WO2023028767A1 - 滤光器阵列、方法、图像传感器、装置及电子设备 - Google Patents

滤光器阵列、方法、图像传感器、装置及电子设备 Download PDF

Info

Publication number
WO2023028767A1
WO2023028767A1 PCT/CN2021/115400 CN2021115400W WO2023028767A1 WO 2023028767 A1 WO2023028767 A1 WO 2023028767A1 CN 2021115400 W CN2021115400 W CN 2021115400W WO 2023028767 A1 WO2023028767 A1 WO 2023028767A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
specific
filter
light
color
Prior art date
Application number
PCT/CN2021/115400
Other languages
English (en)
French (fr)
Inventor
张召杰
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180099920.1A priority Critical patent/CN117561721A/zh
Priority to PCT/CN2021/115400 priority patent/WO2023028767A1/zh
Publication of WO2023028767A1 publication Critical patent/WO2023028767A1/zh

Links

Images

Definitions

  • the present application relates to the field of image technology, in particular to an optical filter array, an image processing method, an image sensor, an imaging device and electronic equipment.
  • Embodiments of the present application provide an optical filter array, an image processing method, an image sensor, an imaging device, and electronic equipment.
  • the optical filter array of the embodiment of the present application includes a plurality of optical filters, the optical filters include common optical filters and specific optical filters, the optical filter array includes a plurality of area arrays, and the area arrays include at least A subunit, the subunit includes a plurality of said filters, each of said area arrays includes a plurality of common filters and at least one specific filter, and each of said common filters only allows one Each specific filter allows only one color of light to pass through, and can filter at least part of the light of this color with a wavelength within a specific wavelength range, and the reflectance of melanin in the specific wavelength range Higher than the reflectance of hemoglobin.
  • the image processing method in the embodiment of the present application includes: acquiring the first pixel value of a common pixel in the image to be processed and the second pixel value of a specific pixel, the common pixel is obtained by the common pixel according to the first light received, so The specific pixel is obtained from a specific pixel point according to the second light received; wherein, after filtering out at least part of the light in the specific wavelength range in the first light, the remaining light is the second light, and in the The reflectance of melanin in a specific wavelength range is higher than that of hemoglobin; calculated according to the first pixel value, when the specific pixel is obtained from the specific pixel according to the first light, the third value of the specific pixel pixel value; calculating a gain coefficient according to the third pixel value and the second pixel value; and adjusting the pixel value of the common pixel in the image to be processed according to the gain coefficient to generate a target image.
  • the image sensor in the embodiment of the present application includes a filter array and a pixel array.
  • the filter array includes a plurality of filters, the filters include common filters and specific filters, the filter array includes a plurality of area arrays, and the area array includes at least one subunit , the subunit includes a plurality of filters, each of the area arrays includes a plurality of common filters and at least one specific filter, and each of the common filters allows only one color Light passes through, and each specific filter allows only one color of light to pass through, and can filter at least part of the wavelength of light of this color in a specific wavelength range, and the reflectance of melanin in the specific wavelength range is higher than that of hemoglobin reflectivity.
  • the pixel array includes a plurality of pixel points, each pixel point corresponds to one of the optical filters, and the pixel points are used to receive light passing through the corresponding optical filter to generate electrical signals.
  • the imaging device includes the image sensor and the processor according to the embodiment of the present application.
  • the image sensor includes a filter array and a pixel array.
  • the filter array includes a plurality of filters, the filters include common filters and specific filters, the filter array includes a plurality of area arrays, and the area array includes at least one subunit , the subunit includes a plurality of filters, each of the area arrays includes a plurality of common filters and at least one specific filter, and each of the common filters allows only one color Light passes through, and each specific filter allows only one color of light to pass through, and can filter at least part of the wavelength of light of this color in a specific wavelength range, and the reflectance of melanin in the specific wavelength range is higher than that of hemoglobin reflectivity.
  • the pixel array includes a plurality of pixel points, each pixel point corresponds to one of the optical filters, and the pixel points are used to receive light passing through the corresponding optical filter to generate electrical signals.
  • the processor is used to implement the image processing method of the embodiment of the present application.
  • the image processing method includes: acquiring a first pixel value of a common pixel in the image to be processed and a second pixel value of a specific pixel, the common pixel is obtained by the common pixel according to the received first light, and the specific pixel Obtained by a specific pixel point according to the second light received; wherein, after filtering out at least part of the light in the specific wavelength range of the first light, the remaining light is the second light, and in the specific wavelength range
  • the reflectance of melanin is higher than the reflectance of hemoglobin; calculated according to the first pixel value, when the specific pixel is obtained from the specific pixel according to the first light, the third pixel value of the specific pixel; calculating a gain coefficient according to the third pixel value and the second pixel value; and adjusting pixel values of the common pixels in the image to be processed according to the gain coefficient to generate a target image.
  • the electronic device of the embodiment of the present application includes the image sensor of the embodiment of the present application.
  • the image sensor includes a filter array and a pixel array.
  • the filter array includes a plurality of filters, the filters include common filters and specific filters, the filter array includes a plurality of area arrays, and the area array includes at least one subunit , the subunit includes a plurality of filters, each of the area arrays includes a plurality of common filters and at least one specific filter, and each of the common filters allows only one color Light passes through, and each specific filter allows only one color of light to pass through, and can filter at least part of the wavelength of light of this color in a specific wavelength range, and the reflectance of melanin in the specific wavelength range is higher than that of hemoglobin reflectivity.
  • the pixel array includes a plurality of pixel points, each pixel point corresponds to one of the optical filters, and the pixel points are used to receive light passing through the corresponding optical filter to generate electrical signals.
  • the electronic device in the embodiment of the present application includes the imaging device in the embodiment of the present application, and the imaging device includes the image sensor and the processor in the embodiment of the present application.
  • the image sensor includes a filter array and a pixel array.
  • the filter array includes a plurality of filters, the filters include common filters and specific filters, the filter array includes a plurality of area arrays, and the area array includes at least one subunit , the subunit includes a plurality of filters, each of the area arrays includes a plurality of common filters and at least one specific filter, and each of the common filters allows only one color Light passes through, and each specific filter allows only one color of light to pass through, and can filter at least part of the wavelength of light of this color in a specific wavelength range, and the reflectance of melanin in the specific wavelength range is higher than that of hemoglobin reflectivity.
  • the pixel array includes a plurality of pixel points, each pixel point corresponds to one of the optical filters, and the pixel points are used to receive light passing through the corresponding optical filter to generate electrical signals.
  • the processor is used to implement the image processing method of the embodiment of the present application.
  • the image processing method includes: obtaining a first pixel value of a common pixel in the image to be processed and a second pixel value of a specific pixel, the common pixel is obtained by the common pixel according to the received first light, and the specific pixel is obtained by the specific pixel
  • the pixel point is obtained according to the received second light; wherein, after filtering out at least part of the light in the specific wavelength range in the first light, the remaining light is the second light, and the melanin in the specific wavelength range
  • the reflectance is higher than the reflectance of hemoglobin; calculated according to the first pixel value, when the specific pixel is obtained from the specific pixel according to the first light, the third pixel value of the specific pixel; according to the calculating a gain coefficient based on the third pixel value and the second pixel value; and adjusting pixel values of the normal pixels in the image to be processed according to the gain coefficient to generate a target image.
  • the electronic device in the embodiments of the present application includes a processor, and the processor is configured to implement the image processing method described in the embodiments of the present application.
  • the image processing method includes: obtaining a first pixel value of a common pixel in the image to be processed and a second pixel value of a specific pixel, the common pixel is obtained by the common pixel according to the received first light, and the specific pixel is obtained by the specific pixel The pixel point is obtained according to the received second light; wherein, after filtering out at least part of the light in the specific wavelength range in the first light, the remaining light is the second light, and the melanin in the specific wavelength range
  • the reflectance is higher than the reflectance of hemoglobin; calculated according to the first pixel value, when the specific pixel is obtained from the specific pixel according to the first light, the third pixel value of the specific pixel; according to the calculating a gain coefficient based on the third pixel value and the second pixel value; and adjusting pixel values of the normal pixels in the image
  • each area array includes an ordinary optical filter and at least one specific optical filter, and an ordinary optical filter only allows one
  • the color of light passes through, and a specific filter allows only one color of light to pass through, and can filter out at least part of the wavelength of the color of light in a specific wavelength range, and the reflectance of melanin is higher than that of hemoglobin in a specific wavelength range
  • the specific filter can filter at least part of the light with a wavelength in a specific wavelength range, so that there is less melanin during imaging, and the melanin in the image after imaging is lighter and not obvious.
  • FIG. 1 is a schematic structural diagram of an image sensor according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an image sensor according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an optical filter array in some embodiments of the present application.
  • FIG. 4 is a schematic diagram of the relationship between light of different wavelength bands and the corresponding reflectance of melanin and hemoglobin, and the transmittance of light of different wave bands under a specific filter according to some embodiments of the present application;
  • Fig. 5 shows the reflectance of light of different wavelength bands and corresponding melanin and hemoglobin under a specific filter set in a specific filter of the filter array according to some embodiments of the present application;
  • FIG. 6 to 11 are structural schematic diagrams of optical filter arrays in some embodiments of the present application.
  • Fig. 12 is a schematic diagram of the relationship between light of different wavelength bands and the relative sensitivity of the corresponding red channel, green channel and blue channel under the common optical filter in some embodiments of the present application;
  • Fig. 13 shows the reflectance of light of different wavelength bands and the corresponding melanin and hemoglobin under two specific filters set in the specific filter of the filter array according to some embodiments of the present application;
  • Fig. 14 shows the reflectance of light of different wavelength bands and corresponding melanin and hemoglobin under five specific filters set in the specific filters of the filter array in some embodiments of the present application;
  • 15 to 19 are schematic structural diagrams of image sensors in some embodiments of the present application.
  • Fig. 20 is a schematic diagram of the relationship between light of different wavelength bands and the relative sensitivity of the corresponding red channel, green channel and blue channel after being filtered by a specific filter and not filtered by a specific filter in an optical filter array according to some embodiments of the present application ;
  • FIG. 21 is a schematic flowchart of an image processing method according to an embodiment of the present application.
  • FIG. 22 and FIG. 23 are schematic diagrams of the principle of the image processing method according to the embodiment of the present application.
  • FIG. 24 is a schematic flowchart of an image processing method according to an embodiment of the present application.
  • Fig. 25 is a schematic diagram of an image processing method according to an embodiment of the present application.
  • FIG. 26 and FIG. 27 are schematic flowcharts of the image processing method according to the embodiment of the present application.
  • FIG. 28 is a schematic diagram of the principle of an image processing method according to an embodiment of the present application.
  • 29 to 34 are schematic flowcharts of the image processing method in the embodiment of the present application.
  • Figure 35 is a schematic diagram of the relationship between light of different wavelength bands and the relative sensitivity of the corresponding red channel, green channel, and blue channel under a specific filter in the embodiment of the present application, and the transmission of light of different wave bands under a specific filter Rate;
  • FIG. 41 is a schematic structural diagram of an imaging device according to an embodiment of the present application.
  • FIG. 42 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the present application provides an image sensor 10 , and the image sensor 10 includes a filter array 11 and a pixel array.
  • the optical filter array 11 of the present application comprises a plurality of optical filters, and optical filter comprises general optical filter (for example A, B, C in Fig. 3) and specific optical filter (for example Ap, Bp, Bp in Fig.
  • the filter array 11 includes a plurality of area arrays 110, the area array 110 includes at least one subunit 111, the subunit 111 includes a plurality of filters, and each area array 110 includes a plurality of common filters and at least A specific filter, each ordinary filter allows only one color of light to pass through, and each specific filter allows only one color of light to pass through, and can filter the wavelength of light of this color within a specific wavelength range For at least part of the light, the reflectance of melanin is higher than that of hemoglobin in a specific wavelength range.
  • each area array 110 includes a common filter and at least one specific filter, the common filter only allows light of one color to pass through, and the specific filter
  • the optical device only allows light of one color to pass through, and can filter out at least part of the light with a wavelength in a specific wavelength range of the color light, and the reflectance of melanin is higher than that of hemoglobin in a specific wavelength range, and the specific filter
  • the filter can filter at least part of the light with a wavelength within a specific wavelength range, so that there is less melanin during imaging, so that the melanin in the imaged image is lighter and not obvious.
  • the light in a specific wavelength range is irradiated on the skin, and the reflectance of melanin to the light in the specific wavelength range is higher than the reflectance of hemoglobin to the light in the specific wavelength range.
  • the light with a specific wavelength range of 530 nm to 580 nm is taken as an example for illustration. It can be understood that the specific wavelength range is not limited to 530 nm to 580 nm.
  • the specific light represents the light with a wavelength of 530nm to 580nm. It can be understood that the wavelength of the specific light can be any value between 530nm and 580nm.
  • the wavelength of the specific light can be 530nm, 535nm, 540nm, 545nm, 550nm, 555nm, 560nm, 565nm, 570nm, 575nm, 580nm or more values are not listed here.
  • FIG. 4 shows the reflectivity of hemoglobin and melanin under different wavelength bands of light under ordinary filters or no filters
  • the abscissa represents the wavelength of the light
  • the ordinate Indicates the reflectivity of light
  • the curve H represents the reflectivity of hemoglobin in different wave bands
  • the curve M represents the reflectivity of melanin in different wave bands.
  • FIG. 4 may represent a graph of the light filtered by a specific filter and the transmittance of the light.
  • the abscissa represents the wavelength of the light
  • the ordinate represents the transmittance of the light.
  • Figure b in Figure 4 shows the reflectance of hemoglobin and melanin under different wavelength bands of light after filtering at least part of the specific light through a specific filter
  • the abscissa represents the wavelength of the light
  • the ordinate represents the reflectance
  • the curve H represents the reflectance of hemoglobin under different wave bands
  • curve M represents the reflectance of melanin under different wave bands.
  • the area array 110 includes both specific filters and common filters.
  • the specific filters can be normalized according to the common filters, so that real skin color images can be obtained, and all settings can be avoided.
  • Specific filters which lead to the phenomenon that users want to image with real skin color but the images obtained are not real; on the other hand, ordinary filters can be customized according to specific filters, so that images with lighter melanin can be obtained , can avoid the phenomenon that all ordinary filters are set, and the user wants to lighten the melanin and beautify the skin.
  • the generalization processing may refer to calculating the pixel value of the specific filter according to the pixel value of the common filter
  • the specific processing may refer to calculating the pixel value of the common filter according to the pixel value of the specific filter.
  • the image sensor 10 will be described in detail below with reference to the accompanying drawings.
  • the image sensor 10 may specifically use a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) photosensitive element or a charge-coupled device (CCD, Charge-coupled Device) photosensitive element.
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • an image sensor 10 includes a filter array 11 and a pixel array 12 .
  • the filter array 11 and the pixel array 12 are arranged in sequence, and the light reaches the pixel array 12 after passing through the filter array 11 .
  • the filter array 11 may include a plurality of filters 1111, and the filters 1111 may be used to allow light of a predetermined color to pass through, and filter light of other colors except the predetermined color in the light.
  • the pixel array 12 may include a plurality of pixel points 121, each pixel point 121 may correspond to a filter 1111 in the filter array 11, and the pixel point 121 may be used to receive light passing through the corresponding filter 1111 to generate electric signal.
  • the optical filter array 11 may include a plurality of area arrays 110 , and one optical filter array 11 may be formed by splicing a plurality of area arrays 110 .
  • the types and distributions of the filters 1111 can be the same or different.
  • the distribution of optical filters 1111 in multiple area arrays 110 is exactly the same, so as to facilitate the production and manufacture of optical filters; Meet the filtering needs of different areas.
  • Each area array 110 can include a plurality of common filters (such as A, B, C in FIG. 3 ) and at least one specific filter (such as A P and BP in FIG. 3 ), and the common filters can be Only one color of light is allowed to pass through and other colors of light are filtered out.
  • a specific filter can allow only one color of light to pass through and can filter out other colors of light. It can also filter out the wavelength of light of this color At least some light in a specific wavelength range.
  • the area array 110 may include at least one subunit 111 , and each subunit 111 may include a plurality of filters 1111 .
  • an area array 110 may include one or more subunits 111 .
  • the area array 110 a , the area array 110 b , the area array 110 c , and the area array 110 d include four subunits 111 .
  • the area array 110 a , the area array 110 b , the area array 110 c , and the area array 110 d include one subunit 111 .
  • one area array 110 may also include other subunits 111, for example, two, three, five, six, eight, etc., which are not listed here.
  • some subunits 111 may include specific filters and common filters at the same time, some subunits 111 may only include common filters, and some subunits 111 may only include specific filters. optical device. In another embodiment, in an area array 110, some subunits 111 may only include common filters, and some subunits 111 may only include specific filters. In yet another embodiment, in one area array 110, each subunit 111 may include specific filters and common filters at the same time.
  • each area array 110 may include 2 n *2 n subunits 111, n ⁇ 1, and each subunit 111 includes 2*2
  • the types of optical filters included in each subunit 111 may be the same or different.
  • n can be 1, 2, 3, 4, 5, 6 or more values, which are not listed here.
  • each area array 110 may include 2*2 subunits 111 .
  • each area array 110 may include 4*4 subunits 111, 8*8 subunits 111, 16*16 subunits 111, 32*32 subunits 111, etc., which are not listed here. There is no limit either.
  • each subunit 111 may include M*M optical filters 1111 . Wherein, M ⁇ 2, the color of light allowed to pass by the filter 1111 in the same subunit 111 is different.
  • each subunit 111 includes a filter 1111 (a first general filter A or a first specific filter Ap) that allows light of a first color to pass through, two filters that allow light of a second color to pass through.
  • a filter 1111 (second common filter B or second specific filter Bp) and a filter 1111 that allows light of a third color to pass through (third common filter C or third specific filter optical device Cp).
  • each subunit 111 includes M*M optical filters 1111 , where M ⁇ 2, and the optical filters 1111 in the same subunit 111 allow the same color of light to pass through.
  • M can be 2, 3, 4, 5, 6 or more values, which are not listed here.
  • an area array 110 includes four subunits 111, and each subunit 111 may include 2*2 optical filters 1111, and the 2*2 optical filters 1111 in the same subunit 111111 allow the same color of light passing through.
  • an area array 110 includes four subunits 111 , each subunit 111 includes 3*3 optical filters 1111 , and the 3*3 optical filters 1111 in the same subunit 111 allow the same color of light to pass through.
  • each subunit 111 may also include 4*4 optical filters 1111, 5*5 optical filters 1111, and 6*6 optical filters 1111, which are not listed here.
  • each subunit 111 may include a plurality of grandchildren 1110 , and each grandchildren 1110 includes K*K optical filters 1111 .
  • K the color of the light that is allowed to pass by the filter 1111 in the same grandson unit 1110 is the same. It can be understood that K may be 2, 3, 4, 5, 6 or more values, which are not listed here.
  • one area array 110 includes one subunit 111 .
  • each subunit 111 includes four grandchildren units 1110, each grandchildren unit 1110 includes 2*2 filters 1111, and the 2*2 filters of the same grandson unit 1110 The color of the light that is allowed to pass by the filter 1111 is the same.
  • each grandchild unit 1110 also includes 3*3 optical filters 1111 , and the 3*3 optical filters 1111 of the same grandchild unit 1110 allow the same color of light passing through.
  • an area array 110 may also include multiple subunits 111 , and each subunit 111 may include multiple grandchildren units 1110 .
  • the four grandchildren units 1110 are the first grandchildren unit 1110 a , the second grandchildren unit 1110 b , the third grandchildren unit 1110 c and the fourth grandchildren unit 1110 d .
  • the 2*2 optical filters 1111 in the first grandchild unit 1110a only allow light of the first color to pass through the 2*2 optical filters 11111 in the second grandchild unit 1110a and the third grandchild unit 1110c only allow the first color light to pass through.
  • the light of the second color passes through, and the 2*2 filters in the fourth grandson unit 1110 only allow the light of the third color to pass through.
  • each grandson unit 1110 may also include 4*4 optical filters, 5*5 optical filters, and 6*6 optical filters, which are not listed here.
  • the plurality of common filters may include a first common filter A, a second common filter B, and a third common filter C.
  • the first ordinary filter A can only allow light of the first color to pass through, while filtering light of other colors.
  • the second ordinary filter B can only allow light of the second color to pass through, while filtering out light of other colors.
  • the third ordinary filter C can only allow light of the third color to pass through, while filtering light of other colors to pass through.
  • it may also include a fourth common filter that only allows the light of the fourth color to pass through, a fifth common filter that only allows the light of the fifth color to pass through, and a sixth common filter that only allows the light of the sixth color to pass through.
  • a fourth common filter that only allows the light of the fourth color to pass through
  • a fifth common filter that only allows the light of the fifth color to pass through
  • a sixth common filter that only allows the light of the sixth color to pass through.
  • the light of the first color has more wavelength bands within a specific wavelength range than the light of the third color has a wavelength within a specific wavelength range
  • the light of the second color has a wavelength within a specific wavelength.
  • the range of wavelength bands in excess of the third color of light is within a specific wavelength range. It can be understood that the number of specific light rays in the light rays of the first color and the light rays of the second color is relatively large.
  • the specific filter may include a first specific filter Ap and a second specific filter Bp, and the first specific filter Ap and the second specific filter may be set
  • the optical filter Bp, the first specific filter Ap can filter the specific light in the light of the first color (that is, the light with a wavelength in a specific range), and the second specific filter Bp can filter the specific light in the light of the second color. specific light.
  • the area array 110 includes a first common filter A, a second common filter B, a third common filter C, a first specific filter Ap, and a second specific filter Bp. Therefore, setting the first specific filter Ap and the second specific filter Bp can better prevent the phenomenon of poor skin effect caused by specific light imaging.
  • the pixel array may include a first normal pixel point (not shown in the figure), a second normal pixel point (not shown in the figure), a third normal pixel point (not shown in the figure), a first specific pixel point (not shown in the figure) and a second Specific pixels (not shown).
  • the first ordinary pixel point can correspond to the first ordinary optical filter A, and is used to receive the light filtered by the first ordinary optical filter A to generate an electrical signal;
  • the second ordinary pixel point can correspond to the second ordinary optical filter B Correspondingly, it is used to receive light filtered by the second ordinary filter B to generate an electrical signal;
  • the third ordinary pixel point can correspond to the third ordinary pixel filter, and is used to receive light filtered by the third ordinary filter C
  • the first specific pixel corresponds to the first specific filter Ap, and is used to receive the light filtered by the first specific filter Ap to generate an electrical signal;
  • the second specific pixel corresponds to the second
  • the specific filter Bp corresponds to receive the light filtered by the second specific filter Bp to generate an electrical signal.
  • the image sensor 10 may further include a processor 14, the processor 14 may process the data of the first common pixel according to the data of the first specific pixel, and the processor 14 may process the data of the first common pixel according to the data of the second specific pixel
  • the data is processed on the data of the second ordinary pixel, and the processed data of the first ordinary pixel is obtained by filtering at least part of the specific light in the light of the first color, and the remaining light is obtained, then the processed data
  • the data of the second common pixel is obtained by filtering at least part of the specific light in the light of the second color and leaving the remaining light. Therefore, it is not necessary to set all the filter arrays 11 as specific filters, and the imaging effect of filtering specific light rays can also be achieved, which can save the cost of the filter array 11 and the image sensor 10 .
  • the processor 14 can also process the data of the first specific pixel according to the data of the first common pixel, and the processor can process the data of the second specific pixel according to the data of the second normal pixel, then The processed data of the first specific pixel can be considered as obtained according to the specific light in the unfiltered light of the first color, and the processed data of the second specific pixel can be considered as obtained according to the unfiltered light of the second color obtained by a specific light in .
  • specific pixels can be processed according to common pixels, and the imaging of the image sensor 10 is more realistic, which avoids the phenomenon of chromatic aberration in the image obtained when the user wants to take a real image.
  • the structure of the first specific pixel point and the first common pixel point may be the same, but the light received is different.
  • the structure of the second specific pixel point and the second common pixel point may be the same, but the light received is different.
  • the area array 110 may also include a third specific filter Cp
  • the pixel array may also include a third specific pixel point
  • the third specific filter The optical device Cp can only allow the light of the third color to pass through and can filter out specific light in the light of the third color
  • the third specific pixel can correspond to the third specific filter Cp for receiving the third specific filter
  • the light filtered by the optical device Cp generates an electrical signal.
  • the third specific filter Cp can avoid the influence of the specific light in the light of the third color on the imaging.
  • the structure of the third specific pixel point and the third common pixel point may be the same, but the light received is different.
  • the processor 14 (shown in FIG. 2 ) of the image sensor 10 can also process the data of the third common pixel with the data of the third specific pixel, and the data of the third common pixel after processing can be considered as filtering the first At least part of the specific light in the light of the color, and the remaining light is obtained, and there is no need to set more third specific filters Cp, and the effect of filtering out all the specific light in the third color can also be achieved. .
  • the processor 14 can also process the data of the third specific pixel according to the data of the third common pixel, then the processed data of the third specific pixel can be considered as the specific light in the unfiltered light of the third color. owned. In this way, the third specific pixel can be processed according to the third common pixel, and the imaging of the image sensor 10 is more realistic, which avoids the phenomenon of chromatic aberration in the image obtained when the user wants to take a real image.
  • the first color, the second color and the third color are different from each other, and there may be multiple color combinations of the first color, the second color and the third color.
  • the first color may be red R
  • the second color may be green G
  • the third color may be blue B
  • one subunit 111 may be arranged in RGGB.
  • the first color may be red R
  • the second color may be yellow Y
  • the third color may be blue B
  • one subunit 111 may be arranged in RYYB.
  • the first color may be red R
  • the second color may be green Y
  • the third color may be cyan CB
  • one subunit 111 may be RYYCB.
  • the first color, the second color and the third color may also be other colors, which are not listed here.
  • a fourth common filter is also included, the fourth common filter can allow light of all colors to pass through, the fourth color can be white W, the first color can be red R, and the second color can be green G.
  • the third color can be blue B, and one subunit 111 can be distributed in RGBW.
  • the first color is red R
  • the second color is green G
  • the third color is blue B as an example for illustration.
  • Figure 4 shows the reflectance of melanin M and the reflectance of hemoglobin H in each band when no specific filter is set;
  • Figure 5 shows When setting a specific filter, the reflectance of melanin M and the reflectance of hemoglobin H in each band;
  • Figure 13 shows the reflectance and reflectance of melanin M in each band when two specific filters are set.
  • Figure 14 shows the reflectance of melanin M and the reflectance of hemoglobin H in each band when five specific filters are set.
  • the first general filter A may include a first color filter 101A
  • the first specific filter Ap may include a first color filter 101A and a first specific filter 102A
  • the first color The filter 101A is used to only allow light of the first color to pass through
  • the first specific filter 102A is used to filter out at least part of the specific light in the light of the first color.
  • the first specific filter 102A does not allow light with a wavelength within a specific wavelength range to pass through.
  • the first specific filter 102A may be disposed on the light incident side or the light exit side of the first color filter 101A, which is not limited here.
  • the first specific filter Ap may be formed by disposing the first specific filter 102A on the basis of the first common filter A.
  • the quantity of the first specific filter 102A can be one or more. side or the light exit side, or, some of the first specific filters 102A are set on the light incident side of the first color filter 101A, and other first specific filters 102A are set on the light exit side of the first color filter 101A.
  • the second general filter B may include a second color filter 101B
  • the second specific filter Bp may include a second color filter 101B and a second specific filter 102B
  • the second color The filter 101B is used to only allow light of the second color to pass through
  • the second specific filter 102B is used to filter out at least part of the specific light in the light of the second color.
  • the second specific filter 102B does not allow light with a wavelength within a specific wavelength range to pass through.
  • the second specific filter 102B may be disposed on the light incident side or the light exit side of the second color filter 101B, which is not limited here.
  • the second specific filter Bp may be formed by disposing a second specific filter 102B on the basis of the second common filter B.
  • the quantity of the second specific filter 102B can be one or more, and when the quantity of the second specific filter 102B is multiple, a plurality of second specific filters 102B can be arranged on the incident light of the second color filter 101B. or the light exit side, or, some of the second specific filters 102B are disposed on the light entrance side of the second color filter 101B, and the other second specific filters 102B are disposed on the light exit side of the second color filter 101B.
  • the number of the second specific filter 102B and the number of the first specific filter 102A may be the same or different.
  • the processor of the image sensor 10 can simulate the data of setting two or more first specific filters 102A according to the data of setting one first specific filter 102A, and the processor can set The data of one second specific filter 102B is simulated to obtain the data when setting two or more second specific filters 102B, and then it can be realized that only one first specific filter 102A needs to be set and multiple first specific filters can be set.
  • the effect of the filter 102A, and the effect of setting multiple second specific filters 102B can be realized by only setting one second specific filter 102B, and can also reduce the manufacturing cost of the filter array 11 when achieving better imaging quality. cost.
  • the third common filter C may include a third color filter 101C
  • the third specific filter Cp may include a third color filter 101C and a third specific filter 102C
  • the third color The filter 101C is used to allow only the light of the third color to pass through
  • the third specific filter 102C is used to filter out at least part of the specific light in the light of the third color.
  • the third specific filter 102C does not allow light with a wavelength within a specific wavelength range to pass through.
  • the third specific filter 102C may be disposed on the light incident side or the light exit side of the third color filter 101C, which is not limited here.
  • the third specific filter Cp may be formed by disposing a third specific filter 102C on the basis of the third common filter C.
  • the quantity of the third specific filter 102C can be one or more, and when the quantity of the third specific filter 102C is multiple, a plurality of third specific filters 102C can be arranged on the incident light of the third color filter 101C. Alternatively, some third specific filters 102C are disposed on the light incident side of the third color filter 101C, and another third specific filter 102C is disposed on the light exit side of the third color filter 101C. Wherein, the number of the third specific filter 102C, the number of the second specific filter 102B and the number of the first specific filter 102A may be the same or different.
  • the processor of the image sensor 10 can also simulate the data of setting two or more third specific filters 102C according to the data of setting a third specific filter 102C, so that on the basis of setting a third specific filter 102C Above all, the effect of arranging multiple third specific filters 102C can be obtained, and the manufacturing cost of the filter array 11 can also be reduced while achieving better imaging quality.
  • the first specific filter 102A, the second specific filter 102B and the third specific filter 102C may be the same.
  • the area array 110 includes a first specific filter Ap and a second specific filter Bp.
  • the first specific filter Ap and the second specific filter Bp can be located in the same subunit 111; the first specific filter Ap and the second specific filter Bp can be respectively distributed in different subunits 111, for example , some of the subunits 111 have one of the first specific filter Ap and the second specific filter Bp, and some of the subunits 111 have the other of the first specific filter Ap and the second specific filter Bp.
  • first specific filter Ap and a second specific filter Bp adjacent to each other, and the first specific filter Ap and the second specific filter Bp can share the same specific filter.
  • Filter 102 that is, the first specific filter 102A and the second specific filter 102B are the same specific filter 102, as shown in Figure 18 and Figure 19; there is a first specific filter Ap and a second specific filter Filter Bp is not adjacently arranged, the first specific filter Ap and the second specific filter Bp can respectively use a specific filter, as shown in Figure 16 and Figure 17, that is, the first specific filter 102A and the second specific filter 102A
  • the specific filter 102B is two filters.
  • one specific filter can also be used for the first specific filter Ap and the second specific filter Bp respectively.
  • the area array 110 includes a first specific filter Ap, a second specific filter Bp and a third specific filter Cp.
  • the first special filter Ap, the second special filter Bp and the third special filter Cp can be located in the same subunit 111, the first special filter Ap, the second special filter Bp and the third special filter
  • the optical filters Cp may be respectively distributed in different subunits 111, or two of the first specific optical filter Ap, the second specific optical filter Bp and the third specific optical filter Cp may be located in the same subunit 111 , and the other is distributed in other subunits 111 .
  • the first specific filter Ap, the second specific filter Bp and the third specific filter Cp are adjacently arranged in pairs, the first specific filter Ap, the second specific filter
  • the filter Bp and the third specific filter Cp share the same specific filter 102, that is, the first specific filter 102A, the second specific filter 102B and the third specific filter 102C are the same specific filter 102, As shown in FIG. 7, FIG. 9, FIG. 18 and FIG. 19; or the first specific filter Ap, the second specific filter Bp and the third specific filter Cp can respectively use a specific filter.
  • there are adjacent filters in the first specific filter Ap, the second specific filter Bp and the third specific filter Cp, and two or more adjacent filters filters can share the same specific filter 102.
  • the first specific filter Ap, the second specific filter Bp and the third specific filter Cp are not adjacent to each other, the first specific filter Ap, the second specific filter
  • the optical filter Bp and the third specific filter Cp can each use a specific filter, as shown in FIG. 11 , FIG. 16 and FIG. 17 .
  • the filter array 11 when the filter array 11 includes a fourth common filter that only allows light of the fourth color to pass through, the filter array 11 can also be provided with a fourth specific filter, and the fourth specific filter can Only light of the fourth color is allowed to pass through and at least specific light of the light of the fourth color can be filtered out.
  • Other types of filters may also be included in the filter array 11 , which will not be listed here.
  • the number of the first specific filter Ap, the number of the second specific filter Bp and the number of the third specific filter Cp can be the same or different.
  • the number of the first specific filter Ap, the number of the second specific filter Bp and the number of the third specific filter Cp can be selectively set according to user's requirements.
  • the quantity of the first specific optical filter Ap can also be determined according to the quantity of the first common optical filter A
  • the quantity of the second specific optical filter Bp can also be determined according to the quantity of the second common optical filter B
  • the third The number of specific filters Cp can also be determined according to the number of third common filters C.
  • the number of the first specific filter Ap can be one-tenth, one-eighth, one-fifth, one-fourth, etc. of the number of the first common filter A, which are not listed here
  • the second specific filter Bp and the third specific filter Cp are the same as the first specific filter Ap, and will not be expanded here in detail.
  • the number of the first special filter Ap is less than the number of the first common filter A, and the number of the second special filter Bp is less than the second common filter B Therefore, the number of the first specific filter Ap and the number of the second specific filter Bp are too large, which may cause the brightness of the image generated by the image sensor 10 to be too low.
  • the area array 110 also has a third specific filter Cp, the number of the third specific filter Cp is smaller than the number of the third common filter C.
  • FIG. 20 shows changes in the spectral characteristics of the image sensor 10 after specific filters are applied to the red light R, green light G and blue light B.
  • the solid line in the figure is the spectral characteristics of red light R, green light G and blue light B without using a specific filter
  • the dotted line in the figure is the spectral characteristics of red light R, green light G and blue light B after using a specific filter Spectral characteristics.
  • Figure 20 it can be clearly observed that after using a specific filter, the reduction of green light G is higher than the reduction of blue light B and red light R, so the skin color of the resulting image will turn pink Offset, skin tone aesthetics are better.
  • the distribution of the optical filter array 11 in the embodiment of the present application is not limited to the distributions shown in FIG. 3 , FIG. 6 to FIG. 11 , and may also be other distributions, which are not specifically limited here.
  • the image sensor 10 can also include a microlens array 13, the microlens array can include a plurality of microlenses 131, and the plurality of microlenses 131 can be correspondingly arranged on the plurality of filters 1111.
  • the microlens 131 can condense the light, and can guide more of the incident light to the filter 1111 .
  • the present application also provides an image processing method
  • the image processing method can be used for the image sensor 10 described in any of the above-mentioned embodiments, and the image processing method can include the following steps:
  • the ordinary pixel is obtained from the ordinary pixel according to the received first light
  • the specific pixel is obtained from the specific pixel according to the received first light.
  • Two light rays are obtained; wherein, after the specific pixel point filters out at least part of the light in the first light in a specific wavelength range, the remaining light is the second light, and the reflectance of melanin is higher than that of hemoglobin in the specific wavelength range;
  • the image to be processed may be generated by the image sensor 10 in any of the above embodiments, that is, the image to be processed is generated by the pixel array according to light filtered by the filter array 11 .
  • the image to be processed may include ordinary pixels and specific pixels, the pixels in the pixel array corresponding to the ordinary filters are ordinary pixels, and the pixels in the pixel array corresponding to the specific filters are specific pixels.
  • Ordinary pixels can be obtained by ordinary pixels according to the received first light, and specific pixels can be obtained by specific pixels according to the received second light, and at least part of the light in the first light with a wavelength within a specific wavelength range is filtered After that, the remaining rays are the second rays. It can be understood that, in the second light, there is less light or even no light with a wavelength in a specific wavelength range, so most of the second light is reflected by hemoglobin, and less reflected by melanin. The melanin in the specific pixel in the image to be processed is lighter and not obvious, and the skin color presented by the specific pixel is better.
  • the ordinary pixels In order to process the ordinary pixels in the image to be processed, the ordinary pixels have similar attributes to the specific pixels. It is possible to calculate the third pixel value of a specific pixel when the specific pixel is obtained according to the first ray according to the first pixel value of an ordinary pixel, and then calculate the gain coefficient according to the second pixel value and the third pixel value, that is, compare The difference between the pixel value of a specific pixel point obtained according to the first ray and the pixel value obtained according to the second ray, so that the pixel value of the ordinary pixel in the image to be processed can be adjusted according to the gain coefficient, so that the pixel value of the adjusted ordinary pixel
  • the value update pending image can generate the target image. As a result, the melanin in the target image is lighter, and the skin color of the person is more matte.
  • P may represent the pixel distribution of the image to be processed
  • P' may represent the pixel distribution of the obtained target image.
  • R, G, and B in Fig. 22 are common pixels
  • Rp and Gp are specific pixels
  • R', G', and B' are adjusted common pixels.
  • P may represent the pixel distribution of the image to be processed
  • P' may represent the pixel distribution of the obtained target image.
  • R, G, and B in Fig. 22 are common pixels
  • Rp, Gp, and Bp are specific pixels
  • R', G', and B' are adjusted common pixels.
  • step 03 includes the following steps:
  • the second pixel value is obtained by the characteristic pixel point according to the received second light
  • the third pixel value is obtained by simulating a specific pixel point according to the received first light
  • the second light is obtained by filtering out a specific pixel from the first light. The rest of the light after the light.
  • the second pixel value is provided with a specific filter on the light-incident side of a specific pixel point (please combine the description in the filter array 11 above)
  • the pixel value generated by the specific pixel point according to the received light the second The three-pixel value can be understood as the pixel value generated by a specific pixel according to the received light when no specific filter is set on the light-incident side of the specific pixel.
  • the difference between setting a specific filter and not setting a specific filter can be obtained, and then the pixel values of ordinary pixels receiving light that has not been filtered by a specific filter can be processed to obtain target image.
  • the ratio K between the third pixel value obtained by simulating a specific pixel when imaging with the first ray and the second pixel value obtained when the specific pixel is imaged with the second ray can be calculated, and the ratio K can be Used to characterize the difference between the presence and absence of a specific filter.
  • the gain coefficient can then be generated according to the ratio K and the preselected adjustment coefficient N, ie, the gain coefficient can be K N .
  • the pixel value of the normal pixel can be adjusted, and the image presented with the adjusted pixel value is the target image.
  • the preset adjustment coefficient N can be selected by the user, and the adjustment coefficient N can be any value, for example, the adjustment coefficient N can be -2, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3 , 4, 5, 6 or more values.
  • the adjustment coefficient N can be 1 by default.
  • the adjustment coefficient N can be used to achieve the rendering effect of N filters. For example, when the second pixel value is the imaging effect of one specific filter, when N is 2, the imaging effect of two specific filters can be realized; when N is 3, the technical effect of three filters can be realized .
  • the second pixel value is the imaging effect of two specific filters
  • N when N is 2, the imaging effect of four specific filters can be realized; when N is 3, the technology of eight filters can be realized Effect.
  • the imaging effect of multiple specific filters can be realized, the manufacturing cost of the image sensor 10 can be reduced, and the diverse needs of users can also be met, for example, the requirements of different users can be satisfied. requirements or different preferences of the same user, and the length of the filter array 11 can also be relatively small.
  • an adjustment bar L can be displayed on the user interface (User Interface, UI), and the user can slide the adjustment bar L on the UI interface to adjust the desired adjustment coefficient N, and the adjustment coefficient N can be determined after the user selects, and then The target image can be generated according to the adjustment coefficient N.
  • the adjustment coefficient N may be selected by the user before shooting, or may be selected after the user shoots, and there is no limitation here.
  • Step 04 includes the following steps:
  • the new pixel value of the common pixel may be calculated according to the gain coefficient and the first pixel value of the normal pixel corresponding to the gain coefficient. Then, the pixel value of the common pixel in the image to be processed can be updated to the new value of the pixel, and the target image can be obtained. Therefore, since the pixel values of ordinary pixels are updated, the moles, spots and other things with more obvious melanin in the target image will be lighter, and the skin color will be more matte.
  • the ratio of the ordinary pixels can be obtained according to the pass rate of the first light received by the ordinary pixels under the specific filter, and the gain coefficient can be obtained according to the ratio and the adjustment coefficient, and then A new pixel value of a corresponding common pixel can be calculated according to the gain coefficient and the first pixel value of the common pixel.
  • the image to be processed may include a variety of common pixels (for example, R, G, B), and the image to be processed may include at least one specific pixel (for example, Rp, one or more of Gp and Bp).
  • the specific pixel can correspond to one of a variety of common pixels, and can be based on a specific pixel corresponding to the specific pixel.
  • the process of generating the target image is similar to one kind of specific pixels, and will not be described in detail here.
  • the normal pixels include a first normal pixel R, a second normal pixel G, and a third normal pixel B
  • the first normal pixel R is obtained by receiving the first color of the first color
  • the light is obtained
  • the second ordinary pixel G is obtained by the received first light of the second color
  • the third ordinary pixel B is generated by the received first light of the third color
  • the specific pixels include the first special pixel Rp and the second
  • the specific pixel Gp, the first specific pixel Rp is obtained by the second light of the first color received, and the second specific pixel Gp is obtained by the second light of the second color received
  • step 02 includes the following steps:
  • the first color can be red R, the second color can be green G, and the third color can be blue B; or the first color can be red R, the second color can be yellow Y, and the third color can be Blue B; alternatively, the first color, the second color, and the third color may be other colors, which are not listed here.
  • the first color may be red R, the second color may be green G, and the third color may be blue B as an example for illustration.
  • the ordinary pixels can include the first ordinary pixel R, the second ordinary pixel G and the third ordinary pixel B
  • the specific pixels can include the first specific pixel Rp, the second specific pixel Gp, the first specific pixel Rp and the first ordinary pixel R
  • the second specific pixel Gp corresponds to the second normal pixel G.
  • the number of specific rays in the first light of the first color and the second light of the second color is relatively large, therefore, combining the pixel value of the first specific pixel Rp and the first general
  • the pixel value of the pixel R can adjust the pixel value of the first ordinary pixel R; the pixel value of the second ordinary pixel G can be adjusted by combining the pixel value of the second specific pixel Gp and the pixel value of the second ordinary pixel G , thus, the phenomenon that moles and spots in the image formed by specific light can be largely eliminated.
  • first ordinary pixels R there are a plurality of first ordinary pixels R, a plurality of second ordinary pixels G, and a plurality of third ordinary pixels B in the image to be processed.
  • the first pixel mean value Rave of the pixel values of the plurality of first ordinary pixels R is calculated, and the first pixel mean value Rave is used as the third pixel value of the first specific pixel Rp.
  • a second pixel average value Gave of pixel values of a plurality of second common pixels G is calculated, and the second pixel average value Gave is used as a third pixel value of the second specific pixel Gp.
  • the third pixel value of the first specific pixel Rp obtained according to the first light of the first color can be simulated, and the third pixel value of the second specific pixel Gp obtained according to the first light of the second color can be simulated , and the obtained third pixel value is relatively accurate, so that the gain between the first specific pixel Rp and the first common pixel R, and the gain between the second specific pixel Gp and the second common pixel G can be better calculated.
  • the pixel values of the 4 first normal pixels R are R1, R2, R3 and R4 respectively, there are 12 second normal pixels G, and 12 second normal pixels
  • the pixel values of the pixel G are respectively G1, G2, G3, G4, G5, G6, G7, G8, G9, G10, G11 and G12
  • the third pixel value Rp-c of the first specific pixel Rp (R1+R2 +R3+R4)/4
  • the third pixel value Bp-c of the second specific pixel GpB P (G1+G2+G3+G4+G5+G6+G7+G8+G9+G10+G11+G12)/12 .
  • the image to be processed can be divided into multiple regions according to the distribution of the first specific pixel Rp, and then the first pixel mean value of the pixel values of the first common pixel R in each region , as the third pixel value of the first specific pixel Rp in each area, and according to the second pixel value and the corresponding third pixel value of the first specific pixel Rp in each area, the first pixel value of each area is calculated
  • the gain of the ordinary pixel R is to adjust the value of the first ordinary pixel R in each region according to the gain.
  • the image to be processed can be divided into a plurality of regions according to the distribution of the second specific pixel Gp, and then the second pixel mean value of the pixel value of the second ordinary pixel G in each region is used as the second pixel value in each region
  • the G value of the second common pixel is adjusted for each region. Therefore, the adjustment of the first ordinary pixel R and the second ordinary pixel G is more accurate, and the obtained target image is more beautiful.
  • step 02 may also include the following steps:
  • the first ordinary pixel R closest to the first specific pixel Rp in the image to be processed can be identified, and if there is only one first ordinary pixel R closest to the first specific pixel Rp, the first ordinary pixel R can be The pixel value of R is used as the third pixel value of the first specific pixel Rp; if there are multiple first common pixels R closest to the first specific pixel Rp, the pixel values of the multiple first common pixels R can be The mean value is used as the third pixel value of the first specific pixel Rp.
  • the second ordinary pixel G closest to the second specific pixel Gp in the image to be processed can be identified, and if there is only one second ordinary pixel G closest to the second specific pixel Gp, the pixel of the second ordinary pixel G can be value as the third pixel value of the second specific pixel Gp; if there are multiple second ordinary pixels G closest to the second specific pixel Gp, then the average value of the pixel values of the plurality of second ordinary pixels G can be used as the first pixel value The third pixel value of the second specific pixel Gp.
  • the first pixel Rp closest to the first specific pixel Rp is selected The pixel value of a normal pixel R is used as the third pixel value of the first specific pixel Rp, so that the pixel value obtained by simulating the first light of the first color is more accurate.
  • the second ordinary pixel G closest to the second specific pixel Gp and the second specific pixel Gp have a small difference in the type and amount of light received between the two, and the second pixel G closest to the second specific pixel Gp is selected.
  • the pixel value of the common pixel G is used as the third pixel value of the second specific pixel Gp, so that the pixel value obtained by simulating the first light of the second color is more accurate.
  • step 02 may further include the following steps:
  • the average value of the pixel values of the first ordinary pixel R within a preset range around the first specific pixel Rp is used as the third pixel value of the first specific pixel Rp;
  • the average value of the pixel values of the second common pixel G within a preset range around the second specific pixel Gp is used as the third pixel value of the second specific pixel Gp.
  • the surrounding preset range may be a range of 2*2, 3*3, 4*4, etc., centered on the first specific pixel Rp or the second specific pixel Gp.
  • the average value of the pixel values of the first common pixel R within a preset range around the first specific pixel Rp may be calculated, and then the obtained average value may be used as the third pixel value of the first specific pixel Rp.
  • the mean value of the pixel values of the second normal pixel G within a preset range around the second specific pixel Gp may be calculated, and then the obtained mean value may be used as the third pixel value of the second specific pixel Gp.
  • step 031 includes the following steps:
  • the pixel value of the first ordinary pixel R and the pixel value of the second ordinary pixel G in the image to be processed can be adjusted to Get the target image. Then the first ratio Kr between the third pixel value Rp-c of the first specific pixel Rp and the second pixel value Rp of the first specific pixel Rp, and the third pixel value Gp-c of the second specific pixel Gp can be calculated respectively. c and the second ratio Kg between the second pixel value Gp of the second specific pixel Gp.
  • the first ratio Kr and the second ratio Kg are calculated, so as to adjust the pixel value of the first ordinary pixel R according to the first ratio Kr, and adjust the pixel value of the second ordinary pixel G according to the second ratio Kg. value is adjusted.
  • the average value of the second pixel values of the multiple first specific pixels Rp can be calculated first, and then the average value and the second pixel value of the first specific pixel Rp can be calculated.
  • the average value of the second pixel values of the multiple second specific pixels Gp can be calculated first, and then the difference between the average value and the second pixel values of the second specific pixel Gp can be calculated.
  • step 032 includes the following steps:
  • the gain coefficient of common pixels can be calculated in combination with the adjustment coefficient N selected by the user.
  • the first gain coefficient Krn Kr N of the first ordinary pixel R
  • step 041 may include the following steps:
  • the first common pixel R in the image to be processed have properties similar to the first specific pixel Rp
  • the second common pixel G in the image to be processed to have properties similar to the second specific pixel Gp
  • the image processing method may further include the following steps:
  • the obtained image to be processed will not include the third specific pixel Bp, but the third common pixel in the image to be processed is still required B is processed to make the obtained target image more in line with expectations. Due to the manufacturing process and other reasons, except for other light in a specific wavelength range, the light transmittance cannot reach 100% under a specific filter.
  • Figure 35 a is the transmittance of each wavelength under a specific filter
  • the average value of the transmittance of the first light of the third color under a specific filter is selected as the third ratio of the third ordinary pixel B, so that the pixel of the third ordinary pixel B in the image to be processed At the same time, the updated pixel value of the third ordinary pixel B is relatively accurate.
  • Step 02 when the image to be processed includes a third specific pixel Bp, the third specific pixel Bp is generated by the light of the third color in the received second light rays.
  • Step 02 may also include the following steps:
  • the image to be processed includes the third specific pixel Bp, which can better eliminate the phenomenon that the specific light in the first light of the third color causes obvious spots and moles in the formed image.
  • the third pixel average value of the pixel values of the plurality of third ordinary pixels B can be calculated, and the third pixel average value is used as the third pixel of the third specific pixel Bp value.
  • the third pixel value of the third specific pixel Bp obtained by the first light of the third color can be obtained by simulation, and the third pixel mean value is used as the third pixel value of the third specific pixel Bp to obtain the third specific pixel value
  • the third pixel value of pixel Bp is more accurate.
  • the image to be processed can be divided into multiple regions according to the distribution of the first specific pixel Rp, and then the first pixel mean value of the pixel values of the first common pixel R in each region , as the third pixel value of the first specific pixel Rp in each area, and according to the second pixel value and the corresponding third pixel value of the first specific pixel Rp in each area, the first pixel value of each area is calculated
  • the gain of the ordinary pixel R is to adjust the value of the first ordinary pixel R in each region according to the gain.
  • the image to be processed can be divided into a plurality of regions according to the distribution of the second specific pixel Gp, and then the second pixel mean value of the pixel value of the second ordinary pixel G in each region is used as the second pixel value in each region
  • the G value of the second common pixel is adjusted for each region. Therefore, the adjustment of the first ordinary pixel R and the second ordinary pixel G is more accurate, and the obtained target image is more beautiful.
  • step 02 may also include the following steps:
  • the first ordinary pixel R closest to the first specific pixel Rp in the image to be processed can be identified, and if there is only one first ordinary pixel R closest to the first specific pixel Rp, the first ordinary pixel R can be The first pixel value of R is used as the third pixel value of the first specific pixel Rp; if there are multiple first ordinary pixels R closest to the first specific pixel Rp, the first ordinary pixel R of the plurality of first ordinary pixels R can be The average value of a pixel value is used as the third pixel value of the first specific pixel Rp.
  • step 02 may also include the following steps:
  • the average value of the pixel values of the third common pixel B within the preset range around the third specific pixel Bp is used as the third pixel value of the third specific pixel Bp.
  • the surrounding preset range may be a range of 2*2, 3*3, 4*4, etc., centered on the third specific pixel Bp.
  • the mean value of the pixel values of the third common pixel B within a preset range around the third specific pixel Bp may be calculated, and then the obtained mean value may be used as the third pixel value of the third specific pixel Bp. Therefore, calculating the third pixel value of the third specific pixel Bp in combination with the pixel values of the plurality of third common pixels B can make the obtained third pixel value of the third specific pixel Bp more accurate.
  • the image to be processed includes a third specific pixel Bp, and the image processing method may further include the following steps:
  • the corresponding filter array 11 is provided with a third specific filter Cp, and the pixels corresponding to the third specific filter Cp can receive The light filtered by the third specific filter Cp is used to obtain the third specific pixel Bp. Since the third specific filter Cp is set, it is necessary to compare the second pixel value of the pixel corresponding to the third specific filter Cp when receiving the second light of the third color with the second pixel value when receiving the second light of the third color. The difference between the first pixel values of a ray, so as to adjust the pixel value of the third common pixel B in the image to be processed according to the difference.
  • the third pixel value of the third specific pixel Bp is Bp-c
  • the second pixel value of the third specific pixel Bp is Bp
  • the third ratio is Kb
  • the third gain coefficient is Kbn.
  • Kb Bp-c/Bp
  • step 041 also includes the following steps:
  • the third gain coefficient is Kbn
  • the first pixel value is B value
  • the third pixel new value is B new value .
  • Kb Bp-c/Bp
  • the image processing method also includes the following steps:
  • Step 04 also includes the following steps:
  • the skin color area in the image to be processed can be detected, specifically, the skin color area in the image to be processed can be identified through a skin color detection algorithm, or the portrait area in the image to be processed can be identified first, and then the skin color area in the portrait can be identified.
  • the common pixels and specific pixels in the skin color area in the image to be processed can be determined, and the gain coefficient can be calculated according to the third pixel value of the specific pixel in the skin color area and the second pixel value of the specific pixel, and according to the calculated gain coefficient Adjust the pixel values of ordinary pixels in the skin color area, and update the image to be processed with the adjusted pixel values to obtain the target image.
  • the first gain coefficient, the second gain coefficient, and the third gain coefficient in the skin color area need to be calculated respectively.
  • the first gain coefficient and the pixel value of each first normal pixel R calculate the first pixel new value of each first normal pixel R; according to the second gain coefficient and the pixel value of each second normal pixel G, Calculate the new second pixel value of each second ordinary pixel G; calculate the second new pixel value of each third ordinary pixel B according to the third gain coefficient and the pixel value of each third ordinary pixel B.
  • the skin color region is updated with the corresponding first new pixel value, second new pixel value and third pixel new value, and the updated image to be processed can be used as the target image.
  • the updated image to be processed can be used as the target image.
  • the image processing method may also include: The pixel value of a specific pixel is adjusted so that the specific pixel behaves like a normal pixel. Specifically, the average value of the pixel values of common pixels within a certain range around the specific pixel can be used as the new pixel value of the specific pixel, or the pixel value of the common pixel closest to the specific pixel can be used as the new pixel value of the specific pixel, or The average value of the pixel values of all common pixels corresponding to the specific pixel in other regions is taken as the new pixel value of the specific pixel.
  • the pixel value of the first common pixel R closest to the first specific pixel Rp may be used as the pixel value of the first specific pixel Rp.
  • the second specific pixel Gp and the third specific pixel Bp are similar to the first specific pixel Rp, and will not be described in detail here. As a result, the colors in other areas are more realistic, and at the same time moles, spots, etc. in the skin tone area are not obvious.
  • the image processing method also includes the following steps:
  • the average user is a woman, who pays more attention to beauty when taking a photo, while a man may prefer the real self when taking a photo.
  • It can be the gender of the skin color of the skin color area in the image to be processed.
  • some deep learning algorithms or training models can be used to identify the gender of the skin color area of the skin color area in the image to be processed, which will not be described in detail here.
  • step 04 that is, adjust the pixel values of common pixels in the image to be processed according to the gain coefficient to generate the target image.
  • the image to be processed can be directly output to obtain the target image, or the specific pixel in the image to be processed can be processed to make the specific pixel generalized.
  • the specific generalization process is the same as that in other areas above.
  • the process of adjusting specific pixels is similar and will not be described in detail here. In this way, the pixel values of common pixels in the image to be processed can be selectively adjusted according to the identified gender, which is more in line with the user's use scenario and enhances the user's use experience.
  • the user can also selectively execute the command of step 04.
  • the command of step 04 there may be a switch button on the UI interface of the electronic device, and the user can execute or not execute the command of step 04 by touching the switch button to meet the individual needs of the user. .
  • the processor 14 of the image sensor 10 of the present application may be used to implement the image processing method in any of the above implementations.
  • the processor can be used to implement step 01, step 02, step 03, step 04, step 031, step 032, step 041, step 042, step 043, step 021, step 022, step 023, step 024, step 025, One of Step 026, Step 027, Step 028, Step 029, Step 0311, Step 0312, Step 0411, Step 0412, Step 0413, Step 001, Step 002, Step 003, Step 004, Step 005, Step 006, Step 007 step or multiple steps.
  • the present application also provides an imaging device 100.
  • the imaging device 100 may include the image sensor 10 and the processor 20 described in any of the above-mentioned embodiments.
  • the processor 20 may be connected to the image sensor 10 to image The image output by the sensor 10 is further processed.
  • the processor 20 of the imaging device 100 can be used to implement the image processing method in any of the above implementations.
  • the processor can be used to implement step 01, step 02, step 03, step 04, step 031, step 032, step 041, step 042, step 043, step 021, step 022, step 023, step 024, step 025, One of Step 026, Step 027, Step 028, Step 029, Step 0311, Step 0312, Step 0411, Step 0412, Step 0413, Step 001, Step 002, Step 003, Step 004, Step 005, Step 006, Step 007 step or multiple steps.
  • the present application also provides an electronic device 1000 , which may include the image sensor 10 in any of the foregoing implementation manners.
  • the image sensor 10 can be installed in the housing of the electronic device 1000 and can be connected with the main board of the electronic device 1000 .
  • the present application also provides an electronic device 1000, which may include the imaging device 100 in any of the above implementation manners.
  • the imaging device 100 can be installed in the casing of the electronic device 1000 and can be connected to the main board of the electronic device 1000.
  • the imaging device 1000 can be used for imaging.
  • the present application also provides an electronic device 1000 , and the electronic device may include a processor 200 .
  • the processor 200 may be used to implement the image processing method in any of the foregoing implementation manners.
  • the processor can be used to implement step 01, step 02, step 03, step 04, step 031, step 032, step 041, step 042, step 043, step 021, step 022, step 023, step 024, step 025, One of Step 026, Step 027, Step 028, Step 029, Step 0311, Step 0312, Step 0411, Step 0412, Step 0413, Step 001, Step 002, Step 003, Step 004, Step 005, Step 006, Step 007 step or multiple steps.
  • the electronic device 1000 described in the above-mentioned embodiments may specifically be a mobile phone, a tablet computer, a notebook computer, a smart watch, a smart bracelet, a smart helmet, smart glasses, an unmanned device (such as a drone, Unmanned vehicles, unmanned ships), etc., are not listed here.
  • references to the terms “certain embodiments,” “one embodiment,” “some embodiments,” “exemplary embodiments,” “examples,” “specific examples,” or “some examples” To describe means that a specific feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present application. In this specification, schematic representations of the above terms do not necessarily refer to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of said features.
  • “plurality” means at least two, such as two, three, unless otherwise specifically defined.

Landscapes

  • Color Television Image Signal Generators (AREA)

Abstract

一种滤光器阵列(11)、方法、图像传感器(10)、装置(100)及电子设备(1000)。滤光器阵列(11)包括多个区域阵列(110),区域阵列(110)包括至少一个子单元(111),子单元(111)包括多个滤光器(1111),每个区域阵列(110)均包括多个普通滤光器和至少一个特定滤光器,每个普通滤光器仅允许一种颜色的光线通过,每个特定滤光器仅允许一种颜色的光线通过,并能过滤该颜色的光线中波长在特定波长范围内的至少部分光线,特定波长范围内黑色素的反射率高于血红蛋白的反射率。

Description

滤光器阵列、方法、图像传感器、装置及电子设备 技术领域
本申请涉及影像技术领域,特别涉及一种滤光器阵列、图像处理方法、图像传感器、成像装置及电子设备。
背景技术
随着数码相机和带有摄像头的手机的增长,人们越来越重视拍摄出的图像的肤色的表现效果。用户拍照时,在530-580nm这个波段范围内,黑色素(Melanin)反射率高于血红蛋白(Hemoglobin)反射率,导致生成的图像中黑色素明显,即,痣、斑等比较明显。
发明内容
本申请实施方式提供一种滤光器阵列、图像处理方法、图像传感器、成像装置及电子设备。
本申请实施方式的滤光器阵列包括多个滤光器,所述滤光器包括普通滤光器和特定滤光器,所述滤光器阵列包括多个区域阵列,所述区域阵列包括至少一个子单元,所述子单元包括多个所述滤光器,每个所述区域阵列均包括多个普通滤光器和至少一个特定滤光器,每个所述普通滤光器仅允许一种颜色的光线通过,每个特定滤光器仅允许一种颜色的光线通过,并能过滤该颜色的光线中波长在特定波长范围内的至少部分光线,所述特定波长范围内黑色素的反射率高于血红蛋白的反射率。
本申请实施方式的图像处理方法包括:获取待处理图像中的普通像素的第一像素值和特定像素的第二像素值,所述普通像素由普通像素点根据接收到的第一光线得到,所述特定像素由特定像素点根据接收到的第二光线得到;其中,过滤掉所述第一光线中在特定波长范围中的至少部分光线后,余下的光线为所述第二光线,在所述特定波长范围内黑色素的反射率高于血红蛋白的反射率;根据所述第一像素值计算,由所述特定像素点根据所述第一光线得到所述特定像素时,所述特定像素的第三像素值;根据所述第三像素值与所述第二像素值,计算增益系数;及根据所述增益系数,调整所述待处理图像中的所述普通像素的像素值,以生成目标图像。
本申请实施方式的图像传感器包括滤光器阵列及像素阵列。所述滤光器阵列包括多个滤光器,所述滤光器包括普通滤光器和特定滤光器,所述滤光器阵列包括多个区域阵列,所述区域阵列包括至少一个子单元,所述子单元包括多个所述滤光器,每个所述区域阵列均包括多个普通滤光器和至少一个特定滤光器,每个所述普通滤光器仅允许一种颜色的光线通过,每个特定滤光器仅允许一种颜色的光线通过,并能过滤该颜色的光线中波长在特定波长范围内的至少部分光线,所述特定波长范围内黑色素的反射率高于血红蛋白的反射率。所述像素阵列包括多个像素点,每个所述像素点对应一个所述滤光器,所述像素点用于接收穿过对应的所述滤光器的光线以生成电信号。
本申请实施方式的成像装置包括本申请实施方式的图像传感器及处理器。图像传感器包括滤光器阵列及像素阵列。所述滤光器阵列包括多个滤光器,所述滤光器包括普通滤光器和特定滤光器,所述滤光器阵列包括多个区域阵列,所述区域阵列包括至少一个子单元,所述子单元包括多个所述滤光器,每个所述区域阵列均包括多个普通滤光器和至少一个特定滤光器,每个所述普通滤光器仅允许一种颜色的光线通过,每个特定滤光器仅允许一种颜色的光线通过,并能过滤该颜色的光线中波长在特定波长范围内的至少部分光线,所述特定波长范围内黑色素的反射率高于血红蛋白的反射率。所述像素阵列包括多个像素点,每个所述像素点对应一个所述滤光器,所述像素点用于接收穿过对应的所述滤光器的光线以生成电信号。所述处理器用于实现本申请实施方式的图像处理方法。所述图像处理方法包括:获取待处理图像中的普通像素的第一像素值和特定像素的第二像素值,所述普通像素由普通像素点根据接收到的第一光线得到,所述特定像素由特定像素点根据接收到的第二光线得到;其中,过滤掉所述第一光线中在特定波长范围中的至少部分光线后,余下的光线为所述第二光线,在所述特定波长范围内黑色素的反射率高于血红蛋白的反射率;根据所述第一像素值计算,由所述特定像素点根据所述第一光线得到所述特定像素时,所述特定像素的第三像素值;根据所述第三像素值与所述第二像素值,计算增益系数;及根据所述增益系数,调整所述待处理图像中的所述普通像素的像素值,以生成目标图像。
本申请实施方式的电子设备包括本申请实施方式的图像传感器。图像传感器包括滤光器阵列及像素 阵列。所述滤光器阵列包括多个滤光器,所述滤光器包括普通滤光器和特定滤光器,所述滤光器阵列包括多个区域阵列,所述区域阵列包括至少一个子单元,所述子单元包括多个所述滤光器,每个所述区域阵列均包括多个普通滤光器和至少一个特定滤光器,每个所述普通滤光器仅允许一种颜色的光线通过,每个特定滤光器仅允许一种颜色的光线通过,并能过滤该颜色的光线中波长在特定波长范围内的至少部分光线,所述特定波长范围内黑色素的反射率高于血红蛋白的反射率。所述像素阵列包括多个像素点,每个所述像素点对应一个所述滤光器,所述像素点用于接收穿过对应的所述滤光器的光线以生成电信号。
本申请实施方式的电子设备包括本申请实施方式的成像装置,成像装置包括本申请实施方式的图像传感器及处理器。图像传感器包括滤光器阵列及像素阵列。所述滤光器阵列包括多个滤光器,所述滤光器包括普通滤光器和特定滤光器,所述滤光器阵列包括多个区域阵列,所述区域阵列包括至少一个子单元,所述子单元包括多个所述滤光器,每个所述区域阵列均包括多个普通滤光器和至少一个特定滤光器,每个所述普通滤光器仅允许一种颜色的光线通过,每个特定滤光器仅允许一种颜色的光线通过,并能过滤该颜色的光线中波长在特定波长范围内的至少部分光线,所述特定波长范围内黑色素的反射率高于血红蛋白的反射率。所述像素阵列包括多个像素点,每个所述像素点对应一个所述滤光器,所述像素点用于接收穿过对应的所述滤光器的光线以生成电信号。所述处理器用于实现本申请实施方式的图像处理方法。图像处理方法包括:获取待处理图像中的普通像素的第一像素值和特定像素的第二像素值,所述普通像素由普通像素点根据接收到的第一光线得到,所述特定像素由特定像素点根据接收到的第二光线得到;其中,过滤掉所述第一光线中在特定波长范围中的至少部分光线后,余下的光线为所述第二光线,在所述特定波长范围内黑色素的反射率高于血红蛋白的反射率;根据所述第一像素值计算,由所述特定像素点根据所述第一光线得到所述特定像素时,所述特定像素的第三像素值;根据所述第三像素值与所述第二像素值,计算增益系数;及根据所述增益系数,调整所述待处理图像中的所述普通像素的像素值,以生成目标图像。
本申请实施方式的电子设备包括处理器,所述处理器用于实现本申请实施方式所述的图像处理方法。图像处理方法包括:获取待处理图像中的普通像素的第一像素值和特定像素的第二像素值,所述普通像素由普通像素点根据接收到的第一光线得到,所述特定像素由特定像素点根据接收到的第二光线得到;其中,过滤掉所述第一光线中在特定波长范围中的至少部分光线后,余下的光线为所述第二光线,在所述特定波长范围内黑色素的反射率高于血红蛋白的反射率;根据所述第一像素值计算,由所述特定像素点根据所述第一光线得到所述特定像素时,所述特定像素的第三像素值;根据所述第三像素值与所述第二像素值,计算增益系数;及根据所述增益系数,调整所述待处理图像中的所述普通像素的像素值,以生成目标图像。
本申请实施方式的滤光器阵列、图像处理方法、图像传感器、成像装置及电子设备中,每个区域阵列包括有普通滤光器和至少一个特定滤光器,普通滤光器仅允许一种颜色的光线通过,特定滤光器仅允许一种颜色的光线通过,并能滤除该颜色光线中波长在特定波长范围内的至少部分光线,而在特定波长范围内黑色素的反射率高于血红蛋白的反射率,特定滤光器可以过滤波长在特定波长范围内的至少部分光线,使得成像时黑色素较少,进而使得成像后的图像中黑色素较淡而不明显。
本申请实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的图像传感器的结构示意图;
图2是本申请实施方式的图像传感器的结构示意图;
图3是本申请一些实施方式的滤光器阵列的结构示意图;
图4是本申请一些实施方式的不同波段的光线与对应的黑色素及血红蛋白的反射率,及特定滤镜下不同波段的光线的透过率的关系示意图;
图5是本申请一些实施方式的滤光器阵列的特定滤光器中设置一枚特定滤镜下不同波段的光线与对应的黑色素及血红蛋白的反射率;
图6至图11是本申请一些实施方式的滤光器阵列的结构示意图;
图12是本申请某些实施方式的普通滤光器下,不同波段的光线与对应的红色通道、绿色通道及蓝色通道的相对灵敏度的关系示意图;
图13是本申请一些实施方式的滤光器阵列的特定滤光器中设置两枚特定滤镜下不同波段的光线与对应的黑色素及血红蛋白的反射率;
图14是本申请一些实施方式的滤光器阵列的特定滤光器中设置五枚特定滤镜下不同波段的光线与对应的黑色素及血红蛋白的反射率;
图15至图19是本申请一些实施方式的图像传感器的结构示意图;
图20是本申请某些实施方式的滤光器阵列中经特定滤镜和未经特定滤镜过滤后,不同波段的光线与对应的红色通道、绿色通道及蓝色通道的相对灵敏度的关系示意图;
图21是本申请实施方式的图像处理方法的流程示意图;
图22和图23是本申请实施方式的图像处理方法的原理示意图;
图24是本申请实施方式的图像处理方法的流程示意图;
图25是本申请实施方式的图像处理方法的远离示意图;
图26和图27是本申请实施方式的图像处理方法的流程示意图;
图28是本申请实施方式的图像处理方法的原理示意图;
图29至图34是本申请实施方式的图像处理方法的流程示意图;
图35是本申请实施方式中特定滤光器下,不同波段的光线与对应的红色通道、绿色通道及蓝色通道的相对灵敏度的关系示意图、及不同波段的光线在特定滤镜下的透过率;
图36至图40是本申请实施方式的图像处理方法的流程示意图;
图41是本申请实施方式的成像装置的结构示意图;
图42是本申请实施方式的电子设备的结构示意图。
具体实施方式
下面详细描述本申请的实施方式,实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
请参阅图1和图3,本申请提供了一种图像传感器10,图像传感器10包括滤光器阵列11和像素阵列。本申请的滤光器阵列11包括多个滤光器,滤光器包括普通滤光器(例如图3中的A、B、C)和特定滤光器(例如图3中的Ap、Bp、Cp),滤光器阵列11包括多个区域阵列110,区域阵列110包括至少一个子单元111,子单元111包括多个滤光器,每个区域阵列110均包括多个普通滤光器和至少一个特定滤光器,每个普通滤光器仅允许一种颜色的光线通过,每个特定滤光器仅允许一种颜色的光线通过,并能过滤该颜色的光线中波长在特定波长范围内的至少部分光线,特定波长范围内黑色素的反射率高于血红蛋白的反射率。
本申请实施方式的图像传感器10和滤光器阵列11中,每个区域阵列110包括有普通滤光器和至少一个特定滤光器,普通滤光器仅允许一种颜色的光线通过,特定滤光器仅允许一种颜色的光线通过,并能滤除该颜色光线中波长在特定波长范围内的至少部分光线,而在特定波长范围内黑色素的反射率高于血红蛋白的反射率,特定滤光器可以过滤波长在特定波长范围内的至少部分光线,使得成像时黑色素较少,进而使得成像后的图像中黑色素较淡而不明显。
需要说明的是,由于人体肤色的色素构成为黑色素、血红蛋白、胆红素及胡萝卜素等,且含量大并且易变化(个体差异大)的是黑色素及血红蛋白,此二者很大程度上左右图像传感器10所成图像表现出来的肤色。当黑色素反射率明显高于血红蛋白时,则会导致皮肤中痣、癍等表现明显。
其中,特定波长范围内的光线照射在皮肤上,黑色素对特定波长范围内的光线的反射率高于血红蛋白对特定波长范围内的光线的反射率。本申请实施方式中,以特定波长范围为530nm~580nm的光线为例进行示例性说明,可以理解,特定波长范围并不限于530nm~580nm。
其中,下文描述中,以特定光线表示波长在530nm~580nm的光线,可以理解,特定光线的波长可以为530nm~580nm之间的任意数值,例如,特定光线的波长可为530nm、535nm、540nm、545nm、550nm、 555nm、560nm、565nm、570nm、575nm、580nm或者更多数值,在此不一一列举。
具体地,请参阅图4,图4中的图a展示了在普通滤光器或者未设置滤光器下血红蛋白和黑色素在不同波段的光线下的反射率,横坐标表示光线的波长,纵坐标表示光线的反射率,曲线H表示血红蛋白在不同波段下的反射率,曲线M代表黑色素在不同波段下的反射率。图4可以表示被特定滤光器过滤后的光线与光线的透光率的曲线图,横坐标表示光线的波长,纵坐标表示光线的透过率。图4中的图b表示了经过特定滤光器过滤至少部分特定光线后,血红蛋白和黑色素在不同波段的光线下的反射率,横坐标表示光线的波长,纵坐标表示反射率,同样的,曲线H表示血红蛋白在不同波段下的反射率,曲线M代表黑色素在不同波段下的反射率。
通过图4中的图a可以看出:在波段范围为530nm~580nm的光线照射下,黑色素对该波段范围的光线的反射率高于血红蛋白对该波段范围的光线的反射率。此时,则会导致图像传感器10所成图像中皮肤中痣、癍等表现明显。通过图4中的图b可以看出:在特定滤光器之下,波段范围为530nm~580nm的光线的透过率相较其他波段范围的光线的透过率较低,即进入图像传感器10中的波段范围为530nm~580nm的光线会相对较少。
通过图4中的图b可以看出,设置特定滤光器之后,在波段范围为530nm~580nm的光线照射下,黑色素对该波段范围的光线的反射率开始接近血红蛋白对该波段范围的光线的的反射率,即两者的反射率差值逐渐减小。则在特定滤光器的作用下,图像传感器10所成图像中皮肤中痣、癍等颜色较淡,表现不明显。因此,通过降低特定波长范围内的光线的透过率,可以使得图像传感器10生成的图像中皮肤表现较好。
进一步地,区域阵列110中既包括有特定滤光器和普通滤光器,一方面,可以根据普通滤光器对特定滤光器进行普通化处理,使得可以得到真实肤色图像,可以避免全部设置特定滤光器,而导致用户想以真实肤色成像但得到的图像不真实的现象;另一方面,可以根据特定滤光器对普通滤光器进行特定化处理,使得可以得到黑色素较淡的图像,可以避免全部设置普通滤光器,而导致用户想淡化黑色素美化皮肤的现象。其中,普通化处理可以指的是根据普通滤光器的像素值计算特定滤光器的像素值,特定化处理可以指的是根据特定滤光器的像素值计算普通滤光器的像素值。
下面结合附图对图像传感器10进行详细说明。
具体地,图像传感器10具体可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)感光元件或者电荷耦合元件(CCD,Charge-coupled Device)感光元件。
请参阅图1,本申请实施方式的图像传感器10包括滤光器阵列11及像素阵列12。沿图像传感器10的收光方向,滤光器阵列11和像素阵列12依次设置,光线经滤光器阵列11后到达像素阵列12。
滤光器阵列11可包括多个滤光器1111,滤光器1111可用于允许预定颜色的光线通过,并过滤除光线中的除预定颜色外的其他颜色光线。
像素阵列12可包括多个像素点121,每个像素点121可对应滤光器阵列11中的一个滤光器1111,像素点121可以用于接收穿过对应的滤光器1111的光线以生成电信号。
请参阅图3,滤光器阵列11可包括多个区域阵列110,一个滤光器阵列11可由多个区域阵列110拼接形成。在一个滤光器阵列11中,多个区域阵列110中,滤光器1111的种类及分布可相同或者不同。例如,多个区域阵列110中滤光器1111的分布完全相同,以便于滤光器的生产及制造;再例如,至少两个不同的区域阵列110中的滤光器1111的分布不同,以分别满足不同区域的滤光需求。
每个区域阵列110可包括多个普通滤光器(例如图3中的A、B、C)和至少一个特定滤光器(例如图3中的A P和B P),普通滤光器可以仅允许一种颜色的光线通过而滤除其它颜色的光线,特定滤光器可以允许仅一种颜色的光线通过,并能够滤除其它颜色的光线,还可过滤掉该种颜色的光线中波长在特定波长范围内的至少部分光线。每个区域阵列110中特定滤光器的种类可为一种或者多种,每种特定滤光器可为一个或多个。
请参阅图3,区域阵列110可包括至少一个子单元111,每个子单元111可包括多个滤光器1111。可以理解,一个区域阵列110可包括一个或多个子单元111。例如,在图3、图6及图7所示的实施例中,区域阵列110a、区域阵列110b、区域阵列110c及区域阵列110d包括四个子单元111。又例如,在图8至图11所示的实施例中,区域阵列110a、区域阵列110b、区域阵列110c及区域阵列110d包括一个子单元111。当然,一个区域阵列110还可包括其它个子单元111,例如,两个、三个、五个、六个、 八个等,在此不一一列举。
在一个实施例中,一个区域阵列110中,部分子单元111可同时包括特定滤光器和普通滤光器,部分子单元111可只包括普通滤光器,部分子单元111可只包括特定滤光器。在另一个实施例中,一个区域阵列110中,部分子单元111可只包括普通滤光器,部分子单元111可只包括特定滤光器。在又一个实施例中,一个区域阵列110中,每个子单元111可同时包括特定滤光器和普通滤光器。
进一步地,请参阅图3、图6及图7,在某些实施方式中,每个区域阵列110可包括2 n*2 n个子单元111,n≥1,每个子单元111包括2*2个滤光器1111,每个子单元111包括的滤光器的种类可相同或者不同。其中,n可以为1、2、3、4、5、6或更多数值,在此不一一列举。
在图3、图6及图7所示的实施例中,每个区域阵列110可包括2*2个子单元111。在其它的实施例中,每个区域阵列110可包括4*4个子单元111、8*8个子单元111、16*16个子单元111、32*32个子单元111等,在此不一一列举,也不做限制。
请参阅图3,在某些实施方式中,每个子单元111可包括M*M个滤光器1111。其中,M≥2,同一个子单元111中的滤光器1111允许通过的光线的颜色不同。例如,每个子单元111均包括一个允许第一颜色的光线穿过的滤光器1111(第一普通滤光器A或第一特定滤光器Ap)、两个允许第二颜色的光线穿过的滤光器1111(第二普通滤光器B或第二特定滤光器Bp)和一个允许第三颜色的光线穿过的滤光器1111(第三普通滤光器C或第三特定滤光器Cp)。
在某些实施方式中,每个子单元111包括M*M个滤光器1111,其中,M≥2,同一个子单元111中的滤光器1111允许通过的光线的颜色相同。可以理解,即,M可以是2、3、4、5、6或更多数值,在此不一一列举。例如,一个区域阵列110包括四个子单元111,每个子单元111可包括2*2个滤光器1111,且同一个子单元111111中的2*2个滤光器1111允许通过的光线的颜色相同。又例如,一个区域阵列110包括四个子单元111,每个子单元111包括3*3个滤光器1111,且同一个子单元111中的3*3个滤光器1111允许通过的光线的颜色相同。
当然,在其他一些实施方式中,每个子单元111也可包括4*4个滤光器1111、5*5个滤光器1111、6*6个滤光器1111,在此不一一列举。
请参阅图8至图11,在某些实施方式中,每个子单元111可包括多个孙单元1110,每个孙单元1110包括K*K个滤光器1111。其中,K≥2,同一个孙单元1110中的滤光器1111允许通过的光线的颜色相同。可以理解,K可以是2、3、4、5、6或更多数值,在此不一一列举。
例如,在图8至图11所示的实施例中,一个区域阵列110包括一个子单元111。更具体地,在图8至图11中,每个子单元111包括四个孙单元1110,每个孙单元1110包括2*2个滤光器1111,同一个孙单元1110的2*2个滤光器1111允许通过的光线的颜色相同。在其它的实施例中,每个孙单元1110也包括3*3个滤光器1111,同一个孙单元1110的3*3个滤光器1111允许通过的光线的颜色相同。或者说,一个区域阵列110也可包括多个子单元111,每个子单元111可包括多个孙单元1110。
在图8至图11所示的实施例中,四个孙单元1110分别为第一孙单元1110a、第二孙单元1110b、第三孙单元1110c和第四孙单元1110d。第一孙单元1110a中的2*2个滤光器1111均仅允许第一颜色的光线穿过第二孙单元1110a和第三孙单元1110c中的2*2个滤光器11111均仅允许第二颜色的光线穿过,第四孙单元1110中的2*2个滤光器均仅允许第三颜色的光线穿过。
当然,在其他一些实施方式中,每个孙单元1110也可包括4*4个滤光器、5*5个滤光器、6*6个滤光器,在此不一一列举。
请参阅图3,普通滤光器的种类可为多种,多种普通滤光器可以分别允许对应的多种颜色的光线通过。多种普通滤光器可包括第一普通滤光器A、第二普通滤光器B及第三普通滤光器C。第一普通滤光器A可以仅允许第一颜色的光线通过,而过滤掉其它颜色的光线。第二普通滤光器B可以仅允许第二颜色的光线通过,而过滤掉其它颜色的光线。第三普通滤光器C可以仅允许第三颜色的光线通过,而过滤掉其它颜色的光线通过。
当然,还可以包括仅允许第四颜色的光线通过的第四普通滤光器、仅允许第五颜色的光线通过的第五普通滤光器、仅允许第六颜色的光线通过的第六普通滤光器等,在此不详细描述。
请参阅图12,在某些实施方式中,第一颜色的光线中波长在特定波长范围内的波段多余第三颜色的光线在特定波长范围内的波段,第二颜色的光线中波长在特定波长范围内的波段多余第三颜色的光线在 特定波长范围内的波段。可以理解,第一颜色的光线和第二颜色的光线中的特定光线数量较多。
进一步地,请参阅图3、图6及图8,特定滤光器可包括第一特定滤光器Ap和第二特定滤光器Bp,可设置第一特定滤光器Ap和第二特定滤光器Bp,第一特定滤光器Ap可以过滤第一颜色的光线中的特定光线(即,波长在特定范围内的光线),第二特定滤光器Bp可以过滤第二颜色的光线中的特定光线。区域阵列110包括第一普通滤光器A、第二普通滤光器B、第三普通滤光器C、第一特定滤光器Ap及第二特定滤光器Bp。由此,设置第一特定滤光器Ap和第二特定滤光器Bp,可以较好地防止特定光线成像造成皮肤效果较差的现象。
像素阵列可包括第一普通像素点(图未示)、第二普通像素点(图未示)、第三普通像素点(图未示)、第一特定像素点(图未示)及第二特定像素点(图未示)。第一普通像素点可以与第一普通滤光器A对应,用于接收经第一普通滤光器A过滤后的光线以生成电信号;第二普通像素点可以与第二普通滤光器B对应,用于接收经第二普通滤光器B过滤后的光线以生成电信号;第三普通像素点可以与第三普通像素滤光器对应,用于接收经第三普通滤光器C过滤后的光线以生成电信号;第一特定像素点与第一特定滤光器Ap对应,用于接收第一特定滤光器Ap过滤后的光线以生成电信号;第二特定像素点与第二特定滤光器Bp对应,用于接收第二特定滤光器Bp过滤后的光线以生成电信号。
请结合图2,图像传感器10还可包括处理器14,处理器14可以根据第一特定像素点的数据对第一普通像素点的数据进行处理,及处理器14可以根据第二特定像素点的数据对第二普通像素点的数据进行处理,则处理后的第一普通像素点的数据是根据过滤了第一颜色的光线中的至少部分特定光线,而剩余的光线得到的,则处理后的第二普通像素点的数据是根据过滤了第二颜色的光线中的至少部分特定光线,而剩余的光线得到的。由此,并不需要将滤光器阵列11全部设置为特定滤光器,也可以实现以过滤掉特定光线后的光线的成像效果,可以节省滤光器阵列11及图像传感器10的成本。
另外,处理器14也可以根据第一普通像素点的数据对第一特定像素点的数据进行处理,及处理器可以根据第二普通像素点的数据对第二特定像素点的数据进行处理,则处理后的第一特定像素点的数据可以认为是根据未过滤第一颜色的光线中的特定光线得到的,则处理后的第二特定像素点的数据可以认为是根据未过滤第二颜色的光线中的特定光线得到的。由此,可以根据普通像素点对特定像素点进行处理,图像传感器10成像更加真实,避免了用户想拍真实的图像时得到的图像存在色差的现象。
其中,第一特定像素点和第一普通像素点的结构可以相同,接收到的光线不同。第二特定像素点和第二普通像素点的结构可以相同,接收到的光线不同。
进一步地,请参阅图7、图9至图11,在某些实施方式中,区域阵列110还可包括第三特定滤光器Cp,像素阵列还可包括第三特定像素点,第三特定滤光器Cp可以仅允许第三颜色的光线通过并能够过滤掉第三颜色的光线中的特定光线,第三特定像素点可以与第三特定滤光器Cp相对应,用于接收第三特定滤光器Cp过滤后的光线以生成电信号。如此,第三特定滤光器Cp可以避免第三颜色的光线中的特定光线对成像的影响。其中,第三特定像素点和第三普通像素点的结构可以相同,接收到的光线不同。
图像传感器10的处理器14(图2示)也可以第三特定像素点的数据对第三普通像素点的数据进行处理,处理后的第三普通像素点的数据可以认为是根据过滤了第一颜色的光线中的至少部分特定光线,而剩余的光线得到的,进而并不需要设置较多的第三特定滤光器Cp,也可以实现过滤掉所有的第三颜色中的特定光线成像的效果。处理器14也可以根据第三普通像素点的数据对第三特定像素点的数据进行处理,则处理后的第三特定像素点的数据可以认为是根据未过滤第三颜色的光线中的特定光线得到的。由此,可以根据第三普通像素点对第三特定像素点进行处理,图像传感器10成像更加真实,避免了用户想拍真实的图像时得到的图像存在色差的现象。
其中,第一颜色、第二颜色和第三颜色互不相同,且第一颜色、第二颜色和第三颜色的颜色组成方式可以有多种。在一个例子中,第一颜色可为红色R、第二颜色可为绿色G、第三颜色可为蓝色B,一个子单元111可以为RGGB排布。在另一个例子中,第一颜色可为红色R、第二颜色可为黄色Y、第三颜色可为蓝色B,一个子单元111可以为RYYB排布。在又一个例子中,第一颜色可为红色R、第二颜色可为绿色Y、第三颜色可为青色CB,一个子单元111可以为RYYCB。第一颜色、第二颜色和第三颜色还可以为其他颜色,在此不一一列举。在一个例子中,还包括第四普通滤光器,第四普通滤光器可以允许所有颜色的光线通过,第四颜色可以为白色W,第一颜色可为红色R、第二颜色可为绿色G、第三颜色可为蓝色B,则一个子单元111可以为RGBW分布。
本申请实施例中以第一颜色为红色R、第二颜色为绿色G、第三颜色为蓝色B为例进行示例性说明。
请参阅图4、图5、图13及图14,图4中的图b表示了未设置特定滤镜时,在各个波段下,黑色素M的反射率和血红蛋白H的反射率;图5表示了在设置一枚特定滤镜时,在各个波段下,黑色素M的反射率和血红蛋白H的反射率;图13表示了在设置两枚特定滤镜时,在各个波段下,黑色素M的反射率和血红蛋白H的反射率;图14表示了在设置五枚特定滤镜时,在各个波段下,黑色素M的反射率和血红蛋白H的反射率。
通过比较图4中的图b、图5、图13及图14,可以较清楚地观察到,在设置一枚特定滤镜后,在530nm至580nm(即,特定波长范围)之间,黑色素M的反射率与血红蛋白H的反射率之间的差值已经减少;在设置两枚特定滤镜后,在530nm至580nm(即,特定波长范围)之间,黑色素M的反射率与血红蛋白H的反射率之间的差值进一步减少;在设置五枚特定滤镜后,在530nm至580nm(即,特定波长范围)之间,黑色素M的反射率与血红蛋白H的反射率之间的差值再进一步减少。因此,可以根据实际需求以及制造成本的考虑,设置一个或多个特定滤镜。
请参阅图15至图17,第一普通滤光器A可包括第一颜色滤镜101A,第一特定滤光器Ap可包括第一颜色滤镜101A及第一特定滤镜102A,第一颜色滤镜101A用于仅允许第一颜色的光线通过,第一特定滤镜102A用于过滤掉第一颜色的光线中的至少部分特定光线。其中,第一特定滤镜102A不允许波长在特定波长范围内的光线通过。第一特定滤镜102A可以设置在第一颜色滤镜101A的入光侧或者出光侧,在此不做限制。第一特定滤光器Ap可以是在第一普通滤光器A的基础上设置第一特定滤镜102A而形成。
第一特定滤镜102A的数量可以是一个或者多个,在第一特定滤镜102A的数量为多个时,多个第一特定滤镜102A可以均设置在第一颜色滤镜101A的入光侧或者出光侧,或者,部分个第一特定滤镜102A设置在第一颜色滤镜101A的入光侧,另部分个第一特定滤镜102A设置在第一颜色滤镜101A的出光侧。
请参阅图15至图17,第二普通滤光器B可包括第二颜色滤镜101B,第二特定滤光器Bp可包括第二颜色滤镜101B及第二特定滤镜102B,第二颜色滤镜101B用于仅允许第二颜色的光线通过,第二特定滤镜102B用于过滤掉第二颜色的光线中的至少部分特定光线。其中,第二特定滤镜102B不允许波长在特定波长范围内的光线通过。第二特定滤镜102B可以设置在第二颜色滤镜101B的入光侧或者出光侧,在此不做限制。第二特定滤光器Bp可以是在第二普通滤光器B的基础上设置第二特定滤镜102B而形成。
第二特定滤镜102B的数量可以是一个或者多个,在第二特定滤镜102B的数量为多个时,多个第二特定滤镜102B可以均设置在第二颜色滤镜101B的入光侧或者出光侧,或者,部分个第二特定滤镜102B设置在第二颜色滤镜101B的入光侧,另部分个第二特定滤镜102B设置在第二颜色滤镜101B的出光侧。其中,第二特定滤镜102B的数量和第一特定滤镜102A的数量可相同或者不同。
在其中一个实施例中,图像传感器10的处理器可以根据设置一个第一特定滤镜102A的数据,模拟得到设置两个甚至更多个第一特定滤镜102A的数据,以及处理器可以根据设置一个第二特定滤镜102B的数据,模拟得到设置两个甚至更多个第二特定滤镜102B时数据,进而可以实现只需要设置一个第一特定滤镜102A而可以实现设置多个第一特定滤镜102A的效果,及只需要设置一个第二特定滤镜102B而可以实现设置多个第二特定滤镜102B的效果,在实现较好地成像质量时还可以降低滤光器阵列11的制造成本。
请参阅图15至图17,第三普通滤光器C可包括第三颜色滤镜101C,第三特定滤光器Cp可包括第三颜色滤镜101C及第三特定滤镜102C,第三颜色滤镜101C用于仅允许第三颜色的光线通过,第三特定滤镜102C用于过滤掉第三颜色的光线中的至少部分特定光线。其中,第三特定滤镜102C不允许波长在特定波长范围内的光线通过。第三特定滤镜102C可以设置在第三颜色滤镜101C的入光侧或者出光侧,在此不做限制。第三特定滤光器Cp可以是在第三普通滤光器C的基础上设置第三特定滤镜102C而形成。
第三特定滤镜102C的数量可以是一个或者多个,在第三特定滤镜102C的数量为多个时,多个第三特定滤镜102C可以均设置在第三颜色滤镜101C的入光侧或者出光侧,或者,部分个第三特定滤镜102C设置在第三颜色滤镜101C的入光侧,另部分个第三特定滤镜102C设置在第三颜色滤镜101C的 出光侧。其中,第三特定滤镜102C的数量、第二特定滤镜102B及第一特定滤镜102A的数量,可以相同或者不相同。
图像传感器10的处理器也可以根据设置一个第三特定滤镜102C的数据,模拟得到设置两个甚至更多个第三特定滤镜102C的数据,从而在设置一个第三特定滤镜102C的基础上可以得到设置多个第三特定滤镜102C的效果,在实现较好地成像质量时还可以降低滤光器阵列11的制造成本。
其中,第一特定滤镜102A、第二特定滤镜102B和第三特定滤镜102C可以相同。
在一些实施方式中,请参阅图3、图6及图8,区域阵列110中包括第一特定滤光器Ap和第二特定滤光器Bp。第一特定滤光器Ap和第二特定滤光器Bp可位于同一个子单元111中;第一特定滤光器Ap和第二特定滤光器Bp可分别分布在不同的子单元111中,例如,部分个子单元111具有第一特定滤光器Ap和第二特定滤光器Bp中的一个,部分个子单元111具有第一特定滤光器Ap和第二特定滤光器Bp中的另一个。
进一步地,在其中一个实施例中,存在第一特定滤光器Ap和第二特定滤光器Bp相邻设置,第一特定滤光器Ap和第二特定滤光器Bp可共用同一个特定滤镜102,即,第一特定滤镜102A和第二特定滤镜102B为同一个特定滤镜102,如图18和图19所示;存在第一特定滤光器Ap和第二特定滤光器Bp未相邻设置,第一特定滤光器Ap和第二特定滤光器Bp可分别使用一个特定滤镜,如图16及图17所示,即,第一特定滤镜102A和第二特定滤镜102B为两个滤镜。当然,在第一特定滤光器Ap和第二特定滤光器Bp相邻设置时,第一特定滤光器Ap和第二特定滤光器Bp也可分别使用一个特定滤镜。
在一些实施方式中,请参阅图7、图9至图11,区域阵列110中包括第一特定滤光器Ap、第二特定滤光器Bp和第三特定滤光器Cp。第一特定滤光器Ap、第二特定滤光器Bp和第三特定滤光器Cp可位于同一个子单元111中,第一特定滤光器Ap、第二特定滤光器Bp和第三特定滤光器Cp可分别分布在不同的子单元111中,或者,第一特定滤光器Ap、第二特定滤光器Bp和第三特定滤光器Cp中的两个可位于同一个子单元111中,另一个分布在其它的子单元111中。
进一步地,在其中一个实施例中,第一特定滤光器Ap、第二特定滤光器Bp和第三特定滤光器Cp两两相邻设置,第一特定滤光器Ap、第二特定滤光器Bp和第三特定滤光器Cp共用同一个特定滤镜102,即,第一特定滤镜102A、第二特定滤镜102B和第三特定滤镜102C为同一个特定滤镜102,如图7、图9、图18及图19所示;或者第一特定滤光器Ap、第二特定滤光器Bp和第三特定滤光器Cp可分别使用一个特定滤镜。在其中另一个实施例中,第一特定滤光器Ap、第二特定滤光器Bp和第三特定滤光器Cp中存在相邻的滤光器,相邻的两个或多个滤光器可共用同一个特定滤镜102。在其中又一个实施例中,在第一特定滤光器Ap、第二特定滤光器Bp和第三特定滤光器Cp互不相邻时,第一特定滤光器Ap、第二特定滤光器Bp和第三特定滤光器Cp可各自分别使用一个特定滤镜,如图11、图16及图17所示。
当然,在滤光器阵列11包括有仅允许第四颜色的光线通过的第四普通滤光器时,滤光器阵列11也可设置有第四特定滤光器,第四特定滤光器可以仅允许第四颜色的光线通过且可过滤掉第四颜色光线中的至少特定光线。滤光器阵列11中还可包括其他类型的滤光器,在此不一一列举。
请参阅图7,在一些实施方式中,在同一个区域阵列110中,第一特定滤光器Ap的数量、第二特定滤光器Bp的数量和第三特定滤光器Cp的数量可相同或者不同。第一特定滤光器Ap的数量、第二特定滤光器Bp的数量和第三特定滤光器Cp的数量可根据用户的需求选择性设置。
或者,第一特定滤光器Ap的数量也可根据第一普通滤光器A的数量确定,第二特定滤光器Bp的数量也可根据第二普通滤光器B的数量确定,第三特定滤光器Cp的数量也可根据第三普通滤光器C的数量确定。例如,第一特定滤光器Ap的数量可以是第一普通滤光器A的数量的十分之一、八分之一、五分之一、四分之一等,在此不一一列举,第二特定滤光器Bp和第三特定滤光器Cp同第一特定滤光器Ap,在此不详细展开。由此,可以避免由于第一特定滤光器Ap、第二特定滤光器Bp和第三特定滤光器Cp过多导致想拍真实图像时存在较强的失真现象,也可以避免由于第一特定滤光器Ap、第二特定滤光器Bp和第三特定滤光器Cp过多导致所成图像的亮度较暗的现象。
在一些实施方式中,在一个区域阵列110中,第一特定滤光器Ap的数量小于第一普通滤光器A的数量,第二特定滤光器Bp的数量小于第二普通滤光器B的数量,由此,可以避免第一特定滤光器Ap的数量和第二特定滤光器Bp的数量过多、而导致图像传感器10所生成的图像亮度过低。在区域阵列110中还具有第三特定滤光器Cp时,第三特定滤光器Cp的数量小于第三普通滤光器C的数量。
请参阅图20,图20展示了红色光线R、绿色光线G和蓝色光线B采用特定滤镜后,图像传感器10分光特性的变化。图中实线为未使用特定滤镜,红色光线R、绿色光线G和蓝色光线B的分光特性,图中虚线为使用特定滤镜后,红色光线R、绿色光线G和蓝色光线B的分光特性。在图20中,可以明显地观察到,使用特定滤镜后,绿色光线G的减少要高于蓝色光线B的减少和红色光线R的减少,因此,所成图像中皮肤的肤色将向粉色偏移,肤色美感更好。
需要说明的是,本申请实施方式的滤光器阵列11的分布并不限于图3、图6至图11所示的分布,还可以是其他分布,在此不做具体限制。
请参阅图1,在某些实施方式中,图像传感器10还可包括微透镜阵列13,微透镜阵列可包括多个微透镜131,多个微透镜131可对应设置于多个滤光器1111的远离像素阵列12的一侧,并与该滤光器1111对应的像素点121相对应,沿图像传感器10的收光方向,光线经微透镜131到达滤光器1111。微透镜131可以汇聚光线,可以将入射的光线更多地导引至滤光器1111。
请参阅图21及图22,本申请还提供了一种图像处理方法,图像处理方法可以用于上述任一实施方式所述的图像传感器10,图像处理方法可包括以下步骤:
01:获取待处理图像中的普通像素的第一像素值和特定像素的第二像素值,普通像素由普通像素点根据接收到的第一光线得到,特定像素由特定像素点根据接收到的第二光线得到;其中,特定像素点过滤掉第一光线中在特定波长范围中的至少部分光线后,余下的光线为第二光线,在特定波长范围内黑色素的反射率高于血红蛋白的反射率;
02:根据第一像素值计算,由特定像素点根据第一光线得到特定像素时,特定像素的第三像素值;
03:根据第三像素值与第二像素值,计算增益系数;及
04:根据增益系数,调整待处理图像中的普通像素的像素值,以生成目标图像。
具体地,待处理图像可以是由上述任一实施方式的图像传感器10生成,即,待处理图像是像素阵列根据滤光器阵列11过滤后的光线生成的。待处理图像中可包括有普通像素和特定像素,像素阵列中与普通滤光器相相对应的像素点为普通像素点,像素阵列中与特定滤光器相对应的像素点为特定像素点。
普通像素可以是普通像素点根据接收到的第一光线得到的,特定像素可以是特定像素点根据接收到的第二光线得到的,第一光线中波长在特定波长范围内的至少部分光线被过滤后,剩余的光线即为第二光线。可以理解,第二光线中波长在特定波长范围内的光线较少甚至没有,则第二光线大多数为血红蛋白反射的,黑色素反射的较少。待处理图像中特定像素中黑色素表现得较淡而不明显,特定像素所呈现的皮肤肤色更好。
为了对待处理图像中的普通像素进行处理,使得普通像素具有特定像素相似的属性。可以根据普通像素的第一像素值,计算特定像素点在根据第一光线得到特定像素时,特定像素的第三像素值,然后根据第二像素值和第三像素值计算增益系数,即,比较特定像素点在根据第一光线得到的像素值和根据第二光线得到的像素值之间的差异,从而可以根据增益系数调整待处理图像中普通像素的像素值,以调整后的普通像素的像素值更新待处理图像可以生成目标图像。由此,目标图像中黑色素表现较淡,人物肤色更加粉嫩。
在图22中,P可以表示待处理图像的像素分布,P’可以表示得到的目标图像的像素分布。其中,图22中的R、G、B均为普通像素,Rp和Gp均为特定像素,R’、G’及B’为调整后的普通像素。
在图23中,P可以表示待处理图像的像素分布,P’可以表示得到的目标图像的像素分布。其中,图22中的R、G、B均为普通像素,Rp、Gp及Bp均为特定像素,R’、G’及B’为调整后的普通像素。
请参阅图24,在一些实施方式中,步骤03包括以下步骤:
031:计算第三像素值与第二像素值的比值;及
032:根据比值及预选的调节系数生成增益系数。
具体地,第二像素值是特征像素点根据接收的第二光线得到的,第三像素值是模拟特定像素点根据接收第一光线而得到的,而第二光线是第一光线中过滤掉特定光线后剩余的光线。可以理解,第二像素值在特定像素点的入光侧设置有特定滤镜(请结合上文滤光器阵列11中的描述)时,特定像素点根据接收到的光线生成的像素值,第三像素值可以理解为特定像素点的入光侧未设置特定滤镜时,特定像素点根据接收到的光线生成的像素值。通过比较第二像素值和第三像素值,可以得到设置特定滤镜和未设置特定滤镜的区别,进而可以对接收未经过特定滤镜过滤的光线的普通像素的像素值进行处理,以得到 目标图像。
更具体地,可以计算模拟特定像素点在以第一光线成像时得到的第三像素值,和特定像素点在以第二光线成像时得到的第二像素值之间的比值K,比值K可以用于表征有无特定滤镜之间的差异。然后可以根据比值K及预选的调节系数N生成增益系数,即,增益系数可为K N。然后根据普通像素的第一像素值和增益系数,则可以对普通像素的像素值进行调整,以调整后的像素值呈现的图像即为目标图像。例如,K=第二像素值A/第三像素值B时,普通像素的第一像素值为C,调整后的普通像素的像素值为C’,C’=C*(K N)。又例如,K=第三像素值B/第二像素值A时,普通像素的第一像素值为C,调整后的普通像素的像素值为C’,C’=C/(K N)。由此,只需要部分像素设置有特定滤镜,即可以实现整个图像中的全部像素带有特定滤镜的效果,可以降低图像传感器10的制造成本。
需要说明的是,在存在某种特定像素的数量为多个时,则需先计算多个特定像素的第二像素值的平均值,然后使用平均值与该特定像素的第三像素值计算比值。
其中,预先的调节系数N可以是用户自己选择的,调节系数N可为任意数值,例如调节系数N可为-2、-1、-0.5、0、0.5、1、1.5、2、2.5、3、4、5、6或更多数值。在用户没有执行选择操作时,则调节系数N可默认为1。调节系数N可以用于实现N枚滤镜的呈现效果。例如,第二像素值是一枚特定滤镜时的成像效果时,N为2时,则可以实现两枚特定滤镜的成像效果;N为3时,则可以实现3枚滤镜的技术效果。又例如,第二像素值是二枚特定滤镜时的成像效果时,N为2时,则可以实现四枚特定滤镜的成像效果;N为3时,则可以实现8枚滤镜的技术效果。由此,在不需要设置多枚特定滤镜时,可以实现多枚特定滤镜的成像效果,可以减少图像传感器10的制造成本,同时还可以满足用户的多样化需求,例如可以满足不同用户的需求或者同一个用户的不同喜好,并且滤光器阵列11的长度还可比较小。
请结合图25,在用户的显示界面(User Interface,UI)可显示有调节栏L,用户可在UI界面进行滑动调节栏L期望的调节系数N,在用户选择后可确定调节系数N,进而可根据调节系数N生成目标图像。其中,调节系数N可在用户拍摄前选取,也可以在用户拍摄后选取,在此不做限制。
请参阅图26,在某些实施方式中,步骤04包括以下步骤:
041:根据增益系数及普通像素的第一像素值,计算普通像素的像素新值;及
042:以普通像素的像素新值更新待处理图像,获得目标图像。
具体地,根据特定像素计算得到增益系数后,可以根据增益系数以及增益系数对应的普通像素的第一像素值,计算得到该普通像素的像素新值。然后可以将待处理图像中普通像素的像素值更新为像素新值,可以得到目标图像。由此,由于普通像素的像素值进行了更新,则目标图像中痣、斑等黑色素较明显的东西将比较淡,同时肤色将更加粉嫩。
其中,若部分普通像素无对应的特定像素,则可以根据普通像素对应接收的第一光线在特定滤镜下的通过率作为该普通像素的比值,根据该比值和调节系数可以得到增益系数,进而可以根据该增益系数和普通像素的第一像素值,计算对应的普通像素的像素新值。
请参阅图22和图23,在一些实施方式中,待处理图像中可包括多种普通像素(例如,R、G、B),待处理图像中可包括至少一种特定像素(例如,Rp、Gp及Bp中的一种或多种)。在待处理图像中存在一种特定像素时,例如,Rp、Gp及Bp中的一种,该种特定像素可与多种普通像素中的一种对应,可以根据与该种特定像素对应的一个或多个普通像素的第一像素值,计算该种特定像素若以第一光线生成时的第三像素值,然后根据第三像素值和第二像素值计算增益系数,然后可以根据增益系数对与该种特定像素对应的普通像素的像素值进行调整,调整后的待处理图像即可作为目标图像。待处理图像中存在多种特定像素时,生成目标图像的过程和一种特定像素类似,在此不详细展开。
请参阅图22及图27,在一些实施方式中,普通像素包括第一普通像素R、第二普通像素G和第三普通像素B,第一普通像素R由接收到的第一颜色的第一光线得到,第二普通像素G由接收到的第二颜色的第一光线得到,第三普通像素B由接收到的第三颜色的第一光线生成,特定像素包括第一特定像素Rp和第二特定像素Gp,第一特定像素Rp由接收到的第一颜色的第二光线得到,第二特定像素Gp由接收到的第二颜色的第二光线得到,步骤02包括以下步骤:
021:计算待处理图像中,第一普通像素R的像素值的第一像素均值,将第一像素均值作为第一特定像素Rp的第三像素值;及
022:计算待处理图像中,第二普通像素G的像素值的第二像素均值,将第二像素均值作为第二特定像素Gp的第三像素值。
具体地,第一颜色可以为红色R,第二颜色可以为绿色G,第三颜色可以为蓝色B;或者第一颜色可以为红色R,第二颜色可以为黄色Y,第三颜色可以为蓝色B;或者,第一颜色、第二颜色及第三颜色还可以分别是其它颜色,在此不一一列举。本申请实施例以第一颜色可以为红色R,第二颜色可以为绿色G,第三颜色可以为蓝色B为例进行示例性说明。
则普通像素可包括第一普通像素R、第二普通像素G和第三普通像素B,特定像素可包括第一特定像素Rp、第二特定像素Gp,第一特定像素Rp和第一普通像素R对应,第二特定像素Gp和第二普通像素G对应。请结合上文在图像传感器10中的描述,第一颜色的第一光线和第二颜色的第二光线中特定光线的数量较多,因此,结合第一特定像素Rp的像素值和第一普通像素R的像素值,可以对第一普通像素R的像素值进行调整;结合第二特定像素Gp的像素值和第二普通像素G的像素值,可以对第二普通像素G的像素值进行调整,由此,可以较多地消除特定光线造成所成图像中痣、斑表现明显的现象。
更具体地,待处理图像中存在有多个第一普通像素R、多个第二普通像素G及多个第三普通像素B。计算待处理图像中,多个第一普通像素R的像素值的第一像素均值Rave,将第一像素均值Rave作为第一特定像素Rp的第三像素值。计算待处理图像中,多个第二普通像素G的像素值的第二像素均值Gave,将第二像素均值Gave作为第二特定像素Gp的第三像素值。由此,可以模拟得到根据第一颜色的第一光线得到的第一特定像素Rp的第三像素值,可以模拟得到根据第二颜色的第一光线得到的第二特定像素Gp的第三像素值,且得到的第三像素值比较准确,从而可以更好地计算第一特定像素Rp和第一普通像素R之间的增益、及第二特定像素Gp和第二普通像素G之间的增益。
例如,在图28中,存在4个第一普通像素R,4个第一普通像素R的像素值分别为R1、R2、R3和R4,存在12个第二普通像素G,12个第二普通像素G的像素值分别为G1、G2、G3、G4、G5、G6、G7、G8、G9、G10、G11和G12,则第一特定像素Rp的第三像素值Rp-c=(R1+R2+R3+R4)/4,第二特定像素GpB P的第三像素值Bp-c=(G1+G2+G3+G4+G5+G6+G7+G8+G9+G10+G11+G12)/12。
进一步地,在一些实施方式中,可以根据第一特定像素Rp的分布,将待处理图像划分为多个区域,然后分别将每个区域内的第一普通像素R的像素值的第一像素均值,作为每个区域内的第一特定像素Rp的第三像素值,并根据每个区域内的第一特定像素Rp的第二像素值和对应的第三像素值,计算每个区域的第一普通像素R的增益,根据增益对每个区域的第一普通像素R值进行调整。可以根据第二特定像素Gp的分布,将待处理图像划分为多个区域,然后分别将每个区域内的第二普通像素G的像素值的第二像素均值,作为每个区域内的第二特定像素Gp的第三像素值,并根据每个区域内的第二特定像素Gp的第二像素值和对应的第三像素值,计算每个区域的第二普通像素G的增益,根据增益对每个区域的第二普通像素G值进行调整。由此,第一普通像素R和第二普通像素G的调整更加准确,得到的目标图像更加美观。
请参阅图29,在一些实施方式中,步骤02还可包括以下步骤:
023:将待处理图像中,最接近于第一特定像素Rp的第一普通像素R的像素值,作为第一特定像素Rp的第三像素值;及
024:将待处理图像中,最接近于第二特定像素Gp的第二普通像素G的像素值,作为第二特定像素Gp的第三像素值。
具体地,可以识别待处理图像中最接近于第一特定像素Rp的第一普通像素R,若最接近于第一特定像素Rp的第一普通像素R只有一个,则可将该第一普通像素R的像素值作为第一特定像素Rp的第三像素值;若最接近于第一特定像素Rp的第一普通像素R有多个,则可将该多个第一普通像素R的像素值的均值作为第一特定像素Rp的第三像素值。
可以识别待处理图像中最接近于第二特定像素Gp的第二普通像素G,若最接近于第二特定像素Gp的第二普通像素G只有一个,则可将该第二普通像素G的像素值作为第二特定像素Gp的第三像素值;若最接近于第二特定像素Gp的第二普通像素G有多个,则可将该多个第二普通像素G的像素值的均值作为第二特定像素Gp的第三像素值。
由于最接近于第一特定像素Rp的第一普通像素R和第一特定像素Rp,两者之间的接收到的光线类型及光线数量差异较小,选取最接近于第一特定像素Rp的第一普通像素R的像素值作为第一特定像素 Rp的第三像素值,可以使得模拟以第一颜色的第一光线得到的像素值更加准确。最接近于第二特定像素Gp的第二普通像素G和第二特定像素Gp,两者之间的接收到的光线类型及光线数量差异较小,选取最接近于第二特定像素Gp的第二普通像素G的像素值作为第二特定像素Gp的第三像素值,可以使得模拟以第二颜色的第一光线得到的像素值更加准确。
请参阅图30,在一些实施方式中,步骤02还可包括以下步骤:
025:将待处理图像中,第一特定像素Rp周围预设范围内的第一普通像素R的像素值的均值,作为第一特定像素Rp的第三像素值;及
026:将待处理图像中,第二特定像素Gp周围预设范围内的第二普通像素G的像素值的均值,作为第二特定像素Gp的第三像素值。
周围预设范围可以是以第一特定像素Rp或第二特定像素Gp为中心,2*2、3*3、4*4等范围。可以计算第一特定像素Rp周围预设范围内的第一普通像素R的像素值的均值,然后将得到的均值作为第一特定像素Rp的第三像素值。可以计算第二特定像素Gp周围预设范围内的第二普通像素G的像素值的均值,然后将得到的均值作为第二特定像素Gp的第三像素值。
进一步地,请参阅图31,在某些实施方式中,步骤031包括以下步骤:
0311:根据第一特定像素Rp的第三像素值与第一特定像素Rp的第二像素值,计算第一比值;及
0312:根据第二特定像素Gp的第三像素值与第二特定像素Gp的第二像素值,计算第二比值。
具体地,由于待处理图像中存在有第一特定像素Rp和第二特定像素Gp,则可以对待处理图像中的第一普通像素R的像素值和第二普通像素G的像素值进行调整,以得到目标图像。则可以分别计算第一特定像素Rp的第三像素值Rp-c和第一特定像素Rp的第二像素值Rp之间的第一比值Kr,和第二特定像素Gp的第三像素值Gp-c和第二特定像素Gp的第二像素值Gp之间的第二比值Kg。
其中,第一比值Kr可以是第一特定像素Rp的第三像素值Rp-c比第一特定像素Rp的第二像素值Rp,即,Kr=Rp-c/Rp;第一比值也可以是第一特定像素Rp的第二像素值Rp比第一特定像素Rp的第三像素值Rp-c,即,Kr=Rp/Rp-c;第二比值Kg可以是第二特定像素Gp的第三像素值Gp-c比第二特定像素Gp的第二像素值Gp,即,Kg=Gp-c/Gp,第二比值Kg也可以是第二特定像素Gp的第二像素值Gp比第二特定像素Gp的第三像素值Gp-c,即,Kg=Gp/Gp-c。本实施例中,计算第一比值Kr和第二比值Kg,以便于根据第一比值Kr对第一普通像素R的像素值进行调整,和便于根据第二比值Kg对第二普通像素G的像素值进行调整。
其中,在第一特定像素Rp的数量为多个时,则可先计算多个第一特定像素Rp的第二像素值的平均值,然后计算该平均值与第一特定像素Rp的第二像素值之间的第一比值。在第二特定像素Gp的数量为多个时,则可先计算多个第二特定像素Gp的第二像素值的平均值,然后计算该平均值与第二特定像素Gp的第二像素值之间的第二比值。
进一步地,请参阅图32,在某些实施方式中,步骤032包括以下步骤:
0321:根据第一比值Kr及调节系数N,计算第一普通像素R的第一增益系数Krn;及
0322:根据第二比值Kg及调节系数N,计算第二普通像素G的第二增益系数Kgn。
为了满足不同用户的需求及用户的不同喜好,可以结合用户选择的调节系数N,计算普通像素的增益系数。具体地,第一普通像素R的第一增益系数Krn=Kr N,第二普通像素G的第二增益系数Kgn=Kg N。由此,可以计算得到第一增益系数Krn和第二增益系数Kgn,从而可以根据第一增益系数Krn对第一普通像素R的像素值进行调整,根据第二增益系数Kgn对第一普通像素R的像素值进行调整,进而可得到目标图像。
进一步地,请参阅图33,在某些实施方式中,步骤041可包括以下步骤:
0411:根据第一增益系数Krn及第一普通像素R的第一像素值R ,计算第一普通像素R的第一像素新值R 新值;及
0412:根据第二增益系数Kgn及第二普通像素G的第一像素值G ,计算第二普通像素G的第二像素新值G 新值
具体地,为了使待处理图像中的第一普通像素R具有第一特定像素Rp相似的属性,及待处理图像中的第二普通像素G具有第二特定像素Gp相似的属性,需要对第一普通像素R和第二普通像素G的像素值进行调整。具体地,在Kr=Rp-c/Rp,Kg=Gp-c/Gp时,待处理图像中的每个第一普通像素R的第 一像素新值R 新值=R /Krn=R /(Rp-c/Rp) N,待处理图像中的每个第二普通像素G的第二像素新值G 新值=G /Kgn=G /(Gp-c/Gp) N;在Kr=Rp/Rp-c,Kg=Gp/Gp-c时,待处理图像中的每个第一普通像素R的第一像素新值R 新值=R *Krn=R *((Rp/Rp-c) N),待处理图像中的每个第二普通像素G的第二像素新值G 新值=G *Kgn=G *((Gp/Gp-c) N),由此,可以计算得到每个第一普通像素R的第一像素新值和每个第二普通像素G的第二像素新值,进而可根据每个第一普通像素R的第一像素新值和每个第二普通像素G的第二像素新值,刷新待处理图像得到目标图像。
请参阅图23及图34,在某些实施方式中,待处理图像中未包括有第三特定像素Bp时,图像处理方法还可包括以下步骤:
001:选取第三颜色的第一光线在特定滤镜下的透过率的均值,作为第三普通像素B的第三比值;及
002:根据第三比值及调节系数,计算第三普通像素B的第三增益系数。
具体地,如果滤光器阵列11中未设置有第三特定滤光器Cp,则得到的待处理图像中将不包括有第三特定像素Bp,但仍需要对待处理图像中的第三普通像素B进行处理,以使得到的目标图像更加符合预期。由于制造工艺等原因,除了特定波长范围内的其它光线,在特定滤镜下,透光性也无法达到100%。
请结合图35,图35中a为各个波长在特定滤镜下的透过率,图b为R、G、B的各个波长的灵敏度。可以看到第三颜色的第一光线在特定滤镜下的透光性大约在90%左右(根据使用的滤镜的具体情况而定,并非固定为90%),则可以选取90%作为第三普通像素B的第三比值Kb,第三增益系数Kbn=Kb N。本实施例中,选取第三颜色的第一光线在特定滤镜下的透过率的均值,作为第三普通像素B的第三比值,使得可以待处理图像中的第三普通像素B的像素值进行更新,同时,更新后的第三普通像素B的像素值也比较准确。
请参阅图23及图36,在某些实施方式中,待处理图像中包括有第三特定像素Bp时,第三特定像素Bp由接收到的第二光线中的第三颜色的光线生成,步骤02还可包括以下步骤:
027:计算待处理图像中,第三普通像素B的像素值的第三像素均值,将第三像素均值作为第三特定像素Bp的第三像素值。
待处理图像中包括有第三特定像素Bp,可以更好地消除第三颜色的第一光线中特定光线导致所成图像中斑、痣明显的现象。具体地,待处理图像中存在有多个第三普通像素B,可以计算多个第三普通像素B的像素值的第三像素均值,将第三像素均值作为第三特定像素Bp的第三像素值。由此,可以模拟得到以第三颜色的第一光线得到的第三特定像素Bp的第三像素值,并且以第三像素均值作为第三特定像素Bp的第三像素值,得到的第三特定像素Bp的第三像素值更加准确。
进一步地,在一些实施方式中,可以根据第一特定像素Rp的分布,将待处理图像划分为多个区域,然后分别将每个区域内的第一普通像素R的像素值的第一像素均值,作为每个区域内的第一特定像素Rp的第三像素值,并根据每个区域内的第一特定像素Rp的第二像素值和对应的第三像素值,计算每个区域的第一普通像素R的增益,根据增益对每个区域的第一普通像素R值进行调整。可以根据第二特定像素Gp的分布,将待处理图像划分为多个区域,然后分别将每个区域内的第二普通像素G的像素值的第二像素均值,作为每个区域内的第二特定像素Gp的第三像素值,并根据每个区域内的第二特定像素Gp的第二像素值和对应的第三像素值,计算每个区域的第二普通像素G的增益,根据增益对每个区域的第二普通像素G值进行调整。由此,第一普通像素R和第二普通像素G的调整更加准确,得到的目标图像更加美观。
请参阅图37,在一些实施方式中,步骤02还可包括以下步骤:
028:将待处理图像中,最接近于第三特定像素Bp的第三普通像素B的像素值,作为第一特定像素Rp的第三像素值。
具体地,可以识别待处理图像中最接近于第一特定像素Rp的第一普通像素R,若最接近于第一特定像素Rp的第一普通像素R只有一个,则可将该第一普通像素R的第一像素值作为第一特定像素Rp的第三像素值;若最接近于第一特定像素Rp的第一普通像素R有多个,则可将该多个第一普通像素R的第一像素值的均值作为第一特定像素Rp的第三像素值。
请参阅图38,在一些实施方式中,步骤02还可包括以下步骤:
029:将待处理图像中,第三特定像素Bp周围预设范围内的第三普通像素B的像素值的均值,作 为第三特定像素Bp的第三像素值。
周围预设范围可以是以第三特定像素Bp为中心,2*2、3*3、4*4等范围。可以计算第三特定像素Bp周围预设范围内的第三普通像素B的像素值的均值,然后将得到的均值作为第三特定像素Bp的第三像素值。由此,结合多个第三普通像素B的像素值,计算第三特定像素Bp的第三像素值,可以使得到的第三特定像素Bp的第三像素值更加准确。
请参阅图39,在某些实施方式中,待处理图像中包括有第三特定像素Bp,图像处理方法还可包括以下步骤:
003:根据第三特定像素Bp的第三像素值与第三特定像素Bp的第二像素值,计算第三比值;及
004:根据第三比值及调节系数,计算第三普通像素B的第三增益系数。
具体地,待处理图像中包括有第三特定像素Bp,则对应的滤光器阵列11中设置有第三特定滤光器Cp,与第三特定滤光器Cp对应的像素点,可以接收经第三特定滤光器Cp过滤后的光线并得到第三特定像素Bp。由于设置了第三特定滤光器Cp,则需比较与第三特定滤光器Cp对应的像素点在接收第三颜色的第二光线时的第二像素值、和在接收第三颜色的第一光线时的第一像素值之间的差异,以根据差异对待处理图像中的第三普通像素B的像素值进行调整。
更具体地,假设第三特定像素Bp的第三像素值为Bp-c,第三特定像素Bp的第二像素值为Bp,第三比值为Kb,第三增益系数为Kbn。在一个例子中,Kb=Bp-c/Bp,第三增益系数Kbn=(Bp-c/Bp) N。在另一个例子中,Kb=Bp/Bp-c,第三增益系数Kbn=(Bp/Bp-c) N
进一步地,请参阅图40,在某些实施方式中,步骤041还包括以下步骤:
0413:根据第三增益系数及第三普通像素B的第一像素值,计算第三普通像素B的第三像素新值。
具体地,假设第三增益系数为Kbn,第一像素值为B ,第三像素新值为B 新值。在待处理图像中不包括有第三特定像素Bp时,则B 新值=B *Kbn=B *(Kb N)。在待处理图像中包括有第三特定像素Bp时,Kb=Bp-c/Bp,则B 新值=B /Kbn=B /((Bp-c/Bp) N)。在待处理图像中包括有第三特定像素Bp时,Kb=Bp-c/Bp,则B 新值=B *Kbn=B *((Bp/Bp-c) N)。计算第三普通像素B的第三像素新值,使得得到的目标图像中第三普通像素B对应的位置处的痣、斑等不明显,同时肤色更粉嫩。
在某些实施方式中,图像处理方法还包括以下步骤:
005:检测待处理图像中的肤色区域;
步骤04还包括以下步骤:
043:根据增益系数,调整待处理图像中的肤色区域内的普通像素的像素值,并根据调整后的像素值生成目标图像。
具体地,由于主要是皮肤上容易存在痣、斑等容易影响人像的成像效果,因此,在处理待处理图像时,只需要处理待处理图像中的肤色区域的普通像素。因此,可以检测待处理图像中的肤色区域,具体可通过肤色检测算法识别待处理图像中的肤色区域,也可先识别待处理图像中的人像区域,然后识别人像中的肤色区域。进而可以确定待处理图像中肤色区域内的普通像素和特定像素,可以根据肤色区域内的特定像素的第三像素值和特定像素的第二像素值,计算增益系数,并根据计算得到的增益系数对肤色区域内的普通像素的像素值进行调整,以调整后的像素值更新待处理图像即可得到目标图像。
更具体地,肤色区域内存在第一普通像素R、第二普通像素G和第三普通像素B时,则需分别计算肤色区域内的第一增益系数、第二增益系数和第三增益系数,然后根据第一增益系数和每个第一普通像素R的像素值,计算每个第一普通像素R的第一像素新值;根据第二增益系数和每个第二普通像素G的像素值,计算每个第二普通像素G的第二像素新值;根据第三增益系数和每个第三普通像素B的像素值,计算每个第三普通像素B的第二像素新值。进而以对应的第一像素新值、第二像素新值及第三像素新值更新肤色区域,更新后的待处理图像可以作为目标图像。由此,可以避免将整个待处理图像进行处理而使得到的目标图像中肤色区域以外的环境区域、及用户头发、衣服等颜色出现偏差的现象。
进一步地,在某些实施方式中,待处理图像中肤色区域以外的其他区域内存在有特定像素时,为了避免特定像素造成其他区域的颜色存在偏差,图像处理方法还可包括对其他区域内的特定像素的像素值进行调整,使得特定像素可以像普通像素一样。具体地,可以将特定像素周围一定范围内的普通像素的像素值的均值作为特定像素的像素新值,也可以将最接近特定像素的普通像素的像素值作为特定像素的像素新值,还可将其他区域内的所有与特定像素对应的普通像素的像素值的均值作为特定像素的像素新 值。
例如,其他区域中存在第一特定像素Rp时,则可以将最接近与第一特定像素Rp的第一普通像素R的像素值作为第一特定像素Rp的像素值。第二特定像素Gp和第三特定像素Bp同第一特定像素Rp类似,在此不具体展开描述。由此,其他区域内的颜色更加真实,同时肤色区域痣、斑等不明显。
在某些实施方式中,图像处理方法还包括以下步骤:
006:识别待处理图像中的肤色区域的肤色所属性别;及
007:在识别到肤色所属性别为女性时,执行根据增益系数,调整待处理图像中的普通像素的像素值,以生成目标图像的步骤。
具体地,一般用户为女性,拍照时更注重美丽,而男性拍照时可能比较喜欢真实的自己。可以是被待处理图像中的肤色区域的肤色所属性别,具体可通过一些深度学习算法或者训练模型,识别待处理图像中的肤色区域的肤色所属性别,在此不详细展开。在识别到肤色所属性别为女性时,执行步骤04(即根据增益系数,调整待处理图像中的普通像素的像素值,以生成目标图像)。在识别到肤色所属性别为男性时,可以直接输出待处理图像得到目标图像,也可以对待处理图像中的特定像素进行处理,使得特定像素普通化,具体普通化的过程与上文中对其它区域内的特定像素进行调整的过程相似,在此不详细展开。由此,可以根据识别到的所属性别选择性地执行调整待处理图像中的普通像素的像素值,更加符合用户的使用场景,增强了用户的使用体验。
当然,用户也可选择性地执行步骤04的命令,例如,电子设备的UI界面可以存在开关按键,用户可通过触控开关按键实现执行或不执行步骤04的命令,以满足用户的个性化需求。
请参阅图2,在某些实施方式中,本申请的图像传感器10的处理器14可以用于实现上述任一实施方式的图像处理方法。例如,处理器可以用于实现步骤01、步骤02、步骤03、步骤04、步骤031、步骤032、步骤041、步骤042、步骤043、步骤021、步骤022、步骤023、步骤024、步骤025、步骤026、步骤027、步骤028、步骤029、步骤0311、步骤0312、步骤0411、步骤0412、步骤0413、步骤001、步骤002、步骤003、步骤004、步骤005、步骤006、步骤007中的一个步骤或者多个步骤。
请参阅图41,本申请还提供了一种成像装置100,成像装置100可包括上述任一实施方式所述的图像传感器10及处理器20,处理器20可以与图像传感器10连接,以对图像传感器10输出的图像进行进一步地处理。
请参阅图41,在某些实施方式中,成像装置100的处理器20可以用于实现上述任一实施方式的图像处理方法。例如,处理器可以用于实现步骤01、步骤02、步骤03、步骤04、步骤031、步骤032、步骤041、步骤042、步骤043、步骤021、步骤022、步骤023、步骤024、步骤025、步骤026、步骤027、步骤028、步骤029、步骤0311、步骤0312、步骤0411、步骤0412、步骤0413、步骤001、步骤002、步骤003、步骤004、步骤005、步骤006、步骤007中的一个步骤或者多个步骤。
请参阅图42,在某些实施方式中,本申请还提供了一种电子设备1000,电子设备可包括上述任一实施方式的图像传感器10。图像传感器10可安装于电子设备1000的壳体内,并可与电子设备1000的主板连接。
请参阅图42,在某些实施方式中,本申请还提供了一种电子设备1000,电子设备1000可包括上述任一实施方式的成像装置100。成像装置100可安装于电子设备1000的壳体内,并可与电子设备1000的主板连接,成像装置1000可以用于成像。
请参阅图42,在某些实施方式中,本申请还提供了一种电子设备1000,电子设备可包括处理器200。处理器200可以用于实现上述任一实施方式的图像处理方法。例如,处理器可以用于实现步骤01、步骤02、步骤03、步骤04、步骤031、步骤032、步骤041、步骤042、步骤043、步骤021、步骤022、步骤023、步骤024、步骤025、步骤026、步骤027、步骤028、步骤029、步骤0311、步骤0312、步骤0411、步骤0412、步骤0413、步骤001、步骤002、步骤003、步骤004、步骤005、步骤006、步骤007中的一个步骤或者多个步骤。
需要说明的是,上述实施方式中所述的电子设备1000具体可以为可以是手机、平板电脑、笔记本电脑、智能手表、智能手环、智能头盔、智能眼镜、无人设备(例如无人机、无人车、无人船)等,在此不一一列举。
在本说明书的描述中,参考术语“某些实施方式”、“一个实施方式”、“一些实施方式”、“示意性实 施方式”、“示例”、“具体示例”、或“一些示例”的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个所述特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个,除非另有明确具体的限定。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (26)

  1. 一种滤光器阵列,其特征在于,包括区域阵列,每个所述区域阵列中包括多个滤光器,所述滤光器包括普通滤光器和特定滤光器,所述区域阵列包括至少一个子单元,所述子单元包括多个所述滤光器,每个所述区域阵列均包括多个普通滤光器和至少一个特定滤光器,每个所述普通滤光器仅允许一种颜色的光线通过,每个特定滤光器仅允许一种颜色的光线通过,并能过滤该颜色的光线中波长在特定波长范围内的至少部分光线,所述特定波长范围内黑色素的反射率高于血红蛋白的反射率。
  2. 根据权利要求1所述的滤光器阵列,其特征在于,所述普通滤光器包括第一普通滤光器、第二普通滤光器和第三普通滤光器,所述特定滤光器包括第一特定滤光器和第二特定滤光器,所述第一普通滤光器用于仅允许第一颜色的光线通过,所述第二普通滤光器用于仅允许第二颜色的光线通过,所述第三普通滤光器用于仅允许第三颜色的光线通过,所述第一特定滤光器用于仅允许第一颜色的光线通过并过滤所述第一颜色的光线中波长在特定波长范围内的至少部分光线,所述第二特定滤光器用于仅允许第一颜色的光线通过并过滤所述第二颜色的光线中波长在所述特定波长范围内的至少部分光线。
  3. 根据权利要求2所述的滤光器阵列,其特征在于,所述第一普通滤光器包括第一颜色滤镜,所述第一特定滤光器包括所述第一颜色滤镜及第一特定滤镜,所述第一颜色滤镜用于允许所述第一颜色的光线通过,所述第一特定滤镜用于过滤光线中的波长在所述特定波长范围内的至少部分光线;
    所述第二普通滤光器包括第二颜色滤镜,所述第二特定滤光器包括所述第二颜色滤镜及第二特定滤镜,所述第二颜色滤镜用于允许所述第二颜色的光线通过,所述第二特定滤镜用于过滤光线中波长在所述特定波长范围内的至少部分光线。
  4. 根据权利要求3所述的滤光器阵列,其特征在于,所述第一特定滤镜的数量为一个或者多个,所述第二特定滤镜的数量为一个或者多个。
  5. 根据权利要求2所述的滤光器阵列,其特征在于,所述区域阵列还包括至少一个第三特定滤光器,所述第三特定滤光器用于允许所述第三颜色的光线通过,并过滤所述第三颜色的光线中波长在所述特定波长范围内的至少部分光线。
  6. 根据权利要求5所述的滤光器阵列,其特征在于,所述第三普通滤光器包括第三颜色滤镜,所述第三特定滤光器包括所述第三颜色滤镜及第三特定滤镜,所述第三颜色滤镜用于允许所述第三颜色的光线通过,所述第三特定滤镜用于过滤光线中波长在所述特定波长范围内的至少部分光线。
  7. 根据权利要求2所述的滤光器阵列,其特征在于,所述第一颜色为红色,所述第二颜色为绿色或者黄色,所述第三颜色为蓝色。
  8. 根据权利要求1所述的滤光器阵列,其特征在于,所述特定波长范围为530nm~580nm。
  9. 根据权利要求2所述的滤光器阵列,其特征在于,部分个所述子单元包括有所述第一特定滤光器和所述第二特定滤光器;或
    部分个所述子单元包括有所述第一特定滤光器和所述第二特定滤光器中的一个,部分个所述子单元包括有所述第一特定滤光器和所述第二特定滤光器中的另一个。
  10. 根据权利要求1所述的滤光器阵列,其特征在于,在所述滤光器阵列中,多个所述区域阵列中所述滤光器的分布完全相同;或,至少两个不同的所述区域阵列中的所述滤光器的分布不同。
  11. 根据权利要求1-10任意一项所述的滤光器阵列,其特征在于,每个所述区域阵列包括2 n*2 n个所述子单元,n≥1,所述子单元包括2*2个所述滤光器。
  12. 根据权利要求1-10任意一项所述的滤光器阵列,其特征在于,每个所述子单元包括多个孙单元,每个所述孙单元包括K*K个所述滤光器,其中,K≥2,同一个所述孙单元中的所述滤光器允许通过的光线的颜色相同。
  13. 一种图像处理方法,其特征在于,包括:
    获取待处理图像中的普通像素的第一像素值和特定像素的第二像素值,所述普通像素由普通像素点根据接收到的第一光线得到,所述特定像素由特定像素点根据接收到的第二光线得到;其中,所述特定像素点过滤掉所述第一光线中在特定波长范围中的至少部分光线后,余下的光线为所述第二光线,在所述特定波长范围内黑色素的反射率高于血红蛋白的反射率;
    根据所述第一像素值计算,由所述特定像素点根据所述第一光线得到所述特定像素时,所述特定像素的第三像素值;
    根据所述第三像素值与所述第二像素值,计算增益系数;及
    根据所述增益系数,调整所述待处理图像中的所述普通像素的像素值,以生成目标图像。
  14. 根据权利要求13所述的图像处理方法,其特征在于,所述根据所述第一像素值计算,所述特定像素在接收所述第一光线的第三像素值,包括:
    计算所述待处理图像中,第一普通像素的像素值的第一像素均值,将所述第一像素均值作为第一特定像素的第三像素值;及
    计算所述待处理图像中,第二普通像素的像素值的第二像素均值,将所述第二像素均值作为第二特定像素的所述第三像素值;
    或,所述根据所述第一像素值计算,所述特定像素在接收所述第一光线的第三像素值,包括:
    选取所述待处理图像中,最接近于第一特定像素的第一普通像素的像素值,作为所述第一特定像素的所述第三像素值;及
    选取最接近于第二特定像素的第二普通像素的像素值,作为所述第二特定像素的所述第三像素值;
    或,所述根据所述第一像素值计算,所述特定像素在接收所述第一光线的第三像素值,包括:
    将所述待处理图像中,第一特定像素周围预设范围内的第一普通像素的像素值的均值,作为所述第一特定像素的所述第三像素值;及
    将所述待处理图像中,第二特定像素周围预设范围内的第二普通像素的像素值的均值,作为所述第二特定像素的第三像素值,
    其中,所述普通像素包括第一普通像素、第二普通像素和第三普通像素,所述第一普通像素由接收到的第一颜色的所述第一光线得到,所述第二普通像素由接收到的第二颜色的所述第一光线得到,所述第三普通像素由接收到的第三颜色的所述第一光线生成,所述特定像素包括第一特定像素和第二特定像素,所述第一特定像素由接收到的所述第一颜色的所述第二光线得到,所述第二特定像素由接收到的所述第二颜色的所述第二光线得到。
  15. 根据权利要求13所述的图像处理方法,其特征在于,所述待处理图像中包括有第三特定像素时,所述第三特定像素由接收到的所述第三颜色的所述第二光线生成,所述根据所述第一像素值计算,所述特定像素在接收所述第一光线的第三像素值,还包括:
    计算所述待处理图像中,所述第三普通像素的像素值的第三像素均值,将所述第三像素均值作为所述第三特定像素的所述第三像素值;或
    选取最接近于所述第三特定像素的所述第三普通像素的像素值,作为所述第三特定像素的所述第三像素值;或
    将所述待处理图像中,所述第三特定像素周围预设范围内的所述第三普通像素的像素值的均值,作为所述第三特定像素的所述第三像素值。
  16. 根据权利要求13所述的图像处理方法,其特征在于,所述根据所述第三像素值与所述第二像素值,计算增益系数,包括:
    计算所述第三像素值与所述第二像素值的比值;及
    根据所述比值及预选的调节系数生成所述增益系数。
  17. 根据权利要求16所述的图像处理方法,其特征在于;
    所述计算所述第三像素值与所述第二像素值的比值,包括:
    根据第一特定像素的所述第三像素值与第一特定像素的第二像素值,计算第一比值;
    根据第二特定像素的所述第三像素值与第二特定像素的第二像素值,计算第二比值;
    所述根据所述比值及预选的调节系数生成所述增益系数,包括:
    根据所述第一比值及所述调节系数,计算所述第一普通像素的第一增益系数;及
    根据所述第二比值及所述调节系数,计算所述第二普通像素的第二增益系数;
    其中,所述普通像素包括第一普通像素、第二普通像素和第三普通像素,所述第一普通像素由接收到的所述第一光线中的第一颜色的光线生成,所述第二普通像素由接收到的所述第一光线中的第二颜色的光线生成,所述第三普通像素由接收到的所述第一光线中的第三颜色的光线生成,所述特定像素包括第一特定像素和第二特定像素,所述第一特定像素由接收到的所述第二光线中的第一颜色的光线生成,所述第二特定像素由接收到的所述第二光线中的第二颜色的光线生成。
  18. 根据权利要求17所述的图像处理方法,其特征在于,在所述待处理图像未包括有第三特定像素时,所述图像处理方法还包括:
    选取所述第三颜色的所述第一光线在特定滤镜下的透过率的均值,作为所述第三普通像素的第三比值;及
    根据所述第三比值及所述调节系数,计算所述第三普通像素的第三增益系数;
    在所述待处理图像包括有第三特定像素时,所述图像处理方法还包括:
    根据所述第三特定像素的所述第三像素值与所述第三特定像素的第二像素值,计算第二比值;及
    根据所述第三比值及所述调节系数,计算所述第三普通像素的第三增益系数。
  19. 根据权利要求13所述的图像处理方法,其特征在于,所述根据所述增益系数,调整所述待处理图像中的所述普通像素的像素值,以生成目标图像,包括:
    根据所述增益系数及所述普通像素的第一像素值,计算所述普通像素的像素新值;及
    以所述普通像素的像素新值更新所述待处理图像,获得所述目标图像。
  20. 根据权利要求19所述的图像处理方法,其特征在于,所述普通像素包括第一普通像素、第二普通像素和第三普通像素,所述增益系数包括所述第一普通像素的第一增益系数、所述第二普通像素的第二增益系数及所述第三普通像素的第三增益系数,所述根据所述增益系数及所述普通像素的像素值,计算所述普通像素的像素新值,包括:
    根据所述第一增益系数及所述第一普通像素的第一像素值,计算所述第一普通像素的第一像素新值;
    根据所述第二增益系数及所述第二普通像素的第一像素值,计算所述第二普通像素的第二像素新值;
    根据所述第三增益系数及所述第三普通像素的第一像素值,计算所述第三普通像素的第三像素新值。
  21. 根据权利要求13所述的图像处理方法,其特征在于,所述图像处理方法还包括:
    检测所述待处理图像中的肤色区域;
    所述根据所述增益系数,调整所述待处理图像中的所述普通像素的像素值,以生成目标图像,包括:
    根据所述增益系数,调整所述待处理图像中的所述肤色区域内的所述普通像素的像素值,并根据调整后的像素值生成目标图像。
  22. 根据权利要求13所述的图像处理方法,其特征在于,所述图像处理方法还包括:
    识别所述待处理图像中的肤色区域的肤色所属性别;及
    在识别到所述肤色所属性别为女性时,执行所述根据所述增益系数,调整所述待处理图像中的所述普通像素的像素值,以生成目标图像的步骤。
  23. 一种图像传感器,其特征在于,所述图像传感器包括:
    权利要求1-12任意一项所述的滤光器阵列;及
    像素阵列,所述像素阵列包括多个像素点,每个所述像素点对应一个所述滤光器,所述像素点用于接收穿过对应的所述滤光器的光线以生成电信号。
  24. 根据权利要求23所述的图像传感器,其特征在于,所述图像传感器还包括处理电路,所述处理电路用于实现权利要求13-22任意一项所述的图像处理方法。
  25. 一种成像装置,其特征在于,包括:
    权利要求23所述的图像传感器;及
    处理器,所述处理器用于实现权利要求13-22任意一项所述的图像处理方法。
  26. 一种电子设备,其特征在于,
    所述电子设备包括权利要求23或24所述的图像传感器;或
    所述电子设备包括权利要求25所述的成像装置;或
    所述电子设备包括处理器,所述处理器用于实现权利要求13-22任意一项所述的图像处理方法。
PCT/CN2021/115400 2021-08-30 2021-08-30 滤光器阵列、方法、图像传感器、装置及电子设备 WO2023028767A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180099920.1A CN117561721A (zh) 2021-08-30 2021-08-30 滤光器阵列、方法、图像传感器、装置及电子设备
PCT/CN2021/115400 WO2023028767A1 (zh) 2021-08-30 2021-08-30 滤光器阵列、方法、图像传感器、装置及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/115400 WO2023028767A1 (zh) 2021-08-30 2021-08-30 滤光器阵列、方法、图像传感器、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2023028767A1 true WO2023028767A1 (zh) 2023-03-09

Family

ID=85411760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115400 WO2023028767A1 (zh) 2021-08-30 2021-08-30 滤光器阵列、方法、图像传感器、装置及电子设备

Country Status (2)

Country Link
CN (1) CN117561721A (zh)
WO (1) WO2023028767A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150077617A1 (en) * 2012-06-21 2015-03-19 Olympus Corporation Image capturing module and image capturing apparatus
CN105391919A (zh) * 2014-08-22 2016-03-09 首尔伟傲世有限公司 具有发光元件的照相机和皮肤拍摄方法
CN108886563A (zh) * 2016-03-29 2018-11-23 华为技术有限公司 图像处理方法、图像处理装置、便携式多功能设备
CN113225470A (zh) * 2021-06-10 2021-08-06 Oppo广东移动通信有限公司 滤光器阵列、图像处理方法、图像传感器、成像装置及终端

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150077617A1 (en) * 2012-06-21 2015-03-19 Olympus Corporation Image capturing module and image capturing apparatus
CN105391919A (zh) * 2014-08-22 2016-03-09 首尔伟傲世有限公司 具有发光元件的照相机和皮肤拍摄方法
CN108886563A (zh) * 2016-03-29 2018-11-23 华为技术有限公司 图像处理方法、图像处理装置、便携式多功能设备
CN113225470A (zh) * 2021-06-10 2021-08-06 Oppo广东移动通信有限公司 滤光器阵列、图像处理方法、图像传感器、成像装置及终端

Also Published As

Publication number Publication date
CN117561721A (zh) 2024-02-13

Similar Documents

Publication Publication Date Title
TWI255645B (en) Image pickup device
US20140078247A1 (en) Image adjuster and image adjusting method and program
CN109844804B (zh) 一种图像检测的方法、装置及终端
US20110188748A1 (en) Iteratively denoising color filter array images
US20110187902A1 (en) Denoising cfa images using weighted pixel differences
JP2018515862A (ja) 畳み込み色補正
TW201127072A (en) Four-channel color filter array pattern
CN102572265A (zh) 使用具有粗略和精细自动对焦分数的图像统计数据的自动对焦控制
CN103503143B (zh) 固体摄像元件以及摄像装置
US9241105B2 (en) Camera module and method for driving the same
CN102640501A (zh) 用于数字成像的滤色器和逆马赛克变换技术
CN107370917B (zh) 控制方法、电子装置和计算机可读存储介质
CN113676628A (zh) 多光谱传感器、成像装置和图像处理方法
Wang et al. Stereoscopic dark flash for low-light photography
US20230325999A1 (en) Image generation method and apparatus and electronic device
US20230342895A1 (en) Image processing method and related device thereof
US8994848B2 (en) Method and system for handling mixed illumination in video and photography
US8654210B2 (en) Adaptive color imaging
CN107122103A (zh) 一种图片处理方法及终端
WO2023028767A1 (zh) 滤光器阵列、方法、图像传感器、装置及电子设备
US11457189B2 (en) Device for and method of correcting white balance of image
JPWO2019155757A1 (ja) 画像処理装置、画像処理方法及び画像処理システム
CN106973205A (zh) 一种摄像头、摄像头成像方法及移动终端
US8260083B2 (en) Image processing method and apparatus, and digital photographing apparatus using the same
WO2023028768A1 (zh) 滤光器阵列、方法、图像传感器、装置及电子设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202180099920.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE