WO2023029345A1 - 集成谐振电感的变压器、谐振腔、谐振电路以及调节方法 - Google Patents

集成谐振电感的变压器、谐振腔、谐振电路以及调节方法 Download PDF

Info

Publication number
WO2023029345A1
WO2023029345A1 PCT/CN2022/070942 CN2022070942W WO2023029345A1 WO 2023029345 A1 WO2023029345 A1 WO 2023029345A1 CN 2022070942 W CN2022070942 W CN 2022070942W WO 2023029345 A1 WO2023029345 A1 WO 2023029345A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
transformer
value
resonant
leakage inductance
Prior art date
Application number
PCT/CN2022/070942
Other languages
English (en)
French (fr)
Inventor
田华松
王志东
汤子龙
郭震达
洪在发
Original Assignee
漳州科华电气技术有限公司
科华数据股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 漳州科华电气技术有限公司, 科华数据股份有限公司 filed Critical 漳州科华电气技术有限公司
Publication of WO2023029345A1 publication Critical patent/WO2023029345A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the field of resonance technology, in particular to a transformer integrated with a resonant inductor, a resonant cavity, a resonant circuit and an adjustment method.
  • the inverter power supply includes a front-stage DC-DC module and a rear-stage DC-AC module.
  • the front-stage DC-DC module usually adopts the topology of BOOST booster circuit and LLC resonant circuit, and the latter-stage DC-AC module usually adopts T-type three-level topology.
  • the LLC resonant circuit includes a resonant cavity.
  • the resonant cavity includes an excitation inductance, a resonant inductance and a resonant capacitor, and the excitation inductance is provided by a transformer. Therefore, the resonant cavity needs to be composed of three components, namely the resonant inductor, the resonant capacitor and the transformer, and the resonant cavity composed of three components Large volume is not conducive to improving power density.
  • the embodiment of the present application provides a transformer, a resonant cavity, a resonant circuit and an adjustment method integrating a resonant inductor, so as to solve the problem that the resonant cavity formed by the three components has a large volume and is not conducive to improving power density.
  • the embodiment of the present application provides a transformer with integrated resonant inductance, including an independent magnetic core group, a shared magnetic core group, a primary winding and a secondary winding;
  • the primary winding is wound on the shared magnetic core group and the independent magnetic core group, and the secondary winding is wound on the shared magnetic core group;
  • the leakage inductance value of the transformer is adjusted by adjusting the air gap size of the independent magnetic cores in the independent magnetic core group, so that the leakage inductance value of the transformer is equal to the leakage inductance demand value; the leakage inductance demand value is the inductance demand value of the resonant inductor.
  • the independent magnetic core group includes at least one independent magnetic core
  • the independent magnetic core includes two first E-shaped magnetic cores arranged face to face;
  • the size of the air gap of the independent magnetic core is adjusted by adjusting the distance between the two first E-shaped magnetic cores arranged face to face.
  • the excitation parameter value of the transformer is adjusted by adjusting the air gap of the shared magnetic core in the shared magnetic core group, so that the excitation parameter value of the transformer is equal to the required value of the excitation parameter.
  • the shared magnetic core group includes at least one shared magnetic core
  • the shared magnetic core includes two second E-shaped magnetic cores arranged face to face;
  • the size of the air gap of the shared magnetic core is adjusted by adjusting the distance between the two second E-shaped magnetic cores arranged face to face.
  • the primary winding includes at least one winding.
  • the secondary winding includes at least one winding.
  • the embodiment of the present application provides a resonant cavity, including a resonant capacitor and a transformer with integrated resonant inductance as described in the first aspect or any possible implementation of the first aspect;
  • the resonant capacitor is connected to the primary winding of the transformer with integrated resonant inductor.
  • an embodiment of the present application provides a resonant circuit, including the resonant cavity as described in the second aspect.
  • the embodiment of the present application provides an adjustment method, which is applied to the transformer with integrated resonant inductance described in the first aspect or any possible implementation of the first aspect; the adjustment method includes:
  • the excitation parameter value of the transformer is adjusted so that the excitation parameter value of the transformer is equal to the required value of the excitation parameter
  • the excitation parameter value of the transformer When the excitation parameter value of the transformer is equal to the required value of the excitation parameter, keep the air gap size of the shared magnetic core in the shared magnetic core group unchanged, and adjust the air gap size of the independent magnetic core in the independent magnetic core group to adjust the transformer Leakage inductance value, so that the leakage inductance value of the transformer is equal to the leakage inductance demand value.
  • the adjustment method further includes:
  • the current excitation parameter value of the transformer is obtained.
  • the embodiment of the present application provides a transformer with integrated resonant inductance, a resonant cavity, a resonant circuit and an adjustment method.
  • the secondary winding is wound on a shared magnetic core
  • adjust the leakage inductance value of the transformer by adjusting the air gap size of the independent magnetic core in the independent magnetic core group, so that the leakage inductance value of the transformer is equal to the leakage inductance demand value;
  • the leakage inductance demand value is the inductance demand value of the resonant inductor , so that the transformer can be integrated with a resonant inductance.
  • the leakage inductance of the transformer is equivalent to the resonant inductance. There is no need to install a resonant inductance in the resonant cavity, which can reduce the volume of the resonant cavity and help increase the power density.
  • Fig. 1 is a schematic structural diagram of a transformer with integrated resonant inductance provided by an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of an independent magnetic core provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a resonant cavity provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a transformer integrated with a resonant inductor provided in an embodiment of the present application.
  • the transformer with integrated resonant inductance includes an independent magnetic core group 10, a shared magnetic core group 20, a primary winding 30 and a secondary winding 40;
  • the primary winding 30 is wound on the common magnetic core group 20 and the independent magnetic core group 10, and the secondary winding 40 is wound on the common magnetic core group 20;
  • the leakage inductance value of the transformer is adjusted by adjusting the air gap size of the independent magnetic core 11 in the independent magnetic core group 10, so that the leakage inductance value of the transformer is equal to the leakage inductance demand value; the leakage inductance demand value is the inductance demand of the resonant inductor value.
  • the primary winding 30 refers to the winding on the power supply side or high voltage side of the transformer
  • the secondary winding 40 refers to the winding on the non-power supply side or low voltage side of the transformer.
  • the leakage inductance value of the transformer refers to the inductance value of the magnetic flux leakage of the primary winding 30 during the coupling process.
  • FIG. 1 is only a schematic diagram, showing that the primary winding 30 is wound on the common magnetic core group 20 and the independent magnetic core group 10, and the secondary winding 40 is wound on the common magnetic core group 20, but the primary winding How 30 is wound on the shared magnetic core group 20 and the independent magnetic core group 10 and how the secondary winding 40 is wound on the shared magnetic core group 20 are all based on the winding rules of the transformer, as shown in Figure 1 Specifically shown.
  • the resonant cavity of the resonant circuit usually includes a resonant inductance and a transformer.
  • the resonant inductance is integrated into the transformer, and the leakage inductance of the transformer is used to replace the inductance value of the resonant inductance.
  • a transformer with integrated resonant inductance can be equivalent to the existing Resonant inductor and transformer.
  • the independent magnetic core group 10 may include at least one independent magnetic core 11 .
  • the leakage inductance of the transformer can be adjusted by adjusting the air gap size of each independent magnetic core 11 of the independent magnetic core group 10 , so that it meets the requirements.
  • the primary winding 30 is wound on the common magnetic core group 20 and the independent magnetic core group 10
  • the secondary winding 40 is wound on the common magnetic core group 20, and by adjusting the independent magnetic core group
  • the size of the air gap of the independent magnetic core 11 in 10 is to adjust the leakage inductance value of the transformer, so that the leakage inductance value of the transformer is equal to the leakage inductance demand value;
  • the leakage inductance demand value is the inductance demand value of the resonant inductor, so that the transformer can integrate resonance Inductance, the leakage inductance of the transformer is equivalent to the resonant inductance, and there is no need to install a resonant inductance in the resonant cavity, which can reduce the volume of the resonant cavity and help to increase the power density.
  • the independent magnetic core group 10 includes at least one independent magnetic core 11;
  • the independent magnetic core 11 includes two first E-shaped magnetic cores 12 arranged face to face;
  • the size of the air gap 13 of the independent magnetic core 11 is adjusted by adjusting the distance between the two first E-shaped magnetic cores 12 facing each other.
  • the independent magnetic core group 10 includes several independent magnetic cores 11 , which can be specifically set according to actual needs, and are not limited here. Exemplarily, the independent magnetic core group 10 shown in FIG. 1 includes two independent magnetic cores 11 .
  • the above-mentioned adjustment of the distance between the two first E-shaped magnetic cores 12 facing each other to adjust the size of the air gap 13 of the independent magnetic core 11 includes:
  • the size of the air gap 13 of the independent magnetic core 11 can be adjusted by adjusting the distance between the central legs of the two first E-shaped magnetic cores 12 facing each other.
  • FIG. 2 shows a schematic diagram of an independent magnetic core 11, and the independent magnetic core 11 includes two first E-shaped magnetic cores 12 arranged face to face, and between the central columns of the two first E-shaped magnetic cores 12 The distance is the air gap 13 of the independent magnetic core 11 .
  • the size of the air gap of the independent magnetic core 11 can be adjusted by adjusting the distance between the center columns of the two first E-shaped magnetic cores 12 , and then the leakage inductance of the transformer can be adjusted.
  • the middle leg of the first E-shaped magnetic core 12 is the magnetic leg at the middle position among the three magnetic legs of the first E-shaped magnetic core 12 .
  • the excitation parameter value of the transformer is adjusted by adjusting the air gap of the common magnetic core 21 in the common magnetic core group 20 so that the excitation parameter value of the transformer is equal to the required value of the excitation parameter.
  • the shared magnetic core group 20 may include at least one shared magnetic core 21.
  • the excitation parameter value specifically, the excitation inductance
  • the excitation parameter value of the transformer can be adjusted. value), so that the excitation parameter value of the transformer is equal to the required value of the excitation parameter.
  • the shared magnetic core group 20 includes at least one shared magnetic core 21;
  • the shared magnetic core 21 includes two second E-type magnetic cores arranged face to face;
  • the size of the air gap of the common magnetic core 21 can be adjusted by adjusting the distance between the two second E-shaped magnetic cores arranged facing each other.
  • the structure of the shared magnetic core 21 is similar to the structure of the independent magnetic core 11, and both include two E-type magnetic cores arranged face to face.
  • the specific structure of the shared magnetic core 21 can refer to the structure of the independent magnetic core 11 shown in FIG. repeat.
  • the first E-shaped magnetic core 12 and the second E-shaped magnetic core may be the same E-shaped magnetic core, but to distinguish whether they belong to the independent magnetic core 11 or the shared magnetic core 21 , the first and the second are used to distinguish.
  • the shared magnetic core group 20 includes several shared magnetic cores 21 , which can be specifically set according to actual needs, and are not limited here. Exemplarily, the shared magnetic core group 20 shown in FIG. 1 includes four shared magnetic cores 21 .
  • the air gap size of the shared magnetic core 21 is adjusted by adjusting the distance between the two second E-shaped magnetic cores arranged face to face, including:
  • the size of the air gap of the common magnetic core 21 can be adjusted by adjusting the distance between the central legs of the two second E-shaped magnetic cores which are arranged facing each other.
  • the size of the air gap of the common magnetic core 21 can be adjusted, and then the excitation parameter value of the transformer can be adjusted.
  • primary winding 30 includes at least one winding.
  • the primary winding 30 may include one, two or more windings, which may be set according to actual needs, and no specific limitation is set here. Exemplarily, the primary winding 30 shown in FIG. 1 includes one winding.
  • the secondary winding 40 includes at least one winding.
  • the secondary winding 40 may include one, two or more windings, which may be set according to actual needs, and no specific limitation is set here. Exemplarily, the secondary winding 40 shown in FIG. 1 includes one winding.
  • the primary winding 30 includes two windings
  • the secondary winding 40 includes two windings
  • both the independent magnetic core group 10 and the shared magnetic core group 20 are arranged on a PCB board (Printed Circuit Board, printed circuit board), and both the primary winding 30 and the secondary winding 40 are PCB boards. on the trace.
  • PCB board printed Circuit Board, printed circuit board
  • the independent magnetic core 11 included in the independent magnetic core group 10 and the shared magnetic core 21 included in the shared magnetic core group 20 are both planar magnetic cores, and can be arranged on the PCB.
  • the traces of the printed wires are designed on the PCB as the primary winding 30 and the secondary winding 40, so that a planar transformer with integrated resonant inductor can be formed.
  • the transformer with integrated resonant inductance provided in this embodiment can adjust the leakage inductance value of the transformer by adjusting the air gap size of the independent magnetic core 11 in the independent magnetic core group 10, so that the leakage inductance value of the transformer is equal to the leakage inductance demand value, Without affecting the performance of the transformer, using the leakage inductance as a resonant inductor can save the winding of the resonant inductor and save costs.
  • the transformer can be applied in resonant circuits such as LLC resonant circuit and CLLC resonant circuit.
  • the embodiment of the present application also provides a resonant cavity, including a resonant capacitor C and any one of the above-mentioned transformers T with integrated resonant inductance;
  • the resonant capacitor C is connected to the primary winding 30 of the transformer T integrated with the resonant inductance.
  • the resonant cavity has the same beneficial effect as the above-mentioned transformer with integrated resonant inductor.
  • an embodiment of the present application further provides a resonant circuit, including the above-mentioned resonant cavity, which has the same beneficial effects as the above-mentioned resonant cavity.
  • the embodiment of the present application also provides an adjustment method, which is applied to any of the above-mentioned transformers with integrated resonant inductance, and the adjustment method includes:
  • the excitation parameter value of the transformer is adjusted so that the excitation parameter value of the transformer is equal to the required value of the excitation parameter;
  • the excitation parameter value of the transformer When the excitation parameter value of the transformer is equal to the required value of the excitation parameter, keep the size of the air gap of the shared magnetic core 21 in the shared magnetic core group 20 unchanged, and by adjusting the size of the air gap of the independent magnetic core 11 in the independent magnetic core group 10, To adjust the leakage inductance of the transformer, so that the leakage inductance of the transformer is equal to the required value of the leakage inductance.
  • the excitation parameter value of the transformer can be adjusted, and by adjusting the size of the air gap of the independent magnetic core 11 in the independent magnetic core group 10,
  • the leakage inductance value of the transformer can be adjusted.
  • the leakage inductor and excitation parameter values of the transformer will all change.
  • the present embodiment first adjusts the size of the air gap of each shared magnetic core 21 in the shared magnetic core group 20, Make the excitation parameter value of the transformer equal to the excitation parameter demand value.
  • the air gap size of each shared magnetic core 21 of the shared magnetic core group 20 is kept constant, and the air gap of each independent magnetic core 11 in the independent magnetic core group 10 is adjusted The size, so that the leakage inductance value of the transformer can be adjusted, so that the leakage inductance value of the transformer is equal to the leakage inductance demand value.
  • the air gaps of the independent magnetic cores 11 may be the same or different; the air gaps of the shared magnetic cores 21 may be the same or different. How much to adjust the air gap of each magnetic core needs to be adjusted according to the actual situation.
  • the above adjustment method is only a realizable adjustment method, and other methods can also be used to adjust the transformer.
  • the air gap of the magnetic core since the larger the air gap of the magnetic core, the greater the energy stored, therefore, when keeping the number of turns of the primary winding 30 and the secondary winding 40 constant, if the current leakage inductance value of the transformer is greater than the required leakage inductance value If the value is small, the air gap of the independent magnetic core 11 should be adjusted smaller, while the air gap of the common magnetic core 21 should be adjusted larger, thereby increasing the energy stored in the transformer magnetic core and increasing the current leakage inductance value of the transformer; if the current leakage inductance of the transformer If the inductance value is larger than the required value of the leakage inductance, the opposite adjustment method is adopted, that is, the air gap of the independent magnetic core 11 is increased, and the air gap of the common magnetic core 21 is decreased at the same time.
  • the above adjustment method also includes:
  • the output of the secondary winding 40 is short-circuited, and the current leakage inductance value of the transformer is obtained by measuring the input end of the primary winding 30;
  • the output of the secondary winding 40 is set as an open circuit, and the sum of the current excitation parameter value and the current leakage inductance value of the transformer is obtained by measuring the input end of the primary winding 30;
  • the current excitation parameter value of the transformer is obtained.
  • the output of the secondary winding 40 in order to measure the current leakage inductance of the transformer, can be short-circuited, and the current leakage inductance of the transformer can be obtained by measuring the input end of the primary winding 30 .
  • the output of the secondary winding 40 in order to measure the current excitation parameter value of the transformer, can be set as an open circuit, and by measuring the input end of the primary winding 30, the sum of the current leakage inductance value and the current excitation parameter value can be obtained, and the measured The obtained current leakage inductance value can obtain the current excitation parameter value.
  • the leakage inductance value and excitation parameter value of the transformer in the above adjustment method can be obtained, so that the size of the air gap of the shared magnetic core 21 in the shared magnetic core group 20 and the independent magnetic core 11 in the independent magnetic core group 20 can be adjusted appropriately. air gap size.

Abstract

一种集成谐振电感的变压器、谐振腔、谐振电路以及调节方法,集成谐振电感的变压器包括独立磁芯组(10)、共用磁芯组(20)、原边绕组(30)和副边绕组(40);原边绕组(30)绕制在共用磁芯组(20)和独立磁芯组(10)上,副边绕组(40)绕制在共用磁芯组(20)上;其中,通过调节独立磁芯组(10)中的独立磁芯(11)的气隙大小,以调节变压器的漏感值,使变压器的漏感值等于漏感需求值,漏感需求值为谐振电感的电感需求值,可以使变压器集成谐振电感,变压器的漏感相当于谐振电感,在谐振腔中无需再设置一个谐振电感,可以减小谐振腔的体积,有利于提高功率密度。

Description

集成谐振电感的变压器、谐振腔、谐振电路以及调节方法
本专利申请要求于2021年8月30日提交的中国专利申请No.CN202111004458.0的优先权。在先申请的公开内容通过整体引用并入本申请。
技术领域
本申请涉及谐振技术领域,尤其涉及一种集成谐振电感的变压器、谐振腔、谐振电路以及调节方法。
背景技术
逆变电源包括前级DC-DC模块和后级DC-AC模块。前级DC-DC模块通常采用BOOST升压电路和LLC谐振电路的拓扑,后级DC-AC模块通常采用T型三电平拓扑。LLC谐振电路包括谐振腔。
目前,谐振腔包括励磁电感、谐振电感和谐振电容,而励磁电感是由变压器提供,因此,谐振腔需要三个元件构成,分别为谐振电感、谐振电容和变压器,而三个元件构成的谐振腔体积较大,不利于提高功率密度。
技术问题
本申请实施例提供了一种集成谐振电感的变压器、谐振腔、谐振电路以及调节方法,以解决三个元件构成的谐振腔体积较大,不利于提高功率密度的问题。
技术解决方案
第一方面,本申请实施例提供了一种集成谐振电感的变压器,包括独立磁芯组、共用磁芯组、原边绕组和副边绕组;
原边绕组绕制在共用磁芯组和独立磁芯组上,副边绕组绕制在共用磁芯组上;
其中,通过调节独立磁芯组中的独立磁芯的气隙大小,以调节变压器的漏感值,使变压器的漏感值等于漏感需求值;漏感需求值为谐振电感的电感需求值。
在一种可能的实现方式中,独立磁芯组包括至少一个独立磁芯;
独立磁芯包括两个面对面设置的第一E型磁芯;
通过调节两个面对面设置的第一E型磁芯之间的距离,以调节独立磁芯的气隙大小。
在一种可能的实现方式中,通过调节共用磁芯组中的共用磁芯的气隙大小,以调节变压器的励磁参数值,使变压器的励磁参数值等于励磁参数需求值。
在一种可能的实现方式中,共用磁芯组包括至少一个共用磁芯;
共用磁芯包括两个面对面设置的第二E型磁芯;
通过调节两个面对面设置的第二E型磁芯之间的距离,以调节共用磁芯的气隙大小。
在一种可能的实现方式中,原边绕组包括至少一个绕组。
在一种可能的实现方式中,副边绕组包括至少一个绕组。
第二方面,本申请实施例提供了一种谐振腔,包括谐振电容和如第一方面或第一方面任一种可能的实现方式中所述的集成谐振电感的变压器;
谐振电容与集成谐振电感的变压器的原边绕组连接。
第三方面,本申请实施例提供了一种谐振电路,包括如第二方面所述的谐振腔。
第四方面,本申请实施例提供了一种调节方法,应用于第一方面或第一方面任一种可能的实现方式中所述的集成谐振电感的变压器;该调节方法包括:
获取励磁参数需求值和漏感需求值;
通过调节共用磁芯组中的共用磁芯的气隙大小,以调节变压器的励磁参数值,使变压器的励磁参数值等于励磁参数需求值;
在变压器的励磁参数值等于励磁参数需求值时,保持共用磁芯组中的共用磁芯的气隙大小不变,通过调节独立磁芯组中的独立磁芯的气隙大小,以调节变压器的漏感值,使变压器的漏感值等于漏感需求值。
在一种可能的实现方式中,调节方法还包括:
将副边绕组输出短接,通过测量原边绕组的输入端,得到变压器的当前漏感值;
将副边绕组输出设置为开路,通过测量原边绕组的输入端,得到变压器的当前励磁参数值和当前漏感值的和;
根据变压器的当前励磁参数值和当前漏感值的和以及变压器的当前漏感值,得到变压器的当前励磁参数值。
有益效果
本申请实施例提供一种集成谐振电感的变压器、谐振腔、谐振电路以及调节方法,通过将原边绕组绕制在共用磁芯组和独立磁芯组上,副边绕组绕制在共用磁芯组上,通过调节独立磁芯组中的独立磁芯的气隙大小,以调节变压器的漏感值,使变压器的漏感值等于漏感需求值;漏感需求值为谐振电感的电感需求值,从而可以使变压器集成谐振电感,变压器的漏感相当于谐振电感,在谐振腔中无需再设置一个谐振电感,可以减小谐振腔的体积,有利于提高功率密度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的集成谐振电感的变压器的结构示意图;
图2是本申请实施例提供的独立磁芯的结构示意图;
图3是本申请实施例提供的谐振腔的结构示意图。
本申请的实施方式
为了使本技术领域的人员更好地理解本方案,下面将结合本方案实施例中的附图,对本方案实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本方案一部分的实施例,而不是全部的实施例。基于本方案中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本方案保护的范围。
本方案的说明书和权利要求书及上述附图中的术语“包括”以及其他任何变形,是指“包括但不限于”,意图在于覆盖不排他的包含,并不仅限于文中列举的示例。此外,术语“第一”和“第二”等是用于区别不同对象,而非用于描述特定顺序。
以下结合具体附图对本申请的实现进行详细的描述:
图1为本申请实施例提供的一种集成谐振电感的变压器的结构示意图。参照图1,集成谐振电感的变压器包括独立磁芯组10、共用磁芯组20、原边绕组30和副边绕组40;
原边绕组30绕制在共用磁芯组20和独立磁芯组10上,副边绕组40绕制在共用磁芯组20上;
其中,通过调节独立磁芯组10中的独立磁芯11的气隙大小,以调节变压器的漏感值,使变压器的漏感值等于漏感需求值;漏感需求值为谐振电感的电感需求值。
需要说明的是,原边绕组30指的是变压器有电源侧或高压侧绕组,副边绕组40指的是变压器无电源侧或低压侧绕组。变压器的漏感值指的是原边绕组30在耦合过程中漏磁的电感值。
需要说明的是,图1只是一个示意图,示意原边绕组30绕制在共用磁芯组20和独立磁芯组10上,副边绕组40绕制在共用磁芯组20上,但是原边绕组30是如何绕制在共用磁芯组20和独立磁芯组10上以及副边绕组40是如何绕制在共用磁芯组20上,都是基于变压器绕制规则绕制的,图1并未具体示出。
谐振电路的谐振腔通常包括谐振电感和变压器,本实施例将谐振电感集成在变压器中,用该变压器的漏感值代替谐振电感的电感值,一个集成谐振电感的变压器即可相当于现有的谐振电感和变压器。
在本实施例中,独立磁芯组10可以包括至少一个独立磁芯11。为了使集成谐振电感的变压器的漏感值满足需求,即等于谐振电感的电感需求值,可以通过调节独立磁芯组10的各个独立磁芯11的气隙大小,来调节该变压器的漏感值,使其满足需求。
由上述描述可知,本实施例通过将原边绕组30绕制在共用磁芯组20和独立磁芯组10上,副边绕组40绕制在共用磁芯组20上,通过调节独立磁芯组10中的独立磁芯11的气隙大小,以调节变压器的漏感值,使变压器的漏感值等于漏感需求值;漏感需求值为谐振电感的电感需求值,从而可以使变压器集成谐振电感,变压器的漏感相当于谐振电感,在谐振腔中无需再设置一个谐振电感,可以减小谐振腔的体积,有利于提高功率密度。
在一些实施例中,参见图1和图2,独立磁芯组10包括至少一个独立磁芯11;
独立磁芯11包括两个面对面设置的第一E型磁芯12;
通过调节两个面对面设置的第一E型磁芯12之间的距离,以调节独立磁芯11的气隙13大小。
独立磁芯组10包括几个独立磁芯11,可以根据实际需求进行具体设置,在此不做限制。示例性地,图1所示的独立磁芯组10中包括两个独立磁芯11。
在一种可能的实现方式中,上述通过调节两个面对面设置的第一E型磁芯12之间的距离,以调节独立磁芯11的气隙13大小,包括:
通过调节两个面对面设置的第一E型磁芯12的中柱之间的距离,以调节独立磁芯11的气隙13大小。
参见图2,图2示出了一个独立磁芯11的示意图,该独立磁芯11包括两个面对面设置的第一E型磁芯12,两个第一E型磁芯12的中柱之间的距离即为独立磁芯11的气隙13。通过调节两个第一E型磁芯12的中柱之间的距离即可调节独立磁芯11的气隙大小,进而可以调节变压器的漏感值。
其中,第一E型磁芯12的中柱为第一E型磁芯12的三个磁柱中位于中间位置的磁柱。
在一些实施例中,通过调节共用磁芯组20中的共用磁芯21的气隙大小,以调节变压器的励磁参数值,使变压器的励磁参数值等于励磁参数需求值。
在本实施例中,共用磁芯组20可以包括至少一个共用磁芯21,通过调节共用磁芯组20的各个共用磁芯21的气隙大小,可以调节变压器的励磁参数值(具体是励磁电感值),使变压器的励磁参数值等于励磁参数需求值。
在一些实施例中,共用磁芯组20包括至少一个共用磁芯21;
共用磁芯21包括两个面对面设置的第二E型磁芯;
通过调节两个面对面设置的第二E型磁芯之间的距离,以调节共用磁芯21的气隙大小。
共用磁芯21的结构与独立磁芯11的结构类似,均包括两个面对面设置的E型磁芯,共用磁芯21的具体结构可参照图2所示的独立磁芯11的结构,不再赘述。
第一E型磁芯12和第二E型磁芯可以是相同的E型磁芯,只是为了区分属于独立磁芯11还是共用磁芯21,所以采用第一、第二来区分。
共用磁芯组20包括几个共用磁芯21,可以根据实际需求进行具体设置,在此不做限制。示例性地,图1所示的共用磁芯组20中包括四个共用磁芯21。
在一种可能的实现方式中,上述通过调节两个面对面设置的第二E型磁芯之间的距离,以调节共用磁芯21的气隙大小,包括:
通过调节两个面对面设置的第二E型磁芯的中柱之间的距离,以调节共用磁芯21的气隙大小。
通过调节两个第二E型磁芯的中柱之间的距离即可调节共用磁芯21的气隙大小,进而可以调节变压器的励磁参数值。
在一些实施例中,原边绕组30包括至少一个绕组。
原边绕组30可以包括一个、两个或多个绕组,可以根据实际需求设置,在此不做具体限制。示例性地,图1所示的原边绕组30包括一个绕组。
在一些实施例中,副边绕组40包括至少一个绕组。
副边绕组40可以包括一个、两个或多个绕组,可以根据实际需求设置,在此不做具体限制。示例性地,图1所示的副边绕组40包括一个绕组。
在一种可能的实现方式中,原边绕组30包括两个绕组,副边绕组40包括两个绕组。
在一种可能的实现方式中,独立磁芯组10和共用磁芯组20均设置于PCB板(Printed Circuit Board,印制电路板)上,原边绕组30和副边绕组40均为PCB板上的走线。
在本实施例中,独立磁芯组10包括的独立磁芯11、共用磁芯组20包括的共用磁芯21均为平面型磁芯,均可以设置于PCB板上。通过变压器绕制规则,在PCB上设计印制线的走线,作为原边绕组30和副边绕组40,从而可以形成集成谐振电感的平面变压器。
本实施例提供的集成谐振电感的变压器,可以通过调节独立磁芯组10中的独立磁芯11的气隙大小,以调节变压器的漏感值,使变压器的漏感值等于漏感需求值,而不影响变压器的性能,将漏感作为谐振电感使用,可以节省谐振电感的绕组,节约成本。该变压器可以应用于LLC谐振电路和CLLC谐振电路等谐振电路中。
对应于上述集成谐振电感的变压器,参见图3,本申请实施例还提供了一种谐振腔,包括谐振电容C和上述任意一种集成谐振电感的变压器T;
谐振电容C与集成谐振电感的变压器T的原边绕组30连接。
谐振腔具有与上述集成谐振电感的变压器相同的有益效果。
对应于上述谐振腔,本申请实施例还提供了一种谐振电路,包括上述谐振腔,具有与上述谐振腔相同的有益效果。
本申请实施例还提供了一种调节方法,应用于上述任意一种集成谐振电感的变压器,该调节方法包括:
获取励磁参数需求值和漏感需求值;
通过调节共用磁芯组20中的共用磁芯21的气隙大小,以调节变压器的励磁参数值,使变压器的励磁参数值等于励磁参数需求值;
在变压器的励磁参数值等于励磁参数需求值时,保持共用磁芯组20中的共用磁芯21的气隙大小不变,通过调节独立磁芯组10中的独立磁芯11的气隙大小,以调节变压器的漏感值,使变压器的漏感值等于漏感需求值。
在本实施例中,通过调节共用磁芯组20中的共用磁芯21的气隙大小,可以调节变压器的励磁参数值,通过调节独立磁芯组10中的独立磁芯11的气隙大小,可以调节变压器的漏感值。然而,在实际应用过程中,当调节共用磁芯21的气隙大小时,变压器的漏感器和励磁参数值都会发生变化。
因此,为了使变压器的励磁参数值等于励磁参数需求值,使变压器的漏感值等于漏感需求值,本实施例首先通过调节共用磁芯组20中的各个共用磁芯21的气隙大小,使变压器的励磁参数值等于励磁参数需求值。当变压器的励磁参数值等于励磁参数需求值时,使共用磁芯组20的各个共用磁芯21的气隙大小均保持不变,调节独立磁芯组10中的各个独立磁芯11的气隙大小,从而可以调节变压器的漏感值,使变压器的漏感值等于漏感需求值。
其中,各个独立磁芯11的气隙可以相同,也可以不同;各个共用磁芯21的气隙可以相同,也可以不同。各个磁芯的气隙具体调节多少,需根据实际情况进行调节。
上述调节方法只是一种可实现的调节方法,也可以采用其他方法对变压器进行调节。示例性地,由于磁芯气隙越大,存储的能量越大,因此,在保持原边绕组30和副边绕组40的匝数不变时,若变压器的当前漏感值比漏感需求值小,则调小独立磁芯11的气隙,而同时调大共用磁芯21的气隙,从而增大变压器磁芯存储的能量,使变压器的当前漏感值增大;若变压器的当前漏感值比漏感需求值大,则采用相反的调节方式,即调大独立磁芯11的气隙,同时调小共用磁芯21的气隙。
在一些实施例中,上述调节方法还包括:
将副边绕组40输出短接,通过测量原边绕组30的输入端,得到变压器的当前漏感值;
将副边绕组40输出设置为开路,通过测量原边绕组30的输入端,得到变压器的当前励磁参数值和当前漏感值的和;
根据变压器的当前励磁参数值和当前漏感值的和以及变压器的当前漏感值,得到变压器的当前励磁参数值。
在本实施例中,为了测量变压器的当前漏感值,可以将副边绕组40的输出短接,通过测量原边绕组30的输入端,即可得到变压器的当前漏感值。为了测量变压器的当前励磁参数值,可以将副边绕组40的输出设置为开路,通过测量原边绕组30的输入端,可以得到当前漏感值和当前励磁参数值的和,该和减去测量得到的当前漏感值即可得到当前励磁参数值。如此可以得到上述调节方法中变压器的漏感值和励磁参数值,从而可以适当地调节共用磁芯组20中的共用磁芯21的气隙大小、调节独立磁芯组20中的独立磁芯11的气隙大小。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种集成谐振电感的变压器,其特征在于,包括独立磁芯组、共用磁芯组、原边绕组和副边绕组;
    所述原边绕组绕制在所述共用磁芯组和所述独立磁芯组上,所述副边绕组绕制在所述共用磁芯组上;
    其中,通过调节所述独立磁芯组中的独立磁芯的气隙大小,以调节所述变压器的漏感值,使所述变压器的漏感值等于漏感需求值;所述漏感需求值为所述谐振电感的电感需求值。
  2. 如权利要求1所述的集成谐振电感的变压器,其特征在于,所述独立磁芯组包括至少一个独立磁芯;
    所述独立磁芯包括两个面对面设置的第一E型磁芯;
    通过调节两个面对面设置的所述第一E型磁芯之间的距离,以调节所述独立磁芯的气隙大小。
  3. 如权利要求1所述的集成谐振电感的变压器,其特征在于,通过调节所述共用磁芯组中的共用磁芯的气隙大小,以调节所述变压器的励磁参数值,使所述变压器的励磁参数值等于励磁参数需求值。
  4. 如权利要求3所述的集成谐振电感的变压器,其特征在于,所述共用磁芯组包括至少一个共用磁芯;
    所述共用磁芯包括两个面对面设置的第二    E型磁芯;
    通过调节两个面对面设置的所述第二E型磁芯之间的距离,以调节所述共用磁芯的气隙大小。
  5. 如权利要求1至4任一项所述的集成谐振电感的变压器,其特征在于,所述原边绕组包括至少一个绕组。
  6. 如权利要求1至4任一项所述的集成谐振电感的变压器,其特征在于,所述副边绕组包括至少一个绕组。
  7. 一种谐振腔,其特征在于,包括谐振电容和如权利要求1至6任一项所述的集成谐振电感的变压器;
    所述谐振电容与所述原边绕组连接。
  8. 一种谐振电路,其特征在于,包括如权利要求7所述的谐振腔。
  9. 一种调节方法,其特征在于,应用于如权利要求1至6任一项所述的集成谐振电感的变压器;所述调节方法包括:
    获取励磁参数需求值和漏感需求值;
    通过调节所述共用磁芯组中的共用磁芯的气隙大小,以调节所述变压器的励磁参数值,使所述变压器的励磁参数值等于所述励磁参数需求值;
    在所述变压器的励磁参数值等于所述励磁参数需求值时,保持所述共用磁芯组中的共用磁芯的气隙大小不变,通过调节所述独立磁芯组中的独立磁芯的气隙大小,以调节所述变压器的漏感值,使所述变压器的漏感值等于所述漏感需求值。
  10. 如权利要求9所述的调节方法,其特征在于,所述调节方法还包括:
    将所述副边绕组输出短接,通过测量所述原边绕组的输入端,得到所述变压器的当前漏感值;
    将所述副边绕组输出设置为开路,通过测量所述原边绕组的输入端,得到所述变压器的当前励磁参数值和当前漏感值的和;
    根据所述变压器的当前励磁参数值和当前漏感值的和以及所述变压器的当前漏感值,得到所述变压器的当前励磁参数值。
PCT/CN2022/070942 2021-08-30 2022-01-10 集成谐振电感的变压器、谐振腔、谐振电路以及调节方法 WO2023029345A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111004458.0A CN113871154B (zh) 2021-08-30 2021-08-30 集成谐振电感的变压器、谐振腔、谐振电路以及调节方法
CN202111004458.0 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023029345A1 true WO2023029345A1 (zh) 2023-03-09

Family

ID=78988837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070942 WO2023029345A1 (zh) 2021-08-30 2022-01-10 集成谐振电感的变压器、谐振腔、谐振电路以及调节方法

Country Status (2)

Country Link
CN (1) CN113871154B (zh)
WO (1) WO2023029345A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116259469A (zh) * 2023-04-27 2023-06-13 安徽英大科特磁电科技有限公司 一种集成大漏感的三相变压器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871154B (zh) * 2021-08-30 2024-03-15 漳州科华电气技术有限公司 集成谐振电感的变压器、谐振腔、谐振电路以及调节方法
CN114629361B (zh) * 2022-05-13 2022-08-09 浙江日风电气股份有限公司 一种变换器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080224809A1 (en) * 2007-02-17 2008-09-18 Zhe Jiang University Magnetic integration structure
CN202549596U (zh) * 2011-12-30 2012-11-21 东软飞利浦医疗设备系统有限责任公司 谐振电感与高压变压器磁集成装置
CN106533130A (zh) * 2015-08-18 2017-03-22 Det国际控股有限公司 集成磁性部件
CN110460242A (zh) * 2019-09-12 2019-11-15 台达电子企业管理(上海)有限公司 双向隔离型谐振变换器
CN113871154A (zh) * 2021-08-30 2021-12-31 漳州科华电气技术有限公司 集成谐振电感的变压器、谐振腔、谐振电路以及调节方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005008726U1 (de) * 2004-06-07 2005-08-04 Fronius International Gmbh Transformator
CN101257255B (zh) * 2007-12-25 2011-10-12 南京航空航天大学 用于llc谐振系列拓扑磁集成变换器
CN115691946A (zh) * 2022-12-29 2023-02-03 清华大学 一种高频变压器及其漏感提升方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080224809A1 (en) * 2007-02-17 2008-09-18 Zhe Jiang University Magnetic integration structure
CN202549596U (zh) * 2011-12-30 2012-11-21 东软飞利浦医疗设备系统有限责任公司 谐振电感与高压变压器磁集成装置
CN106533130A (zh) * 2015-08-18 2017-03-22 Det国际控股有限公司 集成磁性部件
CN110460242A (zh) * 2019-09-12 2019-11-15 台达电子企业管理(上海)有限公司 双向隔离型谐振变换器
CN113871154A (zh) * 2021-08-30 2021-12-31 漳州科华电气技术有限公司 集成谐振电感的变压器、谐振腔、谐振电路以及调节方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116259469A (zh) * 2023-04-27 2023-06-13 安徽英大科特磁电科技有限公司 一种集成大漏感的三相变压器

Also Published As

Publication number Publication date
CN113871154A (zh) 2021-12-31
CN113871154B (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
WO2023029345A1 (zh) 集成谐振电感的变压器、谐振腔、谐振电路以及调节方法
EP2600512B1 (en) Resonant conversion circuit
WO2020248672A1 (zh) 平面变压器、电源转换电路以及适配器
TWI497908B (zh) 改善濾波器性能的方法及功率變換裝置
US20100109569A1 (en) Transformer with adjustable leakage inductance and driving device using the same
CN111883351A (zh) 一种基于多谐振变换器的磁芯结构
CN114710058A (zh) 适用于双向谐振变换器的谐振电感与变压器磁芯集成方法
CN214505209U (zh) 磁集成装置、直流-直流变换器及开关电源
Wang et al. Design of integrated magnetic transformer for high frequency LLC converter
CN116246880A (zh) 一种极低漏感的反激变压器绕组方法
Santi et al. Issues in flat integrated magnetics design
CN108806942A (zh) 一种多通道led驱动电路的无源元件集成装置
CN204810143U (zh) 一种抗电磁干扰的开关电源
CN220731317U (zh) 一种平板llc磁集成变压器
CN220651784U (zh) 一种平板llc双中柱磁集成变压器
CN114499193A (zh) 基于矩阵变压器的lclcl谐振变换器及其制造方法
CN111555591A (zh) 一种单通道led驱动电路的无源元件集成装置
CN109861538A (zh) 一种在并联变压器原边串联共模电感的自动均流电路
US20240079965A1 (en) LLC Resonant Converter with Windings Fabricated on PCB
CN216287941U (zh) 一种平面变压器或平面电感
TWI837808B (zh) 具有印刷電路板繞組之llc諧振電源轉換器
US20240161967A1 (en) Planar transformer
KR101254257B1 (ko) 고주파 플랫트랜스포머
WO2021258352A1 (zh) 一种电气元件、电路板及开关电源
Deng et al. Planar Magnetic Integration Design Based on LLC Resonant Converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE