WO2023028768A1 - 滤光器阵列、方法、图像传感器、装置及电子设备 - Google Patents

滤光器阵列、方法、图像传感器、装置及电子设备 Download PDF

Info

Publication number
WO2023028768A1
WO2023028768A1 PCT/CN2021/115401 CN2021115401W WO2023028768A1 WO 2023028768 A1 WO2023028768 A1 WO 2023028768A1 CN 2021115401 W CN2021115401 W CN 2021115401W WO 2023028768 A1 WO2023028768 A1 WO 2023028768A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
filter
specific
light
color
Prior art date
Application number
PCT/CN2021/115401
Other languages
English (en)
French (fr)
Other versions
WO2023028768A9 (zh
Inventor
张召杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180099922.0A priority Critical patent/CN117581555A/zh
Priority to PCT/CN2021/115401 priority patent/WO2023028768A1/zh
Publication of WO2023028768A1 publication Critical patent/WO2023028768A1/zh
Publication of WO2023028768A9 publication Critical patent/WO2023028768A9/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation

Definitions

  • the present application relates to the field of image technology, in particular to an optical filter array, an image processing method, an image sensor, an imaging device and electronic equipment.
  • the present application aims to solve one of the problems in the related art at least to a certain extent. Therefore, the purpose of the present application is to provide an optical filter array, an image processing method, an image sensor, an imaging device, and an electronic device.
  • the optical filter array of the embodiment of the present application includes a plurality of optical filters, the optical filters include common optical filters and specific optical filters, the optical filter array includes a plurality of area arrays, and the area arrays include at least A subunit, the subunit includes a plurality of said filters, each of said area arrays includes a plurality of common filters and at least one specific filter, and each of said common filters only allows one Each specific filter allows only one color of light to pass through, and can filter at least part of the light of this color with a wavelength within a specific wavelength range, and the reflectance of melanin in the specific wavelength range Reflectance lower than that of hemoglobin.
  • the image sensor in the embodiment of the present application includes a filter array and a pixel array.
  • the filter array includes a plurality of filters, the filters include common filters and specific filters, the filter array includes a plurality of area arrays, and the area array includes at least one subunit , the subunit includes a plurality of filters, each of the area arrays includes a plurality of common filters and at least one specific filter, and each of the common filters allows only one color Light passes through, and each specific filter allows only one color of light to pass through, and can filter at least part of the wavelength of the light of this color in a specific wavelength range, and the reflectance of melanin in the specific wavelength range is lower than that of hemoglobin reflectivity.
  • the pixel array includes a plurality of pixel points, each pixel point corresponds to one of the optical filters, and the pixel points are used to receive light passing through the corresponding optical filter to generate electrical signals.
  • the imaging device includes the image sensor and the processor according to the embodiment of the present application.
  • the image sensor includes a filter array and a pixel array.
  • the filter array includes a plurality of filters, the filters include common filters and specific filters, the filter array includes a plurality of area arrays, and the area array includes at least one subunit , the subunit includes a plurality of filters, each of the area arrays includes a plurality of common filters and at least one specific filter, and each of the common filters allows only one color Light passes through, and each specific filter allows only one color of light to pass through, and can filter at least part of the wavelength of the light of this color in a specific wavelength range, and the reflectance of melanin in the specific wavelength range is lower than that of hemoglobin reflectivity.
  • the pixel array includes a plurality of pixel points, each pixel point corresponds to one of the optical filters, and the pixel points are used to receive light passing through the corresponding optical filter to generate electrical signals.
  • the processor is used to implement the image processing method of the embodiment of the present application.
  • the image processing method includes: acquiring a first pixel value of a common pixel in the image to be processed and a second pixel value of a specific pixel, the common pixel is obtained by the common pixel according to the received first light, and the specific pixel Obtained by a specific pixel point according to the second light received; wherein, after the specific pixel point filters out at least part of the light in the specific wavelength range in the first light, the remaining light is the second light, in The reflectance of melanin in the specific wavelength range is lower than that of hemoglobin, calculated according to the first pixel value and the second pixel value, and the specific pixel point is based on the specific wavelength range in the first light When at least part of the light in the specified pixel obtains the third pixel value of the specified pixel, according to the third pixel value, adjust the pixel value of the common pixel in the image to be processed to generate a target image .
  • the electronic device of the embodiment of the present application includes the image sensor of the embodiment of the present application.
  • the image sensor includes a filter array and a pixel array.
  • the filter array includes a plurality of filters, the filters include common filters and specific filters, the filter array includes a plurality of area arrays, and the area array includes at least one subunit , the subunit includes a plurality of filters, each of the area arrays includes a plurality of common filters and at least one specific filter, and each of the common filters allows only one color Light passes through, and each specific filter allows only one color of light to pass through, and can filter at least part of the wavelength of the light of this color in a specific wavelength range, and the reflectance of melanin in the specific wavelength range is lower than that of hemoglobin reflectivity.
  • the pixel array includes a plurality of pixel points, each pixel point corresponds to one of the optical filters, and the pixel points are used to receive light passing through the corresponding optical filter to generate electrical signals.
  • the electronic device in the embodiment of the present application includes the imaging device in the embodiment of the present application, and the imaging device includes the image sensor and the processor in the embodiment of the present application.
  • the image sensor includes a filter array and a pixel array.
  • the filter array includes a plurality of filters, the filters include common filters and specific filters, the filter array includes a plurality of area arrays, and the area array includes at least one subunit , the subunit includes a plurality of filters, each of the area arrays includes a plurality of common filters and at least one specific filter, and each of the common filters allows only one color Light passes through, and each specific filter allows only one color of light to pass through, and can filter at least part of the wavelength of the light of this color in a specific wavelength range, and the reflectance of melanin in the specific wavelength range is lower than that of hemoglobin reflectivity.
  • the pixel array includes a plurality of pixel points, each pixel point corresponds to one of the optical filters, and the pixel points are used to receive light passing through the corresponding optical filter to generate electrical signals.
  • the processor is used to implement the image processing method of the embodiment of the present application.
  • the image processing method includes: obtaining a first pixel value of a common pixel in the image to be processed and a second pixel value of a specific pixel, the common pixel is obtained by the common pixel according to the received first light, and the specific pixel is obtained by the specific pixel
  • the pixel point is obtained according to the received second light; wherein, after the specific pixel point filters out at least part of the light in the specific wavelength range in the first light, the remaining light is the second light, and in the The reflectance of melanin in a specific wavelength range is lower than that of hemoglobin, calculated according to the first pixel value and the second pixel value, and the specific pixel point is based on the specific wavelength range in the first light
  • the electronic device in the embodiments of the present application includes a processor, and the processor is configured to implement the image processing method described in the embodiments of the present application.
  • the image processing method includes: obtaining a first pixel value of a common pixel in the image to be processed and a second pixel value of a specific pixel, the common pixel is obtained by the common pixel according to the received first light, and the specific pixel is obtained by the specific pixel The pixel point is obtained according to the received second light; wherein, after the specific pixel point filters out at least part of the light in the specific wavelength range in the first light, the remaining light is the second light, and in the The reflectance of melanin in a specific wavelength range is lower than that of hemoglobin, calculated according to the first pixel value and the second pixel value, and the specific pixel point is based on the specific wavelength range in the first light When at least part of the light reaches the specific pixel, adjust the pixel value of the common pixel in the image to be processed according to the third pixel value of the
  • Fig. 1 is a schematic diagram of the reflectance relationship between hemoglobin and melanin under visible light of different wavelengths
  • Figure 2 is a scene diagram taken with visible light of different wavelengths
  • FIG. 3 is a schematic structural diagram of an image sensor according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an image sensor according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the relationship between light in different wavelength bands and the relative sensitivity of the corresponding red channel, green channel, and blue channel under a common optical filter in some embodiments of the present application;
  • FIGS. 10-12 are schematic structural diagrams of image sensors in some embodiments of the present application.
  • FIG. 13 is a schematic flowchart of an image processing method according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the principle of an image processing method according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of an imaging device according to an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • human skin color is composed of melanin, hemoglobin, bilirubin, and carotene, among which, human skin color is mainly determined by melanin and hemoglobin.
  • Figure 1 shows the reflectance of pigments (melanin and hemoglobin) in the skin as a function of the wavelength of light, wherein the horizontal axis of the graph is the wavelength, and the vertical axis of the graph is the reflectance. It can be seen from Figure 1 that after the wavelength of visible light is 585nm, the reflectance of hemoglobin is greater than that of melanin.
  • Figure 2 is the face images taken under different wavelengths of visible light, where the images from left to right are the face images taken under visible light with a length of 430nm, visible light with a length of 530nm, and visible light with a length of 630nm , wherein the visible light with a wavelength of 430nm is blue light, the visible light with a wavelength of 530nm is green light, and the visible light with a wavelength of 630nm is red light. It can be seen that under different wavelength bands of visible light, the skin color of the human face image is different, and the longer the wavelength, the better the skin color of the human face image.
  • the present application provides an image sensor 10 , and the image sensor 10 includes a filter array 11 and a pixel array.
  • the optical filter array 11 of the present application comprises a plurality of optical filters, and optical filter comprises general optical filter (such as A, B, C in Fig. 3) and specific optical filter (such as Ap among Fig.
  • the optical sensor array 11 includes a plurality of area arrays 110, the area array 110 includes at least one subunit 111, the subunit 111 includes a plurality of filters, and each area array 110 includes a plurality of common filters and at least one specific filter
  • Each ordinary filter allows only one color of light to pass through, and each specific filter allows only one color of light to pass through, and can filter at least part of the wavelength of the color of light within a specific wavelength range , the reflectance of melanin is lower than that of hemoglobin in a specific wavelength range.
  • each area array 110 includes a common filter and at least one specific filter, the common filter only allows light of one color to pass through, and the specific filter
  • the optical device only allows light of one color to pass through, and can filter out at least part of the light with a wavelength in a specific wavelength range of the color light, and the reflectance of melanin is lower than that of hemoglobin in a specific wavelength range, and the specific filter
  • the filter can filter at least part of the light having a wavelength within a specific wavelength range.
  • the first pixel value can be obtained through the ordinary pixel corresponding to the ordinary filter, and the second pixel value can be obtained through the specific pixel, so that the red pixel in a specific wavelength range can be obtained, so that the red pixel in the specific pixel in the image to be processed
  • the performance is more obvious, and the skin color presented by a specific pixel is good.
  • the reflectance of melanin is lower than that of hemoglobin. That is, the specific wavelength range is greater than 585nm, for example, please describe the specific wavelength range as 585nm-700nm. Understandably, when the wavelength of visible light is greater than 585nm, the reflectance of hemoglobin is greater than that of melanin, which can make the skin color in the image better when taking pictures.
  • the band width of a specific wavelength range is not limited, for example, the band width can be 20nm, 25nm, 30nm, 35nm, 40nm, 50nm or even wider, that is, the band width can be selected according to the actual product, for example, in this application,
  • the wavelength range can be 40, and the specific wavelength range can be between 600nm-640nm.
  • the wavelength of the preset light can be any value between 600nm-640nm.
  • the wavelength of the preset light can be 600nm, 605nm, 610nm, 615nm, 620nm, 625nm, 630nm, 635nm, 640nm or more values are not listed here.
  • “Skin tone” or “pigment in the skin” is mainly composed of hemoglobin and melanin, and the ratio of hemoglobin to melanin determines the appearance of the skin. As shown in Figure 1, between 600nm and 640nm, the ratio of the reflectance of hemoglobin to melanin reaches the maximum. So choose this band. When the visible light is between 600nm and 640nm, due to the characteristics of human skin, the generated image has better skin color than images generated by other visible light bands.
  • the image sensor 10 will be described in detail below with reference to the accompanying drawings.
  • the image sensor 10 may specifically use a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) photosensitive element or a charge-coupled device (CCD, Charge-coupled Device) photosensitive element.
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • an image sensor 10 includes a filter array 11 and a pixel array 12 .
  • the filter array 11 and the pixel array 12 are arranged in sequence, and the light reaches the pixel array 12 after passing through the filter array 11 .
  • the filter array 11 may include a plurality of filters 1111, and the filters 1111 may be used to allow light of a predetermined color to pass through, and filter light of other colors except the predetermined color in the light.
  • the pixel array 12 may include a plurality of pixel points 121, each pixel point 121 may correspond to a filter 1111 in the filter array 11, and the pixel point 121 may be used to receive light passing through the corresponding filter 1111 to generate electric signal.
  • the optical filter array 11 may include multiple area arrays 110 , and one optical filter array 11 may be formed by splicing multiple area arrays 110 .
  • the types and distributions of the filters 1111 can be the same or different.
  • the distribution of the optical filters 1111 in multiple area arrays 110 is exactly the same, so as to facilitate the production and manufacture of the optical filters 1111; for another example, the distribution of the optical filters 1111 in at least two different area arrays 110 is different, so To meet the filtering needs of different areas.
  • Each area array 110 may include a plurality of common filters (such as A, B, C in FIG. 5 ) and at least one specific filter (such as AP in FIG. 5 ), and the common filters may only allow one Light of one color passes through while filtering light of other colors.
  • a specific filter allows only one color of light to pass through and filters out light of other colors. It can also filter out light of this color with a wavelength in a specific wavelength range at least part of the light within.
  • There may be one or more types of specific filters in each area array 110 and one or more types of each specific filter.
  • the area array 110 may include at least one subunit 111 , and each subunit 111 may include a plurality of filters 1111 .
  • an area array 110 may include one or more subunits 111 .
  • the area array 110 a , the area array 110 b , the area array 110 c , and the area array 110 d include four subunits 111 .
  • the area array 110 a , the area array 110 b , the area array 110 c , and the area array 110 d include one subunit 111 .
  • an area array 110 may also include other subunits 111, for example, two, three, five, six, eight, etc., which are not listed here.
  • some subunits 111 may include specific filters and common filters at the same time, some subunits 111 may only include common filters, and some subunits 111 may only include specific filters. optical device. In another embodiment, in an area array 110, some subunits 111 may only include common filters, and some subunits 111 may only include specific filters. In yet another embodiment, in one area array 110, each subunit 111 may include specific filters and common filters at the same time.
  • each area array 110 may include 2n*2n subunits 111, n ⁇ 1, each subunit 111 includes 2*2 optical filters 1111, and each subunit The types of filters included in 111 may be the same or different. Wherein, n can be 1, 2, 3, 4, 5, 6 or more values, which are not listed here.
  • each area array 110 may include 2*2 subunits 111 .
  • each area array 110 may include 4*4 subunits 111, 8*8 subunits 111, 16*16 subunits 111, 32*32 subunits 111, etc., which are not listed here. There is no limit either.
  • each subunit 111 may include M*M optical filters 1111 . Wherein, M ⁇ 2, the color of light allowed to pass by the filter 1111 in the same subunit 111 is different.
  • each subunit 111 includes a filter 1111 (a first general filter A or a first specific filter Ap) that allows light of a first color to pass through.
  • each subunit 111 includes M*M optical filters 1111 , where M ⁇ 2, and the optical filters 1111 in the same subunit 111 allow the same color of light to pass through. It can be understood that, that is, M can be 2, 3, 4, 5, 6 or more values, which are not listed here.
  • an area array 110 includes four sub-units 111 , each sub-unit 111 may include 2*2 filters 1111 , and the 2*2 filters 1111 in the same sub-unit 111 allow the same color of light passing through.
  • an area array 110 includes four subunits 111 , each subunit 111 includes 3*3 optical filters 1111 , and the 3*3 optical filters 1111 in the same subunit 111 allow the same color of light to pass through.
  • each subunit 111 may also include 4*4 optical filters 1111, 5*5 optical filters 1111, and 6*6 optical filters 1111, which are not listed here.
  • each subunit 111 may include multiple grandchildren 1110 , and each grandchildren 1110 includes K*K optical filters 1111 .
  • K ⁇ 2 the color of the light that is allowed to pass by the filter 1111 in the same grandson unit 1110 is the same. It can be understood that K may be 2, 3, 4, 5, 6 or more values, which are not listed here.
  • one area array 110 includes one subunit 111 .
  • each subunit 111 includes four grandchildren units 1110, each grandchildren unit 1110 includes 2*2 filters 1111, and the 2*2 filters of the same grandson unit 1110 The color of the light that is allowed to pass by the filter 1111 is the same.
  • each grandchild unit 1110 also includes 3*3 optical filters 1111 , and the 3*3 optical filters 1111 of the same grandchild unit 1110 allow the same color of light passing through.
  • an area array 110 may also include multiple subunits 111 , and each subunit 111 may include multiple grandchildren units 1110 .
  • the four grandchildren 1110 are respectively a first grandchild 1110 a , a second grandchild 1110 b , a third grandchild 1110 c and a fourth grandchild 1110 d .
  • the 2*2 optical filters 1111 in the first grandchild unit 1110a only allow light of the first color to pass through the 2*2 optical filters 11111 in the second grandchild unit 1110a and the third grandchild unit 1110c only allow the first color light to pass through.
  • the light of the second color passes through, and the 2*2 filters in the fourth grandson unit 1110 only allow the light of the third color to pass through.
  • each grandson unit 1110 may also include 4*4 optical filters, 5*5 optical filters, and 6*6 optical filters, which are not listed here.
  • the plurality of common filters may include a first common filter A, a second common filter B, and a third common filter C.
  • the first ordinary filter A can only allow light of the first color to pass through, while filtering light of other colors.
  • the second ordinary filter B can only allow light of the second color to pass through, while filtering out light of other colors.
  • the third ordinary filter C can only allow light of the third color to pass through, while filtering light of other colors to pass through.
  • it may also include a fourth common filter that only allows the light of the fourth color to pass through, a fifth common filter that only allows the light of the fifth color to pass through, and a sixth common filter that only allows the light of the sixth color to pass through.
  • a fourth common filter that only allows the light of the fourth color to pass through
  • a fifth common filter that only allows the light of the fifth color to pass through
  • a sixth common filter that only allows the light of the sixth color to pass through.
  • the specific filter may include a first specific filter Ap, the first specific filter Ap may be set, and the first specific filter Ap may filter specific light in the light of the first color (that is, light with wavelengths within a specific range).
  • the area array 110 includes a first common filter A, a second common filter B, a third common filter C and a first specific filter Ap. Therefore, setting the first specific filter Ap can better increase the phenomenon that the specific light is imaged so that the skin effect is better.
  • the pixel array may include a first common pixel (not shown), a second common pixel (not shown), a third common pixel (not shown) and a first specific pixel (not shown).
  • the first ordinary pixel point can correspond to the first ordinary optical filter A, and is used to receive the light filtered by the first ordinary optical filter A to generate an electrical signal;
  • the second ordinary pixel point can correspond to the second ordinary optical filter B Correspondingly, it is used to receive light filtered by the second ordinary filter B to generate an electrical signal;
  • the third ordinary pixel point can correspond to the third ordinary pixel filter, and is used to receive light filtered by the third ordinary filter C After receiving the light to generate an electrical signal;
  • the first specific pixel corresponds to the first specific filter Ap, and is used to receive the light filtered by the first specific filter Ap to generate an electrical signal.
  • the image sensor 10 can also include a processor 14, and the processor 14 can process the data of the first common pixel according to the data of the first specific pixel, then the processed data of the first common pixel is It is obtained by filtering at least part of the specific light in the light of the first color, and leaving the remaining light. Therefore, it is not necessary to set all the filter arrays 11 as specific filters, and the imaging effect of filtering specific light rays can also be achieved, which can save the cost of the filter array 11 and the image sensor 10 .
  • the processor 14 can also process the data of the first specific pixel according to the data of the first common pixel, and then the processed data of the first specific pixel can be considered as according to the unfiltered light of the first color. obtained by a specific light.
  • specific pixels can be processed according to common pixels, and the imaging of the image sensor 10 is more realistic, which avoids the phenomenon of chromatic aberration in the image obtained when the user wants to take a real image.
  • the structure of the first specific pixel point and the first common pixel point may be the same, but the light received is different.
  • the first color, the second color and the third color are different from each other, and there may be multiple color combinations of the first color, the second color and the third color.
  • the first color may be red R
  • the second color may be green G
  • the third color may be blue B
  • one subunit 111 may be arranged in RGGB.
  • the first color may be red R
  • the second color may be yellow Y
  • the third color may be blue B
  • one subunit 111 may be arranged in RYYB.
  • the first color may be red R
  • the second color may be green Y
  • the third color may be cyan CB
  • one subunit 111 may be RYYCB.
  • the first color, the second color and the third color may also be other colors, which are not listed here.
  • a fourth common filter is also included, the fourth common filter can allow light of all colors to pass through, the fourth color can be white W, the first color can be red R, and the second color can be green G.
  • the third color can be blue B, and one subunit 111 can be distributed in RGBW.
  • the first color is red R
  • the second color is green G
  • the third color is blue B as an example for illustration.
  • the light of the first color has more wavelength bands within a specific wavelength range than the light of the third color has wavelength bands within a specific wavelength range
  • the light of the second color has more wavelength bands within a specific wavelength range.
  • the wavelength bands in the wavelength range are more than the wavelength bands of the light of the third color in the specific wavelength range. It can be understood that within the predetermined wavelength range (600nm-640nm), the light quantity of the first color is relatively large.
  • the first general filter A may include a first color filter 101A
  • the first specific filter Ap may include a first color filter 101A and a first specific filter 102A
  • the filter 101A is used to only allow light of the first color to pass through
  • the first specific filter 102A is used to filter out at least part of the specific light in the light of the first color.
  • the first specific filter 102A does not allow light with a wavelength within a specific wavelength range to pass through.
  • the first specific filter 102A may be disposed on the light incident side or the light exit side of the first color filter 101A, which is not limited here.
  • the first specific filter Ap may be formed by disposing the first specific filter 102A on the basis of the first common filter A.
  • the number of the first specific filter 102A can be one or more, when the number of the first specific filter 102A is multiple, multiple first specific filters 102A can be set at the first The light incident side or the light exit side of a color filter 101A, or, some first specific filters 102A are arranged on the light incident side of the first color filter 101A, and the other first specific filters 102A are set on the first color filter 102A.
  • the processor of the image sensor 10 can simulate and obtain the data of setting two or more first specific filters 102A according to the data of setting one first specific filter 102A, and then only need to set One first specific filter 102A can achieve the effect of setting multiple first specific filters 102A.
  • the area array 110 includes a first special filter Ap.
  • the first specific filter Ap may be located in the subunit 111 .
  • the number of the first specific filters Ap can also be determined according to the number of the first common filters A.
  • the number of the first specific filter Ap can be one-tenth, one-eighth, one-fifth, one-fourth, etc. of the number of the first common filter A, which are not listed here .
  • the number of the first specific filters Ap is smaller than the number of the first common filters A, thus, it is possible to avoid the excessive number of the first specific filters Ap, As a result, the brightness of the image generated by the image sensor 10 is too low.
  • the distribution of the optical filter array 11 in the embodiment of the present application is not limited to the distribution shown in FIGS. 6-8 , but may also be other distributions, which are not specifically limited here.
  • the image sensor 10 can also include a microlens array 13, and the microlens array can include a plurality of microlenses 131, and the plurality of microlenses 131 can be correspondingly arranged on the plurality of filters 1111.
  • the microlens 131 can condense the light, and can guide more of the incident light to the filter 1111 .
  • the present application also provides an image processing method, which can be used for the image sensor 10 in any of the above-mentioned embodiments, and the image processing method can include the following steps:
  • the ordinary pixel is obtained from the ordinary pixel according to the received first light
  • the specific pixel is obtained from the specific pixel according to the received first light.
  • Two light rays are obtained; wherein, after the specific pixel point filters out at least part of the first light in the specific wavelength range, the remaining light is the second light, and the reflectance of melanin is lower than that of hemoglobin in the specific wavelength range;
  • the image to be processed may be generated by the image sensor 10 in any of the above embodiments, that is, the image to be processed is generated by the pixel array according to light filtered by the filter array 11 .
  • the image to be processed may include ordinary pixels and specific pixels, the pixels in the pixel array corresponding to the ordinary filters are ordinary pixels, and the pixels in the pixel array corresponding to the specific filters are specific pixels.
  • Ordinary pixels can be obtained by ordinary pixels according to the received first light, and specific pixels can be obtained by specific pixels according to the received second light, and at least part of the light in the first light with a wavelength within a specific wavelength range is filtered After that, the remaining rays are the second rays. Understandably, the second light lacks light in a specific wavelength range.
  • the ordinary pixels In order to process the ordinary pixels in the image to be processed, the ordinary pixels have similar attributes to the specific pixels.
  • a difference calculation may be performed on the first pixel value of the common pixel and the second pixel value of the specific pixel to obtain the third pixel value of the specific pixel when at least part of the light in the specific wavelength range reaches the specific pixel. Then the pixel value of the common pixel adjusted according to the third pixel value, so as to update the image to be processed to generate the target image.
  • the hemoglobin in the target image is better, and the skin color of the person is more pink.
  • P may represent the pixel distribution of the image to be processed
  • P' may represent the pixel distribution of the obtained target image.
  • R, G, and B in FIG. 22 are common pixels
  • Rp is a specific pixel
  • R', G', and B' are adjusted common pixels.
  • step 01 includes the following steps:
  • 011 amplify the second pixel value according to a preset magnification factor to obtain an amplified pixel value
  • the second pixel value is obtained by the characteristic pixel point according to the received second light
  • the third pixel value is obtained by calculating the difference between the first pixel value and the second pixel value
  • the third pixel value is in a specific wavelength range
  • the preset magnification factor can be adjusted according to different usage scenarios. For example, when a larger signal difference is required (for example, a face image), the preset magnification factor can be increased to make the skin perform better, while requiring a smaller signal difference. When the signal difference is smaller, reduce the adjustment coefficient.
  • step 03 includes the following steps:
  • the new pixel value of the common pixel can be calculated according to the adjustment coefficient and the first pixel value of the common pixel corresponding to the adjustment system. Then, the pixel value of the common pixel in the image to be processed can be updated to the new value of the pixel, and the target image can be obtained. Therefore, since the pixel values of common pixels are updated, the hemoglobin in the target image is more obvious, and the skin color will be more matte.
  • the ratio of the ordinary pixel can be obtained according to the pass rate of the first light received by the ordinary pixel under the specific filter, and the adjustment coefficient can be obtained according to the ratio and the adjustment coefficient, and then The new pixel value of the corresponding normal pixel can be calculated according to the adjustment coefficient and the first pixel value of the normal pixel.
  • the image to be processed may include various common pixels (for example, R, G, B), and the image to be processed may include at least one specific pixel (for example, Rp).
  • this specific pixel can correspond to one of various common pixels, and can be based on one or more common pixels corresponding to this specific pixel
  • the first pixel value of the pixel calculate the third pixel value of the specific pixel if it is generated by the first light, and then calculate the gain coefficient according to the third pixel value and the second pixel value, and then can be compared with the specific pixel according to the gain coefficient
  • the pixel value of the common pixel corresponding to the pixel is adjusted, and the adjusted image to be processed can be used as the target image.
  • the process of generating the target image is similar to one kind of specific pixels, and will not be described in detail here.
  • the image processing method also includes the following steps:
  • Step 03 also includes the following steps:
  • the skin color area in the image to be processed can be detected, specifically, the skin color area in the image to be processed can be identified through a skin color detection algorithm, or the portrait area in the image to be processed can be identified first, and then the skin color area in the portrait can be identified.
  • the common pixels and specific pixels in the skin-colored area in the image to be processed can be determined, and the pixel values of the common pixels in the skin-colored area can be adjusted according to the third pixel value of the specific pixel in the skin-colored area, and the adjusted pixel values are updated
  • the target image can be obtained from the image to be processed.
  • the third pixel values in the skin-color area need to be calculated respectively, and then according to the third pixel value and each For the pixel value of a common pixel R, calculate the new value of the first pixel of each first normal pixel R. Furthermore, the skin color area is updated with the corresponding new value of the first pixel, and the updated image to be processed can be used as the target image. In this way, it is possible to avoid the phenomenon that the color of the environment area other than the skin color area in the obtained target image and the user's hair, clothes, etc. are deviated by processing the entire image to be processed.
  • the image processing method may also include: The pixel value of a specific pixel is adjusted so that the specific pixel behaves like a normal pixel. Specifically, the average value of the pixel values of common pixels within a certain range around the specific pixel can be used as the new pixel value of the specific pixel, or the pixel value of the common pixel closest to the specific pixel can be used as the new pixel value of the specific pixel, or The average value of the pixel values of all common pixels corresponding to the specific pixel in other regions is taken as the new pixel value of the specific pixel.
  • the pixel value of the first common pixel R closest to the first specific pixel Rp may be used as the pixel value of the first specific pixel Rp.
  • the image processing method also includes the following steps:
  • the average user is a woman, who pays more attention to beauty when taking a photo, while a man may prefer the real self when taking a photo.
  • It can be the gender of the skin color of the skin color area in the image to be processed.
  • some deep learning algorithms or training models can be used to identify the gender of the skin color area of the skin color area in the image to be processed, which will not be described in detail here.
  • step 03 that is, adjust the pixel value of the common pixel in the image to be processed according to the third pixel value to generate the target image.
  • the image to be processed can be directly output to obtain the target image, or the specific pixel in the image to be processed can be processed to make the specific pixel generalized.
  • the specific generalization process is the same as that in other areas above.
  • the process of adjusting specific pixels is similar and will not be described in detail here. In this way, the pixel values of common pixels in the image to be processed can be selectively adjusted according to the identified gender, which is more in line with the user's use scenario and enhances the user's use experience.
  • the user can also selectively execute the command of step 03.
  • the command of step 04 may be a switch button on the UI interface of the electronic device, and the user can execute or not execute the command of step 04 by touching the switch button to meet the individual needs of the user. .
  • the processor 14 of the image sensor 10 of the present application may be used to implement the image processing method in any of the above implementations.
  • the processor can be used to implement one or more steps in step 01, step 02, step 03, step 05, step 06, step 011, step 012, step 031, step 032, step 033, step 034, step 035 step.
  • the present application also provides an electronic device 1000 , which may include the image sensor 10 in any of the foregoing implementation manners.
  • the image sensor 10 can be installed in the housing of the electronic device 1000 and can be connected with the main board of the electronic device 1000 .
  • the present application further provides an electronic device 1000, which may include the imaging device 100 in any of the foregoing implementation manners.
  • the imaging device 100 can be installed in the casing of the electronic device 1000 and can be connected to the main board of the electronic device 1000.
  • the imaging device 1000 can be used for imaging.
  • the present application also provides an electronic device 1000 , and the electronic device may include a processor 200 .
  • the processor 200 may be used to implement the image processing method in any of the foregoing implementation manners.
  • the processor can be used to implement one or more steps in step 01, step 02, step 03, step 05, step 06, step 011, step 012, step 031, step 032, step 033, step 034, step 035 step.
  • the electronic device 1000 described in the above-mentioned embodiments may specifically be a mobile phone, a tablet computer, a notebook computer, a smart watch, a smart bracelet, a smart helmet, smart glasses, an unmanned device (such as a drone, Unmanned vehicles, unmanned ships), etc., are not listed here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Color Television Image Signal Generators (AREA)
  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一种滤光器阵列(11)、方法、图像传感器(10)、装置(100)及电子设备(1000)。滤光器阵列(11)包括多个区域阵列(110),区域阵列(110)包括至少一个子单元(111),子单元(111)包括多个滤光器(1111),每个区域阵列(110)均包括多个普通滤光器和至少一个特定滤光器,每个普通滤光器仅允许一种颜色的光线通过,每个特定滤光器仅允许一种颜色的光线通过,并能过滤该颜色的光线中波长在特定波长范围内的至少部分光线,特定波长范围内黑色素的反射率低于血红蛋白的反射率。

Description

滤光器阵列、方法、图像传感器、装置及电子设备 技术领域
本申请涉及影像技术领域,特别涉及一种滤光器阵列、图像处理方法、图像传感器、成像装置及电子设备。
背景技术
随着数码相机和带有摄像头的手机的增长,人脸的图像质量变得越来越重要。当使用手机的前置摄像头对人脸进行拍照时,人脸的图像质量是最为关注的问题。因此,如何提升拍摄时生成的图像质量成了亟待解决的问题。
发明内容
有鉴于此,本申请旨在至少在一定程度上解决相关技术中的问题之一。为此,本申请的目的在于提供一种滤光器阵列、图像处理方法、图像传感器、成像装置及电子设备。
本申请实施方式的滤光器阵列包括多个滤光器,所述滤光器包括普通滤光器和特定滤光器,所述滤光器阵列包括多个区域阵列,所述区域阵列包括至少一个子单元,所述子单元包括多个所述滤光器,每个所述区域阵列均包括多个普通滤光器和至少一个特定滤光器,每个所述普通滤光器仅允许一种颜色的光线通过,每个特定滤光器仅允许一种颜色的光线通过,并能过滤该颜色的光线中波长在特定波长范围内的至少部分光线,所述特定波长范围内黑色素的反射率低于血红蛋白的反射率。
本申请实施方式的图像传感器包括滤光器阵列及像素阵列。所述滤光器阵列包括多个滤光器,所述滤光器包括普通滤光器和特定滤光器,所述滤光器阵列包括多个区域阵列,所述区域阵列包括至少一个子单元,所述子单元包括多个所述滤光器,每个所述区域阵列均包括多个普通滤光器和至少一个特定滤光器,每个所述普通滤光器仅允许一种颜色的光线通过,每个特定滤光器仅允许一种颜色的光线通过,并能过滤该颜色的光线中波长在特定波长范围内的至少部分光线,所述特定波长范围内黑色素的反射率低于血红蛋白的反射率。所述像素阵列包括多个像素点,每个所述像素点对应一个所述滤光器,所述像素点用于接收穿过对应的所述滤光器的光线以生成电信号。
本申请实施方式的成像装置包括本申请实施方式的图像传感器及处理器。图像传感器包括滤光器阵列及像素阵列。所述滤光器阵列包括多个滤光器,所述滤光器包括普通滤光器和特定滤光器,所述滤光器阵列包括多个区域阵列,所述区域阵列包括至少一个子单元,所述子单元包括多个所述滤光器,每个所述区域阵列均包括多个普通滤光器和至少一个特定滤光器,每个所述普通滤光器仅允许一种颜色的光线通过,每个特定滤光器仅允许一种颜色的光线通过,并能过滤该颜色的光线中波长在特定波长范围内的至少部分光线,所述特定波长范围内黑色素的反射率低于血红蛋白的反射率。所述像素阵列包括多个像素点,每个所述像素点对应一个所述滤光器,所述像素点用于接收穿过对应的所述滤光器的光线以生成电信号。所述处理器用于实现本申请实施方式的图像处理方法。所述图像处理方法包括:获取待处理图像中的普通像素的第一像素值和特定像素的第二像素值,所述普通像素由普通像素点根据接收到的第一光线得到,所述特定像素由特定像素点根据接收到的第二光线得到;其中,所述特定像素点过滤掉所述第一光线中在特定波长范 围中的至少部分光线后,余下的光线为所述第二光线,在所述特定波长范围内黑色素的反射率低于血红蛋白的反射率,根据所述第一像素值和所述第二像素值计算,由所述特定像素点根据所述第一光线中在特定波长范围中的至少部分光线得到所述特定像素时,所述特定像素的第三像素值,根据所述第三像素值,调整所述待处理图像中的所述普通像素的像素值,以生成目标图像。
本申请实施方式的电子设备包括本申请实施方式的图像传感器。图像传感器包括滤光器阵列及像素阵列。所述滤光器阵列包括多个滤光器,所述滤光器包括普通滤光器和特定滤光器,所述滤光器阵列包括多个区域阵列,所述区域阵列包括至少一个子单元,所述子单元包括多个所述滤光器,每个所述区域阵列均包括多个普通滤光器和至少一个特定滤光器,每个所述普通滤光器仅允许一种颜色的光线通过,每个特定滤光器仅允许一种颜色的光线通过,并能过滤该颜色的光线中波长在特定波长范围内的至少部分光线,所述特定波长范围内黑色素的反射率低于血红蛋白的反射率。所述像素阵列包括多个像素点,每个所述像素点对应一个所述滤光器,所述像素点用于接收穿过对应的所述滤光器的光线以生成电信号。
本申请实施方式的电子设备包括本申请实施方式的成像装置,成像装置包括本申请实施方式的图像传感器及处理器。图像传感器包括滤光器阵列及像素阵列。所述滤光器阵列包括多个滤光器,所述滤光器包括普通滤光器和特定滤光器,所述滤光器阵列包括多个区域阵列,所述区域阵列包括至少一个子单元,所述子单元包括多个所述滤光器,每个所述区域阵列均包括多个普通滤光器和至少一个特定滤光器,每个所述普通滤光器仅允许一种颜色的光线通过,每个特定滤光器仅允许一种颜色的光线通过,并能过滤该颜色的光线中波长在特定波长范围内的至少部分光线,所述特定波长范围内黑色素的反射率低于血红蛋白的反射率。所述像素阵列包括多个像素点,每个所述像素点对应一个所述滤光器,所述像素点用于接收穿过对应的所述滤光器的光线以生成电信号。所述处理器用于实现本申请实施方式的图像处理方法。图像处理方法包括:获取待处理图像中的普通像素的第一像素值和特定像素的第二像素值,所述普通像素由普通像素点根据接收到的第一光线得到,所述特定像素由特定像素点根据接收到的第二光线得到;其中,所述特定像素点过滤掉所述第一光线中在特定波长范围中的至少部分光线后,余下的光线为所述第二光线,在所述特定波长范围内黑色素的反射率低于血红蛋白的反射率,根据所述第一像素值和所述第二像素值计算,由所述特定像素点根据所述第一光线中在特定波长范围中的至少部分光线得到所述特定像素时,所述特定像素的第三像素值,根据所述第三像素值,调整所述待处理图像中的所述普通像素的像素值,以生成目标图像。
本申请实施方式的电子设备包括处理器,所述处理器用于实现本申请实施方式所述的图像处理方法。图像处理方法包括:获取待处理图像中的普通像素的第一像素值和特定像素的第二像素值,所述普通像素由普通像素点根据接收到的第一光线得到,所述特定像素由特定像素点根据接收到的第二光线得到;其中,所述特定像素点过滤掉所述第一光线中在特定波长范围中的至少部分光线后,余下的光线为所述第二光线,在所述特定波长范围内黑色素的反射率低于血红蛋白的反射率,根据所述第一像素值和所述第二像素值计算,由所述特定像素点根据所述第一光线中在特定波长范围中的至少部分光线得到所述特定像素时,所述特定像素的第三像素值,根据所述第三像素值,调整所述待处理图像中的所述普通像素的像素值,以生成目标图像。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易 理解,其中:
图1是血红蛋白与黑色素遇到不同波长的可见光下的反射率关系示意图;
图2是不同波长的可见光拍摄的场景图;
图3是本申请实施方式的图像传感器的结构示意图;
图4是本申请实施方式的图像传感器的结构示意图;
图5-8是本申请一些实施方式的滤光器阵列的结构示意图;
图9是本申请某些实施方式的普通滤光器下,不同波段的光线与对应的红色通道、绿色通道及蓝色通道的相对灵敏度的关系示意图;
图10-12是本申请一些实施方式的图像传感器的结构示意图;
图13是本申请实施方式的图像处理方法的流程示意图;
图14是本申请实施方式的图像处理方法的原理示意图;
图15-18是本申请实施方式的图像处理方法的流程示意图;
图19是本申请实施方式的成像装置的结构示意图;
图20是本申请实施方式的电子设备的结构示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
通常,人体肤色由黑色素、血红蛋白、胆红素以及胡萝卜素等构成,其中,人体肤色主要由黑色素、血红蛋白这两种决定。请结合图1,图1为皮肤中色素(黑色素和血红蛋白)随光的波长变化的反射率,其中,曲线图的横轴为波长,曲线图的纵轴为反射率。由图1可知,在可见光的波长为585nm以后,血红蛋白的反射率大于黑色素。
请结合图2,图2为不同波长的可见光下分别拍摄的人脸图像,其中,图像从左到右依次为430nm长度的可见光、530nm长度的可见光以及630nm长度的可见光下下拍摄的人脸图像,其中,波长为430nm的可见光为蓝光,波长为530nm的可见光为绿光,波长为630nm的可见光为红光。可见,在不同波段可见光下,所拍摄的人脸图像的肤色表现不同,并且,波长越长,人脸图像的肤色表现越好。可以理解地,当可见光的波长越长,血红蛋白的反射率会逐渐大于黑色素的反射率,而人体肤色表现主要是由血红蛋白和黑色素决定,血红血红蛋白的反射率就越大于黑色素,黑色素就越不明显,皮肤看起来就更光滑(相当于自带磨皮的效果)。因此,可见光为红色光的波长时,肤色表现越好。
有鉴于此,请参阅图3,本申请提供了一种图像传感器10,图像传感器10包括滤光器阵列11和像素阵列。本申请的滤光器阵列11包括多个滤光器,滤光器包括普通滤光器(例如图3中的A、B、C)和特定滤光器(例如图3中的Ap),滤光器阵列11包括多个区域阵列110,区域阵列110包括至少一个子单元111,子单元111包括多个滤光器,每个区域阵列110均包括多个普通滤光器和至少一个特定滤光器,每个普通滤光器仅允许一种颜色的光线通过,每个特定滤光器仅允许一种颜色的光线通过,并能过滤该颜色的光线中波长在特定波长范围内的至少部分光线,特定波长范围内黑色素的反射率低于血红蛋白的反射率。
本申请实施方式的图像传感器10和滤光器阵列11中,每个区域阵列110包括有普通滤光器 和至少一个特定滤光器,普通滤光器仅允许一种颜色的光线通过,特定滤光器仅允许一种颜色的光线通过,并能滤除该颜色光线中波长在特定波长范围内的至少部分光线,而在特定波长范围内黑色素的反射率低于血红蛋白的反射率,特定滤光器可以过滤波长在特定波长范围内的至少部分光线。如此,后续可以通过普通滤光器对应的普通像素得到第一像素值,以及通过特定像素得到的第二像素值,从而可以得到特定波长范围的红色像素,使得待处理图像中特定像素中红色像素表现的较为明显,特定像素所呈现的皮肤肤色好。
其中,在本实施方式中,在特定波长范围内的可见光下,黑色素的反射率低于血红蛋白的反射率。也即是,特定波长范围大于585nm,例如,特定波长范围请将波长范围描述为585nm-700nm。可以理解地,在可见光的波长大于585nm时,血红蛋白的反射率大于黑色素,可以让拍照时可以让图像中的肤色表现的更好。特定波长范围的波段宽度不限,例如,波段宽度可以为20nm、25nm、30nm、35nm、40nm、50nm甚至更宽,也即是,波段宽度可以根据实际产品进行选择,例如,在本申请中,波段范围可以为40,特定波长范围可以为600nm-640nm之间,可以理解地,预设光线的波长可以为600nm-640nm之间的任意数值,例如,预设光线的波长可为600nm、605nm、610nm、615nm、620nm、625nm、630nm、635nm、640nm或者更多数值,在此不一一列举。"肤色"或者"皮肤中的色素",主要由血红蛋白和黑色素构成,血红蛋白和黑色素的比值左右皮肤的表现。见图1,在600nm-640nm之间,血红蛋白的反射率与黑色素的比值达到最大。故选用此波段。可见光在600nm-640nm之间时,由于人体皮肤特性,生成的图像相较于其它波段的可见光生成的图像肤色会更好。
下面结合附图对图像传感器10进行详细说明。
具体地,图像传感器10具体可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)感光元件或者电荷耦合元件(CCD,Charge-coupled Device)感光元件。
请参阅图3,本申请实施方式的图像传感器10包括滤光器阵列11及像素阵列12。沿图像传感器10的收光方向,滤光器阵列11和像素阵列12依次设置,光线经滤光器阵列11后到达像素阵列12。
滤光器阵列11可包括多个滤光器1111,滤光器1111可用于允许预定颜色的光线通过,并过滤除光线中的除预定颜色外的其他颜色光线。
像素阵列12可包括多个像素点121,每个像素点121可对应滤光器阵列11中的一个滤光器1111,像素点121可以用于接收穿过对应的滤光器1111的光线以生成电信号。
请参阅图5,滤光器阵列11可包括多个区域阵列110,一个滤光器阵列11可由多个区域阵列110拼接形成。在一个滤光器阵列11中,多个区域阵列110中,滤光器1111的种类及分布可相同或者不同。例如,多个区域阵列110中滤光器1111的分布完全相同,以便于滤光器1111的生产及制造;再例如,至少两个不同的区域阵列110中的滤光器1111的分布不同,以分别满足不同区域的滤光需求。
每个区域阵列110可包括多个普通滤光器(例如图5中的A、B、C)和至少一个特定滤光器(例如图5中的AP),普通滤光器可以仅允许一种颜色的光线通过而滤除其它颜色的光线,特定滤光器可以允许仅一种颜色的光线通过,并能够滤除其它颜色的光线,还可过滤掉该种颜色的光线中波长在特定波长范围内的至少部分光线。每个区域阵列110中特定滤光器的种类可为一种或者多种,每种特定滤光器可为一个或多个。
请参阅图6,区域阵列110可包括至少一个子单元111,每个子单元111可包括多个滤光器 1111。可以理解,一个区域阵列110可包括一个或多个子单元111。例如,在图5所示的实施例中,区域阵列110a、区域阵列110b、区域阵列110c及区域阵列110d包括四个子单元111。又例如,在图6至图7所示的实施例中,区域阵列110a、区域阵列110b、区域阵列110c及区域阵列110d包括一个子单元111。当然,一个区域阵列110还可包括其它个子单元111,例如,两个、三个、五个、六个、八个等,在此不一一列举。
在一个实施例中,一个区域阵列110中,部分子单元111可同时包括特定滤光器和普通滤光器,部分子单元111可只包括普通滤光器,部分子单元111可只包括特定滤光器。在另一个实施例中,一个区域阵列110中,部分子单元111可只包括普通滤光器,部分子单元111可只包括特定滤光器。在又一个实施例中,一个区域阵列110中,每个子单元111可同时包括特定滤光器和普通滤光器。
进一步地,请参阅图6,在某些实施方式中,每个区域阵列110可包括2n*2n个子单元111,n≥1,每个子单元111包括2*2个滤光器1111,每个子单元111包括的滤光器的种类可相同或者不同。其中,n可以为1、2、3、4、5、6或更多数值,在此不一一列举。
在图5以及图6所示的实施例中,每个区域阵列110可包括2*2个子单元111。在其它的实施例中,每个区域阵列110可包括4*4个子单元111、8*8个子单元111、16*16个子单元111、32*32个子单元111等,在此不一一列举,也不做限制。
请参阅图5,在某些实施方式中,每个子单元111可包括M*M个滤光器1111。其中,M≥2,同一个子单元111中的滤光器1111允许通过的光线的颜色不同。例如,每个子单元111均包括一个允许第一颜色的光线穿过的滤光器1111(第一普通滤光器A或第一特定滤光器Ap)。
在某些实施方式中,每个子单元111包括M*M个滤光器1111,其中,M≥2,同一个子单元111中的滤光器1111允许通过的光线的颜色相同。可以理解,即,M可以是2、3、4、5、6或更多数值,在此不一一列举。例如,一个区域阵列110包括四个子单元111,每个子单元111可包括2*2个滤光器1111,且同一个子单元111中的2*2个滤光器1111允许通过的光线的颜色相同。又例如,一个区域阵列110包括四个子单元111,每个子单元111包括3*3个滤光器1111,且同一个子单元111中的3*3个滤光器1111允许通过的光线的颜色相同。
当然,在其他一些实施方式中,每个子单元111也可包括4*4个滤光器1111、5*5个滤光器1111、6*6个滤光器1111,在此不一一列举。
请参阅图7-8,在某些实施方式中,每个子单元111可包括多个孙单元1110,每个孙单元1110包括K*K个滤光器1111。其中,K≥2,同一个孙单元1110中的滤光器1111允许通过的光线的颜色相同。可以理解,K可以是2、3、4、5、6或更多数值,在此不一一列举。
例如,在图7至图8所示的实施例中,一个区域阵列110包括一个子单元111。更具体地,在图8至图11中,每个子单元111包括四个孙单元1110,每个孙单元1110包括2*2个滤光器1111,同一个孙单元1110的2*2个滤光器1111允许通过的光线的颜色相同。在其它的实施例中,每个孙单元1110也包括3*3个滤光器1111,同一个孙单元1110的3*3个滤光器1111允许通过的光线的颜色相同。或者说,一个区域阵列110也可包括多个子单元111,每个子单元111可包括多个孙单元1110。
在图7-8所示的实施例中,四个孙单元1110分别为第一孙单元1110a、第二孙单元1110b、第三孙单元1110c和第四孙单元1110d。第一孙单元1110a中的2*2个滤光器1111均仅允许第一颜色的光线穿过第二孙单元1110a和第三孙单元1110c中的2*2个滤光器11111均仅允许第二颜 色的光线穿过,第四孙单元1110中的2*2个滤光器均仅允许第三颜色的光线穿过。
当然,在其他一些实施方式中,每个孙单元1110也可包括4*4个滤光器、5*5个滤光器、6*6个滤光器,在此不一一列举。
请参阅图5,普通滤光器的种类可为多种,多种普通滤光器可以分别允许对应的多种颜色的光线通过。多种普通滤光器可包括第一普通滤光器A、第二普通滤光器B及第三普通滤光器C。第一普通滤光器A可以仅允许第一颜色的光线通过,而过滤掉其它颜色的光线。第二普通滤光器B可以仅允许第二颜色的光线通过,而过滤掉其它颜色的光线。第三普通滤光器C可以仅允许第三颜色的光线通过,而过滤掉其它颜色的光线通过。
当然,还可以包括仅允许第四颜色的光线通过的第四普通滤光器、仅允许第五颜色的光线通过的第五普通滤光器、仅允许第六颜色的光线通过的第六普通滤光器等,在此不详细描述。
进一步地,请参阅图7,特定滤光器可包括第一特定滤光器Ap,可设置第一特定滤光器Ap,第一特定滤光器Ap可以过滤第一颜色的光线中的特定光线(即,波长在特定范围内的光线)。区域阵列110包括第一普通滤光器A、第二普通滤光器B、第三普通滤光器C和第一特定滤光器Ap。由此,设置第一特定滤光器Ap,可以较好地增加特定光线成像使得皮肤效果较好的现象。
像素阵列可包括第一普通像素点(图未示)、第二普通像素点(图未示)、第三普通像素点(图未示)以及第一特定像素点(图未示)。第一普通像素点可以与第一普通滤光器A对应,用于接收经第一普通滤光器A过滤后的光线以生成电信号;第二普通像素点可以与第二普通滤光器B对应,用于接收经第二普通滤光器B过滤后的光线以生成电信号;第三普通像素点可以与第三普通像素滤光器对应,用于接收经第三普通滤光器C过滤后的光线以生成电信号;第一特定像素点与第一特定滤光器Ap对应,用于接收第一特定滤光器Ap过滤后的光线以生成电信号。
请结合图4,图像传感器10还可包括处理器14,处理器14可以根据第一特定像素点的数据对第一普通像素点的数据进行处理,则处理后的第一普通像素点的数据是根据过滤了第一颜色的光线中的至少部分特定光线,而剩余的光线得到的。由此,并不需要将滤光器阵列11全部设置为特定滤光器,也可以实现以过滤掉特定光线后的光线的成像效果,可以节省滤光器阵列11及图像传感器10的成本。
另外,处理器14也可以根据第一普通像素点的数据对第一特定像素点的数据进行处理,则处理后的第一特定像素点的数据可以认为是根据未过滤第一颜色的光线中的特定光线得到的。由此,可以根据普通像素点对特定像素点进行处理,图像传感器10成像更加真实,避免了用户想拍真实的图像时得到的图像存在色差的现象。
其中,第一特定像素点和第一普通像素点的结构可以相同,接收到的光线不同。
其中,第一颜色、第二颜色和第三颜色互不相同,且第一颜色、第二颜色和第三颜色的颜色组成方式可以有多种。在一个例子中,第一颜色可为红色R、第二颜色可为绿色G、第三颜色可为蓝色B,一个子单元111可以为RGGB排布。在另一个例子中,第一颜色可为红色R、第二颜色可为黄色Y、第三颜色可为蓝色B,一个子单元111可以为RYYB排布。在又一个例子中,第一颜色可为红色R、第二颜色可为绿色Y、第三颜色可为青色CB,一个子单元111可以为RYYCB。第一颜色、第二颜色和第三颜色还可以为其他颜色,在此不一一列举。在一个例子中,还包括第四普通滤光器,第四普通滤光器可以允许所有颜色的光线通过,第四颜色可以为白色W,第一颜色可为红色R、第二颜色可为绿色G、第三颜色可为蓝色B,则一个子单元111可以为RGBW分布。
本申请实施例中以第一颜色为红色R、第二颜色为绿色G、第三颜色为蓝色B为例进行示例性说明。
请参阅图9,在某些实施方式中,第一颜色的光线中波长在特定波长范围内的波段多于第三颜色的光线在特定波长范围内的波段,第二颜色的光线中波长在特定波长范围内的波段多于第三颜色的光线在特定波长范围内的波段。可以理解,在预设波长范围内(600nm-640nm),第一颜色的光线数量较多。
请参阅图10至图12,第一普通滤光器A可包括第一颜色滤镜101A,第一特定滤光器Ap可包括第一颜色滤镜101A及第一特定滤镜102A,第一颜色滤镜101A用于仅允许第一颜色的光线通过,第一特定滤镜102A用于过滤掉第一颜色的光线中的至少部分特定光线。其中,第一特定滤镜102A不允许波长在特定波长范围内的光线通过。第一特定滤镜102A可以设置在第一颜色滤镜101A的入光侧或者出光侧,在此不做限制。第一特定滤光器Ap可以是在第一普通滤光器A的基础上设置第一特定滤镜102A而形成。
请结合图11-图12,第一特定滤镜102A的数量可以是一个或者多个,在第一特定滤镜102A的数量为多个时,多个第一特定滤镜102A可以均设置在第一颜色滤镜101A的入光侧或者出光侧,或者,部分个第一特定滤镜102A设置在第一颜色滤镜101A的入光侧,另部分个第一特定滤镜102A设置在第一颜色滤镜101A的出光侧。
在其中一个实施例中,图像传感器10的处理器可以根据设置一个第一特定滤镜102A的数据,模拟得到设置两个甚至更多个第一特定滤镜102A的数据,进而可以实现只需要设置一个第一特定滤镜102A而可以实现设置多个第一特定滤镜102A的效果。
在一些实施方式中,请参阅图5、图6及图7,区域阵列110中包括第一特定滤光器Ap。第一特定滤光器Ap可位于子单元111中。
第一特定滤光器Ap的数量也可根据第一普通滤光器A的数量确定。例如,第一特定滤光器Ap的数量可以是第一普通滤光器A的数量的十分之一、八分之一、五分之一、四分之一等,在此不一一列举。由此,可以避免由于第一特定滤光器Ap过多导致想拍真实图像时存在较强的失真现象,也可以避免由于第一特定滤光器Ap过多导致所成图像的亮度较暗的现象。
在一些实施方式中,在一个区域阵列110中,第一特定滤光器Ap的数量小于第一普通滤光器A的数量,由此,可以避免第一特定滤光器Ap的数量过多、而导致图像传感器10所生成的图像亮度过低。
需要说明的是,本申请实施方式的滤光器阵列11的分布并不限于图6-8所示的分布,还可以是其他分布,在此不做具体限制。
请参阅图3,在某些实施方式中,图像传感器10还可包括微透镜阵列13,微透镜阵列可包括多个微透镜131,多个微透镜131可对应设置于多个滤光器1111的远离像素阵列12的一侧,并与该滤光器1111对应的像素点121相对应,沿图像传感器10的收光方向,光线经微透镜131到达滤光器1111。微透镜131可以汇聚光线,可以将入射的光线更多地导引至滤光器1111。
请参阅图13,本申请还提供了一种图像处理方法,图像处理方法可以用于上述任一实施方式的图像传感器10,图像处理方法可包括以下步骤:
01:获取待处理图像中的普通像素的第一像素值和特定像素的第二像素值,普通像素由普通像素点根据接收到的第一光线得到,特定像素由特定像素点根据接收到的第二光线得到;其中,特定像素点过滤掉第一光线中在特定波长范围中的至少部分光线后,余下的光线为第二光线,在 特定波长范围内黑色素的反射率低于血红蛋白的反射率;
02:根据第一像素值和第二像素值计算,由特定像素点根据第一光线中在特定波长范围中的至少部分光线得到特定像素时,特定像素的第三像素值;
03:根据第三像素值,调整待处理图像中的普通像素的像素值,以生成目标图像。
具体地,待处理图像可以是由上述任一实施方式的图像传感器10生成,即,待处理图像是像素阵列根据滤光器阵列11过滤后的光线生成的。待处理图像中可包括有普通像素和特定像素,像素阵列中与普通滤光器相相对应的像素点为普通像素点,像素阵列中与特定滤光器相对应的像素点为特定像素点。
普通像素可以是普通像素点根据接收到的第一光线得到的,特定像素可以是特定像素点根据接收到的第二光线得到的,第一光线中波长在特定波长范围内的至少部分光线被过滤后,剩余的光线即为第二光线。可以理解地,第二光线缺少了特定波长范围的光。
为了对待处理图像中的普通像素进行处理,使得普通像素具有特定像素相似的属性。可以对普通像素的第一像素值和特定像素的第二像素值进行差值计算,得到在特定波长范围中的至少部分光线得到特定像素时,特定像素的第三像素值。然后根据第三像素值调整后的普通像素的像素值,从而更新待处理图像可以生成目标图像。由此,目标图像中血红蛋白表现较好,人物肤色更加粉嫩。
在图14中,P可以表示待处理图像的像素分布,P’可以表示得到的目标图像的像素分布。其中,图22中的R、G、B均为普通像素,Rp为特定像素,R’、G’及B’为调整后的普通像素。
请参阅图15,在一些实施方式中,步骤01包括以下步骤:
011:根据预设放大系数对第二像素值进行放大处理得到放大像素值;及
012:计算第一像素值和放大像素值的差值得到第三像素值。
具体地,第二像素值是特征像素点根据接收的第二光线得到的,第三像素值是通过第一像素值和第二像素值进行差值计算得到的,第三像素值为特定波长范围的光线得到,进而可以对接收未经过特定滤镜过滤的光线的普通像素的像素值进行处理,以得到目标图像。
预设放大系数可根据使用场景的不同进行调节,例如,在需要更大的信号差值时(例如,人脸图像),则可以调大预设放大系数,使得皮肤表现好,而需要更小的信号差值时,缩小调节系数。
请参阅图16,在某些实施方式中,步骤03包括以下步骤:
031:确定第三像素值的调整系数;
032:根据调整系数对第三像素进行处理得到调整像素值;
033:根据调整像素值和普通像素的第一像素值,计算普通像素的像素新值;及
034:以普通像素的像素新值更新待处理图像,获得目标图像。
具体地,根据特定像素计算得到调整系数后,可以根据调整系数以及调整系统对应的普通像素的第一像素值,计算得到该普通像素的像素新值。然后可以将待处理图像中普通像素的像素值更新为像素新值,可以得到目标图像。由此,由于普通像素的像素值进行了更新,则目标图像中血红蛋白较明显,同时肤色将更加粉嫩。
其中,若部分普通像素无对应的特定像素,则可以根据普通像素对应接收的第一光线在特定滤镜下的通过率作为该普通像素的比值,根据该比值和调整系数可以得到调整系数,进而可以根 据该调整系数和普通像素的第一像素值,计算对应的普通像素的像素新值。
请参阅图14,在一些实施方式中,待处理图像中可包括多种普通像素(例如,R、G、B),待处理图像中可包括至少一种特定像素(例如,Rp)。在待处理图像中存在一种特定像素时,例如,Rp中的一种,该种特定像素可与多种普通像素中的一种对应,可以根据与该种特定像素对应的一个或多个普通像素的第一像素值,计算该种特定像素若以第一光线生成时的第三像素值,然后根据第三像素值和第二像素值计算增益系数,然后可以根据增益系数对与该种特定像素对应的普通像素的像素值进行调整,调整后的待处理图像即可作为目标图像。待处理图像中存在多种特定像素时,生成目标图像的过程和一种特定像素类似,在此不详细展开。
请参阅图17,在某些实施方式中,图像处理方法还包括以下步骤:
04:检测待处理图像中的肤色区域;
步骤03还包括以下步骤:
035:根据第三像素值,调整待处理图像中的肤色区域内的普通像素的像素值,并根据调整后的像素值生成目标图像。
具体地,由于主要是皮肤上容易存在痣、斑等容易影响人像的成像效果,因此,在处理待处理图像时,只需要处理待处理图像中的肤色区域的普通像素。因此,可以检测待处理图像中的肤色区域,具体可通过肤色检测算法识别待处理图像中的肤色区域,也可先识别待处理图像中的人像区域,然后识别人像中的肤色区域。进而可以确定待处理图像中肤色区域内的普通像素和特定像素,可以根据肤色区域内的特定像素的第三像素值对肤色区域内的普通像素的像素值进行调整,以调整后的像素值更新待处理图像即可得到目标图像。
更具体地,肤色区域内存在第一普通像素R、第二普通像素G和第三普通像素B时,则需分别计算肤色区域内的第三像素值,然后根据第三像素值和每个第一普通像素R的像素值,计算每个第一普通像素R的第一像素新值。进而以对应的第一像素新值更新肤色区域,更新后的待处理图像可以作为目标图像。由此,可以避免将整个待处理图像进行处理而使得到的目标图像中肤色区域以外的环境区域、及用户头发、衣服等颜色出现偏差的现象。
进一步地,在某些实施方式中,待处理图像中肤色区域以外的其他区域内存在有特定像素时,为了避免特定像素造成其他区域的颜色存在偏差,图像处理方法还可包括对其他区域内的特定像素的像素值进行调整,使得特定像素可以像普通像素一样。具体地,可以将特定像素周围一定范围内的普通像素的像素值的均值作为特定像素的像素新值,也可以将最接近特定像素的普通像素的像素值作为特定像素的像素新值,还可将其他区域内的所有与特定像素对应的普通像素的像素值的均值作为特定像素的像素新值。
例如,其他区域中存在第一特定像素Rp时,则可以将最接近与第一特定像素Rp的第一普通像素R的像素值作为第一特定像素Rp的像素值。
请参阅图18,在某些实施方式中,图像处理方法还包括以下步骤:
05:识别待处理图像中的肤色区域的肤色所属性别;及
06:在识别到肤色所属性别为女性时,执行根据第三像素值,调整待处理图像中的普通像素的像素值,以生成目标图像的步骤。
具体地,一般用户为女性,拍照时更注重美丽,而男性拍照时可能比较喜欢真实的自己。可以是被待处理图像中的肤色区域的肤色所属性别,具体可通过一些深度学习算法或者训练模型,识别待处理图像中的肤色区域的肤色所属性别,在此不详细展开。在识别到肤色所属性别为女性 时,执行步骤03(即根据第三像素值,调整待处理图像中的普通像素的像素值,以生成目标图像)。在识别到肤色所属性别为男性时,可以直接输出待处理图像得到目标图像,也可以对待处理图像中的特定像素进行处理,使得特定像素普通化,具体普通化的过程与上文中对其它区域内的特定像素进行调整的过程相似,在此不详细展开。由此,可以根据识别到的所属性别选择性地执行调整待处理图像中的普通像素的像素值,更加符合用户的使用场景,增强了用户的使用体验。
当然,用户也可选择性地执行步骤03的命令,例如,电子设备的UI界面可以存在开关按键,用户可通过触控开关按键实现执行或不执行步骤04的命令,以满足用户的个性化需求。
请参阅图4,在某些实施方式中,本申请的图像传感器10的处理器14可以用于实现上述任一实施方式的图像处理方法。例如,处理器可以用于实现步骤01、步骤02、步骤03、步骤05、步骤06、步骤011、步骤012、步骤031、步骤032、步骤033、步骤034、步骤035中的一个步骤或者多个步骤。
请参阅图19,在某些实施方式中,本申请还提供了一种电子设备1000,电子设备可包括上述任一实施方式的图像传感器10。图像传感器10可安装于电子设备1000的壳体内,并可与电子设备1000的主板连接。
请参阅图20,在某些实施方式中,本申请还提供了一种电子设备1000,电子设备1000可包括上述任一实施方式的成像装置100。成像装置100可安装于电子设备1000的壳体内,并可与电子设备1000的主板连接,成像装置1000可以用于成像。
请参阅图20,在某些实施方式中,本申请还提供了一种电子设备1000,电子设备可包括处理器200。处理器200可以用于实现上述任一实施方式的图像处理方法。例如,处理器可以用于实现步骤01、步骤02、步骤03、步骤05、步骤06、步骤011、步骤012、步骤031、步骤032、步骤033、步骤034、步骤035中的一个步骤或者多个步骤。
需要说明的是,上述实施方式中所述的电子设备1000具体可以为可以是手机、平板电脑、笔记本电脑、智能手表、智能手环、智能头盔、智能眼镜、无人设备(例如无人机、无人车、无人船)等,在此不一一列举。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (21)

  1. 一种滤光器阵列,其特征在于,包括区域阵列,每个所述区域阵列中包括多个滤光器,所述滤光器包括普通滤光器和特定滤光器,所述区域阵列包括至少一个子单元,所述子单元包括多个所述滤光器,每个所述区域阵列均包括多个普通滤光器和至少一个特定滤光器,每个所述普通滤光器仅允许一种颜色的光线通过,每个特定滤光器仅允许一种颜色的光线通过,并能过滤该颜色的光线中波长在特定波长范围内的至少部分光线,所述特定波长范围内黑色素的反射率低于血红蛋白的反射率。
  2. 根据权利要求1所述的滤光器阵列,其特征在于,所述普通滤光器包括第一普通滤光器、第二普通滤光器和第三普通滤光器,所述特定滤光器包括第一特定滤光器,所述第一普通滤光器用于仅允许第一颜色的光线通过,所述第二普通滤光器用于仅允许第二颜色的光线通过,所述第三普通滤光器用于仅允许第三颜色的光线通过,所述第一特定滤光器用于仅允许第一颜色的光线通过并过滤所述第一颜色的光线中波长在特定波长范围内的至少部分光线。
  3. 根据权利要求2所述的滤光器阵列,其特征在于,所述第一普通滤光器包括第一颜色滤镜,所述第一特定滤光器包括所述第一颜色滤镜及第一特定滤镜,所述第一颜色滤镜用于允许所述第一颜色的光线通过,所述第一特定滤镜用于过滤光线中的波长在所述特定波长范围内的至少部分光线。
  4. 根据权利要求3所述的滤光器阵列,其特征在于,所述第一特定滤镜的数量为一个或者多个。
  5. 根据权利要求2所述的滤光器阵列,其特征在于,所述第一特定滤镜的透过率小于预设阈值;
  6. 根据权利要求2所述的滤光器阵列,其特征在于,所述第一颜色为红色,所述第二颜色为绿色或者黄色,所述第三颜色为蓝色。
  7. 根据权利要求1所述的滤光器阵列,其特征在于,所述特定波长范围为585-700nm。
  8. 根据权利要求7所述的滤光器阵列,其特征在于,所述特定波长范围为600-640nm。
  9. 根据权利要求2所述的滤光器阵列,其特征在于,部分个所述子单元包括有所述第一特定滤光器。
  10. 根据权利要求1所述的滤光器阵列,其特征在于,在所述滤光器阵列中,多个所述区域阵列中所述滤光器的分布完全相同;或,至少两个不同的所述区域阵列中的所述滤光器的分布不同。
  11. 根据权利要求1-10任意一项所述的滤光器阵列,其特征在于,每个所述区域阵列包括2n*2n个所述子单元,n≥1,所述子单元包括2*2个所述滤光器。
  12. 根据权利要求1-10任意一项所述的滤光器阵列,其特征在于,每个所述子单元包括多个孙单元,每个所述孙单元包括K*K个所述滤光器,其中,K≥2,同一个所述孙单元中的所述滤光器允许通过的光线的颜色相同。
  13. 一种图像处理方法,其特征在于,包括:
    获取待处理图像中的普通像素的第一像素值和特定像素的第二像素值,所述普通像素由普通像素点根据接收到的第一光线得到,所述特定像素由特定像素点根据接收到的第二光线得到;其中,所述特定像素点过滤掉所述第一光线中在特定波长范围中的至少部分光线后,余下的光线为 所述第二光线,在所述特定波长范围内黑色素的反射率低于血红蛋白的反射率;
    根据所述第一像素值和所述第二像素值计算,由所述特定像素点根据所述第一光线中在特定波长范围中的至少部分光线得到所述特定像素时,所述特定像素的第三像素值;及
    根据所述第三像素值,调整所述待处理图像中的所述普通像素的像素值,以生成目标图像。
  14. 根据权利要求13所述的图像处理方法,其特征在于,所述根据所述第一像素值和所述第二像素值计算,由所述特定像素点根据所述第一光线中在特定波长范围中的至少部分光线得到所述特定像素时,所述特定像素的第三像素值,包括:
    根据预设放大系数对所述第二像素值进行放大处理得到放大像素值;
    计算所述第一像素值和所述放大像素值的差值得到所述第三像素值。
  15. 根据权利要求13所述的图像处理方法,其特征在于,所述根据所述第三像素值,调整所述待处理图像中的所述普通像素的像素值,以生成目标图像,还包括:
    确定所述第三像素值的调整系数;
    根据所述调整系数对所述第三像素进行处理得到调整像素值;
    根据所述调整像素值和所述普通像素的第一像素值,计算所述普通像素的像素新值;及
    以所述普通像素的像素新值更新所述待处理图像,获得所述目标图像。
  16. 根据权利要求13所述的图像处理方法,其特征在于,所述图像处理方法还包括:
    检测所述待处理图像中的肤色区域;
    所述根据所述第三像素值,调整所述待处理图像中的所述普通像素的像素值,以生成目标图像,包括:
    根据所述第三像素值,调整所述待处理图像中的所述肤色区域内的所述普通像素的像素值,并根据调整后的像素值生成目标图像。
  17. 根据权利要求13所述的图像处理方法,其特征在于,所述图像处理方法还包括:
    识别所述待处理图像中的肤色区域的肤色所属性别;及
    在识别到所述肤色所属性别为女性时,执行所述根据所述第三像素值,调整所述待处理图像中的所述普通像素的像素值,以生成目标图像的步骤。
  18. 一种图像传感器,其特征在于,所述图像传感器包括:
    权利要求1-12任意一项所述的滤光器阵列;及
    像素阵列,所述像素阵列包括多个像素点,每个所述像素点对应一个所述滤光器,所述像素点用于接收穿过对应的所述滤光器的光线以生成电信号。
  19. 根据权利要求18所述的图像传感器,其特征在于,所述图像传感器还包括处理电路,所述处理电路用于实现权利要求13-17任意一项所述的图像处理方法。
  20. 一种成像装置,其特征在于,包括:
    权利要求18所述的图像传感器;及
    处理器,所述处理器用于实现权利要求13-17任意一项所述的图像处理方法。
  21. 一种电子设备,其特征在于,
    所述电子设备包括权利要求18或19所述的图像传感器;或
    所述电子设备包括权利要求20所述的成像装置;或
    所述电子设备包括处理器,所述处理器用于实现权利要求13-17任意一项所述的图像处理方法。
PCT/CN2021/115401 2021-08-30 2021-08-30 滤光器阵列、方法、图像传感器、装置及电子设备 WO2023028768A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180099922.0A CN117581555A (zh) 2021-08-30 2021-08-30 滤光器阵列、方法、图像传感器、装置及电子设备
PCT/CN2021/115401 WO2023028768A1 (zh) 2021-08-30 2021-08-30 滤光器阵列、方法、图像传感器、装置及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/115401 WO2023028768A1 (zh) 2021-08-30 2021-08-30 滤光器阵列、方法、图像传感器、装置及电子设备

Publications (2)

Publication Number Publication Date
WO2023028768A1 true WO2023028768A1 (zh) 2023-03-09
WO2023028768A9 WO2023028768A9 (zh) 2024-02-29

Family

ID=85411738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115401 WO2023028768A1 (zh) 2021-08-30 2021-08-30 滤光器阵列、方法、图像传感器、装置及电子设备

Country Status (2)

Country Link
CN (1) CN117581555A (zh)
WO (1) WO2023028768A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060008173A1 (en) * 2004-06-29 2006-01-12 Canon Kabushiki Kaisha Device and method for correcting image including person area
EP2309449A1 (en) * 2009-10-09 2011-04-13 EPFL Ecole Polytechnique Fédérale de Lausanne Method to produce a full-color smoothed image
CN104125442A (zh) * 2013-04-26 2014-10-29 索尼公司 图像处理方法、装置以及电子设备
CN108886563A (zh) * 2016-03-29 2018-11-23 华为技术有限公司 图像处理方法、图像处理装置、便携式多功能设备
CN113225470A (zh) * 2021-06-10 2021-08-06 Oppo广东移动通信有限公司 滤光器阵列、图像处理方法、图像传感器、成像装置及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060008173A1 (en) * 2004-06-29 2006-01-12 Canon Kabushiki Kaisha Device and method for correcting image including person area
EP2309449A1 (en) * 2009-10-09 2011-04-13 EPFL Ecole Polytechnique Fédérale de Lausanne Method to produce a full-color smoothed image
CN104125442A (zh) * 2013-04-26 2014-10-29 索尼公司 图像处理方法、装置以及电子设备
CN108886563A (zh) * 2016-03-29 2018-11-23 华为技术有限公司 图像处理方法、图像处理装置、便携式多功能设备
CN113225470A (zh) * 2021-06-10 2021-08-06 Oppo广东移动通信有限公司 滤光器阵列、图像处理方法、图像传感器、成像装置及终端

Also Published As

Publication number Publication date
WO2023028768A9 (zh) 2024-02-29
CN117581555A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
US7460160B2 (en) Multispectral digital camera employing both visible light and non-visible light sensing on a single image sensor
EP2529554B1 (en) Iteratively denoising color filter array images
CN102204258B (zh) 图像输入装置
US20140078247A1 (en) Image adjuster and image adjusting method and program
US8345130B2 (en) Denoising CFA images using weighted pixel differences
CN107426470A (zh) 相机模组和电子装置
US8760561B2 (en) Image capture for spectral profiling of objects in a scene
KR20140099777A (ko) 다중대역 필터배열 센서를 이용한 영상융합장치 및 방법
WO2016088293A1 (en) Imaging device, apparatus, and imaging method
JP2006146194A (ja) 複数の開口を有するフィルタを用いるオートフォーカス
WO2021016900A1 (zh) 一种图像传感器和图像感光的方法
US20120249821A1 (en) Image capture adjustment for post-capture processing
US20230342895A1 (en) Image processing method and related device thereof
CN107563329A (zh) 图像处理方法、装置、计算机可读存储介质和移动终端
US8654210B2 (en) Adaptive color imaging
KR102412278B1 (ko) 보색관계의 필터 어레이를 포함하는 카메라 모듈 및 그를 포함하는 전자 장치
WO2023028768A1 (zh) 滤光器阵列、方法、图像传感器、装置及电子设备
WO2023028767A1 (zh) 滤光器阵列、方法、图像传感器、装置及电子设备
WO2018082130A1 (zh) 一种显著图生成方法及用户终端
WO2023028769A1 (zh) 成像模组、成像系统、图像处理方法及终端
CN115955611B (zh) 图像处理方法与电子设备
TWI842098B (zh) 一種圖像感測器及顏色還原方法
WO2022198436A1 (zh) 图像传感器、图像数据获取方法、成像设备
KR102667267B1 (ko) 영상 획득 장치 및 이를 포함하는 전자 장치
WO2023283855A1 (en) Super resolution based on saliency

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180099922.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE