WO2023029825A1 - 一种磁输送线驱动系统、磁输送线和磁输送线驱动方法 - Google Patents

一种磁输送线驱动系统、磁输送线和磁输送线驱动方法 Download PDF

Info

Publication number
WO2023029825A1
WO2023029825A1 PCT/CN2022/108201 CN2022108201W WO2023029825A1 WO 2023029825 A1 WO2023029825 A1 WO 2023029825A1 CN 2022108201 W CN2022108201 W CN 2022108201W WO 2023029825 A1 WO2023029825 A1 WO 2023029825A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
instruction
transmission line
magnetic transmission
driving
Prior art date
Application number
PCT/CN2022/108201
Other languages
English (en)
French (fr)
Inventor
钱进
李睿钦
王启超
胡跃进
Original Assignee
实时侠智能控制技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 实时侠智能控制技术有限公司 filed Critical 实时侠智能控制技术有限公司
Publication of WO2023029825A1 publication Critical patent/WO2023029825A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G54/00Non-mechanical conveyors not otherwise provided for
    • B65G54/02Non-mechanical conveyors not otherwise provided for electrostatic, electric, or magnetic

Definitions

  • the invention belongs to the field of automatic conveying lines, in particular to a magnetic conveying line driving system, and in particular to a magnetic conveying line driving system, a magnetic conveying line and a magnetic conveying line driving method.
  • the magnetic conveying line usually includes an actuator and a drive system, and the actuator operates under the drive of the drive system to realize automatic conveying.
  • the actuators used are linear motors, wherein the motor mover is composed of coils (shorter), and the motor stator (longer) is composed of alternately arranged permanent magnets.
  • the motor mover needs to supply power to the coil through the wire, and must have a trailing cable, which leads to limitations in practical application.
  • each motor stator contains UVW three-phase windings, which are connected through Y-type, similar to traditional three-phase servo motors, and the motors are not continuous.
  • the magnetic transmission line in the prior art includes an actuator 100 and a drive system 200 .
  • the actuator 100 generally includes a plurality of motor stators 110 and at least one motor mover 120 .
  • the drive system 200 generally includes a plurality of motor drive units 230 and a motion control unit 210 .
  • the motor driving unit 230 corresponds to each motor stator 110 , and according to the position of the motor mover 120 , the motor stator 110 generates a suitable magnetic field to push the motor mover to move.
  • the motor drive unit 230 adopts a servo driver. From the perspective of a traditional servo motor, the motor drive unit and the corresponding motor stator are equivalent to a complete motor, also called a motor shaft.
  • the motion control unit 210 sends position and speed commands to the servo motor drive unit based on the received commands.
  • a position sensor (not shown in the figure) may be further included, usually a grating scale or a magnetic scale, for detecting the position of each mover on the conveying line.
  • the number of motor shafts is usually particularly large, while the number of motor movers is limited. As shown in FIG. 110 does not affect the movement of the motor mover 120 , without any calculation and communication. At this time, its corresponding motor shaft is called the invalid shaft 112 , otherwise it is called the valid shaft 111 . As the motor mover 120 moves, the states of the effective shaft and the invalid shaft of the motor stator 110 are dynamically changing. At the same time, in the actuator, the proportion of invalid shafts is very high.
  • the size of a single motor cannot be particularly large, and the distance should not be particularly far, otherwise the accuracy will be reduced.
  • the existing magnetic transmission line usually needs to be equipped with 12 or more motors per 1 meter, and in order to allow the motor movers in the magnetic transmission line system to move independently, each motor needs an independent Servo drives drive it. Therefore, the number of servo drive units required in the existing design scheme is large, and the overall circuit of the magnetic transmission line is complicated, resulting in high cost of the system.
  • the servo drive unit In order to generate a suitable magnetic field to drive the motor mover, the servo drive unit needs to receive information such as the position, speed, and acceleration of the motor mover, and through calculation, output the corresponding axis. Therefore, the servo drive unit usually needs to undertake communication , calculation, waveform generation, power drive and other main functions. At the same time, because the real-time calculation and communication of motor information has high requirements for hardware, in order to reduce system delay and improve response speed, high-performance DSP or large-capacity FPGA is usually used for calculation in existing designs, which further increases the cost of the system .
  • the purpose of the present invention is to provide a magnetic transmission line drive system and method to solve the above technical problems in the prior art solution, thereby The system delay is reduced, the response speed is improved, and the complexity of the drive system wiring is reduced. Under the condition of effectively controlling the hardware requirements and costs of the magnetic transmission line drive system, the system structure is simplified, and the work efficiency and reliability of the system are improved.
  • a magnetic transmission line drive system used to drive the actuator of the magnetic transmission line according to instructions, the actuator includes a plurality of motor stators and at least one motor mover, the magnetic transmission line drive system includes:
  • a motion control unit generating a driving instruction according to the instruction
  • a plurality of position sensing units the number corresponding to the motor stator, used to detect the quantity information and position information of the motor mover;
  • the motor control unit calculates the number information and address information of effective shafts according to the drive instruction and the number information and position information of the motor movers, and generates a motor stator selection instruction for selecting the specified motor stator and a motor stator selection instruction for Generate an inverter setting instruction for a specified driving current;
  • the motor drive unit includes:
  • a drive communication module used to realize the data transmission between the motor drive unit and the outside;
  • the waveform generating module generates an inverter control waveform according to the inverter setting instruction
  • the power drive inverter module generates and provides drive current to the specified motor stator according to the inverter control waveform.
  • the motor drive unit further includes:
  • a collection module configured to collect current information, voltage information and temperature information of each phase in the motor stator, and feed back to the motor control unit
  • the motor drive unit further includes:
  • the fault processing module judges whether there is a fault affecting the operation of the magnetic transmission line based on the speed information and position information of the motor mover in the magnetic transmission line, and the current information of each phase of the motor stator. When a fault occurs, it outputs to the power drive inverter module Stop command.
  • the motor control unit includes:
  • a first communication module configured to implement data transmission between the motor control unit and the motor drive unit and/or the position sensing unit
  • a second communication module configured to implement data transmission between the motor control unit and the motion control unit
  • the effective shaft management module calculates the number information and address information of the effective shafts according to the number information and position information of the motor movers, and generates the motor stator selection instruction;
  • At least one motor calculation module generates and outputs the inverter setting instruction to the motor drive unit according to the driving instruction, the motor stator selection instruction and the current information of each phase in the motor stator.
  • the motor control unit further includes:
  • the computing resource scheduling and allocation module selects one or more of the motor computing modules according to the motor stator selection instruction, so that the selected motor computing modules complete the calculation;
  • Saving and distributing module saving and distributing the calculation result to the first communication module.
  • the motion control unit includes:
  • a program execution module configured to generate the driving instruction according to the instruction
  • a collision detection module configured to judge whether the driving instruction will cause the motor mover to collide, and output the driving instruction to the motor control unit if the judgment result is No, and output the driving instruction to the motor control unit if the judgment result is Yes , wait until the judgment result is negative, and then output the driving instruction.
  • the magnetic transmission line drive system there are multiple loops connected in parallel and formed by a plurality of position sensing units connected in series, and multiple parallel loops formed by a plurality of motor drive units A loop formed in series.
  • the magnetic transmission line driving system further includes:
  • the exchange control unit implements data transmission between the motor control unit and the position sensing unit and/or the motor drive unit on each loop according to the motor stator selection instruction.
  • the present invention also provides a magnetic transmission line, which includes an actuator, the actuator includes a plurality of motor stators and at least one motor mover, and the magnetic transmission line also includes a magnetic transmission line drive as described in any one of the preceding items. system.
  • the present invention also provides a control method for the driving system of the magnetic transmission line, which is controlled based on the effective axis and used to drive the actuator of the magnetic transmission line according to the instruction.
  • the actuator includes a plurality of motor stators and at least one motor Son, described control method comprises:
  • a driving instruction generating step generating the driving instruction according to the instruction
  • the motor mover detection step is to obtain the quantity information and position information of the motor mover
  • the effective axis address calculation step is to calculate the quantity information and address information of the effective axes according to the quantity information and position information of the motor movers;
  • the motor stator selection step is to generate a motor stator selection instruction according to the address information of the effective axis
  • control loop calculation step according to the position information of the motor mover, the current information of each phase of the motor stator, and the inverter setting command of the previous cycle, the calculation of the position loop, the speed loop, and the current loop are respectively completed, and the inverter is generated.
  • Change setting command
  • the driving current generation step is to save the inverter setting instruction, select the corresponding motor stator according to the motor stator selection instruction, and generate the driving current to drive the motor stator;
  • control method further includes: a collision detection step, judging whether the driving instruction will cause the motor mover to collide, and if the judging result is no, output the driving instruction, and if the judging result is yes In the case of , wait until the judgment result is negative before outputting the driving instruction.
  • control method further includes: a computing resource scheduling step, allocating required computing resources for the control loop computing step according to the motor stator selection instruction.
  • the magnetic transmission line driving system, magnetic transmission line and magnetic transmission line driving method provided by the present invention through centralized calculation in the motor control unit for centralized calculation, the largest number of motor drive units can be simplified on a large scale, thus extremely Greatly reduced costs;
  • the magnetic transmission line driving system, the magnetic transmission line and the magnetic transmission line driving method provided by the present invention centralize the calculation into the motor control unit for centralized calculation, so that the motor drive unit does not need complicated calculations, so the unit itself
  • the number of chips and other electronic components required is also greatly reduced, reducing costs and improving reliability;
  • the magnetic transmission line driving system, magnetic transmission line and magnetic transmission line driving method provided by the present invention by setting a computing resource scheduling allocation module and an exchange control unit, the communication delay between the motor control unit and each motor drive unit is less than While controlling the cycle, it can support multiple loops, and improves the scalability of the system while avoiding system delay.
  • FIG. 1 is a schematic diagram showing the structure of a magnetic transmission line drive system in the prior art.
  • Fig. 2 is a schematic diagram of the effective axis and the ineffective axis of the magnetic transmission line drive system.
  • Fig. 3 is a schematic structural diagram of an embodiment of the magnetic transmission line driving system of the present invention.
  • Fig. 4 is a schematic structural diagram of a motor driving unit of an embodiment of the magnetic transmission line driving system of the present invention.
  • FIG. 5 is a schematic structural diagram of a motor control unit of an embodiment of the magnetic transmission line driving system of the present invention.
  • FIG. 6 is a schematic structural diagram of a motion control unit of an embodiment of the magnetic transmission line driving system of the present invention.
  • FIG. 7 is a schematic diagram of a partial structure of an embodiment of the magnetic transmission line driving system of the present invention.
  • FIG. 8 is a schematic flowchart of an embodiment of a control method of the magnetic transmission line driving system of the present invention.
  • Second communication module
  • Waveform generation module
  • FIG. 3-6 show a preferred embodiment of the magnetic transmission line drive system provided according to the present invention.
  • FIG. 3 shows a schematic diagram of modules of the magnetic transmission line driving system of the present invention.
  • a magnetic transmission line drive system 200 used to drive the actuator 100 of the magnetic transmission line according to instructions, the magnetic transmission line drive system includes:
  • the motion control unit 210 generates driving instructions according to the instructions.
  • a plurality of position sensing units 240 is used to detect the quantity information and position information of the motor mover 120 .
  • the position sensing unit may be a grating scale or a magnetic scale.
  • the motor control unit 220 calculates the quantity information and address information of the effective shafts according to the driving instruction and the quantity information and position information of the motor mover 120, and generates a motor stator selection command for selecting the specified motor stator 110 and a specified Drive current inverter setting command;
  • a plurality of motor drive units 230 the number of which corresponds to the motor stator 110 , generates and provides driving current to the corresponding motor stator 110 according to the motor stator selection instruction and the inverter setting instruction.
  • FIG. 4 shows a schematic structural view of a motor drive unit 230 of an embodiment of the magnetic transmission line drive system of the present invention, which includes:
  • the drive communication module 231 is used to realize data transmission between the motor drive unit 230 and the outside.
  • the data transmission includes data transmission between multiple motor driving units 230 and data transmission between the motor driving units 230 and the motor control unit 220 .
  • data transmission adopts two-way Ethernet communication, and other methods such as optical fiber can also be used.
  • the ports of the drive communication module 231 may use one or more network ports or optical ports, so that multiple motor drive units 230 can be connected in series.
  • the communication of the driving communication module 231 only includes: input: 1) inverter setting 2) system control, output: 1) current and state feedback.
  • the communication period is the calculation period of the current loop, in one embodiment, it is 50uS. Therefore, the communication format of the motor drive unit is simple and the interval is very short, which improves the reliability and error detection characteristics of the system.
  • the waveform generating module 232 generates an inverter control waveform according to the inverter setting instruction.
  • the inverter control waveform is a SPWM waveform.
  • the power drive inverter module 233 generates and provides drive current to the specified motor stator 110 according to the inverter control waveform.
  • the motor drive unit 230 further includes: a collection module 234 , configured to collect current information, voltage information and temperature information of each phase in the motor stator 110 , and feed back to the motor control unit 220 .
  • the motor drive unit 230 further includes: a fault processing module 235, based on the speed information and position information of the motor mover in the magnetic transmission line, and the current information of each phase of the motor stator, it is judged whether there is a problem affecting the operation of the magnetic transmission line. Faults, such as: out-of-tolerance faults, when a fault occurs, a shutdown command is output to the power drive inverter module 233 .
  • the motor drive unit 230 further includes: a power management module 236, configured to manage all power supplies inside the motor drive unit 230, including internal modules and power drive power supplies.
  • the driver communication module 231 , the waveform generation module 232 , the acquisition module 234 and the fault processing module 235 can be integrated into one main control chip.
  • the main control chip is a small-capacity FPGA chip.
  • multiple motor drive units 230 can be integrated on one PCB, and the cost and system complexity can be further reduced by sharing the power management module 236 and the drive communication module 231 .
  • the motor drive unit is specified in the present invention, and the expensive DSP and large-capacity FPGA in the prior art solutions are not required, and the number of chips and other electronic components is also greatly reduced, which brings reliability while reducing costs. Sexual improvement.
  • FIG. 5 shows a schematic structural diagram of a motor control unit 220 of an embodiment of the magnetic transmission line driving system of the present invention, which includes:
  • the first communication module 221 is configured to implement data transmission between the motor control unit 220 and the motor drive unit 230 and/or the position sensing unit 240;
  • the second communication module 222 is used to realize data transmission between the motor control unit 220 and the motion control unit 210;
  • the effective axis management module 223 calculates the quantity information and address information of the effective axes according to the quantity information and position information of the motor mover 120 provided by the position sensing unit 240, and generates a motor stator selection command;
  • At least one motor calculation module 224 generates and outputs an inverter setting command to the motor drive unit 230 according to the drive command, the motor stator selection command and the current information of each phase in the motor stator 110 provided by the motor drive unit 230 .
  • the motor calculation module 224 can also perform compensation calculations for the disturbance of the magnetic transmission line, such as: static friction force, dynamic friction force, cogging force, and the like.
  • the motor control unit 220 further includes:
  • the calculation resource scheduling and allocation module 225 selects one or more motor calculation modules 224 according to the motor stator selection instruction, so that the selected motor calculation modules 224 complete the calculation; by applying the calculation resource scheduling and allocation module 225, the motor calculation can be time-division multiplex Module 224. For example: One control cycle can complete calculations for 16 active axes.
  • Save and distribute module 226 save and distribute the calculation result to the first communication module 221.
  • Fig. 6 shows a schematic structural diagram of a motion control unit 210 of an embodiment of the magnetic transmission line driving system of the present invention, which includes:
  • the program execution module 211 is configured to generate a driving instruction according to the instruction.
  • the instruction may be a program instruction output from a user or other upper equipment.
  • the collision detection module 212 is used for judging whether the driving command will cause the motor mover 120 to collide based on the drive command and the position information of the motor mover 120 reported by the motor control unit 220, and if the judgment result is negative, report to the motor control unit 220 outputs the drive command, and if the judgment result is yes, wait until the judgment result is no before outputting the drive command.
  • the motion control unit 210 further includes:
  • the motor stator management module 213 is used to manage the motor stator 110 of the system. When an externally added motor stator is added, it will feed back to the program execution module to allocate resources and command programs. Module feedback, reclaims and reallocates resources and command programs.
  • the motion control unit 210 and the motor control unit 220 can be integrated into one controller.
  • Fig. 7 shows another embodiment of the magnetic transmission line driving system of the present invention
  • each motor drive unit 230 and position sensor 240 includes an upper-level communication port and a lower-level communication port (Ethernet or optical fiber), forming a loop.
  • the motor control unit 220 sends a communication packet with an enumeration command from the upper-level communication port, and starts to enumerate addresses.
  • the address of the first motor drive unit 230/position sensor 240 is 1, the address of the next one is 2, and so on. Return to the motor control unit 220 until passing through the last motor drive unit 230 /position sensor 240 .
  • the communication cycle must be shorter than the control cycle, and in the case of a loop in series, a certain delay will be introduced every time the data packet passes through a motor drive unit.
  • the number of motor shafts is large, such as more than 80 motor shafts, several loops can be added to make the communication delay between the motor drive unit 230 and the position sensor 240 and each motor less less than the control period.
  • all the loops in the system require unified addressing, the addresses on each loop are continuous, and the address ranges of different loops are different, and each loop, that is, the address of each motor shaft on the system is different. only one. For example:
  • the magnetic transmission line driving system may further include:
  • the exchange control unit 250 implements data transmission between the motor control unit 220 and the position sensing unit 240 and/or the motor drive unit 230 on each loop according to the motor stator selection instruction.
  • the switching control unit 250 identifies the address information of the header of the data packet, and sends the data packet to the motor drive unit 230 and the position sensor 240 on the corresponding loop.
  • the data packets corresponding to the return of the loop can also return to the motor control unit 220 through the fastest channel.
  • Fig. 8 shows a schematic flowchart of the control method of the magnetic transmission line drive system of the present invention.
  • Control methods include:
  • step S100 a driving instruction generation step, the motion control unit 210 generates a driving instruction according to a user or other external instructions.
  • step S100 further includes: step S110, a collision detection step, the motion control unit 210 judges whether the drive command will cause the motor mover to collide, and if the judgment result is no, outputs the drive command, and if the judgment result is In the case of yes, wait until the judgment result is no before outputting the drive command.
  • step S200 the motor mover detection step, the position sensing unit 240 acquires the quantity information and position information of the motor movers.
  • step S300 the effective shaft address calculation step
  • the motor control unit 220 calculates the number information and address information of the effective shafts according to the number information and position information of the motor movers.
  • Step S400 motor stator selection step, the motor control unit 220 generates a motor stator selection instruction according to the address information of the effective shaft;
  • step S400 further includes: step S410, a computing resource scheduling step, where the motor control unit 220 allocates required computing resources for the control loop computing step according to the motor stator selection instruction.
  • Step S500 the control loop calculation step, the motor control unit 220 completes the calculation of the position loop, speed loop, and current loop respectively according to the position information of the motor mover, the current information of each phase of the motor stator, and the inverter setting command of the previous cycle , to generate an inverter setting command.
  • the outermost loop is the position loop, which receives the position command, compensation and position feedback, and outputs the speed command; the middle is the speed loop, which receives the position given by the position loop.
  • Speed command, compensation and speed feedback, output current command the innermost is the current loop, adopts FOC (field oriented control) control, receives current command, compensation and current feedback, and directly gives inverter command.
  • Step S600 driving current generating step
  • the motor control unit 220 saves the inverter setting instruction, selects the corresponding motor stator according to the motor stator selection instruction, and the corresponding motor driving unit 230 generates the driving current for driving the motor stator.
  • the motor drive unit 230 simultaneously feeds back the actual current of the motor to the current loop, and feeds back the angular displacement or linear position produced by the motor rotation to the speed loop and the position loop.
  • the drive system includes:
  • each motor drive unit includes: a drive communication module, a waveform generation module, a power drive inverter module, and an acquisition module. All relevant control functions can be completed by using a small-capacity FPGA (9K equivalent logic units).
  • Every 4 motor drive units are integrated in one motor drive board, a total of 20 motor drive boards.
  • each motion controller integrates 1 motion control unit and 1 motor control unit.
  • the motion control unit includes: a program execution module
  • the motor control unit includes: a first communication module, a second communication module, an effective axis management module, a motor calculation module, a calculation resource scheduling and allocation module, and a storage and distribution module.
  • the system defaults to no motor mover.
  • the program execution module generates driving instructions.
  • the magnetic position sensor periodically detects the position of the motor mover and transmits it to the motor control unit through the first communication module.
  • the acquisition module periodically detects the current of the motor stator, and transmits it to the motor control unit through the first communication module.
  • the effective axis management module After the effective axis management module obtains relevant information (position, speed, current), it calculates the effective axis addresses of the three movers, and forms the motor stator selection command.
  • the calculation resource scheduling and allocation module allocates the calculation of the active axis of the mover to the corresponding calculation resources.
  • the motor calculation module completes control-related calculations (including: position loop, speed loop, and current loop), and outputs the results to the storage and distribution module.
  • the saving and distributing module saves the current results and outputs them to the motor drive unit in sequence according to the addresses.
  • the data packets are sequentially transmitted to the corresponding address motor drive unit, and enter the power drive inverter module to generate the corresponding three-phase current.
  • the magnetic transmission line drive system, the magnetic transmission line and the control method of the magnetic transmission line drive system can solve the problems existing in the prior art from the source, by concentrating the calculation on the motor control unit
  • the centralized calculation in the center makes the motor drive unit with the largest number simplified on a large scale, thereby greatly reducing the cost; the motor drive unit does not need complex calculations, so the number of chips and other electronic components required by the unit itself is also reduced.
  • the communication delay between the motor control unit and each motor drive unit is less than the control cycle, and it can support multiple A loop improves the scalability of the system while avoiding system delay.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Conveyors (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

本发明提供一种磁输送线驱动系统、一种磁输送线以及一种磁输送线驱动系统的控制方法,用于根据指令驱动磁输送线的执行机构,执行机构包括多个电机定子与至少一个电机动子,磁输送线驱动系统包括:运动控制单元,根据指令生成驱动指令;多个位置传感单元,数量与电机定子相对应,用于检测电机动子的数量信息和位置信息;电机控制单元,根据驱动指令以及电机动子的数量信息和位置信息,计算有效轴的数量信息和地址信息,生成用于选择指定的电机定子的电机定子选择指令及用于生成指定的驱动电流的逆变设定指令;以及多个电机驱动单元,数量与电机定子相对应,根据电机定子选择指令及逆变设定指令,生成并向相应的电机定子提供驱动电流,驱动电机定子按照指令运动。

Description

一种磁输送线驱动系统、磁输送线和磁输送线驱动方法 技术领域
本发明属于自动输送线领域,尤其是磁输送线驱动系统,具体涉及一种磁输送线驱动系统、磁输送线和磁输送线驱动方法。
背景技术
随着制造技术的不断发展,自动输送线技术广泛应用于包括生产、包装、装配、印刷等行业的自动化生产线中,也逐渐形成了多种不同形式的输送线。其中,相较于带式输送线、滚轮输送线、链条输送线等传统的输送线方案,磁输送线由于其非接触的传动模式,能够提供更高的输送速度和系统柔性。
磁输送线通常包括执行机构与驱动系统,执行机构在驱动系统的驱动下进行运转,实现自动输送。现有的磁输送线中,采用的执行机构大多是直线电机,其中,电机动子由线圈(较短)组成,电机定子(较长)由交替排列的永磁铁组成。由于上述技术方案的直线电机中,电机动子需要通过电线给线圈供电,必须带有拖尾线缆,导致在实际应用中受到限制,因此,行业中也发展出了由线圈定子加永磁体动子的执行机构形式,每个电机定子分别包含UVW三相绕组,通过Y型连接,与传统三相伺服电机类似,电机之间不连续。
如图1所示,现有技术的磁输送线包括执行机构100和驱动系统200。执行机构100通常包括多个电机定子110与至少一个电机动子120。驱动系统200通常包括多个电机驱动单元230以及一个运动控制单元210。电机驱动单元230与每一个电机定子110对应,针对电机动子120的位置,使电机定子110产生合适的磁场推动电机动子运动。电机驱动单元230采用伺服驱动器,从传统伺服电机的角度看,电机驱动单元及相对应电机定子相当于一个完整的电机,也称为一个电机轴。运动控制单元210,基于接收的指令向伺服电机驱动单元发送位置、速度指令。在其他实施方式中,可进一步包含位置传感器(图中未示出),通常为光栅尺或者磁栅尺,用于检测输送线上每一个动子的位置。
在磁输送线中,电机轴的数量通常特别多,而电机动子的数量有限,如图2所示,当执行机构100中的对应的电机定子110没有电机动子120经过时,该电机定子110不对电机动子120的运动产生影响,无需进行任何计算和通信,此时其对应的电机轴称为无效轴112,反之则称为有效轴111。随着电机动子120移动,电机定子110的有效轴和无效轴的状态是在动态变化的。在同一时刻,执行机构中,无效轴的占比非常高。
这也导致现有的磁输送线方案在实际应用中的效果并不理想,主要存在以下技术问题:
1.在磁输送线中,单个电机的尺寸不可能特别大,距离也不会特别远,否则将会导致精度下降。实践中,现有的磁输送线通常在每1米中需要设置12个或者更多电机,而为了能让磁输送线系统中的电机动子都可以单独移动,每个电机都需要一个独立的伺服驱动器对其进行驱动。因此,现有设计方案中需要的伺服驱动单元器数量很多,磁输送线整体的电路复杂,导致系统的成本高昂。
2.伺服驱动单元器为产生合适的磁场推动电机动子运动,需要接收电机动子的位置、速度、加速度等信息,通过计算,从而输出驱动对应的轴,因此,伺服驱动单元通常需承担通信、计算、波形发生、功率驱动等主要功能。同时,由于电机信息的实时计算与通信对于硬件的要求很高,为降低系统延迟,提高响应速度,现有的设计中通常会使用高性能DSP或者大容量FPGA进行计算,进一步提高了系统的成本。
发明内容
由于现有技术方案的磁输送线驱动系统在实际应用中存在上述的技术问题,本发明目的在于提供一种磁输送线驱动系统和方法,以解决现有技术方案中存在的上述技术问题,从而降低系统延迟,提高响应速度,降低驱动系统接线复杂程度,在有效控制磁输送线驱动系统对于硬件的要求和成本的条件下,简化了系统结构,提高系统的工作效率和可靠性。
本发明提供的磁输送线驱动系统的技术方案具体包括:
一种磁输送线驱动系统,用于根据指令驱动所述磁输送线的执行机构,所述执行机构包括多个电机定子与至少一个电机动子,所述磁输送线驱动系统包括:
运动控制单元,根据所述指令生成驱动指令;
多个位置传感单元,数量与所述电机定子相对应,用于检测所述电机动子的数量信息和位置信息;
电机控制单元,根据所述驱动指令以及所述电机动子的数量信息和位置信息,计算有效轴的数量信息和地址信息,生成用于选择指定的所述电机定子的电机定子选择指令及用于生成指定的驱动电流的逆变设定指令;
以及多个电机驱动单元,数量与所述电机定子相对应,根据所述电机定子选择指令及逆变设定指令,生成并向相应的所述电机定子提供驱动电流。
优选的,所述电机驱动单元包括:
驱动通信模块,用于实现所述电机驱动单元与外部的数据传输;
波形发生模块,根据所述逆变设定指令生成逆变控制波形;
功率驱动逆变模块,根据所述逆变控制波形,生成并向指定的所述电机定子提供驱动电流。
优选的,所述电机驱动单元还包括:
采集模块,用于采集所述电机定子中的各相电流信息、电压信息以及温度信息,并向所述电机控制单元反馈
优选的,所述电机驱动单元还包括:
故障处理模块,基于磁输送线中电机动子的速度信息、位置信息、以及电机定子的各相电流信息判断是否出现影响磁输送线运行的故障,在出现故障时,向功率驱动逆变模块输出停机指令。
优选的,所述电机控制单元包括:
第一通信模块,用于实现所述电机控制单元与所述电机驱动单元和/或所述位置传感单元之间的数据传输;
第二通信模块,用于实现所述电机控制单元与所述运动控制单元的数据传输;
有效轴管理模块,根据所述电机动子的数量信息和位置信息,计算所述有效轴的数量信息和地址信息,生成所述电机定子选择指令;
至少一个电机计算模块,根据所述驱动指令、所述电机定子选择指令以及所述电机定子中的各相电流信息,生成并向所述电机驱动单元输出所述逆变设定指令。
优选的,所述电机控制单元还包括:
计算资源调度分配模块,根据电机定子选择指令,选择一个或多个所述电机计算模块,从而使选定的所述电机计算模块完成计算;
保存与分发模块:将计算结果保存并分发到所述第一通信模块。
优选的,所述运动控制单元包括:
程序执行模块,用于根据指令生成所述驱动指令;
碰撞检测模块,用于判断所述驱动指令是否会引起所述电机动子碰撞,在判断结果为否的情况下,向所述电机控制单元输出所述驱动指令,在判断结果为是的情况下,等待直到判断结果为否时再输出所述驱动指令。
优选的,所述磁输送线驱动系统中,具有多个相互并联的、由多个所述位置传感单元串联而形成的环路,以及多个相互并联的、由多个所述电机驱动单元串联而形成的环路。
优选的,所述磁输送线驱动系统还包括:
交换控制单元,根据所述电机定子选择指令,实现所述电机控制单元与各个环路上的位置传感单元和/或所述电机驱动单元之间的数据传输。
本发明还提供了一种磁输送线,包含执行机构,所述执行机构包括多个电机定子与至少一个电机动子,所述磁输送线还包含如前述任一项所述的磁输送线驱动系统。
本发明还提供了一种磁输送线驱动系统的控制方法,基于有效轴进行控制,用于根据指令驱动所述磁输送线的执行机构,所述执行机构包括多个电机定子与至少一个电机动子,所述控制方法包括:
驱动指令生成步骤,根据指令生成所述驱动指令;
电机动子检测步骤,获取所述电机动子的数量信息、位置信息;
有效轴地址计算步骤,根据所述电机动子的数量信息、位置信息,计算所述有效轴的数量信息和地址信息;
电机定子选择步骤,根据所述有效轴的地址信息,生成电机定子选择指令;
控制环计算步骤,根据所述电机动子的位置信息、所述电机定子的各相电流信息以及前一周期的逆变设定指令,分别完成位置环、速度环、电流环的计算,生成逆变设定指令;
驱动电流生成步骤,保存所述逆变设定指令,并根据所述电机定子选择指令选择相应的所述电机定子,生成驱动所述电机定子的驱动电流;
重复上述步骤,对所述电机动子形成闭环控制。
优选的,所述控制方法中还包括:碰撞检测步骤,判断所述驱动指令是否会引起所述电机动子碰撞,在判断结果为否的情况下,输出所述驱动指令,在判断结果为是的情况下,等待直到判断结果为否时再输出所述驱动指令。
优选的,所述控制方法中还包括:计算资源调度步骤,根据所述电机定子选择指令,分配所需的计算资源用于所述控制环计算步骤。
通过应用本发明提出的一种磁输送线驱动系统、磁输送线和磁输送线驱动方法,能够从源头上解决现有技术中存在的问题,带来以下优点:
第一,本发明提供的磁输送线驱动系统、磁输送线和磁输送线驱动方法,通过将计算集中到电机控制单元中进行集中计算,使得数量最大的电机驱动单元得到大规模简化,从而极大地降低了成本;
第二,本发明提供的磁输送线驱动系统、磁输送线和磁输送线驱动方法,通过将计算集中到电机控制单元中进行集中计算,使得电机驱动单元不需要复杂的计算,因而单元本身所需的的芯片和其它电子元器件的数量也大大降低,降低成本的同时也带来可靠性的提高;
第三,本发明提供的磁输送线驱动系统、磁输送线和磁输送线驱动方法,通过设置计算资源调度分配模块以及交换控制单元,使得电机控制单元到每一个电机驱动单元的通讯延迟都小于控制周期的同时,能够支持多个环路,在避免系统出现延迟的情况下,提高了系统的可扩展性。
对熟悉本技术领域的人来说,在结合附图阅读本说明书的以下部分之后,这些和其它目的和优点将会变得更加明显。
附图说明
本发明的以上发明内容以及下面的具体实施方式在结合附图阅读时会得到更好的理解。需要说明的是,附图仅作为所请求保护的发明的示例。在附图中,相同的附图标记代表相同或类似的元素。
图1所示为现有技术磁输送线驱动系统的结构的示意图。
图2所示为磁输送线驱动系统的有效轴与无效轴的示意图。
图3所示为本发明磁输送线驱动系统一种实施方式的结构示意图。
图4所示为本发明磁输送线驱动系统一种实施方式的电机驱动单元的结构示意图。
图5所示为本发明磁输送线驱动系统一种实施方式的电机控制单元的结构示意图。
图6所示为本发明磁输送线驱动系统一种实施方式的运动控制单元的结构示意图。
图7所示为本发明磁输送线驱动系统一种实施方式的局部结构示意图。
图8所示为本发明磁输送线驱动系统的控制方法一种实施方式的流程示意图。
附图标记如下:
100、执行机构
110、电机定子
111、有效轴
112、无效轴
120、电机动子
200、驱动系统
210、运动控制单元
211、程序执行模块
212、碰撞检测模块
213、电机定子管理模块
220、电机控制单元
221、第一通信模块
222、第二通信模块
223、有效轴管理模块
224、电机计算模块
225、计算资源调度分配模块
226、保存与分发模块
230、电机驱动单元
231、驱动通信模块
232、波形发生模块
233、功率驱动逆变模块
234、采集模块
235、故障处理模块
236、电源管理模块
240、位置传感单元
250、交换控制单元
具体实施方式
以下在具体实施方式中详细叙述本发明的详细特征以及优点,其内容足以使任何本领域技术人员了解本发明的技术内容并据以实施,且根据本发明所揭露的说明书、权利要求及附图,本领域技术人员可轻易地理解本发明相关的目的及优点。
图3-图6示出了根据本发明提供的磁输送线驱动系统的一种优选的实施方案。
其中,图3示出了本发明磁输送线驱动系统的模块示意图。
一种磁输送线驱动系统200,用于根据指令驱动磁输送线的执行机构100,磁输送线驱动系统包括:
运动控制单元210,根据指令生成驱动指令。
多个位置传感单元240,数量与电机定子110相对应,用于检测电机动子120的数量信息和位置信息。在一个实施例中,位置传感单元可为光栅尺或者磁栅尺。
电机控制单元220,根据驱动指令以及电机动子120的数量信息和位置信息,计算有效轴的数量信息和地址信息,生成用于选择指定的电机定子110的电机定子选择指令及用于生成指定的驱动电流的逆变设定指令;
以及多个电机驱动单元230,数量与电机定子110相对应,根据电机定子选择指令及逆变设定指令,生成并向相应的电机定子110提供驱动电流。
整个系统中,通过由电机控制单元中对计算工作进行集中调度和执行,使得数量最大的电机驱动单元230的结构得到大规模简化,从而极大地降低了成本。
图4示出了本发明磁输送线驱动系统一种实施方式的电机驱动单元230的结构示意图,其中包括:
驱动通信模块231,用于实现电机驱动单元230与外部的数据传输。
在一个实施例中,数据传输包括多个电机驱动单元230之间的数据传输以及电机驱动单元230与电机控制单元220之间的数据传输。在一个实施例中,数据传输采取双向以太网通信,也可用光纤等其它方式。
在一个实施例中,驱动通信模块231的端口可以采用一个或多个网口或者光口,以便多个电机驱动单元230通过相互形成串联。
由于驱动通信模块231的通信仅包含:输入:1)逆变设定2)系统控制,输出:1)电流与状态反馈。通信周期为电流环的计算周期,在一个实施例中,为50uS。因此,电机驱动单元的通信格式简单且间隔很短,带来系统的可靠性和检错特性提高。
波形发生模块232,根据逆变设定指令生成逆变控制波形。在一个实施例中,逆变控制波形为SPWM波形。
功率驱动逆变模块233,根据逆变控制波形,生成并向指定的电机定子110提供驱动电流。
在一个实施例中,电机驱动单元230还包括:采集模块234,用于采集所述电机定子110中的各相电流信息、电压信息以及温度信息,并向电机控制单元220反馈。
在一个实施例中,电机驱动单元230还包括:故障处理模块235,基于磁输送线中电机动子的速度信息、位置信息、以及电机定子的各相电流信息判断是否出现影响磁输送线运行的故障,例如:超差故障,在出现故障时,向功率驱动逆变模块233输出停机指令。
在一个实施例中,电机驱动单元230还包括:电源管理模块236,用于管理电机驱动单元230内部的所有电源供电,包括内部的模块以及功率驱动电源。
在一个实施例中,驱动通信模块231、波形发生模块232、采集模块234、故障处理模块235可以集成在一个主控芯片中。在一个实施例中,该主控芯片为一小容量FPGA芯片。
在一个实施例中,多个电机驱动单元230可以集成在到一块PCB板上,通过合用电源管理模块236与驱动通信模块231,可以进一步降低成本与系统复杂性。
由于不需要复杂的计算,因此本发明规定电机驱动单元,不需要采用现有技术方案中昂贵的DSP和大容量FPGA,芯片和其它电子元器件的数量也大大降低,降低成本的同时带来可靠性的提高。
图5示出了本发明磁输送线驱动系统一种实施方式的电机控制单元220的结构示意图,其中包括:
第一通信模块221,用于实现电机控制单元220与电机驱动单元230和/或位置传感单元240之间的数据传输;
第二通信模块222,用于实现电机控制单元220与运动控制单元210的数据传输;
有效轴管理模块223,根据位置传感单元240提供的电机动子120的数量信息和位置信息,计算有效轴的数量信息和地址信息,生成电机定子选择指令;
至少一个电机计算模块224,根据驱动指令、电机定子选择指令以及电机驱动单元230提供的电机定子110中的各相电流信息,生成并向电机驱动单元230输出逆变设定指令。
在一个实施例中,电机计算模块224还可针对磁输送线的干扰进行补偿计算,例如:静摩擦力、动摩擦力、齿槽力等。在一个实施例中,电机控制单元220还包括:
计算资源调度分配模块225,根据电机定子选择指令,选择一个或多个电机计算模块224,从而使选定的电机计算模块224完成计算;通过应用计算资源调度分配模块225,可以时分复用电机计算模块224。例如:一个控制周期可以为16个有效轴完成计算。
保存与分发模块226:将计算结果保存并分发到第一通信模块221。
图6示出了本发明磁输送线驱动系统一种实施方式的运动控制单元210的结构示意图,其中包括:
程序执行模块211,用于根据指令生成驱动指令。在一个实施例中,指令可以是来自用户或其他上位设备输出的程序指令。
碰撞检测模块212,用于基于驱动指令以及由电机控制单元220上报的电机动子120的位置信息判断驱动指令是否会引起电机动子120碰撞,在判断结果为否的情况下,向电机控制单元220输出驱动指令,在判断结果为是的情况下,等待直到判断结果为否时再输出驱动指令。
在一个实施例中,运动控制单元210还进一步包括:
电机定子管理模块213,用于管理系统的电机定子110,在有外部新增的电机定子加入时,向程序执行模块反馈,分配资源和命令程序,在系统内部的电机定子退出时,向程序执行模块反馈,回收并重新分配资源和命令程序。
在一个实施例中,运动控制单元210与电机控制单元220可以集成在一个控制器中。
图7示出了本发明磁输送线驱动系统的另一种实施方式,
其中,每个电机驱动单元230及位置传感器240包含上级通信口与下级通信口(以太网或者光纤),组成环路。电机控制单元220从上级通信口发出带有枚举命令的通信包,开始枚举地址,第一个电机驱动单元230/位置传感器240地址为1,下一个为2,以此类推。直到经过最后一个电机驱动单元230/位置传感器240,返回电机控制单元220。
由于在这个系统上,通信比较频繁,通讯周期必须小于控制周期,而在串联成环路的情况下,数据包每经过一个电机驱动单元都会引入一定的延迟,为了避免绝对延迟过大,因此,根据本发明的另一种实施方式,当电机轴数量很大时,例如大于80个电机轴,可以新增若干个环路,使电机驱动单元230及位置传感器240到每一个电机的通讯延迟都小于控制周期。
在一个实施例中,系统中所有的环路要求统一编址,每个环路上的地址都是连续的,不同环路的地址范围不同,每个环路即系统上每一个电机轴的地址都是唯一的。例如:
环路序号 地址范围
环路1 1-80
环路2 81-160
环路3 161-240
如果环路的数量过多,根据本发明的另一种实施方式,磁输送线驱动系统还可以包括:
交换控制单元250,根据电机定子选择指令,实现电机控制单元220与各个环路上的位置传感单元240和/或电机驱动单元230之间的数据传输。交换控制单元250识别数据包头部的地址信息,将数据包送到对应的环路上的电机驱动单元230及位置传感器240。对应环路返回的数据包也能通过最快的通道返回电机控制单元220。
图8示出了本发明磁输送线驱动系统的控制方法的流程示意图。
控制方法包括:
步骤S100,驱动指令生成步骤,运动控制单元210根据用户或其他外部指令生成驱动指令。
在一个实施例中,步骤S100进一步包括:步骤S110,碰撞检测步骤,运动控制单元210判断驱动指令是否会引起电机动子碰撞,在判断结果为否的情况下,输出驱动指令,在判断结果为是的情况下,等待直到判断结果为否时再输出驱动指令。
步骤S200,电机动子检测步骤,位置传感单元240获取电机动子的数量信息、位置信息。
步骤S300,有效轴地址计算步骤,电机控制单元220根据电机动子的数量信息、位置信息,计算有效轴的数量信息和地址信息。
步骤S400,电机定子选择步骤,电机控制单元220根据有效轴的地址信息,生成电机定子选择指令;
在一个实施例中,步骤S400进一步包括:步骤S410,计算资源调度步骤,电机控制单元220根据电机定子选择指令,分配所需的计算资源用于控制环计算步骤。
步骤S500,控制环计算步骤,电机控制单元220根据电机动子的位置信息、电机定子的各相电流信息以及前一周期的逆变设定指令,分别完成位置环、速度环、电流环的计算,生成逆变设定指令。
在一个实施例中,上述位置环、速度环、电流环的计算中,最外环为位置环,接收位置指令、补偿和位置反馈,输出速度指令;中间为速度环,接收位置环给出的速度指令、补偿和速度反馈,输出电流指令,最内部为电流环,采用FOC(磁场定向控制)控制,接收电流指令、补偿和电流反馈,直接给出逆变指令。
步骤S600,驱动电流生成步骤,电机控制单元220保存逆变设定指令,并根据电机定子选择指令选择相应的电机定子,由相应电机驱动单元230生成驱动电机定子的驱动电流。
在一个实施例中,电机驱动单元230同时将电机实际电流反馈给电流环,电机旋转产出的角位移或者直线位置反馈给速度环和位置环。
重复上述步骤,对电机动子形成闭环控制,达到精确的位置和速度控制。
本发明提供的磁输送线的一优选的实施方式,包括:
一种磁输送线,长度为5米,每米包含16个电机轴,共有3个动子沿磁输送线往复运动,因此,该磁输送线执行机构包括80个电机定子与3电机动子,其中最大有效轴为10个,约占总轴数的12.5%。
驱动系统包括:
1)80个磁位置传感器
2)80个电机驱动单元
其中,每个电机驱动单元包括:驱动通信模块、波形发生模块、功率驱动逆变模块、采集模块。采用一个小容量FPGA(9K等效逻辑单元)即可完成了相关的所有控制功能。
每4个电机驱动单元集成在一个电机驱动板中,共20个电机驱动板。
3)驱控一体运动控制器1个:每个运动控制器集成1个运动控制单元和1个电机控制单元。
其中,运动控制单元包括:程序执行模块;
电机控制单元包括:第一通信模块、第二通信模块、有效轴管理模块、电机计算模块、计算资源调度分配模块、保存与分发模块。
驱动系统的运行控制步骤采用闭环控制,具体如下:
上电初始化时,系统默认没有电机动子存在。
程序执行模块生成驱动指令。
磁位置传感器周期性检测电机动子的位置,通过第一通信模块向电机控制单元传输。
采集模块周期性检测电机定子的电流,通过第一通信模块向电机控制单元传输。
有效轴管理模块获取相关的信息(位置,速度,电流)后,计算得到3个动子有效轴地址,形成电机定子选择指令。
计算资源调度分配模块将动子有效轴计算分配给对应的计算资源。
由电机计算模块完成控制相关计算(包括:位置环、速度环、电流环),向保存与分发模块输出结果。
保存与分发模块保存本次结果,并根据地址依次输出给电机驱动单元。
数据包依次传输到对应的地址电机驱动单元,并进入功率驱动逆变模块,产生对应的三相电流。
重复前面的过程,对电机动子产生闭环控制效果。
由上述实施例可知,本发明提供的磁输送线驱动系统、磁输送线以及磁输送线驱动系统的控制方法,能够从源头上解决现有技术中存在的问题,通过将计算集中到电机控制单元中进行集中计算,使得数量最大的电机驱动单元得到大规模简化,从而极大地降低了成本;使得电机驱动单元不需要复杂的计算,因而单元本身所需的的芯片和其它电子元器件的数量也大大降低,降低成本的同时也带来可靠性的提高;通过设置计算资源调度分配模块以及交换控制单元,使得电机控制单元到每一个电机驱动单元的通讯延迟都小于控制周期的同时,能够支持多个环路,在避免系统出现延迟的情况下,提高了系统的可扩展性。
这里采用的术语和表述方式只是用于描述,本发明并不应局限于这些术语和表述。使用这些术语和表述并不意味着排除任何示意和描述(或其中部分)的等效特征,应认识到可能存在的各种修改也应包含在权利要求范围内。其他修改、变化和替换也可能存在。相应的,权利要求应视为覆盖所有这些等效物。
同样,需要指出的是,虽然本发明已参照当前的具体实施例来描述,但是本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,在没有脱离本发明精神的情况下还可做出各种等效的变化或替换,因此,只要在本发明的实质精神范围内对上述实施例的变化、变型都将落在本申请的权利要求书的范围内。

Claims (13)

  1. 一种磁输送线驱动系统,用于根据指令驱动所述磁输送线的执行机构,所述执行机构包括多个电机定子与至少一个电机动子,
    其特征在于,所述磁输送线驱动系统包括:
    运动控制单元,根据所述指令生成驱动指令;
    多个位置传感单元,数量与所述电机定子相对应,用于检测所述电机动子的数量信息和位置信息;
    电机控制单元,根据所述驱动指令以及所述电机动子的数量信息和位置信息,计算有效轴的数量信息和地址信息,生成用于选择指定的所述电机定子的电机定子选择指令及用于生成指定的驱动电流的逆变设定指令;以及
    多个电机驱动单元,数量与所述电机定子相对应,根据所述电机定子选择指令及逆变设定指令,生成并向相应的所述电机定子提供驱动电流。
  2. 如权利要求1所述的磁输送线驱动系统,其特征在于,
    所述电机驱动单元包括:
    驱动通信模块,用于实现所述电机驱动单元与外部的数据传输;
    波形发生模块,根据所述逆变设定指令生成逆变控制波形;以及
    功率驱动逆变模块,根据所述逆变控制波形,生成并向指定的所述电机定子提供驱动电流。
  3. 如权利要求2所述的磁输送线驱动系统,其特征在于,
    所述电机驱动单元还包括:
    采集模块,用于采集所述电机定子中的各相电流信息、电压信息以及温度信息,并向所述电机控制单元反馈。
  4. 如权利要求2所述的磁输送线驱动系统,其特征在于,
    所述电机驱动单元还包括:
    故障处理模块,基于所述磁输送线中所述电机动子的速度信息、位置信息、以及所述电机定子的各相电流信息判断是否出现影响所述磁输送线运行的故障,在出现故障时接收故障信号,并向所述功率驱动逆变模块输出停机指令。
  5. 如权利要求1-4所述的磁输送线驱动系统,其特征在于,
    所述电机控制单元包括:
    第一通信模块,用于实现所述电机控制单元与所述电机驱动单元和/或所述位置传感单元之间的数据传输;
    第二通信模块,用于实现所述电机控制单元与所述运动控制单元的数据传输;
    有效轴管理模块,根据所述电机动子的数量信息和位置信息,计算所述有效轴的数量信息和地址信息,生成所述电机定子选择指令;以及
    至少一个电机计算模块,根据所述驱动指令、所述电机定子选择指令以及所述电机定子中的各相电流信息,生成并向所述电机驱动单元输出所述逆变设定指令。
  6. 如权利要求5所述的磁输送线驱动系统,其特征在于,
    所述电机控制单元还包括:
    计算资源调度分配模块,根据电机定子选择指令,选择一个或多个所述电机计算模块,从而使选定的所述电机计算模块完成计算;以及
    保存与分发模块:将计算结果保存并分发到所述第一通信模块。
  7. 如权利要求1-4所述的磁输送线驱动系统,其特征在于,
    所述运动控制单元包括:
    程序执行模块,用于根据指令生成所述驱动指令;以及
    碰撞检测模块,用于判断所述驱动指令是否会引起所述电机动子碰撞,在判断结果为否的情况下,向所述电机控制单元输出所述驱动指令,在判断结果为是的情况下,等待直到判断结果为否时再输出所述驱动指令。
  8. 如权利要求1-4所述的磁输送线驱动系统,其特征在于,
    所述磁输送线驱动系统中,具有多个相互并联的、由多个所述位置传感单元串联而形成的环路,以及多个相互并联的、由多个所述电机驱动单元串联而形成的环路。
  9. 如权利要求8所述的磁输送线驱动系统,其特征在于,
    所述磁输送线驱动系统还包括:
    交换控制单元,根据所述电机定子选择指令,实现所述电机控制单元与各个环路上的位置传感单元和/或所述电机驱动单元之间的数据传输。
  10. 一种磁输送线,包含执行机构,所述执行机构包括多个电机定子与至少一个电机动子,其特征在于,
    所述磁输送线还包含如权利要求1-10中任一项所述的磁输送线驱动系统。
  11. 一种磁输送线驱动系统的控制方法,基于有效轴进行控制,用于根据指令驱动所述磁输送线的执行机构,所述执行机构包括多个电机定子与至少一个电机动子,
    其特征在于,所述控制方法包括:
    驱动指令生成步骤,根据指令生成所述驱动指令;
    电机动子检测步骤,获取所述电机动子的数量信息和位置信息;
    有效轴地址计算步骤,根据所述电机动子的数量信息和位置信息,计算所述有效轴的数量信息和地址信息;
    电机定子选择步骤,根据所述有效轴的地址信息,生成电机定子选择指令;
    控制环计算步骤,根据所述电机动子的位置信息、所述电机定子的各相电流信息以及前一周期的逆变设定指令,分别完成位置环、速度环、电流环的计算,生成逆变设定指令;
    驱动电流生成步骤,保存所述逆变设定指令,并根据所述电机定子选择指令选择相应的所述电机定子,生成驱动所述电机定子的驱动电流;以及
    重复上述步骤,对所述电机动子形成闭环控制。
  12. 如权利要求11所述的磁输送线驱动系统的控制方法,其特征在于,所述控制方法中还包括:
    在驱动指令生成步骤之后的碰撞检测步骤,判断所述驱动指令是否会引起所述电机动子碰撞,在判断结果为否的情况下,输出所述驱动指令,在判断结果为是的情况下,等待直到判断结果为否时再输出所述驱动指令。
  13. 如权利要求12所述的磁输送线驱动系统的控制方法,其特征在于,所述控制方法中还包括:
    在电机定子选择步骤之后的计算资源调度步骤,根据所述电机定子选择指令,分配所需的计算资源用于所述控制环计算步骤。
PCT/CN2022/108201 2021-09-02 2022-07-27 一种磁输送线驱动系统、磁输送线和磁输送线驱动方法 WO2023029825A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111025731.8A CN113726262B (zh) 2021-09-02 2021-09-02 一种磁输送线驱动系统、磁输送线和磁输送线驱动方法
CN202111025731.8 2021-09-02

Publications (1)

Publication Number Publication Date
WO2023029825A1 true WO2023029825A1 (zh) 2023-03-09

Family

ID=78680966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108201 WO2023029825A1 (zh) 2021-09-02 2022-07-27 一种磁输送线驱动系统、磁输送线和磁输送线驱动方法

Country Status (2)

Country Link
CN (1) CN113726262B (zh)
WO (1) WO2023029825A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113726262B (zh) * 2021-09-02 2024-04-19 上海捷勃特机器人有限公司 一种磁输送线驱动系统、磁输送线和磁输送线驱动方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060100723A1 (en) * 2004-10-29 2006-05-11 Dynacity Technology (Hk) Limited Modular multi-axis motion control and driving system and method thereof
CN109302103A (zh) * 2018-11-29 2019-02-01 上海福赛特控制技术有限公司 一种远程分离的电机驱动及电机控制系统
CN210536535U (zh) * 2018-11-29 2020-05-15 实时侠智能控制技术有限公司 一种远程分离的电机驱动及电机控制系统以及电机驱动及电机控制系统
CN113168152A (zh) * 2018-11-26 2021-07-23 贝克霍夫自动化有限公司 用于在驱动面上驱动至少两个动子时避免碰撞的设备和方法
CN113726262A (zh) * 2021-09-02 2021-11-30 实时侠智能控制技术有限公司 一种磁输送线驱动系统、磁输送线和磁输送线驱动方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8804991D0 (en) * 1988-03-02 1988-03-30 Williams Fairey Eng Ltd Improvements in electric motors
JPH05199616A (ja) * 1992-01-17 1993-08-06 Fujitsu Ltd 搬送装置の制御装置
JP3501559B2 (ja) * 1995-06-27 2004-03-02 キヤノン株式会社 リニア・モータ装置
CN105600469B (zh) * 2016-01-21 2018-08-31 东莞思谷数字技术有限公司 一种基于电磁驱动和传感模块的可组装自动化运输系统
EP3661033A1 (de) * 2018-11-27 2020-06-03 B&R Industrial Automation GmbH Transporteinrichtung in form eines langstatorlinearmotors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060100723A1 (en) * 2004-10-29 2006-05-11 Dynacity Technology (Hk) Limited Modular multi-axis motion control and driving system and method thereof
CN113168152A (zh) * 2018-11-26 2021-07-23 贝克霍夫自动化有限公司 用于在驱动面上驱动至少两个动子时避免碰撞的设备和方法
CN109302103A (zh) * 2018-11-29 2019-02-01 上海福赛特控制技术有限公司 一种远程分离的电机驱动及电机控制系统
CN210536535U (zh) * 2018-11-29 2020-05-15 实时侠智能控制技术有限公司 一种远程分离的电机驱动及电机控制系统以及电机驱动及电机控制系统
CN113726262A (zh) * 2021-09-02 2021-11-30 实时侠智能控制技术有限公司 一种磁输送线驱动系统、磁输送线和磁输送线驱动方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIN CHANG-JUN, ZHOU CUN-YAN: "Application Research of Permanent Magnet Variable Frequency Motor Direct-drive Belt Conveyor in Coal Mine", VALUE ENGINEERING, no. 31, 29 September 2018 (2018-09-29), pages 178 - 179, XP093041665, ISSN: 1006-4311, DOI: 10.14018/j.cnki.cn13-1085/n.2018.31.078 *

Also Published As

Publication number Publication date
CN113726262A (zh) 2021-11-30
CN113726262B (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
ES2785502T3 (es) Procedimiento para controlar un movimiento, equipo de control y accionamiento lineal
WO2023029825A1 (zh) 一种磁输送线驱动系统、磁输送线和磁输送线驱动方法
CN103019169B (zh) 伺服驱动系统
CN102355176A (zh) 一种双电机同步控制系统及其实现方法
CN101369148B (zh) 基于dsp的多轴交流电机同步伺服控制装置及其方法
CN103765760B (zh) 一体型伺服系统、电动机系统以及电动机的控制方法
EP3650971B1 (en) Independent cart system and method of operating the same
CN113098311B (zh) 分散马达控制系统、马达控制装置以及分散马达控制方法
CN109687782A (zh) 一种步进电机的控制装置和控制系统
CN106301119B (zh) 用于平板扫描仪和自动进纸扫描仪的步进电机控制方法
EP4398480A1 (en) Magnetic transport line driving system, magnetic transport line, and magnetic transport line driving method
CN212433614U (zh) 一种基于fpga的多轴电机流水线控制系统
CN105824270A (zh) 多轴运动控制器及其闭环pwm脉冲的控制方法
CN1310415C (zh) 异步电机多主轴同步控制系统
CN204993012U (zh) 一种直驱式平面电机控制器
CN110879568A (zh) 多轴联动经济型数控系统的运动控制方法
US20200379439A1 (en) Automated Independent Cart System and Method of Controlling Operation of a Plurality of movers of the Automated Independent Cart System
CN104025451A (zh) 致动器控制装置
JP7453268B2 (ja) 多軸サーボ制御システム
CN111381612B (zh) 一种基于can总线的多轴同步控制系统及方法
CN110168455B (zh) 多计算核设备上的技术过程的控制
CN208873040U (zh) 基于plc的三轴数控钻床控制系统
Lv et al. Design of Control System for Warehouse based on PLC
CN103935771B (zh) 一种码垛工业机器人的电控系统
Jiao et al. Application of the real-time EtherCAT in steel plate loading and unloading system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862966

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022862966

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022862966

Country of ref document: EP

Effective date: 20240402