WO2023028966A1 - 单码道绝对式位置测量装置 - Google Patents

单码道绝对式位置测量装置 Download PDF

Info

Publication number
WO2023028966A1
WO2023028966A1 PCT/CN2021/116318 CN2021116318W WO2023028966A1 WO 2023028966 A1 WO2023028966 A1 WO 2023028966A1 CN 2021116318 W CN2021116318 W CN 2021116318W WO 2023028966 A1 WO2023028966 A1 WO 2023028966A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
position information
absolute
cabs
incremental
Prior art date
Application number
PCT/CN2021/116318
Other languages
English (en)
French (fr)
Inventor
朱书雅
石忠东
薛颖奇
仲婷婷
孟凯
陈江虎
宋修进
李晨骋
万培迪
Original Assignee
北京精雕科技集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京精雕科技集团有限公司 filed Critical 北京精雕科技集团有限公司
Priority to PCT/CN2021/116318 priority Critical patent/WO2023028966A1/zh
Publication of WO2023028966A1 publication Critical patent/WO2023028966A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales

Definitions

  • the invention relates to the technical field of measurement, in particular to a single-track absolute position measuring device.
  • Common position measurement devices include incremental and absolute.
  • the incremental type is characterized by simple structure, quick response, and easy miniaturization, but there is error accumulation. When encountering a power failure, it is easy to cause data loss. It needs to move left and right to get the zero position signal.
  • the absolute position measuring device has a fixed zero point, the absolute position information can be obtained when the power is turned on, the anti-interference ability is strong, and there is no cumulative error, so it has stronger applicability than the incremental position measuring device in the measurement of geometric quantities.
  • the single-track absolute position measuring device is favored by the market because it is easier to miniaturize.
  • the existing absolute coding methods mainly include Gray code, pseudo-random code and Manchester code.
  • the Gray code coding method cannot meet the market demand due to the large number of code channels and the dense arrangement of reading units along the radial direction, which is not easy to miniaturize.
  • Pseudo-random code is currently the mainstream encoding method, but since the pseudo-random code can only identify a certain bit, it cannot be further subdivided. If you want to further improve the resolution, you can only increase the length of the pseudo-random sequence, which will not only increase the photoelectric array
  • the storage space requirement is high, the sequence retrieval time is long, and the cost is increased.
  • the purpose of the present invention is to provide a single track absolute position measuring device, aiming to solve the above-mentioned problems in the prior art.
  • the present invention provides a single track absolute position measuring device, comprising:
  • a single code track measurement reference unit including a non-periodically arranged and equal-width code element sequence with the first characteristic or the second characteristic;
  • the absolute code reading module is used to scan the code element sequence of the single code track measurement reference unit using a special coding rule through the sensing unit of the scanning element, and generate an initial effective absolute code after operation;
  • the absolute code correction module is used to perform logical analysis and operation processing on the initial effective absolute code to obtain the corrected final effective absolute code, and perform calculation or table lookup on the final effective absolute code to obtain rough absolute position information;
  • An incremental position information generating module configured to generate incremental position information according to the initial effective absolute code
  • a high-resolution position information generating module configured to combine the incremental position information with the rough absolute position information to obtain high-resolution absolute position information.
  • the subdividable single-track absolute position measuring device of the embodiment of the present invention has the advantages of high resolution, low cost, low storage space requirement, and fast sequence retrieval speed.
  • Fig. 1 is the schematic diagram of the single track absolute position measuring device of the embodiment of the present invention.
  • Fig. 2 is a schematic diagram of an analog signal generated by a scanning element scanning a single code track measurement reference unit according to an embodiment of the present invention
  • Fig. 3 is the working principle diagram of the absolute code reading module of the embodiment of the present invention.
  • Fig. 4 is a working principle diagram of the absolute code correction module of the embodiment of the present invention.
  • Fig. 5 is a working principle diagram of the incremental position information generating module of the embodiment of the present invention.
  • an absolute code rule is provided, which is simple in code, strong in readability, and has both the characteristics of absolute code and incremental code, and also has the characteristics of Manchester code.
  • the embodiment of the present invention also provides an absolute code reading method, which decodes through a hardware circuit to obtain an absolute code value.
  • the embodiments of the present invention provide a method for generating a high-quality incremental signal in combination with the absolute code value obtained by the above absolute code reading method, and the incremental signal is related to the absolute code value.
  • the single-track absolute position measuring device of the embodiment of the present invention through the effective absolute code and the reading of the incremental position information, subdivides the incremental position information and combines it with the final effective absolute code, so that the single-code track comparison can be realized.
  • the absolute coding scheme has the characteristics of incremental code and absolute code, and also has the characteristics of Manchester code.
  • Absolute coding sequences of different lengths and bits can be obtained through different combinations of coding constituent sequences.
  • Absolute code readout methods include signal acquisition and electrical signal processing. The signal is output through the sensitive element, and after analog-to-digital conversion, it is sent to the differential comparator module. After the operation, it is input to the logic module for logical judgment, and two absolute coding sequences can be obtained.
  • At least one of the absolute coding sequences has Manchester code characteristics.
  • the two absolute coding sequences are stored, on the other hand, they are sent to the adder for summing, and the result is sent to the differential comparator to compare with the other summing result, and the one with the larger value is the initial effective absolute coding.
  • the incremental signal generation method determines the combination of signal units sent to the adder by analyzing the initial effective absolute coding sequence, sums to obtain SIN+, COS+, SIN- and COS- signals, and obtains SIN and COS signals after differential operation.
  • the single code channel high-resolution position measurement device looks up or calculates the above-mentioned final effective absolute code to obtain rough absolute position information; at the same time, the above-mentioned SIN and COS incremental signals are subdivided and calculated to obtain a single signal period Incremental position information within . After the two are combined, the high-resolution absolute position measurement of the single-track absolute position measuring device can be realized.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features.
  • plural means two or more, unless otherwise specifically defined.
  • installation”, “connection” and “connection” should be interpreted in a broad sense, for example, it can be fixed connection, detachable connection, or integral connection; it can be mechanical connection or electrical connection; it can be It can be directly connected, or indirectly connected through an intermediary, and can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • a single-track absolute position measuring device is provided.
  • the single-track absolute position measuring device according to the embodiment of the present invention specifically includes:
  • the single-code channel measurement reference unit includes a non-periodically arranged and equal-width symbol sequence with the first characteristic or the second characteristic; wherein, the width of every two symbols in the single-code channel measurement reference unit 1 is an increment Period width, every four symbol sequences constitute a Manchester code CA or CB, or every eight symbol sequences constitute a pseudo-random code, wherein the widths of the first characteristic symbol and the second characteristic symbol are both P/2, P is an incremental cycle width, CA represents Manchester code "1", CB represents Manchester code "0”, the code composition sequence of Manchester code CA and CB includes: “1010" and "1000", “1010” and “1011”, “0101” and “0100", “0101” and "0111”, "101010” and "101000", “10101010” and "10100000".
  • the absolute code reading module is used to scan the code element sequence of the single code track measurement reference unit with special coding rules through the sensing unit of the scanning element, and generate the initial effective absolute code after operation;
  • the absolute code reading module is specifically used to: read the analog signal generated by scanning the symbol sequence and decode to generate the initial effective absolute code;
  • the scanning element includes: n sensing units arranged in a linear array, wherein the sensing unit spacing is 1/2 of the width of the symbol in the single code track measurement reference unit, and every four sensing units corresponds to a cycle width, and every eight Each sensing unit corresponds to scanning a Manchester code.
  • the sensing units used to generate absolute position information and incremental position information in the scanning element 2 are adjacent to each other, and the sensing units located in the symbol sequences CA and CB are both used to generate absolute position information, located in the symbol sequence CA The sensing unit is used to generate incremental position information;
  • the scanning element is specifically used for collecting light intensity information of the measurement reference unit and converting it into an analog signal. This analog signal is used to generate both absolute and incremental position information.
  • the scanning element can independently generate incremental position information through 8 sensing units in a symbol sequence CA, or select sensing units in different positions CA to combine to generate incremental position information.
  • Absolute code reading module including reading the analog signal generated by the scanning element and decoding to generate two sets of absolute codes, analyzing and judging the two sets of absolute codes, obtaining the initial effective absolute codes, and analyzing and calculating the initial effective absolute codes or correction to obtain the final effective absolute code, and obtain rough absolute position information through calculation or table lookup;
  • the above-mentioned absolute code reading module specifically includes:
  • the value judgment unit includes i judgment modules connected to the difference calculation unit, and is used to judge the difference result RC i through the corresponding i-th judgment module. If the difference result RC i is close to zero, then The judgment result is 1, otherwise the judgment result is 0;
  • the logic and operation unit includes m/4 operation modules, which are connected to the numerical judgment unit, and are used to perform logic and operations on the corresponding four sets of judgment results through the corresponding operation modules to obtain m/4 operation results; Among them, if the two sets of sensing units participating in the differential calculation are all within the increment period "10", the calculation result is 1, otherwise the calculation result is 0;
  • the summary unit includes two groups, which are connected with the logic and operation unit, and each group is used for summarizing the operation results bit by bit, and summing up all the operation results in odd-numbered positions to obtain the absolute code CABS', and for all The calculation results in the even-numbered positions are summarized to obtain the absolute code CABS;
  • the summing operation unit includes two groups, connected with the logic and operation unit, and each group is respectively used to perform the summation operation on the operation results bit by interval to obtain two groups of summation results respectively;
  • the difference operation unit is further used to: compare the summation results of the two groups through the m+1th difference module to obtain a difference R, and judge R, if R>0, CABS is an effective absolute code, otherwise, CABS' is a valid absolute code.
  • the absolute code correction module is used to analyze and process the initial effective absolute code to obtain the corrected final effective absolute code, and perform calculation or table lookup on the final effective absolute code to obtain rough absolute position information; that is to say , this module is used to analyze and operate the initial effective absolute code, and judge its current position.
  • the absolute encoding correction module specifically includes:
  • a logical operation unit configured to perform an XOR operation on the groups of the initially effective absolute coded sequences, and perform a logical AND operation on the operation results to obtain the RIN or RIN' value
  • Logic judgment unit used to judge whether RIN' or RIN is 1, when R ⁇ 0, if RIN' is 1, then CABS' is the final effective absolute code, if RIN' is not 1, then judge the initial effective code sequence Whether the first bit M' 1 of CABS' is 1, if it is 1, insert a value 0 before CABS', and remove the last bit of CABS' to get the final effective absolute code 0-CABS'; if M' 1 is 0, then in Insert the value 1 before CABS', and remove the last digit of CABS' to obtain the final effective absolute code 1-CABS'; when R>0, if RIN is 1, then CABS is the final effective absolute code, if If RIN is not 1, it is judged whether the first bit M1 of the initial effective coding sequence CABS is 1, and if it is 1, a value 0 is inserted before the CABS, and the last bit of the CABS is removed to obtain the final effective absolute code 0-CABS, if If M 1 is 0, the value 1 is inserted before the CABS
  • the existing effective absolute code is the final rough absolute code. Otherwise, it is necessary to determine whether to insert "1” or “0” before the initial effective absolute code according to the value of the first digit of the initial effective absolute code is "0" or "1", and remove the last digit of the initial effective absolute code to obtain the final effective absolute code sequence.
  • the current rough absolute position information can be obtained by computing or querying the encoding library.
  • the incremental position information generation module is used to generate incremental position information according to the initial effective absolute code; specifically, it is used to: find the sensing unit corresponding to the value "1" in the sequence of the initial effective absolute code, and set the same phase All the analog signals generated by the sensing unit are accumulated and processed, and the incremental position information is generated through calculation;
  • the incremental position information generation module specifically includes:
  • the sensing unit selection module is configured to analyze the initial effective absolute code sequence, find out the sensing units corresponding to the value "1" in all the generated initial effective absolute code sequences, and group them into SIN+ , COS+, SIN- and COS- four groups;
  • the adder is connected with the sensing unit selection module, and is used for summing all analog signals with the same phase to obtain incremental position information INC0, INC90, INC180 and INC270, namely SIN+, COS+, SIN- and COS- ;
  • the differential operator is connected to the adder, and is used to perform differential calculations on the incremental position information INC0 and INC180 and INC90 and INC270 respectively to obtain high-quality incremental position information IN0 and IN90 with a phase difference of 90°, That is, the SIN and COS signals, the SIN and COS signals are subdivided to obtain the incremental position information INC within a single incremental period.
  • the sensing units that generate incremental position information are adjacent to each other and have the characteristics of single-field scanning, and only the sensing units located in the coding sequence CA are used to generate incremental position information, and the sensing units in each coding sequence CA 8 sensing units generate two sets of identical SIN+, COS+, SIN- and COS- signals, the two sets of sine and cosine signals have the same amplitude and same phase, and during the scanning process of the scanning element, each selected one is used to generate an incremental signal
  • the sensing unit contains the same number of CA sequences;
  • a high-resolution position information generating module configured to combine the incremental position information with the rough absolute position information to obtain high-resolution absolute position information. It is specifically used to locate the current incremental period according to the rough absolute position information, that is, the corresponding "10" or "00" interval, and combine the incremental position information INC in the single incremental period to obtain a high-resolution absolute location information.
  • the above-mentioned device further includes:
  • the position measurement module is used to generate the process and results according to the rough absolute position information. In the case of no incremental position information, perform the two subdivision of the current Manchester code, and locate to the specific incremental cycle "10" or "00" position .
  • a single-code track absolute position measuring device is provided.
  • it can be composed of a single-code track measurement reference unit, a scanning element and a signal processing unit.
  • the scanning element scans the single-code track measurement reference unit
  • the generated analog signal is subdivided by the signal processing unit to obtain high-resolution absolute position information, wherein the single-code channel measurement reference unit is composed of a sequence of symbols with the first characteristic and the second characteristic, and the symbol of the first characteristic and the second characteristic
  • the code elements of the two characteristics are arranged aperiodically, and the width is equal, and every two symbol widths are a cycle width; every four symbol sequences constitute a Manchester code, or every eight symbol sequences constitute a pseudo-random code .
  • the scanning element is arranged in a linear array of n sensing units, and the spacing between the sensing units is 1/2 of the symbol width, that is, every four sensing units corresponds to a cycle width, and every eight sensing units corresponds to scanning a Manchester code .
  • the signal processing unit includes an absolute code reading module, an absolute code correction module, an incremental position generation module and a high-resolution position information generation module.
  • the absolute code reading module reads the analog signal generated by the scanning unit and decodes to generate an initial effective coding; the absolute code correction module analyzes and judges or corrects the initial effective absolute code to obtain the final effective absolute code, that is, the rough absolute position information; the incremental position generation module finds out the effective value that can be used for incremental position analysis according to the final effective absolute code.
  • the analog signal, the operation generates incremental position information, and subdivides the incremental position information to obtain the incremental position information in a single incremental period; the high-resolution position information generation module combines the position information in a single incremental period with Coarse absolute position information is combined to obtain high-resolution absolute position information.
  • the above-mentioned absolute code reading module is composed of a differential operation unit, a numerical judgment unit, a logic and operation unit, a summary unit, and a summation operation unit.
  • the numerical judgment unit includes i judgment modules, and the differential result RC i is respectively input to the i-th judgment module corresponding to the numerical judgment unit for judgment, if the differential result RC If i is close to zero, the judgment result is 1, otherwise the judgment result is 0;
  • the logic and operation unit contains m/4 operation modules, and each four groups of judgment results correspond to one operation module in turn, and each operation module corresponds to the corresponding four groups Perform logical AND operation on the judgment results to obtain m/4 operation results;
  • the two sets of summarization units respectively summarize the operation results bit by bit, and summarize all the operation results in odd-numbered positions to obtain the absolute code CABS', and the absolute code CABS' for all the even-numbered
  • the operation results of the bits are summarized to obtain the absolute code CABS;
  • the two groups of summation units perform the summation operation on the operation results bit by bit, respectively, and obtain two groups of summation results;
  • the m+1th difference module of the difference operation unit The group summation results are relatively
  • the absolute code correction module performs calculation and analysis on the initial effective absolute code generated by the absolute code reading module, and judges whether the current interval is "1st" or "2nd", as shown in Figure 2. If the interval is "1st", the existing initial valid absolute code is the final valid absolute code. Otherwise, it is necessary to determine whether to insert "1" or "0" before the initial effective absolute code according to the value of the first digit of the initial effective absolute code as "0" or "1", and remove the last digit of the initial effective absolute code to obtain the final effective absolute code sequence.
  • the incremental position generation module specifically includes: a sensing unit selection module, which analyzes the initial effective absolute code, and backtracks to find all corresponding sensing units that generate the value "1" in the initial effective absolute code sequence,
  • the analog signals generated by the sensing units with the same phase are accumulated and processed, as shown in Figure 5, to obtain incremental position information INC0, INC90, INC180 and INC270.
  • INC0 and INC180 and INC90 and INC270 perform differential operations respectively, high-quality incremental position information IN0 and IN90 with a phase difference of 90° are obtained, that is, SIN and COS signals.
  • the incremental position information INC within a single incremental period can be obtained, and combined with the rough absolute position information, high-resolution absolute position information can be obtained.
  • absolute encoding rule, absolute encoding reading method, and incremental position information generation method in the embodiment of the present invention are not limited to transmission type and photoelectric type measurement, and are also applicable to reflection type, magnetoelectric type, and inductive type. formula and other measurement methods.
  • the absolute code reading module performs a differential operation on the signals of the corresponding sensing units at intervals of 3 sensing units in the adjacent cycle "10" or "00", and the results are sent to the judgment unit for logical operation to obtain an absolute code . If the two sets of sensing units participating in the differential operation are all within the increment period "10", the logical operation result is 1, otherwise the logical operation result is 0, and the absolute code value of a specific number of digits can be obtained by collecting the logical operation results. In addition, after each signal acquisition, the absolute code reading module generates two sets of absolute code values, one of which has the characteristic of Manchester code code, and the other group is almost all 0 in most cases.
  • the two sets of absolute code values are summed and subtracted, and the one with the larger result is the initial effective absolute code.
  • the correct absolute code value can also be distinguished by performing XOR operation on two adjacent bits of the absolute code sequence.
  • the absolute code value is unique in the code sequence, according to the rough absolute code generation process and results, without incremental position information, the two subdivision of the Manchester code can be accurately realized, locating to Specific incremental cycle "10" or "00" position.
  • the sensing units for generating absolute and incremental position information are adjacent to each other, and have the characteristic of single-field scanning.
  • the sensing units located in the coding sequences CA and CB are both used to generate absolute position information, and the sensing units located in the coding sequence CA are used to generate incremental position information.
  • the 8 sensing units in each coding sequence CA can generate two sets of identical SIN+, COS+, SIN- and COS- signals, and the amplitudes and phases of the two sets of sine and cosine signals are equal.
  • the sensing unit used to generate incremental position information selected each time contains the same number of CA sequences, so that the amplitude and phase of the final incremental position information remain stable, so that high-quality incremental position can be obtained Information for high multiple subdivision.
  • high-quality incremental position information can be subdivided by a higher multiple within a single signal period through operations such as difference and arctangent. Combined with rough absolute position information, it can realize high-resolution position measurement of a single-track absolute measuring device.
  • the single-track absolute position measuring device can also be composed of a single-track measurement reference unit 1, a scanning element 2, an absolute code reading module 3, an absolute code correction module 4, an incremental position information generation module 5 and
  • the high-resolution location information generating module 6 is composed, as shown in Fig. 1 .
  • the scanning element 2 scans the single code track measurement reference unit 1 to generate rough absolute code analog signals A 1 ⁇ A n , which are sent to the absolute code reading module 3 for processing after analog-to-digital conversion, and two sets of absolute codes CABS and CABS' are obtained.
  • the initial effective absolute code is sent to the absolute code correction module 4 for correction to obtain the correct final absolute code sequence, and the rough absolute position information is obtained through calculation or table lookup.
  • the initial effective absolute code CABS or CABS' is sent to the incremental position information generation module 5 to distinguish the corresponding sensor unit with the value "1" in the initial effective absolute code sequence, and all the analog signals generated by the sensor units with the same phase
  • the signal is accumulated and processed, and the incremental position information is generated through calculation, and then the incremental position information is subdivided to obtain the position information INC within a single incremental cycle.
  • the position information INC within a single incremental period is combined with rough absolute position information to obtain high-resolution absolute position information ABS.
  • the single track measurement reference unit 1 is composed of a symbol sequence with the first characteristic and the second characteristic, the symbol T1 of the first characteristic and the symbol T2 of the second characteristic are arranged aperiodically, and the width are equal, both are P/2, where P is the width of an incremental cycle.
  • T1 is completely transparent or reflective
  • T2 is opaque or non-reflective.
  • the measurement benchmark adopts Manchester code for rough coding, and the width of each Manchester code is B. Every four symbol sequences generate a Manchester code CA or CB in turn, CA represents the Manchester code "1", and CB represents the Manchester code "0".
  • CA represents the Manchester code "1”
  • CB represents the Manchester code "0".
  • the Manchester code CA is composed of the symbol T1 of the first characteristic and the symbol T2 of the second characteristic alternately, which is expressed as a coding composition sequence of "1010”
  • the Manchester code CB is composed of the first characteristic symbol T1 and three consecutive
  • the code element T2 composition of the second characteristic of shows that the coding composition sequence is "1000”, but the coding composition sequence of Manchester code CA and CB is not limited to “1010” and "1000", it can also be "1010” and "1011” , "0101” and “0100”, “0101” and “0111”, “101010” and “101000”, “10101010” and “10100000” and other sequence combinations with this characteristic.
  • the scanning element 2 is a linear array sensing unit, and n sensing units D 1 to D n are sequentially arranged along the moving direction of the single code track measurement reference unit 1 .
  • the spacing between the sensing units is 1/2 of the symbol width, that is, every eight sensing units correspond to a bit of Manchester code "1" or "0", so as to read the position information of the single code track measurement reference unit 1.
  • Fig. 2 shows the absolute coding sequence "1010 1000 1000 1010 1000 1010" of the single code track measurement reference unit 1, and the corresponding six-digit Manchester code is "100101".
  • the scanning element 2 is composed of sixty sensing units D 1 to D 60 , which are arranged along the movement direction of the single code track measurement reference unit 1, and every two sensing units correspond to a code element "1" or "0", each The Manchester code corresponds to eight sensing units. Every four sensing units corresponds to an increment period P on the single code track measurement reference unit 1 .
  • the scanning element 2 scans the single code track measurement reference unit 1 to generate rough absolute code analog signals A 1 to A 60 , which are sent to the absolute code reading module 3 for processing.
  • the absolute code reading module 3 is composed of a differential operation unit 9, a numerical judgment unit 10, a logic and operation unit 11, a summary unit 12, and a summation operation unit 13.
  • the difference result RC i is respectively input to the ith judgment module of the numerical judgment unit 10 for judgment, and if the numerical value RC i is close to zero, it outputs 1, otherwise it outputs 0.
  • the output results are respectively sent to the logic and operation unit 11 for logic and operation, and each group of four is an operation module, and the operation results are M' 1 , M 1 , M' 2 , M 2 , M' 3 , M 3 , M' 4 , M 4 , M' 5 , M 5 and M' 6 , M 6 .
  • the summarizing unit 12 respectively sums up the operation results bit by bit, and obtains two sets of absolute codes CABS' and CABS, that is, sums up M' 1 to M' 6 to get CABS', and sums up M 1 to M 6 to get CABS, as shown in Fig. 3 When displaying the position, CABS and CABS' are "100101" and "100000" respectively.
  • the summation operation unit 13 respectively performs a bit-by-bit summation operation on the absolute code sequences CABS and CABS' to obtain two sets of summation results M and M' respectively, and compares the size of M and M', and the absolute code CABS corresponding to the larger value or CABS' is the original valid absolute code.
  • the final effective absolute code can determine the rough absolute position information through methods such as table lookup or calculation.
  • the absolute coding sequence shown in FIG. 3 is "100101", which is consistent with the Manchester code coding information on the single code track measurement reference unit 1 .
  • the initial effective absolute coding sequence is determined according to the R value, and all corresponding sensing units that generate the value "1" in the initial effective absolute coding sequence are found.
  • the symbol that produces the value "1" in the original effective absolute code sequence is "1010" or "0101", which is the same as the incremental code track. Therefore, the analog signals generated by the corresponding sensing units are actually SIN+, COS+, SIN-, and COS- respectively, and the analog signals generated by all the sensing units with the same phase are accumulated and processed, and sent to the adder for summing operation, to obtain Incremental position information INC0, INC90, INC180 and INC270, namely SIN+, COS+, SIN- and COS-.
  • the high-resolution position information generation module 6 combines the position information INC within a single increment period with the rough absolute position information to obtain the high-resolution position data ABS of the single-track absolute measuring device.
  • the embodiment of the present invention has the advantages of high resolution, low cost, low storage space requirement, and fast sequence retrieval speed.
  • the improvement of a technology can be clearly distinguished as an improvement in hardware (for example, improvements in circuit structures such as diodes, transistors, switches, etc.) or improvements in software (improvement in method flow).
  • improvements in many current method flows can be regarded as the direct improvement of the hardware circuit structure.
  • Designers almost always get the corresponding hardware circuit structure by programming the improved method flow into the hardware circuit. Therefore, it cannot be said that the improvement of a method flow cannot be realized by hardware physical modules.
  • a Programmable Logic Device such as a Field Programmable Gate Array (FPGA)
  • FPGA Field Programmable Gate Array
  • HDL Hardware Description Language
  • the controller may be implemented in any suitable way, for example the controller may take the form of a microprocessor or processor and a computer readable medium storing computer readable program code (such as software or firmware) executable by the (micro)processor , logic gates, switches, application specific integrated circuits (Application Specific Integrated Circuit, ASIC), programmable logic controllers and embedded microcontrollers, examples of controllers include but are not limited to the following microcontrollers: ARC 625D, Atmel AT91SAM, Microchip PIC18F26K20 and Silicone Labs C8051F320, the memory controller can also be implemented as part of the control logic of the memory.
  • controller in addition to realizing the controller in a purely computer-readable program code mode, it is entirely possible to make the controller use logic gates, switches, application-specific integrated circuits, programmable logic controllers, and embedded The same function can be realized in the form of a microcontroller or the like. Therefore, such a controller can be regarded as a hardware component, and the devices included in it for realizing various functions can also be regarded as structures within the hardware component. Or even, means for realizing various functions can be regarded as a structure within both a software module realizing a method and a hardware component.
  • a typical implementing device is a computer.
  • the computer may be, for example, a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or Combinations of any of these devices.
  • one or more embodiments of this specification may be provided as a method, system or computer program product. Accordingly, one or more embodiments of the present description may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present description may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-permanent storage in computer-readable media, in the form of random access memory (RAM) and/or nonvolatile memory, such as read-only memory (ROM) or flash RAM.
  • RAM random access memory
  • ROM read-only memory
  • Memory is an example of computer readable media.
  • Computer-readable media including both permanent and non-permanent, removable and non-removable media, can be implemented by any method or technology for storage of information.
  • Information may be computer readable instructions, data structures, modules of a program, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cartridge, tape magnetic disk storage or other magnetic storage device or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media excludes transitory computer-readable media, such as modulated data signals and carrier waves.
  • program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • program modules may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote computer storage media including storage devices.

Abstract

本发明公开了一种单码道绝对式位置测量装置,装置包括:单码道测量基准单元,包括具有第一特性或第二特性的码元序列;绝对编码读取模块,通过扫描元件的传感单元对单码道测量基准单元采用特殊编码规则的码元序列进行扫描,运算后产生最初有效绝对编码;绝对编码校正模块,对最初有效绝对编码进行分析运算处理,得到校正后的最终有效绝对编码,对最终有效绝对编码进行运算或查表,获得粗绝对位置信息;增量位置信息生成模块,根据最终有效绝对编码生成增量位置信息;高分辨率位置信息生成模块,将增量位置信息与粗绝对位置信息相结合,得到高分辨率绝对位置信息。本发明具有分辨率高、成本低、存储空间要求低,序列检索速度快的优点。

Description

单码道绝对式位置测量装置 技术领域
本发明涉及测量技术领域,尤其是涉及一种单码道绝对式位置测量装置。
背景技术
随着数控机床、机器人、工业自动化等领域精度要求的不断提高,对位置测量装置的要求也不断提高,不仅对结构体积有一定要求,还要求具有较高的分辨率。
常见的位置测量装置包括增量式和绝对式两种,增量式的特点是结构简单,响应迅速,易于小型化,但存在误差累积现象,当遭遇掉电故障时易造成数据丢失,且上电时需左右移动才能获取零位信号。绝对式位置测量装置具有固定零点,上电即可得到绝对位置信息,抗干扰能力强,且无累积误差,因此在几何量测量中相比增量式位置测量装置具有更强的适用性,其中,单码道绝对式位置测量装置由于更易于小型化,因此备受市场青睐。
现有的绝对式编码方式主要有格雷码、伪随机码和曼彻斯特码,格雷码编码方式由于码道数较多,读数单元沿径向排列紧密,不易于小型化,因此无法满足市场需求。伪随机码是目前比较主流的编码方式,但是由于伪随机码只能识别到某一位,无法进行再细分,如果想进一步提高分辨率,只能增加伪随机序列长度,不但会增加光电阵列的数量,而且还会因伪随 机序列库增大而引起存储空间要求高,序列检索时间长,成本增加等问题,并且仅通过增加伪随机序列长度也很难满足机床等设备对分辨率的要求。将伪随机码曼彻斯特化,在同样位数伪随机编码的情况下能够获得更高分辨率的绝对位置信息,但是对于单码道绝对式位置测量装置来说,单独一个曼彻斯特码道的细分能力也是有限的,无法提供更高的分辨率。
发明内容
本发明的目的在于提供一种单码道绝对式位置测量装置,旨在解决现有技术中的上述问题。
本发明提供一种单码道绝对式位置测量装置,包括:
单码道测量基准单元,包括非周期性布置且宽度相等的具有第一特性或第二特性的码元序列;
绝对编码读取模块,用于通过扫描元件的传感单元对所述单码道测量基准单元采用特殊编码规则的码元序列进行扫描,运算后产生最初有效绝对编码;
绝对编码校正模块,用于对所述最初有效绝对编码进行逻辑分析运算处理,得到校正后的最终有效绝对编码,对所述最终有效绝对编码进行运算或查表,获得粗绝对位置信息;
增量位置信息生成模块,用于根据所述最初有效绝对编码生成增量位置信息;
高分辨率位置信息生成模块,用于将所述增量位置信息,结合所述粗绝对位置信息,得到高分辨率绝对位置信息。
本发明实施例的可细分的单码道绝对式位置测量装置,具有分辨率高、成本低、存储空间要求低,序列检索速度快的优点。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的单码道绝对式位置测量装置的示意图;
图2是本发明实施例的扫描元件扫描单码道测量基准单元产生模拟信号示意图;
图3是本发明实施例的绝对编码读取模块工作原理图;
图4是本发明实施例的绝对编码校正模块工作原理图;
图5是本发明实施例的增量位置信息生成模块工作原理图。
具体实施方式
在本发明实施例的单码道绝对式位置测量装置中,提供了一种绝对式编码规则,编码简单,可读性强,兼具绝对码和增量码的特点,也具有曼彻斯特码特点。本发明实施例基于上述编码规则,还提供了一种绝对编码读数方法,通过硬件电路进行译码,获得绝对编码值。本发明实施例结合上述绝对编码读数方法得到的绝对编码值,提供了一种高质量增量信号生成方法,该增量信号与绝对编码值相关。
本发明实施例的单码道绝对式位置测量装置,通过有效绝对编码和增 量位置信息的读取,对增量位置信息进行细分后与最终有效绝对编码相结合,可实现单码道较高分辨率的位置测量。其中,绝对式编码方案具有增量码和绝对码特征,也具有曼彻斯特码特征。通过编码组成序列的不同组合,可得到不同长度和位数的绝对编码序列。绝对编码读数方法包括信号采集和电信号处理。信号通过敏感元件输出,经模数转换后,送入差分比较器模块,运算结束后输入逻辑模块进行逻辑判断,可获得两个绝对编码序列。其中至少一个绝对编码序列具有曼彻斯特码特征。一方面将两个绝对编码序列进行存储,另一方面送入加法器求和,结果送入差分比较器与另一求和结果比较,数值大者即为最初有效绝对编码。通过对最初绝对编码生成过程和结果的分析,可准确定位至特定位置,实现单码道绝对式位置测量装置的粗定位。增量信号生成方法通过分析最初有效绝对编码的序列,确定送入加法器的信号单元组合,求和得到SIN+、COS+、SIN-和COS-信号,差分运算后得到SIN和COS信号。根据本发明实施例的单码道高分辨率位置测量装置对上述最终有效绝对编码查表或运算,获得粗绝对位置信息;同时将上述SIN和COS增量信号进行细分运算可获得单信号周期内的增量位置信息。二者结合后即可实现单码道绝对式位置测量装置的高分辨率绝对位置测量。
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本 发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。此外,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
根据本发明实施例,提供了一种单码道绝对式位置测量装置,根据本发明实施例的单码道绝对式位置测量装置具体包括:
单码道测量基准单元,包括非周期性布置且宽度相等的具有第一特性或第二特性的码元序列;其中,单码道测量基准单元1中的每两个码元宽度为一个增量周期宽度,每四个码元序列构成一位曼彻斯特码CA或CB,或者每八个码元序列构成一位伪随机码,其中,第一特性的码元和第二特性码元的宽度均为P/2,P为一个增量周期宽度,CA代表曼彻斯特码“1”,CB代表曼彻斯特码“0”,曼彻斯特码CA和CB的编码组成序列包括:“1010”和“1000”、“1010”和“1011”、“0101”和“0100”、“0101”和“0111”、“101010”和“101000”、“10101010”和“10100000”。
绝对编码读取模块,用于通过扫描元件的传感单元对单码道测量基准单元采用特殊编码规则的码元序列进行扫描,运算后产生最初有效绝对编码;
绝对编码读取模块具体用于:读取对码元序列进行扫描产生的模拟信 号并译码生成所述最初有效绝对编码;
其中,扫描元件包括:n个传感单元线阵排列,其中,传感单元间距是单码道测量基准单元中码元宽度的1/2,每四个传感单元对应一个周期宽度,每八个传感单元对应扫描一位曼彻斯特码。扫描元件2中用于生成绝对位置信息和增量位置信息的传感单元彼此相邻,位于码元序列CA和CB内的传感单元均被用于产生绝对位置信息,位于码元序列CA内的传感单元被用于产生增量位置信息;
扫描元件具体用于:采集测量基准单元的光强信息,转换为模拟信号。该模拟信号既被用于生成绝对位置信息,也被用于生成增量位置信息。所述扫描元件可以通过一个码元序列CA内的8个传感单元单独生成增量位置信息,或者,选择不同位置CA内的传感单元进行组合产生增量位置信息。
绝对编码读取模块,包括用于读取扫描元件产生的模拟信号并译码生成两组绝对编码,对两组绝对编码进行分析和判断,得到最初有效绝对编码,对最初有效绝对编码进行分析运算或修正,得到最终有效绝对编码,运算或查表获得粗绝对位置信息;
上述绝对编码读取模块具体包括:
差分运算单元,包括m+1个差分模块,用于分别通过对应的第i个差分模块依次对相邻两个周期内间隔3个传感单元的相应传感单元产生的模拟信号A i和A i+4进行差分运算,分别得到差分结果RC i,其中i=1,2,3,……,m,m为大于等于1的整数;
数值判断单元,包括i个判断模块,与所述差分运算单元连接,用于通过对应的第i个判断模块分别对所述差分结果RC i进行判断,若所述差分结果RC i接近于零则判断结果为1,否则判断结果为0;
逻辑与运算单元,包括m/4个运算模块,与所述数值判断单元连接,用于通过对应的运算模块分别对其对应的四组判断结果进行逻辑与运算,得到m/4个运算结果;其中,参与差分运算的两组传感单元若均处于增量 周期“10”内时,运算结果为1,否则运算结果为0;
汇总单元,包括两组,与所述逻辑与运算单元连接,每组分别用于对所述运算结果进行逐间隔位汇总,对所有排在奇数位的运算结果汇总得到绝对编码CABS',对所有排在偶数位的运算结果汇总得到绝对编码CABS;
求和运算单元,包括两组,与所述逻辑与运算单元连接,每组分别用于对所述运算结果进行逐间隔位的求和运算,分别得到两组求和结果;
所述差分运算单元进一步用于:通过第m+1个差分模块对所述两组求和结果进行比较大小,得到差值R,并对R进行判断,若R>0,则CABS为有效绝对编码,否则,CABS'为有效绝对编码。
绝对编码校正模块,用于对所述最初有效绝对编码进行分析运算处理,得到校正后的最终有效绝对编码,对所述最终有效绝对编码进行运算或查表,获得粗绝对位置信息;也就是说,该模块用于对最初有效绝对编码进行分析运算,判断其当前所处位置。
所述绝对编码校正模块具体包括:
逻辑运算单元,用于将所述最初有效绝对编码的序列分组进行异或运算,并将运算结果进行逻辑与运算,得到RIN或RIN'值;
逻辑判断单元,用于判断RIN'或RIN是否为1,当R≤0时,若RIN'为1,则CABS'即为最终有效绝对编码,若RIN'不为1,则判断最初有效编码序列CABS'首位M' 1是否为1,若为1,则在CABS'前插入数值0,并去除CABS'最后一位,得到最终有效绝对编码0-CABS';若M' 1为0,则在CABS'前插入数值1,并去除CABS'最后一位,得到所述最终有效绝对编码1-CABS';当R>0时,若RIN为1,则CABS即为所述最终有效绝对编码,若RIN不为1,则判断最初有效编码序列CABS首位M 1是否为1,若为1,则在CABS前插入数值0,并去除CABS最后一位,得到所述最终有效绝对编码0-CABS,若M 1为0,则在CABS前插入数值1,并去除CABS最后一位,得到所述最终有效绝对编码1-CABS。
也就是说,若所处位置在伪随机码对应曼彻斯特码“10”的“1”部分或曼彻斯特码“01”的“0”部分,则现有有效绝对编码即为最终粗绝对编码。否则,需根据最初有效绝对编码首位值为“0”还是“1”,确定在最初有效绝对编码前插入“1”或“0”,并去除最初有效绝对编码最后一位,得到最终有效绝对编码序列。通过运算或查询编码库,即可得到当前所处的粗绝对位置信息。
增量位置信息生成模块,用于根据所述最初有效绝对编码生成增量位置信息;具体用于:查找所述最初有效绝对编码的序列中数值“1”所对应传感单元,将相位相同的传感单元产生的所有模拟信号进行累加处理,经过运算产生所述增量位置信息;
所述增量位置信息生成模块具体包括:
传感单元选择模块,用于对所述最初有效绝对编码序列进行分析,查找产生的所有所述最初有效绝对编码的序列中数值“1”所对应传感单元,根据其相位信息进行分组为SIN+、COS+、SIN-和COS-四组;
加法器,与所述传感单元选择模块连接,用于将所有相位相同的模拟信号进行求和运算,得到增量位置信息INC0、INC90、INC180和INC270,即SIN+、COS+、SIN-和COS-;
差分运算器,与所述加法器连接,用于将所述增量位置信息INC0与INC180和INC90与INC270分别进行差分运算后,得到相位差为90°的高质量增量位置信息IN0和IN90,即SIN和COS信号,对所述SIN和COS信号进行细分运算,得到单增量周期内的增量位置信息INC。
也就是说,生成增量位置信息的传感单元彼此相邻且具有单场扫描特点,仅位于编码序列CA内的传感单元均被用于产生增量位置信息,每个编码序列CA内的8个传感单元生成两组相同的SIN+、COS+、SIN-和COS-信号,两组正余弦信号幅值相等、相位相同,在扫描元件扫描过程中,每次选择的用于生成增量信号的传感单元含有相同数量的CA序列;
高分辨率位置信息生成模块,用于将所述增量位置信息,结合所述粗绝对位置信息,得到高分辨率绝对位置信息。具体用于,根据粗绝对位置信息定位当前所处的增量周期,即对应的“10”或“00”区间,结合所述单增量周期内的增量位置信息INC,得到高分辨率绝对位置信息。
在本发明实施例中,上述装置进一步包括:
位置测量模块,用于根据粗绝对位置信息生成过程和结果,在无增量位置信息的情况下,进行现曼彻斯特码的二细分,定位至特定的增量周期“10”或“00”位置。
以下结合附图,对本发明实施例的上述技术方案进行举例说明。
在本实例中,提供了一种单码道绝对式位置测量装置,在一个实施例中,可以由单码道测量基准单元、扫描元件和信号处理单元组成,扫描元件扫描单码道测量基准单元产生模拟信号经信号处理单元细分处理后得到高分辨率绝对位置信息,其中,单码道测量基准单元由具有第一特性和第二特性的码元序列组成,第一特性的码元和第二特性的码元非周期性布置,且宽度相等,每两个码元宽度为一个周期宽度;每四个码元序列构成一位曼彻斯特码,或每八个码元序列构成一位伪随机码。
该扫描元件由n个传感单元线阵排列,传感单元间距是码元宽度的1/2,即每四个传感单元对应一个周期宽度,每八个传感单元对应扫描一位曼彻斯特码。
该信号处理单元包括绝对编码读取模块、绝对编码校正模块、以及增量位置生成模块和高分辨率位置信息生成模块,绝对编码读取模块读取扫描单元产生的模拟信号译码生成最初有效绝对编码;绝对编码校正模块对最初有效绝对编码进行分析判断或修正,得到最终有效绝对编码,即粗绝对位置信息;增量位置生成模块根据最终有效绝对编码,找出可用于增量位置分析的有效模拟信号,运算产生增量位置信息,并对增量位置信息进行细分运算,得到单增量周期内的增量位置信息;高分辨率位置信息生成 模块将单增量周期内的位置信息与粗绝对位置信息相结合,得到高分辨率绝对位置信息。
上述绝对编码读取模块由差分运算单元、数值判断单元、逻辑与运算单元、汇总单元、求和运算单元组成,扫描元件扫描产生的模拟信号共分为n/4个周期,差分运算单元包含m+1个差分模块,其中m为大于等于1的整数,依次将扫描元件产生的粗绝对码模拟信号A i和A i+4送入差分运算单元对应的第i个差分模块进行差分运算,分别得到差分结果RC i,其中i=1、2、……m;数值判断单元包含i个判断模块,差分结果RC i分别输入到数值判断单元对应的第i个判断模块进行判断,若差分结果RC i接近于零则判断结果为1,否则判断结果为0;逻辑与运算单元包含m/4个运算模块,每四组判断结果依次对应一个运算模块,每一个运算模块分别对其对应的四组判断结果进行逻辑与运算,得到m/4个运算结果;两组汇总单元分别对运算结果进行逐间隔位汇总,对所有排在奇数位的运算结果汇总得到绝对编码CABS',对所有排在偶数位的运算结果汇总得到绝对编码CABS;两组求和运算单元分别对运算结果进行逐间隔位的求和运算,分别得到两组求和结果;差分运算单元的第m+1个差分模块对两组求和结果比较大小,数值大者所对应的绝对编码CABS或CABS'即为最初有效绝对编码。
绝对编码校正模块,对绝对编码读取模块产生的最初有效绝对编码进行运算分析,判断其当前所处区间为“1st”还是“2nd”,如图2所示。若所处区间为“1st”,则现有最初有效绝对编码即为最终有效绝对编码。否则,需根据最初有效绝对编码首位值为“0”还是“1”,确定在最初有效绝对编码前插入“1”还是“0”,并去除最初有效绝对编码最后一位,得到最终有效绝对编码序列。具体为如图4所示,当R≤0,即CABS'为最初有效绝对编码时,对最初有效绝对编码序列分组进行异或运算,然后对异或运算结果进行逻辑与运算得到逻辑值RIN',通过值判断判断逻辑值RIN'是否为1。若RIN'为1,则CABS'即为最终有效绝对编码。否则,需要判断最初有效 绝对编码序列首位M' 1是否为1。若M' 1=1,则需在CABS'编码前插入0,并将CABS'编码的最后一位去掉,得到最终有效绝对编码0-CABS'。否则,需在CABS'编码前插入1,并将CABS'编码的最后一位去掉,得到最终有效绝对编码1-CABS'。当R>0,即CABS为最初有效绝对编码时,对最初有效绝对编码序列分组进行异或运算,然后对异或运算结果进行逻辑与运算得到逻辑值RIN,通过值判断判断逻辑值RIN是否为1。若RIN为1,则CABS即为最终有效绝对编码。否则,需要判断最初有效绝对编码首位M 1是否为1。若M 1=1,则需在CABS编码前插入0,并将CABS编码的最后一位去掉,得到最终有效绝对编码0-CABS。否则,需在CABS编码前插入1,并将CABS编码的最后一位去掉,得到最终有效绝对编码1-CABS。通过运算或查询编码库,即可得到粗绝对位置信息。
在本发明实施例中,增量位置生成模块具体包括:传感单元选择模块,其对最初有效绝对编码进行分析,回溯查找所有产生最初有效绝对编码序列中数值“1”的对应传感单元,将相位相同的传感单元产生的模拟信号进行累加处理,如图5所示,得到增量位置信息INC0、INC90、INC180和INC270。INC0与INC180和INC90与INC270分别进行差分运算后,得到相位差为90°的高质量增量位置信息IN0和IN90,即SIN和COS信号。对其进行细分运算,即可得到单增量周期内的增量位置信息INC,结合粗绝对位置信息,即可得到高分辨率绝对位置信息。
需要说明的是,在本发明实施例中的绝对编码规则、绝对式编码读数方法和增量位置信息生成方法不局限于透射式、光电式测量,也同样适用于反射式、磁电式、电感式等测量方式。
绝对编码读取模块对相邻周期“10”或“00”内间隔3个传感单元的相应传感单元信号两两进行差分运算,结果送入判断单元后,进行逻辑运算,获得绝对式编码。参与差分运算的两组传感单元若均处于增量周期“10”内时,逻辑运算结果为1,否则逻辑运算结果为0,汇集逻辑运算结果可得 特定位数的绝对编码值。此外,每次信号采集后绝对编码读取模块生成两组绝对编码值,其中一组具有曼彻斯特码编码特点,另一组则多数情况下几乎全为0。对两组绝对码值作求和及做差运算,结果大者即为最初有效绝对编码。亦可通过对绝对码序列相邻两位作异或运算等方法,分辨出正确的绝对编码值。在本发明实施例中,由于绝对编码值在编码序列中具有唯一性,根据粗绝对编码生成过程和结果,在无增量位置信息的情况下,可准确实现曼彻斯特码的二细分,定位至特定的增量周期“10”或“00”位置。
在本发明实施例中,用于生成绝对和增量位置信息的传感单元彼此相邻,具有单场扫描特点。位于编码序列CA和CB内的传感单元均被用于产生绝对位置信息,位于编码序列CA内的传感单元被用于产生增量位置信息。每个编码序列CA内的8个传感单元可生成两组相同的SIN+、COS+、SIN-和COS-信号,两组正余弦信号幅值相等、相位相同。扫描元件扫描过程中,每次选择的用于生成增量位置信息的传感单元含有相同数量的CA序列,使得最终增量位置信息幅值和相位保持稳定,因而可获得高质量的增量位置信息,进行高倍数细分。
在本发明实施例中,高质量增量位置信息通过差分及反正切等运算,可实现单信号周期内较高倍数的细分。其与粗绝对位置信息结合,可实现单码道绝对式测量装置高分辨率的位置测量。
在另一个实例中,单码道绝对式位置测量装置还可以由单码道测量基准单元1、扫描元件2、绝对编码读取模块3、绝对编码校正模块4、增量位置信息生成模块5和高分辨率位置信息生成模块6组成,如图1所示。扫描元件2扫描单码道测量基准单元1产生粗绝对码模拟信号A 1~A n,经模数转换后送入绝对编码读取模块3进行处理,得到两组绝对编码CABS和CABS',经数值比较后,将最初有效绝对编码送入绝对编码校正模块4进行校正,得到正确的最终绝对编码序列,运算或查表获得粗绝对位置信 息。同时,将最初有效绝对编码CABS或CABS'送入增量位置信息生成模块5,分辨出最初有效绝对编码序列中数值“1”的对应传感单元,将相位相同的传感单元产生的所有模拟信号进行累加处理,经过运算产生增量位置信息,再对增量位置信息进行细分运算,可得到单增量周期内的位置信息INC。在高分辨率位置信息生成模块6中,将单增量周期内的位置信息INC与粗绝对位置信息相结合,即可得到高分辨率绝对位置信息ABS。
如图1所示,单码道测量基准单元1由具有第一特性和第二特性的码元序列组成,第一特性的码元T1和第二特性的码元T2非周期性布置,且宽度相等,均为P/2,其中P为一个增量周期宽度。其中,T1具有完全透光或反光特性,T2具有不透光或不反光特性。测量基准采用曼彻斯特码进行粗编码,每位曼彻斯特码宽度均为B。每四个码元序列依次生成一位曼彻斯特码CA或CB,CA代表曼彻斯特码“1”,CB代表曼彻斯特码“0”。图1中,曼彻斯特码CA由第一特性的码元T1和第二特性的码元T2交替组成,表现为编码组成序列为“1010”,曼彻斯特码CB由第一特性码元T1和三个连续的第二特性的码元T2组成,表现为编码组成序列为“1000”,但是曼彻斯特码CA和CB的编码组成序列不限于“1010”和“1000”,也可以是“1010”和“1011”、“0101”和“0100”、“0101”和“0111”、“101010”和“101000”、“10101010”和“10100000”等具此特点的序列组合。
扫描元件2为线阵传感单元,由n个传感单元D 1至D n沿单码道测量基准单元1的运动方向依次排列。传感单元间距为码元宽度的1/2,即每八个传感单元对应一位曼彻斯特码“1”或“0”,以读取单码道测量基准单元1的位置信息。
图2显示了单码道测量基准单元1的绝对编码序列“1010 1000 1000 1010 1000 1010”,对应的六位曼彻斯特码为“100101”。扫描元件2由六十个传感单元D 1至D 60组成,沿单码道测量基准单元1运动方向排列放置,每两个传感单元对应一个码元“1”或“0”,每个曼彻斯特码对应八个传感 单元。每四个传感单元对应单码道测量基准单元1上的一个增量周期P。扫描元件2扫描单码道测量基准单元1后产生粗绝对码模拟信号A 1到A 60,送入绝对编码读取模块3进行处理。
如图3所示,绝对编码读取模块3由差分运算单元9、数值判断单元10、逻辑与运算单元11、汇总单元12、求和运算单元13组成,分别依次将扫描元件2产生的粗绝对码模拟信号A i和A i+4送入差分运算单元9的第i个模块进行差分运算,其中i=1、2、……、48。差分结果RC i分别输入到数值判断单元10的第i个判断模块进行判断,如果数值RC i接近于零则输出1,否则输出0。输出结果分别送入逻辑与运算单元11进行逻辑与运算,每四组为一个运算模块,运算结果依次为M' 1、M 1、M' 2、M 2、M' 3、M 3、M' 4、M 4、M' 5、M 5以及M' 6、M 6。汇总单元12分别对运算结果进行逐间隔位汇总,得到两组绝对编码CABS'和CABS,即对M' 1~M' 6汇总得到CABS',对M 1~M 6汇总得到CABS,图3所示位置时,CABS和CABS'分别为“100101”和“100000”。求和运算单元13分别对绝对编码序列CABS和CABS'进行逐位求和运算,分别得到两组求和结果M和M',对M和M'比较大小,数值大者所对应的绝对编码CABS或CABS'即为最初有效绝对编码。将最初有效绝对编码送入绝对编码校正模块4进行运算分析,确定最初有效绝对编码是否需要修正,判断其当前所处区间为“1st”还是“2nd”,如图2所示。若所处区间为“1st”,则现有最初有效绝对编码即为最终有效绝对编码。否则,需根据最初有效绝对编码首位值为“0”还是“1”,确定在最初有效绝对编码前插入“1”或“0”,并去除最初有效绝对编码最后一位,得到最终有效绝对编码序列。具体为如图4所示,当R≤0时,即CABS'为最初有效绝对编码时,对最初有效绝对编码序列分组进行异或运算,然后对异或运算结果进行逻辑与运算得到逻辑值RIN',通过值判断判断逻辑值RIN'是否为1。若RIN'为1,则CABS’即为最终有效绝对编码。否则,需要判断最初有效绝对编码首位M' 1是否为1。若M' 1=1,则需在CABS'编 码前插入0,并将CABS'编码序列的最后一位去掉,得到最终有效绝对编码0-CABS'。否则,需在CABS'编码前插入1,并将CABS'编码的最后一位去掉,得到最终有效绝对编码1-CABS'。当R>0时,即CABS为最初有效绝对编码时,对最初有效绝对编码序列分组进行异或运算,然后对异或运算结果进行逻辑与运算得到逻辑值RIN,通过值判断判断逻辑值RIN是否为1。若RIN为1,则CABS即为最终有效绝对编码。否则,需要判断最初有效绝对编码首位M 1是否为1。若M 1=1,则需在CABS编码前插入0,并将CABS编码的最后一位去掉,得到最终有效绝对编码0-CABS。否则,需在CABS编码前插入1,并将CABS编码的最后一位去掉,得到最终有效绝对编码1-CABS。最终有效绝对编码通过查表或运算等方法即可确定粗绝对位置信息。本实施例中图3所示的绝对编码序列为“100101”,与单码道测量基准单元1上的曼彻斯特码编码信息一致。
如图5所示,根据R值判断出最初有效绝对编码序列,查找出最初有效绝对编码序列中所有产生数值“1”的对应传感单元。最初有效绝对编码序列中产生数值“1”的码元为“1010”或“0101”,与增量式码道相同。因此,对应传感单元产生的模拟信号其实分别为SIN+、COS+、SIN-和COS-,将所有相位相同的传感单元产生的模拟信号进行累加处理,并送入加法器进行求和运算,得到增量位置信息INC0、INC90、INC180和INC270,即SIN+、COS+、SIN-和COS-。INC0与INC180和INC90与INC270分别进行差分运算后,得到相位差为90°的高质量增量位置信息IN0和IN90,即SIN和COS信号。对其进行细分运算,即可得到单增量周期内的位置信息INC。
高分辨率位置信息生成模块6将单增量周期内的位置信息INC与粗绝对位置信息相结合,即可得到单码道绝对式测量装置的高分辨率位置数据ABS。
综上所述,借助于本发明实施例的技术方案,具有分辨率高、成本低、 存储空间要求低,序列检索速度快的优点。
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
在20世纪30年代,对于一个技术的改进可以很明显地区分是硬件上的改进(例如,对二极管、晶体管、开关等电路结构的改进)还是软件上的改进(对于方法流程的改进)。然而,随着技术的发展,当今的很多方法流程的改进已经可以视为硬件电路结构的直接改进。设计人员几乎都通过将改进的方法流程编程到硬件电路中来得到相应的硬件电路结构。因此,不能说一个方法流程的改进就不能用硬件实体模块来实现。例如,可编程逻辑器件(Programmable Logic Device,PLD)(例如现场可编程门阵列(Field Programmable Gate Array,FPGA))就是这样一种集成电路,其逻辑功能由用户对器件编程来确定。由设计人员自行编程来把一个数字系统“集成”在一片PLD上,而不需要请芯片制造厂商来设计和制作专用的集成电路芯片。而且,如今,取代手工地制作集成电路芯片,这种编程也多半改用“逻辑编译器(logic compiler)”软件来实现,它与程序开发撰写时所用的软件编译器相类似,而要编译之前的原始代码也得用特定的编程语言来撰写,此称之为硬件描述语言(Hardware Description Language,HDL),而HDL也并非仅有一种,而是有许多种,如ABEL(Advanced Boolean Expression Language)、AHDL(Altera Hardware Description Language)、Confluence、CUPL(Cornell University Programming Language)、HDCal、JHDL(Java Hardware Description Language)、Lava、Lola、MyHDL、PALASM、RHDL(Ruby Hardware Description Language)等,目前最普遍使用的是VHDL (Very-High-Speed Integrated Circuit Hardware Description Language)与Verilog。本领域技术人员也应该清楚,只需要将方法流程用上述几种硬件描述语言稍作逻辑编程并编程到集成电路中,就可以很容易得到实现该逻辑方法流程的硬件电路。
控制器可以按任何适当的方式实现,例如,控制器可以采取例如微处理器或处理器以及存储可由该(微)处理器执行的计算机可读程序代码(例如软件或固件)的计算机可读介质、逻辑门、开关、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑控制器和嵌入微控制器的形式,控制器的例子包括但不限于以下微控制器:ARC 625D、Atmel AT91SAM、Microchip PIC18F26K20以及Silicone Labs C8051F320,存储器控制器还可以被实现为存储器的控制逻辑的一部分。本领域技术人员也知道,除了以纯计算机可读程序代码方式实现控制器以外,完全可以通过将方法步骤进行逻辑编程来使得控制器以逻辑门、开关、专用集成电路、可编程逻辑控制器和嵌入微控制器等的形式来实现相同功能。因此这种控制器可以被认为是一种硬件部件,而对其内包括的用于实现各种功能的装置也可以视为硬件部件内的结构。或者甚至,可以将用于实现各种功能的装置视为既可以是实现方法的软件模块又可以是硬件部件内的结构。
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。
为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本说明书实施例时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
本领域内的技术人员应明白,本说明书一个或多个实施例可提供为方法、系统或计算机程序产品。因此,本说明书一个或多个实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本说明书可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本说明书是参照根据本说明书实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器 (RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本说明书一个或多个实施例可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本说明书的一个或多个实施例,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
以上所述仅为本文件的实施例而已,并不用于限制本文件。对于本领域技术人员来说,本文件可以有各种更改和变化。凡在本文件的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本文件的权利要求范围之内。

Claims (10)

  1. 一种单码道绝对式位置测量装置,其特征在于,包括:
    单码道测量基准单元,包括非周期性布置且宽度相等的具有第一特性或第二特性的码元序列;
    绝对编码读取模块,用于通过扫描元件的传感单元对所述单码道测量基准单元采用特殊编码规则的码元序列进行扫描,运算后产生最初有效绝对编码;
    绝对编码校正模块,用于对所述最初有效绝对编码进行分析运算处理,得到校正后的最终有效绝对编码,对所述最终有效绝对编码进行运算或查表,获得粗绝对位置信息;
    增量位置信息生成模块,用于根据所述最初有效绝对编码生成增量位置信息;
    高分辨率位置信息生成模块,用于将增量位置信息与粗绝对位置信息相结合,得到高分辨率绝对位置信息。
  2. 根据权利要求1所述的装置,其特征在于,所述单码道测量基准单元中的每两个码元宽度为一个增量周期宽度,每四个码元序列构成一位曼彻斯特码CA或者CB,或者每八个码元序列构成一位伪随机码,其中,第一特性的码元和第二特性码元的宽度均为P/2,P为一个增量周期宽度,CA代表曼彻斯特码“1”,CB代表曼彻斯特码“0”,曼彻斯特码CA和CB的编码组成序列包括:“1010”和“1000”、“1010”和“1011”、“0101”和“0100”、“0101”和“0111”、“101010”和“101000”、“10101010”和“10100000”。
  3. 根据权利要求1所述的装置,其特征在于,所述扫描元件包括:n个传感单元线阵排列,其中,所述传感单元间距是所述单码道测量基准单元中码元宽度的1/2,每四个传感单元对应一个周期宽度,每八个传感单元对应扫描一位曼彻斯特码。
  4. 根据权利要求1所述的装置,其特征在于,
    所述绝对编码读取模块具体用于:读取对码元序列进行扫描产生的模拟信号并译码生成所述最初有效绝对编码;
    所述增量位置信息生成模块具体用于:查找所述最初有效绝对编码的序列中数值“1”所对应传感单元,将相位相同的传感单元产生的所有模拟信号进行累加处理,经过细分运算产生所述增量位置信息;
    高分辨率位置信息生成模块具体用于,将所述增量位置信息与所述粗绝对位置信息进行结合,根据所述粗绝对位置信息定位当前所处的增量周期,结合单增量周期内的增量位置信息INC,得到高分辨率绝对位置信息。
  5. 根据权利要求4所述的装置,其特征在于,所述绝对编码读取模块具体包括:
    差分运算单元,包括m+1个差分模块,用于分别通过对应的第i个差分模块依次对相邻两个周期内间隔3个传感单元的相应传感单元产生的模拟信号A i和A i+4进行差分运算,分别得到差分结果RC i,其中i=1,2,3,……,m,m为大于等于1的整数;
    数值判断单元,包括i个判断模块,与所述差分运算单元连接,用于通过对应的第i个判断模块分别对所述差分结果RC i进行判断,若所述差分结果RC i接近于零则判断结果为1,否则判断结果为0;
    逻辑与运算单元,包括m/4个运算模块,与所述数值判断单元连接,用于通过对应的运算模块分别对其对应的四组判断结果进行逻辑与运算,得到m/4个运算结果;其中,参与差分运算的两组传感单元若均处于增量周期“10”内时,运算结果为1,否则运算结果为0;
    汇总单元,包括两组,与所述逻辑与运算单元连接,每组分别用于对所述运算结果进行逐间隔位汇总,对所有排在奇数位的运算结果汇总得到绝对编码CABS',对所有排在偶数位的运算结果汇总得到绝对编码CABS;
    求和运算单元,包括两组,与所述逻辑与运算单元连接,每组分别用 于对所述运算结果进行逐间隔位的求和运算,分别得到两组求和结果;
    所述差分运算单元进一步用于:通过第m+1个差分模块对所述两组求和结果进行比较大小,得到差值R,并对R进行判断,若R>0,则CABS为最初有效绝对编码,否则,CABS'为最初有效绝对编码。
  6. 根据权利要求4所述的装置,其特征在于,所述绝对编码校正模块具体包括:
    逻辑运算单元,用于将所述最初有效绝对编码的序列分组进行异或运算,并将运算结果进行逻辑与运算,得到RIN或RIN'值;
    逻辑判断单元,用于判断RIN'或RIN是否为1,当R≤0时,若RIN'为1,则CABS'即为最终有效绝对编码,若RIN'不为1,则判断最初有效编码序列CABS'首位M' 1是否为1,若为1,则在CABS'前插入数值0,并去除CABS'最后一位,得到最终有效绝对编码0-CABS';若M' 1为0,则在CABS'前插入数值1,并去除CABS'最后一位,得到所述最终有效绝对编码1-CABS';当R>0时,若RIN为1,则CABS即为所述最终有效绝对编码,若RIN不为1,则判断最初有效编码序列CABS首位M 1是否为1,若为1,则在CABS前插入数值0,并去除CABS最后一位,得到所述最终有效绝对编码0-CABS,若M 1为0,则在CABS前插入数值1,并去除CABS最后一位,得到所述最终有效绝对编码1-CABS。
  7. 根据权利要求4所述的装置,其特征在于,所述增量位置信息生成模块具体包括:
    传感单元选择模块,用于对所述最初有效绝对编码序列进行分析,查找产生的所有所述最初有效绝对编码的序列中数值“1”所对应传感单元,根据其相位信息进行分组为SIN+、COS+、SIN-和COS-四组;
    加法器,与所述传感单元选择模块连接,用于将所有相位相同的模拟信号进行求和运算,得到增量位置信息INC0、INC90、INC180和INC270,即SIN+、COS+、SIN-和COS-;
    差分运算器,与所述加法器连接,用于将所述增量位置信息INC0与INC180和INC90与INC270分别进行差分运算后,得到相位差为90°的高质量增量位置信息IN0和IN90,即SIN和COS信号,对所述SIN和COS信号进行细分运算,得到单增量周期内的增量位置信息INC。
  8. 根据权利要求1所述的装置,其特征在于,所述装置进一步包括:
    位置测量模块,用于根据所述粗绝对位置信息生成过程和结果,在无增量位置信息的情况下,进行现曼彻斯特码的二细分,定位至特定的增量周期“10”或“00”位置。
  9. 根据权利要求1所述的装置,其特征在于,所述扫描元件中用于生成绝对位置信息和增量位置信息的传感单元彼此相邻,位于码元序列CA和CB内的传感单元均被用于产生粗绝对位置信息,位于码元序列CA内的传感单元被用于产生增量位置信息。
  10. 根据权利要求9所述的装置,其特征在于,所述扫描元件具体用于:
    通过一个码元序列CA内的8个传感单元单独生成增量位置信息,或者,选择不同位置CA内的传感单元进行组合产生增量位置信息。
PCT/CN2021/116318 2021-09-02 2021-09-02 单码道绝对式位置测量装置 WO2023028966A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/116318 WO2023028966A1 (zh) 2021-09-02 2021-09-02 单码道绝对式位置测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/116318 WO2023028966A1 (zh) 2021-09-02 2021-09-02 单码道绝对式位置测量装置

Publications (1)

Publication Number Publication Date
WO2023028966A1 true WO2023028966A1 (zh) 2023-03-09

Family

ID=85410782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116318 WO2023028966A1 (zh) 2021-09-02 2021-09-02 单码道绝对式位置测量装置

Country Status (1)

Country Link
WO (1) WO2023028966A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040173735A1 (en) * 2003-03-05 2004-09-09 Darin Williams Absolute incremental position encoder and method
CN101464131A (zh) * 2007-12-19 2009-06-24 约翰尼斯海登海恩博士股份有限公司 位置测量装置和用于确定绝对位置的方法
CN102037332A (zh) * 2008-05-02 2011-04-27 约翰尼斯海登海恩博士股份有限公司 位置测量设备
CN108777606A (zh) * 2018-05-30 2018-11-09 深圳市华星光电技术有限公司 解码方法、设备及可读存储介质
CN111289015A (zh) * 2018-12-10 2020-06-16 北京精雕科技集团有限公司 一种多分辨率绝对式位置测量装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040173735A1 (en) * 2003-03-05 2004-09-09 Darin Williams Absolute incremental position encoder and method
CN101464131A (zh) * 2007-12-19 2009-06-24 约翰尼斯海登海恩博士股份有限公司 位置测量装置和用于确定绝对位置的方法
CN102037332A (zh) * 2008-05-02 2011-04-27 约翰尼斯海登海恩博士股份有限公司 位置测量设备
CN108777606A (zh) * 2018-05-30 2018-11-09 深圳市华星光电技术有限公司 解码方法、设备及可读存储介质
CN111289015A (zh) * 2018-12-10 2020-06-16 北京精雕科技集团有限公司 一种多分辨率绝对式位置测量装置

Similar Documents

Publication Publication Date Title
US5252825A (en) Absolute encoder using interpolation to obtain high resolution
CN102037332B (zh) 位置测量设备
JP5103267B2 (ja) 絶対位置測長型エンコーダ
CN107314780B (zh) 定位绝对码的解码装置及解码方法
CN108362208A (zh) 一种伪随机码道光栅尺及其读取方法
KR20140117500A (ko) 위치를 구하는 방법 및 장치
US20190120660A1 (en) Compact pseudorandom scale and read head for an inductive type absolute position encoder
US7148817B2 (en) Device for positional and/or length determination
WO2023028966A1 (zh) 单码道绝对式位置测量装置
WO2014061380A1 (ja) 位置検出装置
US20100088053A1 (en) Phase detection device and position detection device
WO2023028967A1 (zh) 绝对式位置测量装置
CN112880712A (zh) 光磁绝对式编码器、运动设备的位置确定方法及装置
CN113447051B (zh) 单码道绝对式位置测量装置
EP1342992B1 (en) Position transducer
CN116718216A (zh) 一种基于fpga的交流伺服串行通信编码器位置反馈脉冲分频输出方法及系统
CN113686365B (zh) 绝对式位置测量装置
KR101341804B1 (ko) 절대 위치 측정 방법, 절대 위치 측정 장치, 및 스케일
CN110296722B (zh) 一种磁编码器的编码方法和磁编码器
JP2021060341A (ja) アブソリュートリニアエンコーダ
CN110375776B (zh) 一种旋转编码器
JP2000055647A (ja) スケール装置
JPH04136715A (ja) エンコーダ
JP5294377B2 (ja) アブソリュート型リニアエンコーダとアクチュエータ
CN116499501B (zh) 一种磁传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955504

Country of ref document: EP

Kind code of ref document: A1