WO2023029921A1 - 充电方法、电子装置及计算机可读存储介质 - Google Patents

充电方法、电子装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2023029921A1
WO2023029921A1 PCT/CN2022/111508 CN2022111508W WO2023029921A1 WO 2023029921 A1 WO2023029921 A1 WO 2023029921A1 CN 2022111508 W CN2022111508 W CN 2022111508W WO 2023029921 A1 WO2023029921 A1 WO 2023029921A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
interface
charger
circuit
electronic device
Prior art date
Application number
PCT/CN2022/111508
Other languages
English (en)
French (fr)
Inventor
向宇
毕阳
王小钊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023029921A1 publication Critical patent/WO2023029921A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • the embodiments of the present application relate to the field of electronic information technology, and in particular to a charging method for simultaneous charging of multiple channels, an electronic device, and a computer-readable storage medium.
  • the wired charging solution also includes a variety of charging interfaces with different charging capabilities.
  • the electronic device is usually connected to a wired charger through an interface or connected to one of the wireless chargers through a wireless connection, so as to realize wired charging or wireless charging with a single power source.
  • the electronic device is connected to a wired charger through an interface or a wireless charger through a wireless connection at the same time, there is a situation that both the wired charging power supply and the wireless charging power supply are connected to the power input end of the charging chip, so it is easy to cause the charging chip to fail.
  • the parallel connection of the two charging power sources causes the charging current flowing through the charging chip to be too large, which in turn leads to potential safety hazards in the power system of the entire electronic device. At the same time, the service life of the battery will also be affected, resulting in reduced reliability of the electronic device.
  • Embodiments of the present application provide a charging method, an electronic device, and a computer-readable storage medium. By adopting the embodiments of the present application, multiple chargers of different types can be connected, and simultaneous charging of multiple channels can be realized.
  • the embodiments of the present application provide a charging method, which is applied to an electronic device.
  • the electronic device is respectively connected to a wired charger and a wireless charger through a wired charging interface and a wireless charging interface.
  • the wired charger passes through the first
  • the charging circuit charges the electronic device
  • the wireless charger charges the electronic device through the second charging circuit.
  • the charging method includes: detecting the charging capability data of the wired charger and the wireless charger; The charging power value when the second charging circuit is charging at the same time and/or calculate the charging power value when using the first charging circuit or the second charging circuit to obtain the maximum charging power value; and negotiate the first charging corresponding to the maximum charging power value
  • the electrical circuit and/or the second charging circuit charges the electronic device.
  • one or more charging circuits that use the maximum charging power are negotiated to charge at the same time.
  • the wired charging interface includes a first charging interface and a second charging interface
  • the first charging interface is connected to a wired charger that matches the type of the first interface
  • the second charging interface is connected to the wired charger. Connect the wired charger matching the second interface type, and connect the wireless charging interface to the wireless charger.
  • the charging capability data of the connected charger includes multiple sets of charging voltages and charging currents; the charging method further includes establishing the charging capability data of the connected charger set; the charging capability data set of the charger includes multiple sets of charging voltages and charging currents of wired chargers and wireless chargers.
  • the establishment of a charging capability data set includes multiple data items.
  • the charging method further includes: querying whether there is a group with the same charging voltage in the charging capability data set; if there is a group with the same charging voltage, calculate the first charge The charging power value when the circuit and the second charging circuit are charged at the same time.
  • the charging power values of multiple charging circuits can be calculated.
  • the calculating is a charging power value when charging using the first charging circuit or the second charging circuit.
  • the charging power value of a single charging circuit can be calculated.
  • the charging method further includes: querying whether there is a group with the same charging voltage in the charging capability data set; if there is no group with the same charging voltage, calculate and use the first The charging power value when the first charging circuit or the second charging circuit is charging.
  • the charging power value of a single charging circuit can be calculated.
  • the charging method further includes: acquiring the maximum charging current of the charging chip and the battery of the electronic device, and calculating the first charging circuit and the second charging circuit based on the maximum charging current. The charging power value when the charging circuit is charging at the same time.
  • calculating the charging power value when charging with the first charging circuit or the second charging circuit includes: respectively calculating the charging power value of the first charging circuit or the second charging circuit The maximum charging power of the charger connected to the first charging interface and the second charging interface.
  • the maximum charging power of the connected charger can be calculated.
  • the charging method further includes: turning on a negotiated charging line, and turning off an unused charging line.
  • the embodiment of the present application also provides an electronic device, including: a wired charging interface and a wireless charging interface connected to the wired charger and the wireless charger respectively, and the wired charger charges the electronic device through the first charging circuit , the wireless charger charges the electronic device through the second charging circuit;
  • the memory stores a computer program;
  • the processor is used to execute the computer program stored in the memory to realize: detecting the charging capabilities of the wired charger and the wireless charger Data; calculate the charging power value when using the first charging circuit and the second charging circuit to charge at the same time and/or calculate the charging power value when using the first charging circuit or the second charging circuit to obtain the maximum charging power value; and negotiate use The first charging circuit and/or the second charging circuit corresponding to the maximum charging power value charges the electronic device.
  • one or more charging circuits using the maximum charging power are negotiated to charge simultaneously.
  • the wired charging interface includes a first charging interface and a second charging interface
  • the first charging interface is connected to a wired charger that matches the type of the first interface
  • the second charging interface The interface is connected to a wired charger matching the type of the second interface
  • the wireless charging interface is connected to the wireless charger.
  • the charging capability data of the connected charger includes multiple sets of charging voltages and charging currents; the charging method further includes establishing the charging capability data of the connected charger set; the charging capability data set of the charger includes multiple sets of charging voltages and charging currents of wired chargers and wireless chargers.
  • the establishment of a charging capability data set includes multiple data items.
  • the processor is further configured to execute a computer program stored in the memory to: query whether there is a group with the same charging voltage in the charging capability data set; For groups with the same voltage, calculate the charging power value when the first charging circuit and the second charging circuit charge at the same time.
  • the processor is further configured to execute a computer program stored in the memory to realize: calculating a charging power value when charging is performed using the first charging circuit or the second charging circuit.
  • the charging power values of multiple charging circuits can be calculated.
  • the processor is further configured to execute a computer program stored in the memory to: query whether there is a group with the same charging voltage in the charging capability data set; For groups with the same charging voltage, calculate the charging power value when charging with the first charging circuit or the second charging circuit.
  • the charging power value of a single charging circuit can be calculated.
  • the electronic device further includes a charging chip and a battery
  • the processor is further configured to execute a computer program stored in the memory to realize: obtaining information of the charging chip and the battery
  • the maximum charging current is combined with the maximum charging current to calculate the charging power value when the first charging circuit and the second charging circuit are charging at the same time.
  • the charging power value of a single charging circuit can be calculated.
  • the calculation of the charging power value when using the first charging circuit or the second charging circuit includes: calculating the charging power value of the second charging circuit respectively.
  • the maximum charging power of the charger connected to the first charging interface and the second charging interface.
  • the processor is further configured to execute a computer program stored in the memory to realize: turning on the charging circuit used for negotiation, and turning off the unused charging circuit.
  • the embodiment of the present application also provides an electronic device, including: a battery and a charging chip, the charging chip and the battery are electrically connected to a wired charging interface and connected to different types of wired chargers, and the wired charger is powered through the wired charging interface. connected to the charging chip and the battery to form a first charging circuit; the wireless charging interface is connected to the wireless charger, and the wireless charger is electrically connected to the charging chip and the battery through the wireless charging interface to form a second charging circuit; the first charging The electric circuit and the second charging circuit charge the electronic device at the same time, or the first charging circuit or the second charging circuit independently charges the electronic device.
  • one or more charging circuits using the maximum charging power are negotiated to charge simultaneously.
  • the wired charging interface includes a first charging interface and a second charging interface
  • the first charging interface is connected to a wired charger that matches the type of the first interface
  • the second charging interface The interface is connected to a wired charger matching the type of the second interface
  • the wireless charging interface is connected to the wireless charger.
  • the electronic device further includes: a first switch module electrically connected to the first charging interface, the charging chip and the battery; a second switch module electrically connected to the The second charging interface, the charging chip, and the battery; and the third switch module, electrically connected to the wireless charging interface, the charging chip, and the battery.
  • the on-off of the charging circuit can be controlled through the switch module corresponding to each charging circuit.
  • the electronic device further includes an interface protocol chip, electrically connected to the first charging interface and the second charging interface, and used to detect the first charging interface and the second charging interface The charging capability data of the connected wired charger.
  • the electronic device further includes: an overvoltage protection module, and the first charging interface, the second charging interface and the wireless charging interface are respectively electrically connected to each other through the overvoltage protection module To charging chip and battery.
  • the battery and charging chip can be protected against overvoltage.
  • the embodiments of the present application further provide a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the above-mentioned charging method is realized.
  • multiple external chargers of different types can be connected at the same time, and the charging capabilities of multiple charging channels can be analyzed, and the use of multiple charging channels at the same time can be negotiated to ensure multiple chargers.
  • the battery is charged with a higher charging power, which effectively improves the charging efficiency.
  • FIG. 1 is an application circuit diagram of a charging method provided by an embodiment of the present application.
  • Fig. 2 is an application circuit diagram of a charging method provided by another embodiment of the present application.
  • Fig. 3 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a charging control system provided by an embodiment of the present application.
  • Fig. 5 is a flowchart of a charging method provided by an embodiment of the present application.
  • Fig. 6 is a flowchart of a charging method provided by another embodiment of the present application.
  • FIG. 7 is a schematic diagram of an application scenario of an electronic device applying a charging method provided by an embodiment of the present application.
  • first and second are only used to distinguish different objects, and cannot be understood as indicating or implying relative importance, nor can they be understood as indicating or implying order.
  • first application, the second application, etc. are used to distinguish different applications, rather than to describe the specific order of applications, and the features defined as “first” and “second” may explicitly or implicitly include one or More of this feature.
  • FIG. 1 is an application circuit diagram of a charging method provided by an embodiment of the present application.
  • the charging method can be applied in an electronic device, for example, the electronic device 100 shown in FIG. 1 .
  • the electronic device 100 can be a smart phone, a tablet computer, a portable computer, a personal digital assistant (Personal Digital Assistant, PDA), a game console, an interactive network television (Internet Protocol Television, IPTV), a smart wearable device or a wireless communication device. function of other electronic devices.
  • PDA Personal Digital Assistant
  • IPTV Internet Protocol Television
  • smart wearable device or a wireless communication device. function of other electronic devices.
  • the electronic device 100 includes a system chip 10, a charging chip 20, a battery 30, a first interface module 40, a second interface module 50, a wireless charging chip 60, an overvoltage protection module 70, a plurality of switches 82, 84, 86 and interfaces protocol chip 90 .
  • the first interface module 40 and the second interface module 50 are electrically connected to the system chip 10 through the first switch 82 and the interface protocol chip 90 .
  • the first interface module 40 and the second interface module 50 are also electrically connected to the charging chip 20 through the second switch 84 , the overvoltage protection module 70 and the third switch 86 .
  • the wireless charging chip 60 is electrically connected to the charging chip 20 through a third switch 86 .
  • the charging chip 20 is electrically connected to the system chip 10 and the battery 30 respectively.
  • the interface protocol chip can be but not limited to the USB protocol chip 90 .
  • the system chip 10 is an integrated circuit for realizing the functions of the electronic device 100 , including but not limited to modules, circuits and systems for realizing the functions of the electronic device.
  • the system chip 10 is a system on chip (SoC) of an electronic device.
  • SoC 10 includes a physical interface, such as a USB physical interface 12 .
  • the charging chip 20 is used to obtain power provided by an external charger from at least one of the first interface module 40, the second interface module 50 and the wireless charging chip 60, and output voltage and current to control the charging and charging of the battery 30. Provide power for the system chip 10 .
  • the battery 30 is a rechargeable battery, which can be repeatedly charged and discharged by the charging chip 20 .
  • the battery 30 can provide power for the system chip 10 .
  • the first interface module 40 and the second interface module 50 can be connected to a wired power source, such as an external wired charger.
  • the first interface module 40 and the second interface module 50 are different types of interfaces or support different types of port protocols.
  • the first interface module 40 can be but not limited to a first interface type, such as type C (USB Type-C) interface
  • supported port protocols include but not limited to standard downstream port (standard downstream port, SDP), charging downstream port (charge downstream port, CDP), dedicated charging port (dedicated charging port, DCP) , fast charging port (FCP), super charging port (SCP), USB power delivery (USB power delivery, USB PD) protocol.
  • the second interface module 50 can be, but not limited to, a second interface type, such as a thimble or pogopin interface, which can coexist with a type C interface or a micro-USB interface.
  • a second interface type such as a thimble or pogopin interface
  • the first interface module 40 and the second interface module 50 may be wired charging interfaces.
  • the wireless charging chip 60 can be connected to a wireless power source, such as an external wireless charger.
  • the wireless charging chip 60 may use a resonant wireless receiving circuit, including a receiving coil, a tuning circuit, and a rectifying and filtering circuit. Adjust the operating frequency of the receiving coil so that it enters a resonant state at the operating frequency of the transmitting coil in the charger to achieve efficient reception and conversion of the magnetic field energy emitted by the transmitting coil, and then the output alternating voltage is rectified and filtered After the circuit is processed, a DC state wireless charging power source is generated.
  • the wireless charging chip 60 may be a wireless charging interface.
  • the first interface module 40 and the second interface module 50 are connected to the first switch 82, the USB protocol chip 90 and the system chip 10 through a data transmission line (such as a data transmission line D+/D-) to form a data transmission line.
  • a data transmission line such as a data transmission line D+/D-
  • the first interface module 40 and the second interface module 50 are connected to an external data device (for example, an external storage device)
  • the data is transmitted to the system chip 10 through the data transmission line.
  • the first switch 82 switches and connects to at least one interface connected to an external data device according to the connection of the first interface module 40 and the second interface module 50 to an external data device, forming a single data transmission line or a parallel data transmission line .
  • the USB protocol chip 90 implements a coexistence transmission mode of different types of interfaces, for example, transmission through the data transmission line D+/D ⁇ or the 12C bus.
  • the system chip 10 is also connected to the data transmission line D+/D ⁇ and the 12C bus through the USB physical interface 12 to receive data.
  • the first interface module 40 and the second interface module 50 are connected to the second switch 84, the overvoltage protection module 70, the third switch 86 and the charging chip 20 through a power transmission line (such as a power transmission line VBUS), Form a wired power transmission line.
  • the wireless charging chip 60 is connected to the third switch 86 and the charging chip 20 through a power transmission line (such as a power transmission line VBUS), forming a wireless power transmission line.
  • the second switch 84 turns on one of the first interface module 40 and the second interface module 50
  • the overvoltage protection module 70 is connected to the third switch 86 to provide wired charging power; when the wireless charging chip 60 is connected to an external wireless power supply (for example, an external wireless charger), the third switch 86 provides wireless Charger.
  • the third switch 86 selects one of the wired charging power or the wireless charging power to provide the charging chip 20 with the wired charging power or the wireless charging power.
  • the charging chip 20 outputs voltage and current to control the charging of the battery 30 .
  • the overvoltage protection module 70 is used to cut off the line when the voltage of the wired charging power source is higher than a certain value; when the voltage of the wired charging power source returns to a normal range, it is automatically connected to protect the charging chip 20 and the battery 30 .
  • one of the wired power transmission line or the wireless power transmission line is selected as the charging line to realize single power supply charging and prevent different voltages from charging.
  • the two charging power sources connected in parallel make the charging current flowing through the charging chip 20 too large, which ensures the reliability of the charging chip 20 and the battery 30 .
  • FIG. 2 is an application circuit diagram of a charging method provided by another embodiment of the present application.
  • the charging method of the present application can be applied in an electronic device, for example, the electronic device 200 shown in FIG. 2 .
  • the electronic device 200 can be a smart phone, a tablet computer, a portable computer, a personal digital assistant (Personal Digital Assistant, PDA), a smart watch or other electronic devices with wireless communication functions.
  • PDA Personal Digital Assistant
  • the electronic device 200 includes a system chip 10, a charging chip 20, a battery 30, a first interface module 40, a second interface module 50, a wireless charging chip 60, an overvoltage protection module 70, a first switch 82, a USB protocol chip 90 and A plurality of switch modules 92,94,96.
  • the first interface module 40 and the second interface module 50 are electrically connected to the system chip 10 through the first switch 82 and the USB protocol chip 90 .
  • the first interface module 40 is also connected to the overvoltage protection module 70 through the first switch module 92 ;
  • the second interface module 50 is also connected to the overvoltage protection module 70 through the second switch module 94 .
  • the wireless charging chip 60 is connected to the overvoltage protection module 70 through a third switch module 96 .
  • the overvoltage protection module 70 is electrically connected to the charging chip 20 .
  • the charging chip 20 is electrically connected to the system chip 10 and the battery 30 respectively.
  • the SoC 10 is an integrated circuit for realizing the functions of the electronic device 200 , including but not limited to modules, circuits and systems for realizing the functions of the electronic device.
  • the system chip 10 is a system on chip (SoC) of an electronic device.
  • SoC 10 includes a USB physical interface 12 .
  • the charging chip 20 is used to obtain power provided by an external charger from at least one of the first interface module 40, the second interface module 50 and the wireless charging chip 60, and output voltage and current to control the charging and charging of the battery 30. Provide power for the system chip 10 .
  • the battery 30 can be a rechargeable battery, which can be repeatedly charged and discharged by the charging chip 20 .
  • the battery 30 can provide power for the system chip 10 .
  • the first interface module 40 and the second interface module 50 can be connected to a wired power source, such as an external wired charger.
  • the first interface module 40 and the second interface module 50 are different types of interfaces or support different types of port protocols.
  • the first interface module 40 can be but not limited to a first interface type, such as type C (USB Type-C) interface
  • supported port protocols include but not limited to standard downstream port (standard downstream port, SDP), charging downstream port (charge downstream port, CDP), dedicated charging port (dedicated charging port, DCP) , fast charging port (FCP), super charging port (SCP), USB power delivery (USB power delivery, USB PD) protocol.
  • the second interface module 50 can be, but not limited to, a second interface type, such as a thimble or pogopin interface, which can coexist with a type C interface or a micro-USB interface.
  • a second interface type such as a thimble or pogopin interface
  • the first interface module 40 and the second interface module 50 may be wired charging interfaces.
  • the wireless charging chip 60 can be connected to a wireless power source, such as an external wireless charger.
  • the wireless charging chip 60 may use a resonant wireless receiving circuit, including a receiving coil, a tuning circuit, and a rectifying and filtering circuit. Adjust the operating frequency of the receiving coil so that it enters a resonant state at the operating frequency of the transmitting coil in the charger to achieve efficient reception and conversion of the magnetic field energy emitted by the transmitting coil, and then the output alternating voltage is rectified and filtered After the circuit is processed, a DC state wireless charging power source is generated.
  • the wireless charging chip 60 may also be, but not limited to, a wireless charging interface or other names.
  • the wireless charging chip 60 may be a wireless charging interface.
  • the first interface module 40 and the second interface module 50 are connected to the first switch 82, the USB protocol chip 90 and the system chip 10 through a data transmission line (such as a data transmission line D+/D-) to form a data transmission line.
  • a data transmission line such as a data transmission line D+/D-
  • the first interface module 40 and the second interface module 50 are connected to an external data device (for example, an external storage device)
  • the data is transmitted to the system chip 10 through the data transmission line.
  • the first switch 82 switches and connects to at least one interface connected to an external data device according to the connection of the first interface module 40 and the second interface module 50 to an external data device, forming a single data transmission line or a parallel data transmission line .
  • the USB protocol chip 90 implements a coexistence transmission mode of different types of interfaces, for example, transmission through the data transmission line D+/D ⁇ or the 12C bus.
  • the system chip 10 is also connected to the data transmission line D+/D ⁇ and the I2C bus through the USB physical interface 12 to receive data.
  • the system chip 10 can identify the type and charging capability of the first interface module 40 and the second interface module 50 connected to the external wired charger through the USB protocol chip 90 .
  • the system chip 10 and the USB protocol chip 90 use the BC1.2 battery charging protocol (battery charging specification 1.2) to detect the connected The type and charging capacity of the external charger.
  • the system chip 10 can control the USB protocol chip 90 through the I2C bus to control and identify the type and charging capability of the external charger.
  • the first interface module 40 and the second interface module 50 respectively connect the first switch module 92 and the second switch module 94 to the overvoltage protection module 70 through a power transmission line (such as a power transmission line VBUS). and the charging chip 20 to form a wired power transmission line.
  • the wireless charging chip 60 is connected to the third switch module 96 , the overvoltage protection module 70 and the charging chip 20 through a power transmission line (such as a power transmission line VBUS), forming a power transmission line.
  • the switch modules 92 , 94 , and 96 may be, but not limited to, field effect transistors (MOS transistors).
  • the overvoltage protection module 70 is used to cut off the line when the voltage of the wired charging power supply or the wireless charging power supply is higher than a certain value; when the voltage of the wired charging power supply and the wireless charging power supply returns to a normal range, it is automatically connected to protect the charging chip 20 and battery 30 .
  • the electronic device 200 further includes at least one memory 210 , at least one processor 220 and a charging control system 230 .
  • the charging control system 230 is stored in the memory 210 .
  • the processor 220 runs or executes the charging control system 230 stored in the memory 210, and calls the data stored in the memory 210, so that the processor 220 realizes the charging method executed by the electronic device 200, and controls Each part of the memory 210 and the electronic device 200 .
  • the processor 220 can use various interfaces and buses to connect the memory 210 and various parts of the electronic device 200 .
  • the memory 210 and at least one processor 220 may be integrated on the SoC 10 , or independently disposed outside the SoC 10 .
  • the charging control system 230 includes an interface detection module 231 , a coulomb counter module 232 , a battery monitoring module 233 , a charging strategy module 234 and a charging driving module 235 .
  • the charging control system 230 can be divided into one or more modules/units, such as the modules in FIG. 4, the one or more modules/units are stored in the memory 210, and Executed by the at least one processor 220 to complete the present invention.
  • the one or more modules/units may be a series of computer program instruction segments capable of accomplishing specific functions, and the instruction segments are used to describe the execution process of the charging control system 230 in the electronic device 200 .
  • the integrated modules/units of the charging control system 230 are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, all or part of the processes in the methods of the above embodiments in the present application can also be completed by instructing related hardware through computer programs.
  • the computer programs can be stored in a computer-readable storage medium, and the computer When the program is executed by the processor, the steps in the above-mentioned various method embodiments can be realized.
  • the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, and a read-only memory (Read-Only Memory, ROM) .
  • the memory 210 can be used to store the charging control system 230 and/or modules/units, and the processor 220 runs or executes computer-readable instructions and/or modules/units stored in the memory 210, and calls The data stored in the memory 210 implements various functions of the electronic device 200 .
  • the memory 210 can mainly include a program storage area and a data storage area, wherein the program storage area can store an operating system, at least one application program required by a function (such as a sound playback function, an image playback function, etc.) and the like; the storage data area can store Data created according to use of the electronic device 200 (such as audio data, etc.) and the like are stored.
  • the memory 210 may include a non-volatile computer-readable storage medium, such as a hard disk, a memory, a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card ( Flash Card), at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • a non-volatile computer-readable storage medium such as a hard disk, a memory, a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, a flash memory card ( Flash Card), at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • a non-volatile computer-readable storage medium such as a hard disk, a memory, a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD)
  • the processor 220 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the processor 220 may be a microprocessor or any conventional processor, and the processor 220 is the control center of the electronic device 200 .
  • the interface detection module 231 is used for detecting the types of external chargers connected to the first interface module 40 and the second interface module 50 .
  • the coulomb counter module 232 is used to calculate the power of the battery 30, and provide a port for querying the status of the battery 30, such as battery temperature, power, current, voltage, etc., by providing battery status information to achieve battery health monitor.
  • the battery monitoring module 233 is used for controlling the coulomb counter module 232 and the charging chip 20 , and monitoring state changes of the coulomb counter module 232 and the charging chip 20 .
  • the battery monitoring module 233 is also used to periodically check the status of the battery 30 and provide status information of the battery 30 .
  • the charging strategy module 234 is used to determine the charging line according to the type of external charger detected by the interface detection module 231, the support capability of the charging chip 20 obtained by the battery monitoring module 233 and the current state of the battery 30 control.
  • the charging drive module 235 is used to control the on-off of the plurality of switch modules 92, 94, 96, so as to realize the on-off of each charging circuit.
  • FIG. 5 is a flow chart of a charging method provided in an embodiment of the present application. Wherein, the charging method is applied in the electronic device 200 . Exemplarily, the charging method may include the following steps. Optionally, according to different requirements, the sequence of steps in the flow chart shown in FIG. 5 can be changed, and some steps can be omitted.
  • Step S511 Detect charging capability data of the wired charger and the wireless charger.
  • the first interface module 40 and the second interface module 50 can be connected to an external wired charger, and the wireless charging chip 60 can be connected to an external wireless charger.
  • the wired charger can charge the electronic device 200 through the first charging circuit, and the wireless charger can charge the electronic device 200 through the second charging circuit.
  • the interface detection module 231 detects that the first interface module 40 , the second interface module 50 and the wireless charging chip 60 are connected to external wired chargers and wireless chargers, and detects the type and charging capability data of the connected external chargers.
  • the interface detection module 231 uses the BC1.2 battery charging protocol (battery charging specification 1.2) to detect The type of external charger connected.
  • the types of external wired chargers and wireless chargers that are detected include chargers that match SDP, CDP, DCP, FCP, SCP, and the like. It can be understood that different types of chargers have different charging capabilities and provide different charging voltages and charging currents.
  • Step S512 calculate the charging power value when using the first charging circuit and the second charging circuit to charge simultaneously and/or calculate the charging power value when using the first charging circuit or the second charging circuit to obtain the maximum charging power value.
  • the battery monitoring module 233 acquires the maximum charging current supported by the charging chip 20 and the battery 30, and calculates the first charging circuit and The charging theoretical power value of the second charging circuit charging at the same time. When there is no equal charging voltage in the charging capacity data of the external wired charger and the wireless charger, the theoretical charging power values of the first charging circuit and the second charging circuit are calculated separately.
  • Step S513 negotiating to use the first charging circuit and/or the second charging circuit corresponding to the maximum charging power value to charge the electronic device.
  • the charging strategy module 234 compares the charging power values of the first charging circuit and the second charging circuit at the same time and the charging power values of the first charging circuit and the second charging circuit separately, and negotiates to use the charging with the largest power value. The circuit is charged.
  • FIG. 6 is a flow chart of a charging method provided in another embodiment of the present application. Wherein, the charging method is applied in the electronic device 200 . Exemplarily, the charging method may include the following steps. Optionally, according to different requirements, the order of the steps in the flowchart shown in FIG. 6 may be changed, and some steps may be omitted.
  • Step S611 Detect the types of external chargers connected to the first interface module 40, the second interface module 50 and the wireless charging chip 60.
  • the interface detection module 231 sequentially detects whether the first interface module 40 , the second interface module 50 and the wireless charging chip 60 are connected to an external charger, and detects the type of the connected external charger.
  • the interface detection module 231 uses the BC1.2 battery charging protocol (battery charging specification 1.2) in combination with the USB protocol chip 90 through the data transmission line D+/D- of the first interface module 40 and the second interface module 50 Detect the type of external charger connected.
  • the types of external chargers that are detected to be connected include chargers that match SDP, CDP, DCP, FCP, SCP, and the like. It can be understood that different types of chargers have different charging capabilities and provide different charging voltages and charging currents.
  • Step S612 Establish a charging capability data set of each interface connected to the charger.
  • the charging strategy module 234 establishes a charging capability data set according to the types of external chargers identified by the interface detection module 231 and organizes the charging capability data supported by these external chargers, for example In the form of a list of charging capabilities or other datasets.
  • the external charger connected to the first interface module 40 establishes a charging capability list: V_t1/I_t1, V_t2/I_t2, V_t3/I_t3, . . . , V_tn/I_tn.
  • n is a positive integer
  • V_tn is the charging voltage
  • I_tn is the charging current.
  • the external charger connected to the second interface module 50 establishes a charging capability list: V_p1/I_p1, V_p2/I_p2, V_p3/I_p3, . . . , V_pn/I_pn.
  • n is a positive integer
  • V_pn is a charging voltage
  • I_pn is a charging current.
  • the external wireless charger connected to the wireless charging chip 60 establishes a charging capability list: V_w1/I_w1, V_w2/I_w2,
  • V_w3/I_w3, ..., V_wn/I_wn is a positive integer
  • V_wn is a charging voltage
  • I_wn is a charging current.
  • the charging capability list of the external charger connected to the first interface module 40 can be as shown in Table 1:
  • Step S613 Query whether there is a situation that the charging voltages are equal.
  • the charging strategy module 234 sequentially traverses the charging capability lists of the chargers connected to the first interface module 40 , the second interface module 50 and the wireless charging chip 60 to check whether there is an equal charging voltage.
  • Step S614 Calculate the theoretical charging power value when multiple lines are charged at the same time.
  • the battery monitoring module 233 obtains the maximum charging current I_max supported by the charging chip 20 and the battery 30 .
  • the current value of multi-channel charging exceeds the maximum charging current I_max supported by the charging chip 20 and the battery 30, a smaller maximum charging current I_max is used for calculation through the MIN function, so the calculated charging theoretical power value Px is not It will exceed the maximum charging current I_max supported by the charging chip 20 and the battery 30, so that the charging current during charging will not exceed the maximum charging current I_max, which can ensure charging safety and effectively protect the charging chip 20 and the battery 30.
  • step S615 is performed after step S614.
  • Step S615 Calculate the maximum charging power value when each line is charged individually.
  • the maximum charging power value when charging with a single line is calculated, for example, the maximum charging power value Pt_max of the external charger connected to the first interface module 40 is the maximum value of V_tx*I_tx; the second interface The maximum charging power value Pw_max of the external charger connected to the module 50 is the maximum value of V_wx*I_wx; the maximum charging power value Pp_max of the external charger connected to the wireless charging chip 60 is the maximum value of V_px*I_px. It can be understood that the maximum charging power values of all combinations are less than the maximum charging power supported by the charging chip 20 and the battery 30 , which can ensure charging safety and effectively protect the charging chip 20 and the battery 30 .
  • Step S616 negotiateate to use the maximum charging power for charging.
  • the charging strategy module 234 compares the power values of simultaneous charging of multiple lines with the maximum charging power values of multiple sets of single lines, and negotiates to use the charging line with the largest maximum power for simultaneous charging. For example, compare the charging theoretical power value Px of multiple (three or two) simultaneous charging and the charging maximum power values Pt_max, Pw_max, and Pp_max of multiple single lines, select the largest charging power value, and negotiate to use the The charging line corresponding to the above-mentioned maximum charging power value is used for charging.
  • the theoretical charging power value Px of multi-channel simultaneous charging is the maximum value
  • negotiate to use three simultaneous charging for example, when the charging theoretical power value of multiple simultaneous charging Px is 34.5W, the maximum charging power value Pt_max of the external charger connected to the first interface module 40 is 30.8W, the maximum charging power value Pw_max of the external charger connected to the second interface module 50 is 31.2W, and the wireless charging chip The maximum charging power value Pp_max of the external charger connected to 60 is 33.4W.
  • the charging theoretical power value Px of multiple simultaneous charging is the maximum value, and then three simultaneous charging is negotiated.
  • the theoretical charging power value Px of multiple simultaneous charging is the safe charging of the charging chip 20 and the battery 30. Within the range, that is, the charging efficiency is improved and the use safety of the charging chip 20 and the battery 30 is guaranteed.
  • Step S617 Control the on-off of the plurality of switch modules 92, 94, 96 to realize the connection of the charging circuit.
  • the charging drive module 235 controls the switch modules 92 and 96 to be turned on, and the control switch module 94 is turned off, then the first interface module 40 and the wireless charging chip 60 are connected to each other.
  • the input external charger simultaneously outputs charging voltage and current to charge the battery 30 through the charging chip 20 .
  • the charging drive module 235 controls the switch module 92 to turn on, and controls the switch modules 94 and 96 to turn off, then the external charger connected to the first interface module 40 outputs a charging The voltage and current charge the battery 30 through the charging chip 20 .
  • the coulomb counter module 232 provides for querying the status information of the battery 30, such as battery temperature, power, current, voltage, etc., when it is detected that the real-time charging current exceeds the maximum charging current I_max supported by the battery during the charging process, Feedback is then provided to the charging strategy module 234 to control the cutoff of the charging circuit through the charging driving module 235 to protect the battery.
  • FIG. 7 is a schematic diagram of an application scenario of an electronic device applying a charging method provided by an embodiment of the present application.
  • the electronic device 200 includes a first interface module 40 , a second interface module 50 and a wireless charging chip 60 arranged in multiple locations.
  • the first interface module 40 , the second interface module 50 and the wireless charging chip 60 can be respectively connected to different external chargers 242 , 244 , 246 at the same time.
  • the first interface module 40 may be, but not limited to, a type C (USB Type-C) interface, and the external charger 242 connected to it is a wired charger adapted to the type C interface;
  • the second interface The module 50 can be, but not limited to, a pogopin interface, and the external charger 244 connected to it is a wired charger adapted to the pogopin interface;
  • the external charger 246 of the wireless charging chip 60 is a wireless charger adapted to the wireless charging standard. charger.
  • the present application also provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, it is used to implement any one of the above-mentioned steps for the charging method.
  • the charging method and electronic device of the present application can be connected to a plurality of different types of external chargers at the same time, and the charging capabilities of multi-channel charging can be analyzed, and the use of multiple simultaneous charging can be negotiated to ensure that the charging voltages of multiple outputs are consistent and meet the requirements of the charging chip. Under the safe condition of the charging current of the battery, the battery is charged with a higher charging power, which effectively improves the charging efficiency.
  • each functional module of the electronic device may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware, or in the form of hardware plus software function modules.
  • modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware, or in the form of hardware plus software function modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例公开一种充电方法、电子装置和计算机可读存储介质,电子装置通过有线充电接口和无线充电接口分别接入有线充电器和无线充电器,有线充电器通过第一充电电路对电子装置进行充电,无线充电器通过第二充电电路对电子装置进行充电,充电方法包括:检测所述有线充电器和无线充电器的充电能力数据;计算使用第一充电电路和第二充电电路同时充电时的充电功率值和/或计算使用第一充电电路或第二充电电路充电时的充电功率值,获得最大充电功率值;及协商使用最大充电功率值对应的第一充电电路和/或第二充电电路对电子装置充电。可以实现接入多个不同类型的充电器,并实现多路同时充电。

Description

充电方法、电子装置及计算机可读存储介质
相关申请的交叉引用
本申请要求于2021年9月2日提交中国专利局、申请号为202111028537.5、申请名称为“充电方法、电子装置及计算机可读存储介质”的中国专利的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及一种电子信息技术领域,尤其涉及一种多路同时充电的充电方法、电子装置及计算机可读存储介质。
背景技术
目前的消费性电子装置,如手机、笔记本电脑等,通常配备有线充电和无线充电等多种充电方案。此外,在有线充电方案中还包括多种不同充电能力的充电接口。电子装置通常通过接口接入有线充电器或通过无线连接接入无线充电器其中之一,来实现电源单一的有线充电或无线充电。但是,当电子装置同时通过接口接入有线充电器或通过无线连接接入无线充电器时,存在有线充电电源和无线充电电源都接入到充电芯片的电源输入端的情况,如此容易造成充电芯片因两路充电电源并联接入而使得流过充电芯片的充电电流过大,继而导致整个电子装置的电源系统存在安全隐患。同时,电池的使用寿命也会因此而受到影响,从而导致电子装置使用的可靠性降低。
发明内容
本申请实施例提供一种充电方法、电子装置及计算机可读存储介质,采用本申请的实施例,可以接入多个不同类型的充电器,并实现多路同时充电。
第一方面,本申请的实施例提供一种充电方法,应用于电子装置中,所述电子装置通过有线充电接口和无线充电接口分别接入有线充电器和无线充电器,有线充电器通过第一充电电路对电子装置进行充电,无线充电器通过第二充电电路对电子装置进行充电,所述充电方法包括:检测所述有线充电器和无线充电器的充电能力数据;计算使用第一充电电路和第二充电电路同时充电时的充电功率值和/或计算使用第一充电电路或第二充电电路充电时的充电功率值,获得最大充电功率值;及协商使用最大充电功率值对应的第一充电电路和/或第二充电电路对电子装置充电。
采用本申请的实施例的充电方法,协商使用最大充电功率的一个或多个充电电路同时充电。
结合第一方面,在一种可能的实现方式中,有线充电接口包括第一充电 接口和第二充电接口,第一充电接口接入与第一接口类型匹配的有线充电器,第二充电接口接入与第二接口类型匹配的有线充电器,无线充电接口接入无线充电器。
基于这样的设计,通过不同的接口接入不同类型的充电器。
结合第一方面,在一种可能的实现方式中,所述接入的充电器的充电能力数据包括多组充电电压和充电电流;所述充电方法还包括建立接入的充电器的充电能力数据集;所述充电器的充电能力数据集包括有线充电器和无线充电器的多组充电电压和充电电流。
基于这样的设计,建立充电能力数据集包括多项数据。
结合第一方面,在一种可能的设计中,所述充电方法还包括:查询所述充电能力数据集中是否存在充电电压相等的组别;当存在充电电压相等的组别,则计算第一充电电路和第二充电电路同时充电时的充电功率值。
基于这样的设计,可以计算多个充电电路的充电功率值。
结合第一方面,在一种可能的实现方式中,所述计算使用第一充电电路或第二充电电路充电时的充电功率值。
基于这样的设计,可以计算单一充电电路的充电功率值。
结合第一方面,在一种可能的实现方式中,所述充电方法还包括:查询所述充电能力数据集中是否存在充电电压相等的组别;当不存在充电电压相等的组别,计算使用第一充电电路或第二充电电路充电时的充电功率值。
基于这样的设计,可以计算单一充电电路的充电功率值。
结合第一方面,在一种可能的实现方式中,所述充电方法还包括:获取所述电子装置的充电芯片和电池的最大充电电流,结合所述最大充电电流计算第一充电电路和第二充电电路同时充电时的充电功率值。
基于这样的设计,可以保证充电电流不超过充电芯片和电池的最大充电电流。
结合第一方面,在一种可能的实现方式中,所述当不存在充电电压相等的组别,则计算使用第一充电电路或第二充电电路充电时的充电功率值,包括:分别计算第一充电接口和第二充电接口接入的充电器的充电最大功率。
基于这样的设计,可以计算接入的充电器的充电最大功率。
结合第一方面,在一种可能的实现方式中,所述充电方法还包括:导通协商使用的充电线路,截止未使用的充电线路。
基于这样的设计,截止协商未使用的充电线路,防止过充。
第二方面,本申请的实施例还提供一种电子装置,包括:有线充电接口和无线充电接口,分别接入有线充电器和无线充电器,有线充电器通过第一充电电路对电子装置进行充电,无线充电器通过第二充电电路对电子装置进行充电;存储器,存储有计算机程序;处理器,用于执行存储器中存储的计算机程序以实现:检测所述有线充电器和无线充电器的充电能力数据;计算使用第一充电电路和第二充电电路同时充电时的充电功率值和/或计算使用第一充电电路或第二充电电路充电时的充电功率值,获得最大充电功率值; 及协商使用最大充电功率值对应的第一充电电路和/或第二充电电路对电子装置充电。
采用本申请的实施例的电子装置,协商使用最大充电功率的一个或多个充电电路同时充电。
结合第二方面,在一种可能的实现方式中,所述有线充电接口包括第一充电接口和第二充电接口,第一充电接口接入与第一接口类型匹配的有线充电器;第二充电接口接入与第二接口类型匹配的有线充电器;及无线充电接口接入无线充电器。
基于这样的设计,通过不同的接口接入不同类型的充电器。
结合第二方面,在一种可能的实现方式中,所述接入的充电器的充电能力数据包括多组充电电压和充电电流;所述充电方法还包括建立接入的充电器的充电能力数据集;所述充电器的充电能力数据集包括有线充电器和无线充电器的多组充电电压和充电电流。
基于这样的设计,建立充电能力数据集包括多项数据。
结合第二方面,在一种可能的实现方式中,所述处理器还用于执行存储器中存储的计算机程序以实现:查询所述充电能力数据集中是否存在充电电压相等的组别;当存在充电电压相等的组别,则计算第一充电电路和第二充电电路同时充电时的充电功率值。
结合第二方面,在一种可能的实现方式中,所述处理器还用于执行存储器中存储的计算机程序以实现:计算使用第一充电电路或第二充电电路充电时的充电功率值。
基于这样的设计,可以计算多个充电电路的充电功率值。
结合第二方面,在一种可能的实现方式中,所述处理器还用于执行存储器中存储的计算机程序以实现:查询所述充电能力数据集中是否存在充电电压相等的组别;当不存在充电电压相等的组别,计算使用第一充电电路或第二充电电路充电时的充电功率值。
基于这样的设计,可以计算单一充电电路的充电功率值。
结合第二方面,在一种可能的实现方式中,所述电子装置还包括充电芯片和电池,所述处理器还用于执行存储器中存储的计算机程序以实现:获取所述充电芯片和电池的最大充电电流,结合所述最大充电电流计算第一充电电路和第二充电电路同时充电时的充电功率值。
基于这样的设计,可以计算单一充电电路的充电功率值。
结合第二方面,在一种可能的实现方式中,所述当不存在充电电压相等的组别,则计算使用第一充电电路或第二充电电路充电时的充电功率值,包括:分别计算第一充电接口和第二充电接口接入的充电器的充电最大功率。
基于这样的设计,可以保证充电电流不超过充电芯片和电池的最大充电电流。
结合第二方面,在一种可能的实现方式中,所述处理器还用于执行存储器中存储的计算机程序以实现:导通协商使用的充电电路,截止未使用的充 电电路。
基于这样的设计,截止协商未使用的充电线路,防止过充。
第三方面,本申请的实施例还提供一种电子装置,包括:电池和充电芯片,充电芯片与电池电性连接有线充电接口接入不同类型的有线充电器,有线充电器通过有线充电接口电性连接至充电芯片和电池,形成第一充电电路;无线充电接口接入无线充电器,无线充电器通过无线充电接口电性连接至充电芯片和电池,形成第二充电电路;所述第一充电电路和第二充电电路同时对电子装置充电,或者所述第一充电电路或第二充电电路单独对电子装置充电。
采用本申请的实施例的电子装置,协商使用最大充电功率的一个或多个充电电路同时充电。
结合第三方面,在一种可能的实现方式中,所述有线充电接口包括第一充电接口和第二充电接口,第一充电接口接入与第一接口类型匹配的有线充电器;第二充电接口接入与第二接口类型匹配的有线充电器;及无线充电接口接入无线充电器。
结合第三方面,在一种可能的实现方式中,所述电子装置还包括:第一开关模块,电性连接所述第一充电接口、充电芯片和电池;第二开关模块,电性连接所述第二充电接口、充电芯片和电池;及第三开关模块,电性连接所述无线充电接口、充电芯片和电池。
基于这样的设计,可以分别通过每一充电电路对应设置的开关模块控制充电电路的通断。
结合第三方面,在一种可能的实现方式中,所述电子装置还包括接口协议芯片,电性连接至第一充电接口及第二充电接口,用于检测第一充电接口和第二充电接口接入的有线充电器的充电能力数据。
基于这样的设计,可以检测充电接口接入充电器的充电能力数据。
结合第三方面,在一种可能的实现方式中,所述电子装置还包括:过压保护模块,所述第一充电接口、第二充电接口和无线充电接口分别通过过压保护模块电性连接至充电芯片和电池。
基于这样的设计,可以对电池和充电芯片进行过压保护。
第四方面,本申请的实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述所述的充电方法。
采用本申请实施例提供的充电方法、电子装置及计算机可读存储介质,可同时接入多个不同类型的外部充电器,并分析多路充电的充电能力,协商使用多路同时充电,保证多路输出的充电电压一致,且满足充电芯片和电池的充电电流的安全条件下,以较高充电功率对电池进行充电,有效提高了充电效率。
附图说明
图1是本申请一实施例提供的充电方法的应用电路图。
图2是本申请另一实施例提供的充电方法的应用电路图。
图3是本申请实施例提供的电子装置的示意图。
图4是本申请实施例提供的充电控制系统的示意图。
图5是本申请一实施例提供的充电方法的流程图。
图6是本申请另一实施例提供的充电方法的流程图。
图7是本申请实施例提供的应用充电方法的电子装置的应用场景示意图。
主要元件符号说明
电子装置 100、200
系统芯片 10
USB物理接口 12
充电芯片 20
电池 30
第一接口模块 40
第二接口模块 50
无线充电芯片 60
过压保护模块 70
第一开关 82
第二开关 84
第三开关 86
USB协议芯片 90
第一开关模块 92
第二开关模块 94
第三开关模块 96
存储器 210
处理器 220
充电控制系统 230
接口检测模块 231
库仑计模块 232
电池监控模块 233
充电策略模块 234
充电驱动模块 235
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。本文中符号“/”表示关联对象是或者的关系,例如A/B表示A或者B。
本申请实施例中,“第一”、“第二”等词汇,仅用于区别不同的对象,不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。例如,第一应用、第二应用等是用于区别不同的应用,而不是用于描述应用的特定顺序,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请实施例的描述中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
请参阅图1,为本申请一实施例提供的充电方法的应用电路图。
所述充电方法可以应用在电子装置中,例如,如图1所示的电子装置100。所述电子装置100可为智能手机、平板计算机、手提式计算机、个人数字助理(Personal Digital Assistant,PDA)、游戏机、交互式网络电视(Internet Protocol Television,IPTV)、智能穿戴设备或具有无线通信功能的其他电子装置。
所述电子装置100包括系统芯片10、充电芯片20、电池30、第一接口模块40、第二接口模块50、无线充电芯片60、过压保护模块70、多个开关82、84、86及接口协议芯片90。
所述第一接口模块40和第二接口模块50通过第一开关82和接口协议芯片90电性连接至所述系统芯片10。所述第一接口模块40和第二接口模块50还通过第二开关84、过压保护模块70、第三开关86电性连接至所述充电芯片20。所述无线充电芯片60通过第三开关86电性连接至所述充电芯片20。所述充电芯片20分别电性连接至所述系统芯片10及所述电池30。在一些实施例中,接口协议芯片可为但不限于为USB协议芯片90。
所述系统芯片10为实现所述电子装置100功能的集成电路,包括但不限于实现电子装置功能的模块、电路及系统等。本实施例中,所述系统芯片10为电子装置的系统级芯片(system on chip,SoC)。所述系统芯片10包括一物理接口,例如USB物理接口12。
所述充电芯片20用于从所述第一接口模块40、第二接口模块50及无线充电芯片60中至少一个获取外部充电器提供的电源,并输出电压及电流以控制所述电池30充电及为所述系统芯片10供电。
本实施例中,所述电池30为可充电池,可通过所述充电芯片20进行反复充放电。当所述第一接口模块40、第二接口模块50及无线充电芯片60未连接外部充电器获取电源时,所述电池30可为所述系统芯片10供电。
所述第一接口模块40与第二接口模块50可连接有线电源,例如连接外部有线充电器。本实施例中,所述第一接口模块40与第二接口模块50为不同类型的接口或支持不同类型的端口协议,例如第一接口模块40可为但不限于为第一接口类型,例如type C(USB Type-C)接口,支持的端口协议包括但不限于为标准下行端口(standard downstream port,SDP)、充电下行端口(charge downstream port,CDP)、专用充电端口(dedicated charging port,DCP)、快速充电接口(fast charging port,FCP)、超快充电接口(super charging port,SCP)、USB功率传输(USB power delivery,USB PD)协议。所述第二接口模块50可为但不限于为第二接口类型,例如顶针或弹簧针(pogopin)接口,可与type C接口或micro-USB接口共存连接。在一些实施例中,第一接口模块40和第二接口模块50可以为有线充电接口。
所述无线充电芯片60可连接无线电源,例如连接外部无线充电器。本实施例中,所述无线充电芯片60可以采用谐振式无线接收电路,包括接收线圈、调谐电路和整流滤波电路。调节接收线圈的工作频点,使其在充电器中的发射线圈的工作频点处进入谐振状态,以对发射线圈发射的磁场能量实现高效率的接收和转换,进而输出交变电压经整流滤波电路处理后,生成直流态的无线充电电源。本实施例中,由于所述第一接口模块40、第二接口模块50及无线充电芯片60均可接入不同类型的外部充电器,这些外部充电器具有不同的充电能力,因此从这些外部充电器获取的电源具有不同的电压和电流。在一些实施例中,无线充电芯片60可以为无线充电接口。
本实施例中,所述第一接口模块40与第二接口模块50通过数据传输线(例如数据传输线D+/D-)连接所述第一开关82、USB协议芯片90及系统芯片10,形成数据传输线路。当第一接口模块40与第二接口模块50接入外部数据设备(例如,外部存储装置)时,通过所述数据传输线路将数据传输至所述系统芯片10。所述第一开关82根据第一接口模块40与第二接口模块50接入外部数据设备的情况,切换连接至至少一个接入有外部数据设备的接口,形成单一数据传输线路或并行数据传输线路。本实施例中,所述USB协议芯片90实现不同类型接口的共存传输方式,例如,通过数据传输线D+/D-或12C总线进行传输。本实施例中,所述系统芯片10还通过所述USB物理接口12连接所述数据传输线D+/D-及12C总线,以接收数据。
本实施例中,所述第一接口模块40与第二接口模块50通过电源传输线(例如电源传输线VBUS)连接所述第二开关84、过压保护模块70、第三开关86及充电芯片20,形成有线电源传输线路。所述无线充电芯片60通过电源传输线(例如电源传输线VBUS)连接所述第三开关86及充电芯片20,形成无线电源传输线路。
当第一接口模块40与第二接口模块50接入外部有线电源(例如,外部充电器)时,所述第二开关84接通所述第一接口模块40与第二接口模块50其中之一通过所述过压保护模块70连接至第三开关86,以提供有线充电电源;当所述无线充电芯片60接入外部无线电源(例如,外部无线充电器) 时,向第三开关86提供无线充电电源。所述第三开关86选定所述有线充电电源或无线充电电源的其中一路,向所述充电芯片20提供有线充电电源或无线充电电源。所述充电芯片20输出电压及电流控制所述电池30充电。
所述过压保护模块70用于当有线充电电源电压高于一定数值时,切断该线路;当有线充电电源电压恢复到正常范围时,自动接通,从而保护充电芯片20及电池30。
本实施例中,当有线充电电源和无线充电电源均接入到电子装置100中时,选定有线电源传输线路或无线电源传输线路的其中一条线路作为充电线路,实现单一电源充电,防止不同电压的两路充电电源并联接入而使得流过充电芯片20的充电电流过大,保证了充电芯片20和电池30的使用可靠性。
请参阅图2,为本申请另一实施例提供的充电方法的应用电路图。
本申请的充电方法可以应用在电子装置中,例如,如图2所示的电子装置200。所述电子装置200可为智能手机、平板计算机、手提式计算机、个人数字助理(Personal Digital Assistant,PDA)、智能手表或具有无线通信功能的其他电子装置。
所述电子装置200包括系统芯片10、充电芯片20、电池30、第一接口模块40、第二接口模块50、无线充电芯片60、过压保护模块70、第一开关82、USB协议芯片90及多个开关模块92、94、96。
所述第一接口模块40和第二接口模块50通过第一开关82和USB协议芯片90电性连接至所述系统芯片10。所述第一接口模块40还通过第一开关模块92连接至过压保护模块70;所述第二接口模块50还通过第二开关模块94连接至过压保护模块70。所述无线充电芯片60通过第三开关模块96连接至所述过压保护模块70。所述过压保护模块70电性连接至所述充电芯片20。所述充电芯片20分别电性连接至所述系统芯片10及所述电池30。
所述系统芯片10为实现所述电子装置200功能的集成电路,包括但不限于实现电子装置功能的模块、电路及系统等。本实施例中,所述系统芯片10为电子装置的系统级芯片(system on chip,SoC)。所述系统芯片10包括一USB物理接口12。
所述充电芯片20用于从所述第一接口模块40、第二接口模块50及无线充电芯片60中至少一个获取外部充电器提供的电源,并输出电压及电流以控制所述电池30充电及为所述系统芯片10供电。
本实施例中,所述电池30可为可充电池,可通过所述充电芯片20进行反复充放电。当所述第一接口模块40、第二接口模块50及无线充电芯片60未连接外部充电器获取电源时,所述电池30可为所述系统芯片10供电。
所述第一接口模块40与第二接口模块50可连接有线电源,例如连接外部有线充电器。本实施例中,所述第一接口模块40与第二接口模块50为不同类型的接口或支持不同类型的端口协议,例如第一接口模块40可为但不限于为第一接口类型,例如type C(USB Type-C)接口,支持的端口协议包括但不限于为标准下行端口(standard downstream port,SDP)、充电下 行端口(charge downstream port,CDP)、专用充电端口(dedicated charging port,DCP)、快速充电接口(fast charging port,FCP)、超快充电接口(super charging port,SCP)、USB功率传输(USB power delivery,USB PD)协议。所述第二接口模块50可为但不限于为第二接口类型,例如顶针或弹簧针(pogopin)接口,可与type C接口或micro-USB接口共存连接。在一些实施例中,第一接口模块40和第二接口模块50可以为有线充电接口。
所述无线充电芯片60可连接无线电源,例如连接外部无线充电器。本实施例中,所述无线充电芯片60可以采用谐振式无线接收电路,包括接收线圈、调谐电路和整流滤波电路。调节接收线圈的工作频点,使其在充电器中的发射线圈的工作频点处进入谐振状态,以对发射线圈发射的磁场能量实现高效率的接收和转换,进而输出交变电压经整流滤波电路处理后,生成直流态的无线充电电源。本实施例中,所述无线充电芯片60也可为但不限于为无线充电接口或其他名称。
本实施例中,由于所述第一接口模块40、第二接口模块50及无线充电芯片60均可接入不同类型的外部充电器,这些外部充电器具有不同的充电能力,因此从这些外部充电器获取的电源具有不同的电压和电流。在一些实施例中无线充电芯片60可以为无线充电接口。
本实施例中,所述第一接口模块40与第二接口模块50通过数据传输线(例如数据传输线D+/D-)连接所述第一开关82、USB协议芯片90及系统芯片10,形成数据传输线路。当第一接口模块40与第二接口模块50接入外部数据设备(例如,外部存储装置)时,通过所述数据传输线路将数据传输至所述系统芯片10。所述第一开关82根据第一接口模块40与第二接口模块50接入外部数据设备的情况,切换连接至至少一个接入有外部数据设备的接口,形成单一数据传输线路或并行数据传输线路。本实施例中,所述USB协议芯片90实现不同类型接口的共存传输方式,例如,通过数据传输线D+/D-或12C总线进行传输。本实施例中,所述系统芯片10还通过所述USB物理接口12连接所述数据传输线D+/D-及I2C总线,以接收数据。
在一些实施例中,系统芯片10可通过USB协议芯片90识别第一接口模块40与第二接口模块50接入外部有线充电器的类型及充电能力。在一些实施例中,系统芯片10和USB协议芯片90通过第一接口模块40和第二接口模块50的数据传输线D+/D-使用BC1.2电池充电协议(battery charging specification 1.2)检测接入的外部充电器的类型及充电能力。系统芯片10可通过I2C总线控制USB协议芯片90,以控制识别外部充电器的类型及充电能力。
本实施例中,所述第一接口模块40与第二接口模块50分别通过电源传输线(例如电源传输线VBUS)连接所述第一开关模块92和第二开关模块94至所述过压保护模块70及充电芯片20,形成有线电源传输线路。所述无线充电芯片60通过电源传输线(例如电源传输线VBUS)连接所述第三开关模块96、过压保护模块70及充电芯片20,形成电源传输线路。本实施例中, 所述开关模块92、94、96可以为但不限于为场效应管(MOS管)。
所述过压保护模块70用于当有线充电电源或无线充电电源电压高于一定数值时,切断该线路;当有线充电电源和无线充电电源电压恢复到正常范围时,自动接通,从而保护充电芯片20及电池30。
请一并参阅图3,所述电子装置200还包括至少一存储器210、至少一处理器220及充电控制系统230。所述充电控制系统230储存于存储器210中。所述处理器220通过运行或执行存储在存储器210内的充电控制系统230,以及调用存储在存储器210内的数据,使得所述处理器220实现由所述电子装置200执行的充电方法,并控制所述存储器210及所述电子装置200的各个部分。所述处理器220可以利用各种接口和总线连接所述存储器210及所述电子装置200的各个部分。
在一些实施例中,存储器210及至少一处理器220可以集成于系统芯片10上,或者独立设置于系统芯片10之外。
请一并参阅图4,所述充电控制系统230包括接口检测模块231、库仑计模块232、电池监控模块233、充电策略模块234及充电驱动模块235。本实施例中,所述充电控制系统230可以被分割成一个或多个模块/单元,例如图4中的各模块,所述一个或者多个模块/单元被存储在所述存储器210中,并由所述至少一个处理器220执行,以完成本发明。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述充电控制系统230在所述电子装置200中的执行过程。所述充电控制系统230集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(Read-Only Memory,ROM)。
所述存储器210可用于存储所述充电控制系统230和/或模块/单元,所述处理器220通过运行或执行存储在所述存储器210内的计算机可读指令和/或模块/单元,以及调用存储在存储器210内的数据,实现所述电子装置200的各种功能。所述存储器210可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据电子装置200的使用所创建的数据(比如音频数据等)等。此外,存储器210可以包括非易失性计算机可读存储介质,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
所述处理器220可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可程序设计门阵列(Field-Programmable Gate Array,FPGA)或者其他可程序设计逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。该处理器220可以是微处理器或者该处理器220也可以是任何常规的处理器等,所述处理器220是所述电子装置200的控制中心。
所述接口检测模块231用于检测接入所述第一接口模块40和第二接口模块50的外部充电器的类型。
所述库仑计模块232用于计算所述电池30的电量,并提供查询所述电池30状态的端口,例如电池温度、电量、电流、电压等,通过提供电池的状态信息,以实现电池的健康监测。
所述电池监控模块233用于控制所述库仑计模块232及所述充电芯片20,并监测所述库仑计模块232及所述充电芯片20的状态改变。所述电池监控模块233还用于周期性检查所述电池30状态,提供所述电池30的状态信息。
所述充电策略模块234用于根据所述接口检测模块231检测到接入的外部充电器的类型、电池监控模块233获取的充电芯片20的支持能力和电池30的当前状态来决策所述充电线路的控制。
所述充电驱动模块235用于控制所述多个开关模块92、94、96的通断,以实现各充电线路的通断。
示例性地,图5为本申请实施例提供的充电方法的流程图。其中,充电方法应用于电子装置200中。示例性地,充电方法可以包括以下步骤。可选地,可以根据不同的需求,图5所示的流程图中的步骤顺序可以改变,某些步骤可以省略。
步骤S511:检测有线充电器和无线充电器的充电能力数据。
在一些实施例中,第一接口模块40和第二接口模块50可接入外部有线充电器,无线充电芯片60可接入外部无线充电器。有线充电器可通过第一充电电路对电子装置200进行充电,无线充电器可通过第二充电电路对电子装置200进行充电。接口检测模块231检测所述第一接口模块40、第二接口模块50和无线充电芯片60接入外部有线充电器及无线充电器,并检测接入外部充电器的类型及充电能力数据。在一些实施例中,接口检测模块231结合USB协议芯片90通过所述第一接口模块40和第二接口模块50的数据传输线D+/D-使用BC1.2电池充电协议(battery charging specification 1.2)检测接入的外部充电器的类型。在一些实施例中,检测接入的外部有线充电器和无线充电器类型包括与SDP、CDP、DCP、FCP、SCP等匹配的充电器。可以理解,不同类型的充电器具有不同的充电能力,提供不同的充电电压及充电电流。
步骤S512,计算使用第一充电电路和第二充电电路同时充电时的充电功 率值和/或计算使用第一充电电路或第二充电电路充电时的充电功率值,获得最大充电功率值。
在一些实施例中,电池监控模块233获取所述充电芯片20和电池30支持最大充电电流,当外部有线充电器及无线充电器的充电能力数据中存在充电电压相等时,计算第一充电电路和第二充电电路同时充电的充电理论功率值。当外部有线充电器及无线充电器的充电能力数据中不存在充电电压相等时,分别计算第一充电电路和第二充电电路单独充电的充电理论功率值。
步骤S513,协商使用最大充电功率值对应的第一充电电路和/或第二充电电路对电子装置充电。
在一些实施例中,充电策略模块234比对第一充电电路和第二充电电路同时充电的功率值和第一充电电路和第二充电电路单独充电的充电功率值,协商使用功率值最大的充电电路进行充电。
示例性地,图6为本申请实施另一例提供的充电方法的流程图。其中,充电方法应用于电子装置200中。示例性地,所述充电方法可以包括以下步骤,可选地,可以根据不同的需求,图6所示的流程图中步骤的顺序可以改变,某些步骤可以省略。
步骤S611:检测所述第一接口模块40、第二接口模块50和无线充电芯片60接入外部充电器的类型。
本实施例中,所述接口检测模块231依次检测所述第一接口模块40、第二接口模块50和无线充电芯片60是否接入外部充电器,并检测接入外部充电器的类型。本实施例中,所述接口检测模块231结合USB协议芯片90通过所述第一接口模块40和第二接口模块50的数据传输线D+/D-使用BC1.2电池充电协议(battery charging specification 1.2)检测接入的外部充电器的类型。本实施例中,检测接入的外部充电器类型包括与SDP、CDP、DCP、FCP、SCP等匹配的充电器。可以理解,不同类型的充电器具有不同的充电能力,提供不同的充电电压及充电电流。
步骤S612:建立各接口接入充电器的充电能力数据集。
可选的,本实施例中,所述充电策略模块234根据接口检测模块231识别的接入的外部充电器的类型并整理这些外部充电器所支持的充电能力数据,建立充电能力数据集,例如充电能力列表或其他数据集的形式。例如,所述第一接口模块40接入的外部充电器建立充电能力列表:V_t1/I_t1、V_t2/I_t2、V_t3/I_t3、……、V_tn/I_tn。其中,n为正整数,V_tn为充电电压,I_tn为充电电流。所述第二接口模块50接入的外部充电器建立充电能力列表:V_p1/I_p1、V_p2/I_p2、V_p3/I_p3、……、V_pn/I_pn。其中,n为正整数,V_pn为充电电压,I_pn为充电电流。所述无线充电芯片60接入的外部无线充电器建立充电能力列表:V_w1/I_w1、V_w2/I_w2、
V_w3/I_w3、……、V_wn/I_wn。其中,n为正整数,V_wn为充电电压,I_wn为充电电流。例如,所述第一接口模块40接入的外部充电器支持的输出充电电压/电流为5v/2A,10v/4A,则其对应的充电能力值为V_t1=5v,I_t1=2A, V_t2=10v,I_t2=4A。则第一接口模块40接入的外部充电器的充电能力列表可以如表1所示:
  输出充电电压(V) 输出充电电流(I)
第一充电能力项 5V 2A
第二充电能力项 10V 4A
…第n充电能力项 xV yA
表1
步骤S613:查询是否存在充电电压相等的情况。
本实施例中,所述充电策略模块234依次遍历所述第一接口模块40、第二接口模块50和无线充电芯片60所接入的充电器的充电能力列表查询是否存在充电电压相等的情况。当所述第一接口模块40、第二接口模块50和无线充电芯片60均接入外部充电器,且存在V_tx、V_wx、V_px中任意两组或两组以上相等的情况,其中,x为正整数,也即V_tx=V_wx=V_px、V_tx=V_wx、V_tx=V_px或V_wx=V_px,则执行步骤S614;否则,执行步骤S615。
步骤S614:计算多线路同时充电时的充电理论功率值。
本实施例中,所述电池监控模块233获取所述充电芯片20和电池30支持最大充电电流I_max。当查询到存在V_tx=V_wx=V_px=V1时,计算三路同时充电(即同时使用第一接口模块40、第二接口模块50和无线充电芯片60接入外部充电器充电)的充电理论功率值Px=V1*MIN(I_max,(I_tx+I_wx+I_px))。当查询到存在V_tx=V_wx=V2时,计算两路同时充电(即同时使用第一接口模块40和无线充电芯片60接入外部充电器充电)的充电理论功率值Px=V2*min(I_max,(I_tx+I_wx))。其他两路同时充电的充电理论功率值的计算同理,在此不再累述。例如,充电芯片20和电池30支持最大充电电流I_max=7A,当查询到存在V_tx=V_wx=V_px=V1=5V时,对应的输出充电电流分别为I_tx=2A,I_wx=2.4A,I_px=2.5A,计算三路同时充电的充电理论功率值Px=V1*MIN(I_max,(I_tx+I_wx+I_px))=5V*MIN(7A,2A+2.4A+2.5A))=34.5W。
在一些实施例中,当多路充电的电流值超过充电芯片20和电池30支持最大充电电流I_max,则通过MIN函数取较小的最大充电电流I_max进行计算,因此计算的充电理论功率值Px不会超过充电芯片20和电池30支持最大充电电流I_max,使得充电时的充电电流不会超过最大充电电流I_max,可保证充电安全,有效保护充电芯片20和电池30。
在一些实施例中,在步骤S614之后执行步骤S615。
步骤S615:计算各线路单独充电时的充电最大功率值。
本实施例中,计算单一线路充电时的充电最大功率值,例如,所述第一接口模块40接入的外部充电器的充电最大功率值Pt_max取V_tx*I_tx的 最大值;所述第二接口模块50接入的外部充电器的充电最大功率值Pw_max取V_wx*I_wx的最大值;所述无线充电芯片60接入的外部充电器的充电最大功率值Pp_max取V_px*I_px的最大值。可以理解,所有组合方式的充电最大功率值均小于充电芯片20和电池30支持的最大充电功率,可保证充电安全,有效保护充电芯片20和电池30。
步骤S616:协商使用最大充电功率进行充电。
本实施例中,所述充电策略模块234比对多线路同时充电的功率值和多组单一线路的充电最大功率值,协商使用功率最大值最大的充电线路同时充电。例如,比对多路(三路或两路)同时充电的充电理论功率值Px和多组单一线路的充电最大功率值Pt_max、Pw_max和Pp_max的大小,选取其中最大的充电功率值,协商使用所述最大的充电功率值对应的充电线路进行充电。当查询到存在V_tx=V_wx=V_px=V1,且比对多路同时充电的充电理论功率值Px为最大值时,则协商使用三路同时充电;例如,当多路同时充电的充电理论功率值Px为34.5W,第一接口模块40接入的外部充电器的充电最大功率值Pt_max为30.8W,第二接口模块50接入的外部充电器的充电最大功率值Pw_max为31.2W,无线充电芯片60接入的外部充电器的充电最大功率值Pp_max为33.4W,其中,比对多路同时充电的充电理论功率值Px为最大值,则协商使用三路同时充电。当查询到存在V_tx=V_wx=V2,且比对多路同时充电的充电理论功率值Px为最大值时,则协商使用两路同时充电;当单一线路的充电最大功率值Pt_max为最大值时,则协商使用Pt_max对应的充电线路进行单一线路充电。其他线路组合同理。
可以理解,由于多路同时充电的充电电流不超过所述充电芯片20和电池30支持最大充电电流I_max,因此多路同时充电的充电理论功率值Px为所述充电芯片20和电池30的安全充电范围内,即提高了充电效率也保证了充电芯片20和电池30的使用安全。
步骤S617:控制所述多个开关模块92、94、96的通断以实现充电线路的接通。
本实施例中,所述充电驱动模块235根据协商使用的充电线路控制对应充电线路上的开关模块92、94、96中的部分或全部模块接通,未使用的充电线路对应的开关模块92、94、96中的部分或全部模块截止。例如,当V_tx=V_wx=V_px=V1时,协商使用三路同时充电,所述充电驱动模块235控制开关模块92、94、96接通,则所述第一接口模块40、第二接口模块50及无线充电芯片60接入的外部充电器同时输出充电电压及电流通过充电芯片20为电池30充电。当V_tx=V_wx=V2时,协商使用两路同时充电,所述充电驱动模块235控制开关模块92、96接通,控制开关模块94截止,则所述第一接口模块40及无线充电芯片60接入的外部充电器同时输出充电电压及电流通过充电芯片20为电池30充电。当协商使用Pt_max对应的充电线路进行单一线路充电,所述充电驱动模块235控制开关模块92接通,控制开关模块94、96截止,则所述第一接口模块40接入的外部充电器输出充电电压 及电流通过充电芯片20为电池30充电。
本实施例中,所述库仑计模块232提供查询所述电池30的状态信息,例如电池温度、电量、电流、电压等,当充电过程中监测到实时充电电流超过电池支持的最大充电电流I_max,则提供反馈给所述充电策略模块234,以通过所述充电驱动模块235控制所述充电线路的切断,以保护电池。
请参阅图7,为本申请实施例提供的应用充电方法的电子装置的应用场景示意图。
所述电子装置200包括设置于多个位置的第一接口模块40、第二接口模块50和无线充电芯片60。所述第一接口模块40、第二接口模块50和无线充电芯片60可分别同时接入不同的外部充电器242、244、246。本实施例中,所述第一接口模块40可为但不限于为type C(USB Type-C)接口,其接入的外部充电器242为适应typeC接口的有线充电器;所述第二接口模块50可为但不限于为弹簧针(pogopin)接口,其接入的外部充电器244为适应pogopin接口的有线充电器;所述无线充电芯片60的外部充电器246为适应无线充电标准的无线充电器。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时用以实现如上所述的任一种针对充电方法的步骤。
本申请的充电方法及电子装置可以同时接入多个不同类型的外部充电器,并分析多路充电的充电能力,协商使用多路同时充电,保证多路输出的充电电压一致,且满足充电芯片和电池的充电电流的安全条件下,以较高充电功率对电池进行充电,有效提高了充电效率。
在本申请各个实施例中电子装置的各功能模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置,方法和计算机可读存储介质,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细 节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本申请内。不应将权利要求中的任何附关联图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。系统权利要求中陈述的多个单元或装置也可以由一个单元或装置通过软件或者硬件来实现。第二等词语用来表示名称,而并不表示任何特定的顺序。
对于本领域的技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他具体形式实现本申请。因此,只要在本申请的实质精神范围之内,对以上实施例所作的适当改变和变化都应该落在本申请要求保护的范围之内。

Claims (24)

  1. 一种充电方法,应用于电子装置中,所述电子装置通过有线充电接口和无线充电接口分别接入有线充电器和无线充电器,有线充电器通过第一充电电路对电子装置进行充电,无线充电器通过第二充电电路对电子装置进行充电,其特征在于,所述充电方法包括:
    检测所述有线充电器和无线充电器的充电能力数据;
    计算使用第一充电电路和第二充电电路同时充电时的充电功率值和/或计算使用第一充电电路或第二充电电路充电时的充电功率值,获得最大充电功率值;及
    协商使用最大充电功率值对应的第一充电电路和/或第二充电电路对电子装置充电。
  2. 根据权利要求1所述的充电方法,其特征在于,所述有线充电接口包括第一充电接口和第二充电接口,第一充电接口接入与第一接口类型匹配的有线充电器,第二充电接口接入与第二接口类型匹配的有线充电器,无线充电接口接入无线充电器。
  3. 根据权利要求1所述的充电方法,其特征在于,所述接入的充电器的充电能力数据包括多组充电电压和充电电流;所述充电方法还包括建立接入的充电器的充电能力数据集;所述充电器的充电能力数据集包括有线充电器和无线充电器的多组充电电压和充电电流。
  4. 根据权利要求3所述的充电方法,其特征在于,所述充电方法还包括:
    查询所述充电能力数据集中是否存在充电电压相等的组别;
    当存在充电电压相等的组别,则计算第一充电电路和第二充电电路同时充电时的充电功率值。
  5. 根据权利要求4所述的充电方法,其特征在于,所述充电方法还包括:
    计算使用第一充电电路或第二充电电路充电时的充电功率值。
  6. 根据权利要求3所述的充电方法,其特征在于,所述充电方法还包括:
    查询所述充电能力数据集中是否存在充电电压相等的组别;
    当不存在充电电压相等的组别,计算使用第一充电电路或第二充电电路充电时的充电功率值。
  7. 根据权利要求5或6所述的充电方法,其特征在于,所述充电方法还包括:
    获取所述电子装置的充电芯片和电池的最大充电电流,结合所述最大充电电流计算第一充电电路和第二充电电路同时充电时的充电功率值。
  8. 根据权利要求5或6所述的充电方法,其特征在于,所述当不存在充电电压相等的组别,则计算使用第一充电电路或第二充电电路充电时的充电功率值,包括:
    分别计算第一充电接口和第二充电接口接入的充电器的充电最大功率。
  9. 根据权利要求1所述的充电方法,其特征在于,所述充电方法还包括:
    导通协商使用的充电电路,截止未使用的充电电路。
  10. 一种电子装置,其特征在于,所述电子装置包括:
    有线充电接口和无线充电接口,分别接入有线充电器和无线充电器,有线充电器通过第一充电电路对电子装置进行充电,无线充电器通过第二充电电路对电子装置进行充电;
    存储器,存储有计算机程序;
    处理器,用于执行存储器中存储的计算机程序以实现:
    检测所述有线充电器和无线充电器的充电能力数据;
    计算使用第一充电电路和第二充电电路同时充电时的充电功率值和/或计算使用第一充电电路或第二充电电路充电时的充电功率值,获得最大充电功率值;及
    协商使用最大充电功率值对应的第一充电电路和/或第二充电电路对电子装置充电。
  11. 根据权利要求10所述的电子装置,其特征在于,所述有线充电接口包括第一充电接口和第二充电接口,第一充电接口接入与第一接口类型匹配的有线充电器;
    第二充电接口接入与第二接口类型匹配的有线充电器;及
    无线充电接口接入无线充电器。
  12. 根据权利要求10所述的电子装置,其特征在于,所述接入的充电器的充电能力数据包括多组充电电压和充电电流;所述充电方法还包括建立接入的充电器的充电能力数据集;所述充电器的充电能力数据集包括有线充电器和无线充电器的多组充电电压和充电电流。
  13. 根据权利要求12所述的电子装置,其特征在于,所述处理器还用于执行存储器中存储的计算机程序以实现:
    查询所述充电能力数据集中是否存在充电电压相等的组别;
    当存在充电电压相等的组别,则计算第一充电电路和第二充电电路同时充电时的充电功率值。
  14. 根据权利要求13所述的电子装置,其特征在于,所述处理器还用于执行存储器中存储的计算机程序以实现:计算使用第一充电电路或第二充电电路充电时的充电功率值。
  15. 根据权利要求12所述的电子装置,其特征在于,所述处理器还用于执行存储器中存储的计算机程序以实现:
    查询所述充电能力数据集中是否存在充电电压相等的组别;
    当不存在充电电压相等的组别,计算使用第一充电电路或第二充电电路充电时的充电功率值。
  16. 根据权利要求14或15所述的电子装置,其特征在于,所述电子装置还包括充电芯片和电池,所述处理器还用于执行存储器中存储的计算机程序以实现:
    获取所述充电芯片和电池的最大充电电流,结合所述最大充电电流计算第一充电电路和第二充电电路同时充电时的充电功率值。
  17. 根据权利要求14或15所述的电子装置,其特征在于,所述当不存在充电电压相等的组别,则计算使用第一充电电路或第二充电电路充电时的充电功率值,包括:
    分别计算第一充电接口和第二充电接口接入的充电器的充电最大功率。
  18. 根据权利要求16所述的电子装置,其特征在于,所述处理器还用于执行存储器中存储的计算机程序以实现:
    导通协商使用的充电电路,截止未使用的充电电路。
  19. 一种电子装置,其特征在于,所述电子装置包括:
    电池和充电芯片,充电芯片与电池电性连接;
    有线充电接口接入不同类型的有线充电器,有线充电器通过有线充电接口电性连接至充电芯片和电池,形成第一充电电路;
    无线充电接口接入无线充电器,无线充电器通过无线充电接口电性连接至充电芯片和电池,形成第二充电电路;
    所述第一充电电路和第二充电电路同时对电子装置充电,或者所述第一充电电路或第二充电电路单独对电子装置充电。
  20. 根据权利要求19所述的电子装置,其特征在于,所述有线充电接口包括第一充电接口和第二充电接口,第一充电接口接入与第一接口类型匹配的有线充电器;第二充电接口接入与第二接口类型匹配的有线充电器;及无线充电接口接入无线充电器。
  21. 根据权利要求20所述的电子装置,其特征在于,所述电子装置还包括:
    第一开关模块,电性连接所述第一充电接口、充电芯片和电池;
    第二开关模块,电性连接所述第二充电接口、充电芯片和电池;及
    第三开关模块,电性连接所述无线充电接口、充电芯片和电池。
  22. 根据权利要求20所述的电子装置,其特征在于,所述电子装置还包括接口协议芯片,电性连接至第一充电接口及第二充电接口,用于检测第一充电接口和第二充电接口接入的有线充电器的充电能力数据。
  23. 根据权利要求20所述的电子装置,其特征在于,所述电子装置还包括:过压保护模块,所述第一充电接口、第二充电接口和无线充电接口分别通过过压保护模块电性连接至充电芯片和电池。
  24. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至9中任意一项所述的充电方法。
PCT/CN2022/111508 2021-09-02 2022-08-10 充电方法、电子装置及计算机可读存储介质 WO2023029921A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111028537.5 2021-09-02
CN202111028537.5A CN115765061A (zh) 2021-09-02 2021-09-02 充电方法、电子装置及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023029921A1 true WO2023029921A1 (zh) 2023-03-09

Family

ID=85332357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111508 WO2023029921A1 (zh) 2021-09-02 2022-08-10 充电方法、电子装置及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN115765061A (zh)
WO (1) WO2023029921A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106786907A (zh) * 2016-12-26 2017-05-31 广东欧珀移动通信有限公司 一种充电电路、方法以及终端
CN109120029A (zh) * 2018-08-14 2019-01-01 Oppo广东移动通信有限公司 充电电路、电子设备、充电管理方法及存储介质
CN111049208A (zh) * 2019-09-03 2020-04-21 华乙半导体(深圳)有限公司 一种充电方法及电源适配器
CN114614518A (zh) * 2020-12-09 2022-06-10 北京小米移动软件有限公司 充电控制方法及装置、电子设备、存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106786907A (zh) * 2016-12-26 2017-05-31 广东欧珀移动通信有限公司 一种充电电路、方法以及终端
CN109120029A (zh) * 2018-08-14 2019-01-01 Oppo广东移动通信有限公司 充电电路、电子设备、充电管理方法及存储介质
CN111049208A (zh) * 2019-09-03 2020-04-21 华乙半导体(深圳)有限公司 一种充电方法及电源适配器
CN114614518A (zh) * 2020-12-09 2022-06-10 北京小米移动软件有限公司 充电控制方法及装置、电子设备、存储介质

Also Published As

Publication number Publication date
CN115765061A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
CN106972736B (zh) 电源适配设备、控制方法及装置
JP6301756B2 (ja) 過電流検出回路およびそれを利用したホスト、過電流検出方法
EP2800422B1 (en) Wireless power transmitter, wireless power receiver and control method thereof
EP2911265B1 (en) Method for preventing abnormality during wireless charging
CN108604859B (zh) 用于提供输出电力的系统和方法
WO2016013451A1 (ja) 充電回路およびそれを利用した電子機器、充電器
US20180341310A1 (en) Active charge through of a peripheral device
JP6604863B2 (ja) 受電装置およびそのコントローラ、それを用いた電子機器、給電システムの制御方法
US20170140887A1 (en) Port controller with power contract negotiation capability
US9584041B2 (en) Method and apparatus for charging devices using a multiple port power supply
US20190013687A1 (en) Smart priority detection for wired and wireless charging
US10908662B2 (en) Power receiving apparatus, method of controlling power receiving apparatus, and storage medium
JP2017174138A (ja) 給電装置および給電方法、制御回路、acアダプタ、電子機器
US20080074077A1 (en) System of supplying power between portable devices and portable device used therein
US20160105040A1 (en) Charging device
JP6553346B2 (ja) 過電流検出回路およびそれを利用したusb給電装置、電子機器、過電流検出方法
CN113949167A (zh) 一种充电装置及电子设备
US11442519B1 (en) External power supply and method to enhance the output power delivered by an external power supply
WO2023029921A1 (zh) 充电方法、电子装置及计算机可读存储介质
US20180367881A1 (en) Dual Battery Smart Charge Sharing
TW201710831A (zh) 行動電源裝置及其電源控制方法
CN115811106A (zh) 充电电路、充电芯片、电子设备及充电方法
US20160105032A1 (en) Wireless power reception device and electronic device including the same
US20160099600A1 (en) Wireless charging method and wireless charging system
US11880253B2 (en) Smartphone and add-on device power delivery system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE