WO2023029488A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023029488A1
WO2023029488A1 PCT/CN2022/086418 CN2022086418W WO2023029488A1 WO 2023029488 A1 WO2023029488 A1 WO 2023029488A1 CN 2022086418 W CN2022086418 W CN 2022086418W WO 2023029488 A1 WO2023029488 A1 WO 2023029488A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdu session
message
tsn
network
network element
Prior art date
Application number
PCT/CN2022/086418
Other languages
English (en)
French (fr)
Inventor
余迪虎
强鹂
罗小烽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023029488A1 publication Critical patent/WO2023029488A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/14Mobility data transfer between corresponding nodes

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a communication method and device.
  • Time sensitive networking is a set of data link layer protocol specifications developed by the TSN group in the IEEE 802.1 working group to build a more reliable, low-latency, low-jitter Ethernet.
  • 3rd generation partnership project 3rd generation partnership project, 3GPP
  • the terminal can initiate the relevant process. For example, PDU session establishment process, etc., and carry parameters related to TSN characteristics.
  • the current protocol does not specify how to process the received message carrying the TSN feature when the network does not support the TSN feature. How to prevent a network that does not support the TSN feature from receiving the message carrying the TSN parameter sent by the UE is a technical problem to be solved in the embodiment of the present application.
  • the embodiment of the present application provides a communication method and device to notify the terminal whether the current network device supports the TSN feature, avoid the network that does not support the TSN feature, and receive the message carrying the TSN parameter sent by the UE.
  • a communication method including: a terminal sends a first message to a first network element; the terminal receives a second message from the first network element, and the second message is a response to the first message message, where the second message carries indication information indicating whether the current network supports or does not support the TSN feature of the time-sensitive network.
  • the network device can notify the terminal whether it currently supports the TSN feature, which can prevent the terminal from frequently sending NAS messages carrying the TSN feature to the network that does not support the TSN feature.
  • the first network element is an AMF network element
  • the first message is a registration request
  • the second message is a registration response
  • the terminal can be notified whether the current network supports the TSN feature during the registration phase of the terminal.
  • the registration response is a registration acceptance
  • the method further includes: the terminal sends a protocol data unit PDU session establishment request to the session management function SMF network element; if the registration acceptance carries the current network support TSN feature Indication information, the PDU session establishment request carries the TSN parameter; otherwise, the PDU session establishment request does not carry the TSN parameter.
  • the first network element is an SMF network element
  • the first message is a PDU session establishment request
  • the second message is a PDU session establishment response.
  • the terminal can be notified whether the current network supports the TSN feature during the establishment of the PDU session.
  • the first network element is an SMF network element
  • the first message is a PDU session modification request
  • the second message is a PDU session modification response.
  • the terminal can be notified whether the current network supports the TSN feature during the PDU session modification phase.
  • the first network element is an SMF network element, and the first message is a PDU session establishment request;
  • the method further includes: the terminal receives a PDU session establishment acceptance from the SMF network element; the terminal establishes a PDU session supporting TSN characteristics with the network device according to the PDU session establishment acceptance; the second message is a PDU session cancellation command,
  • the PDU session cancel command is sent when the network device needs to close the TSN function, the PDU session cancel command is used to cancel the established PDU session supporting the TSN feature, and the indication carried in the PDU session cancel command
  • the information is the indication information that the current network does not support the TSN feature.
  • a PDU session supporting the TSN feature can be established with the terminal; and when the current network closes the TSN feature and no longer supports the TSN feature, the established PDU session supporting the TSN feature can be cancelled. .
  • the second message includes a first information element, and the first information element carries indication information indicating whether the current network supports or does not support the TSN feature; or, the second message includes A second information element is included, and the second information element is used to indicate whether the current network supports or does not support the TSN feature.
  • an information element in the second message may carry indication information whether to support the TSN feature.
  • a certain information element of the second message may be used directly, for example, the second information element implicitly indicates whether the current network supports the TSN feature, etc., to save signaling overhead.
  • the second aspect provides a communication method, the second aspect is the first network element side corresponding to the first aspect, the beneficial effect can be referred to the first aspect, including: the first network element receives the first message from the terminal; the first The network element sends a second message to the terminal, the second message is a response message to the first message, and the second message carries indication information indicating whether the current network supports or does not support the TSN feature of the time-sensitive network.
  • the first network element is an AMF network element
  • the first message is a registration request
  • the second message is a registration response
  • the first network element is a session management function SMF network element
  • the first message is a protocol data unit PDU session establishment request
  • the second message is a PDU session establishment response.
  • the first network element is an SMF network element
  • the first message is a PDU session modification request
  • the second message is a PDU session modification response.
  • the first network element is an SMF network element
  • the first message is a PDU session establishment request
  • the method further includes: the first network element sends a PDU session establishment acceptance to the terminal; the first network element Establish a PDU session supporting TSN features with the terminal; when the TSN function of the current network needs to be turned off, the second message sent by the first network element to the terminal is a PDU session cancel command, and the PDU session cancel command is used to cancel all
  • the indication information carried in the PDU session cancel command is the indication information indicating that the current network does not support the TSN feature.
  • the second message includes a first information element, and the first information element carries indication information indicating whether the current network supports or does not support the TSN feature; or, the second message includes the first Two information elements, the second information element is used to indicate whether the current network supports or does not support the TSN feature.
  • a communication method including: a terminal accesses a first communication system, and establishes a first protocol data unit (PDU) session; the terminal switches from the first communication system to a second communication system;
  • the session management function SMF network element in the communication system sends a PDU session modification request, and the PDU session modification request is used to request modification of parameters of the first PDU session.
  • PDU protocol data unit
  • the parameters of the PDU session established in the original communication system can be modified so that in the original communication system
  • the established PDU session can be applied to a newly accessed communication system.
  • the first communication system is a fourth-generation communication system
  • the second communication system is a fifth-generation communication system
  • the PDU session modification request includes at least one of the following information elements: support Transport port management information container TPMIC cell, port management information container cell, time-sensitive network TSN converter DS-TT Ethernet port media access control MAC address cell, or DS-TT dwell time cell.
  • a communication method is provided, the fourth aspect is the SMF network element side corresponding to the third aspect, and the beneficial effect can be referred to the third aspect above, including: the SMF network element receives a protocol data unit PDU session modification request from the terminal , the PDU session modification request is used to request modification of parameters of the first PDU session, the PDU session modification request is sent when the terminal switches from the first communication system to the second communication system, and the first PDU session It is established in the first communication system; the SMF network element modifies the parameters of the first PDU session according to the PDU session modification request.
  • the first communication system is a fourth-generation communication system
  • the second communication system is a fifth-generation communication system
  • the PDU session modification request includes at least one of the following information elements: support Transport port management information container TPMIC cell, port management information capacity cell, time-sensitive network TSN converter DS-TT Ethernet port media access control MAC address cell, or DS-TT dwell time cell.
  • a communication method including: a non-access layer of a terminal receives a first command from an application layer of the terminal, and the first command includes a transmission port management information container TPMIC information element;
  • the terminal configures TPMIC for the active protocol data unit PDU session; or, when the TPMIC information element indicates that TPMIC is not supported, the terminal does not configure the active PDU session Configure TPMIC.
  • the first command does not set the TPMIC, so when the terminal activates the PDU session, it cannot accurately determine whether the TMPIC needs to be configured for the currently activated PDU session.
  • the TPMIC configuration in the first command it can indicate whether to configure the TPMIC for the active PDU session.
  • a communication device including a module or unit for performing the method described in any one of the first to fifth aspects above.
  • the module or unit can be a hardware circuit, software, or hardware The circuit is combined with the software.
  • a communication device includes: a processor and a memory.
  • the memory is used to store computer programs or instructions.
  • the processor is coupled with the memory, and when the processor executes computer programs or instructions, the device is made to execute the method of any one of the first aspect to the fifth aspect.
  • the device may further include a communication interface, which is used for the device to communicate with other devices.
  • the communication interface may be a transceiver, a circuit, a bus, a module, a pin, or other types of communication interfaces.
  • a computer-readable storage medium storing instructions, and when the instructions are run on a communication device, the communication device is made to execute the method of any one of the first aspect to the fifth aspect.
  • a chip system in a ninth aspect, includes a processor and may further include a memory, configured to implement the method in any one of the first aspect to the fifth aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a computer program product including instructions, which, when run on a communication device, cause the communication device to execute the method described in any one of the first aspect to the fifth aspect.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a clock provided in an embodiment of the present application.
  • Fig. 3, Fig. 4, Fig. 5, Fig. 6 and Fig. 7 are flowcharts of the communication method provided by Embodiment 1 of the present application;
  • FIG. 8 and FIG. 9 are flowcharts of the communication method provided in Embodiment 2 of the present application.
  • FIG. 10 is a schematic diagram of a protocol stack provided in Embodiment 3 of the present application.
  • FIG 11 and Figure 12 are schematic diagrams of the device provided by the embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system applied in an embodiment of the present application.
  • the communication system includes: a time-sensitive network (time-sensitive network, TSN) system, a communication system and a data network (data network, DN).
  • TSN time-sensitive network
  • DN data network
  • the above communication system includes access network equipment and core network equipment.
  • the access network device may also be called a radio access network (radio access network, RAN) device.
  • RAN radio access network
  • Different access network devices can be connected through Xn interfaces, and access network devices and core network devices can be connected through NG interfaces.
  • the access network device is a device that connects the terminal to the wireless network, and can provide the terminal with functions such as wireless resource management, service quality management, data encryption and compression.
  • the access network equipment can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), and a next-generation base station in the fifth generation (5th generation, 5G) mobile communication system (next generation nodeB, gNB), the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the wireless fidelity (wireless fidelity, WiFi) system, etc.
  • the base station can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the CU here completes the functions of the radio resource control (radio resource control, RLC) protocol and the packet data convergence protocol (PDCP) of the base station, and can also complete the service data adaptation protocol (service data adaptation protocol, SDAP)
  • the DU completes the functions of the radio link control (radio link control, RLC) layer and medium access control (medium access control, MAC) layer of the base station, and can also complete part of the physical (PHY) layer or all physical layers.
  • the access network equipment may be a macro base station, a micro base station or an indoor station, or a relay node or a donor node.
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the access network equipment.
  • a base station is used as an example of an access network device for description below.
  • Core network equipment is mainly used to manage terminals and provide a gateway for communication with the external network.
  • Core network equipment may include one or more of the following network elements:
  • User plane function (UPF) network element mainly responsible for forwarding and receiving user data.
  • the UPF network element can receive user data from the DN, and transmit it to the terminal through the access network device; in the uplink transmission, the UPF network element can receive the user data from the terminal through the access network device, and forward the user data to the DN .
  • the transmission resources and scheduling functions for providing services to terminals in the UPF network element may be managed and controlled by a session management function (session management function, SMF) network element.
  • SMF session management function
  • Access and mobility management function (AMF) network element mainly responsible for mobility management in the mobile network, such as user location update, user registration network, user handover, etc.
  • SMF network element mainly responsible for session management in the mobile network, such as session establishment, modification, release, etc. Specific functions include assigning IP addresses to users, selecting UPF network elements that provide message forwarding functions, and so on.
  • Policy control function policy control function
  • PCF Policy control function
  • TSN application function (application function, AF) network element mainly supports interaction with the 3GPP core network to provide services, such as affecting data routing decisions, policy control functions, or providing some third-party services to the network side.
  • Unified data management (UDM) network element mainly used for generating authentication credentials, user identification processing (such as storing and managing user permanent identities, etc.), access authorization control and contract data management, etc.
  • Network exposure function network exposure function
  • NEF network exposure function
  • the embodiments of the present application do not limit the specific technology and specific equipment form adopted by the network elements of the core network.
  • AMF, SMF, etc. are used as examples of network elements of the core network for description below.
  • the communication system shown in FIG. 1 may further include: a terminal may also be called terminal equipment, user equipment (user equipment, UE), mobile station, mobile terminal, and the like.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wearables, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal, and the UE is used as an example of the terminal for description below.
  • Access network equipment and terminals can be fixed or mobile. Access network equipment and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons, and artificial satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the access network device and the terminal.
  • the R16 version of 5G introduces the features of industrial internet of things (IIoT).
  • IIoT industrial internet of things
  • various functional nodes in the industrial control system are connected, including industrial controllers that issue control commands, industrial terminals that receive and execute control commands, such as operating arms, etc., configuration controllers and operating arms and other nodes configuration unit etc.
  • an industrial controller is configured on the DN side, and an industrial terminal is configured on the terminal side.
  • the industrial controller sends industrial control commands to industrial terminals through the UPF network element and access network shown in Figure 1.
  • the industrial terminal such as a mechanical arm, can perform corresponding operations according to the industrial control command.
  • the 5G communication system provides flexible routing methods.
  • Various industrial controllers and industrial terminals can be quickly organized into different production lines, so as to achieve the purpose of flexible deployment and adapt to Small batches and diverse production needs.
  • the DN may be a service network that provides data service for users.
  • the DN may be an IP multimedia service (IP multi-media service) network or the Internet.
  • the terminal can establish a protocol data unit (protocol data unit, PDU) session from the terminal to the DN to access the DN.
  • protocol data unit protocol data unit
  • the part inside the thick line box in the middle part of Figure 1 belongs to the communication system
  • the part outside the thick line box in the middle part of Figure 1 belongs to the industrial control system
  • the communication system is connected to the industrial control system through two interfaces.
  • the above two interfaces can be respectively a terminal side TSN translator (destination side TSN translator, DS-TT) on the terminal side and a network side TSN translator (network-side TSN translator, NW-TT) on the UPF side.
  • NW-TT network-side TSN translator
  • the 5G clock on the UPF side is synchronized with the 5G clock on the UE side. Therefore, when an IIOT control message passes through the NW-TT on the UPF side, the UPF records the time corresponding to this moment.
  • the IIOT control information passes through the 5G network and reaches the DS-TT on the UE side, the UE records the time corresponding to this moment. According to the time information recorded by UPF and UE, the transmission delay of the IIOT control information through the 5G network can be calculated.
  • TSN clock a common clock
  • the accuracy of the TSN clock is related to the specific requirements of the industrial control system.
  • Each specific production line can use its own TSN clock, and the TSN clocks used by different production lines are independent of each other.
  • the control information of these production lines can be based on different TSN clocks, and the 5G network transparently transmits these control information, but it is necessary to measure the transmission time of these control information through the 5G network.
  • the receiver of the industrial control information can take into account the transmission delay of the 5G network, so that the execution time of each message can be precisely managed.
  • the 5G network is taken as an example, and it is not intended as a limitation to the embodiment of the present application.
  • a 4G or future 6G communication system may be used to transmit data information and/or control information of an industrial control system.
  • FIG. 2 it is a clock synchronization system applied to industrial control by 5G network.
  • the middle part in Figure 2 belongs to the 5G network, and network elements such as UPF, gNB, and UE in the 5G network all maintain a common clock, that is, the 5G clock.
  • the 5G clocks of each 5G network element in Figure 2 come from the same master clock "5th generation grand master clock (5G GM)", and the 5G GM can be a global positioning system (global position system, GPS) module, It is not limited to maintain GPS time, but also other types of high-precision clocks.
  • both the NW-TT on the UPF side and the DS-TT on the UE side maintain a common TSN clock.
  • NW-TT is an interface module embedded in UPF, which can be regarded as UPF or NW-TT maintaining two clocks at the same time: 5G clock and TSN clock.
  • 5G clock and TSN clock The same is true on the UE side, which can be regarded as UE or DS-TT maintaining two clocks at the same time: 5G clock and TSN clock.
  • TSN1, TSN2. the number of TSN clocks maintained by UE and UPF
  • the number of industrial terminals maintained by the UE is usually related to the number of production lines.
  • NW-TT can add a timestamp to the data packet to indicate the moment when the data packet passes through NW-TT.
  • 5G time representation such as 15:32:45:438 milliseconds.
  • the DS-TT on the UE side reads the 5G clock maintained by itself. For example, at 15:32:45:458 milliseconds, it is considered that the delay of the data packet passing through the 5G system is 20 milliseconds.
  • the execution time of the data packet may also be included in the industrial control data, which is based on the TSN clock and is invisible to the 5G system.
  • the real-time performance is a requirement on the length of the transmission delay of the data packet, that is, it is required that the transmission delay of the data packet cannot be greater than a preset delay value, such as T-delay.
  • Determinism is a requirement for the jitter of the transmission delay of data packets, that is, it is required that the transmission delay of data must be equal to the preset delay value. In order to meet the deterministic requirements, it is necessary to increase the cache on the receiving side. If the receiving time is earlier than expected, it will be cached first and then delivered.
  • wireless networks need to use more wireless resources, more robust modulation and demodulation transmission, or design special scheduling methods to reduce transmission delay, such as uplink scheduling-free mode.
  • the wireless network can enable or disable the TSN function.
  • the wireless network enables the TSN function, it can be considered that the current network supports the TSN feature; otherwise, it is considered that the current network does not support the TSN feature.
  • the UE cannot perceive whether the current network supports the TSN feature, and it may happen that the UE frequently initiates a non-access stratum (non-access stratum, NAS) request carrying TSN parameters to a network that does not support the TSN feature.
  • NAS non-access stratum
  • Embodiment 1 of the present application provides a communication method.
  • a network element in a network device can notify a UE of whether the current network supports the TSN feature, so as to prevent the UE from frequently sending NAS requests carrying TSN parameters to a network that does not support the TSN feature.
  • the process of providing a communication method includes at least:
  • Step 301 UE sends a first message to a first network element.
  • the first network element may be a core network element in the current network, such as an AMF or an SMF.
  • the first network element may determine whether the current network supports the TSN feature. For example, if the current network can meet the real-time and deterministic requirements of industrial control data packets, it can be considered that the current network supports TSN features; otherwise, it is considered that the current network does not support TSN features.
  • the first network element may determine whether at least one of network elements such as UPF, SMF, or AF in the current network supports TSN features, etc.; if yes, it is considered that the current network supports TSN features; otherwise, it is considered that the current network does not support TSN characteristic.
  • the first network element may determine whether the current network has enabled the TSN function; if the current network has enabled the TSN function, it is considered that the current network supports the TSN feature; otherwise, it is considered that the current network does not support the TSN feature.
  • Step 302 the first network element sends a second message to the UE, the second message is a response message to the first message, and the second message carries indication information indicating whether the current network supports or does not support the TSN feature.
  • first indication information such as 1, may be carried in the second message.
  • second indication information such as 0, may be carried in the second message.
  • the first indication information is carried in the second message, and when the current network does not support the TSN feature, no indication information indicating the TSN feature is carried in the second message.
  • the UE may determine that the current network does not support the TSN feature if the second message does not carry the indication information whether to support the TSN feature, that is, the default network does not support the TSN feature. Only when the current network supports the TSN feature, the UE needs to be notified additionally.
  • the network may support the TSN feature by default, and the UE needs to be notified additionally only when the current network does not support the TSN feature. For example, if the current network supports the TSN feature, the second message does not carry the indication information of whether the TSN feature is supported. When the current network does not support the TSN feature, the UE needs to be notified additionally, and the second indication information and the like are carried in the second message.
  • the second message may carry a first information element, where the first information element carries indication information that the current network supports or does not support the TSN feature. For example, a flag bit is added in the first cell. When the flag bit has a first value, it may indicate that the current network supports the TSN feature, and when the flag bit has a second value, it may indicate that the current network does not support the TSN feature.
  • the first cell may be a fifth generation system cause (the 5G system, 5GS, cause) cell, or a newly added cell.
  • the second message carries a second information element, and the second information element may implicitly indicate that the current network supports or does not support the TSN feature and the like.
  • the second information element may be that continuous PDU sessions are not allowed (always-on PDU session not allowed), which means that the current network does not support the TSN feature.
  • the second information element may be allowed for continuous PDU sessions (always-on PDU session allowed), indicating that the current network supports TSN features and the like.
  • the UE may send a NAS request carrying TSN parameters to the first network element or other network elements in the current network; otherwise, the UE does not Then, send the NAS request carrying the TSN parameter to the first network element or other network elements in the current network. In this way, the UE is prevented from frequently sending NAS requests carrying TSN parameters to a network that does not support the TNS feature.
  • the UE may be notified whether the current network supports the TSN feature during the registration phase of the UE.
  • the first network element in the flow shown in FIG. 3 above is an AMF network element, the first message is a registration request, and the second message is a registration response.
  • a flow of a communication method is provided:
  • Step 401 UE sends a registration request to AMF.
  • the current network may be a 5G network
  • the UE may send a registration request to the AMF after successfully camping on the 5G network.
  • Step 402 The AMF sends a registration response to the UE.
  • the registration response may be a registration reception, representing the AMF to accept the registration of the UE.
  • the registration response may be a registration rejection, representing that the AMF rejects the registration of the UE.
  • a flag may be added in the registration response to indicate whether the network currently registered by the UE supports the TSN feature. For example, if the current network supports the TSN feature, the above added flag may be 1; otherwise, the above added flag is 0 and so on.
  • Step 403 UE sends registration complete to AMF.
  • Step 404 The UE determines whether the TSN parameter is carried in the PDU session request message according to whether the current network supports the TSN feature.
  • the TSN parameter may be carried in the above PDU session request, and the TSN parameter may include at least one of the following information elements: Support TPMIC , Port management information container, DS-TT Ethernet port media access control address (Ethernet port MAC address), UE-DS-TT residence time (residence time), etc.; otherwise, in the PDU session request TSN-related information elements are no longer carried.
  • the TSN parameter may indicate that the PDU session that the current UE requests to establish is a PDU session that supports the TSN feature.
  • step 403 and step 404 may be selectively performed. For example, if the registration response sent by the AMF is a registration rejection, the AMF may not send the registration complete or the like to the UE.
  • the UE may be notified whether the current network supports the TSN feature during the PDU session establishment phase of the UE.
  • the first message in the process shown in FIG. 3 above may be a PDU session establishment request
  • the second message may be a PDU session establishment response
  • the first network element is an SMF network element.
  • the process of providing a communication method at least includes:
  • Step 501 UE registers to 5G network.
  • Step 502 UE sends a PDU session establishment request to SMF.
  • the SMF when the SMF receives the PDU session establishment request, it can judge whether the current network supports the TSN feature; if it supports it, it can indicate that the current network supports the TSN feature in the PDU session establishment response; otherwise, it can indicate in the PDU session establishment response that the current network does not support the TSN feature. Support TSN features, etc.
  • Step 503 The SMF sends a PUD session establishment response to the UE.
  • the PDU session establishment response may be PDU session establishment acceptance or PDU session establishment rejection.
  • a flag bit can be added, which can indicate whether the current network supports the TSN feature; or, a new element can be added in the PDU session establishment response, and the information element Include the flag bit used to indicate whether the current network supports the TSN feature.
  • a certain information element in the PDU session establishment response may be used to implicitly indicate whether the current network supports the TSN feature. For example, if the PDU session establishment response includes Always-on PDU session not allowed, it implicitly indicates that the current network does not support the TSN feature. If the PDU session establishment response includes Always-on PDU session allowed, it implicitly indicates that the current network supports TSN features, etc.
  • step 501 can be selectively performed, for example, after the UE registers to the 5G network, it can send a PDU session establishment request multiple times to establish multiple PDU sessions. It is not necessary to register to the 5G network every time the UE sends a PDU session establishment request.
  • the network device notifies the UE whether the current network supports the TSN feature.
  • the first message in the flow shown in FIG. 3 above may be a PDU session modification request
  • the second message may be a PDU session modification response
  • the first network element may be an SMF network element.
  • the process of providing a communication method includes at least the following steps:
  • Step 601 UE registers to 5G network.
  • Step 602 UE sends a PDU session modification request to SMF.
  • Step 603 The SMF sends a PDU session modification response to the UE, and the PDU session modification response may be PDU session modification acceptance or PDU session modification rejection.
  • PDU Session Modification Accept means that the SMF agrees to modify the PDU Session
  • PDU Session Modification Reject means that the SMF refuses to modify the PDU Session.
  • the PDU session modification response may include a first information element, and a flag bit is newly added in the first information element, which is used to indicate whether the network device supports the TSN feature or not.
  • the PDU session modification response may include a second information element, and the second information element may implicitly indicate whether the current network supports TSN features or the like.
  • a PDU session is pre-established, and the PDU session does not support the TSN feature.
  • the UE wants to modify the PDU session to a PDU session that supports TSN features, the UE can send a PDU session modification request to the SMF.
  • the PDU session modification request can carry TSN-related parameters, for example, including at least one of the following network elements: TPMI supported indicator, port management information container, DS-TT Ethernet port MAC address, or UE-DS-TT residence timer, etc.
  • the SMF When the SMF receives the above-mentioned PDU session modification request, it can determine that the UE intends to modify a certain PDU session to a PDU session supporting the TSN feature after viewing the TSN-related parameters carried in the PDU session modification request. Then the SMF can judge whether the current network supports the TSN feature; if not, it can send a PDU session modification rejection to the UE, and the PDU session modification rejection carries indication information that the current network does not support the TSN feature. Of course, if it is supported, the SMF may send a PDU session modification acceptance to the UE, and the PDU session modification acceptance may carry indication information that the current network supports the TSN feature, and the like.
  • the above step 601 can be selectively performed.
  • the network device may notify the UE whether the current network device supports the TSN feature during the PDU session cancellation procedure.
  • the first message is a PDU session establishment request
  • the second message is a PDU session cancellation command
  • the first network element is an SMF.
  • the process of providing a communication method includes at least the following steps:
  • Step 701 The UE successfully registers to the 5G network.
  • Step 702 Establish a PDU session supporting the TSN feature in 5G.
  • the process of establishing a PDU session supporting the TSN feature includes: the UE sends a PDU session establishment request to the SMF, and the PDU session establishment request may include TSN parameters.
  • the SMF sends a PDU session establishment acceptance to the UE, agreeing to establish a PDU session supporting TSN features with the UE. It can be understood that in this process, the current network has enabled the TSN function. According to the PDU session establishment acceptance, a PDU session supporting the TSN feature is established between the UE and the network.
  • Step 703 The SMF determines that the current network needs to disable the TSN function.
  • Step 704 The SMF sends a PDU session cancel command to the UE, and the PDU session cancel command carries indication information that the current network does not support the TSN feature.
  • the PDU session cancel command may include a first information element, where the first information element includes indication information that the current network device does not support the TSN function.
  • the PDU session cancel command includes a second information element, where the second information element implicitly indicates that the current network does not support the TSN feature.
  • Step 705 UE sends PDU session cancel complete to SMF.
  • steps 701 to 703, and step 705, etc. may be selectively performed. For example, when the UE registers to the 5G network, multiple PDU sessions can be canceled. It is not necessary to perform the operation of registering to the 5G network every time a PDU session is canceled.
  • the embodiment of the present application also provides a communication method.
  • this communication method when the communication system accessed by the UE is switched, for example, when switching from the fourth-generation communication system to the fifth-generation communication system, the communication method in the original communication system can be modified.
  • the parameters of the established PDU session make the PDU session established in the original communication system applicable to the newly accessed communication system.
  • the process of providing a communication method at least includes:
  • Step 801 The UE accesses the first communication system, and establishes a first PDU session.
  • Step 802 UE switches from the first communication system to the second communication system
  • Step 803 The UE sends a PDU session modification request to the SMF network element in the second communication system, where the PDU session modification request is used to request modification of parameters of the first PDU session.
  • the first communication system is a 4G communication system
  • the second communication system is a 5G communication system.
  • the network equipment in the 4G communication system does not support the TSN feature, but the network equipment in the 5G communication system supports the TSN feature.
  • the first PDU session previously established by the UE in the 4G communication system does not support the TSN feature.
  • the UE may send a PDU session modification request to the SMF in the 5G communication system, so as to request to modify the above-mentioned pre-established first PDU session to support the TSN feature.
  • the above PDU session modification request may carry a TSN parameter.
  • the TSN parameter includes at least one of the following information elements: supporting TPMIC information element, TPMIC information element, DS-TT Ethernet port MAC address information element, and DS-TT dwell time information element.
  • supporting TPMIC information element TPMIC information element
  • TPMIC information element TPMIC information element
  • DS-TT Ethernet port MAC address information element DS-TT dwell time information element.
  • Step 804 The SMF sends a PDU session modification response to the UE.
  • the above steps 801, 802, and 804 can be performed selectively. For example, when the UE switches from the first communication system to the second communication system, the PDU session modification can be performed multiple times without performing the PDU session modification each time. , the switching process of the communication system is executed first.
  • the current PDU session modification request supports carrying the DS-TT Ethernet port MAC address information and the DS-TT dwell time information element.
  • the above two information elements can be carried in the PDU session modification request.
  • the PDU session modification request in this application may carry the following information elements:
  • the full name of the parameter "Presence" of each information element may be presence requirements of information elements (presence requirements of information elements).
  • the "existence" item parameter of the information element is M
  • the full name of the M is mandatory (Mandatory), indicating that the information element must be carried in the PDU session request mandatory.
  • the "existence" item parameter of the information element is O
  • the full name of O is optional (optional), indicating that the information element is optional, that is, the PDU session request may carry this parameter, or may not carry it This parameter is not limited.
  • the UE when the communication system accessed by the UE is switched, the UE can modify the parameters of the PDU session established in the original communication system through the PDU session modification request, so that the PDU session established in the original communication system is also applicable for new communication systems.
  • a specific flow of a communication method is provided, at least including:
  • Step 901 The UE successfully registers to the 4G network, and establishes a public data network (PDN) connection.
  • PDN public data network
  • Step 902 UE switches from 4G to 5G.
  • Step 903 The UE successfully registers to 5G, and the communication system accessed by the UE is switched from 4G to 5G.
  • This process can be called: the mobile registration procedure from evolved packet system (EPS) to 5GS (EPS to 5GS Mobility Registration procedure ).
  • EPS evolved packet system
  • Step 904 The UE sends a PDU session modification request to the SMF, and the PDU session modification request carries TSN parameters.
  • TSN parameters carried in the PDU session modification request refer to the description in FIG. 8 above.
  • Step 905 The SMF sends a PDU session modification response to the UE.
  • Step 906 UE sends PDU session modification complete to SMF.
  • steps 901 to 903, as well as steps 905 and 906 can be selectively performed.
  • the UE may not send modification completion to the network device when receiving the PDU session modification response.
  • the PDU session that does not support the TSN feature established in the original 4G network can be modified to a PDU session that supports the TSN feature.
  • the communication between the UE and the base station follows a certain protocol layer structure.
  • the protocol layer structure includes an application layer, an access stratum (access stratum, AS) and a NAS layer; where the application layer can be used to provide services to applications installed in the UE, for example, the UE can receive
  • the downlink data can be transmitted from the physical layer in the AS layer to the application layer, and then provided to the application program by the application layer; for another example, the application layer can obtain the data generated by the application program, and transmit the data to the physical layer of the AS layer in turn, sent to other devices.
  • the NAS layer can be used to forward user data, such as forwarding uplink data received by the application layer to the AS layer or forwarding downlink data received from the AS layer to the application layer.
  • the AS layer may include an SDAP layer, a PDCP layer, a MAC layer, a PHY layer, and the like.
  • the application layer may send a first command to the NAS layer, and the first command may be called an AT command.
  • AT commands may be used as an interface within the UE, eg, an interface between the application layer and a radio interface Layer 3 stack implemented on a different processor, etc.
  • the current AT command does not set the TPMIC information element, so that when the UE activates the PDU session, it cannot accurately determine whether the TPMIC needs to be configured for the current PDU session to be activated.
  • This application makes the following improvements: carrying TPMIC cells in the AT command.
  • the TPMIC information element may indicate whether TPMIC is supported. For example, a flag bit can be added in the TPMIC cell.
  • the flag bit is 1, it means that TPMIC is supported; if the flag bit is 0, it means that TPMIC is not supported.
  • the NAS layer receives an AT command, if the TPMIC information element in the AT command indicates that TPMIC is supported, TPMIC is configured in the subsequently activated PDU session; otherwise, TPMIC is not configured in the subsequently activated PDU session.
  • the format of the TPMIC cell includes: integer type; indicates whether to support the 5GSM capability of the transmission port management information container TPMIC (indicates the 5GSM capability to support transfer of port management information containers), for details, see 3GPP TS 23.501[165 ] and 3GPP TS 24.501 [161].
  • the TPMIC information element in the AT command indicates that TPMIC is supported, it means that all subsequent activated PDU sessions need to be configured with TPMIC; otherwise, subsequent activated PDU sessions do not need to be configured with TPMIC. It should be indicated that when TPMIC is configured for a PDU session, it means that the PDU session is a PDU session that supports the TSN feature.
  • the terminal and the network element include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of each example described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 11 and FIG. 12 are schematic diagrams of possible communication devices provided by the embodiments of the present application. These communication devices can be used to realize the functions of the terminal or the network element in the foregoing method embodiments, and thus also realize the beneficial effects of the foregoing method embodiments.
  • the communication device may be a terminal or a network element, or a module (such as a chip) applied to a terminal or a network element.
  • a communication device 1100 includes a processing module 1110 and a transceiver module 1120 .
  • the communication device 1100 is configured to implement functions of a terminal or a base station in the method examples shown in FIG. 3 and FIG. 8 or Embodiment 3 above.
  • the transceiver module 1120 is used to send the first message to the first network element, and receive The second message of etc.
  • the processing module 1110 is configured to generate the first message, process the second message, and so on.
  • the transceiver module 1120 is used to receive the first message from the terminal, send the second message to the terminal, and so on.
  • the processing module 1110 is configured to process the first message, generate a second message, and so on.
  • processing module 1110 and the transceiver module 1120 can be directly obtained by referring to the relevant descriptions in the method embodiment shown in FIG. 3 , and will not be repeated here.
  • the processing module 1110 is used to access the first communication system, establish a first PDU session, and The first communication system is switched to the second communication system.
  • the transceiver module 1120 is configured to send a PDU modification request to the SMF network element in the second communication system.
  • the transceiver module 1120 is used to receive a PDU session modification request from the terminal; the processing module 1110 is used to Modify the request to modify the parameters of the first PDU session.
  • processing module 1110 and the transceiver module 1120 can be directly obtained by referring to related descriptions in the method embodiment shown in FIG. 8 , and details are not repeated here.
  • the above communication device 1110 is used to implement the method in the above third embodiment, for example, the processing module 1110 is used to control the non-access layer to receive the first command from the application layer, the first command includes TPMIC information element; when the TPMIC information element indicates that TPMIC is supported, configure TPMIC for the activated PDU session; or, when the TPMIC information element does not support TPMIC, do not configure TPMIC for the activated PDU session, etc.
  • processing module 1110 can be directly obtained by referring to the relevant description in the third embodiment above, and details are not repeated here.
  • a communication device 1200 includes a processor 1210 and an interface circuit 1220 .
  • the processor 1210 and the interface circuit 1220 are coupled to each other.
  • the interface circuit 1220 may be a transceiver or an input/output interface.
  • the communication device 1200 may further include a memory 1230 for storing instructions executed by the processor 1210 or storing input data required by the processor 1210 to execute the instructions or storing data generated after the processor 1210 executes the instructions.
  • the processor 1210 is used to implement the functions of the processing module 1110
  • the interface circuit 1220 is used to implement the functions of the transceiver module 1120 .
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is sent to the terminal by network elements; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas), This information is sent by the terminal to the network element.
  • the network element module implements the functions of the network element in the above method embodiments.
  • the network element module receives information from other modules in the network element (such as radio frequency modules or antennas), and the information is sent to the network element by the terminal; or, the network element module sends information to other modules in the base station (such as radio frequency modules or antennas) Send information, which is sent by the network element to the terminal.
  • processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and may also be other general purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in the base station or the terminal.
  • the processor and the storage medium can also exist in the base station or terminal as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; and it may also be a semiconductor medium, such as a solid state disk.
  • the computer readable storage medium may be a volatile or a nonvolatile storage medium, or may include both volatile and nonvolatile types of storage media.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship; in the formulas of this application, the character “/” indicates that the contextual objects are a “division” Relationship.
  • “Including at least one of A, B and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,该方法包括:终端向第一网元发送第一消息;终端接收来自第一网元的第二消息,第二消息为第一消息的响应消息,该第二消息中携带有当前网络是否支持TSN特性的指示信息。采用该方法,网络设备可以将当前网络是否支持TSN特性通知终端,避免终端向不支持TSN特性的网络频繁发送携带TSN参数的NAS消息。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2021年8月31日提交中华人民共和国知识产权局、申请号为202111009963.4、发明名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
时间敏感网络(time sensitive networking,TSN)是由IEEE 802.1工作小组中的TSN小组开发的一套数据链路层协议规范,用于构建更可靠的、低延迟、低抖动的以太网。第三代合作伙伴计划(3rd generation partnership project,3GPP)协议中规定,若终端支持TSN特性,则终端就可以发起相关流程。例如,PDU会话建立流程等,并携带TSN特性相关的参数。但当前协议未规定,在网络不支持TSN特性时,如何对接收的携带TSN特性的消息进行处理。如何避免不支持TSN特性的网络,接收到UE发送的携带TSN参数的消息,是本申请实施例待解决的技术问题。
发明内容
本申请实施例提供一种通信方法及装置,以通知终端当前网络设备是否支持TSN特性,避免不支持TSN特性的网络,接收到UE发送的携带TSN参数的消息。
第一方面,提供一种通信方法,包括:终端向第一网元发送第一消息;终端接收来自所述第一网元的第二消息,所述第二消息为所述第一消息的响应消息,所述第二消息中携带有当前网络支持或不支持时间敏感网络TSN特性的指示信息。
通过上述方法,网络设备可以将当前自己是否支持TSN特性通知终端,可以避免终端频繁的向不支持TSN特性的网络发送携带TSN特性的NAS消息。
在一种设计中,所述第一网元为接入和移动管理功能AMF网元,所述第一消息为注册请求,所述第二消息为注册响应。
通过上述方法,可以在终端的注册阶段,将当前网络是否支持TSN特性通知终端。
在一种设计中,所述注册响应为注册接受,所述方法还包括:终端向会话管理功能SMF网元发送协议数据单元PDU会话建立请求;若所述注册接受中携带有当前网络支持TSN特性的指示信息,则所述PDU会话建立请求中携带有TSN参数;否则,所述PDU会话建立请求中不携带所述TSN参数。
在一种设计中,所述第一网元为SMF网元,所述第一消息为PDU会话建立请求,所述第二消息为PDU会话建立响应。
通过上述方法,可以在PDU会话建立阶段,将当前网络是否支持TSN特性通知终端。
在一种设计中,所述第一网元为SMF网元,所述第一消息为PDU会话修改请求,所 述第二消息为PDU会话修改响应。
通过上述方法,可以在PDU会话修改阶段,将当前网络是否支持TSN特性通知终端。
在一种设计中,所述第一网元为SMF网元,所述第一消息为PDU会话建立请求;
所述方法还包括:终端接收来自SMF网元的PDU会话建立接受;终端根据所述PDU会话建立接受,与网络设备间建立支持TSN特性的PDU会话;所述第二消息为PDU会话取消命令,所述PDU会话取消命令为所述网络设备需要关闭TSN功能时发送的,所述PDU会话取消命令用于取消所建立的所述支持TSN特性的PDU会话,所述PDU会话取消命令中携带的指示信息为当前网络不支持TSN特性的指示信息。
通过上述方法,可以在网络支持TSN特性时,与终端间建立支持TSN特性的PDU会话;而在当前网络关闭TSN功能,不再支持TSN特性时,可以取消已建立的支特TSN特性的PDU会话。
在一种设计中,所述第二消息中包括第一信元,所述第一信元中携带有指示当前网络支持或不支持所述TSN特性的指示信息;或者,所述第二消息中包括第二信元,所述第二信元用于指示当前网络支持或不支持所述TSN特性。
通过设计中,可以在第二消息中某个信元中,例如上述第一网元,中携带是否支持TSN特性的指示信息。或者,可以直接利用第二消息的某个信元,例如第二信元隐示指示当前网络是否支持TSN特性等,节省信令开销。
第二方面,提供一种通信方法,该第二方面为第一方面对应的第一网元侧,有益效果可参见第一方面,包括:第一网元接收来自终端的第一消息;第一网元向所述终端发送第二消息,所述第二消息为所述第一消息的响应消息,所述第二消息中携带有当前网络支持或不支持时间敏感网络TSN特性的指示信息。
在一种设计中,第一网元为接入和移动性管理功能AMF网元,所述第一消息为注册请求,所述第二消息为注册响应。
在一种设计中,第一网元为会话管理功能SMF网元,所述第一消息为协议数据单元PDU会话建立请求,所述第二消息为PDU会话建立响应。
在一种设计中,第一网元为SMF网元,所述第一消息为PDU会话修改请求,所述第二消息为PDU会话修改响应。
在一种设计中,第一网元为SMF网元,所述第一消息为PDU会话建立请求;所述方法还包括:第一网元向所述终端发送PDU会话建立接受;第一网元与终端间建立支持TSN特性的PDU会话;当需要关闭当前网络的TSN功能时,第一网元向所述终端发送的第二消息为PDU会话取消命令,所述PDU会话取消命令用于取消所建立的所述支持TSN特性的PDU会话,所述PDU会话取消命令中携带的指示信息为指示当前网络不支持TSN特性的指示信息。
在一种设计中,所述第二消息中包括第一信元,所述第一信元携带有当前网络支持或不支持所述TSN特性的指示信息;或者,所述第二消息中包括第二信元,所述第二信元用于指示当前网络支持或不支持TSN特性。
第三方面,提供一种通信方法,包括:终端接入第一通信系统,建立第一协议数据单元PDU会话;终端由所述第一通信系统切换到第二通信系统;终端向所述第二通信系统中的会话管理功能SMF网元发送PDU会话修改请求,所述PDU会话修改请求用于请求修改所述第一PDU会话的参数。
通过上述方法,当终端接入的通信系统发生切换,比如,由第四代通信系统切换到第五代通信系统时,可以修改在原通信系统中建立的PDU会话的参数,以使得在原通信系统中建立的PDU会话,可适用于新接入的通信系统。
在一种设计中,所述第一通信系统为第四代通信系统,所述第二通信系统为第五代通信系统,所述PDU会话修改请求中包括以下信元中的至少一项:支持传输端口管理信息容器TPMIC信元、端口管理信息容器信元、时间敏感网络TSN转换器DS-TT以太网端口媒体接入控制MAC地址信元、或DS-TT驻留时间信元。
第四方面,提供一种通信方法,该第四方面为第三方面对应的SMF网元侧,有益效果可参见前述第三方面,包括:SMF网元接收来自终端的协议数据单元PDU会话修改请求,所述PDU会话修改请求用于请求修改第一PDU会话的参数,所述PDU会话修改请求是所述终端由第一通信系统切换到第二通信系统时发送的,且所述第一PDU会话是在所述第一通信系统中建立的;SMF网元根据所述PDU会话修改请求,修改所述第一PDU会话的参数。
在一种设计中,所述第一通信系统为第四代通信系统,所述第二通信系统为第五代通信系统,所述PDU会话修改请求中包括以下信元中的至少一项:支持传输端口管理信息容器TPMIC信元、端口管理信息容量信元、时间敏感网络TSN转换器DS-TT以太网端口媒体接入控制MAC地址信元、或DS-TT驻留时间信元。
第五方面,提供一种通信方法,包括:终端的非接入层接收来自所述终端的应用层的第一命令,所述第一命令中包括传输端口管理信息容器TPMIC信元;
当所述TPMIC信元中指示支持TPMIC时,所述终端为激活的协议数据单元PDU会话配置TPMIC;或者,当所述TPMIC信元中指示不支持TPMIC时,所述终端为激活的PDU会话不配置TPMIC。
由于当前的方法中,第一命令并无设置TPMIC,导致终端激活PDU会话时,无法准确的确定为当前激活的PDU会话是否需要配置TMPIC。而在该设计中,通过在第一命令中携带TPMIC配置,可以指示是否为激活的PDU会话配置TPMIC。
第六方面,提供一种通信装置,包括用于执行上述第一方面至第五方面中任一方面所述方法的模块或单元,该模块或单元可以是硬件电路、也可以是软件,或者硬件电路与软件结合。
第七方面,提供一种通信装置,该装置包括:处理器与存储器。所述存储器用于存储计算机程序或指令。处理器与存储器耦合,当处理器执行计算机程序或指令时,使得该装置执行上述第一方面至第五方面中任一方面的方法。
可选的,该装置还可以包括通信接口,该通信接口用于该装置和其它设备进行通信。示例的,通信接口可以是收发器、电路、总线、模块、管脚或其它类型的通信接口等。
第八方面,提供一种存储有指令的计算机可读存储介质,当该指令在通信装置上运行时,使得该通信装置执行第一方面至第五方面中任一方面的方法。
第九方面,提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现第一方面至第五方面中任一方面的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十方面,提供一种计算机程序产品,包括指令,当其在通信装置上运行时,使得通信装置执行第一方面至第五方面中任一方面所述的方法。
附图说明
图1为本申请实施例提供的通信系统的示意图;
图2为本申请实施例提供的时钟示意图;
图3、图4、图5、图6和图7为本申请实施例一提供的通信方法的流程图;
图8和图9为本申请实施例二提供的通信方法的流程图;
图10为本申请实施例三提供的协议栈的示意图;
图11和图12为本申请实施例提供的装置的示意图。
具体实施方式
图1是本申请实施例应用的通信系统的架构示意图。如图1所示,该通信系统包括:时间敏感网络(time-sensitive network,TSN)系统、通信系统和数据网络(data network,DN)。下面分别对各个系统进行介绍:
一、通信系统
其中,上述通信系统包括接入网设备和核心网设备。接入网设备还可称为无线接入网络(radio access network,RAN)设备。不同接入网设备之间可通过Xn接口连接,接入网设备与核心网设备之间可通过NG接口连接。
接入网设备是一种将终端接入到无线网络的设备,可以为终端提供无线资源管理、服务质量管理、数据加密和压缩等功能。接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation nodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。这里的CU完成基站的无线资源控制(radio resource control,RLC)协议和分组数据汇聚层协议(packet data convergence protocol,PDCP)的功能,还可以完成业务数据适配协议(service data adaptation protocol,SDAP)的功能;DU完成基站的无线链路控制(radio link control,RLC)层和介质访问控制(medium access control,MAC)层的功能,还可以完成部分物理(physical,PHY)层或全部物理层的功能,有关上述各个协议层的具体描述,可以参考第三代合作伙伴计划(3rd generation partnership project,3GPP)的相关技术规范。接入网设备可以是宏基站,也可以是微基站或室内站,还可以是中继节点或施主节点等。本申请的实施例对接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为接入网设备的例子进行描述。
核心网设备主要用于对终端进行管理并提供与外网通信的网关。核心网设备,可以包括以下中的一个或多个网元:
用户面功能(user plane function,UPF)网元:主要负责用户数据的转发和接收。在下行传输中,UPF网元可以从DN接收用户数据,通过接入网设备传输给终端;在上行传输中,UPF网元可以通过接入网设备从终端接收用户数据,向DN转发该用户数据。可选的,UPF网元中为终端提供服务的传输资源和调度功能可以由会话管理功能(session management function,SMF)网元管理控制。
接入和移动管理功能(access and mobility management function,AMF)网元:主要负责移动网络中的移动性管理,如用户位置更新、用户注册网络、用户切换等。
SMF网元:主要负责移动网络中的会话管理,如会话建立、修改、释放等。具体功能如为用户分配IP地址、选择提供报文转发功能的UPF网元等。
策略控制功能(policy control function,PCF)网元:主要支持提供统一的策略框架来控制网络行为,提供策略规则给控制层网络功能,同时负责获取与策略决策相关的用户签约信息。
TSN应用功能(application function,AF)网元:主要支持与3GPP核心网交互来提供服务,例如影响数据路由决策,策略控制功能或者向网络侧提供第三方的一些服务等。
统一数据管理(unified data management,UDM)网元:主要用于生成认证信任状,用户标识处理(如存储和管理用户永久身份等),接入授权控制和签约数据管理等。
网络开放功能(network exposure function,NEF)网元:用于提供网络能力开放相关的框架、鉴权和接口,在5G系统网络功能和其他网络功能之间传递信息等。
本申请的实施例对核心网网元所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以AMF、SMF等作为核心网网元的例子进行描述。
可选的,图1所示的通信系统中,还可包括:终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定,下文以UE作为终端的例子进行描述。
接入网设备和终端可以是固定位置的,也可以是可移动的。接入网设备和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上等。本申请的实施例对接入网设备和终端的应用场景不做限定。
二、TSN系统
针对3GPP网络在工业控制系统中的应用,5G的R16版本中引入了工业物联网(industry internet of things,IIoT)特性。通过5G通信系统,将工业控制系统中的各种功能节点连接起来,包括发出控制命令的工业控制器、接收控制命令并执行的工业终端,例如,操作臂等、配置控制器和操作臂等节点的配置单元等。
在一种示例中,DN侧配置有工业控制器,终端侧配置有工业终端。工业控制器通过图1所示的UPF网元和接入网等,向工业终端发送工业控制命令。该工业终端,例如机械臂等,可以根据该工业控制命令,执行对应的操作。相对于,原来工业控制器与工业终端采用有线连接的方式,5G通信系统提供灵活的路由方式,各类工业控制器和工业终端可以快速地组织成不同的生产线,从而达到灵活部署的目的,适应小批量、多样化的生产需求。
三、DN
DN可以是为用户提供数据业务服务的服务网络。例如,DN可以是IP多媒体业务(IP multi-media service)网络或互联网等。其中,终端可以建立从终端到DN的协议数据单元(protocol data unit,PDU)会话,来访问DN。
参见图1,图1中的中间部分粗线方框内的部分属于通信系统,图1中间部分粗线方框外的部分属于工业控制系统,通信系统通过两个接口与工业控制系统相连。上述两个接口可分别为终端侧的终端侧TSN转换器(destination side TSN translator,DS-TT)和UPF侧的网络侧TSN转换器(network-side TSN translator,NW-TT)。这两个接口合作,可计算IIOT的控制信息经过5G通信系统所经历的传输时延,即IIOT的控制信息经过这两个接口的时延。实际部署时,UPF和UE都维护同一个时钟,称作5G时钟。同一时刻,UPF侧的5G时钟与UE侧的5G时钟同步。所以,当一个IIOT控制信息经过UPF侧的NW-TT时,UPF记录这一时刻对应的时间。该IIOT控制信息经过5G网络,到达UE侧的DS-TT时,UE记录这一时刻对应的时间。根据UPF和UE记录的时间信息,即可计算该IIOT控制信息经过5G网络的传输时延。
其中,在工业控制系统中,各个设备协同工作,需要基于共同的时钟进行控制,即TSN时钟。TSN时钟的精度与工业控制系统的具体需求有关,每一条具体的生产线可以使用自己的TSN时钟,不同生产线所使用的TSN时钟相互独立。以图1为例,如果不同生产线都通过5G网络传输控制信息,这些生产线的控制信息可以基于不同的TSN时钟,5G网络对这些控制信息透明传输,但是需要测量这些控制信息经过5G网络的传输时延,以便工业控制信息的接收方将5G网络的传输时延计算在内,从而可以精确管理每条消息的执行时间。上述描述,以5G网络为例进行描述,并不作为对本申请实施例的限定。比如,在本申请实施例中,可利用4G或未来的6G通信系统,传输工业控制系统的数据信息和/或控制信息等。
如图2所示,为5G网络应用于工业控制的时钟同步系统。图2中的中间部分属于5G网络,5G网络中的UPF、gNB、UE等网元都维护着共同的时钟,即5G时钟。图2中的各个5G网元的5G时钟都来自同一个主时钟“5G主时钟(5th generation grand master clock,5G GM)”,5G GM可以是一个全球定位系统(global position system,GPS)模块,维护GPS时间,也是其它类型的高精度时钟,不作限定。除此之外,UPF侧的NW-TT和UE侧的DS-TT都维护着共同的TSN时钟。由于UPF和NW-TT属于同一个物理实体,NW-TT是嵌入UPF的一个接口模块,可以看作UPF或NW-TT同时维护着两个时钟:5G时钟和TSN时钟。UE侧也类似,可以看作UE或DS-TT同时维护两个时钟:5G时钟和TSN时钟。如果5G系统同时传输多条生产线的控制信息,每条生产线使用各自的TSN时钟:TSN1、TSN2……。则UPF和UE同时维护5G时钟和多个TSN时钟。可选的,UE和UPF所维护的TSN时钟的数量通常不同。进一步,UE所维护工业终端的数量通常和生产线的数量相关。
基于上述图2的时钟同步系统,工业控制数据包通过NW-TT进入5G系统时,NW-TT可为该数据包增加一个时间戳,表示该数据包经过NW-TT的时刻,该时间戳用5G时间表示,如15时32分45秒438毫秒。当该数据包经过5G系统到达UE时,UE侧的DS-TT读取自己维护的5G时钟,如15时32分45秒458毫秒,则认为该数据包经过5G系统的时延为20毫秒。通常,工业控制数据中可能还包含了该数据包的执行时间,该执行时间基于TSN时钟,对5G系统不可见。
上述图1和图2所描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的 技术问题,同样适用。
在TSN系统中,由于工业控制系统中涉及的数据包,除日志数据包外,大部分控制数据包要求实时性和确定性。实时性是对数据包的传输时延的长短的要求,即要求数据包的传输时延不能大于预设时延值,例如T-delay。确定性是对数据包的传输时延的抖动性的要求,即要求数据的传输时延必须等于预设时延值。为了达到确定性要求,需要在接收方增加缓存,如果接收时间比预期时间更早,则先缓存再递交。为达到实时性要求,无线网络需要使用更多的无线资源、更鲁棒的调制解调方式传输,或者设计特殊的调度方式降低传输时延,如上行免调度模式等。由于TSN系统,对于无线网络的要求更高,所以可能存在某些网络不支持TSN特性。或者,无线网络可以开启或关闭TSN功能。当然若无线网络开启TSN功能,可认为当前网络是支持TSN特性的;否则,认为当前网络是不支持TSN特性的。但UE是无法感知当前网络是否支持TSN特性的,可能会出现UE频繁向不支持TSN特性的网络发起携带TSN参数的非接入层(non-access stratum,NAS)请求。
实施例一
本申请实施例一提供一种通信方法,网络设备中的网元可以将当前网络是否支持TSN特性通知UE,以避免UE频繁向不支持TSN特性的网络发送携带TSN参数的NAS请求。如图3所示,提供一种通信方法的流程,至少包括:
步骤301:UE向第一网元发送第一消息。
其中,第一网元可以是当前网络中的核心网网元,例如AMF或SMF等。第一网元在接收到第一消息时,可判断当前网络是否支持TSN特性。例如,若当前网络能够满足工业控制数据包的实时性和确定性等要求,可以认为当前网络支持TSN特性;否则,认为当前网络不支持TSN特性等。或者,第一网元可判断当前网络中的UPF、SMF或AF等网元中的至少一个,是否支持TSN特性等;若支持,则认为当前网络支持TSN特性;否则,认为当前网络不支持TSN特性。例如,UPF网元侧部署有NW-TT接口,则认为UPF网元支持TSN特性;否则认为UPF网元不支持TSN特性等。或者,第一网元可判断当前网络是否开启TSN功能;若当前网络开启了TSN功能,则认为当前网络是支持TSN特性的;否则认为当前网络是不支持TSN特性的。
步骤302:第一网元向UE发送第二消息,该第二消息为第一消息的响应消息,该第二消息中携带有当前网络支持或不支持TSN特性的指示信息。
在一种设计中,若当前网络支持TSN特性,可以在第二消息中携带第一指示信息,例如1。若当前网络不支持TSN特性,可以在第二消息中携带第二指示信息,例如0。或者,在当前网络支持TSN特性时,则在第二消息中携带第一指示信息,而在当前网络不支持TSN特性时,则在第二消息中不再携带任何指示TSN特性的指示信息。UE在接收到第二消息,若该第二消息中没有携带是否支持TSN特性的指示信息,则可确定当前网络不支持TSN特性,即默认网络是不支持TSN特性的。只有在当前网络支持TSN特性时,才需要额外通知UE。或者,可以默认网络是支持TSN特性的,只有在当前网络不支持TSN特性时,才需要额外通知UE。例如,若当前网络支持TSN特性,则在第二消息中不再携带是否支持TSN特性的指示信息。在当前网络不支持TSN特性时,需要额外的通知UE,在第二消息中携带第二指示信息等。
或者,第二消息中可以携带第一信元,该第一信元中携带当前网络支持或不支持TSN 特性的指示信息。例如,在第一信元中新增标志位,该标志位为第一值时,可表示当前网络支持TSN特性,而该标志位为第二值时,可表示当前网络不支持TSN特性。该第一信元可以为第五代系统原因(the 5G system,5GS,cause)信元,或者新增的信元等。或者,第二消息中携带第二信元,该第二信元可以隐示指示当前网络支持或不支持TSN特性等。例如,第二信元可以为连续的PDU会话不被允许(always-on PDU session not allowed),则表示当前网络不支持TSN特性。或者,第二信元可以为连续的PDU会话被允许(always-on PDU session allowed),则表示当前网络支持TSN特性等。
可选的,当UE接收到第二消息时,若确定当前网络支持TSN特性,则UE可以向当前网络中的第一网元或其它网元,发送携带TSN参数的NAS请求;否则,UE不再向当前网络中的第一网元或其它网元,发送携带TSN参数的NAS请求。从而避免UE频繁向不支持TNS特性的网络发送携带TSN参数的NAS请求。
示例一
在该示例一中,可以在UE的注册阶段,将当前网络是否支持TSN特性通知UE。上述图3所示流程中的第一网元为AMF网元,第一消息为注册请求,第二消息为注册响应。如图4所示,提供一种通信方法的流程:
步骤401:UE向AMF发送注册请求。
在一种设计中,当前网络可以为5G网络,UE可以在成功驻留到5G网络后,向AMF发送注册请求。
步骤402:AMF向UE发送注册响应,该注册响应可以为注册接收,代表AMF接受UE的注册。或者,该注册响应可以为注册拒绝,代表AMF拒绝UE的注册。
示例的,该注册响应中可以新增标志,用于指示UE当前注册的网络是否支持TSN特性。例如,若当前网络支持TSN特性,上述新增标志可以为1;否则,上述新增标志为0等。
步骤403:UE向AMF发送注册完成。
步骤404:UE根据当前网络是否支持TSN特性,确定PDU会话请求消息中是否携带TSN参数。
例如,若UE当前注册的网络支持TSN特性,且当前PDU会话被配置为支持TSN网络,则可以在上述PDU会话请求中携带TSN参数,该TSN参数中可以包括以下至少一项信元:支持TPMIC、端口管理信息容器(Port management information container)、DS-TT以太网端口媒体接入控制地址(Ethernet port MAC address)、UE-DS-TT驻留时间(residence time)等;否则在PDU会话请求中不再携带TSN相关的信元。应当指出,若在上述PDU会话请求消息中携带TSN参数,可表示当前UE请求建立的PDU会话是支持TSN特性的PDU会话。
上述步骤403和步骤404可以选择性执行。例如,若AMF发送的注册响应为注册拒绝,则AMF可以不向UE发送注册完成等。
示例二
在该示例二中,可以在UE的PDU会话建立阶段,将当前网络是否支持TSN特性通知UE。上述图3所示流程中的第一消息可以为PDU会话建立请求,第二消息可以为PDU 会话建立响应,第一网元为SMF网元。如图5所示,提供一种通信方法的流程,至少包括:
步骤501:UE注册到5G网络。
步骤502:UE向SMF发送PDU会话建立请求。
其中,SMF在接收到PDU会话建立请求时,可判断当前网络是否支持TSN特性;如果支持,可以在PDU会话建立响应中指示当前网络支持TSN特性;否则,在PDU会话建立响应中指示当前网络不支持TSN特性等。
步骤503:SMF向UE发送PUD会话建立响应,该PDU会话建立响应可以为PDU会话建立接受,或者PDU会话建立拒绝等。
例如,PDU会话建立响应中的5GSM cause信元中,可以新增一个标志位,该标志位可指示当前网络是否支持TSN特性;或者,在PDU会话建立响应中新增一个新元,该信元中包括用于指示当前网络是否支持TSN特性的标志位。或者,可以用PDU会话建立响应中的某个信元,隐示指示当前网络是否支持TSN特性。例如,若PDU会话建立响应中包括Always-on PDU session not allowed,则隐示指示当前网络不支持TSN特性。若PDU会话建立响应中包括Always-on PDU session allowed,则隐示指示当前网络支持TSN特性等。
应当指出,上述步骤501可以选择性执行,例如,UE注册到5G网络后,可以多次发送PDU会话建立请求,建立多个PDU会话。而不必每次UE发送PDU会话建立请求时,均需先注册到5G网络。
示例三
在该示例三中,可以在PDU会话修改流程中,网络设备通知UE当前网络是否支持TSN特性。上述图3所示的流程中的第一消息可以为PDU会话修改请求,第二消息可以为PDU会话修改响应,第一网元可以为SMF网元。如图6所示,提供一种通信方法的流程,至少包括以下步骤:
步骤601:UE注册到5G网络。
步骤602:UE向SMF发送PDU会话修改请求。
步骤603:SMF向UE发送PDU会话修改响应,该PDU会话修改响应可以为PDU会话修改接受,或PDU会话修改拒绝等。PDU会话修改接受代表SMF同意修改PDU会话,PDU会话修改拒绝代表SMF拒绝修改PDU会话。
与上述示例二相同,该PDU会话修改响应中可包括第一信元,该第一信元中新增一个标志位,用于指示网络设备是否支持TSN特性等。或者,该PDU会话修改响应中可包括第二信元,该第二信元可隐示指示当前网络是否支持TSN特性等。
在一种设计中,预先建立一个PDU会话,该PDU会话是不支持TSN特性的。之后,UE欲将该PDU会话修改为支持TSN特性的PDU会话,UE可以向SMF发送PDU会话修改请求,该PDU会话修改请求中可携带有TSN相关的参数,例如包括以下至少一项网元:TPMI supported indicator,port management information container、DS-TT Ethernet port MAC address、或UE-DS-TT residence timer等。SMF接收到上述PDU会话修改请求时,在查看到该PDU会话修改请求中携带的TSN相关的参数时,可确定UE欲将某一个PDU会话修改为支持TSN特性的PDU会话。则SMF可判断当前网络是否支持TSN特性;若 不支持,则可以向UE发送PDU会话修改拒绝,该PDU会话修改拒绝中携带有当前网络不支持TSN特性的指示信息。当然,若支持,则SMF可以向UE发送PDU会话修改接受,该PDU会话修改接受中可携带有当前网络支持TSN特性的指示信息等。
与上述示例二中的理由相似,上述步骤601可以选择性执行。
示例四
在该示例四中,网络设备可以在PDU会话取消流程中,通知UE当前网络设备是否支持TSN特性。在该示例中,第一消息为PDU会话建立请求,第二消息为PDU会话取消命令,第一网元为SMF。如图7所示,提供一种通信方法的流程,至少包括以下步骤:
步骤701:UE成功注册到5G网络。
步骤702:在5G中建立支持TSN特性的PDU会话。
该建立支持TSN特性的PDU会话的过程,包括:UE向SMF发送PDU会话建立请求,该PDU会话建立请求中可包括TSN参数。SMF向UE发送PDU会话建立接受,同意与UE间建立支持TSN特性的PDU会话。可以理解的是,在该过程中,当前网络是开启TSN功能的。根据所述PDU会话建立接受,UE与网络间建立支持TSN特性的PDU会话。
步骤703:SMF确定当前网络需要关闭TSN功能。
步骤704:SMF向UE发送PDU会话取消命令,该PDU会话取消命令中携带有当前网络不支持TSN特性的指示信息。
与上述示例二或示例三相同,该PDU会话取消命令中可以包括第一信元,该第一信元中包括当前网络设备不支持TSN功能的指示信息。或者,该PDU会话取消命令中包括第二信元,该第二信元隐示指示当前网络不支持TSN特性。
步骤705:UE向SMF发送PDU会话取消完成。
上述步骤701至步骤703,以及步骤705等,可以选择性执行。比如,在UE注册到5G网时,可以取消多个PDU会话,需不必每次取消PDU会话,都需要先执行注册到5G网络的操作。
实施例二
本申请实施例还提供一种通信方法,在该通信方法中,当UE接入的通信系统发生切换,比如,由第四代通信系统切换到第五代通信系统时,可以修改在原通信系统中建立的PDU会话的参数,以使得在原通信系统中建立的PDU会话,可适用于新接入的通信系统。如图8所示,提供一种通信方法的流程,至少包括:
步骤801:UE接入第一通信系统,建立第一PDU会话。
步骤802:UE由所述第一通信系统切换到第二通信系统;
步骤803:UE向所述第二通信系统中的SMF网元发送PDU会话修改请求,该PDU会话修改请求用于请求修改所述第一PDU会话的参数。
在一种设计中,所述第一通信系统为4G通信系统,所述第二通信系统为5G通信系统。4G通信系统中的网络设备不支持TSN特性,而5G通信系统的网络设备支持TSN特性。UE预先在4G通信系统中建立的第一PDU会话是不支持TSN特性的。当UE切换到5G通信系统时,可以向5G通信系统中的SMF发送PDU会话修改请求,以请求将上述预建立的第一PDU会话修改为支持TSN特性的。示例的,上述PDU会话修改请求中可携带有 TSN参数。例如,该TSN参数中包括以下至少一项信元:支持TPMIC信元、TPMIC信元、DS-TT以太网端口MAC地址信元、DS-TT驻留时间信元。应当指出,上述TPMIC信元与TPMIC信元是两个不同的信元,支持TPMIC信元是用于指示支持TPMIC的,因此才需要配置TPMIC信元。
步骤804:SMF向UE发送PDU会话修改响应。
上述步骤801、步骤802和步骤804等都是可以选择性执行,比如,在UE由第一通信系统切换到第二通信系统时,可以多次执行PDU会话修改,而无需每次执行PDU会话修改时,均先执行通信系统的切换过程。
应当指出,在本申请中,对PDU会话修改请求中可以携带的信元做了改进。比如,在目前PDU会话修改请求中是支持携带DS-TT以太网端口MAC地址信、和DS-TT驻留时间信元的。而在本申请中,PDU会话修改请求中是可以携带上述两个信元的。示例的,如表1所示,本申请中的PDU会话修改请求中可以携带以下信元:
表1 PDU会话修改请求
Figure PCTCN2022086418-appb-000001
Figure PCTCN2022086418-appb-000002
应当指出的是,在上述表1中,描述PDU会话修改请求中可以携带的信元,以及每个信元的各项参数。需要说明的是,上述表1中,每项信元的参数“存在(Presence)”的全称可以为信元的存在要求(presence requirements of information elements)。比如,对于某一个信元,该信元的“存在”项参数为M,该M的全称为强制性(Mandatory),表示PDU会话请求中必须强制性的携带该项信元。或者,该信元的“存在”项参数为O,O的全称是可选的(optional),表示该信元是可选的,即PDU会话请求中可以携带该项参数,或者也可以不携带该项参数,不作限定。
采用上述通信方法,当UE接入的通信系统发生切换时,UE可以通过PDU会话修改请求修改在原接入的通信系统中建立的PDU会话的参数,以使得在原通信系统中建立的PDU会话同样适用于新接入的通信系统。
以上述第一通信系统为4G网络,第二通信系统为5G网络为例,如图9所示,提供一种通信方法的具体流程,至少包括:
步骤901:UE成功注册到4G网络,建立公共数据网(public data network,PDN)连接。
步骤902:UE发生4G到5G的切换。
步骤903:UE成功注册到5G,UE接入的通信系统由4G切换到5G,该过程可称为:演进分组网络(evolved packet system,EPS)到5GS的移动注册过程(EPS to 5GS Mobility Registration procedure)。
步骤904:UE向SMF发送PDU会话修改请求,该PDU会话修改请求中携带有TSN参数,关于PDU会话修改请求中携带的TSN参数可参见上述图8中的说明。
步骤905:SMF向UE发送PDU会话修改响应。
步骤906:UE向SMF发送PDU会话修改完成。
上述步骤901至步骤903,以及步骤905和步骤906都是可以选择性执行。例如,UE可以在接收到PDU会话修改响应时,不向网络设备发送修改完成等。
通过上述方法,可以在原4G网络中建立的不支持TSN特性的PDU会话,修改为支持TSN特性的PDU会话。
实施例三
如图10所示,UE与基站之间的通信遵循一定的协议层结构。例如,所述协议层结构中包括应用层、接入层(access stratum,AS)和NAS层;其中,应用层可以用于向UE中所安装的应用程序提供服务,比如,UE可以将接收到的下行数据可以由AS层中的物理层传 输到应用层,进而由应用层提供给应用程序;又比如,应用层可以获取应用程序产生的数据,并将数据依次传输到AS层的物理层,发送给其它设备。NAS层可以用于转发用户数据,比如将应用层接收的上行数据转发给AS层或者将从AS层接收到的下行数据转发给应用层等。AS层可包括SDAP层、PDCP层、MAC层和PHY层等。
在一种设计中,应用层可以向NAS层发送第一命令,该第一命令可以称为AT命令。在某些实现中,AT命令可以被用作UE内的接口,例如,应用层和不同处理器上实现的无线接口3层堆栈之间的接口等。目前的AT命令中并无设置TPMIC信元,导致UE激活PDU会话时,无法准确的确定当前待激活的PDU会话是否需要配置TPMIC。本申请作出如下改进:在AT命令中携带TPMIC信元。该TPMIC信元可指示是否支持TPMIC。例如,可以在TPMIC信元中新增一个标志位,若该标志位为1,表示支持TPMIC;若该标志位为0,表示不支持TPMIC。NAS层在接收到AT命令时,若该AT命令中的TPMIC信元指示支持TPMIC,则在后续激活的PDU会话中配置TPMIC;否则,在后续激活的PDU会话中不配置TPMIC等。
关于TPMIC信元的格式包括:整数类型(integer type);指示是否支持传输端口管理信息容器TPMIC的5GSM能力(indicates the 5GSM capability to support transfer of port management information containers),具体可参见3GPP TS 23.501[165]和3GPP TS 24.501[161]。
在本申请实施例中,若AT命令中的TPMIC信元指示支持TPMIC,则表示后续激活的PDU会话都需要配置TPMIC,否则后续激活的PDU会话无需配置TPMIC。应当指示,当为一个PDU会话配置TPMIC时,代表该PDU会话是支持TSN特性的PDU会话。
可以理解的是,为了实现上述实施例中功能,终端和网元包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图11和图12为本申请的实施例提供的可能的通信装置的示意图。这些通信装置可以用于实现上述方法实施例中终端或网元的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请中,该通信装置可以是终端或网元,也可以是应用于终端或网元中的模块(如芯片)等。
如图11所示,通信装置1100包括处理模块1110和收发模块1120。通信装置1100用于实现上述图3、图8或实施例三所示的方法例中终端或基站的功能。
在一种设计中,当通信装置1100用于实现上述图3所示的方法实施例中终端的功能时,收发模块1120,用于向第一网元发送第一消息,接收来自第一网元的第二消息等。处理模块1110,用于生成第一消息,对第二消息处理等。
当通信装置1100用于实现上述图3所示的方法实施例中第一网元的功能时,收发模块1120,用于接收来自终端的第一消息,向终端发送第二消息等。处理模块1110,用于对第一消息进行处理,生成第二消息等。
有关上述处理模块1110和收发模块1120更详细的描述可以直接参考图3所示的方法实施例中相关描述直接得到,这里不加赘述。
在另一种设计中,当通信装置1100用于实现上述图8所示的方法实施例中的终端的功 能时,处理模块1110,用于接入第一通信系统,建立第一PDU会话,由第一通信系统切换到第二通信系统。收发模块1120用于向第二通信系统中的SMF网元发送PDU修改请求。或者,
当通信装置1100用于实现上述图8所示的方法实施例中的SMF中的功能时,收发模块1120,用于接收来自终端的PDU会话修改请求;处理模块1110,用于根据所述PDU会话修改请求,修改第一PDU会话的参数。
有关上述处理模块1110和收发模块1120更详细的描述可以直接参考图8所示的方法实施例中相关描述直接得到,这里不加赘述。
在另一种设计中,上述通信装置1110用于实现上述实施例三中的方法,例如,处理模块1110,用于控制非接入层接收来自应用层的第一命令,该第一命令中包括TPMIC信元;当所述TPMIC信元中指示支持TPMIC时,为激活的PDU会话配置TPMIC;或者,当所述TPMIC信元中不支持TPMIC时,为激活的PDU会话不配置TPMIC等。
有关处理模块1110的更详细的描述可以直接参考上述实施例三中相关描述直接得到,这里不加赘述。
如图12所示,通信装置1200包括处理器1210和接口电路1220。处理器1210和接口电路1220之间相互耦合。可以理解的是,接口电路1220可以为收发器或输入输出接口。可选的,通信装置1200还可以包括存储器1230,用于存储处理器1210执行的指令或存储处理器1210运行指令所需要的输入数据或存储处理器1210运行指令后产生的数据。
当通信装置1200用于实现上述图3、图8或实施例三所示的方法时,处理器1210用于实现上述处理模块1110的功能,接口电路1220用于实现上述收发模块1120的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是网元发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给网元的。
当上述通信装置为应用于网元的模块时,该网元模块实现上述方法实施例中网元的功能。该网元模块从网元中的其它模块(如射频模块或天线)接收信息,该信息是终端发送给网元的;或者,该网元模块向基站中的其它模块(如射频模块或天线)发送信息,该信息是网元发送给终端的。
可以理解的是,本申请的实施例中的处理器可以是中央处理模块(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。当然,处理器 和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
根据说明书是否用到可选:本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (21)

  1. 一种通信方法,其特征在于,包括
    向第一网元发送第一消息;
    接收来自所述第一网元的第二消息,所述第二消息为所述第一消息的响应消息,所述第二消息中携带有当前网络支持或不支持时间敏感网络TSN特性的指示信息。
  2. 如权利要求1所述的方法,其特征在于,所述第一网元为接入和移动管理功能AMF网元,所述第一消息为注册请求,所述第二消息为注册响应。
  3. 如权利要求2所述的方法,其特征在于,所述注册响应为注册接受,所述方法还包括:
    向会话管理功能SMF网元发送协议数据单元PDU会话建立请求;
    若所述注册接受中携带有当前网络支持TSN特性的指示信息,则所述PDU会话建立请求中携带有TSN参数;否则,所述PDU会话建立请求中不携带所述TSN参数。
  4. 如权利要求1所述的方法,其特征在于,所述第一网元为SMF网元,所述第一消息为PDU会话建立请求,所述第二消息为PDU会话建立响应。
  5. 如权利要求1所述的方法,其特征在于,所述第一网元为SMF网元,所述第一消息为PDU会话修改请求,所述第二消息为PDU会话修改响应。
  6. 如权利要求1所述的方法,其特征在于,所述第一网元为SMF网元,所述第一消息为PDU会话建立请求;
    所述方法还包括:
    接收来自SMF网元的PDU会话建立接受;
    根据所述PDU会话建立接受,与网络设备间建立支持TSN特性的PDU会话;
    所述第二消息为PDU会话取消命令,所述PDU会话取消命令为所述网络设备需要关闭TSN功能时发送的,所述PDU会话取消命令用于取消所建立的所述支持TSN特性的PDU会话,所述PDU会话取消命令中携带的指示信息为当前网络不支持TSN特性的指示信息。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述第二消息中包括第一信元,所述第一信元中携带有指示当前网络支持或不支持所述TSN特性的指示信息;或者,所述第二消息中包括第二信元,所述第二信元用于指示当前网络支持或不支持所述TSN特性。
  8. 一种通信方法,其特征在于,包括:
    接收来自终端的第一消息;
    向所述终端发送第二消息,所述第二消息为所述第一消息的响应消息,所述第二消息中携带有当前网络支持或不支持时间敏感网络TSN特性的指示信息。
  9. 如权利要求8所述的方法,其特征在于,第一网元为接入和移动性管理功能AMF网元,所述第一消息为注册请求,所述第二消息为注册响应。
  10. 如权利要求8所述的方法,其特征在于,第一网元为会话管理功能SMF网元,所述第一消息为协议数据单元PDU会话建立请求,所述第二消息为PDU会话建立响应。
  11. 如权利要求8所述的方法,其特征在于,第一网元为SMF网元,所述第一消息为PDU会话修改请求,所述第二消息为PDU会话修改响应。
  12. 如权利要求8所述的方法,其特征在于,第一网元为SMF网元,所述第一消息为PDU会话建立请求;
    所述方法还包括:
    向所述终端发送PDU会话建立接受;
    与终端间建立支持TSN特性的PDU会话;
    当需要关闭当前网络的TSN功能时,向所述终端发送的第二消息为PDU会话取消命令,所述PDU会话取消命令用于取消所建立的所述支持TSN特性的PDU会话,所述PDU会话取消命令中携带的指示信息为指示当前网络不支持TSN特性的指示信息。
  13. 如权利要求8至12中任一项所述的方法,其特征在于,所述第二消息中包括第一信元,所述第一信元携带有当前网络支持或不支持所述TSN特性的指示信息;或者,所述第二消息中包括第二信元,所述第二信元用于指示当前网络支持或不支持TSN特性。
  14. 一种通信方法,其特征在于,包括:
    接入第一通信系统,建立第一协议数据单元PDU会话;
    由所述第一通信系统切换到第二通信系统;
    向所述第二通信系统中的会话管理功能SMF网元发送PDU会话修改请求,所述PDU会话修改请求用于请求修改所述第一PDU会话的参数。
  15. 如权利要求14所述的方法,其特征在于,所述第一通信系统为第四代通信系统,所述第二通信系统为第五代通信系统,所述PDU会话修改请求中包括以下信元中的至少一项:
    支持传输端口管理信息容器TPMIC信元、端口管理信息容器信元、时间敏感网络TSN转换器DS-TT以太网端口媒体接入控制MAC地址信元、或DS-TT驻留时间信元。
  16. 一种通信方法,其特征在于,包括:
    接收来自终端的协议数据单元PDU会话修改请求,所述PDU会话修改请求用于请求修改第一PDU会话的参数,所述PDU会话修改请求是所述终端由第一通信系统切换到第二通信系统时发送的,且所述第一PDU会话是在所述第一通信系统中建立的;
    根据所述PDU会话修改请求,修改所述第一PDU会话的参数。
  17. 如权利要求16所述的方法,其特征在于,所述第一通信系统为第四代通信系统,所述第二通信系统为第五代通信系统,所述PDU会话修改请求中包括以下信元中的至少一项:
    支持传输端口管理信息容器TPMIC信元、端口管理信息容量信元、时间敏感网络TSN转换器DS-TT以太网端口媒体接入控制MAC地址信元、或DS-TT驻留时间信元。
  18. 一种通信方法,其特征在于,包括:
    终端的非接入层接收来自所述终端的应用层的第一命令,所述第一命令中包括传输端口管理信息容器TPMIC信元;
    当所述TPMIC信元中指示支持TPMIC时,所述终端为激活的协议数据单元PDU会话配置TPMIC;或者,当所述TPMIC信元中指示不支持TPMIC时,所述终端为激活的PDU会话不配置TPMIC。
  19. 一种通信装置,其特征在于,包括用于执行如权利要求1至7中的任一项所述方法的模块,或者包括如权利要求8至13中的任一项所方法的模块,或者包括如权利要求14或15所述方法的模块,或者包括如权利要求16或17所述方法的模块,或者包括如权利 要求18所述方法的模块。
  20. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至7中任一项所述的方法,或者用于实现如权利要求8至13中任一项所述的方法,或者用于实现如权利要求14或15所述的方法,或者用于实现如权利要求16或17所述的方法,或者用于实现如权利要求18所述的方法。
  21. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至7中任一项所述的方法,或者实现如权利要求8至13中任一项所述的方法,或者实现如权利要求14或15所述的方法,或者实现如权利要求16或17所述的方法,或者实现如权利要求18所述的方法。
PCT/CN2022/086418 2021-08-31 2022-04-12 一种通信方法及装置 WO2023029488A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111009963.4 2021-08-31
CN202111009963.4A CN115734208A (zh) 2021-08-31 2021-08-31 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2023029488A1 true WO2023029488A1 (zh) 2023-03-09

Family

ID=85291339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086418 WO2023029488A1 (zh) 2021-08-31 2022-04-12 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN115734208A (zh)
WO (1) WO2023029488A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020155172A1 (zh) * 2019-02-03 2020-08-06 Oppo广东移动通信有限公司 业务处理方法、装置、芯片及计算机程序
CN112217615A (zh) * 2019-07-09 2021-01-12 华为技术有限公司 一种支持时间敏感网络的方法及装置
CN112586033A (zh) * 2018-08-31 2021-03-30 瑞典爱立信有限公司 用于通过无线电接入网的时间敏感联网的技术

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112586033A (zh) * 2018-08-31 2021-03-30 瑞典爱立信有限公司 用于通过无线电接入网的时间敏感联网的技术
WO2020155172A1 (zh) * 2019-02-03 2020-08-06 Oppo广东移动通信有限公司 业务处理方法、装置、芯片及计算机程序
CN112217615A (zh) * 2019-07-09 2021-01-12 华为技术有限公司 一种支持时间敏感网络的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, CMCC, ORANGE, DEUTSCHE TELEKOM, NOKIA, NOKIA SHANGHAI BELL, ZTE: "Introducing Maximum Integrity Protected Data Rate after EPC to 5GC handover", 3GPP DRAFT; R3-212740, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. E-meeting; 20210517 - 20210528, 26 May 2021 (2021-05-26), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052014444 *

Also Published As

Publication number Publication date
CN115734208A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
KR20220034855A (ko) 데이터 전송 방법 및 관련된 장치
WO2019105470A1 (zh) 一种用户群组的建立方法及装置
WO2023280121A1 (zh) 一种获取边缘服务的方法和装置
WO2020001562A1 (zh) 一种通信方法及装置
WO2022121991A1 (zh) 通信方法、装置及系统
WO2021004191A1 (zh) 一种支持时间敏感网络的方法及装置
WO2019024650A1 (zh) 一种资源配置方法和装置
WO2019242525A1 (zh) 数据传输方法、相关装置及系统
US20240340077A1 (en) Satellite switching method, apparatus, storage medium, and chip system
WO2023087965A1 (zh) 一种通信方法及装置
US20240349150A1 (en) Switching method, communication apparatus, and communication system
WO2020024865A1 (zh) 一种会话对应关系的管理方法和终端设备
WO2022022322A1 (zh) 访问本地网络的方法和装置
WO2022170798A1 (zh) 确定策略的方法和通信装置
US20240155418A1 (en) Method and apparatus for connecting qos flow based terminal in wireless communication system
WO2023213177A1 (zh) 一种通信方法及装置
WO2022267652A1 (zh) 一种通信方法、通信装置及通信系统
WO2023029488A1 (zh) 一种通信方法及装置
WO2022242201A1 (zh) 一种无线通信方法、通信装置及通信系统
CN114071649B (zh) 访问本地网络的方法和装置
CN117441390A (zh) 用于5g系统中的时间同步服务的带宽高效配置的方法和装置
WO2020200297A1 (zh) 选择会话管理网元的方法和装置
WO2023246427A1 (zh) 一种测距方法和通信装置
WO2024208017A1 (zh) 通信方法、通信装置及通信系统
WO2023082858A1 (zh) 确定移动性管理策略的方法、通信装置及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22862634

Country of ref document: EP

Kind code of ref document: A1