first channel large-scale parameter can more accurately reflect the channel state experienced by the subsequent first signal, thus The first signal is received more accurately.
  • the first signal is carried on a demodulation reference signal DMRS port, or the first signal is carried on a physical downlink shared channel PDSCH port, or the first signal is carried on a A physical downlink control channel PDCCH port.
  • the first signal is carried on a DMRS port, a PDSCH port or a PDCCH port.
  • Multiple reference signals are used as QCL hypothesis indications of the first signal carried on the same DMRS port, PDSCH port or PDCCH port.
  • the UE synthesizes the large-scale parameters estimated from multiple reference signals to obtain the channel large-scale parameters of the first signal.
  • the multiple reference signals and the first signal both correspond to the first frequency band and the first transmission layer; or, the multiple reference signals and the first signal both correspond to The first frequency band and the first data stream; or, the plurality of reference signals and the first signal both correspond to the first transmission layer and the first data stream.
  • each frequency band may independently indicate the ID of a reference signal (reference signal, RS) assumed by the QCL.
  • RS reference signal
  • each transmission layer may independently indicate the ID of the RS assumed by the QCL.
  • multiple codewords may exist for transmission over a physical downlink shared channel (physical downlink shared channel, PDSCH).
  • a codeword corresponds to a modulation and coding scheme (MCS). Different codewords may correspond to different MCSs. Different codewords may correspond to different transmission layers. Codewords are used to characterize the granularity of channel coding.
  • each codeword ie, data stream
  • the multiple reference signals and the first signal not only correspond to the same frequency band, but also correspond to the same transmission layer or data stream.
  • the channel large-scale parameters obtained based on the multiple reference signals can better reflect the channel state experienced by the first signal.
  • the bandwidth occupied by the first signal includes multiple second frequency bands
  • the QCL relationship between the first signal and the multiple reference signals includes each second frequency band and the A QCL relationship between at least one of the plurality of reference signals.
  • the QCL relationship between the first signal and the plurality of reference signals includes a QCL relationship between each second frequency band and at least one of the plurality of reference signals.
  • the channel large-scale parameter of each second frequency band can be estimated more accurately according to the QCL relationship between each second frequency band and the reference signal.
  • the first indication information indicates multiple reference signals that have a QCL relationship with the first signal
  • the QCL weight of each reference signal in the multiple reference signals includes: the first The indication information indicates a plurality of first transmission control indication TCI states, the plurality of first TCI states correspond to the plurality of reference signals one by one, and each of the first TCI states also includes the first TCI state QCL weights of the corresponding reference signal.
  • the first indication information indicates the first TCI state, and the resource overhead is small.
  • the first indication information includes multiple identifiers and multiple QCL weights
  • the multiple identifiers are identifiers of the multiple reference signals
  • the multiple identifiers are related to the multiple
  • the QCL weights correspond to one-to-one
  • the multiple QCL weights represent the proportion of QCL hypothesis parameter values generated by the multiple reference signals when synthesizing the QCL hypothesis.
  • the multiple identifiers and multiple QCL weights included in the first indication information can accurately represent the proportion of QCL hypothesis parameter values generated by multiple reference signals when synthesizing the QCL hypothesis.
  • the multiple reference signals and the first signal correspond to a first frequency band, a first transmission layer, and a first data stream.
  • the first indication information indicates power allocation between streams, transmission layers, and frequency bands, so that the power delay profile obtained based on multiple reference signals can better reflect the channel state experienced by the first signal.
  • the method before receiving the first signal according to the first channel large-scale parameter, the method further includes: receiving the multiple reference signals; a scale parameter to obtain the multiple channel large-scale parameters; use the QCL weight of each of the multiple reference signals to perform synthesis processing on the multiple channel large-scale parameters to obtain the first channel large-scale parameter .
  • multiple channel large-scale parameters are synthesized by using the QCL weight of each of the multiple reference signals to obtain the first channel large-scale parameter. Since the power allocation between streams, transmission layers and frequency bands is considered, the large-scale parameters of the first channel can more accurately reflect the channel state of the first signal, thereby improving the performance of receiving the first signal.
  • the first signal is a demodulation reference signal DMRS or a channel state information reference signal CSI-RS
  • the multiple reference signals are different tracking reference signals TRS.
  • the method is applied to a downlink transmission scenario of multi-TRP coordinated transmission.
  • an embodiment of the present application provides a downlink transmission method based on multi-station cooperation, the method includes: a network device generates first indication information, and the first indication information indicates that a network device having a quasi-co-located QCL relationship with the first signal A plurality of reference signals, and a QCL weight of each reference signal in the plurality of reference signals; sending the first indication information to the terminal device; the first indication information is used for the terminal device to receive the first signal .
  • the network device sends the first indication information to the terminal device, so that the terminal device uses the QCL weight of each of the multiple reference signals to evaluate the multiple channel large-scale parameters estimated by the multiple reference signals Synthesis processing is performed to obtain the first channel large-scale parameter that can more accurately reflect the channel state experienced by the subsequent first signal.
  • the first signal is carried on a demodulation reference signal DMRS port, or the first signal is carried on a physical downlink shared channel PDSCH port, or the first signal is carried on a A physical downlink control channel PDCCH port.
  • the first signal is carried on a DMRS port, a PDSCH port or a PDCCH port.
  • the multiple reference signals are QCL assumption indications of the first signal carried on the same DMRS port, PDSCH port or PDCCH port.
  • the UE synthesizes the large-scale parameters estimated from multiple reference signals to obtain the channel large-scale parameters of the first signal.
  • the multiple reference signals and the first signal both correspond to the first frequency band and the first transmission layer; or, the multiple reference signals and the first signal both correspond to The first frequency band and the first data stream; or, the plurality of reference signals and the first signal both correspond to the first transmission layer and the first data stream.
  • the multiple reference signals and the first signal not only correspond to the same frequency band, but also correspond to the same transmission layer or data stream.
  • the channel large-scale parameters obtained based on the multiple reference signals can better reflect the channel state experienced by the first signal.
  • the bandwidth occupied by the first signal includes multiple second frequency bands
  • the QCL relationship between the first signal and the multiple reference signals includes each second frequency band and the A QCL relationship between at least one of the plurality of reference signals.
  • the QCL relationship between the first signal and the plurality of reference signals includes a QCL relationship between each second frequency band and at least one of the plurality of reference signals.
  • the channel large-scale parameter of each second frequency band can be estimated more accurately according to the QCL relationship between each second frequency band and the reference signal.
  • the first indication information indicates multiple reference signals that have a QCL relationship with the first signal
  • the QCL weight of each reference signal in the multiple reference signals includes: the first The indication information indicates a plurality of first transmission control indication TCI states, the plurality of first TCI states correspond to the plurality of reference signals one by one, and each of the first TCI states also includes the first TCI state QCL weights of the corresponding reference signal.
  • the first indication information indicates the first TCI state, and the resource overhead is small.
  • the first indication information includes multiple identifiers and multiple QCL weights
  • the multiple identifiers are identifiers of the multiple reference signals
  • the multiple identifiers are related to the multiple
  • the QCL weights correspond to one-to-one
  • the multiple QCL weights represent the proportion of QCL hypothesis parameter values generated by the multiple reference signals when synthesizing the QCL hypothesis.
  • the multiple identifiers and multiple QCL weights included in the first indication information can accurately represent the proportion of QCL hypothesis parameter values generated by multiple reference signals when synthesizing the QCL hypothesis.
  • the multiple reference signals and the first signal correspond to a first frequency band, a first transmission layer, and a first data stream.
  • the first indication information indicates power allocation between streams, transmission layers, and frequency bands, so that the power delay profile obtained based on multiple reference signals can better reflect the channel state experienced by the first signal.
  • the first signal is a demodulation reference signal DMRS or a channel state information reference signal CSI-RS
  • the multiple reference signals are different tracking reference signals TRS.
  • the method is applied to a downlink transmission scenario of multi-TRP coordinated transmission.
  • an embodiment of the present application provides a communication method, the method including: receiving a first demodulation reference signal DMRS sent by a network device; receiving a second signal according to a second channel large-scale parameter; the second channel large-scale The parameters are obtained based on channel large-scale parameters of the first DMRS; the second signal is a reference signal having a QCL relationship with the first DMRS.
  • the second signal is received according to the large-scale parameter of the second channel; on the premise of not significantly affecting the data receiving performance, the estimation of the QCL assumption can be made through the DMRS without relying on the tracking reference signal (trackingreference signal, TRS) ), the signaling overhead is reduced.
  • TRS trackingreference signal
  • the bandwidth of the first DMRS is greater than the bandwidth threshold, or, the first DMRS includes K DMRS transmission symbols in one time slot and the time between any two DMRS transmission symbols The interval is greater than a time threshold, and the K is an integer greater than 1.
  • the bandwidth of the first DMRS is greater than the bandwidth threshold, or the first DMRS includes K DMRS transmission symbols in one time slot and the time interval between any two DMRS transmission symbols is greater than the time threshold; it can be guaranteed Using the first DMRS to perform QCL estimation (that is, to perform QCL assumption estimation) can meet the processing time requirement of the signal carrying the first DMRS.
  • both the first DMRS and the second signal correspond to a first CDM group.
  • both the first DMRS and the second signal adopt the encoding manner corresponding to the first CDN group.
  • both the first DMRS and the second signal correspond to the first CDM group, which can ensure that the first DMRS and the second signal have the same large-scale characteristics.
  • the method further includes: the terminal device receiving second indication information from the network device, the second indication information indicating the difference between the second signal and the first DMRS QCL relationship among them.
  • the second indication information from the network device is received, so as to obtain the QCL relationship between the second signal and the first DMRS by using the second indication information.
  • the second indication information indicates a second transmission control indication TCI state
  • the second TCI state includes a QCL relationship between the second signal and the first DMRS.
  • the second indication information indicates the second TCI state, and the resource overhead is small.
  • the second signal is a demodulation reference signal or a channel state information reference signal CSI-RS.
  • the method before receiving the second signal according to the second channel large-scale parameter, the method further includes: performing channel estimation based on the first DMRS to obtain the second channel large-scale parameter.
  • the second indication information indicates a QCL relationship between the second signal and the first port group identity ID or the first DMRS port ID of the first DMRS.
  • the power allocation corresponding to the signals sent by the network device on different DMRS ports or port groups is different, and the second indication information indicates that the second signal is related to the first port group identity ID of the first DMRS or the first DMRS port The QCL relationship of the ID in order to more accurately estimate the large-scale parameters of the second channel.
  • an embodiment of the present application provides a communication method, the method comprising: a network device sending a first demodulation reference signal DMRS to a terminal device; sending second indication information to the terminal device, the second indication information indicating A quasi-co-located QCL relationship between the second signal and the first DMRS; sending the second signal to the terminal device.
  • the network device sends the second indication information to the terminal device, so that the terminal device receives the second signal by using the channel large-scale parameter of the first DMES.
  • the terminal device can estimate the QCL hypothesis through the DMRS without relying on the tracking reference signal on the premise of not significantly affecting the data receiving performance.
  • the bandwidth of the first DMRS is greater than the bandwidth threshold, or, the first DMRS includes K DMRS transmission symbols in one time slot and the time between any two DMRS transmission symbols The interval is greater than a time threshold, and the K is an integer greater than 1.
  • the bandwidth of the first DMRS is greater than the bandwidth threshold, or the first DMRS includes K DMRS transmission symbols in one time slot and the time interval between any two DMRS transmission symbols is greater than the time threshold; it can be guaranteed Using the first DMRS to perform QCL estimation can meet the processing time requirement of the signal carrying the first DMRS.
  • both the first DMRS and the second signal correspond to a first CDM group.
  • both the first DMRS and the second signal adopt the encoding manner corresponding to the first CDN group.
  • both the first DMRS and the second signal correspond to the first CDM group, which can ensure that the first DMRS and the second signal have the same large-scale characteristics.
  • the second indication information indicates that the second transmission control indicates a second TCI state
  • the second TCI state includes a QCL relationship between the second signal and the first DMRS.
  • the second indication information indicates the second TCI state, and the resource overhead is small.
  • the second signal is a demodulation reference signal or a channel state information reference signal CSI-RS.
  • the second indication information indicates a QCL relationship between the second signal and the first port group identity ID or the first DMRS port ID of the first DMRS.
  • the power allocation corresponding to the signals sent by the network device on different DMRS ports or port groups is different, and the second indication information indicates that the second signal is related to the first port group identity ID of the first DMRS or the first DMRS port The QCL relationship of the ID in order to more accurately estimate the large-scale parameters of the second channel.
  • an embodiment of the present application provides a communication method, the method comprising: a terminal device receiving a plurality of second demodulation reference signal DMRS transmitted by a network device, the plurality of second DMRS corresponding to a second DMRS port group identity Identify the ID or the second DMRS port ID; receive the third signal according to the third channel large-scale parameter; the third channel large-scale parameter is calculated in the time domain by a plurality of channel large-scale parameters obtained by estimating the plurality of second DMRS obtained by filtering.
  • the third signal is received according to the third channel large-scale parameter. Since the third channel large-scale parameter is obtained by performing time-domain filtering on multiple channel large-scale parameters estimated by multiple second DMRSs, the third channel large-scale parameter is a relatively robust large-scale estimation result, which can be more accurate accurately reflect the channel state experienced by the third signal.
  • the method before receiving the third signal according to the third channel large-scale parameter, the method further includes: performing, by the terminal device, according to the plurality of second DMRS received within a preset time window Channel estimation, obtaining the multiple channel large-scale parameters; performing time-domain filtering on the multiple channel large-scale parameters, to obtain the third channel large-scale parameters.
  • time-domain filtering is performed on multiple channel large-scale parameters to obtain a third channel large-scale parameter; relatively robust large-scale estimation results (that is, channel large-scale parameters) can be obtained.
  • each second DMRS in the plurality of second DMRSs is greater than a bandwidth threshold, or, each second DMRS in the plurality of second DMRSs includes K DMRS transmission symbols and the time interval between any two DMRS transmission symbols is greater than a time threshold, and K is an integer greater than 1.
  • the bandwidth of the first DMRS is greater than the bandwidth threshold, or the first DMRS includes K DMRS transmission symbols in one time slot and the time interval between any two DMRS transmission symbols is greater than the time threshold; it can be guaranteed Using the first DMRS to perform QCL estimation can meet the processing time requirement of the signal carrying the first DMRS.
  • the method further includes: the terminal device receiving third indication information from the network device, the third indication information indicating the third signal and the second DMRS port A QCL relationship between group IDs, or, the third indication information indicates a QCL relationship between the third signal and the second DMRS port ID.
  • the terminal device receives the third indication information, and can know the QCL relationship between the third signal and the second DMRS port group ID or the QCL relationship between the third signal and the second DMRS port ID in time.
  • the third indication information indicates a third transmission control indication TCI state
  • the third TCI state includes a QCL relationship between the third signal and the second DMRS port group ID
  • the third TCI state includes a QCL relationship between the third signal and the second DMRS port ID.
  • the third indication information indicates the third TCI state, and the resource overhead is small.
  • the third signal is a demodulation reference signal or a channel state information reference signal CSI-RS.
  • the embodiment of the present application provides a communication method, the method including: the network device transmits a plurality of second demodulation reference signal DMRS to the terminal device, and the plurality of second DMRS corresponds to the second DMRS port group identity ID or the second DMRS port ID; send third indication information to the terminal device, the third indication information indicates the QCL relationship between the third signal and the second DMRS port group ID, or indicates the first A QCL relationship between the three signals and the second DMRS port ID; sending the third signal to the terminal device.
  • the network device sends the third indication information to the terminal device, so that the terminal device receives the third signal by using channel large-scale parameters of multiple second DMESs.
  • the terminal device can estimate the QCL hypothesis through the DMRS without relying on the tracking reference signal on the premise of not significantly affecting the data receiving performance.
  • each second DMRS in the plurality of second DMRSs is greater than a bandwidth threshold, or, each second DMRS in the plurality of second DMRSs includes K DMRS transmission symbols and the time interval between any two DMRS transmission symbols is greater than a time threshold, and K is an integer greater than 1.
  • each second DMRS is greater than the bandwidth threshold, or each second DMRS includes K DMRS transmission symbols in one time slot and the time interval between any two DMRS transmission symbols is greater than time Threshold; it can be guaranteed that the QCL estimation performed by the second DMRS can meet the processing time requirement of the signal carrying the second DMRS.
  • the third indication information indicates a third transmission control indication TCI state
  • the third TCI state includes a QCL relationship between the third signal and the second DMRS port group ID
  • the third TCI state includes a QCL relationship between the third signal and the second DMRS port ID.
  • the third indication information indicates the third TCI state, and the resource overhead is small.
  • the third signal is a demodulation reference signal or a channel state information reference signal CSI-RS.
  • an embodiment of the present application provides a terminal device, including: a transceiver unit configured to receive first indication information sent by a network device; the first indication information indicates that multiple a reference signal, and a QCL weight of each of the multiple reference signals; a processing unit configured to use the multiple reference signals and the QCL weight processing of each of the multiple reference signals to obtain the first A channel large-scale parameter; the transceiver unit is further configured to receive the first signal according to the first channel large-scale parameter.
  • the first signal is carried on a demodulation reference signal DMRS port, or the first signal is carried on a physical downlink shared channel PDSCH port, or the first signal is carried on a A physical downlink control channel PDCCH port.
  • the multiple reference signals and the first signal both correspond to the first frequency band and the first transmission layer; or, the multiple reference signals and the first signal both correspond to The first frequency band and the first data stream; or, the plurality of reference signals and the first signal both correspond to the first transmission layer and the first data stream.
  • the bandwidth occupied by the first signal includes multiple second frequency bands
  • the QCL relationship between the first signal and the multiple reference signals includes each second frequency band and the A QCL relationship between at least one of the plurality of reference signals.
  • the first indication information indicates multiple reference signals that have a QCL relationship with the first signal
  • the QCL weight of each reference signal in the multiple reference signals includes: the first The indication information indicates a plurality of first transmission control indication TCI states, the plurality of first TCI states correspond to the plurality of reference signals one by one, and each of the first TCI states also includes the first TCI state QCL weights of the corresponding reference signal.
  • the first indication information includes multiple identifiers and multiple QCL weights
  • the multiple identifiers are identifiers of the multiple reference signals
  • the multiple identifiers are related to the multiple
  • the QCL weights correspond to one-to-one
  • the multiple QCL weights represent the proportion of QCL hypothesis parameter values generated by the multiple reference signals when synthesizing the QCL hypothesis.
  • the multiple reference signals and the first signal correspond to a first frequency band, a first transmission layer, and a first data stream.
  • the transceiver unit is further configured to receive the multiple reference signals; the processing unit is further configured to respectively use the multiple reference signals to estimate channel large-scale parameters to obtain the A plurality of channel large-scale parameters; using the QCL weight of each of the plurality of reference signals to perform synthesis processing on the plurality of channel large-scale parameters to obtain the first channel large-scale parameter.
  • the first signal is a demodulation reference signal DMRS or a channel state information reference signal CSI-RS
  • the multiple reference signals are different tracking reference signals TRS.
  • the embodiment of the present application provides a network device, including: a processing unit configured to generate first indication information, where the first indication information indicates multiple reference signals that have a quasi-co-located QCL relationship with the first signal, And the QCL weight of each reference signal in the plurality of reference signals; a transceiver unit, configured to send the first indication information to the terminal device; the first indication information is used for the terminal device to receive the first signal .
  • the first signal is carried on a demodulation reference signal DMRS port, or the first signal is carried on a physical downlink shared channel PDSCH port, or the first signal is carried on a A physical downlink control channel PDCCH port.
  • the multiple reference signals and the first signal both correspond to the first frequency band and the first transmission layer; or, the multiple reference signals and the first signal both correspond to The first frequency band and the first data stream; or, the plurality of reference signals and the first signal both correspond to the first transmission layer and the first data stream.
  • the bandwidth occupied by the first signal includes multiple second frequency bands
  • the QCL relationship between the first signal and the multiple reference signals includes each second frequency band and the A QCL relationship between at least one of the plurality of reference signals.
  • the first indication information indicates multiple reference signals having a QCL relationship with the first signal
  • the QCL weight of each reference signal in the multiple reference signals includes: the first The indication information indicates a plurality of first transmission control indication TCI states, the plurality of first TCI states correspond to the plurality of reference signals one by one, and each of the first TCI states also includes the first TCI state QCL weights of the corresponding reference signal.
  • the first indication information includes multiple identifiers and multiple QCL weights
  • the multiple identifiers are identifiers of the multiple reference signals
  • the multiple identifiers are related to the multiple
  • the QCL weights correspond to one-to-one
  • the multiple QCL weights represent the proportion of QCL hypothesis parameter values generated by the multiple reference signals when synthesizing the QCL hypothesis.
  • the multiple reference signals and the first signal correspond to a first frequency band, a first transmission layer, and a first data stream.
  • the first signal is a demodulation reference signal DMRS or a channel state information reference signal CSI-RS
  • the multiple reference signals are different tracking reference signals TRS.
  • the embodiment of the present application provides a terminal device, including: a transceiver unit, configured to receive a first demodulation reference signal DMRS sent by a network device; a processing unit, configured to use a channel large-scale parameter based on the first DMRS , to obtain a second channel large-scale parameter; the transceiver unit is further configured to receive a second signal according to the second channel large-scale parameter; the second signal is a reference signal having a QCL relationship with the first DMRS.
  • a terminal device including: a transceiver unit, configured to receive a first demodulation reference signal DMRS sent by a network device; a processing unit, configured to use a channel large-scale parameter based on the first DMRS , to obtain a second channel large-scale parameter; the transceiver unit is further configured to receive a second signal according to the second channel large-scale parameter; the second signal is a reference signal having a QCL relationship with the first DMRS.
  • the bandwidth of the first DMRS is greater than the bandwidth threshold, or, the first DMRS includes K DMRS transmission symbols in one time slot and the time between any two DMRS transmission symbols The interval is greater than a time threshold, and the K is an integer greater than 1.
  • both the first DMRS and the second signal correspond to a first CDM group.
  • the terminal device receives second indication information from the network device, where the second indication information indicates a QCL relationship between the second signal and the first DMRS.
  • the second indication information indicates a second transmission control indication TCI state
  • the second TCI state includes a QCL relationship between the second signal and the first DMRS.
  • the second signal is a demodulation reference signal or a channel state information reference signal CSI-RS.
  • the processing unit is further configured to use the first DMRS to estimate a channel large-scale parameter to obtain the second channel large-scale parameter.
  • the second indication information indicates a QCL relationship between the second signal and the first port group identity ID or the first DMRS port ID of the first DMRS.
  • the embodiment of the present application provides a network device, including: a transceiver unit configured to send a first demodulation reference signal DMRS to a terminal device; send second indication information to the terminal device, the second indication information indicating the quasi-co-located QCL relationship between the second signal and the first DMRS; a processing unit configured to generate the second signal; the transceiver unit further configured to send the second signal to the terminal device .
  • a network device including: a transceiver unit configured to send a first demodulation reference signal DMRS to a terminal device; send second indication information to the terminal device, the second indication information indicating the quasi-co-located QCL relationship between the second signal and the first DMRS; a processing unit configured to generate the second signal; the transceiver unit further configured to send the second signal to the terminal device .
  • the bandwidth of the first DMRS is greater than the bandwidth threshold, or, the first DMRS includes K DMRS transmission symbols in one time slot and the time between any two DMRS transmission symbols The interval is greater than a time threshold, and the K is an integer greater than 1.
  • both the first DMRS and the second signal correspond to a first CDM group.
  • the second indication information indicates that the second transmission control indicates a second TCI state
  • the second TCI state includes a QCL relationship between the second signal and the first DMRS.
  • the second signal is a demodulation reference signal or a channel state information reference signal CSI-RS.
  • the second indication information indicates a QCL relationship between the second signal and the first port group identity ID or the first DMRS port ID of the first DMRS.
  • the embodiment of the present application provides a terminal device, including: a transceiver unit configured to receive a plurality of second demodulation reference signal DMRS transmitted by a network device, the plurality of second DMRS corresponding to the second DMRS port A group identity ID or a second DMRS port ID; a processing unit, configured to perform time-domain filtering on a plurality of channel large-scale parameters estimated by the plurality of second DMRS to obtain a third channel large-scale parameter; the sending and receiving The unit is further configured to receive a third signal according to the third channel large-scale parameter.
  • a transceiver unit configured to receive a plurality of second demodulation reference signal DMRS transmitted by a network device, the plurality of second DMRS corresponding to the second DMRS port A group identity ID or a second DMRS port ID
  • a processing unit configured to perform time-domain filtering on a plurality of channel large-scale parameters estimated by the plurality of second DMRS to obtain a third channel large-scale parameter
  • the processing unit is further configured to perform channel estimation according to the multiple second DMRSs received within a preset time window, to obtain the multiple channel large-scale parameters.
  • each second DMRS in the plurality of second DMRSs is greater than a bandwidth threshold, or, each second DMRS in the plurality of second DMRSs includes K DMRS transmission symbols and the time interval between any two DMRS transmission symbols is greater than a time threshold, and K is an integer greater than 1.
  • the transceiver unit is further configured to receive third indication information from the network device, where the third indication information indicates the third signal and the identity of the second DMRS port group Identify a QCL relationship between IDs, or, the third indication information indicates a QCL relationship between the third signal and the second DMRS port ID.
  • the third indication information indicates a third transmission control indication TCI state
  • the third TCI state includes a QCL relationship between the third signal and the second DMRS port group ID
  • the third TCI state includes a QCL relationship between the third signal and the second DMRS port ID.
  • the third signal is a demodulation reference signal or a channel state information reference signal CSI-RS.
  • the embodiment of the present application provides a network device, including: a transceiver unit, configured to transmit a plurality of second demodulation reference signals DMRS to a terminal device, and the plurality of second DMRSs correspond to a second DMRS port group An identity ID or a second DMRS port ID; sending third indication information to the terminal device, the third indication information indicating the QCL relationship between the third signal and the second DMRS port group identity indicating ID or indicating the A QCL relationship between the third signal and the second DMRS port ID; a processing unit, configured to generate the third signal; and the transceiver unit, further configured to send the third signal to the terminal device.
  • each second DMRS in the plurality of second DMRSs is greater than a bandwidth threshold, or, each second DMRS in the plurality of second DMRSs includes K DMRS transmission symbols and the time interval between any two DMRS transmission symbols is greater than a time threshold, and K is an integer greater than 1.
  • the third indication information indicates a third transmission control indication TCI state
  • the third TCI state includes a QCL relationship between the third signal and the second DMRS port group ID
  • the third TCI state includes a QCL relationship between the third signal and the second DMRS port ID.
  • the third signal is a demodulation reference signal or a channel state information reference signal CSI-RS.
  • the embodiment of the present application provides a communication device, the communication device includes a processor, and the processor is used to execute the computer-executed instructions stored in the memory, so that the communication device performs the first aspect and the third aspect above Or the method of the above fifth aspect and any possible implementation manner.
  • the memory is located outside the communication device.
  • the memory is located in the above communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, where the transceiver is configured to receive a message or send a message, and the like.
  • the embodiment of the present application provides a communication device, the communication device includes a processor, and the processor is used to execute the computer-executed instructions stored in the memory, so that the communication device performs the above-mentioned second aspect and the above-mentioned fourth aspect Or the method of the sixth aspect above and any possible implementation manner.
  • the memory is located outside the communication device.
  • the memory is located in the above communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, where the transceiver is configured to receive a message or send a message, and the like.
  • the embodiment of the present application provides a communication device, the communication device includes a logic circuit and an interface, and the interface is used to acquire data or output data; the logic circuit is used to perform the above-mentioned first aspect, the above-mentioned third aspect or The corresponding method shown in the above fifth aspect and any possible implementation manner.
  • the embodiment of the present application provides a communication device, the communication device includes a logic circuit and an interface, and the interface is used to acquire data or output data; the logic circuit is used to perform the above-mentioned second aspect, the above-mentioned fourth aspect or The corresponding method shown in the sixth aspect and any possible implementation manner above.
  • the present application provides a computer-readable storage medium, which is used to store a computer program. When it is run on a computer, the above-mentioned first to sixth aspects or the first to sixth aspects The method shown in any possible implementation manner of the sixth aspect is executed.
  • the present application provides a computer program product.
  • the computer program product includes a computer program or computer code. When it is run on a processor, the above-mentioned first to sixth aspects or the first to sixth aspects The method shown in any possible implementation of the aspect is performed.
  • FIG. 1 is an example of a Multi-TRP scenario provided by an embodiment of the present application
  • FIG. 2A is a schematic diagram of a way for a UE to measure TRS under multi-TRP coordination provided by an embodiment of the present application;
  • FIG. 2B is a schematic diagram of another way for a UE to measure TRS under multi-TRP coordination provided by an embodiment of the present application;
  • FIG. 3A and FIG. 3B are schematic diagrams of power delay spectrum synthesis provided by the embodiment of the present application.
  • FIG. 4 is an example of a QCL hypothesis indication provided in an embodiment of the present application.
  • FIG. 5 is a flow chart of a downlink transmission method based on multi-station cooperation provided by an embodiment of the present application
  • FIG. 6 is a flow chart of another downlink transmission method based on multi-station cooperation provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 8 is a flow chart of another communication method provided by the embodiment of the present application.
  • FIG. 9 is a flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 10 is a flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another communication device 140 provided by an embodiment of the present application.
  • an embodiment means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the occurrences of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It is understood explicitly and implicitly by those skilled in the art that the embodiments described herein can be combined with other embodiments.
  • a current scheme for receiving signals synthesized by two or more TRP transmission paths is as follows: first estimate the large-scale information of multiple reference signals sent jointly (cooperatively) by two or more TRPs (e.g. Large-scale information of superimposed signals of multiple TRSs), and directly configure the large-scale information (such as channel large-scale parameters) to DMRS/channel state information reference signal (channel state information reference signal, CSI-RS) as a QCL assumption; Then, the DMRS/CSI-RS is assumed to be received according to the QCL of the DMRS/CSI-RS.
  • DMRS/channel state information reference signal channel state information reference signal
  • Accurately estimating the large-scale information of multiple reference signals sent jointly (cooperatively) by two or more TRPs is a key step in the above scheme.
  • the downlink transmission method based on multi-station cooperation provided by this application can accurately estimate the large-scale information of multiple reference signals sent jointly (cooperatively) by two or more TRPs, and then accurately receive the large-scale information of the channel by the two The signal synthesized by the transmission paths of one or more transmission and reception points TRP. Since this application involves knowledge about QCL assumptions and DMRS channel estimation, the relevant knowledge and terms involved in this application will first be introduced below.
  • the QCL hypothesis of the signal characterizes the large-scale characteristics of the channel experienced by the signal when it is sent from the sender to the receiver when it is received.
  • the large-scale characteristics include at least: Doppler shift, Doppler spread, delay spread, average delay, and spatialrx parameter.
  • Doppler shift Due to the angle between the direction of movement of the receiving end and the direction of arrival of the signal, the signal generates a doppler shift.
  • the frequency when the signal is sent out is fc
  • the frequency of the received signal will be fc+/-fd due to the movement of the receiving end
  • fd is doppler shift.
  • Doppler spread Since the signal propagates through the scattering path, the frequency band of signal transmission will spread out of the band at the receiving end, resulting in doppler spread.
  • Delay spread A pulse signal sent by the sending end, the signal received by the receiving end not only contains the signal itself, but also includes its signal at each delay point, which will cause the time width of the signal to expand.
  • Average delay The average delay of the signal arriving at the receiving end after going through the multipath channel.
  • Spatial reception parameter (spatialrx parameter):
  • the sending signal of the sending end will adopt a digital weighted sum (beamforming) scheme to make the sending signal have the characteristic of directional transmission in space.
  • the receiving end can adopt a beamforming scheme corresponding to sending beamforming to improve the performance of receiving signals, and the receiving beamforming information is spatial receiving parameter information.
  • Port Describes the physical resource corresponding to the signal sent by the sender/received by the receiver.
  • Physical resources include: time domain resources, frequency domain resources, air domain resources, code domain resources, antenna resources, etc.
  • the QCL assumption of a DMRS port is indicated by configuring the QCL relation between the DMRS port and another RS.
  • the parameters related to doppler and delay can be estimated in advance through the measurement on another RS, and it is assumed that the large-scale characteristics of the channel under the propagation environment of the RS and the propagation environment of the DMRS are unchanged (that is, the channel large-scale parameters of the DMRS are the same as The channel large-scale parameters of the RS are basically the same), so that the estimated parameters can be applied to DMRS reception. Therefore, in practical applications, signaling for indicating QCL parameters can be configured, and the signaling can include one or more RS IDs.
  • One possible way is as follows:
  • TCI transmission control indication state
  • the doppler shift, doppler spread, average delay, and delay spread adopted by the receiving DMRS port are obtained based on the measurement of the CSI-RS port. That is to say, the doppler shift, doppler spread, average delay, and delay spread of the CSI-RS port can be used as the doppler shift, doppler spread, average delay, and delay spread of the DMRS port.
  • the doppler shift, doppler spread, average delay, and delay spread adopted by the receiving DMRS port are obtained based on CSI-RS port 1
  • the spatial receiving parameter that is, the spatial Rx parameter
  • reference signals that can be used to indicate different QCL types are currently specified, such as the QCL indication for DMRS:
  • - QCL-TypeA' configures TRS
  • 'QCL-TypeD' configures CSI-RS
  • DMRS is used as a reference signal for channel estimation when receiving PDSCH/physical downlink control channel (PDCCH).
  • the receiving end knows that the DMRS sequence can obtain the signal transmission channel through the DMRS. If the channel is the channel experienced during the PDSCH/PDCCH transmission, the PDSCH/PDCCH channel estimation can be completed through the DMRS. That is to say, the receiving end knows the DMRS sequence transmitted by the sending end, and the receiving end can estimate the channel experienced by the DMRS by using the known DMRS sequence and the received DMRS.
  • the ports of the DMRS or called DMRS ports
  • the ports of the PDSCH/PDCCH experience the same channel.
  • each DMRS port corresponds to a specific time-frequency code resource, and the time-frequency code resources occupied by different DMRS ports are orthogonal.
  • the multiple DMRS ports rely on code division multiplexing, and each group of DMRS ports occupying the same time-frequency resource corresponds to a code division multiplexing (CDM) group.
  • CDM code division multiplexing
  • the CSI-RS is used for measurement and reporting of channel state information (CSI).
  • TRS is used for time-frequency tracking. It usually occupies two consecutive time slots (slots) in the time domain. Each slot occupies two orthogonal frequency division multiplexing (OFDM) symbols, and two OFDM symbols There are 3 OFDM symbols between them. Through this configuration, the accuracy of estimating doppler shift and averagedelay can be improved.
  • TRS has certain requirements on the minimum bandwidth in the frequency domain, such as not less than 10M bandwidth, to accurately estimate the delay path information to obtain doppler spread and delay spread information.
  • Each resource block (resource block, RB) requires a certain number of resource units (resource element, RE) to ensure the balance of accuracy and overhead. For example, in NR, the TRS in one RB occupies 3 REs.
  • the notification method assumed by the QCL is as follows: a network device (such as a base station) indicates the TCIstate adopted by the currently scheduled PDSCH through downlink control information (DCI).
  • DCI downlink control information
  • the DCI includes a 3-bit TCI indication field for indicating the TCI state, see Table 1.
  • Each TCI state includes a QCL relationship (QCL relationship) between a DMRS port (called target RS) and one or more reference signal ports (called reference RS).
  • QCL relationship QCL relationship
  • the QCL assumption determination process of the DMRS port can be as follows: the network device sends one or more reference signal ports (reference RS) in advance; the UE determines the QCL assumption information through one or more reference signal ports; QCL assumes information, receiving DMRS port (target RS).
  • the following describes applicable scenarios of the downlink transmission method based on multi-station cooperation provided by this application.
  • the downlink transmission method based on multi-station coordination provided in this application is applicable to the downlink transmission scenario of multi-station coordination transmission.
  • the downlink transmission method based on multi-station cooperation provided in this application is applicable to both homogeneous network scenarios and heterogeneous network scenarios.
  • there are no restrictions on the transmission and reception points which can be multi-point coordinated transmission between macro base stations and macro base stations, micro base stations and micro base stations, and macro base stations and micro base stations.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • the downlink transmission method based on multi-station cooperation provided by this application is suitable for low-frequency scenarios (sub 6G) and high-frequency scenarios (above 6G).
  • the downlink transmission method based on multi-station cooperation provided by this application is applicable to 4G, 5G or future mobile communication systems.
  • the downlink transmission method based on multi-station cooperation provided in this application is applicable to multi-panel or Multi-TRP scenarios under Single-TRP, and any derivative scenarios thereof.
  • Fig. 1 is an example of a Multi-TRP scenario provided by the embodiment of this application.
  • the Multi-TRP scenario includes: two or more network devices (only two are shown in FIG. 1 ), and one or more UEs (only one is shown in FIG. 1 ).
  • two or more network devices complete data scheduling and transmission for the same UE through cooperative scheduling.
  • the serving cells of the UE are TRP1 and TRP2.
  • TRP1 and TRP2 configure TRS resources for the UE respectively.
  • TRP1 and TRP2 send TRS at the same time (that is, TRP1 sends TRS1, and TRP2 sends TRS2). Estimate the large-scale information of the channel.
  • TRP1 sends TRS1
  • TRP2 sends TRS2
  • the channel experienced by TRS1 sent by TRP1 and the channel experienced by PDSCH1 sent by TRP1 are basically unchanged
  • the channel experienced by TRS2 sent by TRP2 and the channel experienced by PDSCH2 sent by TRP2 are basically unchanged.
  • the TRS received by the UE is actually the signal superposition of the TRS jointly sent by multiple TRPs (such as TRP1 and TRP2).
  • each data stream and corresponding DMRS port are delivered by multiple cooperative base stations with multiple antennas in coherent transmission.
  • the transmit precoding matrix (including inter-antenna amplitude and phase information) of each coordinated base station among the multiple coordinated base stations is determined not only based on the channel from the UE to the station, but also determined based on the channel from the UE to other coordinated stations, so that As much as possible, the signals delivered by multiple coordinated stations are coherently superimposed on the UE, thereby improving transmission performance.
  • the precoding matrix of the cooperative base station is obtained based on the singular value decomposition (singular value decomposition, SVD) decomposition of the synthetic channel formed by splicing the channels of each base station in the antenna dimension.
  • singular value decomposition singular value decomposition, SVD
  • a scheme for the UE to estimate the large-scale information of the TRS jointly sent by multiple TRPs is as follows: each TRP (such as a base station) is configured with one TRS, and the UE estimates the TRS of each TRP to obtain multiple estimated values (ie channel large-scale parameters); A composite estimated value is determined according to multiple estimated values; DMRS channel estimation is performed based on the synthesized estimated value as a QCL hypothesis.
  • the types of QCL assumptions indicated by each TRS are the same.
  • the UE estimates the TRS of each TRP to obtain multiple estimated values (that is, channel large-scale parameters); determines a composite estimated value based on multiple estimated values; based on the synthesized estimated value as the QCL assumption to do DMRS channel estimate.
  • the TRS resources that is, the physical resources of the TRS
  • the TRS resources are at the cell level, that is, each cell can be configured with a specific TRS resource
  • all UEs in the cell can measure the TRS configured in the cell.
  • TRSs of adjacent cells occupy orthogonal resources as much as possible to avoid strong mutual interference, but cells with less interference can configure the same TRS resources.
  • different cells use different scrambling codes, thereby reducing the correlation of TRS signals between different cells and reducing cell interference received by the receiving end.
  • FIG. 2A is a schematic diagram of a manner for a UE to measure a TRS under multi-TRP coordination provided by an embodiment of the present application.
  • the UE's cooperative cell is two TRPs, and the two TRPs issue TRS1 and TRS2 respectively.
  • the two TRSs can occupy orthogonal resources.
  • the UE obtains two sets of channel large-scale parameters according to TRS1 and TRS2 respectively, and estimates The results are accurate for a single station (ie, a single TRP).
  • a single station ie, a single TRP.
  • the channel experienced by TRS1 sent by TRP1 and the channel experienced by PDSCH1 sent by TRP1 are basically unchanged, and the channel experienced by TRS2 sent by TRP2 and the channel experienced by PDSCH2 sent by TRP2 are basically unchanged.
  • the ratio of the received power of TRS1 (P TRS1 ) to the received power of TRS2 (P TRS2 ) is 1:2, and the ratio of the received power represents the sum of the path losses from TRP1 and TRP2 to the UE, respectively.
  • the UE can directly determine the RSRP value of TRS according to the TRS measurement to obtain the above information, and the base station can obtain the above information according to the measurement report of the UE or through the measurement of the uplink signal by using the difference between the uplink and the downlink; TRP1 and TRP2 are sent at the same time
  • the ratio of the transmit power P PDSCH1 and P PDSCH2 of one PDSCH/DMRS port is 1:1.
  • FIG. 2B is a schematic diagram of another way for a UE to measure a TRS under multi-TRP coordination provided by an embodiment of the present application.
  • the ratio of the transmit power of TRS1 (P' TRS1 ) to the transmit power of TRS2 (P' TRS2 ) is 1:1, and TRP1 and TRP2 simultaneously transmit the transmit power P' PDSCH1 of a PDSCH/DMRS port
  • the ratio of P'PDSCH2 and P'PDSCH2 is 1:2.
  • the base station will indicate that the QCL of the DMRS of the PDSCH assumes that Type A is TRS1+TRS2, indicating that the large channel scale experienced by the DMRS is synthesized by two TRP transmission paths.
  • the UE estimates and synthesizes the channel large-scale parameters based on TRS1 and TRS2 (that is, the channel large-scale parameters synthesized from the channel large-scale parameters obtained by estimating TRS1 and the channel large-scale parameters obtained by estimating TRS2), and uses the synthesized Channel large-scale parameters receive DMRS.
  • the synthesized QCL parameters estimated by the UE based on TRS1 and TRS2 cannot be directly used for subsequent PDSCH/DMRS/CSI-RS jointly transmitted by TRP1 and TRP2.
  • the UE can estimate a power delay spectrum according to TRS1 and TRS2 respectively.
  • the delay spread can be estimated according to the two power delay profiles, and the Wiener filter coefficients can be generated according to the delay spread.
  • the Wiener filter coefficients can be used for channel estimation based on DMRS/CSI-RS, and the UE obtains the channel on non-pilot REs based on the Wiener filter difference based on the channel on the RE occupied by the pilot.
  • the UE obtains the channel estimation result (that is, the channel large-scale parameter of DMRS) and can further receive the PDSCH.
  • the UE can feed back the CSI after obtaining the channel estimation result (that is, the channel large-scale parameter of the DMRS).
  • the power distribution of each tap in the delay domain received by the UE on TRS1 and TRS2 cannot directly reflect the power distribution of each tap (spatial transmission path) in the delay domain actually received on the DMRS/CSI-RS.
  • the TRP end (multiple TRPs) actually sends DMRS/CSI-RS
  • the TRP end will perform joint precoding, and at the same time perform inter-stream (corresponding to data stream or modulation and coding method)/inter-transport layer/ Power allocation between RBs (corresponding to frequency bands)
  • UE does not consider the power allocation between streams/transmission layers/inter-RBs (corresponding to frequency bands) at the TRP end, but defaults to the same power between streams/transmission layers/between RBs .
  • the UE directly combines the power delay profile of TRS1 and the power delay profile of TRS2 (that is, directly superimposes the power delay profile of RS1 and the power delay profile of TRS2 power delay profile), and use the synthesized power delay profile as the power delay profile of the subsequent PDSCH/DMRS/CSI-RS.
  • the power delay profile obtained by the UE based on TRS1 and TRS2 cannot accurately reflect the channel state experienced by the subsequent PDSCH/DMRS/CSI-RS, so the UE cannot accurately estimate the channel state on the DMRS/CSI-RS based on the determined QCL assumption. channel.
  • FIG. 3A and FIG. 3B are schematic diagrams of synthesizing a power delay spectrum provided by an embodiment of the present application.
  • Figure 3A shows the power delay profile of TRS1 (transmitted by TRP1), the power delay profile of TRS2 (transmitted by TRP2) obtained by the UE, and the power delay profile synthesized by the power delay profile of TRS1 and the power delay profile of TRS2 extended spectrum.
  • Fig. 3B shows the power delay profile of the DMRS sent by TRP1, the power delay profile of the DMRS sent by TRP2 obtained by the UE, and the synthesis result of the power delay profile of the DMRS sent by TRP1 and the power delay profile of the DMRS sent by TRP2 Power Delay Spectrum.
  • TRS1 and TRS2 are TRS1 and TRS2 in FIG. 2A , and the power ratio between TRS1 and TRS2 is 1:2 (that is, the received power of TRS1 : the received power of TRS2 ).
  • the DMRS sent by TRP1 is carried by the signal 1 sent by TRP1 in FIG. 2A through the PDSCH
  • the DMRS sent by TRP2 is carried by the signal 2 sent by TRP2 in FIG.
  • the power ratio of the signal 2 transmitted by the PDSCH is 1:1 (the power of the signal 1:the power of the signal 2).
  • the channel state experienced by the DMRS sent by TRP1 in Figure 3B can be regarded as the same as the channel state experienced by TRS1 in Figure 3A, and the channel state experienced by the DMRS sent by TRP2 in Figure 3B can be regarded as the same as that of Figure 3A
  • the channel conditions experienced by TRS2 are the same.
  • the power delay profile synthesized by the UE Since the power ratio of signal 1 sent by TRP1 through PDSCH and signal 2 sent by TRP2 through PDSCH is different from that of TRS1 and TRS2, the power delay profile synthesized by the UE from the power delay profile of TRS1 and the power delay profile of TRS2 It is quite different from the power delay profile synthesized by the power delay profile of the DMRS sent by TRP1 and the power delay profile of the DMRS sent by TRP2.
  • the UE when the UE does not consider the power ratio of each TRS (or CSI-RS), the UE obtains the channel large-scale parameters based on each TRS (such as TRS1 and TRS2) (that is, the channel synthesized based on the channel large-scale parameters of each TRS Large-scale parameters) are quite different from the channel large-scale parameters of multiple DMRSs. That is to say, the power allocation of DMRS affects the matching degree of the channel large-scale parameters synthesized based on the channel large-scale parameters of multiple TRS (or CSI-RS) and the channel large-scale parameters of the DMRS actually delivered by the network device, resulting in performance degradation .
  • the power allocation of DMRS affects the matching degree of the channel large-scale parameters synthesized based on the channel large-scale parameters of multiple TRS (or CSI-RS) and the channel large-scale parameters of the DMRS actually delivered by the network device, resulting in performance degradation .
  • the power allocation when the network equipment (base station) transmits DMRS is completely transparent to the UE (that is, the UE does not know the power allocation of the DMRS), and the UE cannot follow the power allocation when the network equipment (base station) transmits the DMRS.
  • Based on multiple TRS/ CSI-RS obtains the synthesized channel features (corresponding to channel large-scale parameters).
  • the present application provides a downlink transmission method based on multi-station cooperation.
  • This method can be viewed as an accurate indicator of QCL assumptions.
  • the main principle of this method is: a network device (such as a base station) configures the QCL of a specific DMRS port (or CSI-RS port) assuming multiple TRS/CSI-RS, and configures the QCL between the multiple TRS/CSI-RS The QCL weights.
  • the QCL weight among the multiple TRS/CSI-RS is used to instruct the UE how to obtain the synthesized channel characteristics based on the multiple TRS/CSI-RS.
  • the QCL weight is used to represent: when generating a synthetic QCL hypothesis, the proportion of the QCL hypothesis parameter value generated by each TRS/CSI-RS in the synthetic QCL hypothesis.
  • the Delay spread in the QCL hypothesis the Delay spread determined according to TRS1 is X1 and the QCL weight is D1
  • the Delay spread determined according to TRS2 is X2 and the QCL weight is D2
  • the value of Delay spread in the composite QCL hypothesis is X1xD1+X2xD2.
  • determine the PDP of the composite QCL hypothesis i.e.
  • the composite PDP according to the ratio of the power-delay profile (power-delay profile, PDP) generated by each TRS/CSI-RS in the composite PDP, and then Determine the synthetic Delay spread based on the synthetic PDP.
  • the quantized PDP determined according to TRS2 is [b1,...,bk,...bn]
  • the QCL weight is D2
  • the PDP of the synthetic QCL hypothesis is [D1xa1+D2xb1,...,D1xan+D2xbn].
  • the QCL weight can be understood as the absolute power weight of each TRS/CSI-RS signal when the UE generates a composite QCL weight according to each TRS/CSI-RS signal. Specifically, if the QCL weight of TRS1 is configured as 0dB, and the QCL weight of TRS2 is configured as -3dB, then when synthesizing the QCL weight, the UE directly assumes that the QCL weight corresponding to TRS1 is 3dB larger than the QCL weight of TRS2. Taking FIG.
  • the QCL weight can also be understood as the power weight increment of each TRS/CSI-RS signal when the UE generates a combined QCL weight according to each TRS/CSI-RS signal.
  • the QCL weight of TRS1 is configured as 0dB
  • the QCL weight of TRS2 is configured as -3dB.
  • the UE first determines the received power RSRP of TRS1 and TRS2, and then determines the QCL of TRS1 and TRS2 according to the RSRP and QCL weights. Weight, the UE assumes that the QCL weight corresponding to TRS1 is the RSRP of TRS1, and the QCL weight of TRS2 is the RSRP of TRS2 minus 3dB.
  • Presetting one RS among the multiple RSs as the reference RS can be understood as an example that the QCL weight corresponding to the RS is 1/K, where K is the number of the multiple RSs.
  • Each of the other RSs corresponds to a QCL weight indication, and the form of the QCL weight indication may be a percentage or a dB value.
  • the value indicated by each QCL weight characterizes the QCL weight of the corresponding RS relative to the reference RS.
  • the value of the QCL weight configuration is only a negative number.
  • the reference RS set in the scheme can be the RS corresponding to the primary serving cell of the UE.
  • the power ratio of the signal of the primary serving cell is the highest, and other RSs correspond to the coordinated cells of the UE. , usually its power ratio is smaller than that of the primary serving cell. Therefore, for the jointly transmitted signal, the QCL weight of the primary serving cell should be the highest, which can save signaling overhead for configuring QCL assumptions.
  • the time delay taps estimated on each RS carry power information (no normalization operation is performed) for combining operations.
  • the amplitude value of the delay tap on each RS is determined according to the QCL weight configuration. Specifically, for example, if the amplitude value of a delay tap estimated on an RS is X, and the QCL weight obtained according to the QCL weight configuration is m, then the amplitude value of the delay tap in the synthesized PDP is m *X.
  • the QCL weight corresponding to each RS can be a percentage or a dB value.
  • the value of the QCL weight may be: -3dB, -6dB, -9dB, 0dB, 3dB, 6dB, 9dB and so on.
  • a composite PDP spectrum can be obtained. Specifically, when synthesizing the PDP spectrum, the power dBm value of the PDP spectrum acquired on each RS is subtracted from the QCL weight value before being synthesized.
  • QCL weights can be configured in TCI state.
  • An RS ID under a certain QCL type can be configured in a TCI state. Taking QCL type A as an example, this QCL type A corresponds to multiple RS IDs, and each RS ID will further correspond to a QCL weight.
  • each frequency band can independently indicate the RS ID assumed by the QCL.
  • each transport layer can independently indicate the RS ID assumed by the QCL.
  • FIG. 4 is an example of a QCL hypothesis indication provided by the embodiment of the present application. As shown in FIG.
  • the UE simultaneously estimates the TRSs of three TRPs (ie, TRP1 , TRP2 and TRP3 ) in the cooperating set, and the three TRPs are used to transmit the PDSCH at the same time.
  • TRP1 , TRP2 and TRP3 the number of transmission layers of PDSCH is 2, as shown on the right side of Figure 4, in the QCL assumption indication, RS ID can be independently indicated for each PRG and/or transmission layer, which is used to characterize the channel on the PRG and/or transmission layer Large scale properties.
  • codeword there may be multiple codewords (codeword).
  • One codeword corresponds to one modulation and coding scheme (MCS).
  • MCS modulation and coding scheme
  • Different codewords may correspond to different MCSs, and different codewords may correspond to different transmission layers.
  • Codewords are used to characterize the granularity of channel coding.
  • each codeword (that is, data stream) may also independently indicate the QCL hypothesis, which is considering that the MCS difference of different codewords mainly comes from the power allocation between TRP streams.
  • the transmission paths experienced by the UE to each coordinated TRP may be quite different.
  • Certain TRPs with rich scattering conditions or TRPs with long physical distances may have a large delay in the channel to the UE. This delay caused by the transmission path can be called air interface delay.
  • the large air interface delay will lead to severe frequency selective fading of the transmitted signal, and may even exceed the possibility of cyclic prefix (CP), which will seriously affect the transmission performance of the signal. Therefore, the network device side can know the air interface delay in advance through some measurement reporting mechanisms, and perform pre-delay compensation in the subsequent downlink transmission, so that the signal actually received by the UE becomes flatter in the frequency domain.
  • TRSs may indicate QCL type A (uncompensated), and some TRSs may indicate QCL type B (after compensation, the TRS does not provide delay domain channel characteristic indication).
  • FIG. 5 is a flow chart of a downlink transmission method based on multi-station cooperation provided by an embodiment of the present application. As shown in Figure 5, the method includes:
  • the terminal device receives first indication information sent by the network device.
  • the first indication information (ie, the QCL assumption indication) indicates multiple reference signals having a QCL relationship with the first signal, and a QCL weight of each reference signal in the multiple reference signals.
  • a terminal device refers to a UE.
  • the above-mentioned transmission path of the first signal may be regarded as being synthesized by the above-mentioned multiple transmission paths of the reference signals.
  • the first signal includes multiple reference signals, for example, multiple DMRSs or CSI-RSs.
  • the multiple reference signals (or data signals) included in the first signal correspond one-to-one to the multiple reference signals having a QCL relationship with the first signal.
  • the first indication information may be DCI or other downlink control information.
  • the network device may be any one of multiple TRPs that jointly transmit signals to the terminal device.
  • the network device is the network device corresponding to the primary serving cell accessed by the terminal device.
  • the sending powers of multiple signals included in the first signal and the sending powers of multiple reference signals having a QCL relationship with the first signal are known. That is to say, the network device knows the transmission power of multiple signals included in the first signal, and the transmission power of multiple reference signals having a QCL relationship with the first signal.
  • the network device may determine multiple reference signals having a QCL relationship with the first signal according to the transmission power of the multiple signals included in the first signal and the transmission power of multiple reference signals having a QCL relationship with the first signal.
  • the QCL weight of each reference signal in the reference signals may determine the QCL weight of each of the multiple reference signals having a QCL relationship with the first signal in any manner, which is not limited in this application.
  • the first signal is carried on a demodulation reference signal DMRS port, or the first signal is carried on a physical downlink shared channel PDSCH port, or the first signal is carried on a A physical downlink control channel PDCCH port.
  • Multiple reference signals are used as QCL hypothesis indications of the first signal carried on the same DMRS port, PDSCH port or PDCCH port. In this way, the UE synthesizes the large-scale parameters estimated from multiple reference signals to obtain the channel large-scale parameters of the first signal.
  • the multiple reference signals and the first signal both correspond to the first frequency band and the first transmission layer; or, the multiple reference signals and the first signal both correspond to the first frequency band and the first transmission layer.
  • the first data stream; or, the plurality of reference signals and the first signal both correspond to the first transport layer and the first data stream.
  • the foregoing first indication information corresponds to the first frequency band and the first transmission layer, for example, the first indication information includes an identifier of the first frequency band and an identifier of the first transmission layer.
  • the first indication information corresponds to the first frequency band and the first data stream, for example, the first indication information includes an identifier of the first frequency band and an identifier of the first data stream.
  • the first indication information corresponds to the first transport layer and the first data stream, for example, the first indication information includes an identifier of the first transport layer and an identifier of the first data stream.
  • the combination of any two of the frequency band, the transmission layer, and the data stream may indicate the RS ID, which is used to characterize the large-scale characteristics of the channel on the combination of any two.
  • the multiple reference signals and the first signal not only correspond to the same frequency band, but also correspond to the same transmission layer or data stream. The channel large-scale parameters obtained based on the multiple reference signals can better reflect the channel state experienced by the first signal.
  • the bandwidth occupied by the first signal includes multiple second frequency bands
  • the QCL relationship between the first signal and the multiple reference signals includes each second frequency band and the A QCL relationship between at least one of the plurality of reference signals.
  • the QCL relationship between the first signal and the plurality of reference signals includes a QCL relationship between each second frequency band and at least one of the plurality of reference signals.
  • the channel large-scale parameter of each second frequency band can be estimated more accurately according to the QCL relationship between each second frequency band and the reference signal. It should be understood that the terminal device may estimate the channel large-scale parameter of the signal occupying the second frequency band according to the QCL relationship between the signal occupying the same second frequency band and the reference signal among the multiple signals included in the first signal. That is to say, each second frequency band of the first signal may correspond to a channel large-scale parameter.
  • the first indication information indicates multiple reference signals that have a QCL relationship with the first signal
  • the QCL weight of each reference signal in the multiple reference signals includes: the first The indication information indicates a plurality of first transmission control indication TCI states, the plurality of first TCI states correspond to the plurality of reference signals one by one, and each of the first TCI states also includes the first TCI state QCL weights of the corresponding reference signal.
  • the first indication information indicates the first TCI state, and the resource overhead is small.
  • the first indication information includes multiple identifiers and multiple QCL weights
  • the multiple identifiers are identifiers of the multiple reference signals
  • the multiple identifiers are related to the multiple
  • the QCL weights correspond to one-to-one
  • the multiple QCL weights represent the proportion of QCL hypothesis parameter values generated by the multiple reference signals when synthesizing the QCL hypothesis.
  • the multiple identifiers and multiple QCL weights included in the first indication information can accurately represent the proportion of QCL hypothesis parameter values generated by multiple reference signals when synthesizing the QCL hypothesis.
  • the terminal device receives the first signal according to the first channel large-scale parameter.
  • the first channel large-scale parameter is obtained by using the multiple reference signals and the QCL weight of each reference signal in the multiple reference signals.
  • the first signal is from a network device.
  • the terminal device may perform the following operations: receive the above-mentioned multiple reference signals; use the above-mentioned multiple reference signals to estimate channel large-scale parameters respectively, and obtain the above-mentioned multiple channel large-scale parameters ; using the QCL weight of each of the multiple reference signals to synthesize the above-mentioned multiple channel large-scale parameters to obtain the above-mentioned first channel large-scale parameters.
  • the first signal is a demodulation reference signal DMRS or a channel state information reference signal CSI-RS
  • the multiple reference signals are different tracking reference signals TRS.
  • the terminal device performs channel estimation on each reference signal it receives to obtain the channel large-scale parameter of each reference signal; after receiving the first indication information, it parses the first indication information to obtain information related to The first signal has a plurality of reference signals having a QCL relationship, and a QCL weight of each reference signal in the plurality of reference signals; the QCL weight pair of each reference signal in the plurality of reference signals is estimated from the plurality of reference signals Multiple channel large-scale parameters are synthesized to obtain a first channel large-scale parameter (corresponding to QCL hypothesis information of the first signal); and the first signal is received according to the first channel large-scale parameter.
  • the above-mentioned multiple reference signals and the above-mentioned first signal all correspond to the first frequency band and the first transmission layer
  • the first indication information includes an identifier of the first transmission layer and an identifier of the first frequency band
  • Perform channel estimation for each reference signal received to obtain the channel large-scale parameter of each reference signal after receiving the first indication information, analyze the first indication information to obtain information related to the first signal (corresponding to the first transmission Layer) a plurality of reference signals (corresponding to the first transmission layer) having a QCL relationship, and the QCL weight of each reference signal in the plurality of reference signals; using the QCL weight pair of each reference signal in the plurality of reference signals by Combining multiple channel large-scale parameters estimated from the multiple reference signals to obtain a first channel large-scale parameter (corresponding to QCL assumption information of the first signal); receiving the first signal according to the first channel large-scale parameter.
  • the network device sends indication information 1 to the terminal device to indicate multiple reference signals (sent through transmission layer 1) having a QCL relationship with signal 3 (to be transmitted through transmission layer 1) and each reference signal in the multiple reference signals The QCL weight of the signal; the network device sends indication information 2 to the terminal device to indicate multiple reference signals (sent through the transmission layer 2) that have a QCL relationship with the signal 4 (to be transmitted through the transmission layer 2) and each of the multiple reference signals QCL weights of a reference signal.
  • the network device may independently indicate the RS ID of the QCL assumption of the first signal on each transport layer.
  • the network device can independently indicate the RS ID assumed by the QCL of the first signal on the frequency band (or code).
  • the terminal device can perform channel estimation on multiple reference signals having a QCL relationship with the first signal respectively to obtain a channel large-scale parameter of each reference signal; using the multiple The QCL weight of each reference signal in the first reference signal performs synthesis processing on a plurality of channel large-scale parameters estimated by the plurality of reference signals to obtain a first channel large-scale parameter (corresponding to the QCL hypothesis information of the first signal); Receive the first signal according to the first channel large-scale parameter.
  • the first signal is received according to the first channel large-scale parameter. Since the first channel large-scale parameter is obtained by combining the multiple channel large-scale parameters estimated by the multiple reference signals using the QCL weight of each reference signal in the multiple reference signals, the first channel large-scale parameter can be The channel state experienced by the subsequent first signal is more accurately reflected, so that the first signal is received more accurately.
  • FIG. 5 mainly describes the downlink transmission method based on multi-station cooperation provided by the present application from the side of the terminal device.
  • the following describes the downlink transmission method based on multi-station cooperation provided by the present application from the side of the network device.
  • FIG. 6 is a flow chart of another downlink transmission method based on multi-station cooperation provided by an embodiment of the present application. As shown in Figure 6, the method includes:
  • the network device generates first indication information.
  • the first indication information indicates multiple reference signals that have a quasi-co-located QCL relationship with the first signal, and a QCL weight of each of the multiple reference signals.
  • the first signal includes multiple reference signals, for example, multiple DMRSs or CSI-RSs.
  • the multiple reference signals (or data signals) included in the first signal correspond one-to-one to multiple reference signals having a QCL relationship with the first signal.
  • the network device may determine multiple reference signals having a QCL relationship with the first signal according to the transmission power of the multiple signals included in the first signal and the transmission power of multiple reference signals having a QCL relationship with the first signal. The QCL weight of each reference signal in the reference signals, and then generate the first indication information.
  • the first indication information indicates multiple reference signals that have a QCL relationship with the first signal
  • the QCL weight of each reference signal in the multiple reference signals includes: the first The indication information indicates a plurality of first transmission control indication TCI states, the plurality of first TCI states correspond to the plurality of reference signals one by one, and each of the first TCI states also includes the first TCI state QCL weights of the corresponding reference signal.
  • the first indication information indicates the first TCI state, and the resource overhead is small.
  • the first indication information includes multiple identifiers and multiple QCL weights
  • the multiple identifiers are identifiers of the multiple reference signals
  • the multiple identifiers are related to the multiple
  • the QCL weights correspond to one-to-one
  • the multiple QCL weights represent the proportion of QCL hypothesis parameter values generated by the multiple reference signals when synthesizing the QCL hypothesis.
  • the multiple identifiers and multiple QCL weights included in the first indication information can accurately represent the proportion of QCL hypothesis parameter values generated by multiple reference signals when synthesizing the QCL hypothesis.
  • the network device sends first indication information to the terminal device.
  • the first indication information is used for the terminal device to receive the first signal.
  • the first signal is carried on a demodulation reference signal DMRS port, or the first signal is carried on a physical downlink shared channel PDSCH port, or the first signal is carried on a A physical downlink control channel PDCCH port.
  • the first signal is carried on a DMRS port, a PDSCH port or a PDCCH port.
  • the multiple reference signals are QCL assumption indications of the first signal carried on the same DMRS port, PDSCH port or PDCCH port. In this way, the UE synthesizes the large-scale parameters estimated from multiple reference signals to obtain the channel large-scale parameters of the first signal.
  • the multiple reference signals and the first signal both correspond to the first frequency band and the first transmission layer; or, the multiple reference signals and the first signal both correspond to the first frequency band and the first transmission layer.
  • the first data stream; or, the plurality of reference signals and the first signal both correspond to the first transport layer and the first data stream.
  • the foregoing first indication information corresponds to the first frequency band and the first transmission layer, for example, the first indication information includes an identifier of the first frequency band and an identifier of the first transmission layer.
  • the first indication information corresponds to the first frequency band and the first data stream, for example, the first indication information includes an identifier of the first frequency band and an identifier of the first data stream.
  • the first indication information corresponds to the first transport layer and the first data stream, for example, the first indication information includes an identifier of the first transport layer and an identifier of the first data stream.
  • the combination of any two of the frequency band, the transmission layer, and the data stream may indicate the RS ID, which is used to characterize the large-scale characteristics of the channel on the combination of any two.
  • the network device sends the first indication information to the terminal device, so that the terminal device uses the QCL weight of each of the multiple reference signals to evaluate the multiple channel large-scale parameters estimated by the multiple reference signals Synthesis processing is performed to obtain the first channel large-scale parameter that can more accurately reflect the channel state experienced by the subsequent first signal.
  • the scheme of indicating the QCL weight of each reference signal in the multiple reference signals by using the QCL hypothesis indication was introduced above.
  • the UE can improve the accuracy of channel estimation according to the QCL weight of each of the multiple reference signals.
  • the scheme for determining QCL assumption information through DMRS provided by this application is introduced below.
  • the UE adopts the solution of determining the QCL hypothesis information through the DMRS provided by this application, and can estimate the QCL hypothesis through the DMRS without relying on the TRS without significantly affecting the data receiving performance, and the signaling overhead is reduced.
  • the UE estimates the QCL hypothesis through the non-DMRS (that is, determines the QCL hypothesis information through the non-DMRS), but this application provides a solution for determining the QCL hypothesis information through the DMRS.
  • the QCL indication of the DMRS includes the DMRS port.
  • a port having a QCL TypeA relationship with a DMRS port or a CSI-RS port may be a certain CDM group of DMRS port/DMRS port number/DMRS.
  • the DMRS of the PDSCH or the Doppler and delay-related channel large-scale parameters of the CSI-RS can be indicated by the DMRS port.
  • the use of DMRS indication QCL assumption can improve the estimation accuracy of large-scale channel parameters.
  • the TRS is usually an RS sent at the cell level, and the network device will not send directional beams in a beamforming manner when sending, so that as many UEs in the cell as possible can receive the TRS.
  • DMRS can use directional beams to point to specific UEs to improve the signal-to-noise ratio and estimation accuracy.
  • the DMRS may be the DMRS of the PDSCH or the DMRS of the PDCCH.
  • the network may dynamically perform cell switching on the UE (select the serving cell of the UE according to the signal quality), for example, the UE is served by TRP1 at time n, and the UE is served by TRP2 at time n+1. If the UE performs QCL estimation based on the TRS, the UE needs to track two TRSs (TRP1 and TRP2) at the same time, which requires relatively high requirements for the UE. However, if the UE performs QCL estimation based on the DMRS, there is no need to track the two TRSs.
  • Estimating QCL hypothesis information from DMRS requires additional processing time compared to channel estimation only from DMRS.
  • the operation process is as follows: receive the signal of the DMRS pilot point; perform least-square (LS) channel estimation on the signal of the pilot point according to the known DMRS sequence Obtain the channel of the pilot point; deduce the channels on the remaining REs other than the pilot point according to the interpolation algorithm (at this time, the known QCL assumption information will be used to complete the interpolation).
  • the UE before the UE performs channel estimation based on the DMRS, it needs to estimate the QCL hypothesis information first, and to estimate the QCL hypothesis information needs to collect more signals of DMRS pilot points.
  • the UE can perform channel estimation based on DMRS only based on the pilot point signal located at the first OFDM symbol position in the PDSCH channel time domain, but to estimate the QCL hypothesis information needs to be based on the first OFDM symbol located in the PDSCH signal time domain Only the DMRS signal on the pilot point on the OFDM symbol at the end of the PDSCH time domain can complete the QCL estimation.
  • an effective DMRS is defined in this application, and the UE estimates QCL information only according to the effective DMRS.
  • PDSCH or PDCCH
  • its effective DMRS needs to meet the following conditions: the transmission bandwidth is greater than a M, or b DMRS transmission symbols are included in a slot and there is a certain time interval between b DMRS transmission symbols (for example, 3 OFDM compliant).
  • a can take a value of 5, 6, 10, etc. to ensure a certain time-domain resolution and improve the estimation accuracy of large-scale parameters in the time domain.
  • b can take a value of 2 or 4 to ensure frequency offset estimation accuracy.
  • the DMRS can only be used to estimate the large-scale information in the delay domain, that is, it can only be used to indicate the delay spread and average delay in the QCL. In this way, some large-scale information can be obtained through the DMRS, and excessive requirements and influences on the transmission of the DMRS can be avoided.
  • the processing time required by UE is t1
  • the processing time required by UE is t2, t1> t2.
  • the present application may predetermine the UE's behavior of estimating large-scale characteristics (that is, channel large-scale parameters) on the DMRS.
  • the DMRSs are grouped in advance, and the DMRS ports in one DMRS group can be used to estimate a set of large-scale parameters, while multiple DMRS groups are used to estimate multiple sets of large-scale parameters. This is to take into account that the signals sent by the network device side on different DMRS ports correspond to different power allocations, that is to say, different large-scale characteristics will appear.
  • time-domain filtering can be performed on the estimation results on the same DMRS port transmitted at different times to form a relatively robust large-scale estimation result.
  • Different DMRS ports can perform time domain filtering independently.
  • a specific DMRS port group ID/DMRS port ID may be indicated.
  • a time window for time domain filtering may be preset. Within a time window, the UE may perform filtering based on large-scale information estimated from DMRS received at different times. When the time window is exceeded, the UE needs to re-estimate.
  • FIG. 7 is a flowchart of a communication method provided by an embodiment of the present application. As shown in Figure 7, the method includes:
  • the terminal device receives the first DMRS sent by the network device.
  • the foregoing first DMRS is carried in a signal sent by the network device through the PDSCH or the PDCCH.
  • the bandwidth of the first DMRS is greater than the bandwidth threshold, or the first DMRS includes K DMRS transmission symbols in one time slot and the time interval between any two DMRS transmission symbols is greater than Time threshold, the above K is an integer greater than 1.
  • the bandwidth threshold may be 5M, 6M, 10M, etc., which is not limited in this application.
  • the time threshold may be 2 OFDM symbols, 3 OFDM symbols, 4 OFDM symbols, etc., which are not limited in this application.
  • K can be 2, 4, etc., which is not limited in this application.
  • the bandwidth of the first DMRS is greater than the bandwidth threshold, or the first DMRS includes K DMRS transmission symbols in one time slot and the time interval between any two DMRS transmission symbols is greater than the time threshold; it can be guaranteed Using the first DMRS to perform QCL estimation can meet the processing time requirement of the signal carrying the first DMRS.
  • the second channel large-scale parameter is obtained based on the channel large-scale parameter of the first DMRS.
  • the second channel large-scale parameter is a channel large-scale parameter obtained based on the measurement (or estimation) of the first DMRS.
  • the terminal device may obtain the second channel large-scale parameter based on the measurement of the first DMRS.
  • the above-mentioned second signal is a reference signal having a QCL relationship with the above-mentioned first DMRS.
  • the second signal has a QCL TypeD relationship with the first DMRS.
  • the second signal is from a network device.
  • the foregoing second signal is a demodulation reference signal or a channel state information reference signal CSI-RS.
  • the second signal is received according to the large-scale parameter of the second channel; on the premise of not significantly affecting the data receiving performance, the estimation of the QCL assumption can be made through the DMRS without relying on the tracking reference signal (trackingreference signal, TRS) ), the signaling overhead is reduced.
  • TRS trackingreference signal
  • FIG. 8 is a flow chart of another communication method provided by the embodiment of the present application.
  • the method flow in FIG. 8 is a possible implementation of the method flow in FIG. 7 .
  • the method includes:
  • a terminal device receives second indication information from a network device.
  • the second indication information indicates the QCL relationship between the second signal and the first DMRS.
  • the second indication information indicates a second transmission control indication TCI state, and the second TCI state includes a QCL relationship between the second signal and the first DMRS.
  • the second indication information indicates the second TCI state, and the resource overhead is small.
  • the first indication information includes an identifier of the second signal and an identifier of the first DMRS.
  • the terminal device receives the first DMRS sent by the network device.
  • the terminal device estimates a channel large-scale parameter of the first DMRS to obtain a second channel large-scale parameter.
  • step 803 is as follows: after receiving the second indication information, the terminal device first determines the QCL relationship between the second signal and the first DMRS according to the second indication information; then estimates the channel of the first DMRS The large-scale parameter is used to obtain the large-scale parameter of the second channel.
  • step 803 is as follows: the bandwidth of the terminal device in the first DMRS is greater than the bandwidth threshold, or, the above-mentioned first DMRS includes K DMRS transmission symbols in one time slot and the interval between any two DMRS transmission symbols is If the time interval is greater than the time threshold, estimate the channel large-scale parameter of the first DMRS to obtain the second channel large-scale parameter.
  • the terminal device does not estimate the channel large-scale parameter of the first DMRS.
  • the second signal is received according to the large-scale parameter of the second channel; on the premise of not significantly affecting the data receiving performance, the estimation of the QCL assumption can be made through the DMRS without relying on the tracking reference signal (trackingreference signal, TRS) ), the signaling overhead is reduced.
  • TRS trackingreference signal
  • FIG. 7 and FIG. 8 mainly describe the solution of determining QCL assumption information through DMRS provided by the present application from the side of the terminal device.
  • the following describes the scheme of determining the QCL assumption information through the DMRS provided by the present application from the side of the network device.
  • FIG. 9 is a flow chart of another communication method provided by the embodiment of the present application. As shown in Figure 9, the method includes:
  • the network device sends a first DMRS to the terminal device.
  • the bandwidth of the first DMRS is greater than the bandwidth threshold, or the first DMRS includes K DMRS transmission symbols in one time slot and the time interval between any two DMRS transmission symbols is greater than Time threshold, the above K is an integer greater than 1.
  • the second indication information indicates the quasi-co-located QCL relationship between the second signal and the first DMRS.
  • the order in which the network device executes step 902 and step 901 is not limited.
  • the second indication information may be DCI or other downlink control information.
  • the second indication information indicates that the second transmission control indicates a second TCI state
  • the second TCI state includes a QCL relationship between the second signal and the first DMRS.
  • the second indication information includes the identifier of the first DMRS and the identifier of the second signal.
  • the second indication information indicates a QCL relationship between the second signal and the first port group identity ID or the first DMRS port ID of the first DMRS.
  • the power allocation corresponding to the signals sent by the network device on different DMRS ports or port groups is different, and the second indication information indicates that the second signal is related to the first port group identity ID of the first DMRS or the first DMRS port The QCL relationship of the ID in order to more accurately estimate the large-scale parameters of the second channel.
  • the network device can group DMRSs in advance, DMRS ports in one DMRS group can be used to estimate a set of large-scale parameters, and multiple DMRS groups can be used to estimate multiple sets of large-scale parameters.
  • time-domain filtering can be performed on the estimation results on the same DMRS port transmitted at different times to form a relatively robust large-scale estimation result.
  • Different DMRS ports perform time-domain filtering independently.
  • a specific DMRS port group ID/DMRS port ID may be indicated.
  • the foregoing second signal is a demodulation reference signal or a channel state information reference signal CSI-RS.
  • the network device sends the second indication information to the terminal device, so that the terminal device receives the second signal by using the channel large-scale parameter of the first DMES.
  • the terminal device can estimate the QCL hypothesis through the DMRS without relying on the tracking reference signal on the premise of not significantly affecting the data receiving performance.
  • the scheme for determining QCL assumption information through DMRS was introduced earlier.
  • the following introduces a scheme of performing time-domain filtering on the channel large-scale parameters on the same DMRS port transmitted at different times to form relatively robust channel large-scale parameters.
  • FIG. 10 is a flow chart of another communication method provided by the embodiment of the present application. As shown in Figure 10, the method includes:
  • a terminal device receives multiple second DMRSs transmitted by a network device.
  • the above multiple second DMRSs correspond to the second DMRS port group ID or the second DMRS port ID.
  • the multiple second DMRSs refer to multiple different second DMRSs, for example multiple second DMRSs transmitted at different times.
  • each second DMRS in the plurality of second DMRSs is greater than the bandwidth threshold, or, each second DMRS in the plurality of second DMRSs includes K DMRSs in one time slot The symbols are transmitted and the time interval between any two DMRS transmission symbols is greater than a time threshold, and the above K is an integer greater than 1.
  • the bandwidth of the first DMRS is greater than the bandwidth threshold, or the first DMRS includes K DMRS transmission symbols in one time slot and the time interval between any two DMRS transmission symbols is greater than the time threshold; it can be guaranteed Using the first DMRS to perform QCL estimation can meet the processing time requirement of the signal carrying the first DMRS.
  • the terminal device receives third indication information from the network device.
  • the third indication information indicates the QCL relationship between the third signal and the second DMRS port group ID, or the third indication information indicates the QCL relationship between the third signal and the second DMRS port ID .
  • the terminal device can know the QCL relationship between the third signal and the second DMRS port group ID or the QCL relationship between the third signal and the second DMRS port ID in time.
  • the third indication information may be DCI or other downlink control information.
  • the terminal device may know the QCL relationship between the third signal and the second DMRS port group ID or the QCL relationship between the third signal and the second DMRS port ID, and then The channel large-scale parameter of the third signal is obtained based on the measurement of the plurality of second DMRSs.
  • the above-mentioned third indication information indicates a third transmission control indication TCI state
  • the above-mentioned third TCI state includes the QCL relationship between the above-mentioned third signal and the above-mentioned second DMRS port group ID, or, the above-mentioned
  • the third TCI state includes the QCL relationship between the above-mentioned third signal and the above-mentioned second DMRS port ID.
  • the third indication information indicates the third TCI state, and the resource overhead is small.
  • the third indication information includes the second DMRS port group ID or the second DMRS port ID.
  • the third channel large-scale parameter is obtained by performing time-domain filtering on the multiple channel large-scale parameters estimated by the multiple second DMRSs.
  • the third signal comes from a network device.
  • the foregoing third signal is a demodulation reference signal or a channel state information reference signal CSI-RS.
  • the terminal device before receiving the third signal according to the third channel large-scale parameter, performs the following operations: the terminal device performs channel estimation according to the plurality of second DMRSs received within a preset time window , to obtain the above-mentioned multiple channel large-scale parameters; performing time-domain filtering on the above-mentioned multiple channel large-scale parameters, to obtain the above-mentioned third channel large-scale parameters.
  • the preset time window may be a time window set according to actual needs, such as 3ms, 5ms, 10ms and so on.
  • time-domain filtering is performed on multiple channel large-scale parameters to obtain a third channel large-scale parameter; a relatively robust large-scale estimation result can be obtained.
  • the third signal is received according to the third channel large-scale parameter. Since the third channel large-scale parameter is obtained by performing time-domain filtering on multiple channel large-scale parameters estimated by multiple second DMRSs, the third channel large-scale parameter is a relatively robust large-scale estimation result, which can be more accurate accurately reflect the channel state experienced by the third signal.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device in FIG. 11 is a terminal device or is included in a terminal device.
  • the communication device 1100 includes:
  • the transceiver unit 1101 is configured to receive first indication information sent by the network device; the first indication information indicates multiple reference signals that have a quasi-co-located QCL relationship with the first signal, and each reference signal in the multiple reference signals the QCL weight of the signal;
  • a processing unit 1102 configured to use the multiple reference signals and the QCL weight processing of each of the multiple reference signals to obtain the first channel large-scale parameter;
  • the transceiver unit 1101 is further configured to receive the first signal according to the first channel large-scale parameter.
  • the transceiver unit 1101 is also configured to receive the above-mentioned multiple reference signals
  • the processing unit 1102 is further configured to respectively use the above-mentioned multiple reference signals to estimate channel large-scale parameters, and obtain the above-mentioned multiple channel large-scale parameters;
  • the processing unit 1102 is specifically configured to use the QCL weight of each of the multiple reference signals to perform synthesis processing on the multiple channel large-scale parameters to obtain the above-mentioned first channel large-scale parameter.
  • FIG. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device in FIG. 12 is a network device or included in a network device.
  • the communication device 1200 includes:
  • the processing unit 1201 is configured to generate first indication information, where the first indication information indicates multiple reference signals that have a quasi-co-located QCL relationship with the first signal, and a QCL weight of each of the multiple reference signals;
  • the transceiver unit 1202 is configured to send the above-mentioned first indication information to the terminal device; the above-mentioned first indication information is used for the above-mentioned terminal device to receive the above-mentioned first signal.
  • a communications device 1100 includes a transceiver unit 1101 and a processing unit 1102 .
  • the processing unit 1102 is configured to obtain a second channel large-scale parameter based on the above-mentioned channel large-scale parameter of the first DMRS;
  • the transceiver unit 1101 is further configured to receive a second signal according to the second channel large-scale parameter; the second signal is a reference signal having a QCL relationship with the first DMRS.
  • the processing unit 1102 is further configured to use the above-mentioned first DMRS to estimate a channel large-scale parameter to obtain the above-mentioned second channel large-scale parameter.
  • a communications device 1200 includes a processing unit 1201 and a transceiver unit 1202 .
  • the transceiver unit 1202 is configured to send the first DMRS to the terminal device; send second indication information to the terminal device, where the second indication information indicates the quasi-co-located QCL relationship between the second signal and the first DMRS;
  • a processing unit 1201 configured to generate the above second signal
  • the transceiver unit 1202 is further configured to send the second signal to the terminal device.
  • a communications device 1100 includes a transceiver unit 1101 and a processing unit 1102 .
  • the transceiver unit 1101 is configured to receive a plurality of second demodulation reference signals DMRS transmitted by the network device, and the plurality of second DMRSs correspond to the second DMRS port group identity ID or the second DMRS port ID;
  • a processing unit 1102 configured to perform time-domain filtering on a plurality of channel large-scale parameters estimated by the above-mentioned plurality of second DMRSs to obtain a third channel large-scale parameter;
  • the transceiver unit 1101 is further configured to receive a third signal according to the above-mentioned third channel large-scale parameter.
  • the processing unit 1102 is further configured to perform channel estimation according to the plurality of second DMRSs received within a preset time window, to obtain the plurality of channel large-scale parameters.
  • the transceiver unit 1101 is further configured to receive third indication information from the aforementioned network device, where the third indication information indicates the relationship between the aforementioned third signal and the aforementioned second DMRS port group identity ID. QCL relationship, or, the third indication information indicates the QCL relationship between the third signal and the second DMRS port ID.
  • a communications device 1200 includes a processing unit 1201 and a transceiver unit 1202 .
  • the transceiver unit 1202 is configured to transmit a plurality of second demodulation reference signals DMRS to the terminal device, where the plurality of second DMRS correspond to the second DMRS port group identity ID or the second DMRS port ID; and send the third DMRS to the terminal device.
  • indication information where the third indication information indicates the QCL relationship between the third signal and the second DMRS port group identity ID or indicates the QCL relationship between the third signal and the second DMRS port ID;
  • a processing unit 1201 configured to generate the above third signal
  • the transceiver unit 1202 is further configured to send the third signal to the terminal device.
  • FIG. 13 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the communication device in FIG. 13 may be the above-mentioned terminal device, or may be the above-mentioned network device.
  • the communication device 130 includes at least one processor 1320, configured to implement the functions of the terminal device in the method provided in the embodiment of the present application; or, configured to implement the function of the network device in the method provided in the embodiment of the present application.
  • the communication device 130 may also include a transceiver 1310 .
  • the transceiver 1310 is used to communicate with other devices/apparatus through the transmission medium.
  • the processor 1320 uses the transceiver 1310 to send and receive data and/or signaling, and is used to implement the methods in the foregoing method embodiments.
  • the communication device 130 may further include at least one memory 1330 for storing program instructions and/or data.
  • the memory 1330 is coupled to the processor 1320 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 1320 may cooperate with memory 1330 .
  • Processor 1320 may execute program instructions stored in memory 1330 . At least one of the at least one memory may be included in the processor.
  • a specific connection medium among the transceiver 1310, the processor 1320, and the memory 1330 is not limited.
  • the memory 1330, the processor 1320, and the transceiver 1310 are connected through the bus 1340.
  • the bus is represented by a thick line in FIG. 13, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 13 , but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or Execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the transceiver 1310 implements the function of the transceiver unit 1101 .
  • the transceiver 1310 implements the function of the transceiver unit 1201 .
  • the processor 1320 implements the function of the processing unit 1102 .
  • the processor 1320 implements the function of the processing unit 1202 .
  • FIG. 14 is a schematic structural diagram of another communication device 140 provided by an embodiment of the present application.
  • the communication device in FIG. 14 may be the above-mentioned terminal device, or may be the above-mentioned network device.
  • the communication device shown in FIG. 14 includes a logic circuit 1401 and an interface 1402 .
  • the logic circuit 1401 may be a chip, a processing circuit, an integrated circuit or a system on chip (SoC) chip, etc.
  • the interface 1402 may be a communication interface, an input-output interface, or the like.
  • the interface 1402 is used to implement sending and receiving of data or signaling.
  • the logic circuit and the interface may also be coupled to each other.
  • the embodiment of the present application does not limit the specific connection manner of the logic circuit and the interface.
  • the logic circuit and interface may be used to perform the functions or operations performed by the communication device described above.
  • the present application also provides a computer-readable storage medium, where computer codes are stored in the computer-readable storage medium, and when the computer codes are run on the computer, the computer is made to execute the methods of the above-mentioned embodiments.
  • the present application also provides a computer program product, the computer program product includes computer code or computer program, and when the computer code or computer program is run on a computer, the methods in the above embodiments are executed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种基于多站协作的下行传输方法和相关装置,该方法包括:终端设备接收网络设备发送的第一指示信息;第一指示信息指示与第一信号具有准共址QCL关系的多个参考信号,以及多个参考信号中每个参考信号的QCL权重;根据第一信道大尺度参数接收第一信号;第一信道大尺度参数利用多个参考信号中每个参考信号的QCL权重对由多个参考信号估计得到的多个信道大尺度参数做合成处理得到。由于第一信道大尺度参数利用多个参考信号中每个参考信号的QCL权重对由该多个参考信号估计得到的多个信道大尺度参数做合成处理得到,因此该第一信道大尺度参数能够较精确地反映后续第一信号经历的信道状态,从而更准确地接收第一信号。

Description

基于多站协作的下行传输方法和相关装置
本申请要求于2021年08月30日提交中国专利局、申请号为202111005796.6、申请名称为“基于多站协作的下行传输方法和相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种基于多站协作的下行传输方法和相关装置。
背景技术
网络设备(例如基站)在调度下行传输时,需要指示下行传输对应的解调参考信号(demodulation reference signal,DMRS)的准共址(quasi co-location,QCL)假设。该QCL假设用于辅助用户设备(user equipment,UE)接收DMRS。例如,UE可以通过QCL假设中包括的多普勒偏移(doppler shift)指示信息确定接收DMRS的晶振频率,从而实现对齐网络设备的晶振频率以避免接收到的信号产生子载波间干扰(inter-carrier interference,ICI),接收性能受到损失。又例如,UE可以通过QCL假设中包括的平均时延(averagedelay)指示信息确定接收DMRS的接收时刻,从而实现补偿传播路径导致的传输时延以避免接收到的信号产生符号间干扰(inter symbol interference,ISI),接收性能受到损失。又例如,UE还可以通过QCL假设中包括的时延扩展(delay spread)和多普勒扩展(doppler spread)指示信息确定接收DMRS所采用的维纳滤波器系数以更加精准的估计出信道从而正确的对数据做解调。目前,上述指示信息是通过配置DMRS和另一个参考信号(reference signal,RS)之间的QCL关系指示的。通过另一个RS上的测量可以预先估计出上述多普勒偏移和时延相关的参数,并假设了另一个RS的传播环境和DMRS的传播环境下信道的大尺度特性不变,从而可以将估计出来的参数应用到DMRS接收上。
多传输接收点(multiple transmission reception point,Multi-TRP)协作传输:多个传输节点通过协作调度的方式完成对同一个UE的数据调度和传输。例如,多个传输节点可以通过光纤连接到一个中心调度器,从而多个传输节点的数据传输可以统一通过协作的方式调度。通过多传输接收点协作传输可以提升网络整体的吞吐以及小区边缘UE的速率。在多传输接收点协作传输场景中,UE接收的信号(例如DMRS)经历的信道大尺度是由两个或两个以上传输接收点(transmission reception point,TRP)的传输路径合成的。如何准确地接收信道大尺度是由两个或两个以上传输接收点TRP的传输路径合成的信号是当前研究的课题。
发明内容
本申请实施例公开了一种基于多站协作的下行传输方法和相关装置。
第一方面,本申请实施例提供一种基于多站协作的下行传输方法,该方法包括:终端设备接收网络设备发送的第一指示信息;所述第一指示信息指示与第一信号具有准共址QCL关系的多个参考信号,以及所述多个参考信号中每个参考信号的QCL权重;根据第一信道大尺度参数接收所述第一信号;所述第一信道大尺度参数利用所述多个参考信号以及所述多个参考信号中每个参考信号的QCL权重得到。本申请中,QCL关系可称为QCL假设。
本申请实施例中,根据第一信道大尺度参数接收第一信号。由于第一信道大尺度参数利用多个参考信号以及多个参考信号中每个参考信号的QCL权重得到,因此该第一信道大尺度参数能够较精确地反映后续第一信号经历的信道状态,从而更准确地接收第一信号。
在一种可能的实现方式中,所述第一信号承载于一个解调参考信号DMRS端口,或者,所述第一信号承载于一个物理下行共享信道PDSCH端口,或者,所述第一信号承载于一个物理下行控制信道PDCCH端口。
在该实现方式中,第一信号承载于一个DMRS端口、PDSCH端口或者PDCCH端口。多个参考信号作为承载于同一个DMRS端口、PDSCH端口或者PDCCH端口的第一信号的QCL假设指示。这样UE将多个参考信号估计出来的大尺度参数做合成处理就能得到第一信号的信道大尺度参数。
在一种可能的实现方式中,所述多个参考信号和所述第一信号均对应于第一频带和第一传输层;或者,所述多个参考信号和所述第一信号均对应于第一频带和第一数据流;或者,所述多个参考信号和所述第一信号均对应于第一传输层和第一数据流。
考虑到协作调度中,各个频带内各个传输接收点(transmission reception point,TRP)传输数据的功率分配可能存在较大差异,则上述QCL权重可以是每个频带独立指示的。频带的粒度可以是:物理资源块组(physical resource block group,PRG)或者PRG组。PRG组是指多个PRG(一组PRG)。在一些实施例中,每个频带上可以独立指示QCL假设的参考信号(reference signal,RS)的ID。再进一步的,考虑到协作调度中,各个传输层内各个TRP传输数据的功率分配也可能存在较大差异,则上述QCL权重还可以是每个传输层独立指示的。在一些实施例中,每个传输层上可以独立指示QCL假设的RS的ID。再进一步的,对于通过物理下行共享信道(physical downlinksharedchannel,PDSCH)传输而言,可以存在多个码字(codeword)。一个码字对应一种调制编码方式(modulation and coding scheme,MCS)。不同码字可以对应不同的MCS。不同码字可以对应不同的传输层。码字用于表征信道编码的粒度。在一些实施例中,还可以是每个码字(即数据流)独立指示QCL假设,这是考虑到不同码字的MCS差异主要来源于TRP的流间功率分配。
在该实现方式中,多个参考信号和第一信号不仅对应于相同的频带,还对应于相同的传输层或数据流。基于多个参考信号得到的信道大尺度参数能够更好地反映第一信号经历的信道状态。
在一种可能的实现方式中,所述第一信号占用的带宽包括多个第二频带,所述第一信号与所述多个参考信号之间的QCL关系包括每个第二频带与所述多个参考信号中至少一个参考信号之间的QCL关系。
在该实现方式中,第一信号与多个参考信号之间的QCL关系包括每个第二频带与多个参考信号中至少一个参考信号之间的QCL关系。根据每个第二频带与参考信号之间的QCL关系可更准确地估计每个第二频带的信道大尺度参数。
在一种可能的实现方式中,所述第一指示信息指示与第一信号具有QCL关系的多个参考信号,以及所述多个参考信号中每个参考信号的QCL权重包括:所述第一指示信息指示多个第一传输控制指示TCI状态,所述多个第一TCI状态与所述多个参考信号一一对应,且每个所述第一TCI状态中还包括所述第一TCI状态对应的参考信号的QCL权重。
在该实现方式中,第一指示信息指示第一TCI状态,资源开销少。
在一种可能的实现方式中,所述第一指示信息包含多个标识以及多个QCL权重,所述多个标识为所述多个参考信号的标识,所述多个标识与所述多个QCL权重一一对应,所述多个 QCL权重表征由所述多个参考信号生成的QCL假设参数取值在合成QCL假设时的占比。
在该实现方式中,第一指示信息包含的多个标识以及多个QCL权重,可以准确地表征由多个参考信号生成的QCL假设参数取值在合成QCL假设时的占比。
在一种可能的实现方式中,所述多个参考信号和所述第一信号均对应于第一频带、第一传输层以及第一数据流。
在该实现方式中,第一指示信息指示流间、传输层间以及频带间的功率分配,以便基于多个参考信号得的功率时延谱能够更好地反映第一信号经历的信道状态。
在一种可能的实现方式中,在根据第一信道大尺度参数接收所述第一信号之前,所述方法还包括:接收所述多个参考信号;分别利用所述多个参考信号估计信道大尺度参数,得到所述多个信道大尺度参数;利用所述多个参考信号中每个参考信号的QCL权重对所述多个信道大尺度参数做合成处理,得到所述第一信道大尺度参数。
在该实现方式中,利用多个参考信号中每个参考信号的QCL权重对多个信道大尺度参数做合成处理,得到第一信道大尺度参数。由于考虑了流间、传输层间以及频带间的功率分配,因此第一信道大尺度参数可较准确地反映第一信号的信道状态,进而提升接收第一信号的性能。
在一种可能的实现方式中,所述第一信号为解调参考信号DMRS或信道状态信息参考信号CSI-RS,所述多个参考信号为不同的跟踪参考信号TRS。
在一种可能的实现方式中,所述方法应用于多TRP协作传输的下行传输场景。
第二方面,本申请实施例提供一种基于多站协作的下行传输方法,该方法包括:网络设备生成第一指示信息,所述第一指示信息指示与第一信号具有准共址QCL关系的多个参考信号,以及所述多个参考信号中每个参考信号的QCL权重;向终端设备发送所述第一指示信息;所述第一指示信息用于所述终端设备接收所述第一信号。
本申请实施例中,网络设备向终端设备发送第一指示信息,以便该终端设备利用多个参考信号中每个参考信号的QCL权重对由该多个参考信号估计得到的多个信道大尺度参数做合成处理,得到能够较精确地反映后续第一信号经历的信道状态的第一信道大尺度参数。
在一种可能的实现方式中,所述第一信号承载于一个解调参考信号DMRS端口,或者,所述第一信号承载于一个物理下行共享信道PDSCH端口,或者,所述第一信号承载于一个物理下行控制信道PDCCH端口。
在该实现方式中,第一信号承载于一个DMRS端口、PDSCH端口或者PDCCH端口。多个参考信号为承载于同一个DMRS端口、PDSCH端口或者PDCCH端口的第一信号的QCL假设指示。这样UE将多个参考信号估计出来的大尺度参数做合成可得到第一信号的信道大尺度参数。
在一种可能的实现方式中,所述多个参考信号和所述第一信号均对应于第一频带和第一传输层;或者,所述多个参考信号和所述第一信号均对应于第一频带和第一数据流;或者,所述多个参考信号和所述第一信号均对应于第一传输层和第一数据流。
在该实现方式中,多个参考信号和第一信号不仅对应于相同的频带,还对应于相同的传输层或数据流。基于多个参考信号得到的信道大尺度参数能够更好地反映第一信号经历的信道状态。
在一种可能的实现方式中,所述第一信号占用的带宽包括多个第二频带,所述第一信号与所述多个参考信号之间的QCL关系包括每个第二频带与所述多个参考信号中至少一个参考信号之间的QCL关系。
在该实现方式中,第一信号与多个参考信号之间的QCL关系包括每个第二频带与多个参考信号中至少一个参考信号之间的QCL关系。根据每个第二频带与参考信号之间的QCL关系可更准确地估计每个第二频带的信道大尺度参数。
在一种可能的实现方式中,所述第一指示信息指示与第一信号具有QCL关系的多个参考信号,以及所述多个参考信号中每个参考信号的QCL权重包括:所述第一指示信息指示多个第一传输控制指示TCI状态,所述多个第一TCI状态与所述多个参考信号一一对应,且每个所述第一TCI状态中还包括所述第一TCI状态对应的参考信号的QCL权重。
在该实现方式中,第一指示信息指示第一TCI状态,资源开销少。
在一种可能的实现方式中,所述第一指示信息包含多个标识以及多个QCL权重,所述多个标识为所述多个参考信号的标识,所述多个标识与所述多个QCL权重一一对应,所述多个QCL权重表征由所述多个参考信号生成的QCL假设参数取值在合成QCL假设时的占比。
在该实现方式中,第一指示信息包含的多个标识以及多个QCL权重,可以准确地表征由多个参考信号生成的QCL假设参数取值在合成QCL假设时的占比。
在一种可能的实现方式中,所述多个参考信号和所述第一信号均对应于第一频带、第一传输层以及第一数据流。
在该实现方式中,第一指示信息指示流间、传输层间以及频带间的功率分配,以便基于多个参考信号得的功率时延谱能够更好地反映第一信号经历的信道状态。
在一种可能的实现方式中,所述第一信号为解调参考信号DMRS或信道状态信息参考信号CSI-RS,所述多个参考信号为不同的跟踪参考信号TRS。
在一种可能的实现方式中,所述方法应用于多TRP协作传输的下行传输场景。
第三方面,本申请实施例提供一种通信方法,该方法包括:接收网络设备发送的第一解调参考信号DMRS;根据第二信道大尺度参数接收第二信号;所述第二信道大尺度参数基于所述第一DMRS的信道大尺度参数得到;所述第二信号为与所述第一DMRS具有QCL关系的参考信号。
本申请实施例中,根据第二信道大尺度参数接收第二信号;能够在不显著影响数据接收性能的前提下,通过DMRS做QCL假设的估计而无需再依赖于跟踪参考信号(trackingreference signal,TRS),信令开销减少。
在一种可能的实现方式中,所述第一DMRS的带宽大于带宽阈值,或者,所述第一DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值,所述K为大于1的整数。
在该实现方式中,第一DMRS的带宽大于带宽阈值,或者,第一DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值;可以保证利用该第一DMRS执行QCL估计(即做QCL假设的估计)能够满足承载第一DMRS的信号对处理时间的要求。
在一种可能的实现方式中,所述第一DMRS和所述第二信号均对应第一码分复用CDM组。例如,第一DMRS和第二信号均采用第一CDN组对应的编码方式。
在该实现方式中,第一DMRS和第二信号均对应第一码分复用CDM组,可以保证第一DMRS和第二信号具备相同的大尺度特性。
在一种可能的实现方式中,所述方法还包括:所述终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息指示所述第二信号和所述第一DMRS之间的QCL关系。
在该实现方式中,接收来自网络设备的第二指示信息,以便利用该第二指示信息获取第 二信号和第一DMRS之间的QCL关系。
在一种可能的实现方式中,所述第二指示信息指示第二传输控制指示TCI状态,所述第二TCI状态包括所述第二信号和所述第一DMRS之间的QCL关系。
在该实现方式中,第二指示信息指示第二TCI状态,资源开销少。
在一种可能的实现方式中,所述第二信号为解调参考信号或者信道状态信息参考信号CSI-RS。
在一种可能的实现方式中,在根据第二信道大尺度参数接收第二信号之前,所述方法还包括:基于所述第一DMRS做信道估计,得到所述第二信道大尺度参数。
在一种可能的实现方式中,所述第二指示信息指示所述第二信号与所述第一DMRS的第一端口组身份标识ID或者第一DMRS端口ID的QCL关系。
在该实现方式中,网络设备在不同DMRS端口或端口组上发送的信号对应的功率分配不同,第二指示信息指示第二信号与第一DMRS的第一端口组身份标识ID或者第一DMRS端口ID的QCL关系,以便较准确地估计得到第二信道大尺度参数。
第四方面,本申请实施例提供一种通信方法,该方法包括:网络设备向终端设备发送第一解调参考信号DMRS;向所述终端设备发送第二指示信息,所述第二指示信息指示第二信号和所述第一DMRS之间的准共址QCL关系;向所述终端设备发送所述第二信号。
本申请实施例中,网络设备向终端设备发送第二指示信息,以便该终端设备利用第一DMES的信道大尺度参数接收第二信号。这样终端设备就能够在不显著影响数据接收性能的前提下,通过DMRS做QCL假设的估计而无需再依赖于跟踪参考信号。
在一种可能的实现方式中,所述第一DMRS的带宽大于带宽阈值,或者,所述第一DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值,所述K为大于1的整数。
在该实现方式中,第一DMRS的带宽大于带宽阈值,或者,第一DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值;可以保证利用该第一DMRS执行QCL估计能够满足承载第一DMRS的信号对处理时间的要求。
在一种可能的实现方式中,所述第一DMRS和所述第二信号均对应第一码分复用CDM组。例如,第一DMRS和第二信号均采用第一CDN组对应的编码方式。
在该实现方式中,第一DMRS和第二信号均对应第一码分复用CDM组,可以保证第一DMRS和第二信号具备相同的大尺度特性。
在一种可能的实现方式中,所述第二指示信息指示第二传输控制指示第二TCI状态,所述第二TCI状态包括所述第二信号和所述第一DMRS之间的QCL关系。
在该实现方式中,第二指示信息指示第二TCI状态,资源开销少。
在一种可能的实现方式中,所述第二信号为解调参考信号或者信道状态信息参考信号CSI-RS。
在一种可能的实现方式中,所述第二指示信息指示所述第二信号与所述第一DMRS的第一端口组身份标识ID或者第一DMRS端口ID的QCL关系。
在该实现方式中,网络设备在不同DMRS端口或端口组上发送的信号对应的功率分配不同,第二指示信息指示第二信号与第一DMRS的第一端口组身份标识ID或者第一DMRS端口ID的QCL关系,以便较准确地估计得到第二信道大尺度参数。
第五方面,本申请实施例提供一种通信方法,该方法包括:终端设备接收网络设备传输的多个第二解调参考信号DMRS,所述多个第二DMRS对应于第二DMRS端口组身份标识 ID或者第二DMRS端口ID;根据第三信道大尺度参数接收第三信号;所述第三信道大尺度参数由对所述多个第二DMRS估计得到的多个信道大尺度参数做时域滤波得到。
本申请实施例中,根据第三信道大尺度参数接收第三信号。由于第三信道大尺度参数由对多个第二DMRS估计得到的多个信道大尺度参数做时域滤波得到,因此该第三信道大尺度参数为相对鲁棒的大尺度估计结果,可较准确地反映第三信号经历的信道状态。
在一种可能的实现方式中,在根据第三信道大尺度参数接收第三信号之前,所述方法还包括:所述终端设备根据在预设时间窗内接收的所述多个第二DMRS做信道估计,得到所述多个信道大尺度参数;对所述多个信道大尺度参数做时域滤波,得到所述第三信道大尺度参数。
在该实现方式中,对多个信道大尺度参数做时域滤波,得到第三信道大尺度参数;能够得到相对鲁棒的大尺度估计结果(即信道大尺度参数)。
在一种可能的实现方式中,所述多个第二DMRS中每个第二DMRS的带宽大于带宽阈值,或者,所述多个第二DMRS中每个第二DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值,所述K为大于1的整数。
在该实现方式中,第一DMRS的带宽大于带宽阈值,或者,第一DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值;可以保证利用该第一DMRS执行QCL估计能够满足承载第一DMRS的信号对处理时间的要求。
在一种可能的实现方式中,所述方法还包括:所述终端设备接收来自所述网络设备的第三指示信息,所述第三指示信息指示所述第三信号和所述第二DMRS端口组身份标识ID之间的QCL关系,或者,所述第三指示信息指示所述第三信号和所述第二DMRS端口ID之间的QCL关系。
在该实现方式中,终端设备接收第三指示信息,可以及时获知第三信号和第二DMRS端口组ID之间的QCL关系或者第三信号和第二DMRS端口ID之间的QCL关系。
在一种可能的实现方式中,所述第三指示信息指示第三传输控制指示TCI状态,所述第三TCI状态包括所述第三信号和所述第二DMRS端口组ID之间的QCL关系,或者,所述第三TCI状态包括所述第三信号和所述第二DMRS端口ID之间的QCL关系。
在该实现方式中,第三指示信息指示第三TCI状态,资源开销少。
在一种可能的实现方式中,所述第三信号为解调参考信号或者信道状态信息参考信号CSI-RS。
第六方面,本申请实施例提供一种通信方法,该方法包括:网络设备向终端设备传输多个第二解调参考信号DMRS,所述多个第二DMRS对应于第二DMRS端口组身份标识ID或者第二DMRS端口ID;向所述终端设备发送第三指示信息,所述第三指示信息指示第三信号和所述第二DMRS端口组身份表示ID之间的QCL关系或者指示所述第三信号和所述第二DMRS端口ID之间的QCL关系;向所述终端设备发送所述第三信号。
本申请实施例中,网络设备向终端设备发送第三指示信息,以便该终端设备利用多个第二DMES的信道大尺度参数接收第三信号。这样终端设备就能够在不显著影响数据接收性能的前提下,通过DMRS做QCL假设的估计而无需再依赖于跟踪参考信号。
在一种可能的实现方式中,所述多个第二DMRS中每个第二DMRS的带宽大于带宽阈值,或者,所述多个第二DMRS中每个第二DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值,所述K为大于1的整数。
在该实现方式中,每个第二DMRS的带宽大于带宽阈值,或者,每个第二DMRS在一 个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值;可以保证利用该第二DMRS执行QCL估计能够满足承载第二DMRS的信号对处理时间的要求。
在一种可能的实现方式中,所述第三指示信息指示第三传输控制指示TCI状态,所述第三TCI状态包括所述第三信号和所述第二DMRS端口组ID之间的QCL关系,或者,所述第三TCI状态包括所述第三信号和所述第二DMRS端口ID之间的QCL关系。
在该实现方式中,第三指示信息指示第三TCI状态,资源开销少。
在一种可能的实现方式中,所述第三信号为解调参考信号或者信道状态信息参考信号CSI-RS。
第七方面,本申请实施例提供一种终端设备,包括:收发单元,用于接收网络设备发送的第一指示信息;所述第一指示信息指示与第一信号具有准共址QCL关系的多个参考信号,以及所述多个参考信号中每个参考信号的QCL权重;处理单元,用于利用所述多个参考信号以及所述多个参考信号中每个参考信号的QCL权重处理得到第一信道大尺度参数;所述收发单元,还用于根据所述第一信道大尺度参数接收所述第一信号。
在一种可能的实现方式中,所述第一信号承载于一个解调参考信号DMRS端口,或者,所述第一信号承载于一个物理下行共享信道PDSCH端口,或者,所述第一信号承载于一个物理下行控制信道PDCCH端口。
在一种可能的实现方式中,所述多个参考信号和所述第一信号均对应于第一频带和第一传输层;或者,所述多个参考信号和所述第一信号均对应于第一频带和第一数据流;或者,所述多个参考信号和所述第一信号均对应于第一传输层和第一数据流。
在一种可能的实现方式中,所述第一信号占用的带宽包括多个第二频带,所述第一信号与所述多个参考信号之间的QCL关系包括每个第二频带与所述多个参考信号中至少一个参考信号之间的QCL关系。
在一种可能的实现方式中,所述第一指示信息指示与第一信号具有QCL关系的多个参考信号,以及所述多个参考信号中每个参考信号的QCL权重包括:所述第一指示信息指示多个第一传输控制指示TCI状态,所述多个第一TCI状态与所述多个参考信号一一对应,且每个所述第一TCI状态中还包括所述第一TCI状态对应的参考信号的QCL权重。
在一种可能的实现方式中,所述第一指示信息包含多个标识以及多个QCL权重,所述多个标识为所述多个参考信号的标识,所述多个标识与所述多个QCL权重一一对应,所述多个QCL权重表征由所述多个参考信号生成的QCL假设参数取值在合成QCL假设时的占比。
在一种可能的实现方式中,所述多个参考信号和所述第一信号均对应于第一频带、第一传输层以及第一数据流。
在一种可能的实现方式中,所述收发单元,还用于接收所述多个参考信号;所述处理单元,还用于分别利用所述多个参考信号估计信道大尺度参数,得到所述多个信道大尺度参数;利用所述多个参考信号中每个参考信号的QCL权重对所述多个信道大尺度参数做合成处理,得到所述第一信道大尺度参数。
在一种可能的实现方式中,所述第一信号为解调参考信号DMRS或信道状态信息参考信号CSI-RS,所述多个参考信号为不同的跟踪参考信号TRS。
关于第七方面或各种可能的实施方式所带来的技术效果,可参考对于第一方面或相应的实现方式的技术效果的介绍。
第八方面,本申请实施例提供一种网络设备,包括:处理单元,用于生成第一指示信息, 所述第一指示信息指示与第一信号具有准共址QCL关系的多个参考信号,以及所述多个参考信号中每个参考信号的QCL权重;收发单元,用于向终端设备发送所述第一指示信息;所述第一指示信息用于所述终端设备接收所述第一信号。
在一种可能的实现方式中,所述第一信号承载于一个解调参考信号DMRS端口,或者,所述第一信号承载于一个物理下行共享信道PDSCH端口,或者,所述第一信号承载于一个物理下行控制信道PDCCH端口。
在一种可能的实现方式中,所述多个参考信号和所述第一信号均对应于第一频带和第一传输层;或者,所述多个参考信号和所述第一信号均对应于第一频带和第一数据流;或者,所述多个参考信号和所述第一信号均对应于第一传输层和第一数据流。
在一种可能的实现方式中,所述第一信号占用的带宽包括多个第二频带,所述第一信号与所述多个参考信号之间的QCL关系包括每个第二频带与所述多个参考信号中至少一个参考信号之间的QCL关系。
在一种可能的实现方式中,所述第一指示信息指示与第一信号具有QCL关系的多个参考信号,以及所述多个参考信号中每个参考信号的QCL权重包括:所述第一指示信息指示多个第一传输控制指示TCI状态,所述多个第一TCI状态与所述多个参考信号一一对应,且每个所述第一TCI状态中还包括所述第一TCI状态对应的参考信号的QCL权重。
在一种可能的实现方式中,所述第一指示信息包含多个标识以及多个QCL权重,所述多个标识为所述多个参考信号的标识,所述多个标识与所述多个QCL权重一一对应,所述多个QCL权重表征由所述多个参考信号生成的QCL假设参数取值在合成QCL假设时的占比。
在一种可能的实现方式中,所述多个参考信号和所述第一信号均对应于第一频带、第一传输层以及第一数据流。
在一种可能的实现方式中,所述第一信号为解调参考信号DMRS或信道状态信息参考信号CSI-RS,所述多个参考信号为不同的跟踪参考信号TRS。
关于第八方面或各种可能的实施方式所带来的技术效果,可参考对于第二方面或相应的实现方式的技术效果的介绍。
第九方面,本申请实施例提供一种终端设备,包括:收发单元,用于接收网络设备发送的第一解调参考信号DMRS;处理单元,用于基于所述第一DMRS的信道大尺度参数,得到第二信道大尺度参数;所述收发单元,还用于根据所述第二信道大尺度参数接收第二信号;所述第二信号为与所述第一DMRS具有QCL关系的参考信号。
在一种可能的实现方式中,所述第一DMRS的带宽大于带宽阈值,或者,所述第一DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值,所述K为大于1的整数。
在一种可能的实现方式中,所述第一DMRS和所述第二信号均对应第一码分复用CDM组。
在一种可能的实现方式中,所述终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息指示所述第二信号和所述第一DMRS之间的QCL关系。
在一种可能的实现方式中,所述第二指示信息指示第二传输控制指示TCI状态,所述第二TCI状态包括所述第二信号和所述第一DMRS之间的QCL关系。
在一种可能的实现方式中,所述第二信号为解调参考信号或者信道状态信息参考信号CSI-RS。
在一种可能的实现方式中,所述处理单元,还用于利用所述第一DMRS估计信道大尺度 参数,得到所述第二信道大尺度参数。
在一种可能的实现方式中,所述第二指示信息指示所述第二信号与所述第一DMRS的第一端口组身份标识ID或者第一DMRS端口ID的QCL关系。
关于第九方面或各种可能的实施方式所带来的技术效果,可参考对于第三方面或相应的实现方式的技术效果的介绍。
第十方面,本申请实施例提供一种网络设备,包括:收发单元,用于向终端设备发送第一解调参考信号DMRS;向所述终端设备发送第二指示信息,所述第二指示信息指示第二信号和所述第一DMRS之间的准共址QCL关系;处理单元,用于生成所述第二信号;所述收发单元,还用于向所述终端设备发送所述第二信号。
在一种可能的实现方式中,所述第一DMRS的带宽大于带宽阈值,或者,所述第一DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值,所述K为大于1的整数。
在一种可能的实现方式中,所述第一DMRS和所述第二信号均对应第一码分复用CDM组。
在一种可能的实现方式中,所述第二指示信息指示第二传输控制指示第二TCI状态,所述第二TCI状态包括所述第二信号和所述第一DMRS之间的QCL关系。
在一种可能的实现方式中,所述第二信号为解调参考信号或者信道状态信息参考信号CSI-RS。
在一种可能的实现方式中,所述第二指示信息指示所述第二信号与所述第一DMRS的第一端口组身份标识ID或者第一DMRS端口ID的QCL关系。
关于第十方面或各种可能的实施方式所带来的技术效果,可参考对于第四方面或相应的实现方式的技术效果的介绍。
第十一方面,本申请实施例提供一种终端设备,包括:收发单元,用于接收网络设备传输的多个第二解调参考信号DMRS,所述多个第二DMRS对应于第二DMRS端口组身份标识ID或者第二DMRS端口ID;处理单元,用于对由所述多个第二DMRS估计得到的多个信道大尺度参数做时域滤波以得到第三信道大尺度参数;所述收发单元,还用于根据所述第三信道大尺度参数接收第三信号。
在一种可能的实现方式中,所述处理单元,还用于根据在预设时间窗内接收的所述多个第二DMRS做信道估计,得到所述多个信道大尺度参数。
在一种可能的实现方式中,所述多个第二DMRS中每个第二DMRS的带宽大于带宽阈值,或者,所述多个第二DMRS中每个第二DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值,所述K为大于1的整数。
在一种可能的实现方式中,所述收发单元,还用于接收来自所述网络设备的第三指示信息,所述第三指示信息指示所述第三信号和所述第二DMRS端口组身份标识ID之间的QCL关系,或者,所述第三指示信息指示所述第三信号和所述第二DMRS端口ID之间的QCL关系。
在一种可能的实现方式中,所述第三指示信息指示第三传输控制指示TCI状态,所述第三TCI状态包括所述第三信号和所述第二DMRS端口组ID之间的QCL关系,或者,所述第三TCI状态包括所述第三信号和所述第二DMRS端口ID之间的QCL关系。
在一种可能的实现方式中,所述第三信号为解调参考信号或者信道状态信息参考信号CSI-RS。
关于第十一方面或各种可能的实施方式所带来的技术效果,可参考对于第五方面或相应的实现方式的技术效果的介绍。
第十二方面,本申请实施例提供一种网络设备,包括:收发单元,用于向终端设备传输多个第二解调参考信号DMRS,所述多个第二DMRS对应于第二DMRS端口组身份标识ID或者第二DMRS端口ID;向所述终端设备发送第三指示信息,所述第三指示信息指示第三信号和所述第二DMRS端口组身份表示ID之间的QCL关系或者指示所述第三信号和所述第二DMRS端口ID之间的QCL关系;处理单元,用于生成所述第三信号;所述收发单元,还用于向所述终端设备发送所述第三信号。
在一种可能的实现方式中,所述多个第二DMRS中每个第二DMRS的带宽大于带宽阈值,或者,所述多个第二DMRS中每个第二DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值,所述K为大于1的整数。
在一种可能的实现方式中,所述第三指示信息指示第三传输控制指示TCI状态,所述第三TCI状态包括所述第三信号和所述第二DMRS端口组ID之间的QCL关系,或者,所述第三TCI状态包括所述第三信号和所述第二DMRS端口ID之间的QCL关系。
在一种可能的实现方式中,所述第三信号为解调参考信号或者信道状态信息参考信号CSI-RS。
关于第十二方面或各种可能的实施方式所带来的技术效果,可参考对于第六方面或相应的实现方式的技术效果的介绍。
第十三方面,本申请实施例提供一种通信装置,该通信装置包括处理器,该处理器用于执行存储器所存储的计算机执行指令,以使该通信装置执行上述第一方面、上述第三方面或者上述第五方面以及任意可能的实现方式的方法。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
在一种可能的实现方式中,处理器和存储器还可能集成于一个器件中,即处理器和存储器还可能被集成于一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收报文或发送报文等。
第十四方面,本申请实施例提供一种通信装置,该通信装置包括处理器,该处理器用于执行存储器所存储的计算机执行指令,以使该通信装置执行上述第二方面、上述第四方面或者上述第六方面以及任意可能的实现方式的方法。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
在一种可能的实现方式中,处理器和存储器还可能集成于一个器件中,即处理器和存储器还可能被集成于一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收报文或发送报文等。
第十五方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,该接口用于获取数据或输出数据;逻辑电路用于执行如上述第一方面、上述第三方面或上述第五方面以及任意可能的实现方式所示的相应的方法。
第十六方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,该接口用于获取数据或输出数据;逻辑电路用于执行如上述第二方面、上述第四方面或上述第六 方面以及任意可能的实现方式所示的相应的方法。
第十七方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面至第六方面或第一方面至第六方面的任意可能的实现方式所示的方法被执行。
第十八方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在处理器上运行时,使得上述第一方面至第六方面或第一方面至第六方面的任意可能的实现方式所示的方法被执行。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例提供的一种Multi-TRP场景的示例;
图2A为本申请实施例提供的一种多TRP协同下UE测量TRS的方式的示意图;
图2B为本申请实施例提供的另一种多TRP协同下UE测量TRS的方式的示意图;
图3A和图3B为本申请实施例提供的功率时延谱合成示意图;
图4为本申请实施例提供的一种QCL假设指示的示例;
图5为本申请实施例提供的一种基于多站协作的下行传输方法流程图;
图6为本申请实施例提供的另一种基于多站协作的下行传输方法流程图;
图7为本申请实施例提供的一种通信方法流程图;
图8为本申请实施例提供的另一种通信方法流程图;
图9为本申请实施例提供的另一种通信方法流程图;
图10为本申请实施例提供的另一种通信方法流程图;
图11为本申请实施例提供的一种通信装置的结构示意图;
图12为本申请实施例提供的一种通信装置的结构示意图;
图13为本申请实施例提供的另一种通信装置的结构示意图;
图14为本申请实施例提供的另一种通信装置140的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。术语“多个”表示两个或两个以上。符号“/”表示“或者”。例如,A/B表示A或者B。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
如背景技术所述,如何准确地接收信道大尺度是由两个或两个以上传输接收点TRP的传输路径合成的信号是当前研究的课题。当前采用的一种接收由两个或两个以上TRP的传输路径合成的信号的方案如下:先估计出两个或两个以上TRP联合(协作)发送的多个参考信号的大尺度信息(例如多个TRS的叠加信号的大尺度信息),并将该大尺度信息(例如信道大尺度参数)直接配置给DMRS/信道状态信息参考信号(channel state information reference signal,CSI-RS)作为QCL假设;然后,根据DMRS/CSI-RS的QCL假设接收DMRS/CSI-RS。准确地估计出两个或两个以上TRP联合(协作)发送的多个参考信号的大尺度信息是上述方案中的关键步骤。本申请提供的基于多站协作的下行传输方法,可以准确地估计出两个或两个以上TRP联合(协作)发送的多个参考信号的大尺度信息,进而准确地接收信道大尺度是由两个或两个以上传输接收点TRP的传输路径合成的信号。由于本申请涉及QCL假设以及DMRS的信道估计的相关知识,因此下面先介绍本申请涉及的相关知识和术语。
QCL假设
信号的QCL假设:表征信号由发送端发送后经历信道至接收端接收时,该信号所经历的信道的大尺度特性。大尺度特性至少包括:多普勒频偏(doppler shift)、多普勒扩展(doppler spread)、时延扩展(delay spread)、平均时延(average delay)以及空间接收参数(spatialrx parameter)。
多普勒频偏(doppler shift):由于接收端移动方向与信号到达方向存在角度,导致信号产生doppler shift。例如,信号发出时的频率为fc,由于接收端的移动会导致其接收信号的频率为fc+/-fd,fd为doppler shift。
多普勒扩展(doppler spread):由于信号传播经历散射路径,会使得信号传输的频带在接收端向带外扩散导致doppler spread。
时延扩展(delay spread):发送端发送的一个脉冲信号,在接收端接收到的信号中不仅含有该信号本身,还包含其在各个时延点上的信号,会导致信号的时间宽度扩展。
平均时延(average delay):信号经历多径信道后到达接收端的平均时延。
空间接收参数(spatialrx parameter):发送端的发送信号会采用数字加权和(beamforming)方案使得发送信号在空间上具有指向性传输的特性。接收端可以采用和发送beamforming相对应的beamforming方案提升接收信号性能,该接收beamforming信息为空间接收参数信息。
端口:描述发送端发出的信号/接收端接收的信号对应的物理资源。物理资源包括:时域资源、频域资源、空域资源、码域资源、天线资源等。
DMRS端口的QCL假设是通过配置DMRS端口和另一个RS之间的QCL关系指示的。例如,通过另一个RS上的测量可以预先估计出doppler和delay相关的参数,并假设了该RS的传播环境和DMRS的传播环境下信道的大尺度特性不变(即DMRS的信道大尺度参数与该RS的信道大尺度参数基本相同),从而可以将估计出来的参数应用到DMRS接收上。所以在实际应用中可配置用于指示QCL参数的信令,该信令中可以包括一个或者多个RS ID。一种可能的方式如下:
在传输控制指示状态(transmission control indication state,TCI)状态(state)中配置QCL假设要配置QCL类型。目前定义了如下4中QCL类型:
-'QCL-TypeA':{doppler shift,doppler spread,average delay,delay spread}
-'QCL-TypeB':{doppler shift,doppler spread}
-'QCL-TypeC':{doppler shift,average delay}
-'QCL-TypeD':{spatial Rx parameter}
例如DMRS端口与CSI-RS端口存在QCL TypeA的关系时,则接收DMRS端口采用的doppler shift,doppler spread,average delay,delay spread基于该CSI-RS端口的测量获得。也就是说,可将CSI-RS端口的doppler shift,doppler spread,average delay,delay spread作为DMRS端口的doppler shift,doppler spread,average delay,delay spread。
再例如DMRS端口与CSI-RS端口1和CSI-RS端口2分别存在QCL TypeA和QCL TypeD的关系,则接收DMRS端口采用的doppler shift,doppler spread,average delay,delay spread基于CSI-RS端口1获得,接收DMRS端口采用的空间接收参数(即spatial Rx parameter)基于CSI-RS端口2获得。另外,目前规定了可以用于指示不同QCL类型的参考信号,如针对DMRS的QCL指示:
-'QCL-TypeA'和'QCL-TypeD'均配置同一个TRS,或者,
-'QCL-TypeA'配置TRS,'QCL-TypeD'配置CSI-RS,或者,
-QCL-TypeA'和'QCL-TypeD'均配置同一个CSI-RS
如针对CSI-RS的QCL指示:
-'QCL-TypeA'和'QCL-TypeD'均配置同一个TRS,或者,
-'QCL-TypeA'配置TRS,'QCL-TypeD'配置SS/PBCH块,或者,
-QCL-TypeA'配置TRS,'QCL-TypeD'配置CSI-RS,或者,
-QCL-TypeB'配置TRS
DMRS,用于PDSCH/物理下行控制信道(physical downlink control channel,PDCCH)接收时做信道估计的参考信号。接收端已知DMRS序列可以通过DMRS获取信号传输的信道,若该信道为PDSCH/PDCCH传输时经历的信道,则通过DMRS可以完成PDSCH/PDCCH的信道估计。也就是说,接收端已知发送端传输的DMRS序列,该接收端利用已知的DMRS序列以及接收到的DMRS可估计得到DMRS经历的信道。新无线接入技术(new radio access technology,NR)中,DMRS的端口(或者称为DMRS端口)和PDSCH/PDCCH的端口经历的信道相同。也就是说,DMRS和PDSCH/PDCCH的发送方式(发送天线和预编码操作)相同。NR中,DMRS端口的定义是:每个DMRS端口对应特定的时频码资源,不同DMRS端口占用的时频码资源是正交的。当多个DMRS端口对应的时频资源相同时,这多个DMRS端口依靠码分复用,每组占用相同时频资源的DMRS端口对应一个码分复用(code division multiplexing,CDM)组。
CSI-RS用于信道状态信息(channel state information,CSI)的测量和上报。
TRS用于做时频跟踪,在时域通常占用连续的两个时隙(slot),每个slot内占用两个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,两个OFDM符号之间间隔3个OFDM符号,通过这样的配置可以提升估计doppler shift和averagedelay的精度。TRS在频域上对最小带宽有一定要求,例如不能小于10M带宽,以精确估计时延径信息从而获得doppler spread和delay spread信息。每个资源块(resource block,RB)内需要一定数量的资源单元(resource element,RE)保证精度和开销的均衡。例如NR中一个RB内TRS占用3个RE。
测量参考信号的QCL假设的指示机制:
QCL假设的通知方式为:网络设备(例如基站)通过下行控制信息(downlink control information,DCI)指示当前调度的PDSCH所采用的TCIstate。例如,DCI中包括3-bit的TCI指示字段用于指示TCI state,参阅表1。
表1
TCI指示字段的状态值 相应含义
000 TCI state 1
001 TCI state 2
111 TCI state 7
每个TCI state中包括DMRS端口(称为target RS)和一个或者多个参考信号端口(称为reference RS)之间的QCL关系(QCL relationship)。基于该QCL关系,DMRS端口的QCL假设确定流程可以如下:网络设备预先下发一个或者多个参考信号端口(reference RS);UE通过一个或者多个参考信号端口确定QCL假设信息;UE通过确定的QCL假设信息,接收DMRS端口(target RS)。
下面介绍本申请提供的基于多站协作的下行传输方法适用的场景。本申请提供的基于多站协作的下行传输方法适用于多站协作传输的下行传输场景。本申请提供的基于多站协作的下行传输方法对于同构网络场景与异构网络场景均适用。同时对于传输接收点也无限制,可以是宏基站与宏基站、微基站与微基站、以及宏基站与微基站间的多点协同传输,对频分双工(frequency division duplexing,FDD)/时分双工(time division duplexing,TDD)系统均适用。本申请提供的基于多站协作的下行传输方法适用于低频场景(sub 6G),也适用于高频场景(6G以上)。本申请提供的基于多站协作的下行传输方法适用于4G,5G或未来的移动通信系统。本申请提供的基于多站协作的下行传输方法适用于Single-TRP下多面板或Multi-TRP场景,以及它们任何一种衍生的场景。
图1为本申请实施例提供的一种Multi-TRP场景的示例。如图1所示,Multi-TRP场景包括:两个或两个以上网络设备(图1仅示出两个)、一个或多个UE(图1仅示出一个)。在Multi-TRP场景中,两个或两个以上网络设备通过协作调度的方式完成对同一个UE的数据调度和传输。如图1所示,UE的服务小区为TRP1和TRP2,TRP1和TRP2分别针对UE配置TRS资源,TRP1和TRP2同时发送TRS(即TRP1发送TRS1,TRP2发送TRS2),UE可以直接在自己的TRS资源上估计信道大尺度信息。图1中,TRP1发送的TRS1所经历的信道和其发送的PDSCH1所经历的信道基本不变,TRP2发送的TRS2所经历的信道和其发送的PDSCH2所经历的信道基本不变。应理解,可假设TRS1的传播环境和PDSCH1的传播环境下信道的大尺度特性不变,以及TRS2的传播环境和PDSCH2的传播环境下信道的大尺度特性不变。这种方式下,UE接收到的TRS实际上是多个TRP(例如TRP1和TRP2)联合发送的TRS的信号叠加。
在Multi-TRP场景相干传输中,每一个数据流和相应DMRS端口都是由多个具备多天线的协作基站采用相干传输的方式下发的。具体的,多个协作基站中每个协作基站的发送预编码矩阵(包含了天线间幅度和相位信息)不仅基于UE到该站的信道确定,还要基于UE到其他协作站的信道确定,从而尽可能使得多个协作站下发的信号到UE端是相干叠加的,从而提升传输性能。一种方式是,协作基站的预编码矩阵是基于将各个基站的信道在天线维度做拼接后形成的合成信道做奇异值分解(singular value decomposition,SVD)分解得到的。UE估计多个TRP联合发送的TRS的大尺度信息的一种方案如下:每个TRP(例如基站)配置一个TRS,UE分别估计各个TRP的TRS获得多个估计值(即信道大尺度参数);根据多个估计值确定一个合成的估计值;基于合成的估计值作为QCL假设来做DMRS的信道估计。
可选的,每个TRS所指示的QCL假设的类型相同。针对同一个QCL假设类型,UE分 别估计各个TRP的TRS获得多个估计值(即信道大尺度参数);根据多个估计值确定一个合成的估计值;基于合成的估计值作为QCL假设来做DMRS的信道估计。
由于TRS资源(即TRS的物理资源)是小区级的,即每个小区可以配置一个特定的TRS资源,小区内的UE均可以测量该小区配置的TRS。相邻小区的TRS尽可能占用正交的资源以避免相互较强的干扰,但干扰较小的小区可以配置相同的TRS资源。此时不同小区使用不同的扰码,从而降低不同小区间TRS信号的相关性以降低接收端受到的小区干扰。
在此基础之上,对于某一个被多个TRP协作服务的UE来说,可以分别把每个协作TRP对应的TRS资源都配给这个UE。UE分别基于各个TRS资源分别估计信道大尺度参数,并做时域滤波。图2A为本申请实施例提供的一种多TRP协同下UE测量TRS的方式的示意图。如图2A所示,UE的协作小区为2个TRP,两个TRP分别下发TRS1和TRS2,两个TRS可以占用正交的资源,UE分别根据TRS1和TRS2获取两套信道大尺度参数,估计结果对于单站(即单个TRP)来说是准确的。图2A中,TRP1发送的TRS1所经历的信道和其发送的PDSCH1所经历的信道基本不变,TRP2发送的TRS2所经历的信道和其发送的PDSCH2所经历的信道基本不变。图2A中(情况一),TRS1的接收功率(P TRS1)和TRS2的接收功率(P TRS2)的比值为1:2,该接收功率的比值表征了TRP1和TRP2分别到该UE的路损和TRS的发送功率的情况,UE可以直接根据TRS测量确定TRS的RSRP值从而获取上述信息,基站可以根据UE的测量上报或者利用上下行互异性通过上行信号的测量获取上述信息;TRP1和TRP2同时发送一个PDSCH/DMRS端口的发送功率P PDSCH1和P PDSCH2的比值为1:1。图2B为本申请实施例提供的另一种多TRP协同下UE测量TRS的方式的示意图。图2A的另一个示例中,TRS1的发送功率(P’ TRS1)和TRS2的发送功率(P’ TRS2)的比值为1:1,TRP1和TRP2同时发送一个PDSCH/DMRS端口的发送功率P’ PDSCH1和P’ PDSCH2的比值为1:2。后续PDSCH传输时,若这两个TRP会同时传输同一数据流,则从UE接收来看,该数据流经历的信道叠加了两个TRP到该UE的信道。例如,此时基站会指示该PDSCH的DMRS的QCL假设TypeA为TRS1+TRS2,表明DMRS经历的信道大尺度是由两个TRP传输路径合成的。UE接收到QCL假设指示信息以后,基于TRS1和TRS2估计合成信道大尺度参数(即由估计TRS1获得的信道大尺度参数和估计TRS2获得的信道大尺度参数合成的信道大尺度参数),用该合成信道大尺度参数接收DMRS。
然而,UE基于TRS1和TRS2估计得到合成的QCL参数(即合成信道大尺度参数)并不能直接用于后续由TRP1和TRP2联合发送的PDSCH/DMRS/CSI-RS。以delay spread举例说明,UE根据TRS1和TRS2可以分别估计得到一个功率时延谱,根据这两个功率时延谱可以估计出delay spread,并根据delay spread可以生成维纳滤波器系数。维纳滤波器系数可用于基于DMRS/CSI-RS做信道估计,UE通过导频所占RE上的信道基于维纳滤波差值得到非导频RE上的信道。对于DMRS,UE获得信道估计结果(即DMRS的信道大尺度参数)可以进一步接收PDSCH。对于CSI-RS,UE获得信道估计结果(即DMRS的信道大尺度参数)可以反馈CSI。然而,UE在TRS1和TRS2上接收的时延域上各抽头功率分布情况,无法直接反应DMRS/CSI-RS上实际接收的时延域上各抽头(空间传输径)功率分布情况。这是因为在TRP端(多个TRP)实际下发DMRS/CSI-RS时,TRP端会做联合预编码,同时还会进行流间(对应于数据流或调制编码方式)/传输层间/RB间(对应于频带)功率分配,UE未考虑TRP端进行流间/传输层间/RB间(对应于频带)功率分配的情况,而是默认流间/传输层间/RB间的功率相同。例如,UE获得TRS1的功率时延谱和TRS2的功率时延谱之后,直接对TRS1的功率时延谱和TRS2的功率时延谱进行合成处理(即直接叠加RS1的功率时延 谱和TRS2的功率时延谱),并将合成的功率时延谱作为后续PDSCH/DMRS/CSI-RS的功率时延谱。应理解,UE基于TRS1和TRS2获得的功率时延谱并不能精确反应后续PDSCH/DMRS/CSI-RS经历的信道状态,因此会导致UE基于确定的QCL假设无法精确估计DMRS/CSI-RS上的信道。
图3A和图3B为本申请实施例提供的功率时延谱合成示意图。图3A示出了UE获得的TRS1(TRP1发送的)的功率时延谱、TRS2(TRP2发送的)的功率时延谱以及由TRS1的功率时延谱和TRS2的功率时延谱合成的功率时延谱。图3B示出了UE获得的TRP1发送的DMRS的功率时延谱、TRP2发送的DMRS的功率时延谱以及由TRP1发送的DMRS的功率时延谱和TRP2发送的DMRS的功率时延谱合成的功率时延谱。图3A中,TRS1和TRS2为图2A中的TRS1和TRS2,TRS1和TRS2的功率比为1:2(即TRS1的接收功率:TRS2的接收功率)。图3B中,TRP1发送的DMRS承载于图2A中的TRP1通过PDSCH发送的信号1,TRP2发送的DMRS承载于图2A中的TRP2通过PDSCH发送的信号2,TRP1通过PDSCH发送的信号1和TRP2通过PDSCH发送的信号2的功率比为1:1(信号1的功率:信号2的功率)。图3B中的TRP1发送的DMRS所经历的信道状态可视为与图3A中的TRS1所经历的信道状态相同,图3B中的TRP2发送的DMRS所经历的信道状态可视为与图3A中的TRS2所经历的信道状态相同。由于TRP1通过PDSCH发送的信号1和TRP2通过PDSCH发送的信号2的功率比与TRS1和TRS2的功率比不同,因此UE由TRS1的功率时延谱和TRS2的功率时延谱合成的功率时延谱与由TRP1发送的DMRS的功率时延谱和TRP2发送的DMRS的功率时延谱合成的功率时延谱区别较大。同理,UE在未考虑各TRS(或CSI-RS)的功率占比时,UE基于各TRS(例如TRS1和TRS2)得到的信道大尺度参数(即基于各TRS的信道大尺度参数合成的信道大尺度参数)与多个DMRS的信道大尺度参数相差较大。也就是说,DMRS的功率分配影响基于多个TRS(或CSI-RS)的信道大尺度参数合成的信道大尺度参数与网络设备实际下发DMRS的信道大尺度参数的匹配度,从而导致性能下降。另外,网络设备(基站)传输DMRS时的功率分配对UE是完全透明的(即UE不知道DMRS的功率分配),UE无法按照网络设备(基站)传输DMRS时的功率分配,基于多个TRS/CSI-RS获取合成的信道特征(对应于信道大尺度参数)。
为准确地估计出两个或两个以上TRP联合(协作)发送的多个参考信号的大尺度信息,本申请提供一种基于多站协作的下行传输方法。该方法可视为准确指示QCL假设的方法。该方法的主要原理是:网络设备(例如基站)配置一个特定的DMRS端口(或者CSI-RS端口)的QCL假设为多个TRS/CSI-RS,且配置该多个TRS/CSI-RS之间的QCL权重。该该多个TRS/CSI-RS之间的QCL权重用于指示UE如何基于多个TRS/CSI-RS获取合成的信道特征。
QCL权重用于表征:在生成合成QCL假设时,各个TRS/CSI-RS生成的QCL假设参数取值在合成QCL假设时的占比。比如,对于QCL假设中的Delay spread而言,根据TRS1确定的Delay spread为X1且QCL权重为D1,根据TRS2确定的Delay spread为X2且QCL权重为D2,则合成QCL假设中Delay spread取值为X1ⅹD1+X2ⅹD2。或者,在生成合成QCL假设时,根据各个TRS/CSI-RS生成的功率时延谱(power-delay profile,PDP)在合成PDP中的占比确定合成QCL假设的PDP(即合成PDP),进而根据合成PDP确定合成的Delay spread。比如,根据TRS1确定的量化后的PDP为[a1,…,ak,…an],其中k=1,…n为DFT点,a1,…,an为各个DFT点上的功率值,且QCL权重为D1,根据TRS2确定的量化后的PDP为[b1,…,bk,…bn],且QCL权重为D2,则合成QCL假设的PDP为[D1ⅹa1+D2ⅹb1,…,D1ⅹan+D2ⅹbn]。以图2A为例,TRS1对应的QCL类型1的权重D1=1,TRS2对应的QCL类型1的 权重D2=2,则在合成QCL的过程中,基于TRS2确定的PDP谱功率需要提升一倍。
进一步的,QCL权重可以理解为,UE在根据各个TRS/CSI-RS信号生成合成QCL权重时,各个TRS/CSI-RS信号的绝对功率权重。具体的,TRS1的QCL权重配置为0dB,TRS2的QCL权重配置为-3dB,则在合成QCL权重时,UE直接假设TRS1对应的QCL权重比TRS2的QCL权重大3dB。以图2A为例,TRS1对应的QCL类型1的权重D1=0dB,TRS2对应的QCL类型1的权重D2=3dB,则在合成QCL的过程中,基于TRS2确定的PDP谱功率需要3dB的提升。
QCL权重还可以理解为,UE在根据各个TRS/CSI-RS信号生成合成QCL权重时,各个TRS/CSI-RS信号的功率权重增量。具体的,TRS1的QCL权重配置为0dB,TRS2的QCL权重配置为-3dB,则在合成QCL权重时,UE先确定TRS1和TRS2的接收功率RSRP,然后根据RSRP和QCL权重确定TRS1和TRS2的QCL权重,UE假设TRS1对应的QCL权重为TRS1的RSRP,TRS2的QCL权重为TRS2的RSRP减3dB。
一种可能的QCL权重的配置方式如下:
预先设定多个RS中的一个RS作为参考RS,示例性的可以理解为,该RS对应的QCL权重为1/K,其中K为多个RS的数量。其他RS中每个RS均对应一个QCL权重指示,QCL权重指示的形式可以是百分比或者dB值等。每个QCL权重所指示的值表征了相应RS与参考RS相对的QCL权重。例如,QCL权重值配置为L dB,表征10log(m/n)=L,其中,m是相应RS的QCL权重,n是参考RS的QCL权重。
可选的,QCL权重配置的值仅为负数。原因在于,方案中设定的参考RS可以为UE主服务小区对应的RS,通常在多TRP联合传输的信号中,主服务小区的信号的功率占比是最高的,其他RS对应UE的协作小区,通常其功率占比小于主服务小区。因此对于该联合传输的信号,主服务小区的QCL权重应该是最高的,这么做可以节省配置QCL假设的信令开销。
可选的,在合成信道大尺度参数时,每个RS上估计的时延抽头携带功率信息(不做归一化操作)做合并操作。在做合并操作时,每个RS上的时延抽头的幅度值要根据QCL权重配置确定。具体的,例如在一个RS上估计到的某一个时延抽头的幅度值为X,根据QCL权重配置得到的QCL权重为m,则该时延抽头的幅度值在合成PDP中的幅度值为m*X。
另一种可能的QCL权重的配置方式如下:
直接配置多个RS中每个RS对应的QCL权重,各RS对应的QCL权重可以为百分比或者dB值。例如,QCL权重的取值可以为:-3dB,-6dB,-9dB,0dB,3dB,6dB,9dB等。根据多个RS中每个RS对应的QCL权重的取值,结合多个RS中每个RS上估计到的PDP谱,可以得到合成PDP谱。具体地,在合成PDP谱时,每个RS上获取的PDP谱的功率dBm值减去QCL权重值之后进行合成。
在一些实施例中,QCL权重可以在TCI状态中配置。一个TCI状态中可配置某个QCL类型下的RS ID,以QCL类型A为例,该QCL类型A对应多个RS ID,每个RS ID会进一步对应一个QCL权重。
进一步的,考虑到协作调度中,各个频带内各个TRP传输PDSCH的功率分配可能存在较大差异,则上述QCL权重可以是每个频带独立指示的。频带的粒度可以是:PRG或者PRG组。上述调度策略可能导致对于某个TRP在某些频带上的功率分配比较小,此时UE在确定该频带上的大尺度特性时,该TRP的影响可以忽略不计。本申请实施例中,每个频带上可以独立指示QCL假设的RS ID。
再进一步的,考虑到协作调度中,各个传输层内各个TRP传输PDSCH的功率分配也可 能存在较大差异,则上述QCL权重还可以是每个传输层独立指示的。上述调度策略可能导致对于某个TRP在某些传输层上的功率分配比较小,此时UE在确定这些传输层上的大尺度特性时,该TRP的影响可以忽略不计。本申请实施例中,每个传输层上可以独立指示QCL假设的RS ID。图4为本申请实施例提供的一种QCL假设指示的示例。如图4所示,UE同时估计协作集内三个TRP(即TRP1、TRP2以及TRP3)的TRS,三个TRP同时用于传输PDSCH。假设PDSCH的传输层数为2,如图4右侧所示,QCL假设指示中,对于各个PRG和/或传输层均可以独立指示RS ID,用于表征该PRG和/或传输层上的信道大尺度特性。
再进一步的,对于PDSCH传输而言,可以存在多个码字(codeword)。一个码字对应一种调制编码方式(MCS)。不同码字可以对应不同的MCS,不同码字可以对应不同的传输层。码字用于表征信道编码的粒度。本申请实施例中,还可以是每个码字(即数据流)独立指示QCL假设,这是考虑到不同码字的MCS差异主要来源于TRP的流间功率分配。
再进一步的,考虑到UE到各个协作TRP经历的传输路径可能会有较大差异。某些散射条件较为丰富的TRP或者物理距离较远的TRP到该UE的信道可能会存在较大时延,可以称这种由于传输路径导致的时延为空口时延。空口时延较大会导致传输信号的频率选择性衰落较为剧烈,甚至有超过循环前缀(cyclic prefix,CP)的可能性,会严重影响信号的传输性能。从而,网络设备侧可以通过一些测量上报机制提前获知空口时延,在后续下行传输时做预先的时延补偿,使得UE实际接收到的信号在频域变得更加平坦。该时延补偿操作会影响PDSCH传输的大尺度特性,而对于UE来说是透明的,即UE无法从TRS估计中获取时延补偿的信息。从而本申请实施例中指示的多个TRS中,可能存在部分TRS指示QCL类型A(未补偿),部分TRS指示QCL类型B(补偿后,该TRS不提供时延域信道特征指示)。
下面结合附图介绍本申请提供一种基于多站协作的下行传输方法。图5为本申请实施例提供的一种基于多站协作的下行传输方法流程图。如图5所示,该方法包括:
501、终端设备接收网络设备发送的第一指示信息。
上述第一指示信息(即QCL假设指示)指示与第一信号具有QCL关系的多个参考信号,以及所述多个参考信号中每个参考信号的QCL权重。本申请中,终端设备是指UE。上述第一信号的传输路径可视为由上述多个参考信号的传输路径合成的。在一些实施例中,第一信号包括多个参考信号,例如包括多个DMRS或者CSI-RS。上述第一信号包括的多个参考信号(或者数据信号)和与该第一信号具有QCL关系的多个参考信号一一对应。第一指示信息可以是DCI,也可以是其他下行控制信息。网络设备可以是向终端设备联合传输信号的多个TRP中的任意一个。例如,网络设备为终端设备接入的主服务小区对应的网络设备。
对于网络设备来说,第一信号包括的多个信号的发送功率,以及与第一信号具有QCL关系的多个参考信号的发送功率均是已知的。也就是说,网络设备已知第一信号包括的多个信号的发送功率,以及与第一信号具有QCL关系的多个参考信号的发送功率。在一些实施例中,网络设备可根据第一信号包括的多个信号的发送功率,以及与第一信号具有QCL关系的多个参考信号的发送功率,确定与该第一信号具有QCL关系的多个参考信号中每个参考信号的QCL权重。网络设备可采用任意方式确定与该第一信号具有QCL关系的多个参考信号中每个参考信号的QCL权重,本申请不作限定。
在一种可能的实现方式中,所述第一信号承载于一个解调参考信号DMRS端口,或者,所述第一信号承载于一个物理下行共享信道PDSCH端口,或者,所述第一信号承载于一个物理下行控制信道PDCCH端口。多个参考信号作为承载于同一个DMRS端口、PDSCH端口或者PDCCH端口的第一信号的QCL假设指示。这样UE将多个参考信号估计出来的大尺度 参数做合成处理就能得到第一信号的信道大尺度参数。
在一种可能的实现方式中,上述多个参考信号和上述第一信号均对应于第一频带和第一传输层;或者,上述多个参考信号和上述第一信号均对应于第一频带和第一数据流;或者,上述多个参考信号和上述第一信号均对应于第一传输层和第一数据流。上述第一指示信息对应于第一频带和第一传输层,例如第一指示信息包括第一频段的标识以及第一传输层的标识。或者,上述第一指示信息对应于第一频带和第一数据流,例如第一指示信息包括第一频段的标识以及第一数据流的标识。或者,上述第一指示信息对应于第一传输层和第一数据流,例如第一指示信息包括第一传输层的标识以及第一数据流的标识。QCL假设指示(例如第一指示信息)中,频带、传输层以及数据流中的任意两种的组合可指示RS ID,用于表征该任意两种的组合上的信道大尺度特性。在该实现方式中,多个参考信号和第一信号不仅对应于相同的频带,还对应于相同的传输层或数据流。基于多个参考信号得到的信道大尺度参数能够更好地反映第一信号经历的信道状态。
在一种可能的实现方式中,所述第一信号占用的带宽包括多个第二频带,所述第一信号与所述多个参考信号之间的QCL关系包括每个第二频带与所述多个参考信号中至少一个参考信号之间的QCL关系。在该实现方式中,第一信号与多个参考信号之间的QCL关系包括每个第二频带与多个参考信号中至少一个参考信号之间的QCL关系。根据每个第二频带与参考信号之间的QCL关系可更准确地估计每个第二频带的信道大尺度参数。应理解,终端设备可根据第一信号包括的多个信号中占用同一个第二频带的信号与参考信号之间的QCL关系,估计占用该第二频带的信号的信道大尺度参数。也就是说,第一信号在每个第二频带可对应一个信道大尺度参数。
在一种可能的实现方式中,所述第一指示信息指示与第一信号具有QCL关系的多个参考信号,以及所述多个参考信号中每个参考信号的QCL权重包括:所述第一指示信息指示多个第一传输控制指示TCI状态,所述多个第一TCI状态与所述多个参考信号一一对应,且每个所述第一TCI状态中还包括所述第一TCI状态对应的参考信号的QCL权重。在该实现方式中,第一指示信息指示第一TCI状态,资源开销少。
在一种可能的实现方式中,所述第一指示信息包含多个标识以及多个QCL权重,所述多个标识为所述多个参考信号的标识,所述多个标识与所述多个QCL权重一一对应,所述多个QCL权重表征由所述多个参考信号生成的QCL假设参数取值在合成QCL假设时的占比。在该实现方式中,第一指示信息包含的多个标识以及多个QCL权重,可以准确地表征由多个参考信号生成的QCL假设参数取值在合成QCL假设时的占比。
502、终端设备根据第一信道大尺度参数接收第一信号。
所述第一信道大尺度参数利用所述多个参考信号以及所述多个参考信号中每个参考信号的QCL权重得到。第一信号来自网络设备。
在一种可能的实现方式中,终端设备在执行步骤502之前,可执行如下操作:接收上述多个参考信号;分别利用上述多个参考信号估计信道大尺度参数,得到上述多个信道大尺度参数;利用所述多个参考信号中每个参考信号的QCL权重对上述多个信道大尺度参数做合成处理,得到上述第一信道大尺度参数。
在一种可能的实现方式中,上述第一信号为解调参考信号DMRS或信道状态信息参考信号CSI-RS,上述多个参考信号为不同的跟踪参考信号TRS。
在一些实施例中,终端设备对其接收到的每个参考信号做信道估计以得到每个参考信号的信道大尺度参数;在接收到第一指示信息之后,解析该第一指示信息以获知与第一信号具 有QCL关系的多个参考信号,以及该多个参考信号中每个参考信号的QCL权重;利用该多个参考信号中每个参考信号的QCL权重对由该多个参考信号估计得到的多个信道大尺度参数做合成处理,得到第一信道大尺度参数(对应于第一信号的QCL假设信息);根据第一信道大尺度参数接收第一信号。
在一些实施例中,上述多个参考信号和上述第一信号均对应于第一频带和第一传输层,第一指示信息包括第一传输层的标识以及第一频带的标识;终端设备对其接收到的每个参考信号做信道估计以得到每个参考信号的信道大尺度参数;在接收到该第一指示信息之后,解析该第一指示信息以获知与第一信号(对应于第一传输层)具有QCL关系的多个参考信号(对应于第一传输层),以及该多个参考信号中每个参考信号的QCL权重;利用该多个参考信号中每个参考信号的QCL权重对由该多个参考信号估计得到的多个信道大尺度参数做合成处理,得到第一信道大尺度参数(对应于第一信号的QCL假设信息);根据第一信道大尺度参数接收第一信号。举例来说,网络设备向终端设备发送指示信息1指示与信号3(待通过传输层1发送)具有QCL关系的多个参考信号(通过传输层1发送)以及该多个参考信号中每个参考信号的QCL权重;网络设备向终端设备发送指示信息2指示与信号4(待通过传输层2发送的)具有QCL关系的多个参考信号(通过传输层2发送)以及该多个参考信号中每个参考信号的QCL权重。应理解,在这些实施例中,网络设备在每个传输层上可以独立指示第一信号的QCL假设的RS ID。同理,网络设备可以在频带(或码子)上可以独立指示第一信号的QCL假设的RS ID。
在一些实施例中,终端设备在接收到第一指示信息之后,可分别对与第一信号具有QCL关系的多个参考信号做信道估计以得到每个参考信号的信道大尺度参数;利用该多个参考信号中每个参考信号的QCL权重对由该多个参考信号估计得到的多个信道大尺度参数做合成处理,得到第一信道大尺度参数(对应于第一信号的QCL假设信息);根据第一信道大尺度参数接收第一信号。
本申请实施例中,根据第一信道大尺度参数接收第一信号。由于第一信道大尺度参数利用多个参考信号中每个参考信号的QCL权重对由该多个参考信号估计得到的多个信道大尺度参数做合成处理得到,因此该第一信道大尺度参数能够较精确地反映后续第一信号经历的信道状态,从而更准确地接收第一信号。
图5主要从终端设备侧描述了本申请提供的基于多站协作的下行传输方法。下面从网络设备侧描述本申请提供的基于多站协作的下行传输方法。图6为本申请实施例提供的另一种基于多站协作的下行传输方法流程图。如图6所示,该方法包括:
601、网络设备生成第一指示信息。
上述第一指示信息指示与第一信号具有准共址QCL关系的多个参考信号,以及上述多个参考信号中每个参考信号的QCL权重。在一些实施例中,第一信号包括多个参考信号,例如包括多个DMRS或者CSI-RS。在一些实施例中,上述第一信号包括的多个参考信号(或者数据信号)和与该第一信号具有QCL关系的多个参考信号一一对应。
在一些实施例中,网络设备可根据第一信号包括的多个信号的发送功率,以及与第一信号具有QCL关系的多个参考信号的发送功率,确定与该第一信号具有QCL关系的多个参考信号中每个参考信号的QCL权重,进而生成第一指示信息。
在一种可能的实现方式中,所述第一指示信息指示与第一信号具有QCL关系的多个参考信号,以及所述多个参考信号中每个参考信号的QCL权重包括:所述第一指示信息指示多个第一传输控制指示TCI状态,所述多个第一TCI状态与所述多个参考信号一一对应,且每个 所述第一TCI状态中还包括所述第一TCI状态对应的参考信号的QCL权重。在该实现方式中,第一指示信息指示第一TCI状态,资源开销少。
在一种可能的实现方式中,所述第一指示信息包含多个标识以及多个QCL权重,所述多个标识为所述多个参考信号的标识,所述多个标识与所述多个QCL权重一一对应,所述多个QCL权重表征由所述多个参考信号生成的QCL假设参数取值在合成QCL假设时的占比。在该实现方式中,第一指示信息包含的多个标识以及多个QCL权重,可以准确地表征由多个参考信号生成的QCL假设参数取值在合成QCL假设时的占比。
602、网络设备向终端设备发送第一指示信息。
上述第一指示信息用于上述终端设备接收上述第一信号。
在一种可能的实现方式中,所述第一信号承载于一个解调参考信号DMRS端口,或者,所述第一信号承载于一个物理下行共享信道PDSCH端口,或者,所述第一信号承载于一个物理下行控制信道PDCCH端口。在该实现方式中,第一信号承载于一个DMRS端口、PDSCH端口或者PDCCH端口。多个参考信号为承载于同一个DMRS端口、PDSCH端口或者PDCCH端口的第一信号的QCL假设指示。这样UE将多个参考信号估计出来的大尺度参数做合成可得到第一信号的信道大尺度参数。
在一种可能的实现方式中,上述多个参考信号和上述第一信号均对应于第一频带和第一传输层;或者,上述多个参考信号和上述第一信号均对应于第一频带和第一数据流;或者,上述多个参考信号和上述第一信号均对应于第一传输层和第一数据流。上述第一指示信息对应于第一频带和第一传输层,例如第一指示信息包括第一频段的标识以及第一传输层的标识。或者,上述第一指示信息对应于第一频带和第一数据流,例如第一指示信息包括第一频段的标识以及第一数据流的标识。或者,上述第一指示信息对应于第一传输层和第一数据流,例如第一指示信息包括第一传输层的标识以及第一数据流的标识。QCL假设指示(例如第一指示信息)中,频带、传输层以及数据流中的任意两种的组合可指示RS ID,用于表征该任意两种的组合上的信道大尺度特性。
本申请实施例中,网络设备向终端设备发送第一指示信息,以便该终端设备利用多个参考信号中每个参考信号的QCL权重对由该多个参考信号估计得到的多个信道大尺度参数做合成处理,得到能够较精确地反映后续第一信号经历的信道状态的第一信道大尺度参数。
前面介绍了通过QCL假设指示(即第一指示信息)指示多个参考信号中每个参考信号的QCL权重的方案。UE根据多个参考信号中每个参考信号的QCL权重,能够提升信道估计的精度。下面介绍本申请提供的通过DMRS确定QCL假设信息的方案。UE采用本申请提供的通过DMRS确定QCL假设信息的方案能够在不显著影响数据接收性能的前提下,通过DMRS做QCL假设的估计而无需再依赖于TRS,信令开销减少。
目前UE都是通过非DMRS做QCL假设的估计(即通过非DMRS确定QCL假设信息),而本申请提供了通过DMRS确定QCL假设信息的方案。本申请提供的通过DMRS确定QCL假设信息的方案中,DMRS的QCL指示(TCI中配置的reference RS类型)中包括DMRS端口。例如,与DMRS端口或者CSI-RS端口具有QCL TypeA关系的端口可以为DMRS端口/DMRS端口号/DMRS的某一个CDM组。示例性的,PDSCH的DMRS或者CSI-RS的多普勒和时延相关的信道大尺度参数均可以由DMRS端口指示。相比采用TRS/CSI-RS指示QCL假设,采用DMRS指示QCL假设可以提升信道大尺度参数的估计精度。原因在于,TRS通常是小区级发送的RS,网络设备在发送时不会采用波束赋形的方式发送定向波束以使得小区内尽可能多的UE都可以收到TRS。但DMRS可以采用定向波束指向特定UE从而提升信号 的信噪比,提升估计精度,并且这种方式下可以自然支持网络设备侧做时延域预补尝且对UE是完全透明的。DMRS可以是PDSCH的DMRS,或者PDCCH的DMRS。另外,对位于小区边缘的UE,可能网络对该UE动态执行小区切换(根据信号质量择优选择该UE的服务小区),例如时刻n该UE由TRP1服务,时刻n+1该UE由TRP2服务,若UE基于TRS做QCL估计,则需要UE同时跟踪两个TRS(TRP1和TRP2),对UE要求比较高,而若UE基于DMRS做QCL估计,可以无需跟踪两个TRS。
根据DMRS估计QCL假设信息相比于仅根据DMRS做信道估计需要额外的处理时间。目前,若UE仅根据DMRS做信道估计,操作流程为:接收DMRS导频点位的信号;根据已知的DMRS序列对导频点位的信号做最小二乘(least-square,LS)信道估计获取导频点位的信道;根据插值算法将导频点位以外其余RE上的信道推导出来(此时会利用已知的QCL假设信息完成插值)。本申请实施例中,UE在基于DMRS做信道估计之前,需要先估计出QCL假设信息,而估计QCL假设信息需要收集更多的DMRS导频点位的信号。例如,UE根据DMRS做信道估计可以仅根据位于PDSCH信道时域第一个OFDM符号位置上的导频点位信号就可以,但要估计QCL假设信息需要根据位于PDSCH信号时域第一个OFDM符号和位于PDSCH时域尾部的OFDM符号上的导频点位上的DMRS信号才可以完成QCL估计。可见,UE是否执行QCL估计会影响到UE信道估计的执行速度,也就是会影响到PDSCH接收的处理速度。所以本申请实施例中,需要指定执行QCL估计的DMRS的特征,从而确定哪些PDSCH对应的处理时间较短(对应仅基于DMRS做信道估计),哪些PDSCH对应的处理时间较长(对应基于DMRS做QCL估计和信道估计)。
基于上述考虑,本申请中定义有效DMRS,UE仅根据有效DMRS估计QCL信息。对于PDSCH(或PDCCH)来说,其有效DMRS需满足如下条件:传输带宽大于a M,或者在一个slot内包括b个DMRS传输符号且b个DMRS传输符号间存在一定的时间间隔(例如3个OFDM符合)。其中,a可以取值为5、6、10等,以保证一定的时域分辨率提升时域大尺度参数估计精度。b可以取值为2或者4等,以保证频偏估计精度。本申请实施例中,DMRS可以仅用于估计时延域大尺度信息,即:仅用于指示QCL中的delay spread和average delay。这样,既可以通过DMRS获取某些大尺度信息,又可以避免对DMRS的发送带来过多要求和影响。此时,对于某一次PDSCH传输,其DMRS满足上述有效DMRS的定义时,UE所需的处理时间为t1,其DMRS不满足上述有效DMRS的定义时,UE所需的处理时间为t2,t1>t2。
进一步的,本申请可以预先约定UE在DMRS上估计大尺度特性(即信道大尺度参数)的行为。具体的,预先将DMRS分组,一个DMRS组内的DMRS端口可以用于估计一套大尺度参数,而多个DMRS组用于估计多套大尺度参数。这是考虑到,网络设备侧在不同DMRS端口上发送的信号对应的功率分配不同,也就是说会出现不同的大尺度特性。UE侧在做时域滤波时,可以将不同时刻传输的同一DMRS端口上的估计结果做时域滤波,形成相对鲁棒的大尺度估计结果。不同DMRS端口可以独立做时域滤波。在后续指示CSI-RS/DMRS的QCL假设时,可以指示特定的DMRS端口组ID/DMRS端口ID。
再进一步的,本申请实施例中可以预设时域滤波的时间窗。在一个时间窗内,UE可以基于不同时刻接收到的DMRS所估计的大尺度信息做滤波。当超过该时间窗后,UE需要重新估计。
下面结合附图介绍本申请提供的通过DMRS确定QCL假设信息的方案。图7为本申请实施例提供的一种通信方法流程图。如图7所示,该方法包括:
701、终端设备接收网络设备发送的第一DMRS。
上述第一DMRS承载于网络设备通过PDSCH或者PDCCH发送的信号。
在一种可能的实现方式中,上述第一DMRS的带宽大于带宽阈值,或者,上述第一DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值,上述K为大于1的整数。带宽阈值可以是5M、6M、10M等,本申请不作限定。时间阈值可以是2个OFDM符号、3个OFDM符合、4个OFDM符合等,本申请不作限定。K可以是2、4等,本申请不作限定。在该实现方式中,第一DMRS的带宽大于带宽阈值,或者,第一DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值;可以保证利用该第一DMRS执行QCL估计能够满足承载第一DMRS的信号对处理时间的要求。
702、根据第二信道大尺度参数接收第二信号。
上述第二信道大尺度参数基于上述第一DMRS的信道大尺度参数得到。例如,第二信道大尺度参数为基于第一DMRS的测量(或者说估计)得到的信道大尺度参数。在一些实施例中,终端设备可基于第一DMRS的测量得到第二信道大尺度参数。上述第二信号为与上述第一DMRS具有QCL关系的参考信号。例如第二信号与第一DMRS存在QCL TypeD的关系。又例如,例如第二信号与第一DMRS存在QCL TypeD的关系。第二信号来自网络设备。
在一种可能的实现方式中,上述第二信号为解调参考信号或者信道状态信息参考信号CSI-RS。
本申请实施例中,根据第二信道大尺度参数接收第二信号;能够在不显著影响数据接收性能的前提下,通过DMRS做QCL假设的估计而无需再依赖于跟踪参考信号(trackingreference signal,TRS),信令开销减少。
图8为本申请实施例提供的另一种通信方法流程图。图8中的方法流程是图7中的方法流程的一种可能的实现方式。如图8所示,该方法包括:
801、终端设备接收来自网络设备的第二指示信息。
上述第二指示信息指示第二信号和第一DMRS之间的QCL关系。
在一种可能的实现方式中,上述第二指示信息指示第二传输控制指示TCI状态,上述第二TCI状态包括上述第二信号和上述第一DMRS之间的QCL关系。在该实现方式中,第二指示信息指示第二TCI状态,资源开销少。
在一种可能的实现方式中,上述第一指示信息包含上述第二信号的标识和上述第一DMRS的标识。
802、终端设备接收网络设备发送的第一DMRS。
803、终端设备估计第一DMRS的信道大尺度参数,得到第二信道大尺度参数。
步骤803一种可能的实现方式如下:终端设备在接收到第二指示信息之后,先根据该第二指示信息,确定第二信号和第一DMRS之间的QCL关系;再估计第一DMRS的信道大尺度参数,得到第二信道大尺度参数。
步骤803一种可能的实现方式如下:终端设备在第一DMRS的带宽大于带宽阈值,或者,上述第一DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值的情况下,估计第一DMRS的信道大尺度参数,得到第二信道大尺度参数。也就是说,若第一DMRS的带宽小于或等于带宽阈值,或者,第一DMRS在一个时隙内包括的DMRS传输符号的个数小于K,或者,第一DMRS中任意两个DMRS传输符号间之间的时间间隔小于或等于时间阈值,则终端设备不估计第一DMRS的信道大尺度参数。
804、根据第二信道大尺度参数接收第二信号。
本申请实施例中,根据第二信道大尺度参数接收第二信号;能够在不显著影响数据接收性能的前提下,通过DMRS做QCL假设的估计而无需再依赖于跟踪参考信号(trackingreference signal,TRS),信令开销减少。
图7和图8主要从终端设备侧描述了本申请提供的通过DMRS确定QCL假设信息的方案。下面从网络设备侧描述本申请提供的过DMRS确定QCL假设信息的方案。图9为本申请实施例提供的另一种通信方法流程图。如图9所示,该方法包括:
901、网络设备向终端设备发送第一DMRS。
在一种可能的实现方式中,上述第一DMRS的带宽大于带宽阈值,或者,上述第一DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值,上述K为大于1的整数。
902、向终端设备发送第二指示信息。
上述第二指示信息指示第二信号和上述第一DMRS之间的准共址QCL关系。网络设备执行步骤902和步骤901的先后顺序不作限定。第二指示信息可以是DCI,也可以是其他下行控制信息。
在一种可能的实现方式中,上述第二指示信息指示第二传输控制指示第二TCI状态,上述第二TCI状态包括上述第二信号和上述第一DMRS之间的QCL关系。
在一种可能的实现方式中,上述第二指示信息包括上述第一DMRS的标识和第二信号的标识。
在一种可能的实现方式中,上述第二指示信息指示上述第二信号与上述第一DMRS的第一端口组身份标识ID或者第一DMRS端口ID的QCL关系。在该实现方式中,网络设备在不同DMRS端口或端口组上发送的信号对应的功率分配不同,第二指示信息指示第二信号与第一DMRS的第一端口组身份标识ID或者第一DMRS端口ID的QCL关系,以便较准确地估计得到第二信道大尺度参数。在一些实施例中,网络设备可预先将DMRS分组,一个DMRS组内的DMRS端口可以用于估计一套大尺度参数,而多个DMRS组用于估计多套大尺度参数。这是考虑到,网络设备侧在不同DMRS端口上发送的信号对应的功率分配不同,也就是说会出现不同的大尺度特性。UE侧在做时域滤波时,可以将不同时刻传输的同一DMRS端口上的估计结果做时域滤波,形成相对鲁棒的大尺度估计结果。不同DMRS端口独立做时域滤波。在后续指示CSI-RS/DMRS的QCL假设时,可以指示特定的DMRS端口组ID/DMRS端口ID。
903、向终端设备发送第二信号。
在一种可能的实现方式中,上述第二信号为解调参考信号或者信道状态信息参考信号CSI-RS。
本申请实施例中,网络设备向终端设备发送第二指示信息,以便该终端设备利用第一DMES的信道大尺度参数接收第二信号。这样终端设备就能够在不显著影响数据接收性能的前提下,通过DMRS做QCL假设的估计而无需再依赖于跟踪参考信号。
前面介绍了通过DMRS确定QCL假设信息的方案。下面介绍将不同时刻传输的同一DMRS端口上的信道大尺度参数做时域滤波,形成相对鲁棒的信道大尺度参数的方案。
图10为本申请实施例提供的另一种通信方法流程图。如图10所示,该方法包括:
1001、终端设备接收网络设备传输的多个第二DMRS。
上述多个第二DMRS对应于第二DMRS端口组身份标识ID或者第二DMRS端口ID。 多个第二DMRS是指多个不同的第二DMRS,例如不同时刻传输的多个第二DMRS。
在一种可能的实现方式中,上述多个第二DMRS中每个第二DMRS的带宽大于带宽阈值,或者,上述多个第二DMRS中每个第二DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值,上述K为大于1的整数。
在该实现方式中,第一DMRS的带宽大于带宽阈值,或者,第一DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值;可以保证利用该第一DMRS执行QCL估计能够满足承载第一DMRS的信号对处理时间的要求。
1002、终端设备接收来自网络设备的第三指示信息。
上述第三指示信息指示上述第三信号和上述第二DMRS端口组身份标识ID之间的QCL关系,或者,上述第三指示信息指示上述第三信号和上述第二DMRS端口ID之间的QCL关系。终端设备接收第三指示信息,可以及时获知第三信号和第二DMRS端口组ID之间的QCL关系或者第三信号和第二DMRS端口ID之间的QCL关系。第三指示信息可以是DCI,也可以是其他下行控制信息。
在一些实施例中,终端设备接收到第三指示信息之后,可获知第三信号和第二DMRS端口组ID之间的QCL关系或者第三信号和第二DMRS端口ID之间的QCL关系,进而基于多个第二DMRS的测量得到第三信号的信道大尺度参数。
在一种可能的实现方式中,上述第三指示信息指示第三传输控制指示TCI状态,上述第三TCI状态包括上述第三信号和上述第二DMRS端口组ID之间的QCL关系,或者,上述第三TCI状态包括上述第三信号和上述第二DMRS端口ID之间的QCL关系。在该实现方式中,第三指示信息指示第三TCI状态,资源开销少。
在一种可能的实现方式中,上述第三指示信息包含上述第二DMRS端口组ID或者上述第二DMRS端口ID。
1003、根据第三信道大尺度参数接收第三信号。
上述第三信道大尺度参数由对上述多个第二DMRS估计得到的多个信道大尺度参数做时域滤波得到。第三信号来自网络设备。
在一种可能的实现方式中,上述第三信号为解调参考信号或者信道状态信息参考信号CSI-RS。
在一种可能的实现方式中,在根据第三信道大尺度参数接收第三信号之前,终端设备执行如下操作:上述终端设备根据在预设时间窗内接收的上述多个第二DMRS做信道估计,得到上述多个信道大尺度参数;对上述多个信道大尺度参数做时域滤波,得到上述第三信道大尺度参数。预设时间窗内可以是根据实际需求设置的一个时间窗,例如3ms、5ms、10ms等。在该实现方式中,对多个信道大尺度参数做时域滤波,得到第三信道大尺度参数;能够得到相对鲁棒的大尺度估计结果。
本申请实施例中,根据第三信道大尺度参数接收第三信号。由于第三信道大尺度参数由对多个第二DMRS估计得到的多个信道大尺度参数做时域滤波得到,因此该第三信道大尺度参数为相对鲁棒的大尺度估计结果,可较准确地反映第三信号经历的信道状态。
图11为本申请实施例提供的一种通信装置的结构示意图。图11中的通信装置为终端设备或者包含于终端设备。如图11所示,通信装置1100包括:
收发单元1101,用于接收网络设备发送的第一指示信息;所述第一指示信息指示与第一信号具有准共址QCL关系的多个参考信号,以及所述多个参考信号中每个参考信号的QCL权重;
处理单元1102,用于利用所述多个参考信号以及所述多个参考信号中每个参考信号的QCL权重处理得到第一信道大尺度参数;
收发单元1101,还用于根据所述第一信道大尺度参数接收所述第一信号。
在一种可能的实现方式中,收发单元1101,还用于接收上述多个参考信号;
处理单元1102,还用于分别利用上述多个参考信号估计信道大尺度参数,得到上述多个信道大尺度参数;
处理单元1102,具体用于利用上述多个参考信号中每个参考信号的QCL权重对上述多个信道大尺度参数做合成处理,得到上述第一信道大尺度参数。
图12为本申请实施例提供的一种通信装置的结构示意图。图12中的通信装置为网络设备或者包含于网络设备。如图12所示,通信装置1200包括:
处理单元1201,用于生成第一指示信息,上述第一指示信息指示与第一信号具有准共址QCL关系的多个参考信号,以及上述多个参考信号中每个参考信号的QCL权重;
收发单元1202,用于向终端设备发送上述第一指示信息;上述第一指示信息用于上述终端设备接收上述第一信号。
复用图11,在一种可能的实现方式中,通信装置1100包括收发单元1101和处理单元1102。
收发单元1101,用于接收网络设备发送的第一DMRS;
处理单元1102,用于基于上述第一DMRS的信道大尺度参数,得到第二信道大尺度参数;
收发单元1101,还用于根据上述第二信道大尺度参数接收第二信号;上述第二信号为与上述第一DMRS具有QCL关系的参考信号。
在一种可能的实现方式中,处理单元1102,还用于利用上述第一DMRS估计信道大尺度参数,得到上述第二信道大尺度参数。
复用图12,在一种可能的实现方式中,通信装置1200包括处理单元1201和收发单元1202。
收发单元1202,用于向终端设备发送第一DMRS;向上述终端设备发送第二指示信息,上述第二指示信息指示第二信号和上述第一DMRS之间的准共址QCL关系;
处理单元1201,用于生成上述第二信号;
收发单元1202,还用于向上述终端设备发送上述第二信号。
复用图11,在一种可能的实现方式中,通信装置1100包括收发单元1101和处理单元1102。
收发单元1101,用于接收网络设备传输的多个第二解调参考信号DMRS,上述多个第二DMRS对应于第二DMRS端口组身份标识ID或者第二DMRS端口ID;
处理单元1102,用于对由上述多个第二DMRS估计得到的多个信道大尺度参数做时域滤波以得到第三信道大尺度参数;
收发单元1101,还用于根据上述第三信道大尺度参数接收第三信号。
在一种可能的实现方式中,处理单元1102,还用于根据在预设时间窗内接收的上述多个第二DMRS做信道估计,得到上述多个信道大尺度参数。
在一种可能的实现方式中,收发单元1101,还用于接收来自上述网络设备的第三指示信息,上述第三指示信息指示上述第三信号和上述第二DMRS端口组身份标识ID之间的QCL关系,或者,上述第三指示信息指示上述第三信号和上述第二DMRS端口ID之间的QCL关系。
复用图12,在一种可能的实现方式中,通信装置1200包括处理单元1201和收发单元1202。
收发单元1202,用于向终端设备传输多个第二解调参考信号DMRS,上述多个第二DMRS对应于第二DMRS端口组身份标识ID或者第二DMRS端口ID;向上述终端设备发送第三指 示信息,上述第三指示信息指示第三信号和上述第二DMRS端口组身份表示ID之间的QCL关系或者指示上述第三信号和上述第二DMRS端口ID之间的QCL关系;
处理单元1201,用于生成上述第三信号;
收发单元1202,还用于向上述终端设备发送上述第三信号。
图13为本申请实施例提供的另一种通信装置的结构示意图。图13中的通信装置可以是上述终端设备,也可以是上述网络设备。
如图13所示。该通信装置130包括至少一个处理器1320,用于实现本申请实施例提供的方法中终端设备的功能;或者,用于实现本申请实施例提供的方法中网络设备功能。该通信装置130还可以包括收发器1310。收发器1310用于通过传输介质和其他设备/装置进行通信。处理器1320利用收发器1310收发数据和/或信令,并用于实现上述方法实施例中的方法。
可选的,通信装置130还可以包括至少一个存储器1330,用于存储程序指令和/或数据。存储器1330和处理器1320耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1320可能和存储器1330协同操作。处理器1320可能执行存储器1330中存储的程序指令。该至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述收发器1310、处理器1320以及存储器1330之间的具体连接介质。本申请实施例在图13中以存储器1330、处理器1320以及收发器1310之间通过总线1340连接,总线在图13中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
可理解,在通信装置130为终端设备时,收发器1310实现收发单元1101的功能。或者,在通信装置130为网络设备时,收发器1310实现收发单元1201的功能。在通信装置130为终端设备时,处理器1320实现处理单元1102的功能。在通信装置130为网络设备时,处理器1320实现处理单元1202的功能。
图14为本申请实施例提供的另一种通信装置140的结构示意图。图14中的通信装置可以是上述终端设备,也可以是上述网络设备。如图14所示,图14所示的通信装置包括逻辑电路1401和接口1402。其中,该逻辑电路1401可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口1402可以为通信接口、输入输出接口等。接口1402用于实现数据或信令的发送和接收。本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。在本申请的一些实施例中,该逻辑电路和接口可用于执行上述通信装置执行的功能或操作等。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行上述实施例的方法。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得上述实施例中的方法被执行。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技 术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以上述权利要求的保护范围为准。

Claims (37)

  1. 一种基于多站协作的下行传输方法,其特征在于,所述方法包括:
    终端设备接收网络设备发送的第一指示信息;所述第一指示信息指示与第一信号具有准共址QCL关系的多个参考信号,以及所述多个参考信号中每个参考信号的QCL权重;
    根据第一信道大尺度参数接收所述第一信号;所述第一信道大尺度参数利用所述多个参考信号以及所述多个参考信号中每个参考信号的QCL权重得到。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信号承载于一个解调参考信号DMRS端口,或者,所述第一信号承载于一个物理下行共享信道PDSCH端口,或者,所述第一信号承载于一个物理下行控制信道PDCCH端口。
  3. 根据权利要求1所述的方法,其特征在于,所述多个参考信号和所述第一信号均对应于第一频带和第一传输层;或者,所述多个参考信号和所述第一信号均对应于第一频带和第一数据流;或者,所述多个参考信号和所述第一信号均对应于第一传输层和第一数据流。
  4. 根据权利要求1所述的方法,其特征在于,所述第一信号占用的带宽包括多个第二频带,所述第一信号与所述多个参考信号之间的QCL关系包括每个第二频带与所述多个参考信号中至少一个参考信号之间的QCL关系。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述第一指示信息指示与第一信号具有QCL关系的多个参考信号,以及所述多个参考信号中每个参考信号的QCL权重包括:所述第一指示信息指示多个第一传输控制指示TCI状态,所述多个第一TCI状态与所述多个参考信号一一对应,且每个所述第一TCI状态中还包括所述第一TCI状态对应的参考信号的QCL权重。
  6. 根据权利要求1至5任一项所述的方法,其特征在于,在根据第一信道大尺度参数接收所述第一信号之前,所述方法还包括:
    接收所述多个参考信号;
    分别利用所述多个参考信号估计信道大尺度参数,得到所述多个信道大尺度参数;
    利用所述多个参考信号中每个参考信号的QCL权重对所述多个信道大尺度参数做合成处理,得到所述第一信道大尺度参数。
  7. 一种基于多站协作的下行传输方法,其特征在于,应用于多站协作场景,所述方法包括:
    网络设备生成第一指示信息,所述第一指示信息指示与第一信号具有准共址QCL关系的多个参考信号,以及所述多个参考信号中每个参考信号的QCL权重;
    向终端设备发送所述第一指示信息;所述第一指示信息用于所述终端设备接收所述第一信号。
  8. 根据权利要求7所述的方法,其特征在于,所述第一信号承载于一个解调参考信号DMRS端口,或者,所述第一信号承载于一个物理下行共享信道PDSCH端口,或者,所述第一信号承载于一个物理下行控制信道PDCCH端口。
  9. 根据权利要求7所述的方法,其特征在于,所述多个参考信号和所述第一信号均对应于第一频带和第一传输层;或者,所述多个参考信号和所述第一信号均对应于第一频带和第一数据流;或者,所述多个参考信号和所述第一信号均对应于第一传输层和第一数据流。
  10. 根据权利要求7所述的方法,其特征在于,所述第一信号占用的带宽包括多个第二频带,所述第一信号与所述多个参考信号之间的QCL关系为所述多个第二频带与所述多个参考信号之间的QCL关系,所述多个第二频带与所述多个参考信号一一对应。
  11. 根据权利要求7至10任一项所述的方法,其特征在于,所述第一指示信息指示与第一信号具有QCL关系的多个参考信号,以及所述多个参考信号中每个参考信号的QCL权重包括:所述第一指示信息指示多个第一传输控制指示TCI状态,所述多个第一TCI状态与所述多个参考信号一一对应,且每个所述第一TCI状态中还包括所述第一TCI状态对应的参考信号的QCL权重。
  12. 根据权利要求7至11任一项所述的方法,其特征在于,所述第一指示信息包含多个标识以及多个QCL权重,所述多个标识为所述多个参考信号的标识,所述多个标识与所述多个QCL权重一一对应,所述多个QCL权重表征由所述多个参考信号生成的QCL假设参数取值在合成QCL假设时的占比。
  13. 一种基于多站协作的下行传输方法,其特征在于,包括:
    接收网络设备发送的第一DMRS;
    根据第二信道大尺度参数接收第二信号;所述第二信道大尺度参数基于所述第一DMRS的信道大尺度参数得到;所述第二信号为与所述第一DMRS具有QCL关系的参考信号。
  14. 根据权利要求13所述的方法,其特征在于,所述第一DMRS的带宽大于带宽阈值,或者,所述第一DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值,所述K为大于1的整数。
  15. 根据权利要求13或14所述的方法,其特征在于,所述第一DMRS和所述第二信号均对应第一码分复用CDM组。
  16. 根据权利要求13至15任一项所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第二指示信息,所述第二指示信息指示所述第二信号和所述第一DMRS之间的QCL关系。
  17. 根据权利要求16所述的方法,其特征在于,所述第二指示信息指示第二TCI状态,所述第二TCI状态包括所述第二信号和所述第一DMRS之间的QCL关系。
  18. 一种基于多站协作的下行传输方法,其特征在于,包括:
    网络设备向终端设备发送第一DMRS;
    向所述终端设备发送第二指示信息,所述第二指示信息指示第二信号和所述第一DMRS之间的准共址QCL关系;
    向所述终端设备发送所述第二信号。
  19. 根据权利要求18所述的方法,其特征在于,所述第一DMRS的带宽大于带宽阈值,或者,所述第一DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值,所述K为大于1的整数。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一DMRS和所述第二信号均对应第一CDM组。
  21. 根据权利要求20所述的方法,其特征在于,所述第二指示信息指示第二TCI状态,所述第二TCI状态包括所述第二信号和所述第一DMRS之间的QCL关系。
  22. 一种基于多站协作的下行传输方法,其特征在于,包括:
    终端设备接收网络设备传输的多个第二DMRS,所述多个第二DMRS对应于第二DMRS端口组身份标识ID或者第二DMRS端口ID;
    根据第三信道大尺度参数接收第三信号;所述第三信道大尺度参数由对所述多个第二DMRS估计得到的多个信道大尺度参数做时域滤波得到。
  23. 根据权利要求22所述的方法,其特征在于,在根据第三信道大尺度参数接收第三信号之前,所述方法还包括:
    所述终端设备根据在预设时间窗内接收的所述多个第二DMRS做信道估计,得到所述多个信道大尺度参数;对所述多个信道大尺度参数做时域滤波,得到所述第三信道大尺度参数。
  24. 根据权利要求22或23所述的方法,其特征在于,所述多个第二DMRS中每个第二DMRS的带宽大于带宽阈值,或者,所述多个第二DMRS中每个第二DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值,所述K为大于1的整数。
  25. 根据权利要求22至24任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第三指示信息,所述第三指示信息指示所述第三信号和所述第二DMRS端口组身份标识ID之间的QCL关系,或者,所述第三指示信息指示所述第三信号和所述第二DMRS端口ID之间的QCL关系。
  26. 根据权利要求25所述的方法,其特征在于,所述第三指示信息指示第三传输控制指示TCI状态,所述第三TCI状态包括所述第三信号和所述第二DMRS端口组ID之间的QCL关系,或者,所述第三TCI状态包括所述第三信号和所述第二DMRS端口ID之间的QCL关系。
  27. 一种基于多站协作的下行传输方法,其特征在于,包括:
    网络设备向终端设备传输多个第二解调参考信号DMRS,所述多个第二DMRS对应于第二DMRS端口组身份标识ID或者第二DMRS端口ID;
    向所述终端设备发送第三指示信息,所述第三指示信息指示第三信号和所述第二DMRS端口组身份表示ID之间的QCL关系或者指示所述第三信号和所述第二DMRS端口ID之间的QCL关系;
    向所述终端设备发送所述第三信号。
  28. 根据权利要求27所述的方法,其特征在于,所述多个第二DMRS中每个第二DMRS的带宽大于带宽阈值,或者,所述多个第二DMRS中每个第二DMRS在一个时隙内包括K个DMRS传输符号且任意两个DMRS传输符号间之间的时间间隔大于时间阈值,所述K为大于1的整数。
  29. 根据权利要求27或28所述的方法,其特征在于,所述第三指示信息指示第三传输控制指示TCI状态,所述第三TCI状态包括所述第三信号和所述第二DMRS端口组ID之间的QCL关系,或者,所述第三TCI状态包括所述第三信号和所述第二DMRS端口ID之间的QCL关系。
  30. 一种通信装置,其特征在于,包括用于实现权利要求1至6中任一项所述的方法的模块或单元。
  31. 一种通信装置,其特征在于,包括用于实现权利要求7至12中任一项所述的方法的模块或单元。
  32. 一种通信装置,其特征在于,包括用于实现权利要求13至17中任一项所述的方法的模块或单元。
  33. 一种通信装置,其特征在于,包括用于实现权利要求18至21中任一项所述的方法的模块或单元。
  34. 一种通信装置,其特征在于,包括用于实现权利要求22至26中任一项所述的方法的模块或单元。
  35. 一种通信装置,其特征在于,包括用于实现权利要求27至29中任一项所述的方法的模块或单元。
  36. 一种通信装置,其特征在于,包括:处理器和收发器;
    所述收发器,用于接收信号或者发送信号;所述处理器,用于执行存储器所存储的计算机执行指令,以使所述通信装置执行如权利要求1-29任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使如权利要求1-29任一项所述的方法被实现。
PCT/CN2022/113863 2021-08-30 2022-08-22 基于多站协作的下行传输方法和相关装置 WO2023030063A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111005796.6 2021-08-30
CN202111005796.6A CN115733591A (zh) 2021-08-30 2021-08-30 基于多站协作的下行传输方法和相关装置

Publications (1)

Publication Number Publication Date
WO2023030063A1 true WO2023030063A1 (zh) 2023-03-09

Family

ID=85290911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113863 WO2023030063A1 (zh) 2021-08-30 2022-08-22 基于多站协作的下行传输方法和相关装置

Country Status (2)

Country Link
CN (1) CN115733591A (zh)
WO (1) WO2023030063A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020220330A1 (zh) * 2019-04-30 2020-11-05 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN111901086A (zh) * 2020-04-29 2020-11-06 中兴通讯股份有限公司 信息指示、确定、载频信息确定方法、通信节点及介质
CN114070503A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 一种qcl指示方法及相关设备
CN114500185A (zh) * 2020-10-23 2022-05-13 大唐移动通信设备有限公司 信道估计方法、装置及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020220330A1 (zh) * 2019-04-30 2020-11-05 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
CN111901086A (zh) * 2020-04-29 2020-11-06 中兴通讯股份有限公司 信息指示、确定、载频信息确定方法、通信节点及介质
CN114070503A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 一种qcl指示方法及相关设备
CN114500185A (zh) * 2020-10-23 2022-05-13 大唐移动通信设备有限公司 信道估计方法、装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Enhancements on HST-SFN deployment", 3GPP DRAFT; R1-2107327, vol. RAN WG1, 7 August 2021 (2021-08-07), pages 1 - 48, XP052038279 *

Also Published As

Publication number Publication date
CN115733591A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
US9301175B2 (en) Configuration of interference measurement resources for enhanced downlink measurements and MU-MIMO
US10951332B2 (en) Method and apparatus for coordinated multipoint (CoMP) communication using quasi-co-location
CN110912589B (zh) 在移动通信系统中发送和接收反馈信息的方法和装置
US11546787B2 (en) CSI definitions and feedback modes for coordinated multi-point transmission
US8953699B2 (en) Method and apparatus for CSI feedback for joint processing schemes in an orthogonal frequency division multiplexing communication system with coordinated multi-point transmission
US8948028B2 (en) Reporting of timing information to support downlink data transmission
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
US10855339B2 (en) Information processing method and apparatus
US20120218913A1 (en) Channel information feedback device and method thereof, and mode switching method, communication terminal device, and base station system using same
WO2010105566A1 (zh) Lte-a系统中信道测量导频的发送方法和装置
CN108366375B (zh) 一种共享下行频谱的方法和装置
WO2013169170A1 (en) Method and arrangement in a wireless communication system
US20140078934A1 (en) Delay feedback for coordinated multi-point transmission
CN114338333A (zh) 支持hst-sfn部署场景的增强设备和方法
WO2022022732A1 (zh) 一种qcl指示方法及相关设备
US9660775B2 (en) System and method for punctured pilot transmission in a wireless network
WO2021221963A9 (en) Multiple channel state feedback reports for mu-mimo scheduling assistance
WO2021221964A1 (en) Multiple channel quality indicator (cqi) reports for link adaptation
US20230268964A1 (en) Localization and auto-calibration in a wireless network
CN114499786A (zh) 一种信号传输方法及装置
WO2022161398A1 (zh) 一种相位噪声补偿方法、终端设备及网络设备
WO2020182046A1 (zh) 一种参考信号测量方法及通信装置
GB2479658A (en) Compensating for propagation delays in coordinated multi-point transmission
WO2023030063A1 (zh) 基于多站协作的下行传输方法和相关装置
US20230268975A1 (en) Multi-user physical layer packet for sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE