WO2023029894A1 - 测量网络状态的方法和装置 - Google Patents

测量网络状态的方法和装置 Download PDF

Info

Publication number
WO2023029894A1
WO2023029894A1 PCT/CN2022/110901 CN2022110901W WO2023029894A1 WO 2023029894 A1 WO2023029894 A1 WO 2023029894A1 CN 2022110901 W CN2022110901 W CN 2022110901W WO 2023029894 A1 WO2023029894 A1 WO 2023029894A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
measurement
network element
service flow
measurement data
Prior art date
Application number
PCT/CN2022/110901
Other languages
English (en)
French (fr)
Inventor
蒋成堃
周汉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023029894A1 publication Critical patent/WO2023029894A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel

Definitions

  • the present application relates to the communication field, in particular to a method and device for measuring network status.
  • wireless network is gradually applied in various fields.
  • the status of wireless networks changes very dynamically and rapidly, and sporadic network performance degradation often occurs, which makes it face great challenges in terms of stability and reliability, and affects the effect of wireless networks in practical applications.
  • 5G fifth generation
  • the existing 5G system uses redundant links and redundant terminals to ensure the reliability of the network as much as possible.
  • quality of service quality of service
  • QoS quality of service
  • the current network status measurement and reporting method cannot obtain network measurement data accurately in real time, or it will cause encroachment on service bandwidth, and may also sacrifice the performance of user plane network elements.
  • the present application provides a method and device for measuring network status, so as to obtain accurate network measurement data while reducing consumption of user plane resources.
  • a method for measuring a network state includes: a first network element receives first indication information from a second network element, and the first indication information is used to indicate a data packet for a first service flow The first measurement parameter is measured; the first network element measures the first measurement parameter of the first data packet according to the first indication information to obtain first measurement data, and the first data packet belongs to the first service flow; the The first network element generates a first signaling; the first network element reports the first measurement data to a third network element through the first signaling.
  • the first network element may be a user plane network element, or a radio access network device, or a user equipment
  • the second network element may be a policy control network element, or a network opening function network element, It may also be a session management network element
  • the third network element may be a network data analysis function network element, an application function network element, or a third-party server.
  • the first network element reports the measurement data to the third network element through a dedicated signaling (first signaling), which can avoid causing additional resource messages and performance sacrifices for the first network element, for example, can reduce the The occupation of the service bandwidth and the occupation of the processing performance of the first network element.
  • first signaling a dedicated signaling
  • the method further includes: the first network element determines that the first packet header of the first data packet has a coloring mark, and the coloring mark is used to indicate that the first data packet
  • the packet is a data packet to be measured, and the first packet header includes a payload header (or called a payload header) of the first data packet and/or a tunnel header of a first tunnel, and the first tunnel is used to transmit the first data packet.
  • the above technical solution measures data packets with coloring marks instead of measuring all data packets, which can save resource consumption.
  • the first network element reports the first measurement data to a third network element through the first signaling, including: the first network element sends the first The measurement data is stored in the first measurement set; when the first condition is met, the first network element compresses the first measurement set to obtain a second measurement set; the first network element sends the third measurement set through the first signaling The network element reports the second measurement set.
  • the first measurement data is saved in the first measurement set and then compressed and reported, which can reduce resource consumption.
  • the method further includes: the first network element receives second indication information from the second network element, where the second indication information is used to indicate that the first network element The storage format of the data in the measurement set and the data compression algorithm used to compress the first measurement set.
  • the first network element By configuring the storage format and compression algorithm of the data to the first network element, so that the first network element can save the first data in the first measurement set and report after compression, so as to reduce resource consumption caused by measurement data reporting.
  • the first condition includes: the size of the measurement data in the first measurement set is greater than or equal to a first threshold, and/or, the size of the measurement data in the first measurement set The number of data packets corresponding to the measurement data is greater than or equal to the second threshold, and/or, the time period corresponding to the measurement data in the first measurement set is greater than or equal to the third threshold.
  • the first network element reports the first measurement data to a third network element through the first signaling, including: when the second condition is met, the first network element A network element reports second measurement data of data packets of the first service flow within a first time period, the first data packets belong to data packets within the first time period, and the second measurement data includes the first measurement data data.
  • the measurement data within the first time period is reported, the second condition may correspond to an abnormal event, and the first time period may be a time period corresponding to the abnormal event. In this way, accurate network measurement data can be obtained while avoiding excessive resource consumption.
  • the method further includes: the first network element sends a third indication information, where the third indication information is used to request acquisition of third measurement data and fourth measurement data, where the third measurement data is that the radio access network device measures the data packets of the first service flow during the first time period
  • the fourth measurement data is obtained by the user equipment measuring the data packets of the first service flow in the first time period; the first network element receives the third measurement data and the fourth measurement data; the first network element receives the third measurement data and the fourth measurement data;
  • a network element reporting the first measurement data to a third network element through the first signaling includes: the first network element reporting the second measurement data to the third network element through the first signaling, and the third network element reporting the second measurement data to the third network element through the first signaling. measurement data and fourth measurement data.
  • the reporting method of the measurement data is an event-driven reporting method
  • the measurement data of different network elements can be synchronized through the above solution, so as to facilitate the analysis and processing of the measurement data by the third network element.
  • the method further includes: the first network element sending radio access network equipment and user equipment sending a second data packet, the payload header of the second data packet and/or the tunnel header of the second tunnel includes fourth indication information, the fourth indication information is used to indicate the first time period, and the second tunnel is used for transmission
  • the second data packet the first network element receives the second data packet, and the second data packet carries third measurement data and fourth measurement data; the first network element sends the third network element to the third network through the first signaling
  • the element reporting the first measurement data includes: the first network element reporting the second measurement data, the third measurement data, and the fourth measurement data to the third network element through the first signaling.
  • the second tunnel is, for example, a general packet radio service (GPRS) tunneling protocol (GPRS tunneling protocol for the user plane, GTP-U) tunnel at the user level, and the tunnel head of the second tunnel is a GTP-U packet header .
  • GPRS general packet radio service
  • the reporting method of the measurement data is an event-driven reporting method
  • the measurement data of different network elements can be synchronized through the above solution, so as to facilitate the analysis and processing of the measurement data by the third network element.
  • the second condition includes: the fourth measurement data is greater than a third threshold, and the fourth measurement data is a value corresponding to any measurement parameter in the first measurement parameter. Measurement data.
  • the method further includes: the first network element dyes the data packets of the second service flow according to a first rule, and the first rule is used to indicate the The coloring frequency for coloring the data packets of the second service flow.
  • the data packets to be measured can be dyed according to a certain rule, and the resource consumption caused by dyeing all data packets can be reduced.
  • the dyeing of the data packets of the second service flow includes: the first network element dyes the second packet header of the data packets of the second service flow,
  • the second packet header includes a payload header of the data packet of the second service flow and/or a tunnel header of a third tunnel, and the third tunnel is used to transmit the data packet of the second service flow.
  • the first measurement parameter includes timestamp, forwarding delay, device identification, port status, congestion status, bandwidth, throughput, bandwidth queue utilization, packet loss at least one of the rates.
  • the third network element is any one of the following network elements: a network element with a network data analysis function, a network element with an application function, or a third-party server.
  • a method for measuring a network state comprising: acquiring feature information of a first service flow by a second network element, where the feature information includes one or more of the following: the first service flow of the first service flow measurement parameters, the data format of the data packets of the first service flow, and the service requirements of the first service flow; the second network element determines the measurement configuration information of the first service flow according to the characteristic information of the first service flow; the The second network element sends the measurement configuration information to the first network element, where the measurement configuration information is used to indicate at least one of the following: to measure the first measurement parameter of the data packet of the first service flow, to measure the first service
  • the first packet header of the data packet of the flow is dyed, the reporting method of the measurement data of the first service flow, the first packet header includes the payload header of the data packet of the first service flow and/or the tunnel header of the first tunnel, the The first tunnel is used to transmit the data packets of the first service flow.
  • the reporting method is any one of the following methods: packet
  • the second network element can determine the measurement configuration information of the first service flow according to the characteristic information of the first service flow, that is, the second network element can determine the measurement strategy according to the service requirements and network conditions, and at the same time provide the first Network elements are configured with real-time network measurement capabilities, which can reduce the pressure on user plane data service bandwidth and maintain high-performance data processing capabilities of each network element.
  • the second network element obtaining characteristic information of the first service flow includes: the second network element obtaining the first service from an operation and maintenance or application function network element Stream characteristic information.
  • the measurement configuration information is further used to instruct the first network element to color the first packet header of the data packet of the first service flow according to a second rule,
  • the second rule is used to indicate the coloring frequency for coloring the data packets of the first service flow.
  • the measurement configuration information is also used to indicate the data storage format of the measurement data of the first service flow and data compression algorithms.
  • the second network element can flexibly configure the reporting mode of measurement data according to service conditions, thereby avoiding excessive control plane signaling overhead.
  • the first measurement parameter includes timestamp, forwarding delay, device identification, port status, congestion status, bandwidth, throughput, bandwidth queue utilization, packet loss at least one of the rates.
  • a device for measuring network status includes: a transceiver module, configured to receive first indication information from a second network element, where the first indication information is used to indicate data for the first service flow The first measurement parameter of the packet is measured; the processing module is configured to measure the first measurement parameter of the first data packet according to the first indication information to obtain first measurement data, and the first data packet belongs to the first service flow; The processing module is also used to generate a first signaling; the processing module is also used to report the first measurement data to a third network element through the first signaling.
  • the processing module is further configured to determine that the first packet header of the first data packet has a dyeing mark, and the dyeing mark is used to indicate that the first data packet is to be measured
  • the first packet header includes a payload header of the first data packet and/or a tunnel header of a first tunnel, and the first tunnel is used to transmit the first data packet.
  • the processing module is specifically configured to: save the first measurement data in a first measurement set; when the first condition is met, perform the first measurement set The second measurement set is obtained through compression; the transceiver module is specifically configured to: report the second measurement set to the third network element through the first signaling.
  • the transceiver module is further configured to receive second indication information from the second network element, where the second indication information is used to indicate that the data in the first measurement set storage format and a data compression algorithm for compressing the first measurement set.
  • the first condition includes: the size of the measurement data in the first measurement set is greater than or equal to a first threshold, and/or, the size of the measurement data in the first measurement set The number of data packets corresponding to the measurement data is greater than or equal to the second threshold, and/or, the time period corresponding to the measurement data in the first measurement set is greater than or equal to the third threshold.
  • the transceiver module is specifically configured to: when the second condition is met, the first network element reports the data packets of the first service flow within the first time period The second measurement data, the first data packet belongs to the data packets within the first time period, and the second measurement data includes the first measurement data.
  • the transceiver module is further configured to: send third indication information to the mobility management function network element, where the third indication information is used to request acquisition of the third measurement data and the third measurement data.
  • the third measurement data is obtained by the radio access network equipment from measuring the data packets of the first service flow in the first time period
  • the fourth measurement data is obtained by the user equipment in the first time period It is obtained by measuring the data packets of the first service flow in a time period; receiving the third measurement data and the fourth measurement data; the transceiver module is specifically used to: report to the third network element through the first signaling The second measurement data, the third measurement data and the fourth measurement data.
  • the transceiver module is further configured to: the first network element sends a second data packet to the radio access network device and the user equipment, and the payload of the second data packet
  • the packet header includes fourth indication information, the fourth indication information is used to indicate the first time period; the second data packet is received, and the second data packet carries the third measurement data and the fourth measurement data; the transceiver module is specifically used for : Reporting the second measurement data and the third measurement data to the third network element through the first signaling.
  • the second condition includes: the fourth measurement data is greater than a third threshold, and the fourth measurement data is a value corresponding to any measurement parameter in the first measurement parameter. Measurement data.
  • the processing module is further configured to: color the data packets of the second service flow according to a first rule, and the first rule is used to indicate that the second service flow The coloring frequency for data packets of the service flow to be colored.
  • the processing module is specifically configured to: color the second packet header of the data packet of the second service flow, where the second packet header includes the data of the second service flow The payload header of the packet and/or the tunnel header of the second tunnel, where the second tunnel is used to transmit the second data packet.
  • the first measurement parameter includes timestamp, forwarding delay, device identification, port status, congestion status, bandwidth, throughput, bandwidth queue utilization, packet loss at least one of the rates.
  • the third network element is any one of the following network elements: a network element with a network data analysis function, a network element with an application function, or a third-party server.
  • a device for measuring network status comprising: a processing module configured to obtain characteristic information of a first service flow, where the characteristic information includes one or more of the following: the first service flow of the first service flow A measurement parameter, the data format of the data packet of the first service flow, and the service requirement of the first service flow; the processing module is also used to: determine the measurement configuration of the first service flow according to the characteristic information of the first service flow information; a transceiver module, configured to send the measurement configuration information to the first network element, where the measurement configuration information is used to indicate at least one of the following: measure the first measurement parameter of the data packet of the first service flow, the The first packet header of the data packet of the first service flow is dyed, the reporting method of the measurement data of the first service flow, the first packet header includes the payload header of the data packet of the first service flow and/or the tunnel of the first tunnel header, the first tunnel is used to transmit data packets of the first service flow, and the reporting method is any one of the following methods: packet
  • the transceiver module is specifically configured to: the second network element obtains the feature information of the first service flow from an operation and maintenance or application function network element.
  • the measurement configuration information is further used to instruct the first network element to color the first packet header of the data packet of the first service flow according to a second rule,
  • the second rule is used to indicate the coloring frequency for coloring the data packets of the first service flow.
  • the measurement configuration information is also used to indicate the data storage format of the measurement data of the first service flow and data compression algorithms.
  • the first measurement parameter includes timestamp, forwarding delay, device identification, port status, congestion status, bandwidth, throughput, bandwidth queue utilization, packet loss at least one of the rates.
  • a communication device which includes: a processor configured to execute a computer program stored in a memory, so that the communication device executes any possible implementation manner in the first aspect or the second aspect .
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium, and when the computer program is run on a computer, the computer is made to execute any of the first to second aspects.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is run on a computer, the computer is made to execute any of the first to second aspects.
  • a computer program product in a seventh aspect, includes computer program instructions, and when the computer program instructions run on a computer, the computer executes the method according to any one of the first aspect to the second aspect.
  • a chip system which includes: a processor, configured to call and run a computer program from a memory, so that a communication device installed with the chip system executes any of the first to second aspects.
  • a processor configured to call and run a computer program from a memory, so that a communication device installed with the chip system executes any of the first to second aspects.
  • FIG. 1 is a schematic diagram of a communication system applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an active measurement mechanism for network status based on a performance measurement function
  • Fig. 3 is a schematic framework diagram of an in-band network telemetry technology
  • FIG. 4 is a schematic flowchart of a method for measuring network status provided by an embodiment of the present application.
  • FIG. 5 is a network architecture diagram applicable to the embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for measuring network status provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of another method for measuring network status provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another method for measuring network status provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another method for measuring network status provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another method for measuring network status provided by an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • the technical solution provided by this application can be applied to various communication systems, such as: 5G or new radio (new radio, NR) system, long term evolution (long term evolution, LTE) system, LTE frequency division duplex (frequency division duplex, FDD) ) system, LTE time division duplex (time division duplex, TDD) system, etc.
  • 5G or new radio (new radio, NR) system long term evolution (long term evolution, LTE) system
  • LTE frequency division duplex frequency division duplex, FDD)
  • LTE time division duplex time division duplex
  • TDD time division duplex
  • the technical solution provided by this application can also be applied to device to device (device to device, D2D) communication, vehicle to everything (vehicle-to-everything, V2X) communication, machine to machine (machine to machine, M2M) communication, machine type Communication (machine type communication, MTC), and Internet of things (internet of things, IoT) communication system or other communication systems.
  • D2D device to device
  • V2X vehicle-to-everything
  • M2M machine to machine
  • M2M machine type Communication
  • MTC machine type communication
  • IoT Internet of things
  • FIG. 1 it is a schematic diagram of a 5G network architecture based on a service-based architecture.
  • the 5G network architecture shown in (a) of FIG. 1 may include three parts, namely a terminal equipment part, a data network (data network, DN) and an operator network part.
  • DN data network
  • operator network part The functions of some of the network elements are briefly introduced and described below.
  • the operator network may include one or more of the following network elements: authentication server function (authentication server function, AUSF) network element, network exposure function (network exposure function, NEF) network element, policy control function (policy control function, PCF) network element, unified data management (unified data management, UDM) network element, unified database (unified data repository, UDR), network storage function (network repository function, NRF) network element, application function (application function, AF) ) network elements, access and mobility management function (access and mobility management function, AMF) network elements, session management function (session management function, SMF) network elements, radio access network (radioaccess network, RAN) and user plane functions (user plane function, UPF) network element, etc.
  • authentication server function authentication server function, AUSF
  • NEF network exposure function
  • policy control function policy control function
  • PCF policy control function
  • unified data management unified data management
  • UDM unified database
  • NRF network repository function
  • application function application function, AF
  • AMF access and mobility management function
  • Terminal device it can also be called user equipment (UE), which is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed in On the water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may be a mobile phone, a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial control (industrial control ), wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety , wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the terminal device here refers to a 3rd generation partnership project (3rd generation partnership project, 3GPP) terminal.
  • 3rd generation partnership project 3rd generation partnership project
  • the above-mentioned terminal device can establish a connection with the operator network through an interface provided by the operator network (such as N1, etc.), and use services such as data and/or voice provided by the operator network.
  • the terminal device can also access the DN through the operator's network, and use the operator's service deployed on the DN, and/or the service provided by a third party.
  • the above-mentioned third party may be a service party other than the operator's network and the terminal device, and may provide other services such as data and/or voice for the terminal device.
  • the specific form of expression of the above-mentioned third party can be determined according to the actual application scenario, and is not limited here.
  • Wireless access network radio access network, RAN
  • RAN radio access network
  • the RAN is a sub-network of the operator's network and an implementation system between service nodes and terminal equipment in the operator's network.
  • the terminal equipment To access the operator's network, the terminal equipment first passes through the RAN, and then can be connected to the service node of the operator's network through the RAN.
  • the RAN device in this application is a device that provides a wireless communication function for a terminal device, and the RAN device is also called an access network device.
  • the RAN equipment in this application includes but is not limited to: next-generation base station (g nodeB, gNB) in 5G, evolved node B (evolved node B, eNB), radio network controller (radio network controller, RNC), node B (node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved nodeB, or home node B, HNB), baseband unit (baseBand unit, BBU), transmission point (transmitting and receiving point, TRP), transmission point (transmitting point, TP), mobile switching center, etc.
  • next-generation base station g nodeB, gNB
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • base station controller base station controller
  • BTS base transceiver station
  • home base station for example, home evolved nodeB, or home node B, HNB
  • baseband unit baseBand
  • the user plane network element may be a user plane function (user plane function, UPF) network element.
  • UPF user plane function
  • the user plane network element may still be a UPF network element, or may have other names, which are not limited in this application.
  • Multicast/broadcast-user plane function (MB-UPF)
  • MB-UPF is mainly responsible for sending multicast broadcast streams to RAN (or UPF), which can perform packet filtering and distribution of multicast broadcast streams, and realize QoS enhancement and counting/reporting of multicast broadcast services.
  • RAN or UPF
  • MB-UPF and UPF are not strictly distinguished, and (MB-)UPF is used to represent MB-UPF or UPF.
  • Data network used to provide a network for transmitting data.
  • the data network element may be a data network element.
  • the data network element may still be a DN network element, or may have other names, which are not limited in this application.
  • Access and mobility management network elements are mainly used for mobility management and access management, etc., and can be used to implement other functions in MME functions except session management, such as lawful interception and access authorization/authentication.
  • the access and mobility management network element may be an access and mobility management function (access and mobility management function, AMF).
  • AMF access and mobility management function
  • the access and mobility management device may still be an AMF, or may have other names, which are not limited in this application.
  • Session management function (session management function, SMF): mainly used for session management, user equipment network interconnection protocol (internet protocol, IP) address allocation and management, selection of manageable user plane functions, policy control and charging function interface endpoints and downlink data notifications, etc.
  • SMF session management function
  • the session management network element may be a session management function network element.
  • the session management network element may still be an SMF network element, or may have other names, which are not limited in this application.
  • Multicast/broadcast-session management function (MB-SMF)
  • MB-SMF is mainly responsible for multicast broadcast session management and control of multicast broadcast transmission. According to the policy rules of multicast broadcast services provided by PCF or locally configured, MB-UPF and RAN are configured accordingly to complete the transmission of multicast broadcast streams. . In this application, MB-SMF and SMF are not strictly distinguished, and (MB-)SMF is used to represent MB-SMF or SMF.
  • PCF Policy control function
  • the policy control network element may be a policy and charging rules function (policy and charging rules function, PCRF) network element.
  • policy control network element may be a policy control function PCF network element.
  • the policy control network element may still be a PCF network element, or may have other names, which are not limited in this application.
  • Application function (Application function, AF): It is used for data routing influenced by applications, wireless access network open function network elements, and interaction with policy frameworks for policy control, etc.
  • the application network element may be an application function network element.
  • the application network element may still be an AF network element, or may have other names, which are not limited in this application.
  • Unified data management used to handle UE identification, access authentication, registration and mobility management.
  • the data management network element may be a unified data management network element; in a 4G communication system, the data management network element may be a home subscriber server (HSS) network element.
  • HSS home subscriber server
  • the unified data management may still be a UDM network element, or may have other names, which are not limited in this application.
  • Unified data repository It mainly includes the following functions: the access function of contract data, policy data, application data and other types of data.
  • AUSF Authentication server function
  • the authentication server may be an authentication server functional network element.
  • the authentication server functional network element may still be an AUSF network element, or may have other names, which are not limited in this application.
  • Data network is a network located outside the operator's network.
  • the operator's network can access multiple DNs, and multiple services can be deployed on the DN, which can provide data and/or voice for terminal equipment. and other services.
  • DN is a private network of a smart factory.
  • the sensors installed in the workshop of the smart factory can be terminal devices.
  • the control server of the sensor is deployed in the DN, and the control server can provide services for the sensor.
  • the sensor can communicate with the control server, obtain instructions from the control server, and transmit the collected sensor data to the control server according to the instructions.
  • DN is a company's internal office network, and the mobile phone or computer of the company's employees can be a terminal device, and the employee's mobile phone or computer can access information and data resources on the company's internal office network.
  • Nausf, Nnef, Npcf, Nudm, Naf, Namf, Nsmf, N1, N2, N3, N4, and N6 are interface serial numbers.
  • interface serial numbers refer to the meanings defined in the 3GPP standard protocol, and there is no limitation here.
  • FIG. 1 it is a schematic diagram of a 5G network architecture based on a point-to-point interface.
  • the introduction of the functions of the network elements can refer to the introduction of the functions of the corresponding network elements in (a) of FIG. 1 , and will not be repeated.
  • the main difference between (b) of FIG. 1 and (a) of FIG. 1 is that the interface between network elements in (b) of FIG. 1 is a point-to-point interface rather than a service interface.
  • N7 The interface between PCF and SMF, which is used to deliver protocol data unit (protocol data unit, PDU) session granularity and service data flow granularity control policy.
  • protocol data unit protocol data unit
  • PDU protocol data unit
  • N15 an interface between the PCF and the AMF, used to issue UE policies and access control-related policies.
  • N5 the interface between the AF and the PCF, used for sending application service requests and reporting network events.
  • N4 The interface between SMF and UPF, which is used to transfer information between the control plane and the user plane, including controlling the distribution of forwarding rules for the user plane, QoS control rules, traffic statistics rules, etc., and reporting of user plane information .
  • N11 The interface between SMF and AMF, used to transfer the PDU session tunnel information between RAN and UPF, the control message sent to UE, the radio resource control information sent to RAN, etc.
  • N2 the interface between the AMF and the RAN, used to transfer radio bearer control information from the core network side to the RAN, etc.
  • N1 The interface between the AMF and the UE, which is irrelevant to access and used to deliver QoS control rules to the UE.
  • N8 The interface between AMF and UDM, which is used for AMF to obtain subscription data and authentication data related to access and mobility management from UDM, and for AMF to register UE current mobility management related information with UDM.
  • N10 the interface between SMF and UDM, used for SMF to obtain session management-related subscription data from UDM, and for SMF to register UE current session-related information with UDM.
  • N35 interface between UDM and UDR, used for UDM to obtain user subscription data information from UDR.
  • N36 interface between PCF and UDR, used for PCF to obtain policy related subscription data and application data related information from UDR.
  • N12 the interface between AMF and AUSF, used for AMF to initiate an authentication process to AUSF, which can carry SUCI as a subscription identifier;
  • N13 the interface between UDM and AUSF, used for AUSF to obtain user authentication vector from UDM to execute the authentication process.
  • the above-mentioned network element or function may be a network element in a hardware device, or a software function running on dedicated hardware, or a virtualization function instantiated on a platform (for example, a cloud platform).
  • the network device is the access and mobility management network element AMF
  • the base station is the radio access network RAN as an example for description.
  • network functional network element entities such as AMF, SMF network element, PCF network element, BSF network element, and UDM network element are all called network function (network function, NF) network elements; or, in another
  • network function network function, NF
  • a collection of network elements such as AMF, SMF, PCF, BSF, and UDM can be called control plane functional network elements.
  • Computer-readable media may include, but are not limited to, magnetic storage devices (e.g., hard disk, floppy disk, or magnetic tape, etc.), optical disks (e.g., compact disc (compact disc, CD), digital versatile disc (digital versatile disc, DVD) etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.).
  • magnetic storage devices e.g., hard disk, floppy disk, or magnetic tape, etc.
  • optical disks e.g., compact disc (compact disc, CD), digital versatile disc (digital versatile disc, DVD) etc.
  • smart cards and flash memory devices for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • FIG. 2 is a schematic diagram of an active measurement mechanism for network status based on a performance measurement function (PMF) in 5GS.
  • PMF is a logical function on the two endpoints of the user plane, UPF and UE. This function can initiate an active measurement packet to perform UPF-UE unilateral network delay measurement or round-trip delay (round- Overall measurement of trip time, RTT).
  • this active measurement method cannot detect fast network status changes in time. For example, when the 5G network perceives that a certain QoS flow data packet violates the corresponding 5QI or packet loss, and then triggers the PMF to actively measure the network transmission of the current QoS flow, the wireless state may have recovered at this time, and the active measurement packet may experience It is normal network transmission, so it is impossible to detect network problems and restore the information of each network element that lost packets at that time, so that it is impossible to locate the corresponding problems. At the same time, active measurement packets will also occupy service bandwidth.
  • FIG. 3 is a schematic diagram of a framework of an in-band network telemetry (INT) technology.
  • INT technology is a method of passive network measurement on the data plane. In this method, when a normal service packet passes through different nodes in the network, these nodes embed their own local current measurement data into the header of the service packet for transmission.
  • the INT framework is defined in the programmable community P4, and the IOAM technology is also defined in the IETF. It can be seen from Figure 3 that there are three roles in the network supporting INT: INT source node, INT transfer node and INT pool node.
  • the INT source node is responsible for adding the INT header and the INT metadata of the node to the normal business packet, and the INT metadata includes the defined related measurement parameters (local forwarding delay, port number, device number, queue occupancy rate, etc.);
  • the packet passes through the INT transmission node, and the transmission node inserts its own metadata into the INT header to continue transmission; finally to the INT pool node, the node inserts its own INT metadata, and extracts the entire INT header and metadata to the measurement server for analysis. diagnosis.
  • in-band network measurement relies on adding the measurement information of each passing node to the header of normal service packets on the user plane, which will cause encroachment on service bandwidth and loss of computing power of devices along the route, reducing overall forwarding performance.
  • FIG. 4 is an exemplary flowchart of a method 400 for measuring network status provided by an embodiment of the present application.
  • the method 400 includes:
  • the second network element acquires characteristic information of the first service flow.
  • the feature information of the first service flow includes one or more of the following: measurement parameters of the first service flow, data formats of data packets of the first service flow, and service requirements of the first service flow.
  • the measurement parameter includes at least one item of time stamp, forwarding delay, device identification, port status, congestion status, bandwidth, throughput, bandwidth queue utilization rate, and packet loss rate.
  • the second network element may receive the feature information of the first service flow from the application function network element, and at this time, the first measurement parameter may be a parameter that the data network wishes to measure. In another implementation manner, the second network element may obtain the feature information of the first service flow according to the configuration of the operation and maintenance personnel.
  • the second network element may be a policy control network element (such as PCF), a network opening function network element (such as NEF), or a session management network element (such as SMF), which is not limited in this application.
  • PCF policy control network element
  • NEF network opening function network element
  • SMF session management network element
  • the second network element determines measurement configuration information of the first service flow according to the characteristic information of the first service flow.
  • the second network element determines the first measurement parameter according to the characteristic information of the first service flow, for example, the second network element determines the first measurement parameter according to the characteristic information of the first service flow, and the service Determining the first measurement parameter based on demand and network resource status, that is, the second network element can determine the first measurement parameter that needs to be measured according to actual needs.
  • the first measurement parameter can include all measurement parameters in the feature information, or only include the feature Part of the measurement parameters in the information may also include other parameters except the measurement parameters in the feature information, which is not limited in this application.
  • the second network element determines the dyeing position of the data packet of the first service flow according to the characteristic information of the first service flow, for example, the second network element determines the coloring position of the data packet of the first service flow according to the data format of the data packet of the first service flow
  • the dyeing position where the data packets of the first service flow are dyed wherein the dyeing here refers to marking certain fields of the header of the data packets of the first service flow, and the mark is used to indicate the data packets to be measured.
  • the second network element determines to color the first packet header of the data packet of the first service flow according to the data format of the first service flow, and the first packet header is, for example, the payload header and /or a tunnel header of a first tunnel, where the first tunnel is used to transmit data packets of the first service flow, and the first tunnel is, for example, a GTP-U tunnel.
  • the second network element may also determine the dyeing frequency for dyeing the data packets of the first service flow, for example, the second network element determines to perform a dyeing operation on every two data packets in the first service flow according to the network load condition ( For example, the first, fourth, seventh... data packets in the first service flow are dyed).
  • the second network element may also determine a reporting method of the measurement data according to the feature information of the first service flow, and the reporting method includes any one of the following: a packet-by-packet reporting method, a periodic reporting method, and an event-driven reporting method.
  • the second network element may determine the reporting method of the measurement data according to the service requirements of the first service flow. Specifically, for example, if the first service flow corresponds to an emergency service, it may determine to use the packet-by-packet reporting method.
  • the second network element may also determine a storage format and a compression algorithm of the measurement data.
  • the second network element sends the measurement configuration information to the first network element.
  • the measurement configuration information is used to indicate at least one of the following: measure the first measurement parameter of the data packet of the first service flow, color the first packet header of the data packet of the first service flow, The reporting method of flow measurement data.
  • the measurement configuration information may also indicate the manner or frequency of coloring the first packet header of the data packet of the first service flow by the first network element.
  • the measurement configuration information is used to instruct the first network element to color the first packet header of the data packet of the first service flow according to a first rule, and the first rule is used to indicate the coloring of the data packet of the first service flow staining frequency.
  • the measurement configuration information may also be used to indicate the data storage format and data compression algorithm of the measurement data of the first service flow.
  • the first network element may be a user plane network element (such as a UPF), may also be a radio access network device (such as a RAN), or may be a user equipment (such as a UE), which is not limited in this application.
  • a user plane network element such as a UPF
  • RAN radio access network device
  • UE user equipment
  • the first network element measures the first measurement parameter of the first data packet to obtain first measurement data.
  • the first network element when the first network element is a user plane network element, and the data packet of the first service flow is a downlink data packet, the first network element may measure the first network element according to the first rule according to the measurement configuration information.
  • the first packet header of the service flow is dyed, and the first measurement parameter of the dyed data packet (for example, the first data packet) is measured to obtain the first measurement data.
  • the first network element when the first network element is a user plane network element, and the data packet of the first service flow is an uplink data packet, the first network element dyes and identifies the data packet of the first service flow For example, the first network element recognizes that the first packet header of the first service flow has a dyed-marked data packet, and measures the first measurement parameter of the data packet (eg, the first data packet) with the dyed-marked data packet to obtain first measurement data.
  • the first measurement parameter of the data packet eg, the first data packet
  • the first network element when the first network element is a wireless access network device, the first network element may perform coloring identification on the data packets of the first service flow, for example, identify that the first packet header of the first service flow has a coloring Marked data packets, measuring the first measurement parameters of the data packets (such as the first data packet) with dyeing marks to obtain the first measurement data, at this time, the data packets of the first service flow may be uplink data packets, It can also be a downlink data packet.
  • the first network element when the first network element is a user equipment, and the data packet of the first service flow is an uplink data packet, the first network element may measure the first service flow according to the first law according to the measurement configuration information
  • the first packet header is dyed, and the first measurement parameter of the dyed data packet (for example, the first data packet) is measured to obtain the first measurement data.
  • the first network element when the first network element is a user equipment, and the data packet of the first service flow is a downlink data packet, the first network element may color and identify the data packet of the first service flow, for example , identifying a data packet with a dyeing mark in the first packet header of the first service flow, and measuring a first measurement parameter of the data packet with the dyeing mark (for example, the first data packet), to obtain first measurement data.
  • the first network element may color and identify the data packet of the first service flow, for example , identifying a data packet with a dyeing mark in the first packet header of the first service flow, and measuring a first measurement parameter of the data packet with the dyeing mark (for example, the first data packet), to obtain first measurement data.
  • the first network element generates first signaling.
  • the first network element sends the first measurement parameter to the third network element.
  • the first network element reports the first measurement data to the third network element through the first signaling.
  • the first network element when the first network element determines, according to the measurement configuration information, that the reporting method of the measurement data is packet-by-packet reporting, the first network element, after measuring the first data packet to obtain the first measurement data, then passes the first signaling Report the first measurement data to the third network element.
  • this application uses the example of generating the first signaling to carry the first measurement data before or after the first network element obtains the first measurement data, but in some scenarios, the first network element may also use some Other existing signaling is used to carry the first measurement data, that is, the first network element may not need to specifically generate the first signaling, which is not limited in this application.
  • the first network element when the first network element determines, according to the measurement configuration information, that the reporting mode of the measurement data is periodic reporting, the first network element, after measuring the first data packet to obtain the first measurement data, sends the first measurement data to Save to first measurement set. When the first condition is satisfied, the first network element compresses the first measurement set to obtain the second measurement set. It should be understood that the first network element may determine the storage format of the first measurement data and the compression algorithm for compressing the first measurement set according to the measurement configuration information or pre-configuration information.
  • the first condition includes, for example: the size of the measurement data in the first measurement set is greater than or equal to a first threshold; and/or, the number of data packets corresponding to the measurement data in the first measurement set is greater than or equal to a second threshold; And/or, the time period corresponding to the measurement data in the first measurement set is greater than or equal to the third threshold.
  • the first network element may store the measurement data of the data packet locally, and when the size of the local measurement data reaches a set threshold, the locally stored measurement data may be compressed and reported; or, The first network element stores the measurement data of the data packets locally, and when the number of data packets corresponding to the measurement data reaches a set threshold, the locally stored data packets are compressed and reported (for example, every 10 data packets are measured) report once); or, the first network element stores the measurement data of the data packet locally, and when the measured time period (or the time period corresponding to the measurement data) reaches the set threshold, the locally stored data packet is compressed Report later (for example, report once every measurement 1s).
  • the first network element reports the second measurement set to the third network element through the first signaling, and the third network element may acquire the first measurement data by decompressing the second measurement set after obtaining the second measurement set.
  • the first network element determines that the reporting method of the measurement data is event-driven reporting according to the measurement configuration information, and the first network element is a user plane network element
  • the first network element when the second condition is met, the first network element The element reports the second measurement data of the data packets of the first service flow in the first time period to the session management network element, and the first data packet belongs to the data packets in the first time period, that is, the second measurement data includes the second 1. Measurement data.
  • the first network element sends a request message to the second network element, where the request message is used to request the session management network element to obtain the data packets of the first service flow by the wireless network device and/or the user equipment within the first time period
  • the third measurement data and the fourth measurement data obtained by performing the measurement.
  • the session management network element determines the first time period according to the start time of the second measurement data, or determines the second time period according to the information carried in the request message, and then requests the radio access network device and the user equipment to obtain the second time period respectively.
  • the request message carries the information of the first time period.
  • the radio access network device and the user equipment report the third measurement data and the fourth measurement data to the session management network element according to the request message of the session management network element. After the session management integrates the second measurement data, the third measurement data, and the fourth measurement data, the first measurement data is reported to the third network element.
  • the second condition above includes: the fourth measurement data is greater than the third threshold, and the fourth measurement data is the measurement data corresponding to any measurement parameter in the first measurement parameters.
  • the fourth measurement data is the device forwarding delay
  • the fourth measurement data is The second condition may be: the forwarding delay of the device is greater than the third threshold.
  • the first network element when the second condition is met, sends a second data packet to the radio access network device and the user equipment, and the payload header of the second data packet includes the first time Instructions for the segment.
  • the wireless access network device after receiving the second data packet, obtains the first time period from the payload header of the second data packet, and then loads the third measurement data corresponding to the first time period into the payload of the second data packet header, and then send the second data packet to the user equipment.
  • the user equipment after receiving the second data packet, the user equipment obtains the first time period from the payload header of the second data packet, and then loads the fourth measurement data corresponding to the first time period into the payload header of the second data packet, Then send the second data packet to the first network element.
  • the first network element receives the second data packet, and obtains the third measurement data and the fourth measurement data from the second data packet, and the first network element reports the second measurement data to the third network element through the first signaling data, third measurement data and fourth measurement data.
  • the third network element may be a network element with a network data analysis function, may also be a network element with an application function, or may be a third-party server, which is not limited in this application. After the third network element acquires the first measurement data, it may further analyze the measurement data.
  • the above technical solution can capture rapidly changing air interface network status and obtain accurate network measurement data through passive measurement. At the same time, in the process of reporting measurement data, network overhead can be reduced and consumption of user plane resources can be reduced.
  • FIG. 5 is a diagram of a network architecture applicable to this embodiment of the present application.
  • the method 400 may be applied to the network architecture.
  • the 5G core network (5G core network, 5GC) control plane can configure measurement requirements for UPF, RAN, and UE, and UPF, RAN, and UE can transmit data between DN and UE according to the measurement requirements. data packets for measurement.
  • UPF or UE can mark the data packets to be measured to facilitate each network element to identify the data packets to be measured. For example, the shaded part in the figure is an optional mark bit.
  • UPF can The relevant field of the packet header in the data (such as the Option field of the IP packet header) or the relevant field of the tunnel header of the GTP-U tunnel is marked with the downlink data packet to be measured (it can also be marked in the data packet header and the GTP-U header at the same time) ).
  • the UE can mark the uplink data packet to be measured in the relevant field of the packet header in the PDU data.
  • FIG. 6 shows an exemplary flow chart of a method 600 for measuring network status provided by an embodiment of the present application.
  • the method 600 may be applied to the network architecture shown in FIG. 5 .
  • Method 600 includes:
  • the SMF determines the measurement strategy.
  • the measurement strategy here refers to a strategy for measuring network status, or in other words, a measurement strategy for service flows (or data packets of service flows) in the network.
  • the measurement strategy corresponds to a service flow, and the measurement strategy can be determined according to the service requirement of the service flow.
  • the measurement strategy may also correspond to multiple service flows. In this case, the measurement strategy may be comprehensively determined according to service requirements of the multiple service flows.
  • the PCF/NEF obtains service flow characteristic information from the AF to determine a measurement strategy, and then sends the measurement strategy to the SMF.
  • solution 1 the PCF/NEF obtains service flow characteristic information from the AF to determine a measurement strategy, and then sends the measurement strategy to the SMF.
  • the AF sends the feature information of the service flow to the PCF/NEF.
  • the feature information of the service flow may correspond to one or more service flows.
  • the characteristic information of the service flow includes a measurement parameter, which may be a parameter that the DN needs to measure.
  • the measurement parameters include, for example, one or more of the following: time stamp, forwarding delay, device identification, port status, congestion status, bandwidth, throughput, bandwidth queue utilization, packet loss rate, and the like.
  • the feature information of the service flow also includes the data format of the service flow.
  • the data format here can include the information of the header of the data packet of the service flow, and the header of the data packet can be used for dyeing operation, wherein the dyeing operation refers to marking certain fields in the header of the data packet, which can be done by dyeing
  • the operation is to mark the data packet to be measured, and the data format of the service flow can be used to determine the coloring position of the data packet to be measured.
  • the AF may also indicate to the PCF/NEF how to report the measurement data, where the measurement data refers to the data obtained after the network node measures the measurement parameters.
  • the indication information of the reporting manner of the measurement data may be carried in the characteristic information of the service flow, or in other words, the indication information of the reporting manner of the measurement data may be carried in the same message as the characteristic information of the service flow.
  • the reporting method of the measurement data here refers to the method in which the network element of the user plane reports the measurement data obtained after the measurement.
  • the network element of the user plane may be a UPF, RAN or UE.
  • the reporting method is, for example, It may include: a packet-by-packet reporting method, a periodic reporting method, or an event-driven reporting method, etc.
  • the PCF/NEF determines a measurement strategy.
  • the PCF/NEF determines the measurement policy of the service flow according to the characteristic information of the service flow, and the measurement policy includes measurement configuration information.
  • the PCF/NEF determining the measurement strategy may include: the PCF/NEF determining the first measurement parameter.
  • the PCF/NEF may determine the first measurement parameter according to the measurement parameter in the feature information of the service flow, as well as service requirements and network resource status. That is to say, the first measurement parameter determined by PCF/NEF may include all the measurement parameters indicated by AF, may also include only some of the measurement parameters indicated by AF, and may also include other parameters except the measurement parameters indicated by AF. This is not limited.
  • Determining the measurement strategy by the PCF/NEF may also include: determining by the PCF/NEF the position and manner of coloring the data packets to be measured, and the like.
  • the PCF/NEF obtains the data format of the service flow from the characteristic information of the service flow, and determines the coloring position of the data packet to be measured according to the data radical of the service flow.
  • the PCF/NEF determines to color the GTP-U header of the data packet to be measured according to the data format of the service flow, or determines to color the payload header and the GTP-U header of the data packet to be measured together.
  • the positions for coloring the uplink data and the downlink data may be the same or different.
  • the PCF/NEF may also determine the frequency of coloring the data packets to be measured according to network load conditions. For example, the PCF/NEF determines to perform a coloring operation on every two data packets in the service flow to be measured, or randomly color a data packet in every three data packets. Coloring only some packets instead of all packets saves resource consumption.
  • the determining of the measurement strategy by the PCF/NEF may also include: determining the reporting manner of the measurement data by the PCF/NEF.
  • the PCF/NEF can determine the reporting mode of the measurement data according to the instruction of the AF, and can also determine the reporting mode of the measurement data according to the service requirement and the state of the network resources.
  • packet-by-packet reporting can be used for some urgent services, that is, the measurement data is reported after measuring each data packet that needs to be measured, so that AF can obtain the measurement results in real time; for some services that do not require a high time limit, Periodic reporting can be used, that is, the measurement data within a certain period of time is compressed and reported together on a regular basis, which can save signaling overhead; another example, event-driven reporting can be used for some services with special needs, for example, when a certain measurement data When the parameter reaches a certain threshold, it will be reported again.
  • the determination of the measurement strategy by the PCF/NEF may also include: determining the storage format and compression algorithm of the measurement data by the PCF/NEF. For example, when the PCF/NEF determines that the reporting method of the measurement data is periodic reporting, the PCF/NEF can determine the storage format of the measurement data, the compression algorithm of the data, and the marking method of the data stream, etc.
  • the PCF/NEF may not receive parameter information from the AF.
  • the PCF can determine the measurement strategy based on the pre-configured information, or determine the measurement strategy based on the parameter information measured last time. , or determine a measurement strategy based on service information, current network load conditions, and the like. This application does not limit this.
  • the PCF/NEF indicates the measurement policy to the SMF.
  • the SMF receives the measurement strategy, and determines the first measurement parameter, the coloring position and coloring method of the data packet to be measured, and the reporting method of the measurement data according to the measurement strategy.
  • the storage format and compression algorithm of the measurement data can also be determined wait.
  • the measurement policy may also be determined by the SMF, and at this time, the PCF/NEF only plays the role of information forwarding. That is, after the PCF receives the feature information of the service flow sent by the AF in S601, it directly forwards it to the SMF, and the SMF determines the measurement strategy according to the feature information of the service flow.
  • the SMF obtains the feature information of the service flow from the UE to determine the measurement strategy.
  • the SMF obtains the feature information of the service flow from the UE to determine the measurement strategy.
  • the UE sends the feature information of the service flow to the AMF.
  • the AMF sends the characteristic information of the service flow to the SMF.
  • the UE sends the characteristic information of the service flow to the SMF through the AMF, and the characteristic information of the service flow is similar to the characteristic information of the service flow in S601, which will not be repeated here.
  • the characteristic information of the service flow can be carried in the PDU session establishment request message or the PDU session modification request message, that is, the UE can send the characteristic information of the service flow to the SMF in the PDU session establishment process or the PDU session modification process, so that no additional Sending the parameter information through signaling can save signaling overhead.
  • the SMF determines a measurement strategy.
  • the SMF determines the measurement strategy according to the characteristic information of the service flow received from the UE.
  • the specific manner is similar to the manner in which the PCF/NEF determines the measurement strategy in S602, and will not be repeated here.
  • the PCF/NEF may also determine the measurement strategy. For example, the SMF sends the characteristic information of the service flow received from the UE to the PCF/NEF, and then the PCF/NEF determines the measurement strategy according to the information, and then sends the measurement strategy to the SMF.
  • the specific method is similar to S602-S603. Let me repeat.
  • the SMF configures measurement configuration information to the UPF, RAN and UE according to the measurement policy.
  • the measurement configuration information exemplary:
  • the SMF sends measurement configuration information #1 to the UPF.
  • the SMF sends measurement configuration information #1 to the UPF through the N4 interface
  • the measurement configuration information #1 includes the first measurement parameter
  • the measurement configuration information #1 is used to instruct the UPF to color the downlink data packets that need to be measured, or It is said that the measurement configuration information #1 is used to instruct the UPF to color the downlink data packets of a certain service flow.
  • the measurement configuration information #1 may instruct the UPF to color the Option field of the IP header of the downlink data packet of the service flow #1, and the service flow #1 may be any downlink service flow.
  • the measurement configuration information #1 may also indicate the frequency for the UPF to color the data packets.
  • the measurement configuration information #1 may also instruct the UPF to measure the first measurement parameter of the colored data packet.
  • the measurement configuration information #1 may also be used to instruct the UPF to perform dyeing identification on the uplink data packet, or in other words, the measurement configuration information #1 is used to indicate the first measurement parameter of the UPF to the uplink data packet with the dyeing mark Take measurements.
  • the measurement configuration information #1 may also specifically indicate the location of the dyeing, for example, the measurement configuration information #1 instructs the UPF to measure the uplink data packets with the dyeing flag in the payload header.
  • the measurement configuration information #1 may also indicate to the UPF how to report the measurement data.
  • the measurement configuration information may further indicate the storage format of the measurement data, the compression algorithm of the data, and the marking method of the data stream, etc.
  • the SMF sends measurement configuration information #2 to the AMF.
  • the AMF sends the measurement configuration information #2 to the RAN.
  • the SMF uses the N2 interface to send measurement configuration information #2 to the RAN through the AMF, the measurement configuration information includes the first measurement parameter, and the measurement configuration information #2 is used to instruct the RAN to perform color identification on the data packet, or the measurement Configuration information #2 is used to instruct the RAN to measure the first measurement parameter of the data packet with the coloring mark
  • the measurement configuration information #2 may also specifically indicate the location of the dyeing, for example, the measurement configuration information #2 instructs the RAN to measure the data packets with the dyeing flag in the GTP-U header. It should be noted that the dyeing position of the uplink data packet and the downlink data packet may be different, so the uplink data packet and the downlink data packet may be indicated separately, for example, the measurement configuration information #2 indicates that the RAN has a coloring mark for the payload header Uplink data packets and downlink data packets with GTP-U headers marked with coloring are measured.
  • the measurement configuration information #2 may also indicate to the RAN the manner of reporting the measurement data.
  • the measurement configuration information #2 may further indicate the storage format of the measurement data, the compression algorithm of the data, and the marking method of the data stream, etc. .
  • the SMF sends measurement configuration information #3 to the AMF.
  • the AMF sends the measurement configuration information #3 to the UE.
  • the SMF uses the N1 interface to send measurement configuration information #3 to the UE through the AMF
  • the measurement configuration information #3 includes the first measurement parameter
  • the measurement configuration information #3 is used to instruct the UE to dye the uplink data packets that need to be measured
  • the measurement configuration information #3 is used to instruct the UE to color the uplink data packets of a certain service flow
  • the measurement configuration information #3 may indicate that the UE is in the Option domain, and the service flow #2 can be any upstream service flow.
  • the finger measurement configuration information #3 may also indicate the frequency at which the UE dyes the data packets.
  • the measurement configuration information #3 may also instruct the UE to measure the first measurement parameter of the dyed data packet.
  • the measurement configuration information #3 may also be used to instruct the UE to perform dyeing identification on the downlink data packet, or in other words, the measurement configuration information #3 is used to indicate the first measurement parameter of the UE to the downlink data packet with the dyeing flag Take measurements.
  • the measurement configuration information #3 may also specifically indicate the position of the dyeing, for example, the measurement configuration information #3 instructs the UE to measure the uplink data packets with the dyeing flag in the payload header.
  • the measurement configuration information #3 may also indicate to the UE the manner of reporting the measurement data.
  • the measurement configuration information may further indicate the storage format of the measurement data, the compression algorithm of the data, and the marking method of the data stream, etc.
  • the SMF can configure the RAN and the UE synchronously, that is, the measurement configuration information #2 and the measurement configuration information #3 can be carried in one message, and the repeated information in S608 and S610 can be sent only once.
  • the AMF After receiving the measurement configuration information #2 and measurement configuration information #3 from the SMF, the AMF sends the measurement configuration information #2 to the RAN through the N1 interface, and sends the measurement configuration information #3 to the UE.
  • the AMF may also send the measurement configuration information #2 and the measurement configuration information #3 to the RAN at the same time, and the RAN then sends the measurement configuration information #3 to the UE.
  • This application does not limit the specific manner in which the SMF sends the configuration information to the UE and the RAN.
  • S608/S610 can be carried in the PDU session modification request message, that is, the SMF can configure the RAN and UE during the PDU session modification process, which can reduce signaling consumption.
  • method 600 should be executed before the corresponding service flow is transmitted, for example, it should be executed during the service flow registration process or after the service flow registration is completed.
  • FIG. 7 shows a schematic flowchart of a method 700 for measuring network status provided by an embodiment of the present application. It should be understood that the method 700 may be implemented independently or in combination with the method 600. For example, the method 700 may be implemented after the method 600, which is not limited in the present application. Method 700 includes:
  • the AF sends a data packet to the UPF.
  • the UPF performs coloring and measurement on the data packet.
  • the UPF receives a data packet from the AF, and it is assumed that the data packet is a data packet of service flow #3.
  • the UPF may determine to perform dyeing and measurement on the data packets of the service flow #3 according to the pre-configuration of the control plane network element (for example, the configuration of the UPF by the SMF at S607 in the method 600).
  • UPF can color all data packets of service flow #3, and can also color some data packets of service flow #3.
  • UPF can color the data packets of service flow #3 according to a certain rule (or a certain frequency). Coloring is performed. Specifically, for example, the UPF dyes the Option field of the IP header of a data packet every second data packet in the data packet of the service flow #3. It should be understood that the UPF may determine the staining frequency and the staining position according to the measurement configuration information configured by the network element on the control plane.
  • the UPF measures the first measurement parameter of the dyed data packet, or the UPF measures the first measurement parameter when the dyed data packet passes through the UPF, for example, the UPF measures the bandwidth queue utilization rate when the dyed data packet passes through the UPF and forwarding delay, and obtain measurement data #1. It should be understood that the UPF may acquire the first measurement parameter according to the measurement configuration information configured by the network element on the control plane.
  • the UPF reports measurement data #1 to the AF.
  • the UPF transmits the measurement data #1 to a control plane network element (SMF, PCF, NEF or NWDAF) through signaling, and then the control plane network element reports the measurement data #1 to the AF.
  • a control plane network element SMF, PCF, NEF or NWDAF
  • the UPF can report the measurement data in a packet-by-packet manner, that is, the UPF will report the measurement result every time it obtains a data packet.
  • UPF can also report measurement data in a periodic reporting manner. For example, UPF can report measurement data every 100s, or UPF can report measurement data every 10 data packets. Specifically, for example, after UPF obtains measurement data #1, it sends the measurement data #1 Save to the local until the measurement data of 10 data packets is stored, then further compress all the measurement data and report to the AF.
  • the UPF may also report measurement data in an event-driven reporting manner, and for specific manners, refer to method 900 and method 1000 .
  • the UPF can determine the reporting method of the measurement data according to the measurement configuration information configured by the network element on the control plane. If the reporting method indicated by the measurement configuration information is periodic reporting, the UPF can also determine the data storage format and data format according to the measurement configuration information. compression algorithm.
  • the UPF forwards the data packet to the RAN.
  • the RAN measures the data packet with the dye mark.
  • the UPF forwards the data packet of the service flow #3 to the RAN through the AMF, and after receiving the data packet, the RAN identifies the data packet with the dyed mark therein, and performs a measurement on the first measurement parameter of the data packet with the dyed mark Measuring, or in other words, the RAN measures the first measurement parameter when the data packet with the colored flag passes through the RAN.
  • the RAN measures the bandwidth queue utilization rate and the forwarding delay when the data packets with dyeing marks pass through the RAN, and obtains measurement data #2.
  • the RAN may acquire the first measurement parameter according to the measurement configuration information configured by the network element on the control plane.
  • the RAN can also determine the dyeing position of the downlink data packet according to the measurement configuration information.
  • the dyeing position of the downlink data packet is, for example, the Option field of the IP header of the data packet.
  • the RAN will The Option field of the IP header of the received data packet is dyed and identified, and when the Option field of the IP header of a data packet has a dyed mark, the first measurement parameter of the data packet is measured.
  • the RAN reports the measurement data #2 to the AF.
  • the RAN may transmit the measurement data #2 to a control plane network element (SMF, PCF, NEF or NWDAF), and then the control plane network element reports the measurement data #2 to the AF.
  • a control plane network element SMF, PCF, NEF or NWDAF
  • the RAN can also send the measurement data #2 to the PMF of the UPF in the form of a special measurement packet through the user plane, and transmit the measurement data #2 to the control plane network element through the UPF, and then the control plane network element transmits the measurement data #2 Report to AF.
  • the RAN may report the measurement data #2 in a packet-by-packet reporting manner, may also report the measurement data #2 in a periodic reporting manner, and may also report the measurement data #2 in an event-driven manner, which is not limited in this application. It should be understood that the RAN may determine the reporting manner of the measurement data #2 according to the measurement configuration information configured by the network element on the control plane. If the reporting manner indicated by the measurement configuration information is periodic reporting, the RAN may also determine a data storage format and a data compression algorithm according to the measurement configuration information.
  • the RAN forwards the data packet to the UE.
  • the UE measures the data packets with the coloring marks.
  • the RAN forwards the data packet of service flow #3 to the UE, and after receiving the data packet, the UE identifies the data packet with the dyeing mark therein, and measures the first measurement parameter of the data packet with the dyeing mark, In other words, the UE measures the first measurement parameter when the data packet with the coloring mark passes through the UE, and acquires measurement data #3. It should be understood that the UE may obtain the first measurement parameter and the dyeing position of the downlink data packet according to the measurement configuration information configured by the network element on the control plane.
  • the UE reports the measurement #3 to the AF.
  • S708-S709 is similar to S705-S706, the difference is that S705-S706 is performed by the RAN, and S708-S709 is performed by the UE. For the sake of brevity, the description will not be repeated.
  • the measurement data is integrated, packaged into a format required by the application, and uploaded to the measurement analysis server for further analysis to obtain the network status.
  • the above technical solution acquires accurate network measurement data in a user-plane-friendly manner without causing additional resource consumption on the user plane and without sacrificing performance of network elements at the user plane.
  • FIG. 8 shows a schematic flowchart of a method 800 for measuring network status provided by an embodiment of the present application. It should be understood that the method 800 may be implemented independently or in combination with the method 600. For example, the method 800 may be implemented after the method 600, which is not limited in this application. Method 800 includes:
  • the UE performs coloring and measurement on the data packet.
  • the UE needs to send an uplink data packet to the network. Assuming that the data packet is a data packet of service flow #4, the UE can determine to color and measure the data packet of service flow #4 according to the pre-configuration of the control plane network element .
  • the UE can dye all the data packets of the service flow #4, and can also dye some data packets of the service flow #4. For example, the UE dyes the data packets of the service flow #4 according to a certain rule (or a certain frequency). dyeing, at the same time, the UE can determine the dyeing frequency and the dyeing position according to the instruction of the control plane network element.
  • the specific method is similar to the UPF dyeing method in S702, and will not be repeated here.
  • UPF can not only color the relevant fields of the header of the PDU data, but also dye the relevant fields of the GTP-U header, and can also color the relevant fields of the header of the PDU data and the GTP-U header at the same time.
  • the relevant fields of the PDU data can be dyed, and the UE can dye the relevant fields of the packet header of the PDU data, but cannot be dyed in the relevant fields of the GTP-U header.
  • the UE measures the first measurement parameter of the dyed data packet, or the UE measures the first measurement parameter when the dyed data packet passes through the UE, for example, the UE measures the bandwidth queue utilization rate when the dyed data packet passes through the UE and forwarding delay, and obtain measurement data #4. It should be understood that the UE may acquire the first measurement parameter, the staining position and the staining frequency according to the measurement configuration information configured by the network element on the control plane.
  • the UE reports measurement data #4 to the AF.
  • the UE transmits the measurement data #4 to a control plane network element (SMF, PCF, NEF or NWDAF) through signaling, and then the control plane network element reports the measurement data #4 to the AF.
  • a control plane network element SMF, PCF, NEF or NWDAF
  • the UE can also send the measurement data #4 to the PMF of the UPF in the form of a special measurement packet through the user plane, and transmit the measurement data #4 to the network element of the control plane through the UPF, and then the network element of the control plane transmits the measurement data #4 Report to AF.
  • the UE may report the measurement data #4 in a packet-by-packet reporting manner, may also report the measurement data #4 in a periodic reporting manner, and may also report the measurement data #4 in an event-driven manner. It should be understood that the UE can determine the reporting method of the measurement data according to the measurement configuration information configured by the network element on the control plane. If the reporting method indicated by the measurement configuration information is periodic reporting, the UE can also determine the data storage format and data format according to the measurement configuration information. compression algorithm.
  • the UE sends the data packet to the RAN.
  • the RAN measures the data packet with the coloring mark.
  • the UE sends the data packet of service flow #4 to the RAN, and after receiving the data packet, the RAN identifies the data packet with the dyeing mark therein, and measures and acquires the first measurement parameter of the data packet with the dyeing mark Measurement #5.
  • S804 is similar to S705 in the method 700, and will not be repeated here. However, it should be noted that the difference between S804 and S705 is that in S804 the RAN receives the uplink data packet from the UE, while in S705 the RAN receives the downlink data packet from the UPF, and the dyed flag bit of the uplink data packet in S804 cannot be set in GTP In the relevant field of the -U header.
  • the RAN reports measurement data #5 to the AF.
  • S805 is similar to S706 in the method 700, the only difference is that measurement data #2 is replaced with measurement data #5, and for brevity, the description will not be repeated.
  • the RAN sends the data packet to the UPF.
  • the UPF performs measurement on the data packets with the coloring marks.
  • the RAN forwards the data packet of the service flow #4 to the UPF, and after the UPF receives the data, identifies the data packet with the dyed mark therein, and measures the first measurement parameter of the data packet with the dyed mark, or That is, the UPF measures the first measurement parameter when the data packet with the dye mark passes through the UPF, and obtains measurement data #6.
  • S808 is similar to S703 in method 700, and will not be described again.
  • the measurement data is integrated, packaged into a format required by the application, and uploaded to the measurement analysis server for further analysis to obtain the network status.
  • FIG. 9 shows a schematic flowchart of a method 900 for measuring network status provided by an embodiment of the present application. It should be understood that the method 900 may be implemented independently or in combination with the method 600. For example, the method 900 may be implemented after the method 600, which is not limited in the present application. Method 900 includes:
  • the AF sends the data packet of the service flow #5 to the UPF.
  • the UPF dyes the data packets of the service flow #5, and measures the dyed data packets.
  • the UPF sends the data packet of the service flow #5 to the RAN.
  • the RAN performs dyeing recognition on the data packets of the service flow #5, and measures the data packets with the dyeing marks.
  • the RAN sends the data packet of the service flow #5 to the UE.
  • the UE performs dyeing recognition on the data packets of the service flow #5, and measures the data packets with the dyeing marks.
  • S901 - S906 are similar to S701 - S702 , S704 - S705 , and S707 - S708 in method 700 , and for the sake of brevity, the description will not be repeated here.
  • the UPF detects an abnormal event.
  • the reporting mode of the measurement data determined by the UPF is an event-driven reporting mode.
  • the UPF determines that the reporting mode of the measurement data is an event-driven reporting mode according to the configuration of the control plane network element, and the UPF performs Abnormal events are detected during measurement, where the abnormal event is, for example, that the measurement data of a certain parameter by the UPF exceeds a set threshold.
  • the UPF detects that the forwarding delay of the dyed data packet passing through the UPF exceeds the first threshold, the UPF determines that an abnormal event has been detected.
  • the UPF may determine the condition that triggers the abnormal time according to the measurement configuration information configured by the network element on the control plane, or may determine it according to pre-configuration information, which is not limited in this application.
  • the UPF reports the measurement data #7 of the first time period to the SMF.
  • the first time period refers to a time period corresponding to the abnormal event, or a time period obtained by adding a period of time to the start and end times of the abnormal event.
  • the measurement data #7 is the measurement data obtained by the UPF measuring the data packets in the first time period.
  • the SMF determines a first time period.
  • the SMF sends the first time period to the AMF.
  • the SMF can determine the first time period according to the start and end time corresponding to the measurement data #7, and then the SMF sends the first time period to the AMF, or the SMF indicates the start and end time of the first time period to the AMF to request to obtain Measurement data of the RAN and the UE within the first time period.
  • the UPF may directly indicate the first time period to the SMF.
  • the SMF may not need to execute S909, but directly indicates the first time period to the AMF.
  • the AMF acquires measurement data #8 of the RAN within the first time period.
  • the AMF obtains the measurement data #8 of the RAN in the first time period by way of control plane signaling through the N2 interface.
  • the AMF sends request information to the RAN, where the request message is used to request acquisition of measurement data #8 of the RAN within the first time period, and the request message includes the information of the first time period.
  • the RAN receives the request message, and sends measurement data #8 to the AMF according to the request message.
  • the AMF acquires measurement data #9 of the UE within the first time period.
  • the AMF obtains the measurement data #9 of the UE in the first time period by way of control plane signaling through the N1 interface.
  • the AMF sends request information to the UE, where the request message is used to request to acquire the measurement data #9 of the UE within the first time period, and the request message includes the information of the first time period.
  • the UE receives the request message, and sends measurement data #9 to the AMF according to the request message.
  • AMF sends measurement data #8 and measurement data #9 to SMF.
  • the AMF may indicate the first time period to the RAN and the UE, and the RAN and the UE send the measurement data #8 and measurement data #9 to the UPF through the user plane, Uploaded by UPF to SMF.
  • the SMF integrates the measurement data.
  • the SMF sends the integrated measurement data to the AF.
  • the SMF integrates measurement data #7, measurement data #5, and measurement data #9, and sends the integrated measurement data to the AF.
  • the above technical solution can synchronize the time when network elements of different user planes report measurement data in an event-driven reporting manner.
  • the consumption of user plane resources can be reduced, and the performance sacrifice of user plane network elements can be reduced.
  • FIG. 10 shows a schematic flowchart of a method 1000 for measuring network status provided by an embodiment of the present application. It should be understood that the method 1000 may be implemented independently or in combination with the method 600, for example, the method 1000 may be implemented after the method 600, which is not limited in this application. Method 1000 includes:
  • the AF sends the data packet of the service flow #6 to the UPF.
  • the UPF dyes the data packets of the service flow #6, and measures the dyed data packets.
  • the UPF sends the data packet of the service flow #6 to the RAN.
  • the RAN performs dyeing recognition on the data packets of service flow #6, and measures the data packets with dyeing marks.
  • the RAN sends the data packet of the service flow #6 to the UE.
  • the UE performs dyeing recognition on the data packets of service flow #6, and measures the data packets with dyeing marks.
  • S1001-S1006 are similar to S701-S702, S704-S705, and S707-S708 in the method 700, and for the sake of brevity, repeated descriptions are omitted here.
  • the UPF detects an abnormal event.
  • S1007 is similar to S907 in the method 900, and will not be repeated here.
  • the UPF determines the first time period and generates a measurement data packet.
  • the UPF determines the first time period, where the first time period refers to the time period corresponding to the abnormal event, or the time period after adding a period of time to the start and end times of the abnormal event.
  • the SMF generates the measurement data packet, and identifies the first time period (or identifies the start and end time of the first time period) in the GTP-U header and the payload header of the measurement data packet.
  • the UPF sends the measurement data packet to the RAN.
  • the RAN loads the measurement data #10 of the first time period into the payload of the measurement data packet.
  • the RAN sends a measurement data packet to the UE.
  • the RAN receives and identifies the measurement data packet, and obtains the first time period from the GTP-U header of the measurement data packet, and loads its measurement data #10 within the first time period into the payload of the measurement data packet , and then forward the measurement data packet to the UE.
  • the UE loads the measurement data #11 of the first time period into the payload tail of the measurement data packet.
  • the UE sends the measurement data packet to the UPF.
  • the UE receives and identifies the measurement data packet, obtains the first time period from the payload header of the measurement data packet, loads its measurement data #11 within the first time period into the payload tail of the measurement data packet, and then Pass measurement packets back to UPF.
  • the UPF sends the measurement data #10 and measurement data #11 to the SMF.
  • the SMF integrates the measurement data.
  • the SMF sends the integrated data to the AF.
  • the above technical solution can synchronize the time when network elements of different user planes report measurement data in an event-driven reporting manner.
  • the consumption of user plane resources can be reduced, and the performance sacrifice of user plane network elements can be reduced.
  • Fig. 11 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 10 may include a transceiver module 11 and a processing module 12 .
  • the communication device 10 may correspond to the first network element in the above method embodiment, or user plane network element (UPF), or radio access network equipment (RAN), or user equipment (UE ).
  • UPF user plane network element
  • RAN radio access network equipment
  • UE user equipment
  • the communication device 10 may correspond to the first network element in the method 400 of the embodiment of the present application, and the communication device 10 may include a module for executing the method performed by the first network element in the method 400 . Moreover, each module in the communication device 10 and the above-mentioned other operations and/or functions are to implement corresponding procedures of the method 400 .
  • the transceiver module 11 in the communication device 10 performs the receiving and sending operations performed by the first network element in the above method embodiments, and the processing module 12 performs operations other than the receiving and sending operations.
  • the communication device 10 may correspond to the UPF/RAN/UE in the method 600 to the method 1000 according to the embodiment of the present application, and the communication device 10 may include the UPF/RAN/UE for executing the method 600 to the method 1000.
  • Module of the method performed by the UE Moreover, each module in the communication device 10 and the above-mentioned other operations and/or functions are for realizing corresponding processes of the method 600 to the method 1000 respectively.
  • the transceiver module 11 in the communication device 10 performs the receiving and sending operations performed by the UPF/RAN/UE in the above method embodiments, and the processing module 12 performs operations other than the receiving and sending operations.
  • the communication device 10 may correspond to the second network element in the method 400 of the embodiment of the present application, and the communication device 10 may include a module for executing the method performed by the second network element in the method 400 . Moreover, each module in the communication device 10 and the above-mentioned other operations and/or functions are to implement corresponding procedures of the method 400 .
  • the transceiver module 11 in the communication device 10 performs the receiving and sending operations performed by the second network element in the above method embodiments, and the processing module 12 performs operations other than the receiving and sending operations.
  • the communication device 10 may correspond to the SMF/PCF/NEF in the method 600 to the method 1000 according to the embodiment of the present application, and the communication device 10 may include the SMF/PCF/NEF for executing the method 600 to the method 1000 A module of methods implemented by NEF. Moreover, each module in the communication device 10 and the above-mentioned other operations and/or functions are for realizing corresponding processes of the method 600 to the method 1000 respectively.
  • the transceiver module 11 in the communication device 10 performs receiving and sending operations performed by the SMF/PCF/NEF in the above method embodiments, and the processing module 12 performs operations other than the receiving and sending operations.
  • FIG. 12 is a schematic diagram of a communication device 20 provided by an embodiment of the present application.
  • the device 20 may be a terminal device in method 400, or a UPF/RAN/UE in method 600 to method 1000 .
  • the device 20 may include a processor 21 (ie, an example of a processing module) and a memory 22 .
  • the memory 22 is used to store instructions
  • the processor 21 is used to execute the instructions stored in the memory 22, so that the device 20 implements the steps performed by the first network element in the method 400, or the UPF/RAN/ Steps performed by the UE.
  • the device 20 may also include an input port 23 (ie, an example of a transceiver module) and an output port 24 (ie, another example of a transceiver module).
  • the processor 21 , the memory 22 , the input port 23 and the output port 24 can communicate with each other through internal connection paths, and transmit control and/or data signals.
  • the memory 22 is used to store a computer program, and the processor 21 can be used to call and run the computer program from the memory 22 to control the input port 23 to receive signals and the output port 24 to send signals to complete the first network in the above method element, or steps performed by UPF/RAN/UE.
  • the memory 22 can be integrated in the processor 21 or can be set separately from the processor 21 .
  • the input port 23 is a receiver
  • the output port 24 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 23 is an input interface
  • the output port 24 is an output interface
  • the functions of the input port 23 and the output port 24 may be realized by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 21 may be realized by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer to implement the communication device provided in the embodiment of the present application.
  • the program codes to realize the functions of the processor 21 , the input port 23 and the output port 24 are stored in the memory 22 , and the general processor realizes the functions of the processor 21 , the input port 23 and the output port 24 by executing the codes in the memory 22 .
  • processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • processor may also be other general-purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • FPGA field programmable gate array
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory Access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the present application also provides a computer program product, the computer program product including: computer program code, when the computer program code is run on the computer, the computer is made to execute the method 400 to the method 1000
  • the method in the example is shown.
  • the present application also provides a computer-readable medium, the computer-readable medium stores program codes, and when the program codes are run on a computer, the computer is made to perform the operations shown in Figures 6, 7, The method in the embodiment shown in FIG. 9 .
  • the present application further provides a system, which includes the foregoing one or more terminal devices and one or more network devices.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种测量网络状态的方法和装置,该方法包括:第一网元接收来自第二网元的第一指示信息,该第一指示信息用于指示对第一业务流的数据包的第一测量参数进行测量;该第一网元根据该第一指示信息对第一数据包的第一测量参数进行测量得到第一测量数据,该第一数据包属于该第一业务流;该第一网元生成第一信令;该第一网元通过该第一信令向第三网元上报该第一测量数据。基于上述方案,可以降低测量数据的上报所带来的网络开销。

Description

测量网络状态的方法和装置
本申请要求于2021年08月30日提交中国专利局、申请号为202111003832.5、申请名称为“测量网络状态的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种测量网络状态的方法和装置。
背景技术
随着通信技术的发展,无线网络逐渐应用于各个领域。然而,无线网络的状态变化十分动态快速,经常会出现偶发性的网络性能恶化,使得其在稳定性和可靠性方面面临着极大的挑战,影响了无线网络在实际应用中的效果。例如,第五代(5th generation,5G)网络在工业网络中应用成功的关键便是传输的稳定性和可靠性。现有的5G系统通过冗余链路、冗余终端去尽量保障网络的可靠性,然而从实际部署场景的测试数据来看,仍然有很多数据包的传输违背了网络定义的服务质量(quality of service,QoS)。但当前网络状态的测量和上报方式无法即时准确地获取网络测量数据,或者是会对业务带宽造成侵占,同时可能还会牺牲用户面网元的性能。
发明内容
本申请提供一种测量网络状态的方法和装置,以获取精确的网络测量数据,同时减少对用户面资源的消耗。
第一方面,提供了一种测量网络状态的方法,该方法包括:第一网元接收来自第二网元的第一指示信息,该第一指示信息用于指示对第一业务流的数据包的第一测量参数进行测量;该第一网元根据该第一指示信息对第一数据包的第一测量参数进行测量得到第一测量数据,该第一数据包属于该第一业务流;该第一网元生成第一信令;该第一网元通过该第一信令向第三网元上报该第一测量数据。
其中,该第一网元可以是用户面网元,也可以是无线接入网设备,也可以是用户设备;该第二网元可以是策略控制网元,也可以是网络开放功能网元,也可以是会话管理网元;该第三网元可以是网络数据分析功能网元,也可以是应用功能网元,也可以是第三方服务器。
基于上述技术方案,第一网元通过一个专门的信令(第一信令)向第三网元上报测量数据,可以避免造成第一网元额外的资源消息以及性能的牺牲,例如可以减少对业务带宽的占用,以及第一网元处理性能的占用。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一网元确定该第一数据包的第一包头具有染色标记,该染色标记用于指示该第一数据包为待测量数据包, 该第一包头包括该第一数据包的负载头(或者称为payload头)和/或第一隧道的隧道头,该第一隧道用于传输该第一数据包。
上述技术方案对具有染色标记的数据包进行测量,而不是对所有的数据包进行测量,可以节省资源消耗。
结合第一方面,在第一方面的某些实现方式中,该第一网元通过该第一信令向第三网元上报该第一测量数据,包括:该第一网元将该第一测量数据保存到第一测量集合;当满足第一条件时,该第一网元将该第一测量集合进行压缩得到第二测量集合;该第一网元通过该第一信令向该第三网元上报该第二测量集合。
通过上述方案,将第一测量数据保存到第一测量集合中压缩后上报,可以减少资源消耗。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一网元接收来自该第二网元的第二指示信息,该第二指示信息用于指示该第一测量集合内数据的存储格式以及用于对该第一测量集合进行压缩的数据压缩算法。
通过向第一网元配置数据的存储格式和压缩算法,以便第一网元可以将第一数据保存到第一测量集合中压缩后上报,以减少测量数据上报所带来的资源消耗。
结合第一方面,在第一方面的某些实现方式中,该第一条件包括:该第一测量集合内的测量数据的大小大于或等于第一阈值,和/或,该第一测量集合内的测量数据所对应的数据包的数量大于或等于第二阈值,和/或,该第一测量集合内的测量数据所对应的时间段大于或等于第三阈值。
上述方案,通过定期上报的方式上报测量数据,可以避免过度的控制面信令消耗。
结合第一方面,在第一方面的某些实现方式中,该第一网元通过该第一信令向第三网元上报该第一测量数据,包括:当满足第二条件时,该第一网元上报该第一业务流在第一时间段内的数据包的第二测量数据,该第一数据包属于该第一时间段内的数据包,该第二测量数据包括该第一测量数据。
上述方案,在满足一定条件时,上报第一时间段内的测量数据,该第二条件可以对应于异常事件,该第一时间段可以是异常事件对应的时间段。通过这种方式,可以获取精确的网络测量数据,同时避免过度的资源消耗。
结合第一方面,在第一方面的某些实现方式中,在该第一网元为用户面网元的情况下,该方法还包括:该第一网元向移动管理功能网元发送第三指示信息,该第三指示信息用于请求获取第三测量数据和第四测量数据,该第三测量数据为无线接入网设备在该第一时间段对该第一业务流的数据包进行测量得到的,该第四测量数据为用户设备在该第一时间段对该第一业务流的数据包进行测量得到的;该第一网元接收该第三测量数据和第四测量数据;该第一网元通过该第一信令向第三网元上报该第一测量数据,包括:该第一网元通过该第一信令向该第三网元上报该第二测量数据、该第三测量数据和第四测量数据。
当测量数据的上报方式为事件驱动上报方式时,通过上述方案可以将不同网元的测量数据进行同步,从而方便第三网元对测量数据进行分析处理。
结合第一方面,在第一方面的某些实现方式中,在该第一网元为用户面网元的情形下,该方法还包括:该第一网元向无线接入网设备和用户设备发送第二数据包,该第二数据包的负载包头和/或第二隧道的隧道头包括第四指示信息,该第四指示信息用于指示该第一 时间段,该第二隧道用于传输该第二数据包;该第一网元接收该第二数据包,该第二数据包携带第三测量数据和第四测量数据;该第一网元通过该第一信令向该第三网元上报该第一测量数据,包括:该第一网元通过该第一信令向该第三网元上报该第二测量数据和该第三测量数据和第四测量数据。
该第二隧道例如是用户层面的通用分组无线业务(general packet radio service,GPRS)隧道协议(GPRS tunneling protocol for the user plane,GTP-U)隧道,该第二隧道的隧道头为GTP-U包头。
当测量数据的上报方式为事件驱动上报方式时,通过上述方案可以将不同网元的测量数据进行同步,从而方便第三网元对测量数据进行分析处理。
结合第一方面,在第一方面的某些实现方式中,该第二条件包括:第四测量数据大于第三阈值,该第四测量数据为该第一测量参数中的任意测量参数所对应的测量数据。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一网元按照第一规律,对第二业务流的数据包进行染色,该第一规律用于指示对该第二业务流的数据包进行染色的染色频率。
通过上述技术方案,可以按照一定规律对待测量数据包进行染色,可以减少对所有数据包进行染色所引起的资源消耗。
结合第一方面,在第一方面的某些实现方式中,该对第二业务流的数据包进行染色,包括:该第一网元对第二业务流的数据包的第二包头进行染色,该第二包头包括该第二业务流的数据包的负载头和/或第三隧道的隧道头,该第三隧道用于传输该第二业务流的数据包。
结合第一方面,在第一方面的某些实现方式中,该第一测量参数包括时间戳、转发时延、设备标识、端口状态、拥塞状态、带宽、吞吐量、带宽队列利用率、丢包率中的至少一项。
结合第一方面,在第一方面的某些实现方式中,该第三网元为以下任一种网元:网络数据分析功能网元、应用功能网元、第三方服务器。
第二方面,提供了一种测量网络状态的方法,该方法包括:第二网元获取第一业务流的特征信息,该特征信息包括以下一项或多项:该第一业务流的第一测量参数、该第一业务流的数据包的数据格式、该第一业务流的业务需求;该第二网元根据该第一业务流的特征信息确定该第一业务流的测量配置信息;该第二网元向第一网元发送该测量配置信息,该测量配置信息用于指示以下至少一项:对该第一业务流的数据包的该第一测量参数进行测量、对该第一业务流的数据包的第一包头进行染色、该第一业务流的测量数据的上报方式,该第一包头包括该第一业务流的数据包的负载头和/或第一隧道的隧道头,该第一隧道用于传输该第一业务流的数据包,该上报方式为以下方式中的任意一种:逐包上报方式、定期上报方式、事件驱动上报方式,该上报方式根据该第一业务流的业务需求和/或网络资源状况确定。
基于上述技术方案,第二网元可以根据第一业务流的特征信息来确定第一业务流的测量配置信息,即第二网元可以根据业务需求和网络状况来确定测量策略,同时向第一网元配置实时网络测量能力,可以减轻用户面数据业务带宽的压力,保持各网元高性能的数据处理能力。
结合第二方面,在第二方面的某些实现方式中,该第二网元获取第一业务流的特征信息,包括:该第二网元从运维或应用功能网元获取该第一业务流的特征信息。
结合第二方面,在第二方面的某些实现方式中,该测量配置信息还用于指示该第一网元按照第二规律对该第一业务流的数据包的该第一包头进行染色,该第二规律用于指示对该第一业务流的数据包进行染色的染色频率。
结合第二方面,在第二方面的某些实现方式中,当该测量数据的上报方式为该定期上报方式时,该测量配置信息还用于指示该第一业务流的测量数据的数据存储格式和数据压缩算法。
上述方案中,第二网元可以根据业务情况灵活配置测量数据的上报方式,从而避免过度的控制面信令的开销。
结合第二方面,在第二方面的某些实现方式中,该第一测量参数包括时间戳、转发时延、设备标识、端口状态、拥塞状态、带宽、吞吐量、带宽队列利用率、丢包率中的至少一项。
第三方面,提供了一种测量网络状态的装置,该装置包括:收发模块,用于接收来自第二网元的第一指示信息,该第一指示信息用于指示对第一业务流的数据包的第一测量参数进行测量;处理模块,用于根据该第一指示信息对第一数据包的第一测量参数进行测量得到第一测量数据,该第一数据包属于该第一业务流;该处理模块还用于生成第一信令;该处理模块还用于通过该第一信令向第三网元上报该第一测量数据。
结合第三方面,在第三方面的某些实现方式中,该处理模块还用于确定该第一数据包的第一包头具有染色标记,该染色标记用于指示该第一数据包为待测量数据包,该第一包头包括该第一数据包的负载头和/或第一隧道的隧道头,该第一隧道用于传输该第一数据包。
结合第三方面,在第三方面的某些实现方式中,该处理模块具体用于:将该第一测量数据保存到第一测量集合;当满足第一条件时,将该第一测量集合进行压缩得到第二测量集合;该收发模块具体用于:通过该第一信令向该第三网元上报该第二测量集合。
结合第三方面,在第三方面的某些实现方式中,该收发模块还用于接收来自该第二网元的第二指示信息,该第二指示信息用于指示该第一测量集合内数据的存储格式以及用于对该第一测量集合进行压缩的数据压缩算法。
结合第三方面,在第三方面的某些实现方式中,该第一条件包括:该第一测量集合内的测量数据的大小大于或等于第一阈值,和/或,该第一测量集合内的测量数据所对应的数据包的数量大于或等于第二阈值,和/或,该第一测量集合内的测量数据所对应的时间段大于或等于第三阈值。
结合第三方面,在第三方面的某些实现方式中,该收发模块具体用于:当满足第二条件时,该第一网元上报该第一业务流在第一时间段内的数据包的第二测量数据,该第一数据包属于该第一时间段内的数据包,该第二测量数据包括该第一测量数据。
结合第三方面,在第三方面的某些实现方式中,该收发模块还用于:向移动管理功能网元发送第三指示信息,该第三指示信息用于请求获取第三测量数据和第四测量数据,该第三测量数据为无线接入网设备在所述第一时间段对所述第一业务流的数据包进行测量得到的,该第四测量数据为用户设备在所述第一时间段对所述第一业务流的数据包进行测 量得到的;接收该第三测量数据和该第四测量数据;该收发模块具体用于:通过该第一信令向该第三网元上报该第二测量数据、该第三测量数据和该第四测量数据。
结合第三方面,在第三方面的某些实现方式中,该收发模块还用于:该第一网元向无线接入网设备和用户设备发送第二数据包,该第二数据包的负载包头包括第四指示信息,该第四指示信息用于指示该第一时间段;接收该第二数据包,该第二数据包携带第三测量数据和第四测量数据;该收发模块具体用于:通过该第一信令向该第三网元上报该第二测量数据和该第三测量数据。
结合第三方面,在第三方面的某些实现方式中,该第二条件包括:第四测量数据大于第三阈值,该第四测量数据为该第一测量参数中的任意测量参数所对应的测量数据。
结合第三方面,在第三方面的某些实现方式中,该处理模块还用于:按照第一规律,对第二业务流的数据包进行染色,该第一规律用于指示对该第二业务流的数据包进行染色的染色频率。
结合第三方面,在第三方面的某些实现方式中,该处理模块具体用于:对第二业务流的数据包的第二包头进行染色,该第二包头包括该第二业务流的数据包的负载头和/或第二隧道的隧道头,该第二隧道用于传输该第二数据包。
结合第三方面,在第三方面的某些实现方式中,该第一测量参数包括时间戳、转发时延、设备标识、端口状态、拥塞状态、带宽、吞吐量、带宽队列利用率、丢包率中的至少一项。
结合第三方面,在第三方面的某些实现方式中,该第三网元为以下任一种网元:网络数据分析功能网元、应用功能网元、第三方服务器。
第四方面,提供了一种测量网络状态的装置,该装置包括:处理模块,用于获取第一业务流的特征信息,该特征信息包括以下一项或多项:该第一业务流的第一测量参数、该第一业务流的数据包的数据格式、该第一业务流的业务需求;该处理模块还用于:根据该第一业务流的特征信息确定该第一业务流的测量配置信息;收发模块,用于向第一网元发送该测量配置信息,该测量配置信息用于指示以下至少一项:对该第一业务流的数据包的该第一测量参数进行测量、对该第一业务流的数据包的第一包头进行染色、该第一业务流的测量数据的上报方式,该第一包头包括该第一业务流的数据包的负载头和/或第一隧道的隧道头,该第一隧道用于传输该第一业务流的数据包,该上报方式为以下方式中的任意一种:逐包上报方式、定期上报方式、事件驱动上报方式,该上报方式根据该第一业务流的业务需求和/或网络资源状况确定。
结合第四方面,在第四方面的某些实现方式中,该收发模块具体用于:该第二网元从运维或应用功能网元获取该第一业务流的特征信息。
结合第四方面,在第四方面的某些实现方式中,该测量配置信息还用于指示该第一网元按照第二规律对该第一业务流的数据包的该第一包头进行染色,该第二规律用于指示对该第一业务流的数据包进行染色的染色频率。
结合第四方面,在第四方面的某些实现方式中,当该测量数据的上报方式为该定期上报方式时,该测量配置信息还用于指示该第一业务流的测量数据的数据存储格式和数据压缩算法。
结合第四方面,在第四方面的某些实现方式中,该第一测量参数包括时间戳、转发时 延、设备标识、端口状态、拥塞状态、带宽、吞吐量、带宽队列利用率、丢包率中的至少一项。
第五方面,提供了一种通信装置,该装置包括:处理器,用于执行存储器中存储的计算机程序,以使得该通信装置执行第一方面或第二方面中的任一种可能的实现方式。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,当该计算机程序在计算机上运行时,使得该计算机执行第一方面至第二方面中的任一种可能的实现方式。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序指令,该计算机程序指令在计算机上运行时,使得计算机执行如第一方面至第二方面中任一项该的方法。
第八方面,提供了一种芯片系统,该芯片系统包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片系统地通信设备执行第一方面至第二方面中的任一种可能的实现方式。
附图说明
图1是一种适用于本申请实施例的通信系统的示意图;
图2是一种基于性能测量功能的针对网络状态的主动测量机制示意图;
图3是一种带内网络遥测技术的框架示意图;
图4是本申请实施例提供的测量网络状态的方法的示意性流程图;
图5是一种适用于本申请实施例的网络架构图;
图6是本申请实施例提供的一种测量网络状态的方法的示意性流程图;
图7是本申请实施例提供的另一种测量网络状态的方法的示意性流程图;
图8是本申请实施例提供的又一种测量网络状态的方法的示意性流程图;
图9是本申请实施例提供的又一种测量网络状态的方法的示意性流程图;
图10是本申请实施例提供的又一种测量网络状态的方法的示意性流程图;
图11是本申请实施例提供的一种通信装置的示意性框图;
图12是本申请实施例提供的另一种通信装置的示意性框图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图,对本申请中的技术方案进行描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请提供的技术方案可以应用于各种通信系统,例如:5G或新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。本申请提供的技术方案还可以应用于设备到设备(device to device,D2D)通信,车到万物(vehicle-to-everything,V2X)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),以及物联网(internet of things,IoT)通信系统或者其他通信系 统。
如图1的(a)所示,为基于服务化架构的5G网络架构示意图。图1的(a)所示的5G网络架构中可包括三部分,分别是终端设备部分、数据网络(data network,DN)和运营商网络部分。下面对其中的部分网元的功能进行简单介绍说明。
其中,运营商网络可包括以下网元中的一个或多个:鉴权服务器功能(authentication server function,AUSF)网元、网络开放功能(network exposure function,NEF)网元、策略控制功能(policy control function,PCF)网元、统一数据管理(unified data management,UDM)网元、统一数据库(unified data repository,UDR)、网络存储功能(network repository function,NRF)网元、应用功能(application function,AF)网元、接入与移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、无线接入网(radioaccess network,RAN)以及用户面功能(user plane function,UPF)网元等。上述运营商网络中,除无线接入网部分之外的部分可以称为核心网络部分。
1、终端设备(terminal device):也可以成为用户设备(user equipment,UE),是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。这里的终端设备,指的是第三代合作伙伴计划(3rd generation partnership project,3GPP)终端。为便于说明,本申请后续以UE代指终端设备为例进行说明。
上述终端设备可通过运营商网络提供的接口(例如N1等)与运营商网络建立连接,使用运营商网络提供的数据和/或语音等服务。终端设备还可通过运营商网络访问DN,使用DN上部署的运营商业务,和/或第三方提供的业务。其中,上述第三方可为运营商网络和终端设备之外的服务方,可为终端设备提供他数据和/或语音等服务。其中,上述第三方的具体表现形式,具体可根据实际应用场景确定,在此不做限制。
2、无线接入网络(radio access network,RAN)网元:在下文中简称为RAN,对应接入网设备。
RAN是运营商网络的子网络,是运营商网络中业务节点与终端设备之间的实施系统。终端设备要接入运营商网络,首先是经过RAN,进而可通过RAN与运营商网络的业务节点连接。本申请中的RAN设备,是一种为终端设备提供无线通信功能的设备,RAN设备也称为接入网设备。本申请中的RAN设备包括但不限于:5G中的下一代基站(g nodeB,gNB)、演进型节点B(evolved node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseBand unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。3、用户面功能(user plane function, UPF):用于分组路由和转发以及用户面数据的服务质量(quality of service,QoS)处理等。
在5G通信系统中,该用户面网元可以是用户面功能(user plane function,UPF)网元。在未来通信系统中,用户面网元仍可以是UPF网元,或者,还可以有其它的名称,本申请不做限定。
4、多播/广播用户面功能(multicast/broadcast-user plane function,MB-UPF)
MB-UPF主要负责将多播广播流传送到RAN(或者UPF),可以进行多播广播流的包过滤、分发,实现多播广播服务的QoS增强以及计数/上报等。本申请中的MB-UPF和UPF不做严格区分,使用(MB-)UPF表示MB-UPF或者UPF。
5、数据网络(data network,DN):用于提供传输数据的网络。
在5G通信系统中,该数据网络网元可以是数据网络网元。在未来通信系统中,数据网络网元仍可以是DN网元,或者,还可以有其它的名称,本申请不做限定。
6、接入和移动管理网元
接入和移动管理网元主要用于移动性管理和接入管理等,可以用于实现MME功能中除会话管理之外的其它功能,例如,合法监听以及接入授权/鉴权等功能。
在5G通信系统中,该接入和移动管理网元可以是接入和移动管理功能(access and mobility management function,AMF)。在未来通信系统中,接入和移动管理设备仍可以是AMF,或者,还可以有其它的名称,本申请不做限定。
7、会话管理功能(session management function,SMF):主要用于会话管理、用户设备的网络互连协议(internet protocol,IP)地址分配和管理、选择可管理用户平面功能、策略控制和收费功能接口的终结点以及下行数据通知等。
在5G通信系统中,该会话管理网元可以是会话管理功能网元。在未来通信系统中,会话管理网元仍可以是SMF网元,或者,还可以有其它的名称,本申请不做限定。
8、多播/广播会话管理功能(multicast/broadcast-session management function,MB-SMF)
MB-SMF主要负责多播广播会话管理,控制多播广播传输,根据PCF提供或本地配置的多播广播服务是策略规则对MB-UPF和RAN进行相应的配置,以完成多播广播流的传输。本申请中的MB-SMF和SMF不做严格区分,使用(MB-)SMF表示MB-SMF或者SMF。
9、策略控制功能(policy control function,PCF):用于指导网络行为的统一策略框架,为控制面功能网元(例如AMF,SMF等)提供策略规则信息等。
在4G通信系统中,该策略控制网元可以是策略和计费规则功能(policy and charging rules function,PCRF)网元。在5G通信系统中,该策略控制网元可以是策略控制功能PCF网元。在未来通信系统中,策略控制网元仍可以是PCF网元,或者,还可以有其它的名称,本申请不做限定。
10、应用功能(application function,AF):用于进行应用影响的数据路由,无线接入网络开放功能网元,与策略框架交互进行策略控制等。
在5G通信系统中,该应用网元可以是应用功能网元。在未来通信系统中,应用网元仍可以是AF网元,或者,还可以有其它的名称,本申请不做限定。
11、统一数据管理(unified data management,UDM):用于处理UE标识,接入鉴 权,注册以及移动性管理等。
在5G通信系统中,该数据管理网元可以是统一数据管理网元;在4G通信系统中,该数据管理网元可以是归属用户服务器(home subscriber server,HSS)网元在未来通信系统中,统一数据管理仍可以是UDM网元,或者,还可以有其它的名称,本申请不做限定。
12、统一数据存储(unified data repository,UDR):主要包括以下功能:签约数据、策略数据、应用数据等类型数据的存取功能。
13、认证服务器(authentication server function,AUSF):用于鉴权服务、产生密钥实现对用户设备的双向鉴权,支持统一的鉴权框架。
在5G通信系统中,该认证服务器可以是认证服务器功能网元。在未来通信系统中,认证服务器功能网元仍可以是AUSF网元,或者,还可以有其它的名称,本申请不做限定。
14、数据网络(data network,DN):DN是位于运营商网络之外的网络,运营商网络可以接入多个DN,DN上可部署多种业务,可为终端设备提供数据和/或语音等服务。例如,DN是某智能工厂的私有网络,智能工厂安装在车间的传感器可为终端设备,DN中部署了传感器的控制服务器,控制服务器可为传感器提供服务。传感器可与控制服务器通信,获取控制服务器的指令,根据指令将采集的传感器数据传送给控制服务器等。又例如,DN是某公司的内部办公网络,该公司员工的手机或者电脑可为终端设备,员工的手机或者电脑可以访问公司内部办公网络上的信息、数据资源等。
图1的(a)中Nausf、Nnef、Npcf、Nudm、Naf、Namf、Nsmf、N1、N2、N3、N4,以及N6为接口序列号。这些接口序列号的含义可参见3GPP标准协议中定义的含义,在此不做限制。
如图1的(b)所示,为基于点对点接口的5G网络架构示意图,其中的网元的功能的介绍可以参考图1的(a)中对应的网元的功能的介绍,不再赘述。图1的(b)与图1的(a)的主要区别在于:图1的(b)中的各个网元之间的接口是点对点的接口,而不是服务化的接口。
在图1的(b)所示的架构中,各个网元之间的接口名称及功能如下:
1)N7:PCF与SMF之间的接口,用于下发协议数据单元(protocol data unit,PDU)会话粒度以及业务数据流粒度控制策略。
2)N15:PCF与AMF之间的接口,用于下发UE策略及接入控制相关策略。
3)N5:AF与PCF之间的接口,用于应用业务请求下发以及网络事件上报。
4)N4:SMF与UPF之间的接口,用于控制面与用户面之间传递信息,包括控制面向用户面的转发规则、QoS控制规则、流量统计规则等的下发以及用户面的信息上报。
5)N11:SMF与AMF之间的接口,用于传递RAN和UPF之间的PDU会话隧道信息、传递发送给UE的控制消息、传递发送给RAN的无线资源控制信息等。
6)N2:AMF与RAN之间的接口,用于传递核心网侧至RAN的无线承载控制信息等。
7)N1:AMF与UE之间的接口,接入无关,用于向UE传递QoS控制规则等。
8)N8:AMF与UDM间的接口,用于AMF向UDM获取接入与移动性管理相关签约数据与鉴权数据,以及AMF向UDM注册UE当前移动性管理相关信息等。
9)N10:SMF与UDM间的接口,用于SMF向UDM获取会话管理相关签约数据, 以及SMF向UDM注册UE当前会话相关信息等。
10)N35:UDM与UDR间的接口,用于UDM从UDR中获取用户签约数据信息。
11)N36:PCF与UDR间的接口,用于PCF从UDR中获取策略相关签约数据以及应用数据相关信息。
12)N12:AMF和AUSF间的接口,用于AMF向AUSF发起鉴权流程,其中可携带SUCI作为签约标识;
13)N13:UDM与AUSF间的接口,用于AUSF向UDM获取用户鉴权向量,以执行鉴权流程。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。为方便说明,本申请后续,以网络设备为接入和移动管理网元AMF,基站为无线接入网络RAN为例进行说明。
应理解,上述应用于本申请实施例的网络架构仅是一种举例说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。
例如,在某些网络架构中,AMF、SMF网元、PCF网元、BSF网元以及UDM网元等网络功能网元实体都称为网络功能(network function,NF)网元;或者,在另一些网络架构中,AMF,SMF网元,PCF网元,BSF网元,UDM网元等网元的集合都可以称为控制面功能网元。
本申请实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
下面结合2和图3介绍两种网络状态的测量方法。
图2是一种5GS中基于性能测量功能(performance measurement function,PMF)的针对网络状态的主动测量机制示意图。PMF是在用户面的两个端点UPF和UE上的一个逻辑功能,该功能可以根据核心网控制面的策略发起主动测量包去进行UPF-UE的单侧网络延迟测量或者往返时延(round-trip time,RTT)的整体测量。
然而,这种主动测量方式无法及时检测快速的网络状态变化。例如,当5G网络感知到某个QoS流数据包违反了相应5QI或者丢包了,再去触发PMF主动测量当前QoS流的网络传输的话,这个时候可能无线状态已经恢复了,主动测量包可能经历的是正常的网络传输,因此也就无法检测出网络的问题以及还原当时丢包的各个网元信息,从而无法对相应问题进行定位。同时,主动测量包也会占用业务带宽。
图3是一种带内网络遥测(in-band network telemetry,INT)技术的框架示意图。INT技术是一种在数据面进行被动网络测量的方法,在这种方法中,正常业务包在经历网络不 同节点的时候,这些节点将自己本地当前测量数据嵌入到业务包的包头进行传输。在可编程社区P4中定义了INT框架,在IETF也定义了IOAM技术。从图3中可以看出,在支持INT的网络中有三种角色:INT源节点、INT传输节点和INT池节点。其中,INT源节点负责给正常业务包加入INT包头以及本节点的INT元数据,INT元数据包括定义的相关测量参数(本地转发延迟、端口号、设备号、队列占用率等等);之后数据包经过INT传输节点,传输节点将自己的元数据插入INT包头继续传输;最后到INT池节点,该节点插入自己的INT元数据,并且将整个INT包头及元数据提取出来上报测量服务器进行分析、诊断。
然而带内网络测量依赖于在用户面正常的业务包的包头添加各个沿路经过的节点的测量信息,因此会造成对业务带宽的侵占以及对沿路设备计算能力的损耗,降低整体转发性能。
鉴于此,希望提供一种技术,能够准备获取动态变化的网络状态,同时减少整体网络参数性能开销。
图4是本申请实施例提供的一种测量网络状态的方法400的示例性流程图,该方法400包括:
S401,第二网元获取第一业务流的特征信息。
示例性地,该第一业务流的特征信息包括以下一项或多项:该第一业务流的测量参数、该第一业务流的数据包的数据格式、该第一业务流的业务需求。
其中,该测量参数包括时间戳、转发时延、设备标识、端口状态、拥塞状态、带宽、吞吐量、带宽队列利用率、丢包率中的至少一项。
一种实现方式中,第二网元可以从应用功能网元接收该第一业务流的特征信息,此时该第一测量参数可以是数据网络希望测量的参数。另一种实现方式中,第二网元可以根据运维人员的配置获取该第一业务流的特征信息。
应理解,该第二网元可以是策略控制网元(例如PCF),也可以是网络开放功能网元(例如NEF),也可以是会话管理网元(例如SMF),本申请不作限定。
S402,该第二网元根据第一业务流的特征信息确定第一业务流的测量配置信息。
示例性地,该第二网元根据该第一业务流的特征信息确定第一测量参数,例如,第二网元根据第一业务流的特征信息中的测量参数,以及第一业务流的业务需求和网络资源状态等确定第一测量参数,即第二网元可以根据实际需要确定需要测量的第一测量参数,该第一测量参数可以包括特征信息中的全部测量参数,也可以仅包括特征信息中的部分测量参数,还可能包括除特征信息中的测量参数以外的其他参数,本申请不作限定。
示例性地,该第二网元根据该第一业务流的特征信息确定第一业务流的数据包的染色位置,例如,第二网元根据该第一业务流的数据包的数据格式确定对第一业务流的数据包进行染色的染色位置,其中,这里的染色指的是对第一业务流的数据包的包头的某些域进行标记,该标记用于指示待测量的数据包。具体例如,该第二网元根据该第一业务流的数据格式确定对第一业务流的数据包的第一包头进行染色,该第一包头例如是第一业务流的数据包的负载头和/或第一隧道的隧道头,该第一隧道用于传输该第一业务流的数据包,该第一隧道例如是GTP-U隧道。该第二网元还可以确定对第一业务流的数据包进行染色的染色频率,例如,第二网元根据网络负载情况确定对第一业务流中每隔两个数据包执行 一次染色操作(例如对第一业务流中的第1个、第4个、第7个……数据包进行染色)。
示例性地,该第二网元还可以根据第一业务流的特征信息确定测量数据的上报方式,该上报方式包括以下任意一种:逐包上报方式、定期上报方式、事件驱动上报方式。例如,该第二网元可以根据第一业务流的业务需求确定测量数据的上报方式,具体例如,第一业务流对应一种紧急业务,则可以确定采用逐包上报的方式。
示例性地,如果第二网元确定的测量数据的上报方式为定期上报,则第二网元还可以确定测量数据的存储格式和压缩算法。
S403,该第二网元向第一网元发送该测量配置信息。
示例性地,该测量配置信息用于指示以下至少一项:对第一业务流的数据包的第一测量参数进行测量、对第一业务流的数据包的第一包头进行染色、第一业务流的测量数据的上报方式。
可选地,该测量配置信息还可以指示第一网元对第一业务流的数据包的第一包头进行染色的方式或频率。例如,该测量配置信息用于指示第一网元按照第一规律对第一业务流的数据包的第一包头进行染色,该第一规律用于指示对第一业务流的数据包进行染色的染色频率。
可选地,当该测量配置信息所指示的测量数据的上报方式为定期上报时,该测量配置信息还可以用于指示第一业务流的测量数据的数据存储格式和数据压缩算法。
该第一网元可以是用户面网元(例如UPF),也可以是无线接入网设备(例如RAN),也可以是用户设备(例如UE),本申请不作限定。
S404,第一网元对第一数据包的第一测量参数进行测量得到第一测量数据。
示例性地,该第一网元为用户面网元的情形下,且该第一业务流的数据包为下行数据包时,第一网元可以根据测量配置信息,按照第一规律对第一业务流的第一包头进行染色,并对染色的数据包(例如第一数据包)的第一测量参数进行测量,得到第一测量数据。
示例性地,该第一网元为用户面网元的情形下,且该第一业务流的数据包为上行数据包时,该第一网元对该第一业务流的数据包进行染色识别,例如,第一网元识别第一业务流的第一包头具有染色标记数据包,对具有染色标记的数据包(例如第一数据包)的第一测量参数进行测量,得到第一测量数据。
示例性地,该第一网元为无线接入网设备的情形下,第一网元可以对该第一业务流的数据包进行染色识别,例如,识别第一业务流的第一包头具有染色标记的数据包,对具有染色标记的数据包(例如第一数据包)的第一测量参数进行测量,得到第一测量数据,此时,该第一业务流的数据包可以是上行数据包,也可以是下行数据包。
示例性地,该第一网元为用户设备的情形下,且该第一业务流的数据包为上行数据包时,第一网元可以根据测量配置信息,按照第一规律对第一业务流的第一包头进行染色,并对染色的数据包(例如第一数据包)的第一测量参数进行测量,得到第一测量数据。
示例性地,该第一网元为用户设备的情形下,且该第一业务流的数据包为下行数据包时,第一网元可以对该第一业务流的数据包进行染色识别,例如,识别第一业务流的第一包头具有染色标记的数据包,对具有染色标记的数据包(例如第一数据包)的第一测量参数进行测量,得到第一测量数据。
S405,第一网元生成第一信令。
应理解,本申请对S404和S405执行的先后顺序不作限定。
S406,第一网元向第三网元发送第一测量参数。
示例性地,第一网元通过第一信令向第三网元上报第一测量数据。
一种情况,第一网元根据测量配置信息确定测量数据的上报方式为逐包上报时,则第一网元在对第一数据包进行测量得到第一测量数据之后,便通过第一信令将第一测量数据上报给第三网元。应理解,本申请以第一网元得到第一测量数据之前或之后生成第一信令来承载第一测量数据为例进行说明的,但在某些场景中,第一网元还可能采用一些现有的其他信令来承载第一测量数据,即第一网元可能不需要专门生成第一信令,本申请对此不作限定。
另一种情况下,第一网元根据测量配置信息确定测量数据的上报方式为定期上报时,则第一网元在对第一数据包进行测量得到第一测量数据之后,将第一测量数据保存到第一测量集合。当满足第一条件时,第一网元将第一测量集合进行压缩得到第二测量集合。应理解,第一网元可以根据测量配置信息或预配置信息确定第一测量数据的存储格式和对第一测量集合进行压缩的压缩算法。该第一条件例如包括:第一测量集合内的测量数据的大小大于或等于第一阈值;和/或,第一测量集合内的测量数据所对应的数据包的数量大于或等于第二阈值;和/或,第一测量集合内的测量数据所对应的时间段大于或等于第三阈值。即,在定期上报的方式中,第一网元可以将数据包的测量数据保存在本地,当本地测量数据的大小达到设定的阈值时,再将本地保存的测量数据压缩后上报;或者,第一网元将数据包的测量数据保存在本地,当测量数据所对应的数据包的数量达到设定的阈值,则将本地保存的数据包压缩后上报(例如,每测量10个数据包进行一次上报);或者,第一网元将数据包的测量数据保存在本地,当测量的时间段(或者说测量数据所对应的时间段)达到设定的阈值,则将本地保存的数据包压缩后上报(例如,每测量1s进行一次上报)。
进一步地,第一网元通过第一信令将第二测量集合上报给第三网元,第三网元获取第二测量集合后可以通过解压缩获取第一测量数据。
又一种情况下,在第一网元根据测量配置信息确定测量数据的上报方式为事件驱动上报,且第一网元为用户面网元的情形下,当满足第二条件时,第一网元向会话管理网元上报第一业务流在第一时间段内的数据包的第二测量数据,该第一数据包属于该第一时间段内的数据包,即该第二测量数据包括第一测量数据。另一方面,第一网元向第二网元发送请求消息,该请求消息用于请求会话管理网元获取无线网设备和/或用户设备在第一时间段内对第一业务流的数据包进行测量得到的第三测量数据和第四测量数据。对应地,会话管理网元根据第二测量数据的起始时间确定第一时间段,或者根据请求消息中携带的信息确定第二时间段,然后分别向无线接入网设备和用户设备请求获取第三测量数据和第四测量数据,请求消息中携带第一时间段的信息。对应地,无线接入网设备和用户设备根据会话管理网元的请求消息,向该会话管理网元上报第三测量数据和第四测量数据。会话管理将第二测量数据、第三测量数据、第四测量数据整合之后,向第三网元上报该第一测量数据。上述第二条件包括:第四测量数据大于第三阈值,该第四测量数据为第一测量参数中的任意测量参数所对应的测量数据,例如,第四测量数据为设备转发时延,则第二条件可以是:设备转发时延大于第三阈值。
在上述情况下的另一种实现方式中,当满足第二条件时,第一网元向无线接入网设备和用户设备发送第二数据包,该第二数据包的负载头包括第一时间段的指示信息。对应地,无线接入网设备接收到第二数据包之后,从第二数据包的负载头获取第一时间段,然后将第一时间段对应的第三测量数据加载到第二数据包的负载头中,然后将第二数据包发送给用户设备。对应地,用户设备接收到第二数据包之后,从第二数据包的负载头获取第一时间段,然后将第一时间段对应的第四测量数据加载到第二数据包的负载头中,然后将第二数据包发送给第一网元。对应地,第一网元接收第二数据包,并从该第二数据包中获取第三测量数据和第四测量数据,第一网元通过第一信令向第三网元上报第二测量数据、第三测量数据和第四测量数据。
该第三网元可以是网络数据分析功能网元,也可以是应用功能网元,也可以是第三方服务器,本申请不作限定。第三网元获取第一测量数据之后,可以对测量数据作进一步分析。
上述技术方案,通过被动测量的方式,可以捕捉快速变化的空口网络状态,获取准确的网络测量数据。同时在上报测量数据的过程中,可以降低网络开销,减少对用户面资源的消耗。
图5是一种适用于本申请实施例的网络架构图,在一种场景下,方法400可以应用于该网络架构。在图5所示的网络架构中,5G核心网(5G core network,5GC)控制面可以向UPF、RAN和UE配置测量需求,UPF、RAN和UE可以根据该测量需求对DN和UE之间传输的数据包进行测量。另外,UPF或UE可以对待测量的数据包进行标记以方便各网元对待测量数据包进行识别,例如,图中的阴影部分是可选的标记位,从图中可以看出,UPF可以在PDU数据里面的包头的相关域(例如IP包头的Option域)或者在GTP-U隧道的隧道头的相关域对待测量的下行数据包进行标记(也可以同时在数据包头和GTP-U头中进行标记)。UE可以在PDU数据里面的包头的相关域对待测量的上行数据包进行标记。
图6示出了本申请实施例提供的一种测量网络状态的方法600的示例性流程图,该方法600可以应用于图5所示的网络架构中。方法600包括:
首先,SMF确定测量策略。这里的测量策略指的是测量网络状态的策略,或者说是针对网络中的业务流(或业务流的数据包)的测量策略。该测量策略与一个业务流对应,该测量策略可以根据该业务流的业务需求确定。在一些情况下,该测量策略也可能与多个业务流对应,此时,该测量策略可以是根据多个业务流的业务需求综合确定的。
一种可能的实现方式中(记为方案1),PCF/NEF从AF获取业务流特征信息以确定测量策略,然后将测量策略发送给SMF。示例性地:
S601,AF向PCF/NEF发送业务流的特征信息。
示例性地,该业务流的特征信息可以与一个或多个业务流对应。该业务流的特征信息包括测量参数,该测量参数可以是DN需要测量的参数。该测量参数例如包括以下中的一项或多项:时间戳、转发时延、设备标识、端口状态、拥塞状态、带宽、吞吐量、带宽队列利用率、丢包率中的至少一项等。
可选地,该业务流的特征信息还包括该业务流的数据格式。这里的数据格式可以包括该业务流的数据包的包头的信息,数据包的包头可以用于进行染色操作,其中染色操作指 的是对数据包的包头中的某些域进行标记,可以通过染色操作对待测量数据包进行标记,该业务流的数据格式可以用于确定对待测量数据包的染色位置。
可选地,AF还可以向PCF/NEF指示测量数据的上报方式,这里的测量数据指的是网络节点对测量参数进行测量后得到的数据。该测量数据的上报方式的指示信息可以承载于业务流的特征信息中,或者说,该测量数据的上报方式的指示信息可以和业务流的特征信息承载与同一消息中。
需要说明的是,这里的测量数据的上报方式指的是用户面的网元将测量之后得到的测量数据进行上报的方式,该用户面的网元可以是UPF、RAN或UE,该上报方式例如可以包括:逐包上报方式、定期上报方式或者事件驱动上报方式等。
S602,PCF/NEF确定测量策略。
示例性地,PCF/NEF根据业务流的特征信息确定业务流的测量策略,该测量策略包括测量配置信息。
PCF/NEF确定测量策略可以包括:PCF/NEF确定第一测量参数。例如,PCF/NEF可以根据业务流的特征信息中的测量参数,以及业务需求和网络资源状态等确定第一测量参数。也就是说,PCF/NEF确定的第一测量参数可以包括AF指示的所有测量参数,也可以仅包括AF指示的部分测量参数,还可能包括除AF指示的测量参数以外的其他参数,本申请对此不作限定。
PCF/NEF确定测量策略还可以包括:PCF/NEF确定对待测量数据包进行染色的位置和染色的方式等。例如,PCF/NEF从业务流的特征信息获取业务流的数据格式,根据该业务流的数据根式确定对待测量的数据包进行染色的位置。具体例如,PCF/NEF根据业务流的数据格式,确定在待测量数据包的GTP-U头进行染色,或者是确定在待测量数据包的负载头和GTP-U头一起染色。应理解,对上行数据和下行数据进行染色的位置可以相同也可以不同。
可选地,PCF/NEF还可以根据网络负载情况确定对待测量数据包进行染色的频率。例如,PCF/NEF确定对待测量业务流中每隔两个数据包执行一次染色操作,或者,在每三个数据包中随机对一个数据包进行染色。仅对部分数据包而不是所有数据包进行染色可以节省资源消耗。
PCF/NEF确定测量策略还可以包括:PCF/NEF确定测量数据的上报方式。PCF/NEF可以根据AF的指示确定测量数据的上报方式,也可以根据业务需求和网络资源状态确定测量数据的上报方式。例如,对一些紧急业务可以采用逐包上报方式,即对每个需要测量的数据包进行测量之后便上报测量数据,以便AF可以实时获取测量结果;又例如,对一些时限要求不高的业务,可以采用定期上报方式,即定期将某一时间段内的测量数据压缩后一起上报,这样可以节省信令开销;又例如,对一些有特殊需求的业务可以采用事件驱动上报,例如当某一测量参数达到某一阈值的情况下再进行上报。
PCF/NEF确定测量策略还可以包括:PCF/NEF确定测量数据的存储格式、压缩算法等。例如,PCF/NEF确定测量数据的上报方式为定期上报时,PCF/NEF可以确定测量数据的存储格式、数据的压缩算法以及数据流的标记方式等。
需要说明的是,在某些可能的情况下,PCF/NEF可能没有从AF接收到参数信息等内容,此时PCF可以根据预配置信息确定测量策略,或者根据上一次测量的参数信息确定 测量策略,或者根据业务信息、当前网络的负载情况等确定测量策略。本申请对此不做限定。
S603,PCF/NEF向SMF指示该测量策略。
对应地,SMF接收测量策略,根据该测量策略确定第一测量参数、待测量数据包的染色位置和染色方式、测量数据的上报方式,可选地,还可以确定测量数据的存储格式、压缩算法等。
应理解,在某些情况下,也可以由SMF来确定测量策略,此时PCF/NEF仅起到信息转发的作用。即PCF在S601接收到AF发送的业务流的特征信息之后直接转发给SMF,由SMF根据该业物流的特征信息确定测量策略。
在另一种可能的实现方式中(记为方案2),SMF从UE获取业务流的特征信息以确定测量策略。示例性地:
S604,UE向AMF发送业务流的特征信息。
S605,AMF向SMF发送该业务流的特征信息。
示例性地,UE通过AMF向SMF发送业务流的特征信息,该业务流的特征信息与S601中的业务流的特征信息类似,这里不再赘述。该业务流的特征信息可以承载于PDU会话建立请求消息或者PDU会话修改请求消息中,即UE可以在PDU会话建立流程或者PDU会话修改流程中向SMF发送该业务流的特征信息,这样不需要额外的信令发送该参数信息,可以节省信令开销。
S606,SMF确定测量策略。
示例性地,SMF根据从UE接收到的业务流的特征信息确定测量策略,具体方式与S602中PCF/NEF确定测量策略的方式类似,这里不再重复说明。
需要说明的是,在方案2中,也可以由PCF/NEF确定测量策略。例如,SMF将从UE接收到的业务流的特征信息发送给PCF/NEF,然后PCF/NEF根据这些信息确定测量策略后,再将测量策略发送给SMF,具体方式与S602-S603类似,这里不再赘述。
进一步地,SMF根据测量策略向UPF、RAN和UE配置测量配置信息。示例性地:
S607,SMF向UPF发送测量配置信息#1。
示例性地,SMF通过N4接口向UPF发送测量配置信息#1,该测量配置信息#1包括第一测量参数,该测量配置信息#1用于指示UPF对需要测量的下行数据包进行染色,或者说该测量配置信息#1用于指示UPF对某一业务流的下行数据包进行染色。具体地,该测量配置信息#1可以指示UPF在业务流#1的下行数据包的IP头的Option域进行染色,该业务流#1可以是任意下行业务流。进一步地,该测量配置信息#1还可以指示UPF对数据包进行染色的频率。该测量配置信息#1还可以指示UPF对染色的数据包的第一测量参数进行测量。
可选地,该测量配置信息#1还可以用于指示UPF对上行数据包进行染色识别,或者说,该测量配置信息#1用于指示UPF对具有染色标记的上行数据包的第一测量参数进行测量。该测量配置信息#1还可以具体指示染色的位置,例如,该测量配置信息#1指示UPF对payload头具有染色标记的上行数据包进行测量。
可选地,该测量配置信息#1还可以向UPF指示测量数据的上报方式。
可选地,当测量配置信息#1所指示的测量数据的上报方式为定期上报时,该测量配 置信息还可以进一步指示测量数据的存储格式、数据的压缩算法以及数据流的标记方式等。
S608,SMF向AMF发送测量配置信息#2。
S609,AMF向RAN发送该测量配置信息#2。
示例性地,SMF通过AMF利用N2接口向RAN发送测量配置信息#2,该测量配置信息包括第一测量参数,该测量配置信息#2用于指示RAN对数据包进行染色识别,或者说该测量配置信息#2用于指示RAN对具有染色标记的数据包的第一测量参数进行测量
该测量配置信息#2还可以具体指示染色的位置,例如,该测量配置信息#2指示RAN对GTP-U头具有染色标记的数据包进行测量。需要说明的是,上行数据包和下行数据包进行染色的位置可能不同,因此可能会对上行数据包和下行数据包分别进行指示,例如,测量配置信息#2指示RAN对payload包头具有染色标记的上行数据包以及GTP-U头具有染色标记的下行数据包进行测量。
可选地,该测量配置信息#2还可以向RAN指示测量数据的上报方式。
可选地,当测量配置信息#2所指示的测量数据的上报方式为定期上报时,该测量配置信息#2还可以进一步指示测量数据的存储格式、数据的压缩算法以及数据流的标记方式等。
S610,SMF向AMF发送测量配置信息#3。
S611,AMF向UE发送该测量配置信息#3。
示例性地,SMF通过AMF利用N1接口向UE发送测量配置信息#3,该测量配置信息#3包括第一测量参数,该测量配置信息#3用于指示UE对需要测量的上行数据包进行染色,或者说该测量配置信息#3用于指示UE对某一业务流的上行数据包进行染色,例如,该测量配置信息#3可以指示UE在业务流#2的上行数据包的IP头的Option域进行染色,该业务流#2可以是任意上行业务流。进一步地,该指测量配置信息#3还可以指示UE对数据包进行染色的频率。该测量配置信息#3还可以指示UE对染色的数据包的第一测量参数进行测量。
可选地,该测量配置信息#3还可以用于指示UE对下行数据包进行染色识别,或者说,该测量配置信息#3用于指示UE对具有染色标记的下行数据包的第一测量参数进行测量。该测量配置信息#3还可以具体指示染色的位置,例如,该测量配置信息#3指示UE对负载头具有染色标记的上行数据包进行测量。
可选地,该测量配置信息#3还可以向UE指示测量数据的上报方式。
可选地,当测量配置信息#3所指示的测量数据的上报方式为定期上报时,该测量配置信息还可以进一步指示测量数据的存储格式、数据的压缩算法以及数据流的标记方式等。
需要说明的是,SMF可以同步对RAN和UE进行配置,即测量配置信息#2和测量配置信息#3可以承载一条消息中,此时S608和S610中重复的信息可以只发送一次。AMF从SMF接收到测量配置信息#2和测量配置信息#3之后,通过N1接口将测量配置信息#2发送给RAN,将测量配置信息#3发送给UE。
或者,AMF也可以将测量配置信息#2和测量配置信息#3同时发送给RAN,由RAN再将测量配置信息#3发送给UE。本申请对SMF向UE和RAN发送配置信息的具体方式不作限定。
还需要说明的是,S608/S610可以承载于PDU会话修改请求消息中,即SMF可以在 PDU会话修改流程对RAN和UE进行配置,这样可以减少信令消耗。
应理解,方法600的流程应当在相应的业务流传输之前执行,例如在业务流注册流程或者在业务流注册完成之后开始执行。
上述技术方案中,根据实际业务和网络资源状态灵活配置测量策略,可以避免过度的控制面信令开销。
图7示出了本申请实施例提供的一种测量网络状态的方法700的示意性流程图。应理解,方法700既可以独立实施,也可以与方法600结合实施,例如,方法700可以在方法600之后实施,本申请不作限定。方法700包括:
S701,AF向UPF发送数据包。
S702,UPF对数据包进行染色和测量。
示例性地,UPF从AF接收数据包,假设该数据包是业务流#3的数据包。UPF可以根据控制面网元预先的配置(例如方法600中SMF在S607对UPF的配置),确定对业务流#3的数据包进行染色和测量。
UPF可以对业务流#3的全部数据包进行染色,也可以对业务流#3的部分数据包进行染色,例如UPF可以按照一定的规律(或者说一定的频率)对业务流#3的数据包进行染色,具体例如,UPF对业务流#3的数据包中每隔两个数据包便对一个数据包的IP头的Option域进行染色。应理解,UPF可以根据控制面网元配置的测量配置信息确定染色频率和染色位置。
进一步地,UPF对染色的数据包的第一测量参数进行测量,或者说UPF测量染色的数据包经过UPF时的第一测量参数,例如,UPF测量染色的数据包经过UPF时的带宽队列利用率以及转发时延,并获得测量数据#1。应理解,UPF可以根据控制面网元配置的测量配置信息获取第一测量参数。
S703,UPF向AF上报测量数据#1。
示例性地,UPF通过信令将测量数据#1传输到控制面网元(SMF、PCF、NEF或者NWDAF),然后由控制面网元将测量数据#1上报给AF。
UPF可以采用逐包上报的方式上报测量数据,即UPF每获取一个数据包的测量结果便进行上报。UPF还可以采用定期上报的方式上报测量数据,例如UPF可以每隔100s上报一次测量数据,或者UPF每测10个数据包上报一次测量数据,具体例如,UPF获取测量数据#1之后,将测量数据#1保存到本地,直到存储够10个数据包的测量数据,则进一步对所有测量数据进行压缩后上报给AF。UPF还可以采用事件驱动上报的方式上报测量数据,具体方式可以参见方法900和方法1000。
应理解,UPF可以根据控制面网元配置的测量配置信息确定测量数据的上报方式,如果测量配置信息所指示的上报方式为定期上报时,UPF还可以根据该测量配置信息确定数据存储格式和数据压缩算法。
S704,UPF向RAN转发数据包。
S705,RAN对具有染色标记的数据包进行测量。
示例性地,UPF将业务流#3的数据包通过AMF转发给RAN,RAN接收到该数据包之后,识别其中具有染色标记的数据包,并对具有染色标记的数据包的第一测量参数进行测量,或者说,RAN测量具有染色标记的数据包经过RAN时的第一测量参数。例如,RAN 测量具有染色标记的数据包经过RAN时的带宽队列利用率以及转发时延,并获取测量数据#2。应理解,RAN可以根据控制面网元配置的测量配置信息获取该第一测量参数。RAN还可以根据该测量配置信息确定下行数据包的染色位置,该下行数据包的染色位置例如是数据包的IP头的Option域,在这种情况下,当RAN接收到数据包之后,RAN对接收到的数据包的IP头的Option域进行染色识别,当一个数据包的IP头的Option域具有染色标记时,则对该数据包的第一测量参数进行测量。
S706,RAN向AF上报测量数据#2。
示例性地,RAN可以将测量数据#2传输到控制面网元(SMF、PCF、NEF或者NWDAF),然后由控制面网元将测量数据#2上报给AF。或者,RAN也可以通过用户面以特殊的测量包的形式将测量数据#2发送到UPF的PMF上,通过UPF将测量数据#2传输给控制面网元,然后由控制面网元将测量数据#2上报给AF。
RAN可以采用逐包上报的方式上报测量数据#2,也可以采用定期上报的方式上报测量数据#2,还可以采用事件驱动的方式上报测量数据#2,本申请不作限定。应理解,RAN可以根据控制面网元配置的测量配置信息确定该测量数据#2的上报方式。如果测量配置信息所指示的上报方式为定期上报时,RAN还可以根据该测量配置信息确定数据存储格式和数据压缩算法。
S707,RAN向UE转发数据包。
S708,UE对具有染色标记的数据包进行测量。
示例性地,RAN将业务流#3的数据包转发给UE,UE接收到该数据包之后,识别其中具有染色标记的数据包,并对具有染色标记的数据包的第一测量参数进行测量,或者说,UE测量具有染色标记的数据包经过UE时的第一测量参数,并获取测量数据#3。应理解,UE可以根据控制面网元配置的测量配置信息获取该第一测量参数,以及下行数据包的染色位置。
S709,UE将测量#3上报给AF。
应理解,S708-S709与S705-S706类似,区别在于S705-S706由RAN执行,S708-S709由UE执行,为了简洁,不再重复说明。
还应理解,AF通过控制面网元获取到来自UPF、RAN和UE的测量数据之后,对这些测量数据进行整合,包装成应用需要的格式上传给测量分析的服务器进一步分析,以获取网络状态。
上述技术方案采用了用户面友好的方式获取精确的网络测量数据,不造成用户面的额外资源消耗,不需要牺牲用户面网元的性能。
图8示出了本申请实施例提供的一种测量网络状态的方法800的示意性流程图。应理解,方法800既可以独立实施,也可以与方法600结合实施,例如,方法800可以在方法600之后实施,本申请不作限定。方法800包括:
S801,UE对数据包进行染色和测量。
示例性地,UE需要向网络发送上行数据包,假设该数据包是业务流#4的数据包,UE可以根据控制面网元预先的配置,确定对业务流#4的数据包进行染色和测量。
UE可以对业务流#4的全部数据包进行染色,也可以对业务流#4的部分数据包进行染色,例如UE按照一定的规律(或者说一定的频率)对业务流#4的数据包进行染色,同时, UE可以根据控制面网元的指示确定染色频率和染色位置。具体方式与S702中UPF进行染色的方式类似,这里不再赘述。但需要说明的是,UPF既可以在PDU数据的包头的相关域中进行染色,也可以在GTP-U头的相关域进行染色,还可以同时在PDU数据的包头的相关域和GTP-U头的相关域进行染色,而UE可以在PDU数据的包头的相关域进行染色,而不能在GTP-U头的相关域进行染色。
进一步地,UE对染色的数据包的第一测量参数进行测量,或者说UE测量染色的数据包经过UE时的第一测量参数,例如,UE测量染色的数据包经过UE时的带宽队列利用率以及转发时延,并获得测量数据#4。应理解,UE可以根据控制面网元配置的测量配置信息获取第一测量参数,以及染色位置和染色频率。
S802,UE向AF上报测量数据#4。
示例性地,UE通过信令将测量数据#4传输到控制面网元(SMF、PCF、NEF或者NWDAF),然后由控制面网元将测量数据#4上报给AF。或者,UE也可以通过用户面以特殊的测量包的形式将测量数据#4发送到UPF的PMF上,通过UPF将测量数据#4传输给控制面网元,然后由控制面网元将测量数据#4上报给AF。
UE可以采用逐包上报的方式上报测量数据#4,也可以采用定期上报的方式上报测量数据#4,还可以采用事件驱动的方式上报测量数据#4。应理解,UE可以根据控制面网元配置的测量配置信息确定测量数据的上报方式,如果测量配置信息所指示的上报方式为定期上报时,UE还可以根据该测量配置信息确定数据存储格式和数据压缩算法。
S803,UE将数据包发送给RAN。
S804,RAN对具有染色标记的数据包进行测量。
示例性地,UE将业务流#4的数据包发送给RAN,RAN接收到该数据包之后,识别其中具有染色标记的数据包,并对具有染色标记的数据包的第一测量参数进行测量获取测量数据#5。
应理解,S804与方法700中的S705类似,这里不再赘述。但需要说明的是,S804和S705的区别在于S804中RAN是从UE接收到上行数据包,而S705中RAN是从UPF接收到下行数据包,且S804中上行数据包的染色标记位不能在GTP-U头的相关域中。
S805,RAN向AF上报测量数据#5。
应理解,S805与方法700中的S706类似,区别仅在于将测量数据#2替换成测量数据#5,为了简洁,不再重复说明。
S806,RAN将数据包发送给UPF。
S807,UPF对具有染色标记的数据包进行测量。
示例性地,RAN将业务流#4的数据包转发给UPF,UPF接收到该数据之后,识别其中具有染色标记的数据包,并对具有染色标记的数据包的第一测量参数进行测量,或者说,UPF测量具有染色标记的数据包经过UPF时的第一测量参数,并获取测量数据#6。
S808,UPF向AF上报测量数据#6。
S808与方法700中的S703类似,不再重复说明。
还应理解,AF通过控制面网元获取到来自UPF、RAN和UE的测量数据之后,对这些测量数据进行整合,包装成应用需要的格式上传给测量分析的服务器进一步分析,以获取网络状态。
上述技术方案中,根据实际业务和网络资源状态灵活配置测量策略,可以避免过度的控制面信令开销。
图9示出了本申请实施例提供的一种测量网络状态的方法900的示意性流程图。应理解,方法900既可以独立实施,也可以与方法600结合实施,例如,方法900可以在方法600之后实施,本申请不作限定。方法900包括:
S901,AF向UPF发送业务流#5的数据包。
S902,UPF对业务流#5的数据包进行染色,并对染色的数据包进行测量。
S903,UPF向RAN发送业务流#5的数据包。
S904,RAN对业务流#5的数据包进行染色识别,并对具有染色标记的数据包进行测量。
S905,RAN向UE发送业务流#5的数据包。
S906,UE对业务流#5的数据包进行染色识别,并对具有染色标记的数据包进行测量。
应理解,S901-S906与方法700中的S701-S702、S704-S705、S707-S708类似,为了简洁,这里不再重复说明。
S907,UPF检测到异常事件。
示例性地,假设UPF确定的测量数据的上报方式为事件驱动上报模式,例如在S901之前,UPF根据控制面网元的配置确定测量数据的上报方式为事件驱动上报,则UPF对染色数据包进行测量时对异常事件进行检测,这里的异常事件例如是UPF对某一参数的测量数据超过设定的阈值。具体例如,当UPF测得染色数据包经过UPF时的转发时延超过第一阈值时,则UPF确定检测到了异常事件。应理解,UPF可以根据控制面网元配置的测量配置信息确定触发该异常时间的条件,也可以根据预配置信息来确定,本申请不作限定。
S908,UPF向SMF上报第一时间段的测量数据#7。
示例性地,该第一时间段指的是异常事件对应的时间区间,或者是异常事件的起止时间各加上一段时间后的时间段。该测量数据#7是UPF对第一时间段内的数据包进行测量得到的测量数据。
S909,SMF确定第一时间段。
S910,SMF向AMF发送第一时间段。
示例性地,SMF可以根据测量数据#7所对应的起止时间确定第一时间段,然后SMF向AMF发送该第一时间段,或者说SMF向AMF指示第一时间段的起止时间,以请求获取RAN和UE在第一时间段内的测量数据。
在另一种可能的情况下,UPF可以直接将第一时间段指示给SMF,此时SMF可以不需要执行S909,而直接向AMF指示第一时间段。
S911,AMF获取RAN在第一时间段内的测量数据#8。
示例性地,AMF通过N2接口以控制面信令的方式获取RAN在第一时间段内的测量数据#8。例如,AMF向RAN发送请求信息,该请求消息用于请求获取RAN在第一时间段内的测量数据#8,该请求消息中包括第一时间段的信息。对应的,RAN接收该请求消息,根据该请求消息将测量数据#8发送给AMF。
S912,AMF获取UE在第一时间段内的测量数据#9。
示例性地,AMF通过N1接口以控制面信令的方式获取UE在第一时间段内的测量数据#9。例如,AMF向UE发送请求信息,该请求消息用于请求获取UE在第一时间段内的测量数据#9,该请求消息中包括第一时间段的信息。对应的,UE接收该请求消息,根据该请求消息将测量数据#9发送给AMF。
S913,AMF将测量数据#8和测量数据#9发送给SMF。
应理解,对于S911-S913,在另一种可能的实现方式中,AMF可以向RAN和UE指示第一时间段,RAN和UE通过用户面将测量数据#8和测量数据#9发送给UPF,由UPF上传给SMF。
S914,SMF对测量数据进行整合。
S915,SMF将整合之后的测量数据发送给AF。
示例性地,SMF将测量数据#7、测量数据#5、测量数据#9进行整合,并将整合之后得到的测量数据发送给AF。
上述技术方案,针对事件驱动的上报方式,可以同步不同用户面的网元上报测量数据的时间。并且可以降低用户面资源的消耗,减少用户面网元性能的牺牲。
图10示出了本申请实施例提供的一种测量网络状态的方法1000的示意性流程图。应理解,方法1000既可以独立实施,也可以与方法600结合实施,例如,方法1000可以在方法600之后实施,本申请不作限定。方法1000包括:
S1001,AF向UPF发送业务流#6的数据包。
S1002,UPF对业务流#6的数据包进行染色,并对染色的数据包进行测量。
S1003,UPF向RAN发送业务流#6的数据包。
S1004,RAN对业务流#6的数据包进行染色识别,并对具有染色标记的数据包进行测量。
S1005,RAN向UE发送业务流#6的数据包。
S1006,UE对业务流#6的数据包进行染色识别,并对具有染色标记的数据包进行测量。
应理解,S1001-S1006与方法700中的S701-S702、S704-S705、S707-S708类似,为了简洁,这里不再重复说明。
S1007,UPF检测到异常事件。
应理解,S1007与方法900中的S907类似,这里不再赘述。
S1008,UPF确定第一时间段并生成测量数据包。
示例性地,UPF检测到异常事件之后,确定第一时间段,这里的第一时间段指的是异常事件对应的时间区间,或者是异常事件的起止时间各加上一段时间后的时间段。
进一步地,SMF生成测量数据包,并在测量数据包的GTP-U头以及payload头中标识出第一时间段(或者说标识出第一时间段的起止时间)。
S1009,UPF向RAN发送测量数据包。
S1010,RAN将第一时间段的测量数据#10加载到测量数据包的payload中。
S1011,RAN向UE发送测量数据包。
示例性地,RAN接收并识别测量数据包,并且从测量数据包的GTP-U头中获取第一时间段,将其在第一时间段内的测量数据#10加载到测量数据包的payload中,然后将测 量数据包转发给UE。
S1012,UE将第一时间段的测量数据#11加载到测量数据包的payload尾部。
S1013,UE将测量数据包发送给UPF。
示例性地,UE接收并识别测量数据包,并且从测量数据包的payload头中获取第一时间段,将其在第一时间段内的测量数据#11加载到测量数据包的payload尾部,然后将测量数据包传回UPF。
S1014,UPF将测量数据#10和测量数据#11发送给SMF。
S1015,SMF对测量数据进行整合。
S1016,SMF将整合之后的数据发送给AF。
上述技术方案,针对事件驱动的上报方式,可以同步不同用户面的网元上报测量数据的时间。并且可以降低用户面资源的消耗,减少用户面网元性能的牺牲。
以上,结合图4至图10详细说明了本申请实施例提供的方法。以下,结合图11至图12详细说明本申请实施例提供的确定随机接入前导的装置。
图11是本申请实施例提供的通信装置的示意性框图。如图所示,该通信装置10可以包括收发模块11和处理模块12。
在一种可能的设计中,该通信装置10可对应于上文方法实施例中第一网元,或用户面网元(UPF)、或无线接入网设备(RAN)、或用户设备(UE)。
示例性地,该通信装置10可对应于本申请实施例的方法400中的第一网元,该通信装置10可以包括用于执行方法400中的第一网元执行的方法的模块。并且,该通信装置10中的各模块和上述其他操作和/或功能分别为了实现方法400的相应流程。该通信装置10中的该收发模块11执行上述各方法实施例中的第一网元所执行的接收和发送操作,该处理模块12则执行除了该接收和发送操作之外的操作。
示例性地,该通信装置10可对应于根据本申请实施例的方法600至方法1000中的UPF/RAN/UE,该通信装置10可以包括用于执行方法600至方法1000中的UPF/RAN/UE执行的方法的模块。并且,该通信装置10中的各模块和上述其他操作和/或功能分别为了实现方法600至方法1000的相应流程。该通信装置10中的该收发模块11执行上述各方法实施例中的UPF/RAN/UE所执行的接收和发送操作,该处理模块12则执行除了该接收和发送操作之外的操作。
示例性地,该通信装置10可对应于本申请实施例的方法400中的第二网元,该通信装置10可以包括用于执行方法400中的第二网元执行的方法的模块。并且,该通信装置10中的各模块和上述其他操作和/或功能分别为了实现方法400的相应流程。该通信装置10中的该收发模块11执行上述各方法实施例中的第二网元所执行的接收和发送操作,该处理模块12则执行除了该接收和发送操作之外的操作。
示例性地,该通信装置10可对应于根据本申请实施例的方法600至方法1000中的SMF/PCF/NEF,该通信装置10可以包括用于执行方法600至方法1000中的SMF/PCF/NEF执行的方法的模块。并且,该通信装置10中的各模块和上述其他操作和/或功能分别为了实现方法600至方法1000的相应流程。该通信装置10中的该收发模块11执行上述各方法实施例中的SMF/PCF/NEF所执行的接收和发送操作,该处理模块12则执行除了该接收和发送操作之外的操作。
根据前述方法,图12为本申请实施例提供的通信装置20的示意图,如图12所示,该装置20可以为方法400中的终端设备,或者方法600至方法1000中的UPF/RAN/UE。
该装置20可以包括处理器21(即,处理模块的一例)和存储器22。该存储器22用于存储指令,该处理器21用于执行该存储器22存储的指令,以使该装置20实现方法400中第一网元执行的步骤,或者方法600至方法1000中UPF/RAN/UE执行的步骤。
进一步地,该装置20还可以包括输入口23(即,收发模块的一例)和输出口24(即,收发模块的另一例)。进一步地,该处理器21、存储器22、输入口23和输出口24可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器22用于存储计算机程序,该处理器21可以用于从该存储器22中调用并运行该计算机程序,以控制输入口23接收信号,控制输出口24发送信号,完成上述方法中第一网元,或者UPF/RAN/UE执行的步骤。该存储器22可以集成在处理器21中,也可以与处理器21分开设置。
可选地,若该通信装置20为通信设备,该输入口23为接收器,该输出口24为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该通信装置20为芯片或电路,该输入口23为输入接口,该输出口24为输出接口。
作为一种实现方式,输入口23和输出口24的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器21可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的通信设备。即将实现处理器21、输入口23和输出口24功能的程序代码存储在存储器22中,通用处理器通过执行存储器22中的代码来实现处理器21、输入口23和输出口24的功能。
该装置20所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存 储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行方法400至方法1000所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图6、图7、图9所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个网络设备。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种测量网络状态的方法,其特征在于,包括:
    第一网元接收来自第二网元的第一指示信息,所述第一指示信息用于指示对第一业务流的数据包的第一测量参数进行测量;
    所述第一网元根据所述第一指示信息对第一数据包的第一测量参数进行测量得到第一测量数据,所述第一数据包属于所述第一业务流;
    所述第一网元生成第一信令;
    所述第一网元通过所述第一信令向第三网元上报所述第一测量数据。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一网元确定所述第一数据包的第一包头具有染色标记,所述染色标记用于指示所述第一数据包为待测量数据包,所述第一包头包括所述第一数据包的负载头和/或第一隧道的隧道头,所述第一隧道用于传输所述第一数据包。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一网元通过所述第一信令向第三网元上报所述第一测量数据,包括:
    所述第一网元将所述第一测量数据保存到第一测量集合;
    当满足第一条件时,所述第一网元将所述第一测量集合进行压缩得到第二测量集合;
    所述第一网元通过所述第一信令向所述第三网元上报所述第二测量集合。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述第一网元接收来自所述第二网元的第二指示信息,所述第二指示信息用于指示所述第一测量集合内数据的存储格式以及用于对所述第一测量集合进行压缩的数据压缩算法。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一条件包括:
    所述第一测量集合内的测量数据的大小大于或等于第一阈值,和/或,所述第一测量集合内的测量数据所对应的数据包的数量大于或等于第二阈值,和/或,所述第一测量集合内的测量数据所对应的时间段大于或等于第三阈值。
  6. 根据权利要求1或2所述的方法,其特征在于,所述第一网元通过所述第一信令向第三网元上报所述第一测量数据,包括:
    当满足第二条件时,所述第一网元上报所述第一业务流在第一时间段内的数据包的第二测量数据,所述第一数据包属于所述第一时间段内的数据包,所述第二测量数据包括所述第一测量数据。
  7. 根据权利要求6所述的方法,其特征在于,在所述第一网元为用户面网元的情况下,所述方法还包括:
    所述第一网元向移动管理功能网元发送第三指示信息,所述第三指示信息用于请求获取第三测量数据和第四测量数据,所述第三测量数据为无线接入网设备在所述第一时间段对所述第一业务流的数据包进行测量得到的,所述第四测量数据为用户设备在所述第一时间段对所述第一业务流的数据包进行测量得到的;
    所述第一网元接收所述第三测量数据和所述第四测量数据;
    所述第一网元通过所述第一信令向第三网元上报所述第一测量数据,包括:
    所述第一网元通过所述第一信令向所述第三网元上报所述第二测量数据、所述第三测量数据和所述第四测量数据。
  8. 根据权利要求6所述的方法,其特征在于,在所述第一网元为用户面网元的情形下,所述方法还包括:
    所述第一网元向无线接入网设备和用户设备发送第二数据包,所述第二数据包的负载头和/或第二隧道的隧道头包括第四指示信息,所述第四指示信息用于指示所述第一时间段,所述第二隧道用于传输所述第二数据包;
    所述第一网元接收所述第二数据包,所述第二数据包携带第三测量数据和第四测量数据,所述第三测量数据为无线接入网设备在所述第一时间段对所述第一业务流的数据包进行测量得到的,所述第四测量数据为用户设备在所述第一时间段对所述第一业务流的数据包进行测量得到的;
    所述第一网元通过所述第一信令向所述第三网元上报所述第一测量数据,包括:
    所述第一网元通过所述第一信令向所述第三网元上报所述第二测量数据、所述第三测量数据和所述第四测量数据。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述第二条件包括:
    第四测量数据大于第三阈值,所述第四测量数据为所述第一测量参数中的任意测量参数所对应的测量数据。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一网元按照第一规律,对第二业务流的数据包进行染色,所述第一规律用于指示对所述第二业务流的数据包进行染色的染色频率。
  11. 根据权利要求10所述的方法,其特征在于,所述对第二业务流的数据包进行染色,包括:
    所述第一网元对第二业务流的数据包的第二包头进行染色,所述第二包头包括所述第二业务流的数据包的负载头和/或第三隧道的隧道头,所述第三隧道用于传输所述第二业务流的数据包。
  12. 根据权利要求1至11中任一项所示的方法,其特征在于,所述第一测量参数包括时间戳、转发时延、设备标识、端口状态、拥塞状态、带宽、吞吐量、带宽队列利用率、丢包率中的至少一项。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述第三网元为以下任一种网元:网络数据分析功能网元、应用功能网元、第三方服务器。
  14. 一种测量网络状态的方法,其特征在于,包括:
    第二网元获取第一业务流的特征信息,所述特征信息包括以下一项或多项:所述第一业务流的第一测量参数、所述第一业务流的数据包的数据格式、所述第一业务流的业务需求;
    所述第二网元根据所述第一业务流的特征信息确定所述第一业务流的测量配置信息;
    所述第二网元向第一网元发送所述测量配置信息,所述测量配置信息用于指示以下至少一项:对所述第一业务流的数据包的所述第一测量参数进行测量、对所述第一业务流的数据包的第一包头进行染色、所述第一业务流的测量数据的上报方式,所述第一包头包括 所述第一业务流的数据包的负载头和/或第一隧道的隧道头,所述第一隧道用于传输所述第一业务流的数据包,所述上报方式为以下方式中的任意一种:逐包上报方式、定期上报方式、事件驱动上报方式,所述上报方式根据所述第一业务流的业务需求和/或网络资源状况确定。
  15. 根据权利要求14所述的方法,其特征在于,所述第二网元获取第一业务流的特征信息,包括:
    所述第二网元从运维或应用功能网元获取所述第一业务流的特征信息。
  16. 根据权利要求14或15所述的方法,其特征在于,所述测量配置信息还用于指示所述第一网元按照第二规律对所述第一业务流的数据包的所述第一包头进行染色,所述第二规律用于指示对所述第一业务流的数据包进行染色的染色频率。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,当所述测量数据的上报方式为所述定期上报方式时,所述测量配置信息还用于指示所述第一业务流的测量数据的数据存储格式和数据压缩算法。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述第一测量参数包括时间戳、转发时延、设备标识、端口状态、拥塞状态、带宽、吞吐量、带宽队列利用率、丢包率中的至少一项。
  19. 一种测量网络状态的装置,其特征在于,用于执行如权利要求1至18中任一项所述的方法。
  20. 一种测量网络状态的装置,其特征在于,包括处理器、存储器以及存储在存储器上并可在所述处理器上运行的指令,当所述指令被运行时,使得所述通信装置执行如权利要求1至18中任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至18中任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,包括计算机程序指令,所述计算机程序指令在计算机上运行时,使得计算机执行如权利要求1至18中任一项所述的方法。
PCT/CN2022/110901 2021-08-30 2022-08-08 测量网络状态的方法和装置 WO2023029894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111003832.5 2021-08-30
CN202111003832.5A CN115734179A (zh) 2021-08-30 2021-08-30 测量网络状态的方法和装置

Publications (1)

Publication Number Publication Date
WO2023029894A1 true WO2023029894A1 (zh) 2023-03-09

Family

ID=85290707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110901 WO2023029894A1 (zh) 2021-08-30 2022-08-08 测量网络状态的方法和装置

Country Status (2)

Country Link
CN (1) CN115734179A (zh)
WO (1) WO2023029894A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116801297A (zh) * 2022-03-15 2023-09-22 华为技术有限公司 通信方法及通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105072629A (zh) * 2015-06-30 2015-11-18 华为技术有限公司 测量终端上运行的业务的质量的方法、设备及系统
CN110505076A (zh) * 2018-05-18 2019-11-26 维沃移动通信有限公司 数据包丢失率的测量方法、获取方法、终端及网络设备
CN112153688A (zh) * 2019-06-27 2020-12-29 普天信息技术有限公司 测量上报周期的自适应调整方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105072629A (zh) * 2015-06-30 2015-11-18 华为技术有限公司 测量终端上运行的业务的质量的方法、设备及系统
CN110505076A (zh) * 2018-05-18 2019-11-26 维沃移动通信有限公司 数据包丢失率的测量方法、获取方法、终端及网络设备
CN112153688A (zh) * 2019-06-27 2020-12-29 普天信息技术有限公司 测量上报周期的自适应调整方法及装置

Also Published As

Publication number Publication date
CN115734179A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
US10412650B2 (en) Data transmission method, apparatus and system
AU2019249989B2 (en) Message transmission method, apparatus and system
WO2020019764A1 (zh) 信息传输方法、设备及计算机可读存储介质
US20130272247A1 (en) Methods for establishing and using public path, m2m communication method, and systems thereof
EP4013108A1 (en) User plane information reporting method and apparatus
CN110505714B (zh) 多链接通信方法、设备和终端
CN114667746A (zh) 无线通信系统中用于psa-upf重定位的装置和方法
JP7193060B2 (ja) 通信方法、通信装置、及び通信システム
EP4221005A1 (en) Multipath transmission method and communication apparatus
JP2023531312A (ja) データ伝送方法および装置
US11824783B2 (en) Maximum data burst volume (MDBV) determining method, apparatus, and system
CN111357322A (zh) 终端装置、基站装置以及方法
WO2023029894A1 (zh) 测量网络状态的方法和装置
WO2022047803A1 (zh) 通信方法及装置
WO2023284551A1 (zh) 通信方法、装置和系统
WO2020125237A1 (zh) 一种通信方法及通信装置
WO2019136925A1 (zh) 一种数据传输方法及装置、计算机存储介质
WO2023284577A1 (zh) 检测数据流的方法及装置
WO2023011006A1 (zh) 一种通信方法、装置及设备
WO2016167592A1 (en) A method and apparatus for communicating with a wireless local area network in a mobile communcation system
WO2023005714A1 (zh) 一种无线通信方法和装置
WO2023185598A1 (zh) 通信方法及装置
WO2023016298A1 (zh) 一种业务感知方法、通信装置及通信系统
EP4336885A1 (en) Communication method and apparatus
WO2023066207A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE