WO2023026852A1 - 非水系電解質及び非水電解質二次電池 - Google Patents

非水系電解質及び非水電解質二次電池 Download PDF

Info

Publication number
WO2023026852A1
WO2023026852A1 PCT/JP2022/030426 JP2022030426W WO2023026852A1 WO 2023026852 A1 WO2023026852 A1 WO 2023026852A1 JP 2022030426 W JP2022030426 W JP 2022030426W WO 2023026852 A1 WO2023026852 A1 WO 2023026852A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
negative electrode
group
secondary battery
active material
Prior art date
Application number
PCT/JP2022/030426
Other languages
English (en)
French (fr)
Inventor
脩平 金里
貴一 廣瀬
祐介 大沢
歩 清森
翔太郎 青木
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020247005870A priority Critical patent/KR20240045236A/ko
Priority to CN202280057160.2A priority patent/CN117836995A/zh
Publication of WO2023026852A1 publication Critical patent/WO2023026852A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to non-aqueous electrolytes and non-aqueous electrolyte secondary batteries.
  • lithium-ion secondary batteries are highly expected because they are small and easy to increase in capacity, and they can obtain higher energy density than lead-acid batteries and nickel-cadmium batteries.
  • the lithium-ion secondary battery described above includes a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte.
  • additives are used in the non-aqueous electrolyte for the purpose of improving the stability and electrical characteristics of the non-aqueous electrolyte secondary battery.
  • additives include 1,3-propanesultone (see, for example, Patent Document 1), vinylethylene carbonate (see, for example, Patent Document 2), vinylene carbonate (see, for example, Patent Document 3), and fluoroethylene carbonate (FEC). (see, for example, Patent Document 4), etc. have been proposed.
  • SEI Solid Electrolyte Interphase
  • a non-aqueous electrolyte secondary battery using a silicon-based negative electrode material or the like repeatedly forms and decomposes an SEI film containing Li on the silicon surface layer in each cycle by repeating charging and discharging.
  • the surface area of the negative electrode material increases and becomes unstable, and the Li used for forming the SEI film is constantly replenished from the positive electrode side, leading to an increase in potential. This significantly reduces safety.
  • the present invention has been made in view of the above problems, and aims to provide a non-aqueous electrolyte and a non-aqueous electrolyte secondary battery that are highly safe after charging and discharging.
  • the present invention provides a non-aqueous electrolyte used in a non-aqueous electrolyte secondary battery, wherein the non-aqueous electrolyte contains a silane compound represented by the following general formula (1).
  • a non-aqueous electrolyte characterized by: Si(R 1 ) l (R 2 ) m (R 3 ) 4-lm (1)
  • R 1 is a heteroaryl group having 4 to 20 carbon atoms
  • R 2 is an alkenyl group or alkynyl group having 2 to 20 carbon atoms
  • R 3 is an alkyl group having 1 to 20 carbon atoms.
  • l and m each independently represents an integer of 1 to 3 and is an integer that satisfies 2 ⁇ l + m ⁇ 4.
  • the silane compound contained in the non-aqueous electrolyte of the present invention contains a heteroaryl group, and such a heteroaryl group improves the decomposability and reactivity after decomposition of the silane compound.
  • the silane compound decomposed in such a manner forms a high-quality film (SEI film) on the positive electrode and the negative electrode, so that the reactivity of the surface of the active material to the electrolyte can be suppressed.
  • SEI film high-quality film
  • the energy level of the lowest unoccupied molecular orbital of the silane compound is preferably -0.40 eV or less.
  • the decomposability of the silane compound is improved, and a good film (SEI film) is easily formed.
  • the energy level of the highest occupied molecular orbital of the silane compound is -8.8 eV or higher.
  • the decomposability of the silane compound is improved, and a good film (SEI film) is easily formed.
  • the content of the silane compound contained in the non-aqueous electrolyte is preferably 0.1% by mass to 5.0% by mass.
  • SEI film a sufficient film
  • SEI film a sufficient film
  • SEI film the reactivity of the surface of the active material is easily suppressed.
  • SEI film it is easy to prevent an increase in resistance due to excessive film (SEI film) formation.
  • the present invention also provides a non-aqueous electrolyte secondary battery comprising the above-described non-aqueous electrolyte together with a positive electrode and a negative electrode.
  • non-aqueous electrolyte secondary battery includes the non-aqueous electrolyte of the present invention, it can be a non-aqueous electrolyte secondary battery with high safety after charging and discharging.
  • the negative electrode active material particles in the negative electrode are preferably silicon oxide particles coated with a carbon layer. Furthermore, in this case, the silicon oxide particles preferably contain Li 2 SiO 3 and the Li 2 SiO 3 is crystalline.
  • the non-aqueous electrolyte of the present invention can be used in a secondary battery using silicon oxide particles coated with a carbon layer as negative electrode active material particles.
  • such crystalline Li 2 SiO 3 can be made difficult to be eluted into the water-based slurry.
  • the silane compound contained in the non-aqueous electrolyte of the present invention has a heteroaryl group, and such a heteroaryl group improves the decomposability and reactivity after decomposition of the silane compound. Since the decomposed silane compound forms a high-quality film (SEI film) on the positive electrode and the negative electrode, it is possible to suppress the reactivity of the surface of the active material with the electrolytic solution. As a result, by using such a non-aqueous electrolyte in a secondary battery, a non-aqueous electrolyte secondary battery with high safety after charging and discharging can be obtained.
  • SEI film high-quality film
  • the inventors of the present invention have made intensive studies to achieve the above object, and as a result, have found that the above object can be achieved by introducing a heteroaryl group into a silane compound and further introducing an alkenyl group or an alkynyl group. and completed the present invention.
  • the present invention is a non-aqueous electrolyte used in a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte containing a silane compound represented by the following general formula (1).
  • R 1 is a heteroaryl group having 4 to 20 carbon atoms
  • R 2 is an alkenyl group or alkynyl group having 2 to 20 carbon atoms
  • R 3 is an alkyl group having 1 to 20 carbon atoms.
  • l and m each independently represents an integer of 1 to 3 and is an integer that satisfies 2 ⁇ l + m ⁇ 4.
  • the non-aqueous electrolyte of the present invention is a non-aqueous electrolyte used in a non-aqueous electrolyte secondary battery, and is a silane compound represented by the following general formula (1) (hereinafter also referred to as "compound (1)" ).
  • compound (1) a silane compound represented by the following general formula (1) (hereinafter also referred to as "compound (1)” ).
  • R 1 is a heteroaryl group having 4 to 20 carbon atoms, preferably 4 to 10 carbon atoms, more preferably 4 to 6 carbon atoms.
  • heteroaryl groups for R 1 include 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazyl, 2-pyrimidyl, 4-pyrimidyl, 5-pyrimidyl and 3-pyridazyl.
  • a 2-pyridyl group, a 2-furyl group, and a 2-thienyl group are preferable from the viewpoint of securing the decomposability of the silane compound and the reactivity after decomposition.
  • Such heteroaryl groups improve the decomposability of silane compounds and the reactivity after decomposition. Since the decomposed silane compound forms a high-quality film (SEI film) on the positive electrode and the negative electrode, it is considered that the reactivity of the surface of the active material with respect to the electrolytic solution is suppressed.
  • SEI film high-quality film
  • R 2 is an alkenyl or alkynyl group having 2 to 20 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms.
  • alkenyl groups for R 2 include vinyl, n-propenyl, n-butenyl, n-pentenyl, n-hexenyl, n-heptenyl, n-octenyl, n-nonenyl, n - linear alkenyl groups such as decenyl group, n-undecenyl group and n-dodecenyl group; branched alkenyl groups such as
  • a vinyl group and an n-propenyl group are preferable from the viewpoint of ensuring the decomposability of the silane compound and the reactivity after decomposition.
  • alkynyl groups for R 2 include ethynyl, 1-propynyl, 1-butynyl, 1-pentynyl, 1-hexynyl, 1-heptynyl, 1-octynyl, 1-nonynyl, 1 -decynyl group, 1-undecynyl group, linear alkynyl group such as 1-dodecynyl group; 3-methyl-1-butynyl group, 3,3-dimethyl-1-butynyl group, 3-methyl-1-pentynyl group, branched alkynyl groups such as 4-methyl-1-pentynyl group, 3,3-dimethyl-1-pentynyl group, 3,4-dimethyl-1-pentynyl group and 4,4-dimethyl-1-pentynyl group; .
  • an ethynyl group, a 1-propynyl group, and a 1-butynyl group are preferable from the viewpoint of securing the decomposability of the silane compound and the reactivity after decomposition.
  • alkenyl groups or alkynyl groups improve the decomposability of silane compounds and the reactivity after decomposition. Since the decomposed silane compound forms a high-quality film (SEI film) on the positive electrode and the negative electrode, it is considered that the reactivity of the surface of the active material with respect to the electrolytic solution is suppressed.
  • SEI film high-quality film
  • R 3 is an alkyl group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms.
  • alkyl groups for R 3 include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl and n-nonyl.
  • straight-chain alkyl groups such as group, n-decyl group, n-undecyl group, n-dodecyl group; isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, isopentyl group, neopentyl group, isohexyl group, isoheptyl branched alkyl groups such as radicals, isooctyl groups, tert-octyl groups, isononyl groups, isodecyl groups and isoundecyl groups.
  • a methyl group is preferable from the viewpoint that there is little steric hindrance and the reaction between silane compounds proceeds easily.
  • compound (1) examples include 2-pyridyltrivinylsilane, di(2-pyridyl)divinylsilane, tri(2-pyridyl)vinylsilane, methyldivinyl-2-pyridylsilane, di(2-pyridyl)methylvinylsilane, 2-furyltrivinylsilane, di(2-furyl)divinylsilane, tri(2-furyl)vinylsilane, divinyl-2-furylmethylsilane, di(2-furyl)methylvinylsilane, 2-thienyltrivinylsilane, di(2- thienyl)divinylsilane, tri(2-thienyl)vinylsilane, divinylmethyl-2-thienylsilane, di(2-thienyl)methylvinylsilane, 3-pyridyltrivinylsilane, di(3-pyridyl)
  • the silane compound represented by the above general formula (1) can be obtained, for example, by reacting an organometallic reagent prepared from furan and n-butyllithium with vinylhalosilane.
  • the content of the compound (1) in the non-aqueous electrolyte is preferably 0.1% by mass to 5.0% by mass, more preferably 0.1% by mass to 4.0% by mass, and still more preferably 0% by mass. .1 mass % to 2.0 mass %. With such a content, a sufficient film (SEI film) is formed, and the reactivity of the surface of the active material is easily suppressed. In addition, it is easy to prevent an increase in resistance due to excessive film (SEI film) formation.
  • the lowest unoccupied molecular orbital (LUMO) energy level of the silane compound (compound (1)) is preferably ⁇ 0.40 eV or less, more preferably ⁇ 0.60 eV or less, further preferably ⁇ 0.70 eV or less, and ⁇ 0.85 eV.
  • the LUMO energy level is related to the reductive decomposability of the silane compound. At such an energy level, the decomposability of the silane compound is improved, and a good quality film (SEI film) is easily formed.
  • the highest occupied molecular orbital (HOMO) energy level of the silane compound is preferably ⁇ 8.8 eV or higher, more preferably ⁇ 8.0 eV or higher, even more preferably ⁇ 7.5 eV or higher, and particularly preferably ⁇ 7.0 eV or higher.
  • the HOMO energy level is related to the oxidative decomposability of the silane compound. At such an energy level, the decomposability of the silane compound is improved, and a good quality film (SEI film) is easily formed.
  • the energy levels of the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) can be obtained from quantum chemical calculations. Gaussian, GAMESS, or the like can be used as software for quantum chemical calculation.
  • the density functional method is preferably used from the viewpoint of calculation accuracy and calculation cost.
  • B3LYP is preferably used as the exchange-correlation functional, and 6-311+G(d, p) is preferably used as the basis function.
  • Non-aqueous electrolyte secondary battery [Non-aqueous electrolyte]
  • the non-aqueous electrolyte of the present invention has an electrolyte salt dissolved in a non-aqueous solvent, contains the compound (1), and may contain other materials as additives. At least part of the active material layer or the separator is impregnated with a non-aqueous electrolyte.
  • non-aqueous solvents examples include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, 1,2-dimethoxyethane and tetrahydrofuran.
  • ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate from the viewpoint of obtaining better properties.
  • the dissociation and ion mobility of the electrolyte salt are improved. more superior characteristics can be obtained.
  • the solvent contains at least one of a halogenated chain carbonate or a halogenated cyclic carbonate.
  • a halogenated chain carbonate is a chain carbonate having halogen as a constituent element (at least one hydrogen is substituted with halogen).
  • a halogenated cyclic carbonate is a cyclic carbonate having halogen as a constituent element (that is, at least one hydrogen is substituted with halogen).
  • the type of halogen is not particularly limited, but fluorine is preferable from the viewpoint of forming a better quality film than other halogens. Moreover, the number of halogens is preferably as high as possible in order to obtain a more stable film and to reduce the decomposition reaction of the electrolytic solution.
  • halogenated chain carbonates include fluoromethylmethyl carbonate and difluoromethylmethyl carbonate.
  • Halogenated cyclic carbonates include 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one.
  • the electrolyte salt can include, for example, any one or more of light metal salts such as lithium salts.
  • lithium salts include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).
  • the content of the electrolyte salt is preferably 0.5 mol/kg or more and 2.5 mol/kg or less, more preferably 0.8 mol/kg or more and 2.0 mol with respect to the non-aqueous solvent. /kg or less, more preferably 0.8 mol/kg or more and 1.5 mol/kg or less.
  • the non-aqueous electrolyte of the present invention can contain unsaturated carbon-bonded cyclic carbonate, sultone (cyclic sulfonate) and acid anhydride as additional additives in addition to compound (1).
  • Unsaturated carbon-bonded cyclic ester carbonate can be included from the viewpoint of stable film formation on the surface of the negative electrode during charging and discharging and suppression of decomposition reaction of the non-aqueous electrolyte. Examples thereof include vinylene carbonate and vinylethylene carbonate.
  • sultone can be included from the viewpoint of improving the chemical stability of the battery, and examples thereof include propane sultone and propene sultone.
  • an acid anhydride can be included from the viewpoint of improving the chemical stability of the electrolyte, and examples thereof include propanedisulfonic anhydride.
  • the non-aqueous electrolyte secondary battery of the present invention includes a positive electrode and a negative electrode in addition to the non-aqueous electrolyte.
  • the positive electrode has, for example, a positive electrode active material layer on both sides or one side of the positive electrode current collector.
  • the positive electrode current collector is made of a conductive material such as aluminum.
  • the positive electrode active material layer contains one or more of positive electrode materials capable of intercalating and deintercalating lithium ions.
  • the binder and the conductive aid for example, the same materials as the negative electrode binder and the negative electrode conductive aid described later can be used.
  • a lithium-containing compound such as a composite oxide containing lithium and a transition metal element or a phosphate compound containing lithium and a transition metal element compound.
  • Preferred transition metal elements are nickel, iron, manganese, and cobalt
  • the lithium-containing compound is a compound containing at least one of these transition metal elements.
  • the chemical formula of the tium-containing compound is represented by, for example, LixM1O2 or LiyM2PO4 .
  • M1 and M2 represent at least one transition metal element.
  • the values of x and y vary depending on the state of charge and discharge of the battery, but are generally numbers that satisfy 0.05 ⁇ x ⁇ 1.10 and 0.05 ⁇ y ⁇ 1.10.
  • the composite oxide containing lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), lithium nickel cobalt composite oxide, lithium Nickel-cobalt composite oxide (lithium-nickel-cobalt-aluminum composite oxide; NCA, lithium-nickel-cobalt-manganese composite oxide + NCM) and the like.
  • the phosphate compound containing lithium and a transition metal element include a lithium iron phosphate compound (LiFePO 4 ) and a lithium iron manganese phosphate compound (LiFe 1-u Mn u PO 4 , where 0 ⁇ u ⁇ 1) and the like.
  • LiFePO 4 lithium iron phosphate compound
  • LiFe 1-u Mn u PO 4 lithium iron manganese phosphate compound
  • the negative electrode has, for example, a structure in which a negative electrode active material layer is provided on a negative electrode current collector. This negative electrode active material layer may be provided on both sides or only one side of the negative electrode current collector.
  • the negative electrode current collector is made of an excellent conductive material and has high mechanical strength.
  • conductive materials that can be used for the negative electrode current collector include copper (Cu) and nickel (Ni). This conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).
  • the negative electrode current collector preferably contains carbon (C) and sulfur (S) in addition to the copper (Cu) and nickel (Ni).
  • the inclusion of the above element in the current collector has the effect of suppressing deformation of the electrode including the current collector.
  • the contents of the above-described contained elements are not particularly limited, they are preferably 100 ppm by mass or less from the viewpoint of obtaining a higher effect of suppressing deformation. Cycle characteristics can be further improved by such a deformation suppression effect.
  • the surface of the negative electrode current collector may or may not be roughened.
  • roughened negative electrode current collectors include metal foils subjected to electrolytic treatment, embossing treatment, or chemical etching treatment.
  • non-roughened negative electrode current collector include rolled metal foil.
  • the negative electrode active material layer contains a negative electrode active material that can occlude (insert) and release lithium ions. may contain.
  • the negative electrode active material includes negative electrode active material particles.
  • negative electrode active material particles include carbon compound particles (carbon-based negative electrode active material), silicon compound particles (silicon-based negative electrode active material), germanium compound particles (germanium-based negative electrode active material), tin compound particles (tin-based negative electrode active material), and the like.
  • carbon compound particles (carbon-based negative electrode active material) and silicon compound particles (silicon-based negative electrode active material) are preferably included, more preferably silicon compound particles (silicon-based negative electrode active material) are included, and oxygen is included. It is particularly preferred to include silicon compound particles containing a silicon compound containing a silicon compound.
  • the negative electrode active material includes carbon compound particles (carbon-based negative electrode active material), silicon compound particles (silicon-based negative electrode active material), germanium compound particles (germanium-based negative electrode active material), tin compound particles (tin-based negative electrode active material), and the like.
  • x which is the composition ratio of silicon and oxygen constituting SiO x , which is a silicon compound, is preferably a number that satisfies 0.8 ⁇ x ⁇ 1.2. .
  • the composition of SiO x is closer to 1, because high cycle characteristics can be obtained.
  • the composition of the silicon compound in the present invention does not necessarily mean 100% purity, and may contain trace amounts of impurity elements.
  • the silicon compound preferably contains as little crystalline Si as possible.
  • the silicon compound preferably contains as little crystalline Si as possible.
  • the silicon compound contains Li and part of it is Li 2 SiO 3 as silicate. Although this Li 2 SiO 3 is crystalline, it is active with respect to charging and discharging. In the slurry state, it remains Li 2 SiO 3 , but changes to Li 4 SiO 4 by repeating charging and discharging.
  • Li 2 SiO 3 becomes more difficult to convert to Li 4 SiO 4 as its crystallinity increases.
  • there is an optimum range because it tends to be eluted into the slurry.
  • the negative electrode active material particles have a peak attributed to the Si (111) crystal plane obtained by X-ray diffraction using Cu—K ⁇ rays before the negative electrode active material particles are charged and discharged.
  • the crystallite size corresponding to the crystal face is 5.0 nm or less, and the ratio of the peak intensity A due to the Si (111) crystal face to the peak intensity B due to the Li 2 SiO 3 (111) crystal face A/B is the following formula (2) 0.4 ⁇ A/B ⁇ 1.0 (2) is preferably satisfied.
  • the degree of enlargement of Li silicate and the degree of crystallization of Si are determined by X-ray diffraction (hereinafter also referred to as “XRD”). can be confirmed.
  • the X-ray source uses Cu K ⁇ rays, a Ni filter, an output of 40 kV/40 mA, a slit width of 0.3°, a step width of 0.008°, and a counting time of 0.15 seconds per step. Measure up to °.
  • the crystallite size corresponding to the Si (111) crystal plane is preferably 5.0 nm or less, more preferably 4.0 nm or less, more preferably 2.5 nm or less, and is preferably substantially amorphous.
  • the ratio A/B of the peak intensity A due to the Si (111) crystal face to the peak intensity B due to the Li 2 SiO 3 (111) crystal face is preferably 0.40 ⁇ A/B ⁇ 1.00. , more preferably 0.45 ⁇ A/B ⁇ 0.75, and still more preferably 0.50 ⁇ A/B ⁇ 0.70.
  • the median diameter of the negative electrode active material measured by a laser diffraction method is preferably 5.0 ⁇ m or more and 15.0 ⁇ m or less, more preferably 5.0 ⁇ m or more, from the viewpoint of controlling the reaction with the electrolyte or suppressing the expansion of the negative electrode active material due to charging and discharging. .5 ⁇ m or more and 10.0 ⁇ m or less, more preferably 6.0 ⁇ m or more and 8.0 ⁇ m or less.
  • the negative electrode active material layer may contain a mixed negative electrode active material containing the silicon-based negative electrode active material and the carbon-based active material. As a result, the electrical resistance of the negative electrode active material layer is reduced, and the expansion stress associated with charging can be alleviated.
  • Carbon-based active materials include, for example, natural graphite, artificial graphite, hard carbon, and soft carbon.
  • the negative electrode active material layer of the present invention contains the negative electrode active material of the present invention capable of intercalating and deintercalating lithium ions. may contain materials of
  • the negative electrode binder for example, one or more of polymer materials, synthetic rubbers, and the like can be used.
  • Polymer materials include, for example, polyvinylidene fluoride, polyimide, polyamideimide, aramid, polyacrylic acid, lithium polyacrylate, sodium polyacrylate, and carboxymethylcellulose.
  • synthetic rubber include styrene-butadiene-based rubber, fluorine-based rubber, ethylene propylene diene, and the like.
  • negative electrode conductive aids include carbon fine particles, carbon black, acetylene black, graphite, ketjen black, carbon nanotubes, and carbon nanofibers, and one or more of these can be used.
  • the negative electrode active material layer is formed, for example, by a coating method.
  • the coating method is a method of mixing a silicon-based negative electrode active material, a binder, etc. with a negative electrode conductive aid and a carbon-based active material, if necessary, and then dispersing the mixture in an organic solvent, water, or the like and applying the mixture.
  • the separator separates the lithium metal or the positive electrode from the negative electrode, and allows lithium ions to pass therethrough while preventing current short circuit due to contact between the two electrodes.
  • This separator is formed of, for example, a porous film made of synthetic resin or ceramic, and may have a laminated structure in which two or more kinds of porous films are laminated. Examples of synthetic resins include polytetrafluoroethylene, polypropylene, and polyethylene.
  • HOMO and LUMO energy levels After optimizing the structure of the silane compound, the HOMO and LUMO energy levels were calculated. Gaussian 16 was used as quantum chemical calculation software. B3LYP was used as the exchange-correlation functional, 6-311+G(d,p) was used as the basis function, and calculations were performed using the density functional theory.
  • Example 1 [Preparation of negative electrode] An electrolytic copper foil having a thickness of 15 ⁇ m was used as a negative electrode current collector. This electrolytic copper foil contained carbon and sulfur at a concentration of 70 mass ppm each.
  • KSC-7130 silicon oxide particles containing Li 2 SiO 3 and coated with a carbon layer, median diameter 6.5 ⁇ m, manufactured by Shin-Etsu Chemical Co., Ltd., Journal of Power Sources 450 (2020) 227699 See), artificial graphite (median diameter 15 ⁇ m), carbon nanotubes and carbon fine particles with a median diameter of about 50 nm as negative electrode conductive aids, and sodium polyacrylate and carboxymethyl cellulose as negative electrode binders at 9.3:83.7, respectively. : 1:1:4:1 by dry mass, and then diluted with pure water to obtain a negative electrode mixture slurry.
  • the negative electrode mixture slurry was applied to the negative electrode current collector and dried in a vacuum atmosphere at 100° C. for 1 hour.
  • the deposition amount (area density) of the negative electrode active material layer per unit area on one side of the dried negative electrode was 7.0 mg/cm 2 .
  • the positive electrode active material is 95 parts by mass of LiNi 0.7 Co 0.25 Al 0.05 O which is a lithium nickel cobalt composite oxide, 2.5 parts by mass of a positive electrode conductive auxiliary, and a positive electrode binder (polyvinylidene fluoride : PVDF) was mixed with 2.5 parts by mass to prepare a positive electrode mixture.
  • the positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone: NMP) to form a paste-like slurry.
  • the slurry was applied to both surfaces of the positive electrode current collector with a coating device having a die head, and dried with a hot air drying device. At this time, the positive electrode current collector used had a thickness of 15 ⁇ m.
  • compression molding was performed using a roll press. The positive electrode density at this time was 20 mg/cm 2 on one side.
  • the battery was assembled as follows.
  • the battery was designed to have a negative electrode utilization rate of 95%.
  • Examples 2 to 5 The same procedure as in Example 1 was carried out, except that the type of additive (silane compound) was changed as shown in Tables 1 and 2.
  • FDVS is di(2-furyl)divinylsilane
  • TDVS is di(2-thienyl)divinylsilane
  • PTVS is 2-pyridyl-trivinylsilane
  • PDES is diethynyldi(2-pyridyl)silane. All of these correspond to general formula (1).
  • the silane compound contained in the non-aqueous electrolyte of the present invention has a higher HOMO and a lower LUMO than vinylene carbonate (HOMO: -7.3881 eV, LUMO: -0.6123 eV) known as a typical additive. It was suggested that it has high degradability and high reactivity after decomposition, and that it is easy to form a good quality film (SEI film).
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、非水電解質二次電池に用いられる非水系電解質であって、前記非水系電解質が、下記一般式(1)で示されるシラン化合物を含むものである非水系電解質である。これにより、充放電後に安全性が高い非水電解質及び非水電解質二次電池が提供される。 Si(R(R(R4-l-m (1) (式中、Rは、炭素数4~20のヘテロアリール基であり、Rは、炭素数2~20のアルケニル基またはアルキニル基であり、Rは、炭素数1~20のアルキル基である。また、l及びmは、それぞれ独立して1~3の整数を表し、2≦l+m≦4を満たす整数である。)

Description

非水系電解質及び非水電解質二次電池
 本発明は、非水系電解質及び非水電解質二次電池に関する。
 近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化及び長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で、高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。
 その中でも、リチウムイオン二次電池は小型かつ高容量化が行いやすく、また、鉛電池、ニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。
 上記のリチウムイオン二次電池は、正極及び負極、並びにセパレータと共に非水電解液を備えている。
 非水電解液には、非水電解質二次電池の安定性や電気特性を目的として、種々の添加剤が用いられている。これらの添加剤として、1,3-プロパンスルトン(例えば、特許文献1参照)、ビニルエチレンカーボネート(例えば、特許文献2参照)、ビニレンカーボネート(例えば、特許文献3参照)、フルオロエチレンカーボネート(FEC)(例えば、特許文献4参照)等が提案されている。このような添加剤は、負極表面に安定したSolid Electrolyte Interphase(SEI)膜を形成するため、電解液の還元分解を抑制することが可能となる。
 ところで、ケイ素系負極材等を用いた非水電解質二次電池は、充放電を繰り返すことでケイ素表層にLiを含んだSEI膜がサイクル毎に形成、分解を繰り返すことが知られている。その結果、負極材の表面積が増大し、不安定化すると共に、SEI膜形成に使用されるLiが正極側から常に補填され電位上昇へつながる。この結果安全性が著しく低下する。
特開昭63-102173号公報 特開平4-87156号公報 特開平5-74486号公報 特開2006-134719号公報
 本発明は、上記問題点に鑑みてなされたものであって、充放電後に安全性が高い非水電解質及び非水電解質二次電池を提供することを目的とする。
 上記課題を解決するために、本発明は、非水電解質二次電池に用いられる非水系電解質であって、前記非水系電解質が、下記一般式(1)で示されるシラン化合物を含むものであることを特徴とする非水系電解質を提供する。
  Si(R(R(R4-l-m  (1)
(式中、Rは、炭素数4~20のヘテロアリール基であり、Rは、炭素数2~20のアルケニル基またはアルキニル基であり、Rは、炭素数1~20のアルキル基である。また、l及びmは、それぞれ独立して1~3の整数を表し、2≦l+m≦4を満たす整数である。)
 本発明の非水系電解質に含まれるシラン化合物は、ヘテロアリール基を含んでおり、このようなヘテロアリール基は、シラン化合物の分解性や分解後の反応性を向上させる。そのように分解したシラン化合物は、正極や負極に良質な被膜(SEI膜)を形成するため、電解液に対する活物質表面の反応性を抑制することができる。その結果、このような非水系電解質を二次電池に用いることにより、充放電後に安全性が高い非水電解質二次電池とすることができる。
 このとき、前記シラン化合物の最低空軌道のエネルギー準位が、-0.40eV以下であることが好ましい。
 このようなエネルギー準位であると、シラン化合物の分解性が向上し、良質な被膜(SEI膜)が形成されやすい。
 また、前記シラン化合物の最高被占軌道のエネルギー準位が、-8.8eV以上であることが好ましい。
 このようなエネルギー準位であると、シラン化合物の分解性が向上し、良質な被膜(SEI膜)が形成されやすい。
 また、前記非水系電解質に含まれる前記シラン化合物の含有量は、0.1質量%~5.0質量%であることが好ましい。
 このような含有量であると、十分な被膜(SEI膜)が形成され、活物質表面の反応性を抑制しやすい。また、過剰な被膜(SEI膜)形成による高抵抗化を防ぎやすい。
 また、本発明は、正極および負極と共に、上記の非水系電解質を備えることを特徴とする非水電解質二次電池を提供する。
 このような非水電解質二次電池は、本発明の非水系電解質を備えるので、充放電後に安全性が高い非水電解質二次電池とすることができる。
 この場合、前記負極における負極活物質粒子は、炭素層で被覆される酸化ケイ素粒子であることが好ましい。さらにこの場合、前記酸化ケイ素粒子はLiSiOを含有し、該LiSiOは結晶質であることが好ましい。
 このように、本発明の非水系電解質は、炭素層で被覆される酸化ケイ素粒子を負極活物質粒子とする二次電池に用いることができる。また、このような結晶質のLiSiOは、水系スラリーに溶出しづらいものとすることができる。
 本発明の非水系電解質に含まれるシラン化合物は、ヘテロアリール基を有しており、このようなヘテロアリール基は、シラン化合物の分解性や分解後の反応性を向上させる。分解したシラン化合物は、正極や負極に良質な被膜(SEI膜)を形成するため、電解液に対する活物質表面の反応性を抑制することができる。その結果、このような非水系電解質を二次電池に用いることにより、充放電後に安全性が高い非水電解質二次電池とすることができる。
 上記のように、充放電後に安全性が高い非水電解質及び非水電解質二次電池が求められていた。
 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、シラン化合物にヘテロアリール基を導入し、さらにアルケニル基またはアルキニル基を導入することで、上記目的を達成し得ることを知見し、本発明を完成した。
 すなわち、本発明は、非水電解質二次電池に用いられる非水系電解質であって、下記一般式(1)で示されるシラン化合物を含むものである非水系電解質である。
  Si(R(R(R4-l-m  (1)
(式中、Rは、炭素数4~20のヘテロアリール基であり、Rは、炭素数2~20のアルケニル基またはアルキニル基であり、Rは、炭素数1~20のアルキル基である。また、l及びmは、それぞれ独立して1~3の整数を表し、2≦l+m≦4を満たす整数である。)
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
<シラン化合物>
 上記のように、本発明の非水電解質は、非水電解質二次電池に用いられる非水系電解質であって、下記一般式(1)で示されるシラン化合物(以下、「化合物(1)」ともいう。)を含むものである。
  Si(R(R(R4-l-m  (1)
 上記一般式(1)において、Rは、炭素数4~20、好ましくは4~10、より好ましくは4~6のヘテロアリール基である。
 Rのヘテロアリール基の具体例としては、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-ピラジル基、2-ピリミジル基、4-ピリミジル基、5-ピリミジル基、3-ピリダジル基、4-ピリダジル基、4-(1,2,3-トリアジル基)、3-(1,2,4-トリアジル)基、5-(1,2,4-トリアジル)基、6-(1,2,4-トリアジル)基、2-(1,3,5-トリアジル)基、2-キノリル基、2-キノキサリル基、2-キナゾリル基、3-シンノリル基、1-イソキノリル基、3-イソキノリル基、1-フタラジル基などの含窒素ヘテロアリール基;2-フリル基、3-フリル基、2-ベンゾフリル基、3-ベンゾフリル基、1-イソベンゾフリル基などの含酸素ヘテロアリール基;2-チエニル基、3-チエニル基、2-ベンゾチエニル基、3-ベンゾチエニル基などの含硫黄ヘテロアリール基;2-オキサゾリル基、5-オキサゾリル基、3-イソオキサゾリル基、5-イソオキサゾリル基、2-ベンゾオキサゾリル基、3-ベンゾイソオキサゾリル基、2-チアゾリル基、2-ベンゾチアゾリル基などの2つ以上のヘテロ原子を含むヘテロアリール基が挙げられる。
 これらの中でも、上記シラン化合物の分解性や分解後の反応性を担保するという観点から、2-ピリジル基、2-フリル基、2-チエニル基が好ましい。
 このようなヘテロアリール基は、シラン化合物の分解性や分解後の反応性を向上させる。分解したシラン化合物は、正極や負極に良質な被膜(SEI膜)を形成するため、電解液に対する活物質表面の反応性を抑制すると考えられる。
 一般式(1)において、Rは、炭素数2~20、好ましくは2~10、より好ましくは2~5のアルケニル基またはアルキニル基である。
 Rのアルケニル基の具体例としては、ビニル基、n-プロペニル基、n-ブテニル基、n-ペンテニル基、n-ヘキセニル基、n-ヘプテニル基、n-オクテニル基、n-ノネニル基、n-デセニル基、n-ウンデセニル基、n-ドデセニル基などの直鎖状アルケニル基;イソプロペニル基、イソブテニル基、イソペンテニル基、イソヘキセニル基、イソヘプテニル基、イソオクテニル基、イソノニル基、イソデセニル基、イソウンデシル基などの分岐状アルケニル基が挙げられる。
 これらの中でも上記シラン化合物の分解性や分解後の反応性を担保するという観点から、ビニル基、n-プロペニル基が好ましい。
 Rのアルキニル基の具体例としては、エチニル基、1-プロピニル基、1-ブチニル基、1-ペンチニル基、1-ヘキシニル基、1-ヘプチニル基、1-オクチニル基、1-ノニニル基、1-デシニル基、1-ウンデシニル基、1-ドデシニル基などの直鎖状アルキニル基;3-メチル-1-ブチニル基、3,3-ジメチル-1-ブチニル基、3-メチル-1-ペンチニル基、4-メチル-1-ペンチニル基、3,3-ジメチル-1-ペンチニル基、3,4-ジメチル-1-ペンチニル基、4,4-ジメチル-1-ペンチニル基などの分岐状アルキニル基が挙げられる。
 これらの中でも上記シラン化合物の分解性や分解後の反応性を担保するという観点から、エチニル基、1-プロピニル基、1-ブチニル基が好ましい。
 これらのアルケニル基またはアルキニル基は、シラン化合物の分解性や分解後の反応性を向上させる。分解したシラン化合物は、正極や負極に良質な被膜(SEI膜)を形成するため、電解液に対する活物質表面の反応性を抑制すると考えられる。
 一般式(1)において、Rは、炭素数1~20、好ましくは1~10、より好ましくは1~5のアルキル基である。
 Rのアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基などの直鎖状アルキル基;イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、イソヘキシル基、イソヘプチル基、イソオクチル基、tert-オクチル基、イソノニル基、イソデシル基、イソウンデシル基などの分岐状アルキル基が挙げられる。
 これらの中でも、立体障害が少なくシラン化合物同士の反応が進みやすくなるという観点から、メチル基が好ましい。
 一般式(1)において、l及びmは、それぞれ独立して1~3の整数を表し、l及びmは、2≦l+m≦4を満たす整数である。良質な被膜(SEI膜)を形成するという観点から、一般式(1)において、l及びmが、それぞれ独立して1~3の整数を表し、かつ、l及びmが、l+m=4を満たす整数であることがより好ましい。
 化合物(1)の具体例としては、2-ピリジルトリビニルシラン、ジ(2-ピリジル)ジビニルシラン、トリ(2-ピリジル)ビニルシラン、メチルジビニル-2-ピリジルシラン、ジ(2-ピリジル)メチルビニルシラン、2-フリルトリビニルシラン、ジ(2-フリル)ジビニルシラン、トリ(2-フリル)ビニルシラン、ジビニル-2-フリルメチルシラン、ジ(2-フリル)メチルビニルシラン、2-チエニルトリビニルシラン、ジ(2-チエニル)ジビニルシラン、トリ(2-チエニル)ビニルシラン、ジビニルメチル-2-チエニルシラン、ジ(2-チエニル)メチルビニルシラン、3-ピリジルトリビニルシラン、ジ(3-ピリジル)ジビニルシラン、トリ(3-ピリジル)ビニルシラン、ジビニルメチル-3-ピリジルシラン、ジ(3-ピリジル)メチルビニルシラン、3-フリルトリビニルシラン、ジ(3-フリル)ジビニルシラン、トリ(3-フリル)ビニルシラン、ジビニル-3-フリルメチルシラン、ジ(3-フリル)メチルビニルシラン、3-チエニルトリビニルシラン、ジ(3-チエニル)ジビニルシラン、トリ(3-チエニル)ビニルシラン、ジビニルメチル-3-チエニルシラン、ジ(3-チエニル)メチルビニルシラン、2-ピリジルトリエチニルシラン、ジエチニルジ(2-ピリジル)シラン、エチニルトリ(2-ピリジル)シラン、ジエチニルメチル-2-ピリジルシラン、ジ(2-ピリジル)エチニルメチルシラン、2-フリルトリエチニルシラン、ジエチニルジ(2-フリル)シラン、エチニルトリ(2-フリル)シラン、ジエチニル-2-フリルメチルシラン、エチニルジ(2-フリル)メチルシラン、2-チエニルトリエチニルシラン、ジエチニルジ(2-チエニル)シラン、エチニルトリ(2-チエニル)シラン、ジエチニルメチル-2-チエニルシラン、エチニルメチルジ(2-チエニル)シラン、3-ピリジルトリエチニルシラン、ジエチニルジ(3-ピリジル)シラン、エチニルトリ(3-ピリジル)シラン、ジエチニルメチル-3-ピリジルシラン、ジ(3-ピリジル)エチニルメチルシラン、3-フリルトリエチニルシラン、ジエチニルジ(3-フリル)シラン、エチニルトリ(3-フリル)シラン、ジエチニルメチル-3-フリルシラン、エチニルジ(3-フリル)メチルシラン、3-チエニルトリエチニルシラン、ジエチニルジ(3-チエニル)シラン、エチニルトリ(3-チエニル)シラン、ジエチニルメチル-3-チエニルシラン、ジ(3-チエニル)エチニルメチルシランなどが挙げられる。
 なお、上記一般式(1)で示されるシラン化合物は、例えば、フランとn-ブチルリチウムから調製した有機金属試薬とビニルハロシランとを反応させることにより、得られる。
[非水系電解質中の含有量]
 前記非水電解液中における前記化合物(1)の含有量は、好ましくは0.1質量%~5.0質量%、より好ましくは0.1質量%~4.0質量%、更に好ましくは0.1質量%~2.0質量%である。このような含有量であると、十分な被膜(SEI膜)が形成され、活物質表面の反応性を抑制しやすい。また、過剰な被膜(SEI膜)形成による高抵抗化を防ぎやすい。
[最低空軌道(LUMO)エネルギー準位]
 シラン化合物(化合物(1))の最低空軌道(LUMO)エネルギー準位は、-0.40eV以下が好ましく、-0.60eV以下がより好ましく、-0.70eV以下がさらに好ましく、-0.85eV以下が特に好ましい。LUMOのエネルギー準位は、シラン化合物の還元分解性と関係がある。このようなエネルギー準位であると、シラン化合物の分解性が向上し、良質な被膜(SEI膜)が形成されやすい。
[最高被占軌道(HOMO)エネルギー準位]
 シラン化合物の最高被占軌道(HOMO)エネルギー準位は、-8.8eV以上が好ましく、-8.0eV以上がより好ましく、-7.5eV以上がさらに好ましく、-7.0eV以上が特に好ましい。HOMOのエネルギー準位は、シラン化合物の酸化分解性と関係がある。このようなエネルギー準位であると、シラン化合物の分解性が向上し、良質な被膜(SEI膜)が形成されやすい。
[エネルギー準位の計算方法]
 最低空軌道(LUMO)及び最高被占軌道(HOMO)のエネルギー準位は、量子化学計算から求めることができる。量子化学計算のソフトウェアとしては、GaussianやGAMESS等を用いることができる。計算手法としては、計算精度と計算コストの観点から、密度汎関数法が好適に用いられる。交換相関汎関数としてはB3LYP、基底関数としては6-311+G(d,p)が好適に用いられる。
<非水電解質二次電池>
[非水電解質]
 本発明の非水電解質は、非水溶媒中に電解質塩が溶解されており、前記化合物(1)を含むものであり、添加剤として他の材料を含んでいても良い。活物質層の少なくとも一部又はセパレータは、非水電解質により含浸されている。
 非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、1,2-ジメトキシエタン又はテトラヒドロフランなどが挙げられる。この中でも、より良い特性が得られる観点から、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートのうちの少なくとも1種以上を用いることが望ましい。また、この場合、エチレンカーボネート、プロピレンカーボネートなどの高粘度溶媒と、炭酸ジメチルジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどの低粘度溶媒を組み合わせることにより、電解質塩の解離性やイオン移動度が向上して、より優位な特性を得ることができる。
 ケイ素系負極材料を含む合金系負極を用いる場合、特に溶媒として、ハロゲン化鎖状炭酸エステル又はハロゲン化環状炭酸エステルのうち少なくとも1種を含んでいることが望ましい。これにより、充放電時、特に充電時において、負極活物質表面に安定な被膜が形成される。ここで、ハロゲン化鎖状炭酸エステルとは、ハロゲンを構成元素として有する(少なくとも1つの水素がハロゲンにより置換された)鎖状炭酸エステルである。また、ハロゲン化環状炭酸エステルとは、ハロゲンを構成元素として有する(すなわち、少なくとも1つの水素がハロゲンにより置換された)環状炭酸エステルである。
 ハロゲンの種類は特に限定されないが、他のハロゲンよりも良質な被膜を形成する観点から、フッ素が好ましい。また、ハロゲン数は、得られる被膜がより安定的であり、電解液の分解反応の低減から、多いほど望ましい。
 ハロゲン化鎖状炭酸エステルとしては、例えば、フルオロメチルメチルカーボネート、ジフルオロメチルメチルカーボネートなどが挙げられる。ハロゲン化環状炭酸エステルとしては、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどが挙げられる。
 電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類以上含むことができる。リチウム塩としては、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)などが挙げられる。
 電解質塩の含有量は、高いイオン伝導性が得られる観点から、非水溶媒に対して好ましくは0.5mol/kg以上2.5mol/kg以下、より好ましくは0.8mol/kg以上2.0mol/kg以下、更に好ましくは0.8mol/kg以上1.5mol/kg以下であることが好ましい。
 本発明の非水電解質には、化合物(1)以外にさらなる別個の添加剤として、不飽和炭素結合環状炭酸エステル、スルトン(環状スルホン酸エステル)及び酸無水物を含むことができる。不飽和炭素結合環状炭酸エステルは、充放電時における負極表面の安定な被膜形、非水電解質の分解反応抑制の観点から含むことができ、例えば、炭酸ビニレン又は炭酸ビニルエチレンなどが挙げられる。また、スルトンは、電池の化学的安定性の向上の観点から含むことができ、例えば、プロパンスルトン、プロペンスルトンが挙げられる。さらに、酸無水物は、電解質の化学的安定性の向上の観点から含むことができ、例えば、プロパンジスルホン酸無水物が挙げられる。
 本発明の非水電解質二次電池は、上記非水系電解質の他に、正極および負極を備える。
[正極]
 正極は、例えば、正極集電体の両面または片面に正極活物質層を有する構成になっている。
 ここで、正極集電体は、例えば、アルミニウムなどの導電性材料により形成されている。
 一方、正極活物質層は、リチウムイオンの吸蔵放出可能な正極材料のいずれか1種または2種以上を含んでおり、設計に応じて結着剤、導電助剤、分散剤などの他の材料を含んでいても良い。この場合、結着剤、導電助剤は、例えば後述の負極結着剤、負極導電助剤と同様のものを用いることができる。
 正極材料としては、高い電池容量が得られると共に、優れたサイクル特性を得られる観点から、例えば、リチウムと遷移金属元素を有する複合酸化物またはリチウムと遷移金属元素を有するリン酸化合物などのリチウム含有化合物が挙げられる。遷移金属元素としては、ニッケル、鉄、マンガン、コバルトが好ましく、前記リチウム含有化合物は、これらの遷移金属元素を少なくとも1種以上を有する化合物である。チウム含有化合物の化学式としては、例えば、LixM1OあるいはLiyMPOで表される。式中、M1及びM2は少なくとも1種以上の遷移金属元素を示す。x及びyの値は、電池充放電状態によって異なる値を示すが、一般的に0.05≦x≦1.10、0.05≦y≦1.10を満たす数である。
 リチウムと遷移金属元素を有する複合酸化物の具体例としては、例えば、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルト複合酸化物、リチウムニッケルコバルト複合酸化物(リチウムニッケルコバルトアルミニウム複合酸化物;NCA、リチウムニッケルコバルトマンガン複合酸化物+NCM)などが挙げられる。
 リチウムと遷移金属元素を有するリン酸化合物の具体例としては、例えば、リチウム鉄リン酸化合物(LiFePO)、リチウム鉄マンガンリン酸化合物(LiFe1-uMnPO、但し、0<u<1)などが挙げられる。これらの正極材を用いれば、高い電池容量を得ることができるとともに、優れたサイクル特性も得ることができる。
[負極]
 負極は、例えば、負極集電体の上に負極活物質層を有する構成になっている。この負極活物質層は、負極集電体の両面又は片面だけに設けられていてもよい。
[負極集電体]
 負極集電体は、優れた導電性材料であり、かつ、機械的な強度に長けたもので構成される。負極集電体に用いることができる導電性材料として、例えば、銅(Cu)やニッケル(Ni)が挙げられる。この導電性材は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
 負極集電体は、負極集電体の物理的強度向上の観点から、前記銅(Cu)やニッケル(Ni)以外に、炭素(C)や硫黄(S)を含むことが好ましい。特に、充電時に膨張する活物質層を有する場合、集電体が上記の元素を含むことにより、集電体を含む電極変形を抑制する効果を有する。上記の含有元素の含有量は、特に限定されないが、より高い変形抑制効果が得られる観点から、それぞれ100質量ppm以下であることが好ましい。このような変形抑制効果によりサイクル特性をより向上できる。
 また、負極集電体の表面は粗化されていてもよいし、粗化されていなくてもよい。粗化されている負極集電体としては、例えば、電解処理、エンボス処理又は化学エッチング処理された金属箔などである。粗化されていない負極集電体としては、例えば、圧延金属箔などである。
[負極活物質層]
 負極活物質層は、リチウムイオンを吸蔵(挿入)及び放出可能な負極活物質を含んでおり、電池設計上の観点から、さらに、負極結着剤(バインダ)や導電助剤など他の材料を含んでいてもよい。負極活物質は、負極活物質粒子を含み、負極活物質粒子としては、例えば、炭素化合物粒子(炭素系負極活物質)、ケイ素化合物粒子(ケイ素系負極活物質)、ゲルマニウム化合物粒子(ゲルマニウム系負極活物質)、スズ化合物粒子(スズ系負極活物質)などが挙げられる。これらの中でも、炭素化合物粒子(炭素系負極活物質)やケイ素化合物粒子(ケイ素系負極活物質)を含むことが好ましく、ケイ素化合物粒子(ケイ素系負極活物質)を含むことより好ましく、酸素が含まれるケイ素化合物を含有するケイ素化合物粒子を含むことが特に好ましい。
 負極活物質は、炭素化合物粒子(炭素系負極活物質)、ケイ素化合物粒子(ケイ素系負極活物質)、ゲルマニウム化合物粒子(ゲルマニウム系負極活物質)、スズ化合物粒子(スズ系負極活物質)等を含み、好ましくは炭素化合物粒子(炭素系負極活物質)やケイ素化合物粒子(ケイ素系負極活物質)を含み、より好ましくはケイ素化合物粒子(ケイ素系負極活物質)を含み、特に好ましくは酸素が含まれるケイ素化合物を含有する酸化ケイ素材を含む。このケイ素化合物であるSiOを構成するケイ素と酸素の組成比であるxは、サイクル特性、ケイ素酸化物の抵抗の観点から、0.8≦x≦1.2を満たす数であることが好ましい。中でも、SiOの組成はxが1に近い方が、高いサイクル特性が得られるため好ましい。なお、本発明におけるケイ素化合物の組成は必ずしも純度100%を意味しているわけではなく、微量の不純物元素を含んでいてもよい。
 ケイ素化合物は、結晶性Siを極力含まないことが好ましい。結晶性Siを極力含まないことにより、電解質との反応性が高くなり過ぎることを防ぐことができ、その結果、電池特性が悪化するのを防ぐことができる。
 ケイ素化合物はLiを含んでおり、その一部がシリケートとしてLiSiOになっていることが望ましい。このLiSiOは結晶質であるが、充放電に対して活性であり、スラリー状態ではLiSiOのままであるが、充放電を繰り返すことによりLiSiOへ変化する。
 LiSiOは、結晶性が高い程、LiSiOに変換し辛くなる。一方、低結晶の場合、スラリーに溶出しやすくなるため、最適な範囲が存在する。
 具体的には、負極活物質粒子は、負極活物質粒子を充放電する前において、Cu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因するピークを有し、該結晶面に対応する結晶子サイズは5.0nm以下であり、かつ、LiSiO(111)結晶面に起因するピークの強度Bに対するSi(111)結晶面に起因するピークの強度Aの比率A/Bは、下記の式(2)
   0.4≦A/B≦1.0     ・・・(2)
を満たすことが好ましい。
 Liシリケートの肥大化程度、Siの結晶化程度(例えば、Si(111)結晶面に対応する結晶子サイズ)は、X線回折法(X-ray diffraction、以下、「XRD」ともいう。)で確認することができる。
 X線回折装置としては、Bruker社製のD8 ADVANCEを使用することができる。X線源は、Cu Kα線、Niフィルターを使用して、出力40kV/40mA、スリット幅0.3°、ステップ幅0.008°、1ステップあたり0.15秒の計数時間にて10~40°まで測定する。
 Si(111)結晶面に起因するピークは、X線回折チャートにおいて、2θ=28.4°付近に現れる。
 Si(111)結晶面に対応する結晶子サイズは、好ましくは5.0nm以下、より好ましくは4.0nm以下、より好ましくは2.5nm以下であり、実質的にアモルファスが望ましい。
 LiSiO(111)結晶面に起因するピークの強度Bに対するSi(111)結晶面に起因するピークの強度Aの比率A/Bは、好ましくは0.40≦A/B≦1.00、より好ましくは0.45≦A/B≦0.75、さらに好ましくは0.50≦A/B≦0.70である。ここで、LiSiO(111)結晶面に起因するピークは、X線回折チャートにおいて、2θ=17°~21°の範囲に現れる。
 前記負極活物質のレーザー回折法によるメジアン径は、電解質との反応の制御または充放電に伴う負極活物質の膨張の抑制の観点から、好ましくは5.0μm以上15.0μm以下、より好ましくは5.5μm以上10.0μm以下、さらに好ましくは6.0μm以上8.0μm以下である。
 負極活物質層は、前記ケイ素系負極活物質と炭素系活物質とを含む混合負極活物質材料を含んでいても良い。これにより、負極活物質層の電気抵抗が低下するとともに、充電に伴う膨張応力を緩和することが可能となる。炭素系活物質としては、例えば、天然黒鉛、人造黒鉛、ハードカーボン、ソフトカーボンなどが挙げられる。
 本発明の負極活物質層は、リチウムイオンを吸蔵、放出可能な本発明の負極活物質を含んでおり、電池設計上の観点から、さらに、負極結着剤(バインダ)や導電助剤など他の材料を含んでいてもよい。
 負極結着剤としては、例えば、高分子材料、合成ゴムなどのいずれか1種類以上を用いることができる。高分子材料としては、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミドイミド、アラミド、ポリアクリル酸、ポリアクリル酸リチウム、ポリアクリル酸ナトリウム、カルボキシメチルセルロースなどが挙げられる。合成ゴムとしては、例えば、スチレンブタジエン系ゴム、フッ素系ゴム、エチレンプロピレンジエンなどが挙げられる。
 負極導電助剤としては、例えば、炭素微粒子、カーボンブラック、アセチレンブラック、黒鉛、ケチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどが挙げられ、これらのいずれか1種以上を用いることができる。
 負極活物質層は、例えば、塗布法により形成される。塗布法とは、ケイ素系負極活物質と結着剤などに、必要に応じて負極導電助剤、炭素系活物質を混合した後に、有機溶剤や水などに分散させて塗布する方法である。
[セパレータ]
 セパレータは、リチウムメタル又は正極と負極とを隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば、合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有しても良い。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
<実施例及び比較例の共通事項>
[HOMOおよびLUMOのエネルギー準位]
 シラン化合物について構造最適化を行った後、HOMOおよびLUMOのエネルギー準位の算出を行った。量子化学計算ソフトウェアとして、Gaussian 16を用いた。交換相関汎関数にはB3LYP、基底関数には6-311+G(d,p)を使用し、密度汎関数法を用いて計算を行った。
[実施例1]
[負極の作製]
 負極集電体として、厚さ15μmの電解銅箔を用いた。この電解銅箔には、炭素及び硫黄がそれぞれ70質量ppmの濃度で含まれていた。
 ケイ素系負極活物質として、KSC-7130(LiSiOを含み且つ炭素層で被覆されたケイ素酸化物粒子、メジアン径6.5μm、信越化学工業社製、Journal of Power Sources 450(2020) 227699参照)、人造黒鉛(メジアン径15μm)負極導電助剤として、カーボンナノチューブおよびメジアン径が約50nmの炭素微粒子、負極結着剤として、ポリアクリル酸ナトリウム、カルボキシメチルセルロースをそれぞれ9.3:83.7:1:1:4:1の乾燥質量比で混合した後、純水で希釈して負極合剤スラリーとした。
 前記負極合剤スラリーを前記負極集電体に塗布して、真空雰囲気中で100℃×1時間の乾燥を行った。乾燥後の負極の片面における単位面積あたりの負極活物質層の堆積量(面積密度)は、7.0mg/cmであった。
[正極の作製]
 次に、正極を作成した。正極活物質はリチウムニッケルコバルト複合酸化物であるLiNi0.7Co0.25Al0.05Oを95質量部と、正極導電助剤2.5質量部と、正極結着剤(ポリフッ化ビニリデン:PVDF)2.5質量部とを混合し正極合剤とした。続いて正極合剤を有機溶剤(N―メチル―2―ピロリドン:NMP)に分散させてペースト状のスラリーとした。続いてダイヘッドを有するコーティング装置で正極集電体の両面にスラリーを塗布し、熱風式乾燥装置で乾燥した。この時、正極集電体は厚み15μmを用いた。最後にロールプレスで圧縮成型を行った。この時の正極電極密度は、片面20mg/cmとした。
[非水電解質の調製]
 非水溶媒としてエチレンカーボネート(EC)及びジメチルカーボネート(DMC)を混合した後、電解質塩として六フッ化リン酸リチウム:LiPF6を溶解させて電解液を調製した。この場合には、溶媒の組成を体積比でEC:DMC=30:70とし、電解質塩の含有量を溶媒に対して1mol/kgとした。添加剤として、ジ(2-ピリジル)ジビニルシラン(PDVS)を2.0質量%添加し、非水電解質を調製した。PDVSの構造式を表1中に示した。
[非水電解質二次電池の作製]
 次に、以下のようにして電池を組み立てた。負極利用率が、95%になるように電池を設計した。利用率は、以下の式から算出できる。
 利用率=(正極容量-負極ロス)/(負極容量-負極ロス)×100
[釘刺し安全性試験]
 最初に電池安定化のため、25℃の雰囲気下、0.2Cで2サイクル充放電を行い、その後1、100、300、500サイクル目まで、充電0.7C、放電0.5Cで充放電を行った。この際、充電電圧は4.3V、放電終止電圧は2.5V、充電終止レートは0.07Cとした。
 1、100、300、500サイクル後の電池を満充電し、直径2mmの釘を0.1mm/秒の速度で刺し、発熱、発火挙動を確認した。
 以下の基準で、安全性を評価した。
 ◎:発火、発熱ともになし
 ○:発火なし
 △:発火
 ×:激しく発火
[実施例2~5]
 添加剤の種類(シラン化合物)を表1、表2のように変更した以外は、実施例1と同様に行った。なお、FDVSはジ(2-フリル)ジビニルシラン、TDVSはジ(2-チエニル)ジビニルシラン、PTVSは2-ピリジル-トリビニルシラン、PDESはジエチニルジ(2-ピリジル)シランである。これらはいずれも一般式(1)に該当する。
[比較例1]
 添加剤(シラン化合物)を添加しなかったこと以外は、実施例1と同様に行った。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 上記結果から明らかなように、本発明の非水電解質に、上記一般式(1)で示されるヘテロアリール基を含むシラン化合物を添加することで、サイクルを繰返しても安全性が維持されることを確認できた。これらのシラン化合物の分解物(被膜)は、電解液に対する活物質表面の反応性を抑制する事ができる。
 本発明の非水電解質に含まれるシラン化合物は、代表的な添加剤として知られるビニレンカーボネート(HOMO:-7.3881eV、LUMO:-0.6123eV)と比べて、HOMOが高く、LUMOが低い傾向にあり、分解性や分解後の反応性が高く、良質な被膜(SEI膜)を形成しやすいことが示唆された。
 本発明によれば、充放電後に安全性が高い非水系電解質を提供できる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (7)

  1.  非水電解質二次電池に用いられる非水系電解質であって、
     前記非水系電解質が、下記一般式(1)で示されるシラン化合物を含むものであることを特徴とする非水系電解質。
      Si(R(R(R4-l-m  (1)
    (式中、Rは、炭素数4~20のヘテロアリール基であり、Rは、炭素数2~20のアルケニル基またはアルキニル基であり、Rは、炭素数1~20のアルキル基である。また、l及びmは、それぞれ独立して1~3の整数を表し、2≦l+m≦4を満たす整数である。)
  2.  前記シラン化合物の最低空軌道のエネルギー準位が、-0.40eV以下であることを特徴とする請求項1記載の非水系電解質。
  3.  前記シラン化合物の最高被占軌道のエネルギー準位が、-8.8eV以上であることを特徴とする請求項1又は2記載の非水系電解質。
  4.  前記非水系電解質に含まれる前記シラン化合物の含有量は、0.1質量%~5.0質量%であることを特徴とする請求項1~3のいずれか1項に記載の非水系電解質。
  5.  正極および負極と共に請求項1~4のいずれかに記載の非水系電解質を備えることを特徴とする非水電解質二次電池。
  6.  前記負極における負極活物質粒子は、炭素層で被覆される酸化ケイ素粒子であることを特徴とする請求項5に記載の非水電解質二次電池。
  7.  前記酸化ケイ素粒子はLiSiOを含有し、該LiSiOは結晶質であることを特徴とする請求項6に記載の非水電解質二次電池。
PCT/JP2022/030426 2021-08-24 2022-08-09 非水系電解質及び非水電解質二次電池 WO2023026852A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247005870A KR20240045236A (ko) 2021-08-24 2022-08-09 비수계 전해질 및 비수 전해질 이차 전지
CN202280057160.2A CN117836995A (zh) 2021-08-24 2022-08-09 非水系电解质及非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-136372 2021-08-24
JP2021136372A JP2023030946A (ja) 2021-08-24 2021-08-24 非水系電解質及び非水電解質二次電池

Publications (1)

Publication Number Publication Date
WO2023026852A1 true WO2023026852A1 (ja) 2023-03-02

Family

ID=85323162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030426 WO2023026852A1 (ja) 2021-08-24 2022-08-09 非水系電解質及び非水電解質二次電池

Country Status (5)

Country Link
JP (1) JP2023030946A (ja)
KR (1) KR20240045236A (ja)
CN (1) CN117836995A (ja)
TW (1) TW202316703A (ja)
WO (1) WO2023026852A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102173A (ja) 1986-10-16 1988-05-07 Hitachi Maxell Ltd リチウム二次電池
JPH0487156A (ja) 1990-07-26 1992-03-19 Sanyo Electric Co Ltd 非水系電解液電池
JPH0574486A (ja) 1991-09-10 1993-03-26 Sanyo Electric Co Ltd 非水系電解液電池
JP2006134719A (ja) 2004-11-05 2006-05-25 Sony Corp 電解液および電池
US20060269846A1 (en) * 2005-05-26 2006-11-30 Ferro Corporation Nonaqueous electrolytic solution for electrochemicals cells
JP2017097952A (ja) * 2015-11-18 2017-06-01 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
CN110400969A (zh) * 2018-04-25 2019-11-01 比亚迪股份有限公司 一种非水电解液及含有该非水电解液的电池
KR102283808B1 (ko) * 2020-12-22 2021-08-02 주식회사 켐얼라이언스 이차전지용 전해질 첨가제, 이의 제조방법, 이를 포함하는 전해질 및 이차전지

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102173A (ja) 1986-10-16 1988-05-07 Hitachi Maxell Ltd リチウム二次電池
JPH0487156A (ja) 1990-07-26 1992-03-19 Sanyo Electric Co Ltd 非水系電解液電池
JPH0574486A (ja) 1991-09-10 1993-03-26 Sanyo Electric Co Ltd 非水系電解液電池
JP2006134719A (ja) 2004-11-05 2006-05-25 Sony Corp 電解液および電池
US20060269846A1 (en) * 2005-05-26 2006-11-30 Ferro Corporation Nonaqueous electrolytic solution for electrochemicals cells
JP2017097952A (ja) * 2015-11-18 2017-06-01 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
CN110400969A (zh) * 2018-04-25 2019-11-01 比亚迪股份有限公司 一种非水电解液及含有该非水电解液的电池
KR102283808B1 (ko) * 2020-12-22 2021-08-02 주식회사 켐얼라이언스 이차전지용 전해질 첨가제, 이의 제조방법, 이를 포함하는 전해질 및 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF POWER SOURCES, vol. 450, 2020, pages 227699

Also Published As

Publication number Publication date
JP2023030946A (ja) 2023-03-08
KR20240045236A (ko) 2024-04-05
TW202316703A (zh) 2023-04-16
CN117836995A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
CN110495021B (zh) 锂二次电池
CN110800142B (zh) 锂二次电池用负极活性材料及其制备方法
JP7157252B2 (ja) リチウム二次電池用正極添加剤、その製造方法、それを含むリチウム二次電池用正極およびそれを含むリチウム二次電池
KR101378125B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JP2019102459A (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP2008098151A (ja) 非水電解質二次電池及びその製造方法
KR20190110347A (ko) 리튬-함유 복합체의 코팅층을 구비한 세퍼레이터, 이를 포함하는 리튬 이차전지 및 상기 이차전지의 제조방법
US8877385B2 (en) Non-aqueous secondary battery
WO2019111983A1 (ja) 非水電解液電池用電解液及びそれを用いた非水電解液電池
JP2011001254A (ja) 窒化Li−Ti複合酸化物の製造方法、窒化Li−Ti複合酸化物およびリチウム電池
JP7368577B2 (ja) 負極及びその製造方法
JP2015018713A (ja) 非水電解液、及び該非水電解液を用いたリチウムイオン二次電池
JP6448462B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池並びに非水電解質二次電池用負極活物質の製造方法
WO2016017362A1 (ja) シクロブテンジオン誘導体、非水電解液、及びリチウムイオン二次電池
JP7388936B2 (ja) 非水電解質二次電池用負極活物質、非水電解質二次電池用負極材、及び、リチウムイオン二次電池
JP7134556B2 (ja) リチウム二次電池
WO2023026849A1 (ja) 非水系電解質及び非水電解質二次電池
JP2013105649A (ja) 非水電解質二次電池
WO2023026852A1 (ja) 非水系電解質及び非水電解質二次電池
WO2023008030A1 (ja) 非水電解液及びこれを備える非水電解質二次電池
JP2019129012A (ja) 非水電解質蓄電素子の製造方法、プレドープ材と触媒との複合粉末の製造方法、及びプレドープ材と触媒との複合粉末
KR101322177B1 (ko) 리튬 이차전지용 음극 활물질의 제조방법
EP4379863A1 (en) Negative electrode active material and method for producing same
US11990585B2 (en) Electrolyte formulations for optimal performance in Si-containing lithium ion batteries
EP4379834A1 (en) Negative electrode and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861142

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280057160.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022861142

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022861142

Country of ref document: EP

Effective date: 20240325