WO2023028799A1 - 定子芯、定子组件和电机 - Google Patents

定子芯、定子组件和电机 Download PDF

Info

Publication number
WO2023028799A1
WO2023028799A1 PCT/CN2021/115510 CN2021115510W WO2023028799A1 WO 2023028799 A1 WO2023028799 A1 WO 2023028799A1 CN 2021115510 W CN2021115510 W CN 2021115510W WO 2023028799 A1 WO2023028799 A1 WO 2023028799A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
stator core
lamination
cooling channel
cooling
Prior art date
Application number
PCT/CN2021/115510
Other languages
English (en)
French (fr)
Inventor
裘华潮
Original Assignee
舍弗勒技术股份两合公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司 filed Critical 舍弗勒技术股份两合公司
Priority to PCT/CN2021/115510 priority Critical patent/WO2023028799A1/zh
Priority to CN202180100029.5A priority patent/CN117616666A/zh
Publication of WO2023028799A1 publication Critical patent/WO2023028799A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium

Definitions

  • the present disclosure relates to the field of motor technology, in particular to a stator core, a stator assembly and a motor.
  • the stator of the motor can be cooled using a cooling water jacket constructed at the motor housing.
  • the stator core of the stator is pressed tightly with its outer surface on the motor housing to transfer heat to the cooling water flowing through the cooling water jacket, whereby the heat is carried away from the motor by means of the discharged cooling water.
  • stator core for a stator assembly of an electric motor.
  • the stator core is formed by lamination of stator laminations, wherein the stator laminations include a lamination main body, an outer ring portion and a beam portion, wherein the lamination main body is annular and is configured with teeth distributed along the circumferential direction on the radial inner side part, wherein the outer ring part is annular and the lamination main body is concentrically arranged in the outer ring part, wherein the beam parts are distributed along the circumferential direction and respectively connect the lamination main body and the outer ring part, wherein the extension direction of the beam part is inclined to The radial direction of the stator laminations.
  • the electrical machines mentioned here are in particular designed as inner rotor electrical machines.
  • the stator core is in the shape of a sleeve as a whole, and the rotor of the motor can be accommodated in the central hole of the stator core.
  • the stator laminations are ring-shaped as a whole.
  • the terms "axial”, “radial” and “circumferential” are based on the axis of rotation of the motor, that is, the center of the stator laminations. axis.
  • the laminate body of the stator laminate comprises an inner ring part and teeth protruding from the inner ring part radially inward, wherein grooves are formed between the teeth parts in the circumferential direction.
  • the teeth or grooves are evenly distributed in the circumferential direction.
  • the outer ring surrounds the laminated core body concentrically.
  • the outer ring part forms an outer sleeve for connection to an external component, such as a motor housing.
  • the radial dimension of the outer ring part is preferably designed to be relatively narrow while maintaining strength, so that the additionally increased radial dimension of the stator core is small.
  • a plurality of webs are formed in one piece between the outer ring part and the laminated core body.
  • the beams are distributed along the circumferential direction in the annular space formed by the lamination body and the outer ring, wherein the radially outer ends of the beams are connected to the outer ring, and the radially inner ends of the beams The portion is connected to the inner ring portion of the lamination body, thereby forming a hollow portion between the beam portions.
  • the beams overall extend in a direction oblique to the radial direction of the stator laminations, whereby the radial stiffness is low in the annular region between the outer ring and the inner ring of the lamination body.
  • the above-mentioned annular region including the beam portion forms a separation zone between the outer sleeve composed of the outer ring portion and the stator yoke composed of the inner ring portion.
  • the isolation belt can isolate the vibration of the stator yoke during operation, and can also absorb the deformation of the stator yoke during operation, thereby improving the NVH performance at the stator of the motor.
  • the isolation belt should also have sufficient strength, so that the isolation belt can bear the torque from the stator yoke and resist vibration, and can also support the outer sleeve so that it is preferably fixed to the motor casing by press fit body place.
  • the direction of extension of the beams is alternately inclined to the radial direction of the stator laminations in two directions along the circumferential direction.
  • the extending direction of the beam portion is alternately inclined to the radial direction of the stator laminations in the clockwise direction and in the counterclockwise direction.
  • two, three or more adjacent beams as a beam group, the beams within a beam group are inclined towards the same circumferential direction, and the beams of adjacent beam groups are directed oppositely The circumferential direction is alternately inclined.
  • the stator core can especially adapt to the working condition that the rotor of the electric motor needs to rotate in both directions.
  • the direction of extension of the beams is inclined in one direction in the circumferential direction relative to the radial direction of the stator laminations.
  • the extending directions of all the beams are inclined clockwise to the radial direction of the stator stacks, or the extending directions of all the beams are counterclockwise inclined to the radial direction of the stator stacks.
  • the stator core can especially adapt to the working condition that the rotor of the electric motor needs to rotate in one direction.
  • the actual structure of the beam portion can be designed according to the requirements of the motor in terms of NVH characteristics.
  • the beam portion can be linear as a whole, or the beam portion can be configured as a broken line or an arc as a whole.
  • connection between the beam and the lamination body and/or the connection between the beam and the outer ring is configured with rounded corners.
  • the beams can also be locally modified in order to adjust the stiffness of the beams in the radial direction.
  • the design of the rounded corners can be used to make the beam portion extend in a Z-shape as a whole in a direction oblique to the radial direction, thereby adjusting, especially reducing, the stiffness of the beam portion in the radial direction.
  • a hollow portion is formed between adjacent beam portions along the circumferential direction, and the stator core forms cooling passages through the axial ends of the stator core by means of the hollow portion.
  • the insulating cooling medium can flow in the cooling channel, whereby the heat at the stator core can be transferred to the insulating cooling medium and carried away from the electrical machine as the insulating cooling medium is discharged.
  • the stator assembly or more precisely the stator core can be effectively cooled, and it is possible to dispense with a cooling water jacket arranged on the motor housing, thereby reducing the radial dimensions of the motor.
  • stator core includes a plurality of cooling passages distributed along the circumferential direction, respectively penetrating the stator core in the axial direction, and only one of the cooling passages is used as an example for description herein.
  • the stator core comprises a plurality of lamination stacks of stator laminations distributed in the axial direction, wherein within the lamination stack the individual stator laminations are arranged axially aligned and each The cutouts of the stator laminations form rectilinear cooling channel sections, wherein the lamination packs are arranged such that the teeth of all stator laminations of the stator core are axially aligned and the cooling of adjacent lamination packs is ensured.
  • the channel sections communicate with each other in the axial direction and are not perfectly aligned to form cooling channels of varying extent.
  • the insulating cooling medium can flow for a longer time in the stator core at a slower flow rate due to the greater flow resistance and/or due to the longer channel length. In this case, more heat from the stator core can be transferred to the insulating cooling medium, thus improving the cooling effect.
  • the individual cooling channel sections forming the above-mentioned variable cooling channel are designed identically, and the meandering direction of the cooling channel is formed by relative deflection of the individual cooling channel sections in the circumferential direction.
  • the stator laminations of the stator core are designed identically, and meandering cooling channels are achieved by means of the rotational arrangement of the different lamination stacks in the circumferential direction.
  • the insulating cooling medium can thus flow in the stator core for a longer period of time, and more heat from the stator core can be transferred to the insulating cooling medium, thereby increasing the cooling effect.
  • the rotational arrangement can also advantageously reduce stator core thickness tolerances due to stator lamination thickness tolerances.
  • stator laminations of the stator core may all be of identical design, which form several, preferably four or eight lamination stacks.
  • the stator laminations are arranged in perfect alignment, ie in such a way that both beams and teeth are axially aligned.
  • the lamination stacks can be rotated by 90° in the circumferential direction relative to the lamination stacks adjacent to them.
  • a lamination stack can be rotated by 45° in the circumferential direction relative to its adjacent lamination stack.
  • the stator core comprises an intermediate lamination pack, wherein, with regard to the configuration of the cutout, the stator laminations of the intermediate lamination pack are relatively opposite to the stator laminations of the lamination packs on the axially opposite sides of the intermediate lamination pack. Sheets are structured differently.
  • the cooling channels have a channel cross section that varies in the direction of extension, so that the insulating cooling medium can flow in the stator core for a longer period of time, and the heat of the stator core can be transferred more to the insulating cooling Medium, thereby improving the cooling effect.
  • the spacing of the beams in the circumferential direction is designed such that the cooling channel section of at least one laminated core can communicate with the two axially adjacent laminated cores of the at least one laminated core.
  • cooling channel segments so that the cooling channels are constructed with branches.
  • stator assembly for an electric motor.
  • the stator assembly includes a stator core and stator windings constructed according to the embodiments described above.
  • the above object is achieved by an electric motor.
  • the electric machine includes the above-mentioned stator assembly.
  • the design of the beam portion can be used to form an isolation zone capable of isolating the vibration of the stator yoke and absorbing the deformation of the stator yoke.
  • cooling passages through which the insulating cooling medium flows can also be formed by means of the beams, so that the stator core can be directly cooled. Therefore, both NVH performance and cooling effect at the stator of the electric machine can be improved.
  • Figure 1 is a front view of a stator lamination according to one embodiment
  • Figure 2 is a partially enlarged view of Figure 1;
  • Fig. 3 is a perspective view of a stator core formed by lamination of stator laminations according to Fig. 1;
  • Figure 4 is a perspective view of the stator core according to Figure 3 assembled in a motor housing.
  • FIG. 5 is a perspective view of a detail of the stator core according to FIG. 3 assembled in the motor housing.
  • FIG. 1 shows a front view of a stator lamination according to an embodiment.
  • the stator stack can be used in a drive motor of an electric vehicle.
  • the drive motor is designed as an inner rotor motor and comprises a stator assembly and a rotor assembly.
  • the stator assembly includes a stator core and stator windings.
  • stator core is formed by stacking stator laminations as shown in FIG. 1 .
  • FIG. 2 shows a partially enlarged view of FIG. 1 .
  • stator laminations are ring-shaped as a whole.
  • the stator lamination comprises a lamination main body 1 , an outer ring portion 2 and beam portions 3 , 4 .
  • the lamination body 1 includes an inner ring portion and a tooth portion 8 protruding radially inward from the inner ring portion.
  • the toothing 8 is evenly distributed in the circumferential direction.
  • Groove portions 7 are formed between the tooth portions 8 in the circumferential direction.
  • the outer ring portion 2 is annular and concentrically surrounds the laminated body 1 .
  • a plurality of beams 3 , 4 are formed in one piece between the outer ring part 2 and the inner ring part of the laminated core body 1 .
  • the beams 3, 4 are substantially evenly distributed in the circumferential direction.
  • the beams 3 , 4 are connected with their radially outer ends to the outer ring 2 and with their radially inner ends to the inner ring of the laminated core body 1 .
  • the extension directions of the beams 3 , 4 are alternately inclined to the radial direction of the stator laminations in two directions along the circumferential direction.
  • the beams 3 and 4 are arranged alternately in the circumferential direction, wherein the extending direction of the beams 3 is inclined clockwise to the radial direction of the stator laminations , the extending direction of the beam portion 4 is inclined counterclockwise to the radial direction of the stator laminations.
  • substantially T-shaped or inverted T-shaped hollow portions 5 , 6 are formed between the beam portions 3 , 4 .
  • the connecting parts of the beams 3, 4 and the lamination body 1 are rounded, and the connecting parts of the beams 3, 4 and the outer ring part 2 are rounded, so that the beams 3, 4 are Z-shaped as a whole.
  • the Z-shaped beam design with rounded corners can avoid the local stress concentration of the stator laminations and the fracture of the beam area on the one hand; on the other hand, it can also partially modify the beams 3 and 4 to adjust the beam 3 , 4 stiffness in the radial direction. In this case, the radial stiffness is lower in the annular region between the outer ring part 2 and the inner ring part of the laminated body 1 .
  • FIG. 3 shows a perspective view of a stator core 100 formed by lamination of stator laminations according to FIG. 1 . 1, 2 and 3, after the stator laminations are laminated to form the stator core 100, the groove part 7 forms the stator slot of the stator core 100, the inner ring part forms the stator yoke of the stator core 100, and the outer ring part 2 Forming the outer sleeve for connection with the motor housing 200, the annular region comprising the beam portions 3, 4 forms a separation strip between the outer sleeve and the stator yoke.
  • FIG. 4 shows a perspective view of the stator core 100 according to FIG. 3 assembled in a motor housing 200 .
  • the outer sleeve of the stator core 100 is fixed on the radial inner side of the motor housing 200 through press fit.
  • the isolation belt can isolate the vibration from the stator yoke and absorb the deformation of the stator yoke, thereby reducing or even avoiding the transmission of vibration and deformation to the outer sleeve and further to the motor housing 200 .
  • the NVH performance at the stator of the electric machine is thereby improved.
  • FIG. 5 is a perspective view of a detail 100 of the stator core according to FIG. 3 assembled in a motor housing 200 .
  • the stator core 100 forms cooling passages through the axial ends of the stator core 100 by means of the hollow parts 5 and 6 .
  • the stator laminations of the stator core 100 are all identically constructed, forming eight lamination stacks 11 , 12 , 13 . In each lamination stack 11 , 12 , 13 the stator laminations are arranged in perfect alignment, ie in such a way that the beams 3 , 4 and the teeth 8 are both axially aligned.
  • each laminated core a rectilinearly extending cooling channel section is formed by the respective cutout 5 , 6 .
  • the lamination stacks 12 , 13 can be rotated by 45° in the circumferential direction relative to the lamination stacks 11 , 12 adjacent thereto. Specifically, the lamination set 12 is rotated 45° in the circumferential direction relative to the adjacent lamination set 11 , the lamination set 13 is rotated 45° in the circumferential direction relative to the adjacent lamination set 12 , and so on. In this case, the teeth 8 of all the stator laminations of the stator core 100 are axially aligned so as to form axially extending stator slots.
  • the cooling channel sections of adjacent lamination stacks 11 , 12 , 13 communicate with each other in the axial direction and are not completely aligned, so that the respective cooling channel sections are formed axially through the stator core 100 and generally follow a helical Extended cooling channels.
  • an insulating cooling medium for example cooling oil
  • the cooling channel is configured in a spiral shape, so that the insulating cooling medium can flow in the stator core 100 for a longer time at a slower flow rate due to a greater flow resistance and due to a longer channel length, thereby improving the cooling effect .
  • the stator assembly or more precisely the stator core 100 can be effectively cooled without a cooling water jacket at the motor housing 200 , thereby reducing the radial dimensions of the motor.
  • the rotational arrangement of the lamination stacks 11 , 12 , 13 also advantageously enables the reduction of stator core thickness tolerances due to stator lamination thickness tolerances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本公开涉及一种定子芯、定子组件和电机。所述定子芯(100)由定子叠片叠压形成,其中,定子叠片包括:叠片主体(1),其呈环状并且在径向内侧构造有沿圆周方向分布的齿部(8);外环部(2),其呈环状并且叠片主体(1)同心地布置在外环部(2)内;梁部(3、4),其沿圆周方向分布并且分别连接叠片主体(1)和外环部(2),其中,梁部(3、4)的延伸方向倾斜于定子叠片的径向。所述定子组件包括上述定子芯(100)和定子绕组。所述电机包括上述定子组件。

Description

定子芯、定子组件和电机 技术领域
本公开涉及电机技术领域,特别涉及一种定子芯、定子组件和电机。
背景技术
随着新能源汽车产业的发展,其驱动电机也趋向高压化、高速化、小型化方向发展。为此,要求电机功率密度有大幅度提升。然而,电机功率密度又受到电机的散热能力的限制。
在一种当前的电机冷却方案中,能够采用构造在电机壳体处的冷却水套对电机的定子进行冷却。在此,定子的定子芯以其外表面紧密地压紧在电机壳体处以将热量传递给流经冷却水套的冷却水,由此借助排出的冷却水将热量带出电机。
然而,按照电机的工作原理,定子芯内部会产生电磁力以使得转子产生转矩。在这种情况下,定子芯会产生变形和振动。由于定子芯与电机壳体紧密接触,这种变形和振动会传递到电机壳体和冷却水套,因此会导致NVH(噪声、振动和不平顺性)问题。
发明内容
因此,本公开的目的在于提供一种电机,其中,特别在该电机的定子处的NVH性能可以得到改善。
根据本公开的第一方面,上述目的通过一种用于电机的定子组件的定子芯实现。所述定子芯由定子叠片叠压形成,其中,定子叠片包括叠片主体、外环部和梁部,其中,叠片主体呈环状并且在径向内侧构造有沿圆周方向分布的齿部,其中,外环部呈环状并且叠片主体同心地布置在外环部内,其中,梁部沿圆周方向分布并且分别连接叠片主体和外环部,其中,梁部的延伸方向倾斜于定子叠片的径向。
在此提及的电机特别构造为内转子式电机。定子芯整体呈套筒状,定子芯的中心孔内能够容纳电机的转子。在此,定子叠片整体呈环状。在本 文的描述中,需要说明的是,除非另有明确的规定和限定,否则术语“轴向”、“径向”和“圆周方向”均基于电机的旋转轴线、也即定子叠片的中轴线。
在此,定子叠片的叠片主体包括内环部和从内环部朝向径向内侧伸出的齿部,其中,沿圆周方向在齿部之间形成槽部。优选地,齿部或者槽部在圆周方向上均匀分布。在将定子叠片叠压成定子芯后,内环部能够构成定子轭,槽部能够构成定子槽。
在此,外环部同心地包围叠片主体。在将定子叠片叠压成定子芯后,外环部形成用于与外部构件、例如电机壳体连接的外套筒。在此,外环部的径向尺寸优选在保证强度的情况下较窄地构造,从而定子芯的额外增加的径向尺寸较小。
在此,多个梁部一体式地构造在外环部和叠片主体之间。具体地,梁部沿圆周方向分布在由叠片主体和外环部形成的环状空间中,其中,梁部的径向外侧的端部与外环部连接,梁部的径向内侧的端部与叠片主体的内环部连接,从而在梁部之间形成镂空部。
梁部整体沿倾斜于定子叠片的径向的方向延伸,由此在外环部和叠片主体的内环部之间的环状区域中的径向刚度较低。在将定子叠片叠压成定子芯后,由上述包括梁部的环状区域形成在由外环部构成的外套筒和由内环部构成的定子轭之间的隔离带。在此,隔离带能够隔离定子轭在运行时的振动,也可以吸收定子轭在运行时的变形,从而改善电机的定子处的NVH性能。在此,需要说明的是,隔离带也应有足够的强度,使得隔离带足以承载来自定子轭的扭矩并且抵抗振动,此外还能够支承外套筒以使其优选通过压配合固定在电机壳体处。
在一种优选的实施方式中,梁部的延伸方向在沿圆周方向的两个方向上交替地倾斜于定子叠片的径向。换言之,梁部的延伸方向沿顺时针方向和沿逆时针的方向交替地倾斜于定子叠片的径向。在此,可能的是,每两个相邻的梁部朝向相反的圆周方向交替地倾斜于定子叠片的径向延伸。也可能的是,以两个、三个或者更多相邻的梁部为一个梁部组,梁部组内的梁部朝向相同的圆周方向倾斜,相邻的梁部组的梁部朝向相反的圆周方向 交替倾斜。在这种情况下,定子芯尤其能够适配电机的转子需要双向旋转的工况。
在一种备选的实施方式中,梁部的延伸方向在沿圆周方向的一个方向上倾斜于定子叠片的径向。换言之,全部梁部的延伸方向沿顺时针方向倾斜于定子叠片的径向,或者全部梁部的延伸方向沿逆时针的方向倾斜于定子叠片的径向。在这种情况下,定子芯尤其能够适配电机的转子需要单向旋转的工况。
在此,梁部的实际结构能够根据电机在NVH特性方面的需求进行设计,具体地,梁部可以整体呈直线形,或者,梁部可以整体构造为折线形或弧线形。
在一种优选的实施方式中,梁部与叠片主体的连接部和/或梁部与外环部的连接部构造有圆角。在此,一方面能够避免定子叠片的局部应力集中,避免梁部区域的断裂;另一方面也能够使梁部局部地改型,以调节梁部在径向上的刚度。例如,能够借助圆角的设计使得梁部整体呈Z形地在倾斜于径向的方向上延伸,由此调节、尤其降低梁部在径向上的刚度。
在一种优选的实施方式中,沿圆周方向在相邻的梁部之间形成镂空部,定子芯借助镂空部形成贯通定子芯的轴向两端的冷却通道。在此,绝缘冷却介质能够在冷却通道中流动,由此定子芯处的热量能够传递到绝缘冷却介质并且随着绝缘冷却介质的排出而被带离电机。在这种情况下,定子组件或者更确切地定子芯能够得到有效的冷却,必要时可以省去设置在电机壳体处的冷却水套,由此减少电机的径向尺寸。
需要说明的是,定子芯包括沿圆周方向分布的多个分别沿轴向贯通定子芯的冷却通道,在本文中为方便描述仅以其中一个冷却通道进行示例性的说明。
在一种有利的实施方式中,定子芯包括沿轴向分布的多个由定子叠片组成的叠片组,其中,在叠片组之内,各个定子叠片在轴向上对齐布置并且各个定子叠片的镂空部形成直线形延伸的冷却通道区段,其中,如此布置叠片组,使得定子芯的全部定子叠片的齿部沿轴向对齐,并且使得相邻的叠片组的冷却通道区段在轴向上彼此连通并且不完全对齐以组成变化延 伸的冷却通道。借助于这种变化延伸的冷却通道,绝缘冷却介质能够因更大的流动阻力而以更慢的流速和/或因更长的通道长度而在定子芯中流动更长的时间。在这种情况下,定子芯的更多热量可以传递到绝缘冷却介质中,从而提高冷却效果。
在此,有利地,组成上述变化延伸的冷却通道的各个冷却通道区段均相同地构造,借助各个冷却通道区段在圆周方向上的相对偏转形成冷却通道的曲折的延伸方向。在这种情况下,定子芯的定子叠片相同地构造,借助不同叠片组在圆周方向上的旋转布置实现曲折延伸的冷却通道。绝缘冷却介质由此能够在定子芯中流动更长的时间,定子芯的更多热量可以传递到绝缘冷却介质中,从而提高冷却效果。此外,旋转布置还能够有利地减少因定子叠片厚度公差引起的定子芯厚度公差。
在此,可能的是,定子芯的定子叠片全部相同地构造,这些定子叠片组成多个、优选四个或八个叠片组。在每个叠片组中,定子叠片完全对齐地布置、也即以梁部和齿部均轴向对齐的方式布置。在存在四个叠片组的实施例中,叠片组能够相对与其相邻的叠片组沿圆周方向旋转90°。在存在八个叠片组的实施例中,叠片组能够相对与其相邻的叠片组沿圆周方向旋转45°。
在此,有利地,组成上述变化延伸的冷却通道的各个冷却通道区段中存在中间冷却通道区段,其中,中间冷却通道区段和与中间冷却通道区段在轴向两侧连通的冷却通道区段不同地构造,从而形成冷却通道在延伸方向上变化的通道截面。在这种情况下,定子芯包括中间叠片组,其中,在镂空部的构造方面,中间叠片组的定子叠片相对于该中间叠片组的轴向两侧的叠片组的定子叠片不同地构造。在此,借助不同构造的定子叠片,冷却通道具有在延伸方向上变化的通道截面,从而绝缘冷却介质能够在定子芯中流动更长的时间,定子芯的热量可以更多地传递到绝缘冷却介质中,从而提高冷却效果。
在一种有利的实施方式中,如此设计梁部在圆周方向上的间距,使得至少一个叠片组的冷却通道区段能够连通与该至少一个叠片组轴向相邻的叠片组的两个冷却通道区段,从而冷却通道构造有支路。在此这种情况下, 有利于按照冷却需求调节绝缘冷却介质在定子芯中的流动范围以及流动时常。
根据本公开的第二方面,上述目的通过一种用于电机的定子组件实现。所述定子组件包括根据上述实施方式构造的定子芯和定子绕组。
根据本公开的第三方面,上述目的通过一种用于电机实现。所述电机包括上述的定子组件。
在上述实施方式提供的定子芯、定子组件和电机中,可以借助梁部的设计形成能够隔离定子轭的振动并且吸收定子轭的变形的隔离带。与此同时,还可以借助梁部形成供绝缘冷却介质的流通的冷却通道,从而能够直接地对定子芯进行冷却。因此,电机的定子处的NVH性能和冷却效果均能得到改善。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是根据一种实施方式的定子叠片的主视图;
图2是图1的局部放大图;
图3是由根据图1的定子叠片叠压形成的定子芯的立体图;
图4是装配在电机壳体中的根据图3的定子芯的立体图;和
图5是装配在电机壳体中的根据图3的定子芯的局部的立体图。
具体实施方式
图1示出了根据一种实施方式的定子叠片的主视图。该定子叠片能够用于电动车的驱动电机。在此,驱动电机构造为内转子式电机并且包括定子组件和转子组件。定子组件包括定子芯和定子绕组。
在本实施方式中,定子芯由如图1所示的定子叠片叠压形成。图2示出了图1的局部放大图。
如图1和图2所示,定子叠片整体呈环状。定子叠片包括叠片主体1、外环部2和梁部3、4。
叠片主体1包括内环部和从内环部朝向径向内侧伸出的齿部8。在此, 齿部8在圆周方向上均匀分布。沿圆周方向在齿部8之间形成槽部7。
外环部2呈环状并且同心地包围叠片主体1。
多个梁部3、4一体式地构造在外环部2和叠片主体1的内环部之间。梁部3、4沿圆周方向基本均匀地分布。梁部3、4以径向外侧的端部与外环部2连接并且以径向内侧的端部与叠片主体1的内环部连接。梁部3、4的延伸方向在沿圆周方向的两个方向上交替地倾斜于定子叠片的径向。具体地,从图1和图3所示出的方向观察,梁部3和梁部4在圆周方向上交替布置,其中,梁部3的延伸方向沿顺时针方向倾斜于定子叠片的径向,梁部4的延伸方向沿逆时针的方向倾斜于定子叠片的径向。由此,在梁部3、4之间形成大致呈T形或倒T形的镂空部5、6。梁部3、4与叠片主体1的连接部构造有圆角,梁部3、4与外环部2的连接部构造有圆角,梁部3、4由此整体呈Z形。带有圆角的Z形梁部设计一方面能够避免定子叠片的局部应力集中,避免梁部区域的断裂;另一方面也能够使梁部3、4局部地改型,以调节梁部3、4在径向上的刚度。在这种情况下,在外环部2和叠片主体1的内环部之间的环状区域中的径向刚度较低。
图3示出了由根据图1的定子叠片叠压形成的定子芯100的立体图。结合图1、图2和图3可见,在将定子叠片叠压成定子芯100后,槽部7形成定子芯100的定子槽,内环部形成定子芯100的定子轭,外环部2形成用于与电机壳体200连接的外套筒,包括梁部3、4的环状区域形成在外套筒和定子轭之间的隔离带。
图4示出了装配在电机壳体200中的根据图3的定子芯100的立体图。如图4所示,定子芯100以其外套筒通过压配合固定在电机壳体200的径向内侧。在电机运行时,能够借助隔离带隔离来自定子轭的振动并且吸收定子轭的变形,从而减少、甚至避免振动和变形传递到外套筒并且进而传递到电机壳体200。电机的定子处的NVH性能由此得到改善。
图5是装配在电机壳体200中的根据图3的定子芯的100局部的立体图。尤其由图3、图4和图5所示,定子芯100借助镂空部5、6形成贯通定子芯100的轴向两端的冷却通道。在本实施方式中,定子芯100的定子叠片全部相同地构造,这些定子叠片组成八个叠片组11、12、13。在每个 叠片组11、12、13中,定子叠片完全对齐地布置、也即以梁部3、4和齿部8均轴向对齐的方式布置。由此,在每个叠片组中,由相应的镂空部5、6形成直线形延伸的冷却通道区段。叠片组12、13能够相对与其相邻的叠片组11、12沿圆周方向旋转45°。具体地,叠片组12相对与其相邻的叠片组11沿圆周方向旋转45°,叠片组13相对与其相邻的叠片组12沿上述圆周方向旋转45°,以此类推。在这种情况下,定子芯100的全部定子叠片的齿部8沿轴向对齐,从而形成沿轴向延伸的定子槽。同时,相邻的叠片组11、12、13的冷却通道区段在轴向上彼此连通并且不完全对齐,从而由各个冷却通道区段组成在轴向上贯通定子芯100并且大致沿螺线延伸的冷却通道。
在此,绝缘冷却介质、例如冷却油能够在冷却通道中流动,由此定子芯处的热量能够传递到绝缘冷却介质并且随着绝缘冷却介质的排出而被带离电机。在此,冷却通道构造为螺线形,因此绝缘冷却介质能够因更大的流动阻力而以更慢的流速并且因更长的通道长度而在定子芯100中流动更长的时间,从而提高冷却效果。在这种情况下,定子组件或者更确切地定子芯100能够得到有效的冷却,无需在电机壳体200处的冷却水套,由此减少电机的径向尺寸。此外,叠片组11、12、13的旋转布置还能够有利地减少因定子叠片厚度公差引起的定子芯厚度公差。
显然,本公开的上述实施例仅仅是为了清楚说明本公开所作的举例,而并非是对本公开的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开权利要求的保护范围之内。
附图标记列表
1     叠片主体
2     外环部
3     梁部
4     梁部
5     镂空部
6     镂空部
7     定子槽
8     齿部
11    叠片组
12    叠片组
13    叠片组
100   定子芯
200   壳体

Claims (10)

  1. 定子芯(100),用于电机的定子组件,其中,所述定子芯(100)由定子叠片叠压形成,其中,所述定子叠片包括:
    叠片主体(1),其中,所述叠片主体(1)呈环状并且在径向内侧构造有沿圆周方向分布的齿部(8);
    外环部(2),其中,所述外环部(2)呈环状,并且所述叠片主体(1)同心地布置在所述外环部(2)内;
    梁部(3、4),其中,所述梁部(3、4)沿圆周方向分布并且分别连接所述叠片主体(1)和所述外环部(2),其中,所述梁部(3、4)的延伸方向倾斜于所述定子叠片的径向。
  2. 根据权利要求1所述的定子芯(100),其中,所述梁部(3、4)的延伸方向在沿圆周方向的两个方向上交替地倾斜于所述定子叠片的径向。
  3. 根据权利要求1或2所述的定子芯(100),其中,所述梁部(3、4)与所述叠片主体(1)的连接部和/或所述梁部(3、4)与所述外环部(2)的连接部构造有圆角。
  4. 根据权利要求1至3中任一项所述的定子芯(100),其中,沿圆周方向在相邻的所述梁部(3、4)之间形成镂空部(5、6),所述定子芯(100)借助所述镂空部(5、6)形成贯通所述定子芯(100)的轴向两端的冷却通道。
  5. 根据权利要求4所述的定子芯(100),其中,所述定子芯(100)包括沿轴向分布的多个由定子叠片组成的叠片组(11、12、13),
    其中,在所述叠片组(11、12、13)之内,各个定子叠片在轴向上对齐布置并且所述各个定子叠片的镂空部(5、6)形成直线形延伸的冷却通道区段,
    其中,如此布置所述叠片组(11、12、13),使得所述定子芯(100)的全部定子叠片的齿部(8)沿轴向对齐,并且使得相邻的叠片组(11、12、13)的冷却通道区段在轴向上彼此连通并且不完全对齐以组成变化延伸的冷却通道。
  6. 根据权利要求5所述的定子芯(100),其中,组成所述变化延伸的冷却通道的各个冷却通道区段均相同地构造,借助所述各个冷却通道区段在圆周方向上的相对旋转形成所述冷却通道的曲折的延伸方向。
  7. 根据权利要求5所述的定子芯(100),其中,组成所述变化延伸的冷却通道的各个冷却通道区段中存在中间冷却通道区段,其中,所述中间冷却通道区段和与所述中间冷却通道区段在轴向两侧连通的冷却通道区段不同地构造,从而形成所述冷却通道在延伸方向上变化的通道截面。
  8. 根据权利要求5至7中任一项所述的定子芯(100),其中,如此设计所述梁部(3、4)在圆周方向上的间距,使得至少一个叠片组的冷却通道区段能够连通与所述至少一个叠片组轴向相邻的叠片组的两个冷却通道区段,从而所述冷却通道构造有支路。
  9. 定子组件,包括根据权利要求1至8中任一项所述的定子芯(100)和定子绕组。
  10. 电机,包括根据权利要求9所述的定子组件。
PCT/CN2021/115510 2021-08-31 2021-08-31 定子芯、定子组件和电机 WO2023028799A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/115510 WO2023028799A1 (zh) 2021-08-31 2021-08-31 定子芯、定子组件和电机
CN202180100029.5A CN117616666A (zh) 2021-08-31 2021-08-31 定子芯、定子组件和电机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/115510 WO2023028799A1 (zh) 2021-08-31 2021-08-31 定子芯、定子组件和电机

Publications (1)

Publication Number Publication Date
WO2023028799A1 true WO2023028799A1 (zh) 2023-03-09

Family

ID=85411766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115510 WO2023028799A1 (zh) 2021-08-31 2021-08-31 定子芯、定子组件和电机

Country Status (2)

Country Link
CN (1) CN117616666A (zh)
WO (1) WO2023028799A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383532A (zh) * 2007-09-04 2009-03-11 通用电气公司 用于冷却转子和定子电机铁芯的装置和方法
JP2015115994A (ja) * 2013-12-10 2015-06-22 トヨタ自動車株式会社 回転電機のステータ
CN108880111A (zh) * 2017-05-16 2018-11-23 哈米尔顿森德斯特兰德公司 具有增强的定子冷却和降低的风阻损失的发电机
WO2021090001A1 (en) * 2019-11-05 2021-05-14 Cummins Generator Technologies Limited Stator for a rotating electrical machine
CN112886772A (zh) * 2021-01-05 2021-06-01 浙江盘毂动力科技有限公司 冷却通道结构及定子组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101383532A (zh) * 2007-09-04 2009-03-11 通用电气公司 用于冷却转子和定子电机铁芯的装置和方法
JP2015115994A (ja) * 2013-12-10 2015-06-22 トヨタ自動車株式会社 回転電機のステータ
CN108880111A (zh) * 2017-05-16 2018-11-23 哈米尔顿森德斯特兰德公司 具有增强的定子冷却和降低的风阻损失的发电机
WO2021090001A1 (en) * 2019-11-05 2021-05-14 Cummins Generator Technologies Limited Stator for a rotating electrical machine
CN112886772A (zh) * 2021-01-05 2021-06-01 浙江盘毂动力科技有限公司 冷却通道结构及定子组件

Also Published As

Publication number Publication date
CN117616666A (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
WO2021232835A1 (zh) 一种电机转子、电机及汽车
US7598635B2 (en) Dynamo electric machine
JP2009055737A (ja) ロータおよび回転電機
EP1490950A1 (en) Electric machine with inner and outer rotor
JP4515236B2 (ja) 埋め込み磁石型のロータ
US20140340185A1 (en) Rotary Connection for Electric Power Transmission
WO2018037529A1 (ja) 回転電機
JP2007244065A (ja) 集中巻きモータのステータ構造
GB2378046A (en) Cooling flow in discoid stator windings
WO2023028799A1 (zh) 定子芯、定子组件和电机
CN114424429A (zh) 电动机
WO2022210237A1 (ja) 磁気ギアード回転機械、発電システム、および磁極片回転子
JP2013051805A (ja) 回転電機の冷却構造
WO2021199376A1 (ja) 固定子および回転電機
TWI708460B (zh) 籠形轉子及旋轉電機
WO2012086613A1 (ja) 回転電機
US20200328655A1 (en) Cooling System for a Rotary Electric Machine
US20230179038A1 (en) Stator core
US20240006941A1 (en) Rotor and rotary electric machine
JP2013099196A (ja) マルチギャップ型回転電機
JP5639876B2 (ja) 回転電機
WO2023021839A1 (ja) 誘導電動機および鉄道車両
US11728715B2 (en) Electric motor with simplified winding and dual rotor
WO2023132011A1 (ja) 回転子
WO2024084542A1 (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955378

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180100029.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021955378

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021955378

Country of ref document: EP

Effective date: 20240402