WO2023026975A1 - Terminal, wireless communication system, and wireless communication method - Google Patents

Terminal, wireless communication system, and wireless communication method Download PDF

Info

Publication number
WO2023026975A1
WO2023026975A1 PCT/JP2022/031356 JP2022031356W WO2023026975A1 WO 2023026975 A1 WO2023026975 A1 WO 2023026975A1 JP 2022031356 W JP2022031356 W JP 2022031356W WO 2023026975 A1 WO2023026975 A1 WO 2023026975A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcs
feedback
delta
csi
priority
Prior art date
Application number
PCT/JP2022/031356
Other languages
French (fr)
Japanese (ja)
Inventor
優元 ▲高▼橋
聡 永田
チーピン ピ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN202280056505.2A priority Critical patent/CN117859371A/en
Publication of WO2023026975A1 publication Critical patent/WO2023026975A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present disclosure relates to a terminal, base station, and wireless communication method that perform wireless communication, and in particular, to a terminal, wireless communication system, and wireless communication method that transmit feedback used in modulation scheme selection.
  • the 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G
  • Non-Patent Document 1 the user equipment ) to the network is being studied (for example, Non-Patent Document 1). Specifically, support for delta-CQI (Channel Quality Indicator)/MCS was agreed upon as feedback.
  • delta-CQI Channel Quality Indicator
  • One aspect of the present disclosure is a terminal, a transmission unit that transmits feedback used in selecting a modulation scheme to be used in a downlink channel, and when the feedback and channel state information overlap in time, the feedback is and a control unit that executes specific control regarding transmission of the feedback based on the order of priority.
  • One aspect of the present disclosure is a wireless communication system, comprising a terminal and a base station, wherein the terminal transmits feedback used in selecting a modulation scheme to be used in a downlink channel; and a control unit that performs specific control on transmission of the feedback based on the priority of the feedback when the information overlaps in time.
  • One aspect of the present disclosure is a wireless communication method, comprising: transmitting feedback used in selecting a modulation scheme to be used in a downlink channel; and performing specific control regarding the transmission of the feedback based on the priority of the.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10.
  • FIG. 2 is a diagram illustrating frequency ranges used in wireless communication system 10.
  • FIG. 3 is a diagram showing a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • FIG. 4 is a functional block configuration diagram of UE200.
  • FIG. 5 is a functional block configuration diagram of gNB100.
  • FIG. 6 is a diagram for explaining the order of priority.
  • FIG. 7 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to an embodiment.
  • the radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter NG-RAN 20 and a terminal 200 (hereinafter UE 200).
  • NR 5G New Radio
  • NG-RAN 20 Next Generation-Radio Access Network
  • UE 200 terminal 200
  • the wireless communication system 10 may be a wireless communication system according to a system called Beyond 5G, 5G Evolution, or 6G.
  • NG-RAN 20 includes a radio base station 100A (hereinafter gNB100A) and a radio base station 100B (hereinafter gNB100B).
  • gNB100A radio base station 100A
  • gNB100B radio base station 100B
  • the specific configuration of the radio communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN 20 and 5GC may simply be referred to as a "network”.
  • gNBs or ng-eNBs
  • 5GC 5G-compliant core network
  • gNB100A and gNB100B are 5G-compliant radio base stations and perform 5G-compliant radio communication with UE200.
  • gNB100A, gNB100B and UE200 generate BM beams with higher directivity by controlling radio signals transmitted from multiple antenna elements Massive MIMO (Multiple-Input Multiple-Output), multiple component carriers (CC ), and dual connectivity (DC) that simultaneously communicates with two or more transport blocks between the UE and each of the two NG-RAN Nodes.
  • Massive MIMO Multiple-Input Multiple-Output
  • CC multiple component carriers
  • DC dual connectivity
  • the wireless communication system 10 supports multiple frequency ranges (FR).
  • FIG. 2 shows the frequency ranges used in wireless communication system 10. As shown in FIG.
  • the wireless communication system 10 supports FR1 and FR2.
  • the frequency bands of each FR are as follows.
  • FR1 410MHz to 7.125GHz
  • FR2 24.25 GHz to 52.6 GHz
  • SCS Sub-Carrier Spacing
  • BW bandwidth
  • FR2 is higher frequency than FR1 and may use an SCS of 60 or 120 kHz (240 kHz may be included) and a bandwidth (BW) of 50-400 MHz.
  • SCS may be interpreted as numerology.
  • numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
  • the wireless communication system 10 also supports frequency bands higher than the FR2 frequency band. Specifically, the wireless communication system 10 supports frequency bands above 52.6 GHz and up to 71 GHz or 114.25 GHz. Such high frequency bands may be conveniently referred to as "FR2x".
  • Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/ Discrete Fourier Transform - Spread (DFT-S-OFDM) may be applied.
  • FIG. 3 shows a configuration example of radio frames, subframes and slots used in the radio communication system 10.
  • one slot consists of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period).
  • the SCS is not limited to the intervals (frequencies) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
  • the number of symbols forming one slot does not necessarily have to be 14 symbols (eg, 28 symbols, 56 symbols). Furthermore, the number of slots per subframe may vary between SCSs.
  • time direction (t) shown in FIG. 3 may be called the time domain, symbol period, symbol time, or the like.
  • the frequency direction may be called a frequency domain, resource block, subcarrier, bandwidth part (BWP: Bandwidth Part), or the like.
  • DMRS is a type of reference signal and is prepared for various channels.
  • it may mean a downlink data channel, specifically DMRS for PDSCH (Physical Downlink Shared Channel).
  • DMRS for PDSCH Physical Downlink Shared Channel
  • an uplink data channel specifically, a DMRS for PUSCH (Physical Uplink Shared Channel) may be interpreted in the same way as a DMRS for PDSCH.
  • DMRS can be used for channel estimation in devices, eg, UE 200, as part of coherent demodulation.
  • DMRS may reside only in resource blocks (RBs) used for PDSCH transmission.
  • a DMRS may have multiple mapping types. Specifically, DMRS has mapping type A and mapping type B. For mapping type A, the first DMRS is placed in the 2nd or 3rd symbol of the slot. In mapping type A, the DMRS may be mapped relative to slot boundaries, regardless of where in the slot the actual data transmission begins. The reason the first DMRS is placed in the second or third symbol of the slot may be interpreted as to place the first DMRS after the control resource sets (CORESET).
  • CORESET control resource sets
  • mapping type B the first DMRS may be placed in the first symbol of data allocation. That is, the position of the DMRS may be given relative to where the data is located rather than relative to slot boundaries.
  • DMRS may have multiple types (Type). Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in mapping in the frequency domain and the maximum number of orthogonal reference signals. Type 1 can output up to 4 orthogonal signals with single-symbol DMRS, and Type 2 can output up to 8 orthogonal signals with double-symbol DMRS.
  • FIG. 4 is a functional block diagram of the UE200.
  • the UE 200 includes a radio signal transmission/reception unit 210, an amplifier unit 220, a modem unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmission/reception unit 260, and a control unit 270. .
  • the radio signal transmitting/receiving unit 210 transmits/receives radio signals according to NR.
  • the radio signal transmitting/receiving unit 210 supports Massive MIMO, CA that bundles multiple CCs, and DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
  • the amplifier section 220 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier) and the like. Amplifier section 220 amplifies the signal output from modem section 230 to a predetermined power level. In addition, amplifier section 220 amplifies the RF signal output from radio signal transmission/reception section 210 .
  • PA Power Amplifier
  • LNA Low Noise Amplifier
  • the modulation/demodulation unit 230 executes data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the modem unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM). Also, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
  • the control signal/reference signal processing unit 240 executes processing related to various control signals transmitted and received by the UE 200 and processing related to various reference signals transmitted and received by the UE 200.
  • control signal/reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, radio resource control layer (RRC) control signals. Also, the control signal/reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
  • RRC radio resource control layer
  • the control signal/reference signal processing unit 240 executes processing using reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
  • RS reference signals
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • a DMRS is a known reference signal (pilot signal) between a terminal-specific base station and a terminal for estimating the fading channel used for data demodulation.
  • PTRS is a terminal-specific reference signal for estimating phase noise, which is a problem in high frequency bands.
  • reference signals may include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Positioning Reference Signal (PRS) for position information.
  • CSI-RS Channel State Information-Reference Signal
  • SRS Sounding Reference Signal
  • PRS Positioning Reference Signal
  • control channels include Physical Downlink Control Channel (PDCCH), Physical Uplink Control Channel (PUCCH), Random Access Channel (RACH), Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI), and Physical Broadcast Channel (PBCH) etc. are included.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Uplink Control Channel
  • RACH Random Access Channel
  • DCI Downlink Control Information
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • PBCH Physical Broadcast Channel
  • data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • Data means data transmitted over a data channel.
  • a data channel may be read as a shared channel.
  • control signal/reference signal processing unit 240 may receive downlink control information (DCI).
  • DCI has existing fields such as DCI Formats, Carrier indicator (CI), BWP indicator, FDRA (Frequency Domain Resource Assignment), TDRA (Time Domain Resource Assignment), MCS (Modulation and Coding Scheme), HPN (HARQ Process Number) , NDI (New Data Indicator), RV (Redundancy Version), etc.
  • the value stored in the DCI Format field is an information element that specifies the DCI format.
  • the value stored in the CI field is an information element that specifies the CC to which DCI is applied.
  • the value stored in the BWP indicator field is an information element that specifies the BWP to which DCI applies.
  • the BWP that can be specified by the BWP indicator is configured by an information element (BandwidthPart-Config) included in the RRC message.
  • the value stored in the FDRA field is an information element that specifies the frequency domain resource to which DCI is applied.
  • a frequency domain resource is identified by a value stored in the FDRA field and an information element (RA Type) included in the RRC message.
  • the value stored in the TDRA field is an information element that specifies the time domain resource to which DCI applies.
  • the time domain resource is specified by the value stored in the TDRA field and information elements (pdsch-TimeDomainAllocationList, pusch-TimeDomainAllocationList) included in the RRC message.
  • a time-domain resource may be identified by a value stored in the TDRA field and a default table.
  • the value stored in the MCS field is an information element that specifies the MCS to which DCI applies.
  • the MCS is specified by the values stored in the MCS and the MCS table.
  • the MCS table may be specified by RRC messages or identified by RNTI scrambling.
  • the value stored in the HPN field is an information element that specifies the HARQ Process to which DCI is applied.
  • the value stored in NDI is an information element for specifying whether data to which DCI is applied is initial transmission data.
  • the value stored in the RV field is an information element that specifies the data redundancy
  • the encoding/decoding unit 250 performs data segmentation/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
  • the encoding/decoding unit 250 divides the data output from the data transmission/reception unit 260 into pieces of a predetermined size, and performs channel coding on the divided data. Also, encoding/decoding section 250 decodes the data output from modem section 230 and concatenates the decoded data.
  • the data transmission/reception unit 260 executes transmission/reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitting/receiving unit 260 performs PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble/disassemble etc. The data transmission/reception unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
  • MAC medium access control layer
  • RLC radio link control layer
  • PDCP packet data convergence protocol layer
  • HARQ Hybrid Automatic Repeat Request
  • the control unit 270 controls each functional block that configures the UE200.
  • the control unit 270 controls the control signal/reference signal processing unit 240 described above.
  • the control signal/reference signal processing unit 240 constitutes a transmitting unit that transmits feedback (hereinafter, delta-MCS) used in selecting a modulation scheme (hereinafter, MCS) used in a downlink channel (hereinafter, PDSCH).
  • MCS modulation scheme
  • PDSCH downlink channel
  • Control unit 270 is a control unit that executes specific control on transmission of delta-MCS based on the priority of delta-MCS when delta-MCS and channel state information (hereinafter referred to as CSI) overlap in time. configure.
  • the specific condition may be a condition that the index of the modulation scheme used in PDSCH (hereinafter referred to as MCS Index (I MCS )) referred to in determining delta-MCS is a reserved MCS Index. Details of the specific condition and specific control will be described later.
  • MCS Index I MCS
  • delta-MCS are an information element that explicitly indicates the desired MCS, an information element that explicitly indicates the difference between the current MCS and the desired MCS, and an information element that explicitly indicates the difference between the current MCS and the desired MCS. at least one of the information elements indicating the index associated with the
  • FIG. 5 is a functional block configuration diagram of gNB100. As shown in FIG. 5, the gNB 100 has a receiver 110, a transmitter 120 and a controller .
  • the receiving unit 110 receives various signals from the UE200.
  • the receiver 110 may receive the UL signal via PUCCH or PUSCH.
  • Receiving section 110 may receive the delta-MCS used in selecting the MCS used in PDSCH.
  • the transmission unit 120 transmits various signals to the UE200.
  • Transmitting section 120 may transmit the DL signal via PDCCH or PDSCH.
  • the control unit 130 controls the gNB100.
  • Control section 130 may select an MCS to apply to PDSCH based on delta-MCS.
  • Control section 130 may assume that, when delta-MCS and CSI temporally overlap, UE 200 performs specific control regarding transmission of delta-MCS based on the priority of delta-MCS.
  • CSI types may include A (Aperiodic)-CSI, semi-persistent CSI, and periodic CSI.
  • the channel used for CSI reporting may be PUCCH or PUSCH.
  • Pri iCSI (y, k, c, s)
  • Pri iCSI (y, k, c, s)
  • a priority value (y,k,c,s)
  • Pri iCSI (y,k,c,s) 2 ⁇ N cells ⁇ M s ⁇ y+ N cells ⁇ M s ⁇ k+ M s ⁇ c+s
  • k is a parameter defined by the content contained in the CSI report. You can think of k as a parameter that defines the priority of the report quantity.
  • c is the index of the serving cell, and N cells is the value of the higher layer parameter (maxNrofServingCells).
  • S is the reportConfigID and M s is the value of the upper layer parameter (maxNrofCSI-ReportConfigurations).
  • the CSI with the lower value of Pri iCSI (y, k, c, s) may be referred to as the first CSI
  • Pri iCSI (y, k, c, s) The CSI with the higher value of may be referred to as the second CSI.
  • Pri iCSI For Pri iCSI (y, k, c, s), the lower the value of Pri iCSI (y, k, c, s), the more CSI associated with Pri iCSI (y, k, c, s) is transmitted. You may think of it as a parameter defined to take precedence. In other words, the lower the value of Pri iCSI (y, k, c, s), the higher the priority.
  • two CSIs may be said to collide if the time occupancy of physical channels transmitted on the same carrier and scheduled to transmit CSI reports overlap by at least one OFDM symbol.
  • Pri iCSI (y,k,c,s) except for the case where one y-value is 2 and the other y-value is 3 when the y-values of the two CSI reports are different
  • a CSI report with a value may not be sent from the UE 200.
  • two CSI reports may be multiplexed and any one may be dropped based on Pri iCSI (y,k,c,s).
  • Such operations may be those described in 3GPP TS38.213 Clause 9.2.5.2.
  • the delta-MCS is reported as a CSI report, so it becomes necessary to set Pri iCSI (y,k,c,s) for the delta-MCS.
  • Pri iCSI y,k,c,s
  • the value of k for delta-MCS may be 1. That is, the value of k for delta-MCS may be the same as the value of k for CSI other than L1-RSRP or L1-SINR.
  • CSI other than L1-RSRP or L1-SINR is CQI (Channel Quality Information), PMI (Precoding Matrix Indicator), CRI (CSI-RS Resource Indicator), SSBRI (SS/PBCH Resource Block Indicator), LI (Layer Indicator) , RI (Rank Indicator), etc.
  • Existing CSI may include L1-RSRP, L1-SINR, CQ, PMI, CRI, SSBRI, LI, RI, and so on.
  • -1 which can be taken as k, may be a newly defined value.
  • Lower values of Pri iCSI (y,k,c,s) are defined as higher priority, so in Option 4, we consider the delta-MCS priority to be higher than the existing CSI priority. good too.
  • Existing CSI may include L1-RSRP, L1-SINR, CQ, PMI, CRI, SSBRI, LI, RI, and so on.
  • UE 200 executes specific control regarding transmission of delta-MCS based on the priority of delta-MCS. do. Specifically, based on delta-MCS Pri iCSI (y, k, c, s) and existing CSI Pri iCSI (y, k, c, s), UE 200 determines delta-MCS and existing CSI or drop any one of delta-MCS and existing CSI. Multiplexing of delta-MCS and existing CSI, and dropping any one of delta-MCS and existing CSI may be considered as examples of specific control regarding transmission of delta-MCS.
  • delta-MCS contents of feedback
  • delta-MCS contents of feedback
  • the feedback content may include an information element (MCS Index) indicating a desired MCS.
  • MCS Index an MCS Index defined in the MCS Index table defined in 3GPP TS38.214 may be used.
  • the UE 200 may include in the feedback an MCS Index lower than the MCS Index used for the PDSCH for which decoding failed as the desired MCS Index. For example, UE 200 may transmit feedback including MCS Index #0 to NG-RAN 20 (gNB 100) when decoding of PDSCH transmitted with MCS Index #5 fails.
  • the feedback content may include an information element indicating the difference between the current MCS and the desired MCS.
  • the difference between the current MCS and the desired MCS may be the MCS Index difference defined in the MCS Index table defined in 3GPP TS38.214.
  • the UE 200 may include in the feedback the difference between the MCS Index used for the PDSCH whose decoding failed and the desired MCS Index.
  • the desired MCS Index may be lower than the current MCS Index. For example, when UE 200 fails to decode PDSCH transmitted with MCS Index #5 and requests MCS Index #2 as the desired MCS Index, feedback including "-3" is sent to NG-RAN 20 (gNB 100). You may send.
  • the flexibility of the feedback content is equivalent to that of the first example, and the feedback (UCI) bit size is small. That is, the signaling load can be suppressed as compared with the first example.
  • a table defined for feedback may be introduced. The following options are possible for the tables defined for feedback.
  • the content of feedback is an information element indicating the desired MCS
  • the desired MCS may be selected from a table defined for feedback.
  • the table defined for feedback may be a table that associates MCS Index and Index that can be requested in feedback.
  • the feedback content (delta-MCS selection) is less flexible, but the feedback (UCI) bit size is smaller. That is, the signaling load can be suppressed as compared with the first example.
  • the content of the feedback is an index associated with the difference between the current MCS and the desired MCS (hereinafter referred to as delta value), and the index associated with the delta value is defined for feedback. may be selected from among the tables
  • the feedback content (delta-MCS selection) is less flexible, but the feedback (UCI) bit size is smaller. That is, the signaling load can be suppressed as compared with the second example.
  • UE 200 executes specific control regarding transmission of delta-MCS based on the priority of delta-MCS. do. Specifically, under the premise that delta-MCS is reported as a CSI report, by clarifying the value of k that defines Pri iCSI (y, k, c, s) of delta-MCS, delta-MCS can be sent properly.
  • delta-MCS is newly introduced, so it is distinguished from existing CSI, but delta-MCS may be considered one type of CSI.
  • which of the above options 1 to 4 is applied may be set by higher layer parameters, and may be reported by UE 200 capability information (UE Capability), It may be predetermined in the wireless communication system 10. Furthermore, which of the options 1 to 4 mentioned above is applied may be determined by higher layer parameters and UE Capabilities. In such cases, the UE Capability may contain an information element indicating which of options 1-4 is supported.
  • UE Capability may contain an information element indicating which of options 1-4 is supported.
  • the UE Capability may include an information element indicating whether or not the function of reporting delta-MCS as CSI reporting is supported.
  • the specific condition is that the reserved MCS Index is specified by the DCI that schedules the PDSCH.
  • a specific condition may be that the MCI Index required by delta-DCI can be a reserved MCS Index.
  • specific control may be to determine the value of delta-DCI such that no reserved MCS Index is required. For example, when the MCI Index specified by DCI in Tables 1 and 3 is 28, if delta-DCI is determined to be "-1" based on PDSCH, UE 200 uses " A specific control may be performed to send "0" as a specific delta-DCI without sending "-1".
  • UE 200 sets "- A specific control may be performed to send "0" as a specific delta-DCI without sending "1".
  • the feedback content includes an information element (Delta-MCS) that explicitly indicates the desired MCS.
  • the content of the feedback may include information elements that implicitly indicate the desired MCS.
  • Such an information element may be a CQI (Channel Quality Indicator) that can be associated with MCS.
  • CQI Channel Quality Indicator
  • a CQI that can be specified in the CQI table defined in 3GPP TS38.214 may be used as the CQI.
  • the feedback content may include an information element (Delta-CQI) that explicitly indicates the desired CQI.
  • MCS may be read as CQI
  • MCS Index may be read as CQI Index.
  • the feedback content includes an information element (Delta-MCS) that explicitly indicates the difference between the current MCS and the desired MCS.
  • the feedback content may include information elements that implicitly indicate the difference between the current MCS and the desired MCS.
  • Such an information element may be a CQI that may be associated with MCS.
  • a CQI that can be specified in the CQI table defined in 3GPP TS38.214 may be used as the CQI.
  • the feedback content may include an information element (Delta-CQI) that explicitly indicates the difference between the current CQI and the desired CQI.
  • MCS may be read as CQI
  • MCS Index may be read as CQI Index.
  • the feedback content includes an information element (Delta-MCS) explicitly associated with the difference between the current MCS and the desired MCS.
  • the feedback content may include information elements implicitly associated with the difference between the current MCS and the desired MCS.
  • Such an information element may be a CQI that may be associated with MCS.
  • a CQI that can be specified in the CQI table defined in 3GPP TS38.214 may be used as the CQI.
  • the feedback content may include an information element (Delta-CQI) explicitly associated with the difference between the current CQI and the desired CQI.
  • MCS may be read as CQI
  • MCS Index may be read as CQI Index.
  • the table defined for feedback is the table for MCS.
  • the table defined for feedback may be a table for CQI.
  • the feedback content may include an Index associated with the desired CQI Index, or may include an Index associated with the difference between the current CQI and the desired CQI.
  • MCS may be read as CQI
  • MCS Index may be read as CQI Index.
  • the content of the feedback whether to use feedback on MCS (Delta-MCS) or feedback on CQI (Delta-CQI) may be set by a higher layer parameter, It may be reported by UE 200 capability information (UE Capability), or may be predetermined in the wireless communication system 10 . Furthermore, which of the above options to apply may be determined by higher layer parameters and UE Capabilities.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • FIG. 7 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
  • Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
  • a processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the above-described various processes may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or a combination thereof
  • RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New Radio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • a specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to).
  • MME or S-GW network nodes
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)
  • Head: RRH can also provide communication services.
  • cell refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the mobile station may have the functions that the base station has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions that the mobile station has.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe.
  • a subframe may further consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • number of symbols per TTI radio frame structure
  • transmission and reception specific filtering operations performed by the receiver in the frequency domain specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum scheduling time unit.
  • the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than a normal TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, shortened TTI, etc.
  • a TTI having a TTI length greater than or equal to this value may be read as a replacement.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or a plurality of resource blocks.
  • One or more RBs are physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
  • PRB physical resource blocks
  • SCG sub-carrier groups
  • REG resource element groups
  • PRB pairs RB pairs, etc.
  • a resource block may be composed of one or more resource elements (Resource Element: RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • One or more BWPs may be configured in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first”, “second”, etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein, or that the first element must precede the second element in any way.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • Radio communication system 20 NG-RAN 100 gNB 110 receiver 120 transmitter 130 controller 200 UE 210 radio signal transmission/reception unit 220 amplifier unit 230 modulation/demodulation unit 240 control signal/reference signal processing unit 250 encoding/decoding unit 260 data transmission/reception unit 270 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

This terminal comprises: a transmission unit that transmits feedback to be used in selecting a modulation scheme to be used in a downlink channel; and a control unit that performs specific control on transmission of the feedback, on the basis of the priority of the feedback, when the feedback and channel state information overlap in time.

Description

端末、無線通信システム及び無線通信方法Terminal, wireless communication system and wireless communication method
 本開示は、無線通信を実行する端末、基地局及び無線通信方法、特に、変調方式の選択で用いるフィードバックを送信する端末、無線通信システム及び無線通信方法に関する。 The present disclosure relates to a terminal, base station, and wireless communication method that perform wireless communication, and in particular, to a terminal, wireless communication system, and wireless communication method that transmit feedback used in modulation scheme selection.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)又はNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with
 3GPPのRelease 17では、下りリンクチャネル(例えば、PDSCH;Physical Downlink Shared Channel)に適用する変調方式(MCS; Modulation and Coding Scheme)の選択に関する精度を向上するために、端末(以下、UE; User Equipment)からネットワークへのフィードバックの拡張が検討されている(例えば、非特許文献1)。具体的には、フィードバックとして、delta-CQI(Channel Quality Indicator)/MCSのサポートが合意された。 In Release 17 of 3GPP, the user equipment ) to the network is being studied (for example, Non-Patent Document 1). Specifically, support for delta-CQI (Channel Quality Indicator)/MCS was agreed upon as feedback.
 本開示の一態様は、端末であって、下りリンクチャネルで用いる変調方式の選択で用いるフィードバックを送信する送信部と、前記フィードバックとチャネル状態情報とが時間的に重複する場合に、前記フィードバックの優先順位に基づいて、前記フィードバックの送信に関する特定制御を実行する制御部と、を備える、ことを要旨とする。 One aspect of the present disclosure is a terminal, a transmission unit that transmits feedback used in selecting a modulation scheme to be used in a downlink channel, and when the feedback and channel state information overlap in time, the feedback is and a control unit that executes specific control regarding transmission of the feedback based on the order of priority.
 本開示の一態様は、無線通信システムであって、端末と基地局とを備え、前記端末は、下りリンクチャネルで用いる変調方式の選択で用いるフィードバックを送信する送信部と、前記フィードバックとチャネル状態情報とが時間的に重複する場合に、前記フィードバックの優先順位に基づいて、前記フィードバックの送信に関する特定制御を実行する制御部と、を備える、ことを要旨とする。 One aspect of the present disclosure is a wireless communication system, comprising a terminal and a base station, wherein the terminal transmits feedback used in selecting a modulation scheme to be used in a downlink channel; and a control unit that performs specific control on transmission of the feedback based on the priority of the feedback when the information overlaps in time.
 本開示の一態様は、無線通信方法であって、下りリンクチャネルで用いる変調方式の選択で用いるフィードバックを送信するステップと、前記フィードバックとチャネル状態情報とが時間的に重複する場合に、前記フィードバックの優先順位に基づいて、前記フィードバックの送信に関する特定制御を実行するステップ、を備える、ことを要旨とする。 One aspect of the present disclosure is a wireless communication method, comprising: transmitting feedback used in selecting a modulation scheme to be used in a downlink channel; and performing specific control regarding the transmission of the feedback based on the priority of the.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of a radio communication system 10. As shown in FIG. 図2は、無線通信システム10において用いられる周波数レンジを示す図である。FIG. 2 is a diagram illustrating frequency ranges used in wireless communication system 10. As shown in FIG. 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す図である。FIG. 3 is a diagram showing a configuration example of radio frames, subframes and slots used in the radio communication system 10. As shown in FIG. 図4は、UE200の機能ブロック構成図である。FIG. 4 is a functional block configuration diagram of UE200. 図5は、gNB100の機能ブロック構成図である。FIG. 5 is a functional block configuration diagram of gNB100. 図6は、優先順位について説明するための図である。FIG. 6 is a diagram for explaining the order of priority. 図7は、gNB100及びUE200のハードウェア構成の一例を示す図である。FIG. 7 is a diagram showing an example of the hardware configuration of gNB100 and UE200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一又は類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. Note that the same or similar reference numerals are given to the same functions and configurations, and the description thereof will be omitted as appropriate.
 [実施形態]
 (1)無線通信システムの全体概略構成
 図1は、実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及び端末200(以下、UE200)を含む。
[Embodiment]
(1) Overall Schematic Configuration of Radio Communication System FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to an embodiment. The radio communication system 10 is a radio communication system according to 5G New Radio (NR), and includes a Next Generation-Radio Access Network 20 (hereinafter NG-RAN 20 and a terminal 200 (hereinafter UE 200).
 なお、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。 Note that the wireless communication system 10 may be a wireless communication system according to a system called Beyond 5G, 5G Evolution, or 6G.
 NG-RAN20は、無線基地局100A(以下、gNB100A)及び無線基地局100B(以下、gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。 NG-RAN 20 includes a radio base station 100A (hereinafter gNB100A) and a radio base station 100B (hereinafter gNB100B). Note that the specific configuration of the radio communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(又はng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単に「ネットワーク」と表現されてもよい。 NG-RAN 20 actually includes multiple NG-RAN Nodes, specifically gNBs (or ng-eNBs), and is connected to a 5G-compliant core network (5GC, not shown). Note that NG-RAN 20 and 5GC may simply be referred to as a "network".
 gNB100A及びgNB100Bは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100A、gNB100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームBMを生成するMassive MIMO(Multiple-Input Multiple-Output)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時2以上のトランスポートブロックに通信を行うデュアルコネクティビティ(DC)などに対応することができる。 gNB100A and gNB100B are 5G-compliant radio base stations and perform 5G-compliant radio communication with UE200. gNB100A, gNB100B and UE200 generate BM beams with higher directivity by controlling radio signals transmitted from multiple antenna elements Massive MIMO (Multiple-Input Multiple-Output), multiple component carriers (CC ), and dual connectivity (DC) that simultaneously communicates with two or more transport blocks between the UE and each of the two NG-RAN Nodes.
 また、無線通信システム10は、複数の周波数レンジ(FR)に対応する。図2は、無線通信システム10において用いられる周波数レンジを示す。 Also, the wireless communication system 10 supports multiple frequency ranges (FR). FIG. 2 shows the frequency ranges used in wireless communication system 10. As shown in FIG.
 図2に示すように、無線通信システム10は、FR1及びFR2に対応する。各FRの周波数帯は、次のとおりである。 As shown in FIG. 2, the wireless communication system 10 supports FR1 and FR2. The frequency bands of each FR are as follows.
 ・FR1:410 MHz~7.125 GHz
 ・FR2:24.25 GHz~52.6 GHz
 FR1では、15, 30又は60kHzのSub-Carrier Spacing(SCS)が用いられ、5~100MHzの帯域幅(BW)が用いられてもよい。FR2は、FR1よりも高周波数であり、60,又は120kHz(240kHzが含まれてもよい)のSCSが用いられ、50~400MHzの帯域幅(BW)が用いられてもよい。
・FR1: 410MHz to 7.125GHz
・FR2: 24.25 GHz to 52.6 GHz
In FR1, a Sub-Carrier Spacing (SCS) of 15, 30 or 60 kHz may be used and a bandwidth (BW) of 5-100 MHz may be used. FR2 is higher frequency than FR1 and may use an SCS of 60 or 120 kHz (240 kHz may be included) and a bandwidth (BW) of 50-400 MHz.
 なお、SCSは、numerologyと解釈されてもよい。numerologyは、3GPP TS38.300において定義されており、周波数ドメインにおける一つのサブキャリア間隔と対応する。 It should be noted that SCS may be interpreted as numerology. numerology is defined in 3GPP TS38.300 and corresponds to one subcarrier spacing in the frequency domain.
 さらに、無線通信システム10は、FR2の周波数帯よりも高周波数帯にも対応する。具体的には、無線通信システム10は、52.6GHzを超え、71GHzまたは114.25GHzまでの周波数帯に対応する。このような高周波数帯は、便宜上「FR2x」と呼ばれてもよい。 Furthermore, the wireless communication system 10 also supports frequency bands higher than the FR2 frequency band. Specifically, the wireless communication system 10 supports frequency bands above 52.6 GHz and up to 71 GHz or 114.25 GHz. Such high frequency bands may be conveniently referred to as "FR2x".
 高周波数帯では位相雑音の影響が大きくなる問題を解決するため、52.6GHzを超える帯域を用いる場合、より大きなSub-Carrier Spacing(SCS)を有するCyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)を適用してもよい。 Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/ Discrete Fourier Transform - Spread (DFT-S-OFDM) may be applied.
 図3は、無線通信システム10において用いられる無線フレーム、サブフレーム及びスロットの構成例を示す。 FIG. 3 shows a configuration example of radio frames, subframes and slots used in the radio communication system 10. FIG.
 図3に示すように、1スロットは、14シンボルで構成され、SCSが大きく(広く)なる程、シンボル期間(及びスロット期間)は短くなる。SCSは、図3に示す間隔(周波数)に限定されない。例えば、480kHz、960kHzなどが用いられてもよい。 As shown in FIG. 3, one slot consists of 14 symbols, and the larger (wider) the SCS, the shorter the symbol period (and slot period). The SCS is not limited to the intervals (frequencies) shown in FIG. For example, 480 kHz, 960 kHz, etc. may be used.
 また、1スロットを構成するシンボル数は、必ずしも14シンボルでなくてもよい(例えば、28シンボル、56シンボル)。さらに、サブフレーム当たりのスロット数は、SCSによって異なっていてよい。 Also, the number of symbols forming one slot does not necessarily have to be 14 symbols (eg, 28 symbols, 56 symbols). Furthermore, the number of slots per subframe may vary between SCSs.
 なお、図3に示す時間方向(t)は、時間領域、シンボル期間又はシンボル時間などと呼ばれてもよい。また、周波数方向は、周波数領域、リソースブロック、サブキャリア、バンド幅部分(BWP: Bandwidth Part)などと呼ばれてもよい。 Note that the time direction (t) shown in FIG. 3 may be called the time domain, symbol period, symbol time, or the like. Also, the frequency direction may be called a frequency domain, resource block, subcarrier, bandwidth part (BWP: Bandwidth Part), or the like.
 DMRSは、参照信号の一種であり、各種チャネル用に準備される。ここでは、特に断りがない限り、下りデータチャネル、具体的には、PDSCH(Physical Downlink Shared Channel)用のDMRSを意味してよい。但し、上りデータチャネル、具体的には、PUSCH(Physical Uplink Shared Channel)用のDMRSは、PDSCH用のDMRSと同様と解釈されてもよい。 DMRS is a type of reference signal and is prepared for various channels. Here, unless otherwise specified, it may mean a downlink data channel, specifically DMRS for PDSCH (Physical Downlink Shared Channel). However, an uplink data channel, specifically, a DMRS for PUSCH (Physical Uplink Shared Channel) may be interpreted in the same way as a DMRS for PDSCH.
 DMRSは、デバイス、例えば、コヒーレント復調の一部分として、UE200におけるチャネル推定に用い得る。DMRSは、PDSCH送信に使用されるリソースブロック(RB)のみに存在してよい。 DMRS can be used for channel estimation in devices, eg, UE 200, as part of coherent demodulation. DMRS may reside only in resource blocks (RBs) used for PDSCH transmission.
 DMRSは、複数のマッピングタイプを有してよい。具体的には、DMRSは、マッピングタイプA及びマッピングタイプBを有する。マッピングタイプAでは、最初のDMRSは、スロットの2又は3番目のシンボルに配置される。マッピングタイプAでは、DMRSは、実際のデータ送信がスロットのどこで開始されるかに関係なく、スロット境界を基準にしてマッピングされてよい。最初のDMRSがスロットの2又は3番目のシンボルに配置される理由は、制御リソースセット(CORESET:control resource sets)の後に最初のDMRSを配置するためと解釈されてもよい。 A DMRS may have multiple mapping types. Specifically, DMRS has mapping type A and mapping type B. For mapping type A, the first DMRS is placed in the 2nd or 3rd symbol of the slot. In mapping type A, the DMRS may be mapped relative to slot boundaries, regardless of where in the slot the actual data transmission begins. The reason the first DMRS is placed in the second or third symbol of the slot may be interpreted as to place the first DMRS after the control resource sets (CORESET).
 マッピングタイプBでは、最初のDMRSがデータ割り当ての最初のシンボルに配置されてよい。すなわち、DMRSの位置は、スロット境界に対してではなく、データが配置されている場所に対して相対的に与えられてよい。 In mapping type B, the first DMRS may be placed in the first symbol of data allocation. That is, the position of the DMRS may be given relative to where the data is located rather than relative to slot boundaries.
 また、DMRSは、複数の種類(Type)を有してよい。具体的には、DMRSは、Type 1及びType 2を有する。Type 1とType 2とは、周波数領域におけるマッピング及び直交参照信号(orthogonal reference signals)の最大数が異なる。Type 1は、単一シンボル(single-symbol)DMRSで最大4本の直交信号を出力でき、Type 2は、二重シンボル(double-symbol)DMRSで最大8本の直交信号を出力できる。 In addition, DMRS may have multiple types (Type). Specifically, DMRS has Type 1 and Type 2. Type 1 and Type 2 differ in mapping in the frequency domain and the maximum number of orthogonal reference signals. Type 1 can output up to 4 orthogonal signals with single-symbol DMRS, and Type 2 can output up to 8 orthogonal signals with double-symbol DMRS.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。
(2) Functional Block Configuration of Radio Communication System Next, the functional block configuration of the radio communication system 10 will be described.
 第1に、UE200の機能ブロック構成について説明する。 First, the functional block configuration of the UE200 will be explained.
 図4は、UE200の機能ブロック構成図である。図4に示すように、UE200は、無線信号送受信部210、アンプ部220、変復調部230、制御信号・参照信号処理部240、符号化/復号部250、データ送受信部260及び制御部270を備える。 FIG. 4 is a functional block diagram of the UE200. As shown in FIG. 4, the UE 200 includes a radio signal transmission/reception unit 210, an amplifier unit 220, a modem unit 230, a control signal/reference signal processing unit 240, an encoding/decoding unit 250, a data transmission/reception unit 260, and a control unit 270. .
 無線信号送受信部210は、NRに従った無線信号を送受信する。無線信号送受信部210は、Massive MIMO、複数のCCを束ねて用いるCA、及びUEと2つのNG-RAN Nodeそれぞれとの間において同時に通信を行うDCなどに対応する。 The radio signal transmitting/receiving unit 210 transmits/receives radio signals according to NR. The radio signal transmitting/receiving unit 210 supports Massive MIMO, CA that bundles multiple CCs, and DC that simultaneously communicates between the UE and each of the two NG-RAN Nodes.
 アンプ部220は、PA (Power Amplifier)/LNA (Low Noise Amplifier)などによって構成される。アンプ部220は、変復調部230から出力された信号を所定の電力レベルに増幅する。また、アンプ部220は、無線信号送受信部210から出力されたRF信号を増幅する。 The amplifier section 220 is configured by a PA (Power Amplifier)/LNA (Low Noise Amplifier) and the like. Amplifier section 220 amplifies the signal output from modem section 230 to a predetermined power level. In addition, amplifier section 220 amplifies the RF signal output from radio signal transmission/reception section 210 .
 変復調部230は、所定の通信先(gNB100又は他のgNB)毎に、データ変調/復調、送信電力設定及びリソースブロック割当などを実行する。変復調部230では、Cyclic Prefix-Orthogonal Frequency Division Multiplexing(CP-OFDM)/Discrete Fourier Transform - Spread(DFT-S-OFDM)が適用されてもよい。また、DFT-S-OFDMは、上りリンク(UL)だけでなく、下りリンク(DL)にも用いられてもよい。 The modulation/demodulation unit 230 executes data modulation/demodulation, transmission power setting, resource block allocation, etc. for each predetermined communication destination (gNB 100 or other gNB). The modem unit 230 may apply Cyclic Prefix-Orthogonal Frequency Division Multiplexing (CP-OFDM)/Discrete Fourier Transform-Spread (DFT-S-OFDM). Also, DFT-S-OFDM may be used not only for uplink (UL) but also for downlink (DL).
 制御信号・参照信号処理部240は、UE200が送受信する各種の制御信号に関する処理、及びUE200が送受信する各種の参照信号に関する処理を実行する。 The control signal/reference signal processing unit 240 executes processing related to various control signals transmitted and received by the UE 200 and processing related to various reference signals transmitted and received by the UE 200.
 具体的には、制御信号・参照信号処理部240は、gNB100から所定の制御チャネルを介して送信される各種の制御信号、例えば、無線リソース制御レイヤ(RRC)の制御信号を受信する。また、制御信号・参照信号処理部240は、gNB100に向けて、所定の制御チャネルを介して各種の制御信号を送信する。 Specifically, the control signal/reference signal processing unit 240 receives various control signals transmitted from the gNB 100 via a predetermined control channel, for example, radio resource control layer (RRC) control signals. Also, the control signal/reference signal processing unit 240 transmits various control signals to the gNB 100 via a predetermined control channel.
 制御信号・参照信号処理部240は、Demodulation Reference Signal(DMRS)、及びPhase Tracking Reference Signal (PTRS)などの参照信号(RS)を用いた処理を実行する。 The control signal/reference signal processing unit 240 executes processing using reference signals (RS) such as Demodulation Reference Signal (DMRS) and Phase Tracking Reference Signal (PTRS).
 DMRSは、データ復調に用いるフェージングチャネルを推定するための端末個別の基地局~端末間において既知の参照信号(パイロット信号)である。PTRSは、高い周波数帯で課題となる位相雑音の推定を目的した端末個別の参照信号である。 A DMRS is a known reference signal (pilot signal) between a terminal-specific base station and a terminal for estimating the fading channel used for data demodulation. PTRS is a terminal-specific reference signal for estimating phase noise, which is a problem in high frequency bands.
 なお、参照信号には、DMRS及びPTRS以外に、Channel State Information-Reference Signal(CSI-RS)、Sounding Reference Signal(SRS)、及び位置情報用のPositioning Reference Signal(PRS)が含まれてもよい。 In addition to DMRS and PTRS, reference signals may include Channel State Information-Reference Signal (CSI-RS), Sounding Reference Signal (SRS), and Positioning Reference Signal (PRS) for position information.
 また、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、RACH(Random Access Channel)、Random Access Radio Network Temporary Identifier(RA-RNTI)を含むDownlink Control Information (DCI))、及びPhysical Broadcast Channel(PBCH)などが含まれる。 Also, the channel includes a control channel and a data channel. Control channels include Physical Downlink Control Channel (PDCCH), Physical Uplink Control Channel (PUCCH), Random Access Channel (RACH), Downlink Control Information (DCI) including Random Access Radio Network Temporary Identifier (RA-RNTI), and Physical Broadcast Channel (PBCH) etc. are included.
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。データとは、データチャネルを介して送信されるデータを意味する。データチャネルは、共有チャネルと読み替えられてもよい。 In addition, data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel). Data means data transmitted over a data channel. A data channel may be read as a shared channel.
 ここで、制御信号・参照信号処理部240は、下りリンク制御情報(DCI)を受信してもよい。DCIは、既存のフィールドとして、DCI Formats、Carrier indicator(CI)、BWP indicator、FDRA(Frequency Domain Resource Assignment)、TDRA(Time Domain Resource Assignment)、MCS(Modulation and Coding Scheme)、HPN(HARQ Process Number)、NDI(New Data Indicator)、RV(Redundancy Version)などを格納するフィールドを含む。 Here, the control signal/reference signal processing unit 240 may receive downlink control information (DCI). DCI has existing fields such as DCI Formats, Carrier indicator (CI), BWP indicator, FDRA (Frequency Domain Resource Assignment), TDRA (Time Domain Resource Assignment), MCS (Modulation and Coding Scheme), HPN (HARQ Process Number) , NDI (New Data Indicator), RV (Redundancy Version), etc.
 DCI Formatフィールドに格納される値は、DCIのフォーマットを指定する情報要素である。CIフィールドに格納される値は、DCIが適用されるCCを指定する情報要素である。BWP indicatorフィールドに格納される値は、DCIが適用されるBWPを指定する情報要素である。BWP indicatorによって指定され得るBWPは、RRCメッセージに含まれる情報要素(BandwidthPart-Config)によって設定される。FDRAフィールドに格納される値は、DCIが適用される周波数ドメインリソースを指定する情報要素である。周波数ドメインリソースは、FDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(RA Type)によって特定される。TDRAフィールドに格納される値は、DCIが適用される時間ドメインリソースを指定する情報要素である。時間ドメインリソースは、TDRAフィールドに格納される値及びRRCメッセージに含まれる情報要素(pdsch-TimeDomainAllocationList、pusch-TimeDomainAllocationList)によって特定される。時間ドメインリソースは、TDRAフィールドに格納される値及びデフォルトテーブルによって特定されてもよい。MCSフィールドに格納される値は、DCIが適用されるMCSを指定する情報要素である。MCSは、MCSに格納される値及びMCSテーブルによって特定される。MCSテーブルは、RRCメッセージによって指定されてもよく、RNTIスクランブリングによって特定されてもよい。HPNフィールドに格納される値は、DCIが適用されるHARQ Processを指定する情報要素である。NDIに格納される値は、DCIが適用されるデータが初送データであるか否かを特定するための情報要素である。RVフィールドに格納される値は、DCIが適用されるデータの冗長性を指定する情報要素である。 The value stored in the DCI Format field is an information element that specifies the DCI format. The value stored in the CI field is an information element that specifies the CC to which DCI is applied. The value stored in the BWP indicator field is an information element that specifies the BWP to which DCI applies. The BWP that can be specified by the BWP indicator is configured by an information element (BandwidthPart-Config) included in the RRC message. The value stored in the FDRA field is an information element that specifies the frequency domain resource to which DCI is applied. A frequency domain resource is identified by a value stored in the FDRA field and an information element (RA Type) included in the RRC message. The value stored in the TDRA field is an information element that specifies the time domain resource to which DCI applies. The time domain resource is specified by the value stored in the TDRA field and information elements (pdsch-TimeDomainAllocationList, pusch-TimeDomainAllocationList) included in the RRC message. A time-domain resource may be identified by a value stored in the TDRA field and a default table. The value stored in the MCS field is an information element that specifies the MCS to which DCI applies. The MCS is specified by the values stored in the MCS and the MCS table. The MCS table may be specified by RRC messages or identified by RNTI scrambling. The value stored in the HPN field is an information element that specifies the HARQ Process to which DCI is applied. The value stored in NDI is an information element for specifying whether data to which DCI is applied is initial transmission data. The value stored in the RV field is an information element that specifies the data redundancy to which DCI is applied.
 符号化/復号部250は、所定の通信先(gNB100又は他のgNB)毎に、データの分割/連結及びチャネルコーディング/復号などを実行する。 The encoding/decoding unit 250 performs data segmentation/concatenation, channel coding/decoding, etc. for each predetermined communication destination (gNB 100 or other gNB).
 具体的には、符号化/復号部250は、データ送受信部260から出力されたデータを所定のサイズに分割し、分割されたデータに対してチャネルコーディングを実行する。また、符号化/復号部250は、変復調部230から出力されたデータを復号し、復号したデータを連結する。 Specifically, the encoding/decoding unit 250 divides the data output from the data transmission/reception unit 260 into pieces of a predetermined size, and performs channel coding on the divided data. Also, encoding/decoding section 250 decodes the data output from modem section 230 and concatenates the decoded data.
 データ送受信部260は、Protocol Data Unit (PDU)ならびにService Data Unit (SDU)の送受信を実行する。具体的には、データ送受信部260は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。また、データ送受信部260は、HARQ(Hybrid Automatic Repeat Request)に基づいて、データの誤り訂正及び再送制御を実行する。 The data transmission/reception unit 260 executes transmission/reception of Protocol Data Unit (PDU) and Service Data Unit (SDU). Specifically, the data transmitting/receiving unit 260 performs PDU/SDU in multiple layers (medium access control layer (MAC), radio link control layer (RLC), packet data convergence protocol layer (PDCP), etc.). Assemble/disassemble etc. The data transmission/reception unit 260 also performs data error correction and retransmission control based on HARQ (Hybrid Automatic Repeat Request).
 制御部270は、UE200を構成する各機能ブロックを制御する。実施形態では、制御部270は、上述した制御信号・参照信号処理部240を制御する。制御信号・参照信号処理部240は、下りリンクチャネル(以下、PDSCH)で用いる変調方式(以下、MCS)の選択で用いるフィードバック(以下、delta-MCS)を送信する送信部を構成する。制御部270は、delta-MCSとチャネル状態情報(以下、CSI)とが時間的に重複する場合に、delta-MCSの優先順位に基づいて、delta-MCSの送信に関する特定制御を実行する制御部を構成する。 The control unit 270 controls each functional block that configures the UE200. In the embodiment, the control unit 270 controls the control signal/reference signal processing unit 240 described above. The control signal/reference signal processing unit 240 constitutes a transmitting unit that transmits feedback (hereinafter, delta-MCS) used in selecting a modulation scheme (hereinafter, MCS) used in a downlink channel (hereinafter, PDSCH). Control unit 270 is a control unit that executes specific control on transmission of delta-MCS based on the priority of delta-MCS when delta-MCS and channel state information (hereinafter referred to as CSI) overlap in time. configure.
 特定条件は、delta-MCSの決定で参照されるPDSCHで用いる変調方式のIndex(以下、MCS Index(IMCS))がreserved MCS Indexである条件であってもよい。特定条件及び特定制御の詳細については後述する。 The specific condition may be a condition that the index of the modulation scheme used in PDSCH (hereinafter referred to as MCS Index (I MCS )) referred to in determining delta-MCS is a reserved MCS Index. Details of the specific condition and specific control will be described later.
 delta-MCSの内容は、所望のMCSを明示的に示す情報要素、現在のMCSと所望のMCSとの差異を明示的に示す情報要素、及び、現在のMCSと所望のMCSとの差異と明示的に関連付けられたインデックスを示す情報要素の少なくともいずれか1つを含む。 The contents of delta-MCS are an information element that explicitly indicates the desired MCS, an information element that explicitly indicates the difference between the current MCS and the desired MCS, and an information element that explicitly indicates the difference between the current MCS and the desired MCS. at least one of the information elements indicating the index associated with the
 第2に、gNB100の機能ブロック構成について説明する。 Second, the functional block configuration of gNB100 will be explained.
 図5は、gNB100の機能ブロック構成図である。図5に示すように、gNB100は、受信部110、送信部120及び制御部130を有する。 FIG. 5 is a functional block configuration diagram of gNB100. As shown in FIG. 5, the gNB 100 has a receiver 110, a transmitter 120 and a controller .
 受信部110は、UE200から各種信号を受信する。受信部110は、PUCCH又はPUSCHを介してUL信号を受信してもよい。受信部110は、PDSCHで用いるMCSの選択で用いるdelta-MCSを受信してもよい。 The receiving unit 110 receives various signals from the UE200. The receiver 110 may receive the UL signal via PUCCH or PUSCH. Receiving section 110 may receive the delta-MCS used in selecting the MCS used in PDSCH.
 送信部120は、UE200に各種信号を送信する。送信部120は、PDCCH又はPDSCHを介してDL信号を送信してもよい。 The transmission unit 120 transmits various signals to the UE200. Transmitting section 120 may transmit the DL signal via PDCCH or PDSCH.
 制御部130は、gNB100を制御する。制御部130は、delta-MCSに基づいて、PDSCHに適用するMCSを選択してもよい。制御部130は、delta-MCSとCSIとが時間的に重複する場合に、delta-MCSの優先順位に基づいて、delta-MCSの送信に関する特定制御をUE200が実行すると想定してもよい。 The control unit 130 controls the gNB100. Control section 130 may select an MCS to apply to PDSCH based on delta-MCS. Control section 130 may assume that, when delta-MCS and CSI temporally overlap, UE 200 performs specific control regarding transmission of delta-MCS based on the priority of delta-MCS.
 (3)優先順位
 以下において、優先順位について説明する。実施形態では、delta-MCSがCSI報告として報告されるケースを想定する。
(3) Priority The priority will be explained below. In an embodiment, we assume a case where delta-MCS is reported as a CSI report.
 CSIのタイプは、A(Aperiodic)-CSI、semi-persistent CSI、periodic CSIを含んでもよい。CSI報告に用いるチャネルは、PUCCHであってもよく、PUSCHであってもよい。 CSI types may include A (Aperiodic)-CSI, semi-persistent CSI, and periodic CSI. The channel used for CSI reporting may be PUCCH or PUSCH.
 このようなケースにおいて、CSIの優先順位を定義するパラメータ(以下、PriiCSI(y,k,c,s))は、以下の式で表されてもよい(TS38.214 Clause 5.2.5を参照)。PriiCSI(y,k,c,s)は、priority valueと称されてもよい。 In such cases, the parameter that defines the priority of CSI (hereafter, Pri iCSI (y, k, c, s)) may be expressed by the following formula (see TS38.214 Clause 5.2.5 ). Pri iCSI (y,k,c,s) may be referred to as a priority value.
 PriiCSI(y,k,c,s)=2・Ncells・Ms・y+ Ncells・Ms・k+ Ms・c+s
 ここで、yは、CSIのタイプ及びチャネルの種類によって定義されるパラメータである。例えば、PUSCHで送信されるA-CSIについてy=0が用いられ、PUSCHで送信されるsemi-persistent CSIについてy=1が用いられ、PUCCHで送信されるsemi-persistent CSIについてy=2が用いられ、PUCCHで送信されるperiodic CSIについてy=3が用いられる。kは、CSI報告に含まれる内容によって定義されるパラメータである。kは、report quantityの優先順位を定義するパラメータであると考えてもよい。例えば、L1-RSRP又はL1-SINRを搬送するCSI報告についてk=0が用いられ、L1-RSRP又はL1-SINRを搬送しないCSI報告についてk=1が用いられてもよい。cは、サービングセルのIndexであり、Ncellsは、上位レイヤパラメータ(maxNrofServingCells)の値である。Sは、reportConfigIDであり、Msは、上位レイヤパラメータ(maxNrofCSI-ReportConfigurations)の値である。
Pri iCSI (y,k,c,s)=2・N cells・M s・y+ N cells・M s・k+ M s・c+s
where y is a parameter defined by the CSI type and channel type. For example, y = 0 is used for A-CSI transmitted on PUSCH, y = 1 is used for semi-persistent CSI transmitted on PUSCH, and y = 2 is used for semi-persistent CSI transmitted on PUCCH. and y=3 is used for periodic CSI transmitted on PUCCH. k is a parameter defined by the content contained in the CSI report. You can think of k as a parameter that defines the priority of the report quantity. For example, k=0 may be used for CSI reports carrying L1-RSRP or L1-SINR and k=1 may be used for CSI reports not carrying L1-RSRP or L1-SINR. c is the index of the serving cell, and N cells is the value of the higher layer parameter (maxNrofServingCells). S is the reportConfigID and M s is the value of the upper layer parameter (maxNrofCSI-ReportConfigurations).
 さらに、2つのCSIが存在する場合に、PriiCSI(y,k,c,s)の値が低い方のCSIがfirst CSIと称されてもよく、PriiCSI(y,k,c,s)の値が高い方のCSIがsecond CSIと称されてもよい。 Furthermore, when there are two CSIs, the CSI with the lower value of Pri iCSI (y, k, c, s) may be referred to as the first CSI, and Pri iCSI (y, k, c, s) The CSI with the higher value of may be referred to as the second CSI.
 PriiCSI(y,k,c,s)は、PriiCSI(y,k,c,s)の値が低いほど、PriiCSI(y,k,c,s)と対応付けられたCSIの送信が優先されるように定義されたパラメータであると考えてもよい。言い換えると、PriiCSI(y,k,c,s)の値が低いほど、優先順位が高いと考えてもよい。 For Pri iCSI (y, k, c, s), the lower the value of Pri iCSI (y, k, c, s), the more CSI associated with Pri iCSI (y, k, c, s) is transmitted. You may think of it as a parameter defined to take precedence. In other words, the lower the value of Pri iCSI (y, k, c, s), the higher the priority.
 例えば、同じキャリア上で送信され、CSI報告を送信するようにスケジュールされた物理チャネルの時間占有が少なくとも1つのOFDMシンボルで重複する場合に、2つのCSIが衝突すると称されてもよい。 For example, two CSIs may be said to collide if the time occupancy of physical channels transmitted on the same carrier and scheduled to transmit CSI reports overlap by at least one OFDM symbol.
 2つのCSI報告のyの値が異なる場合に、1つのyの値が2であり、他のyの値が3であるケースを除いて、PriiCSI(y,k,c,s)として高い値を有するCSI報告がUE200から送信されなくてもよい。他のケースにおいては、2つのCSIレポートは、多重されてもよく、PriiCSI(y,k,c,s)に基づいていずれか1つがドロップされてもよい。このような動作は、3GPP TS38.213 Clause 9.2.5.2に記載された動作であってもよい。 High as Pri iCSI (y,k,c,s) except for the case where one y-value is 2 and the other y-value is 3 when the y-values of the two CSI reports are different A CSI report with a value may not be sent from the UE 200. In other cases, two CSI reports may be multiplexed and any one may be dropped based on Pri iCSI (y,k,c,s). Such operations may be those described in 3GPP TS38.213 Clause 9.2.5.2.
 このような前提下において、図6に示すように、delta-MCSとCSIとが時間的に重複するケースについて考える。言い換えると、CSI報告及びdelta-MCS報告を送信するようにスケジュールされた物理チャネルの時間占有が少なくとも1つのOFDMシンボルで重複するケースについて考える。すなわち、delta-MCSとCSIとが衝突するケースについて考える。 Under this premise, consider the case where delta-MCS and CSI temporally overlap, as shown in FIG. In other words, consider the case where the time occupancy of physical channels scheduled to transmit CSI and delta-MCS reports overlap by at least one OFDM symbol. That is, consider a case where delta-MCS and CSI collide.
 このようなケースにおいて、delta-MCSはCSI報告として報告されるため、delta-MCSについてPriiCSI(y,k,c,s)を設定する必要が生じる。以下においては、PriiCSI(y,k,c,s)を定義するkの値に注目する。delta-MCSに関するkの値としては、以下に示すオプションが考えられる。 In such cases, the delta-MCS is reported as a CSI report, so it becomes necessary to set Pri iCSI (y,k,c,s) for the delta-MCS. In the following we focus on the value of k that defines Pri iCSI (y,k,c,s). The following options are possible for the value of k for delta-MCS.
 オプション1では、delta-MCSに関するkの値は0であってもよい。すなわち、delta-MCSに関するkの値は、L1-RSRP又はL1-SINRに関するkの値と同じであってもよい。このようなケースにおいて、L1-RSRP、L1-SINR又はdelta-MCSを搬送するCSI報告についてk=0が用いられると考えてもよい。 In Option 1, the value of k for delta-MCS may be 0. That is, the value of k for delta-MCS may be the same as the value of k for L1-RSRP or L1-SINR. In such cases, it may be considered that k=0 is used for CSI reports carrying L1-RSRP, L1-SINR or delta-MCS.
 オプション2では、delta-MCSに関するkの値は1であってもよい。すなわち、delta-MCSに関するkの値は、L1-RSRP又はL1-SINR以外のCSIに関するkの値と同じであってもよい。L1-RSRP又はL1-SINR以外のCSIは、CQI(Channel Qulity Information)、PMI(Precoding Matrix Indicator)、CRI(CSI-RS Resource Indicator)、SSBRI(SS/PBCH Resource Block Indicator)、LI(Layer Indicator)、RI(Rank Indicator)などを含んでもよい。 In Option 2, the value of k for delta-MCS may be 1. That is, the value of k for delta-MCS may be the same as the value of k for CSI other than L1-RSRP or L1-SINR. CSI other than L1-RSRP or L1-SINR is CQI (Channel Quality Information), PMI (Precoding Matrix Indicator), CRI (CSI-RS Resource Indicator), SSBRI (SS/PBCH Resource Block Indicator), LI (Layer Indicator) , RI (Rank Indicator), etc.
 オプション3では、delta-MCSに関するkの値は2であってもよい。すなわち、delta-MCSに関するkの値は、既存のCSIよりも大きい値であってもよい。このようなケースにおいて、delta-MCSを除いて、L1-RSRP又はL1-SINRを搬送しないCSI報告についてk=1が用いられ、delta-MCSを搬送するCSI報告についてk=2が用いられると考えてもよい。kとして取り得る2は、新たに定義される値であってもよい。PriiCSI(y,k,c,s)の値が低いほど優先順位が高いと定義されるため、オプション3において、delta-MCSの優先順位は、既存のCSIの優先順位よりも低いと考えてもよい。既存のCSIは、L1-RSRP、L1-SINR、CQ、PMI、CRI、SSBRI、LI、RIなどを含んでもよい。 In Option 3, the value of k for delta-MCS may be 2. That is, the value of k for delta-MCS may be a larger value than the existing CSI. In such cases, except for delta-MCS, consider k=1 to be used for CSI reports that do not carry L1-RSRP or L1-SINR, and k=2 to be used for CSI reports that carry delta-MCS. may 2, which can be taken as k, may be a newly defined value. Lower values of Pri iCSI (y,k,c,s) are defined as higher priority, so in Option 3, we consider the delta-MCS priority to be lower than the existing CSI priority. good too. Existing CSI may include L1-RSRP, L1-SINR, CQ, PMI, CRI, SSBRI, LI, RI, and so on.
 オプション4では、delta-MCSに関するkの値は-1であってもよい。すなわち、delta-MCSに関するkの値は、既存のCSIよりも小さい値であってもよい。このようなケースにおいて、delta-MCSを搬送するCSI報告についてk=-1が用いられ、delta-MCSを除いて、L1-RSRP又はL1-SINRを搬送するCSI報告についてk=1が用いられると考えてもよい。kとして取り得る-1は、新たに定義される値であってもよい。PriiCSI(y,k,c,s)の値が低いほど優先順位が高いと定義されるため、オプション4において、delta-MCSの優先順位は、既存のCSIの優先順位よりも高いと考えてもよい。既存のCSIは、L1-RSRP、L1-SINR、CQ、PMI、CRI、SSBRI、LI、RIなどを含んでもよい。 In Option 4, the value of k for delta-MCS can be -1. That is, the value of k for delta-MCS may be smaller than the existing CSI. In such cases, if k=−1 is used for CSI reports carrying delta-MCS and k=1 is used for CSI reports carrying L1-RSRP or L1-SINR, except for delta-MCS. You can think of it. -1, which can be taken as k, may be a newly defined value. Lower values of Pri iCSI (y,k,c,s) are defined as higher priority, so in Option 4, we consider the delta-MCS priority to be higher than the existing CSI priority. good too. Existing CSI may include L1-RSRP, L1-SINR, CQ, PMI, CRI, SSBRI, LI, RI, and so on.
 上述したように、UE200は、delta-MCSとCSI(以下、既存のCSI)とが時間的に重複する場合に、delta-MCSの優先順位に基づいて、delta-MCSの送信に関する特定制御を実行する。具体的には、UE200は、delta-MCSのPriiCSI(y,k,c,s)及び既存のCSIのPriiCSI(y,k,c,s)に基づいて、delta-MCS及び既存のCSIを多重するか、delta-MCS及び既存のCSIのいずれか1つをドロップするかを制御する。delta-MCS及び既存のCSIの多重、delta-MCS及び既存のCSIのいずれか1つのドロップは、delta-MCSの送信に関する特定制御の一例であると考えてもよい。 As described above, when delta-MCS and CSI (hereinafter, existing CSI) overlap in time, UE 200 executes specific control regarding transmission of delta-MCS based on the priority of delta-MCS. do. Specifically, based on delta-MCS Pri iCSI (y, k, c, s) and existing CSI Pri iCSI (y, k, c, s), UE 200 determines delta-MCS and existing CSI or drop any one of delta-MCS and existing CSI. Multiplexing of delta-MCS and existing CSI, and dropping any one of delta-MCS and existing CSI may be considered as examples of specific control regarding transmission of delta-MCS.
 (4)フィードバックの内容
 特に限定されるものではないが、フィードバック(delta-MCS)の内容は、以下に示す内容であってもよい。
(4) Contents of feedback Although not particularly limited, the contents of feedback (delta-MCS) may be the contents shown below.
 (4.1)第1例
 第1例において、フィードバックの内容は、所望のMCSを示す情報要素(MCS Index)を含んでもよい。MCS Indexとしては、3GPP TS38.214で定義されるMCS Index tableで定義されるMCS Indexが用いられてもよい。
(4.1) First Example In the first example, the feedback content may include an information element (MCS Index) indicating a desired MCS. As the MCS Index, an MCS Index defined in the MCS Index table defined in 3GPP TS38.214 may be used.
 具体的には、UE200は、MCS Indexで送信されたPDSCHのデコードに失敗した場合に、デコードに失敗したPDSCHで用いるMCS Indexよりも低いMCS Indexを所望のMCS Indexとしてフィードバックに含めてもよい。例えば、UE200は、MCS Index #5で送信されたPDSCHのデコードに失敗した場合に、MCS Index #0を含むフィードバックをNG-RAN20(gNB100)に送信してもよい。 Specifically, when the PDSCH transmitted with the MCS Index fails to be decoded, the UE 200 may include in the feedback an MCS Index lower than the MCS Index used for the PDSCH for which decoding failed as the desired MCS Index. For example, UE 200 may transmit feedback including MCS Index #0 to NG-RAN 20 (gNB 100) when decoding of PDSCH transmitted with MCS Index #5 fails.
 このような構成によれば、フィードバック(UCI)のビットサイズとして大きなビットサイズが要求されるが、フィードバックの内容(delta-MCS selection)の柔軟性が高い。すなわち、シグナリング負荷が相対的に大きいが、要求可能なMCSの柔軟性が高い。 With such a configuration, a large bit size is required for the feedback (UCI), but the content of the feedback (delta-MCS selection) is highly flexible. That is, the signaling load is relatively high, but the MCS flexibility that can be requested is high.
 (4.2)第2例
 第2例において、フィードバックの内容は、現在のMCSと所望のMCSとの差異を示す情報要素を含んでもよい。現在のMCSと所望のMCSとの差異は、3GPP TS38.214で定義されるMCS Index tableで定義されるMCS Indexの差異が用いられてもよい。
(4.2) Second example In a second example, the feedback content may include an information element indicating the difference between the current MCS and the desired MCS. The difference between the current MCS and the desired MCS may be the MCS Index difference defined in the MCS Index table defined in 3GPP TS38.214.
 具体的には、UE200は、MCS Indexで送信されたPDSCHのデコードに失敗した場合に、デコードに失敗したPDSCHで用いるMCS Indexと所望のMCS Indexとの差異をフィードバックに含めてもよい。所望のMCS Indexは、現在のMCS Indexよりも低くてもよい。例えば、UE200は、MCS Index #5で送信されたPDSCHのデコードに失敗し、所望のMCS IndexとしてMCS Index #2を要求する場合に、”-3”を含むフィードバックをNG-RAN20(gNB100)に送信してもよい。 Specifically, when the PDSCH transmitted with the MCS Index fails to be decoded, the UE 200 may include in the feedback the difference between the MCS Index used for the PDSCH whose decoding failed and the desired MCS Index. The desired MCS Index may be lower than the current MCS Index. For example, when UE 200 fails to decode PDSCH transmitted with MCS Index #5 and requests MCS Index #2 as the desired MCS Index, feedback including "-3" is sent to NG-RAN 20 (gNB 100). You may send.
 このような構成によれば、第1例と比べて、フィードバックの内容(delta-MCS selection)の柔軟性が同等であり、かつ、フィードバック(UCI)のビットサイズが小さい。すなわち、第1例と比べて、シグナリング負荷を抑制することができる。 According to such a configuration, the flexibility of the feedback content (delta-MCS selection) is equivalent to that of the first example, and the feedback (UCI) bit size is small. That is, the signaling load can be suppressed as compared with the first example.
 (4.3)第3例
 第3例において、フィードバックのために定義されるテーブルが導入されてもよい。フィードバックのために定義されるテーブルとしては、以下に示すオプションが考えられる。
(4.3) Third Example In a third example, a table defined for feedback may be introduced. The following options are possible for the tables defined for feedback.
 第1に、フィードバックの内容は、所望のMCSを示す情報要素であり、所望のMCSは、フィードバックのために定義されるテーブルの中から選択されてもよい。図6に示すように、フィードバックのために定義されるテーブルは、フィードバックで要求することが可能なMCS IndexとIndexとを対応付けるテーブルであってもよい。 First, the content of feedback is an information element indicating the desired MCS, and the desired MCS may be selected from a table defined for feedback. As shown in FIG. 6, the table defined for feedback may be a table that associates MCS Index and Index that can be requested in feedback.
 このような構成によれば、第1例と比べて、フィードバックの内容(delta-MCS selection)の柔軟性が低いものの、フィードバック(UCI)のビットサイズが小さい。すなわち、第1例と比べて、シグナリング負荷を抑制することができる。 According to such a configuration, compared to the first example, the feedback content (delta-MCS selection) is less flexible, but the feedback (UCI) bit size is smaller. That is, the signaling load can be suppressed as compared with the first example.
 第2に、フィードバックの内容は、現在のMCSと所望のMCSとの差異(以下、Delta value)と対応付けられたインデックスであり、Delta valueと対応付けられたインデックスは、フィードバックのために定義されるテーブルの中から選択されてもよい。 Second, the content of the feedback is an index associated with the difference between the current MCS and the desired MCS (hereinafter referred to as delta value), and the index associated with the delta value is defined for feedback. may be selected from among the tables
 このような構成によれば、第2例と比べて、フィードバックの内容(delta-MCS selection)の柔軟性が低いものの、フィードバック(UCI)のビットサイズが小さい。すなわち、第2例と比べて、シグナリング負荷を抑制することができる。 According to such a configuration, compared to the second example, the feedback content (delta-MCS selection) is less flexible, but the feedback (UCI) bit size is smaller. That is, the signaling load can be suppressed as compared with the second example.
 (5)作用及び効果
 実施形態では、UE200は、delta-MCSと既存のCSIとが時間的に重複する場合に、delta-MCSの優先順位に基づいて、delta-MCSの送信に関する特定制御を実行する。具体的には、delta-MCSがCSI報告として報告される前提下において、delta-MCSのPriiCSI(y,k,c,s)を定義するkの値を明確化することによって、delta-MCSを適切に送信することができる。
(5) Actions and Effects In the embodiment, when delta-MCS and existing CSI overlap in time, UE 200 executes specific control regarding transmission of delta-MCS based on the priority of delta-MCS. do. Specifically, under the premise that delta-MCS is reported as a CSI report, by clarifying the value of k that defines Pri iCSI (y, k, c, s) of delta-MCS, delta-MCS can be sent properly.
 (6)その他の実施形態
 以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(6) Other Embodiments Although the contents of the present invention have been described in accordance with the embodiments, it should be understood that the present invention is not limited to these descriptions and that various modifications and improvements are possible. self-evident to the trader.
 上述した開示では、delta-MCSが新たに導入されるため、既存のCSIと区別しているが、delta-MCSは、CSIの一つであると考えてもよい。 In the above disclosure, delta-MCS is newly introduced, so it is distinguished from existing CSI, but delta-MCS may be considered one type of CSI.
 上述した開示では特に触れていないが、上述したオプション1~4のいずれを適用するかは、上位レイヤパラメータによって設定されてもよく、UE 200の能力情報(UE Capability)によって報告されてもよく、無線通信システム10で予め定められてもよい。さらに、上述したオプション1~4のいずれを適用するかは、上位レイヤパラメータ及びUE Capabilityによって決定されてもよい。このようなケースにおいて、UE Capabilityは、オプション1~4のいずれに対応しているかを示す情報要素を含んでもよい。 Although not specifically mentioned in the above disclosure, which of the above options 1 to 4 is applied may be set by higher layer parameters, and may be reported by UE 200 capability information (UE Capability), It may be predetermined in the wireless communication system 10. Furthermore, which of the options 1 to 4 mentioned above is applied may be determined by higher layer parameters and UE Capabilities. In such cases, the UE Capability may contain an information element indicating which of options 1-4 is supported.
 上述した開示では特に触れていないが、UE Capabilityは、CSI報告としてdelta-MCSを報告する機能をサポートしているか否かを示す情報要素を含んでもよい。 Although not specifically mentioned in the disclosure above, the UE Capability may include an information element indicating whether or not the function of reporting delta-MCS as CSI reporting is supported.
 上述した開示では、特定条件は、PDSCHをスケジュールするDCIによってreserved MCS Indexが指定されることである。しかしながら、上述した開示はこれに限定されるものではない。特定条件は、delta-DCIによって要求されるMCI Indexがreserved MCS Indexとなり得ることであってもよい。このようなケースにおいて、特定制御は、reserved MCS Indexが要求されないようにdelta-DCIの値を決定することであってもよい。例えば、Table 1, 3においてDCIによって指定されたMCI Indexが28である場合において、PDSCHに基づいてdelta-DCIが”-1”であると決定された場合に、UE200は、delta-DCIとして”-1”を送信せずに特定delta-DCIとして”0”を送信する特定制御を実行してもよい。同様に、Table 2においてDCIによって指定されたMCI Indexが29である場合において、PDSCHに基づいてdelta-DCIが”-1”であると決定された場合に、UE200は、delta-DCIとして”-1”を送信せずに特定delta-DCIとして”0”を送信する特定制御を実行してもよい。 In the above disclosure, the specific condition is that the reserved MCS Index is specified by the DCI that schedules the PDSCH. However, the above disclosure is not so limited. A specific condition may be that the MCI Index required by delta-DCI can be a reserved MCS Index. In such cases, specific control may be to determine the value of delta-DCI such that no reserved MCS Index is required. For example, when the MCI Index specified by DCI in Tables 1 and 3 is 28, if delta-DCI is determined to be "-1" based on PDSCH, UE 200 uses " A specific control may be performed to send "0" as a specific delta-DCI without sending "-1". Similarly, when the MCI Index specified by DCI in Table 2 is 29, if delta-DCI is determined to be "-1" based on PDSCH, UE 200 sets "- A specific control may be performed to send "0" as a specific delta-DCI without sending "1".
 上述した開示では、フィードバックの内容は、所望のMCSを明示的に示す情報要素(Delta-MCS)を含む。しかしながら、上述した開示はこれに限定されるものではない。フィードバックの内容は、所望のMCSを暗黙的に示す情報要素を含んでもよい。このような情報要素は、MCSと関連付けられ得るCQI(Channel Quality Indicator)であってもよい。CQIとしては、3GPP TS38.214で定義されるCQI tableで指定可能なCQIが用いられてもよい。すなわち、フィードバック内容は、所望のCQIを明示的に示す情報要素(Delta-CQI)を含んでもよい。このようなケースにおいて、MCSは、CQIと読み替えられ、MCS Indexは、CQI Indexと読み替えられてもよい。 In the above disclosure, the feedback content includes an information element (Delta-MCS) that explicitly indicates the desired MCS. However, the above disclosure is not so limited. The content of the feedback may include information elements that implicitly indicate the desired MCS. Such an information element may be a CQI (Channel Quality Indicator) that can be associated with MCS. A CQI that can be specified in the CQI table defined in 3GPP TS38.214 may be used as the CQI. That is, the feedback content may include an information element (Delta-CQI) that explicitly indicates the desired CQI. In such a case, MCS may be read as CQI, and MCS Index may be read as CQI Index.
 上述した開示では、フィードバックの内容は、現在のMCSと所望のMCSとの差異を明示的に示す情報要素(Delta-MCS)を含む。しかしながら、上述した開示はこれに限定されるものではない。フィードバックの内容は、現在のMCSと所望のMCSとの差異を暗黙的に示す情報要素を含んでもよい。このような情報要素は、MCSと関連付けられ得るCQIであってもよい。CQIとしては、3GPP TS38.214で定義されるCQI tableで指定可能なCQIが用いられてもよい。すなわち、フィードバック内容は、現在のCQIと所望のCQIとの差異を明示的に示す情報要素(Delta-CQI)を含んでもよい。このようなケースにおいて、MCSは、CQIと読み替えられ、MCS Indexは、CQI Indexと読み替えられてもよい。 In the above disclosure, the feedback content includes an information element (Delta-MCS) that explicitly indicates the difference between the current MCS and the desired MCS. However, the above disclosure is not so limited. The feedback content may include information elements that implicitly indicate the difference between the current MCS and the desired MCS. Such an information element may be a CQI that may be associated with MCS. A CQI that can be specified in the CQI table defined in 3GPP TS38.214 may be used as the CQI. That is, the feedback content may include an information element (Delta-CQI) that explicitly indicates the difference between the current CQI and the desired CQI. In such a case, MCS may be read as CQI, and MCS Index may be read as CQI Index.
 上述した開示では、フィードバックの内容は、現在のMCSと所望のMCSとの差異と明示的に対応付けられた情報要素(Delta-MCS)を含む。しかしながら、上述した開示はこれに限定されるものではない。フィードバックの内容は、現在のMCSと所望のMCSとの差異と暗黙的に対応付けられた情報要素を含んでもよい。このような情報要素は、MCSと関連付けられ得るCQIであってもよい。CQIとしては、3GPP TS38.214で定義されるCQI tableで指定可能なCQIが用いられてもよい。すなわち、フィードバック内容は、現在のCQIと所望のCQIとの差異と明示的に対応付けられた情報要素(Delta-CQI)を含んでもよい。このようなケースにおいて、MCSは、CQIと読み替えられ、MCS Indexは、CQI Indexと読み替えられてもよい。 In the above disclosure, the feedback content includes an information element (Delta-MCS) explicitly associated with the difference between the current MCS and the desired MCS. However, the above disclosure is not so limited. The feedback content may include information elements implicitly associated with the difference between the current MCS and the desired MCS. Such an information element may be a CQI that may be associated with MCS. A CQI that can be specified in the CQI table defined in 3GPP TS38.214 may be used as the CQI. That is, the feedback content may include an information element (Delta-CQI) explicitly associated with the difference between the current CQI and the desired CQI. In such a case, MCS may be read as CQI, and MCS Index may be read as CQI Index.
 上述した開示では、フィードバックのために定義されるテーブルは、MCSに関するテーブルである。しかしながら、上述した開示はこれに限定されるものではない。フィードバックのために定義されるテーブルは、CQIに関するテーブルであってもよい。例えば、フィードバックの内容は、所望のCQI Indexと対応付けられたIndexを含んでもよく、現在のCQIと所望のCQIとの差異と対応付けられたIndexを含んでもよい。このようなケースにおいて、MCSは、CQIと読み替えられ、MCS Indexは、CQI Indexと読み替えられてもよい。 In the above disclosure, the table defined for feedback is the table for MCS. However, the above disclosure is not so limited. The table defined for feedback may be a table for CQI. For example, the feedback content may include an Index associated with the desired CQI Index, or may include an Index associated with the difference between the current CQI and the desired CQI. In such a case, MCS may be read as CQI, and MCS Index may be read as CQI Index.
 上述した開示では特に触れていないが、フィードバックの内容として、MCSに関するフィードバック(Delta-MCS)及びCQIに関するフィードバック(Delta-CQI)のいずれを用いるかについては、上位レイヤパラメータによって設定されてもよく、UE 200の能力情報(UE Capability)によって報告されてもよく、無線通信システム10で予め定められてもよい。さらに、上述したオプションのいずれを適用するかは、上位レイヤパラメータ及びUE Capabilityによって決定されてもよい。 Although not particularly mentioned in the above disclosure, as the content of the feedback, whether to use feedback on MCS (Delta-MCS) or feedback on CQI (Delta-CQI) may be set by a higher layer parameter, It may be reported by UE 200 capability information (UE Capability), or may be predetermined in the wireless communication system 10 . Furthermore, which of the above options to apply may be determined by higher layer parameters and UE Capabilities.
 上述した実施形態の説明に用いたブロック構成図(図4及び図5)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 The block configuration diagrams (FIGS. 4 and 5) used to describe the above-described embodiment show blocks in functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Also, the method of implementing each functional block is not particularly limited. That is, each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼ばれる。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't For example, a functional block (component) that performs transmission is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
 さらに、上述したgNB100及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図7は、当該装置のハードウェア構成の一例を示す図である。図7に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Furthermore, the gNB 100 and UE 200 (applicable device) described above may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 7 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 7, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be read as a circuit, device, unit, or the like. The hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
 当該装置の各機能ブロック(図4参照)は、当該コンピュータ装置の何れかのハードウェア要素、又は当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIG. 4) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 A processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. Furthermore, the above-described various processes may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like. Storage 1003 may also be referred to as an auxiliary storage device. The recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD). may consist of
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc. A part or all of each functional block may be implemented by the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 In addition, notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or a combination thereof, and RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)) , IEEE 802.16 (WiMAX®), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom. may be applied to Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 A specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases. In a network consisting of one or more network nodes with a base station, various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to). Although the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、又は追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. In addition, the notification of predetermined information (for example, notification of “being X”) is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, the channel and/or symbols may be signaling. A signal may also be a message. A component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indexed.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters described above are not restrictive names in any respect. Further, the formulas, etc., using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (e.g., PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various designations assigned to these various channels and information elements are in no way restrictive designations. isn't it.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", " Terms such as "carrier", "component carrier" may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
 「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The term "cell" or "sector" refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like. The mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same). For example, communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the mobile station may have the functions that the base station has. Also, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be read as side channels.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。 Similarly, a mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions that the mobile station has.
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。 A radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe.
 サブフレームはさらに時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A subframe may further consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
 ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 A numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than a normal TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 In addition, long TTI (for example, normal TTI, subframe, etc.) may be read as TTI having a time length exceeding 1 ms, and short TTI (for example, shortened TTI, etc.) is less than the TTI length of long TTI and 1 ms. A TTI having a TTI length greater than or equal to this value may be read as a replacement.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。 Also, the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long. One TTI, one subframe, etc. may each be configured with one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are physical resource blocks (PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (Resource Element: RE). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP) (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be configured in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The structures such as radio frames, subframes, slots, minislots and symbols described above are only examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof, mean any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being "connected" or "coupled." Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in this disclosure, two elements are defined using at least one of one or more wires, cables, and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and optical (both visible and invisible) regions, and the like.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configuration of each device described above may be replaced with "unit", "circuit", "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first", "second", etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein, or that the first element must precede the second element in any way.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may encompass a wide variety of actions. "Judgement" and "determination" are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as "judged" or "determined", and the like. Also, "judgment" and "determination" are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment" or "decision" has been made. In addition, "judgment" and "decision" are considered to be "judgment" and "decision" by resolving, selecting, choosing, establishing, comparing, etc. can contain. In other words, "judgment" and "decision" may include considering that some action is "judgment" and "decision". Also, "judgment (decision)" may be read as "assuming", "expecting", "considering", or the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be practiced with modifications and variations without departing from the spirit and scope of the present disclosure as defined by the claims. Accordingly, the description of the present disclosure is for illustrative purposes and is not meant to be limiting in any way.
 10 無線通信システム
 20 NG-RAN
 100 gNB
 110 受信部
 120 送信部
 130 制御部
 200 UE
 210 無線信号送受信部
 220 アンプ部
 230 変復調部
 240 制御信号・参照信号処理部
 250 符号化/復号部
 260 データ送受信部
 270 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Radio communication system 20 NG-RAN
100 gNB
110 receiver 120 transmitter 130 controller 200 UE
210 radio signal transmission/reception unit 220 amplifier unit 230 modulation/demodulation unit 240 control signal/reference signal processing unit 250 encoding/decoding unit 260 data transmission/reception unit 270 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Claims (5)

  1.  下りリンクチャネルで用いる変調方式の選択で用いるフィードバックを送信する送信部と、
     前記フィードバックとチャネル状態情報とが時間的に重複する場合に、前記フィードバックの優先順位に基づいて、前記フィードバックの送信に関する特定制御を実行する制御部と、を備える、端末。
    a transmitter that transmits feedback used in selecting a modulation scheme used in a downlink channel;
    and a control unit that performs specific control on transmission of the feedback based on the priority of the feedback when the feedback and channel state information overlap in time.
  2.  前記フィードバックの優先順位は、前記チャネル状態情報の優先順位よりも低い、請求項1に記載の端末。 The terminal according to claim 1, wherein the priority of the feedback is lower than the priority of the channel state information.
  3.  前記フィードバックの優先順位は、前記チャネル状態情報の優先順位よりも高い、請求項1に記載の端末。 The terminal according to claim 1, wherein the priority of the feedback is higher than the priority of the channel state information.
  4.  端末と基地局とを備え、
     前記端末は、
      下りリンクチャネルで用いる変調方式の選択で用いるフィードバックを送信する送信部と、
      前記フィードバックとチャネル状態情報とが時間的に重複する場合に、前記フィードバックの優先順位に基づいて、前記フィードバックの送信に関する特定制御を実行する制御部と、を備える、無線通信システム。
    comprising a terminal and a base station,
    The terminal is
    a transmitter that transmits feedback used in selecting a modulation scheme used in a downlink channel;
    a control unit that performs specific control on transmission of the feedback based on priority of the feedback when the feedback and channel state information overlap in time.
  5.  下りリンクチャネルで用いる変調方式の選択で用いるフィードバックを送信するステップと、
     前記フィードバックとチャネル状態情報とが時間的に重複する場合に、前記フィードバックの優先順位に基づいて、前記フィードバックの送信に関する特定制御を実行するステップ、を備える、無線通信方法。
    transmitting feedback for use in selecting a modulation scheme for use on a downlink channel;
    and performing a specific control on transmission of the feedback based on the priority of the feedback when the feedback and channel state information overlap in time.
PCT/JP2022/031356 2021-08-27 2022-08-19 Terminal, wireless communication system, and wireless communication method WO2023026975A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280056505.2A CN117859371A (en) 2021-08-27 2022-08-19 Terminal, wireless communication system, and wireless communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021138984 2021-08-27
JP2021-138984 2021-08-27

Publications (1)

Publication Number Publication Date
WO2023026975A1 true WO2023026975A1 (en) 2023-03-02

Family

ID=85322160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031356 WO2023026975A1 (en) 2021-08-27 2022-08-19 Terminal, wireless communication system, and wireless communication method

Country Status (2)

Country Link
CN (1) CN117859371A (en)
WO (1) WO2023026975A1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Discussion on CSI feedback enhancements for URLLC", 3GPP DRAFT; R1-2107444, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 7 August 2021 (2021-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052038380 *
MODERATOR (INTERDIGITAL, INC.): "Feature lead summary #3 on CSI feedback enhancements for enhanced URLLC/IIoT", 3GPP DRAFT; R1-2108449, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 23 August 2021 (2021-08-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052042745 *

Also Published As

Publication number Publication date
CN117859371A (en) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2022162749A1 (en) Terminal, base station, and wireless communication method
WO2023026975A1 (en) Terminal, wireless communication system, and wireless communication method
WO2023026941A1 (en) Terminal, wireless communication system, and wireless communication method
WO2023026968A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022244496A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022244497A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022244504A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022249749A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022239078A1 (en) Terminal, radio communication system, and radio communication method
WO2022190289A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022215272A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2022249721A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022190287A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022215271A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022244097A1 (en) Terminal and wireless communication method
WO2022190377A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022195787A1 (en) Terminal, wireless communication system and wireless communication method
WO2022185499A1 (en) Terminal, base station, wireless communication system, and wireless communication method
WO2022201462A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022162745A1 (en) Terminal, base station, and wireless communication method
WO2022162743A1 (en) Terminal, base station, and wireless communication method
WO2022162742A1 (en) Terminal, base station, and wireless communication method
WO2022162744A1 (en) Terminal, base station, and wireless communication method
WO2022162747A1 (en) Terminal, base station, and wireless communication method
WO2022220136A1 (en) Terminal, wireless communication system, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861263

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280056505.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE