WO2023026483A9 - Display device provided with function for displaying laser machining state, and machining control device comprising same - Google Patents

Display device provided with function for displaying laser machining state, and machining control device comprising same Download PDF

Info

Publication number
WO2023026483A9
WO2023026483A9 PCT/JP2021/031559 JP2021031559W WO2023026483A9 WO 2023026483 A9 WO2023026483 A9 WO 2023026483A9 JP 2021031559 W JP2021031559 W JP 2021031559W WO 2023026483 A9 WO2023026483 A9 WO 2023026483A9
Authority
WO
WIPO (PCT)
Prior art keywords
processing
machining
laser
unit
energy density
Prior art date
Application number
PCT/JP2021/031559
Other languages
French (fr)
Japanese (ja)
Other versions
WO2023026483A1 (en
Inventor
航希 及川
淳一 手塚
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to JP2023543619A priority Critical patent/JPWO2023026483A1/ja
Priority to PCT/JP2021/031559 priority patent/WO2023026483A1/en
Priority to CN202180101648.6A priority patent/CN117836085A/en
Priority to DE112021007853.4T priority patent/DE112021007853T5/en
Publication of WO2023026483A1 publication Critical patent/WO2023026483A1/en
Publication of WO2023026483A9 publication Critical patent/WO2023026483A9/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring

Definitions

  • the present invention relates to a display device and a processing control device including the same, and particularly to a display device having a function of displaying a laser processing state based on energy density per unit processing length.
  • Laser processing equipment such as laser cutting machines and laser welding machines, transmits laser light output from a laser oscillator, irradiates the workpiece, and performs predetermined processing by moving the laser light and the workpiece relative to each other. Can be done.
  • the energy density per unit processing length can be made uniform if processing is performed at a constant processing speed and constant laser output. can.
  • the processing path includes curved parts and corner parts. Since the machining speed decreases at the corners, there is a problem in that when machining is performed with a constant laser output, the energy density per unit machining length becomes non-uniform.
  • Patent Document 1 discloses a processing path display device that displays a processing path in a laser processing machine, in which a predetermined control period of at least one drive shaft is set.
  • a position information acquisition unit that acquires position information for each time
  • a laser processing head coordinate calculation unit that calculates the coordinate values of the laser processing head from the position information and information on the mechanical configuration of the laser processing machine
  • a laser processing head coordinate calculation unit that calculates the laser output value of the laser.
  • a processing path is determined based on the laser output acquisition unit that acquires the laser output value, the display format setting unit that sets the laser display format according to the acquired laser output value, and the coordinate values of the laser processing head and the set display format.
  • a display unit for displaying information is disclosed. According to such a machining path display device, it is said that the relationship between the machining path and the laser output can be easily recognized.
  • a display device having a function of displaying a laser processing state based on energy density per unit processing length uses processing data that acquires a laser output value and irradiation coordinate value of a processing laser beam that performs laser processing.
  • an acquisition unit a calculation unit that calculates the energy density per unit machining length on the machining path of the machining laser beam based on the acquired laser output value and irradiation coordinate value, and a calculation unit that corresponds the energy density to the position on the machining path.
  • a display section for displaying the following information uses processing data that acquires a laser output value and irradiation coordinate value of a processing laser beam that performs laser processing.
  • An oscillation command section that outputs oscillation commands
  • an irradiation position command section that outputs relative movement commands between the machining laser beam and the workpiece based on the analyzed machining program
  • an irradiation position command section that outputs commands for relative movement between the machining laser beam and the workpiece based on the analyzed machining program.
  • the display device includes a processing data acquisition unit that obtains a laser output value and an irradiation coordinate value of a processing laser beam that performs laser processing;
  • the apparatus further includes a calculation section that calculates the energy density per unit processing length on the processing path of the processing laser beam based on the value, and a display section that displays the energy density in association with the position on the processing path.
  • the calculation unit calculates the energy density per unit machining length on the machining path of the machining laser beam based on the laser output value and the irradiation coordinate value acquired by the machining data acquisition unit, By using a configuration in which the display section displays the calculated energy density in association with the machining path, the laser machining status can be grasped on the display device by obtaining the energy density per unit machining length on the machining path. .
  • FIG. 1 is a schematic diagram showing the configuration of a laser processing apparatus including a display device and a processing control device according to a first embodiment, which is a typical example of the present invention.
  • FIG. 2 is a block diagram showing the relationship between the display device and the processing control device shown in FIG. 1.
  • FIG. 3 is a schematic diagram showing an example of a processing path of laser processing according to the first embodiment. It is an example of the display mode in the display part of a display device. It is an example of the display mode in the display part of a display device. It is a block diagram showing the relationship between a display device and a processing control device according to a second embodiment of the present invention.
  • FIG. 7 is a block diagram showing the relationship between a display device and a processing control device according to a third embodiment of the present invention. This is an example of a display mode in which the energy density shown in FIG. 4A is displayed as a processing pattern. This is an example of a display mode in which the energy density shown in FIG. 4B is displayed as a processing pattern. It is a schematic diagram showing the composition of a laser processing device including a display device and a processing control device by a 4th embodiment. 9 is a block diagram showing the relationship between the display device and the processing control device shown in FIG. 8. FIG.
  • FIG. 1 is a schematic diagram showing the configuration of a laser processing apparatus including a display device and a processing control device according to a first embodiment, which is a typical example of the present invention. Further, FIG. 2 is a block diagram showing the relationship between the display device and the processing control device shown in FIG. 1.
  • the laser processing apparatus 1 includes, for example, a laser oscillator 10 that oscillates a processing laser beam LB, a processing table 20 that holds a workpiece W, and a processing head that irradiates the workpiece W with the processing laser beam LB. 30, a transport mechanism 40 that moves the processing head 30 relative to the processing table 20, and a processing control device 50 that controls a predetermined laser processing operation on the workpiece W. Further, the processing control device 50 is connected to a display device 100.
  • the laser processing apparatus in this specification performs predetermined processing by irradiating a processing laser beam onto a workpiece W, such as laser welding, laser cutting, laser drilling (trepanning), laser marking, laser dicing, or laser annealing. It can be applied as any processing device.
  • predetermined processing such as laser welding, laser cutting, laser drilling (trepanning), laser marking, laser dicing, or laser annealing. It can be applied as any processing device.
  • laser cutting among the above-mentioned laser processing will be explained as an example.
  • a laser source with a wavelength having high absorption efficiency is applied depending on the material of the workpiece W to be processed.
  • Examples of such a laser oscillator 10 include those capable of fiber transmission, such as a YAG laser, a YVO 4 laser, a fiber laser, and a disk laser.
  • the processing laser beam LB output from the laser oscillator 10 is transmitted to the processing head 30 via a transmission path 12 such as an optical fiber.
  • the processing table 20 includes a chuck mechanism (not shown) for attaching the workpiece W, and is configured to grip and fix the workpiece W. Furthermore, the processing table 20 may include not only a mechanism for moving the workpiece W in the three axial directions of XYZ, but also a rotation mechanism.
  • the processing laser beam LB is introduced into the processing head 30 from one end (upper end) side, and is emitted toward the workpiece W from the nozzle 32 at the other end (lower end) side. At this time, the processing laser beam LB is focused to a predetermined beam diameter at a focusing point FP on the workpiece W by a condensing lens (not shown) disposed inside the processing head 30.
  • high-pressure oxygen gas, compressed air, etc. are introduced into the processing head 30, and are injected coaxially with the processing laser beam LB from the nozzle 32 as an assist gas for laser cutting processing.
  • the processing head 30 has a built-in output sensor (not shown) for measuring the laser output value P of the processing laser beam LB, and also has a function of transmitting the detection signal to the processing control device 50. ing.
  • the processing head 30 for irradiating the processing laser beam LB onto the focal point FP of the workpiece W may have a scanning optical unit (not shown) such as a galvano mirror built therein instead of the above-mentioned structure.
  • the scanning optical unit may scan the optical axis of the processing laser beam LB with respect to the workpiece W.
  • the transport mechanism 40 is configured as a linear drive body that moves relatively in three axes directions of X, Y, and Z that are orthogonal to each other, and the processing head 30 is attached to one end of the linear drive body.
  • the transport mechanism 40 may be configured as a 6-axis or 7-axis type industrial robot including a robot arm with the processing head 30 attached to one end.
  • the machining control device 50 includes a main control unit 52 that controls the overall operation of the machining control device 50, and a machining program that reads a machining program stored in a database or the like.
  • a program analysis unit 54 that analyzes the machining program; an irradiation position command unit 56 that transmits and receives signals between the machining table 20 and the transport mechanism 40 based on the analysis result of the machining program; and an oscillation command section 58 that transmits and receives signals to and from the laser oscillator 10.
  • the machining control device 50 according to the first embodiment may further include an input interface (not shown) to be described later, and may be configured to manually modify the machining program.
  • the display device 100 As shown in FIG. 1, A machining data acquisition unit 120 that acquires a value (P) and irradiation coordinate values (x, y, z), and a machining path of the machining laser beam LB based on the laser output value P and irradiation coordinate values (x, y, z). (See symbols S1 to S6 in FIG. 3, which will be described later) A calculation unit 130 that calculates the energy density J per unit machining length shown above, and a display unit 140 that displays the calculated energy density J in association with the machining path. Equipped with. As shown in FIG. 1, such a display device 100 may be configured not only as a stationary device alongside the processing control device 50 but also as a portable device such as a tablet terminal.
  • the main control unit 52 of the processing control device 50 sends control commands analyzed by a program analysis unit 54 (described later) to an irradiation position command unit 56 and an oscillation command unit 58 for each content, and the laser processing device 1 is not shown in the illustration. It is connected to various sensors, etc., and receives these detection signals. As an example, the main control unit 52 receives a detection signal from an output sensor provided in the processing head 30 of the laser processing apparatus 1 described above, and uses this as the laser output value P of the processing laser beam LB on the display device 100. It is transmitted to the processed data acquisition unit 120.
  • the program analysis unit 54 reads blocks of a machining program from an external storage device (not shown) such as a database and analyzes them to determine what kind of control commands are included in the machining program. , temporarily stores and saves the loaded machining program block. Then, the program analysis section 54 sends a control command for the determined machining program to the main control section 52.
  • an external storage device not shown
  • the program analysis section 54 sends a control command for the determined machining program to the main control section 52.
  • the irradiation position command section 56 receives a control command including the optical axis and focal position of the processing laser beam LB based on the processing program and the movement position of the workpiece W from the main control section 52, and controls the processing table 20 and the transport mechanism.
  • a drive command signal is individually outputted to each of the motors 40 and 40.
  • the irradiation position command unit 56 determines the irradiation coordinate value ( x, y, z) and sends the calculated data to the processed data acquisition unit 120 of the display device 100.
  • the irradiation position command unit 56 calculates, for example, the representative position (movement position) of the work W after movement instructed to the processing table 20 and the transport mechanism.
  • a method of calculating the intersection of the extension line of the optical axis of the processing laser beam LB and the upper surface of the workpiece W as irradiation coordinate values (x, y, z) based on the nozzle tip position of the processing head 30 commanded by 40. etc. can be used.
  • the processing program may include the irradiation coordinate values (x, y, z), and the movement command values for the processing table 20 and the transport mechanism 40 may be calculated backward from the irradiation coordinate values.
  • the oscillation command unit 58 receives a control command including an output value of the machining laser beam LB corresponding to the irradiation coordinate values (x, y, z) on the machining path based on the machining program from the main control unit 52. , outputs an oscillation command signal to the laser oscillator 10.
  • the processing laser beam LB can be applied to either continuous oscillation or pulse oscillation, but in the first embodiment, the oscillation command signal is set to a duty ratio D with an output command value Cp.
  • An example of outputting pulse oscillation is shown below.
  • the display control unit 110 of the display device 100 internally holds a display program, and outputs drive commands to the processed data acquisition unit 120, the calculation unit 130, and the display unit 140 based on the display program.
  • the drive command based on the display program may be selectively issued at a timing based on an external input from an operator.
  • the machining data acquisition unit 120 receives the actual measured value of the laser output value P of the machining laser beam LB and the command value of the irradiation coordinate values (x, y, z) from the main control unit 52 or the irradiation position command unit 56 of the machining control device 50. and sends the data of these acquired values to the display control section 110 and the calculation section 130. Further, the processed data acquisition unit 120 may be configured to include a memory (not shown) that temporarily stores the acquired data, and has a function of temporarily storing the data acquired in real time until the end of the process. Note that the display control section 110 can grasp the current processing position and processing state based on the data sent from the processing data acquisition section 120.
  • the calculation unit 130 calculates the value per unit machining length on the machining path of the machining laser beam LB based on the laser output value P and the irradiation coordinate values (x, y, z) sent from the machining data acquisition unit 120. Calculate energy density J. Then, the calculated energy density J data and each data from the processed data acquisition section 120 are sent to the display section 140.
  • the calculation of the energy density J per unit machining length performed in the calculation unit 130 is performed as follows, as an example. That is, first, by substituting continuous displacement data for the time of the irradiation coordinate values (x, y, z) sent from the processing data acquisition unit 120 into the following formula 1, the processing path of the processing laser beam LB is determined. The processing speed F at the upper irradiation position (focusing point FP) is calculated.
  • the machining laser beam The energy density J per unit machining length on the machining path by LB is calculated. Then, as described above, the calculation unit 130 sends the thus calculated machining speed F and energy density J to the display unit 140 as data associated with each other on the machining path.
  • the display unit 140 Based on the drive command from the display control unit 110, the display unit 140 displays each data sent from the calculation unit 130 as characters or charts in association with the machining path. Examples of such a display section 140 include known display means such as a liquid crystal display panel and an organic EL display. Further, the display unit 140 may be configured to use a touch panel display to allow input by the operator.
  • FIG. 3 is a schematic diagram showing an example of a processing path of laser processing according to the first embodiment.
  • FIGS. 4A and 4B are examples of display modes on the display section of the display device, respectively. Note that FIG. 4A shows the case where the same laser output value P is issued at all positions on the processing paths S1 to S6 shown in FIG. 3, and FIG. 4B shows the case where the laser output value P is appropriately set for each of the processing paths S1 to S6. This shows the case where the command is given so that the energy density J per unit machining length is constant.
  • the machining paths S1 to S6 are routes that return from the machining start point P1 to the machining start point P1 via intermediate passing points P2 to P6.
  • laser cutting processing is performed in which the inner portion W1 is cut out from the workpiece W.
  • the machining paths S1 to S6 include straight paths S1, S3, and S6 formed only by straight lines, a curved path S2 formed only by curved lines, and two straight lines at the passing point P5. It is composed of intersecting refraction paths S4+S5.
  • the straight paths S1, S3, S6 and the curved path S2 can be controlled at the same processing speed within each section, but the refracted path S4+S5 In this case, since the moving direction of the optical axis of the processing laser beam LB is switched, it is necessary to decelerate and reaccelerate near the passing point P5.
  • the laser output value P is controlled to be the same at all positions on the processing path, for example, the straight paths S1, S3 and If the laser output value P at the machining speed F in S6 is an appropriate output, the machining speed F is reduced in the curved path S2 or the refracted path S4+S5, so the energy density J per unit machining length is equal to the curved path S2. And the refraction path S4+S5 is larger than the straight paths S1, S3, and S6. Therefore, in these curved path S2 and refracted path S4+S5, excessive heat input by the processing laser beam LB to the workpiece W becomes a cause of quality deterioration such as generation of dross on the cut surface.
  • the machining process at each of the machining paths S1 to S6 Increase or decrease the laser output value P in response to the speed F (for example, if the machining speed F increases, the laser output value P will be commanded to increase, and if the machining speed F decreases, the laser output value P will also decrease.
  • An oscillation command is given to the laser oscillator 10 as shown in FIG.
  • the energy density J per unit machining length is calculated based on the machining speed F calculated from the irradiation coordinate values (x, y, z) of the machining laser beam LB and the laser output value P at the coordinate values,
  • the machining data acquisition unit 120 of the display device 100 acquires the laser output value P of the machining laser beam LB and the irradiation coordinates from the outside (the main control unit 52 and the irradiation position command unit 56 of the machining control device 50).
  • the values (x, y, z) are acquired in real time
  • the processing data acquisition section 120 directly obtains these data from the main control section 52. Since the display as shown in FIGS. 4A and 4B can be performed without performing actual processing, it is also possible to predict the laser processing state from the processing program.
  • the calculation unit 130 calculates that the calculated energy density J is outside a predetermined range (for example, outside the upper or lower limit of the energy density J that provides appropriate properties of the cut surface). When this occurs, a notification command may be issued to the display unit 140 to indicate that there is an abnormality in the laser processing state. This makes it possible to determine whether there is an abnormality (such as a large processing defect) in the laser processing during or after the laser processing.
  • the display device allows the calculation unit to determine the position of the processing laser beam on the processing path based on the laser output value and the irradiation coordinate value acquired by the processing data acquisition unit.
  • the display section displays the calculated energy density in association with the machining path, the energy density per unit machining length on the machining path is obtained. It is possible to easily understand the laser processing state in the device.
  • FIG. 5 is a block diagram showing the relationship between the display device and the processing control device according to the second embodiment of the present invention.
  • the same reference numerals are given to those parts that can have the same or common configurations as those in the first embodiment. The explanation of the repetition of is omitted.
  • the machining data acquisition unit 120 receives the laser output value P of the machining laser beam LB from the irradiation position command unit 56 and the oscillation command unit 58 of the machining control device 50.
  • the configuration differs from the display device 100 according to the first embodiment shown in FIG. 2 in that the actual measured value and the command value of the irradiation coordinate values (x, y, z) are acquired. That is, the display device 100 according to the second embodiment uses the output command value Cp to the laser oscillator 10 that oscillates the processing laser beam LB as the laser output value P to be acquired.
  • the oscillation command unit 58 of the processing control device 50 outputs an oscillation command signal by pulse oscillation with an output command value Cp and a duty ratio D to the laser oscillator 10 based on the analysis result of the processing program. Therefore, by substituting these output command value Cp and duty ratio D into Equation 3 shown below, it is converted into a laser output value P for each irradiation coordinate value (x, y, z) of the processing laser beam LB.
  • the laser processing state can be predicted using the oscillation command signal sent to the laser oscillator 10 by the oscillation command unit 58 without actually measuring the laser output value P of the processing laser beam LB using an output sensor or the like.
  • the display device can include the laser output value of the processing laser beam in the oscillation command signal to the laser oscillator, in addition to the effects described in the first embodiment.
  • detection means such as an output sensor for actually measuring the laser output value during processing.
  • FIG. 6 is a block diagram showing the relationship between the display device and the processing control device according to the third embodiment of the present invention.
  • the same reference numerals are given to parts that can adopt the same or common configurations as those in the first and second embodiments. A repeated explanation of these steps will be omitted.
  • the configuration differs from the display device 100 according to the first embodiment shown in FIG. 2 in that it further includes a pattern creation section 150 that creates a processing pattern along the processing path. That is, the display device 100 according to the third embodiment reflects the data of the energy density J calculated on the machining pattern simulating the machining path, instead of the graph shown in FIG. 4A or FIG. 4B of the first embodiment. indicate.
  • FIGS. 7A and 7B are examples of display modes in which the energy densities shown in FIGS. 4A and 4B, respectively, are displayed as processing patterns.
  • the pattern creation unit 150 creates the irradiation coordinate values ( x, y, z) and the energy density J to create a planar processing pattern that imitates the processing path shown in FIG. 3.
  • the display unit 140 then displays the created machining pattern.
  • the machining pattern is colored or expressed in shading according to the value of the energy density J, thereby displaying the height of the energy density J on the machining paths S1 to S6.
  • the machining speed F is small and the energy The curved path S2 and the refracted path S4+S5 where the density J increases are displayed in a gradation of shading depending on the density.
  • the machining speed F gradually decreases toward the passing point P5, so the energy density J per unit machining length changes from area A2 to area A3.
  • the display gradually becomes darker as it gradually increases in size.
  • the machining pattern is expressed as a two-dimensional planar one, but depending on the shape of the workpiece and the machining path, the machining pattern can be expressed as a three-dimensional solid. It may be configured to express the Moreover, although the case where the energy density per unit machining length is displayed in color or shading has been exemplified, it may be configured so that the magnitude of the energy density is expressed by the width of the machining pattern. These representations make it possible to provide more intuitive visual information to the operator.
  • the display device has, in addition to the effects described in the first embodiment, a pattern creation section that creates a processing pattern along the processing path. This makes it possible to intuitively check the energy density distribution in the machining pattern. In particular, by displaying the energy density on the machining path in color or in shading, it becomes possible to grasp at which position or region the machining accuracy decreases.
  • FIG. 8 is a schematic diagram showing the configuration of a laser processing apparatus including a display device and a processing control device according to the fourth embodiment. Further, FIG. 9 is a block diagram showing the relationship between the display device and the processing control device shown in FIG. 8.
  • the same reference numerals are given to parts that can have the same or common configurations as those in the first to third embodiments. A repeated explanation of these steps will be omitted.
  • the processing control device 50 of the laser processing apparatus 1 according to the fourth embodiment is different from the processing according to the first embodiment shown in FIG.
  • the configuration is different from that of the control device 50 and the display device 100.
  • FIG. 8 shows an example in which the display device 100 is incorporated into the same housing as the processing control device 50, it is also possible to configure the display device 100 shown in FIG. 1 to include the processing control device 50. You may.
  • the machining control device 50 includes a main control unit 52 that controls the overall operation of the machining control device 50, and reads a machining program stored in a database or the like and analyzes the machining program.
  • a program analysis section 54 an irradiation position command section 56 that transmits and receives signals between the processing table 20 and the transport mechanism 40 based on the analysis results of the processing program, and a laser oscillator 10 based on the analysis results of the processing program.
  • the display device 100 includes a display control unit 110 that controls the overall operation of the display device 100, and a laser output value (P) and a laser output value (P) of the processing laser beam LB that performs laser processing.
  • a machining data acquisition unit 120 that acquires irradiation coordinate values (x, y, z), and a unit machining length on the machining path of the machining laser beam LB based on the laser output value P and the irradiation coordinate values (x, y, z). It includes a calculation section 130 that calculates the energy density J per area, and a display section 140 that displays the calculated energy density J in association with the machining path.
  • the main control section 52 is configured to exchange signals with the display control section 110 of the display device 100.
  • a command can be issued to 140 to display various information necessary for controlling the operation of the laser processing apparatus 1.
  • FIG. 9 illustrates a case where the main control unit 52 of the processing control device 50 and the display control unit 110 of the display device 100 are configured separately, the main control unit 52 is a display control unit. 110 may be integrated and configured to serve the functions of 110.
  • the input interface 60 is configured as an information input terminal including, for example, input buttons and a numeric keypad.
  • the operator who sees the result of the energy density J displayed on the display unit 140 of the display device 100 manually inputs various parameters in the machining program, such as the machining speed F and the laser output value P (or output command value Cp). It can be corrected by
  • FIGS. 8 and 9 illustrate a case where the input interface 60 and the display unit 140 of the display device 100 are configured separately, the display unit 140 may be a panel display unit that allows touch input. It is also possible to adopt a configuration that integrates the two.
  • the machining control device has the effects described in the first embodiment, and by incorporating the display device into the machining control device, the internal configuration can be improved. It is possible to integrate them and to make the overall size compact.
  • the specific examples shown in the first to fourth embodiments may be applied by combining their respective characteristics.
  • Laser processing device 10 Laser oscillator 12 Transmission path 20 Processing table 30 Processing head 32 Nozzle 40 Transport mechanism 50 Processing control device 52 Main control section 54 Program analysis section 56 Irradiation position command section 58 Oscillation command section 60 Input interface 100 Display device 110 Display Control unit 120 Processing data acquisition unit 130 Calculation unit 140 Display unit 150 Pattern creation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

The present invention is a display device provided with a function for displaying a laser machining state based on the energy density per unit machining length, said display device being provided with: a machining data acquisition unit that acquires a laser output value and a radiation coordinate value for a machining laser beam performing laser machining; a calculation unit that calculates the energy density per unit machining length on a tool path of the machining laser beam on the basis of the acquired laser output value and radiation coordinate value; and a display unit that associates and displays the calculated energy density with a position on the tool path.

Description

レーザ加工状態を表示する機能を備えた表示装置及びこれを含む加工制御装置Display device with a function to display laser processing status and processing control device including the same
 本発明は、表示装置及びこれを含む加工制御装置に関し、特に、単位加工長あたりのエネルギ密度に基づくレーザ加工状態を表示する機能を備えた表示装置に関する。 The present invention relates to a display device and a processing control device including the same, and particularly to a display device having a function of displaying a laser processing state based on energy density per unit processing length.
 レーザ切断機やレーザ溶接機等のレーザ加工装置は、レーザ発振器から出力されたレーザ光を伝送してワークに照射し、当該レーザ光とワークとを相対移動させることにより、所定の加工を行うことができる。特に、レーザ切断加工において良好な切断断面を得るあるいはレーザ溶接加工において安定した溶接ビードを得るためには、加工経路上での単位加工長あたりのエネルギ密度が均一(所定範囲)であることが望ましい。 Laser processing equipment, such as laser cutting machines and laser welding machines, transmits laser light output from a laser oscillator, irradiates the workpiece, and performs predetermined processing by moving the laser light and the workpiece relative to each other. Can be done. In particular, in order to obtain a good cut cross section in laser cutting or a stable weld bead in laser welding, it is desirable that the energy density per unit processing length on the processing path be uniform (within a predetermined range). .
 このようなレーザ加工において、ワークに対する加工経路が単なる直線で構成される場合に、一定の加工速度及び一定のレーザ出力の下で加工を行えば単位加工長あたりのエネルギ密度を均一とすることができる。しかしながら、任意形状のワークにレーザ光を照射して2次元あるいは3次元の加工経路に沿った加工を行う場合には、加工経路に曲線部やコーナー部が含まれることにより、これらの曲線部やコーナー部では加工速度が低下するため、一定のレーザ出力での加工を行うと単位加工長あたりのエネルギ密度が不均一となってしまうという問題がある。 In this type of laser processing, if the processing path for the workpiece consists of a simple straight line, the energy density per unit processing length can be made uniform if processing is performed at a constant processing speed and constant laser output. can. However, when processing a workpiece of arbitrary shape along a two-dimensional or three-dimensional processing path by irradiating a laser beam, the processing path includes curved parts and corner parts. Since the machining speed decreases at the corners, there is a problem in that when machining is performed with a constant laser output, the energy density per unit machining length becomes non-uniform.
 このような問題を解決することを意図したレーザ加工装置の一例として、例えば特許文献1には、レーザ加工機における加工経路を表示する加工経路表示装置において、少なくとも一つの駆動軸の所定の制御周期毎の位置情報を取得する位置情報取得部と、当該位置情報とレーザ加工機の機械構成の情報とからレーザ加工ヘッドの座標値を算出するレーザ加工ヘッド座標算出部と、レーザのレーザ出力値を取得するレーザ出力取得部と、取得されたレーザ出力値に応じてレーザの表示形式を設定する表示形式設定部と、レーザ加工ヘッドの座標値と設定された表示形式とに基づいて、加工経路を表示する表示部と、を具備するものが開示されている。このような加工経路表示装置によれば、加工経路とレーザ出力との関係を容易に認識することができるとされている。 As an example of a laser processing device intended to solve such a problem, for example, Patent Document 1 discloses a processing path display device that displays a processing path in a laser processing machine, in which a predetermined control period of at least one drive shaft is set. A position information acquisition unit that acquires position information for each time, a laser processing head coordinate calculation unit that calculates the coordinate values of the laser processing head from the position information and information on the mechanical configuration of the laser processing machine, and a laser processing head coordinate calculation unit that calculates the laser output value of the laser. A processing path is determined based on the laser output acquisition unit that acquires the laser output value, the display format setting unit that sets the laser display format according to the acquired laser output value, and the coordinate values of the laser processing head and the set display format. A display unit for displaying information is disclosed. According to such a machining path display device, it is said that the relationship between the machining path and the laser output can be easily recognized.
特開2018-180780号公報Japanese Patent Application Publication No. 2018-180780
 上記のように、レーザ加工の加工経路上の位置情報とレーザ出力とを関連付けて表示する場合には、あくまでも加工経路上の各加工点に入力されるレーザの出力値が表示されるのみであって、加工速度の影響を考慮した単位加工長あたりのデータを示すものではない。このため、単に加工経路上の位置情報とレーザ出力との関係を得るだけでは、加工経路上でのエネルギ密度の状態を把握することができない。 As mentioned above, when position information on the processing path of laser processing and laser output are displayed in association with each other, only the laser output value input to each processing point on the processing path is displayed. Therefore, it does not indicate data per unit machining length that takes into account the influence of machining speed. For this reason, it is not possible to grasp the state of energy density on the processing path simply by obtaining the relationship between the position information on the processing path and the laser output.
 このような経緯から、加工経路上の単位加工長あたりのエネルギ密度を得ることにより、レーザ加工状態を把握できる表示装置及びこれを用いた加工制御装置が求められている。 From this background, there is a need for a display device that can grasp the laser processing state by obtaining the energy density per unit processing length on the processing path, and a processing control device using the display device.
 本発明の一態様による、単位加工長あたりのエネルギ密度に基づくレーザ加工状態を表示する機能を備えた表示装置は、レーザ加工を行う加工レーザ光のレーザ出力値及び照射座標値を取得する加工データ取得部と、取得されたレーザ出力値及び照射座標値に基づいて加工レーザ光の加工経路上における単位加工長あたりのエネルギ密度を演算する演算部と、当該エネルギ密度を加工経路上の位置と対応づけて表示する表示部と、を備える。 According to one aspect of the present invention, a display device having a function of displaying a laser processing state based on energy density per unit processing length uses processing data that acquires a laser output value and irradiation coordinate value of a processing laser beam that performs laser processing. an acquisition unit, a calculation unit that calculates the energy density per unit machining length on the machining path of the machining laser beam based on the acquired laser output value and irradiation coordinate value, and a calculation unit that corresponds the energy density to the position on the machining path. and a display section for displaying the following information.
 また、本発明の一態様による、加工プログラムに基づいてレーザ加工装置を制御する加工制御装置は、加工プログラムを解析するプログラム解析部と、解析された加工プログラムに基づいてレーザ発振器に加工レーザ光の発振指令を出力する発振指令部と、解析された加工プログラムに基づいて加工レーザ光とワークとの相対移動指令を出力する照射位置指令部と、単位加工長あたりのエネルギ密度に基づくレーザ加工状態を表示する機能を有する表示装置と、を備え、当該表示装置は、レーザ加工を行う加工レーザ光のレーザ出力値及び照射座標値を取得する加工データ取得部と、取得されたレーザ出力値及び照射座標値に基づいて加工レーザ光の加工経路上における単位加工長あたりのエネルギ密度を演算する演算部と、エネルギ密度を加工経路上の位置と対応づけて表示する表示部と、をさらに備える。 Further, a processing control device according to one aspect of the present invention that controls a laser processing apparatus based on a processing program includes a program analysis unit that analyzes the processing program, and a processing laser beam that is transmitted to a laser oscillator based on the analyzed processing program. An oscillation command section that outputs oscillation commands, an irradiation position command section that outputs relative movement commands between the machining laser beam and the workpiece based on the analyzed machining program, and an irradiation position command section that outputs commands for relative movement between the machining laser beam and the workpiece based on the analyzed machining program. a display device having a display function; the display device includes a processing data acquisition unit that obtains a laser output value and an irradiation coordinate value of a processing laser beam that performs laser processing; The apparatus further includes a calculation section that calculates the energy density per unit processing length on the processing path of the processing laser beam based on the value, and a display section that displays the energy density in association with the position on the processing path.
 本発明の一態様によれば、加工データ取得部で取得されたレーザ出力値及び照射座標値に基づいて、演算部が加工レーザ光の加工経路上における単位加工長あたりのエネルギ密度を演算し、表示部が演算されたエネルギ密度を加工経路と対応づけて表示する構成を用いて、加工経路上の単位加工長あたりのエネルギ密度を得ることにより、表示装置においてレーザ加工状態を把握することができる。 According to one aspect of the present invention, the calculation unit calculates the energy density per unit machining length on the machining path of the machining laser beam based on the laser output value and the irradiation coordinate value acquired by the machining data acquisition unit, By using a configuration in which the display section displays the calculated energy density in association with the machining path, the laser machining status can be grasped on the display device by obtaining the energy density per unit machining length on the machining path. .
本発明の代表的な一例である第1の実施形態による表示装置及び加工制御装置を含むレーザ加工装置の構成を示す概略図である。1 is a schematic diagram showing the configuration of a laser processing apparatus including a display device and a processing control device according to a first embodiment, which is a typical example of the present invention. 図1で示した表示装置及び加工制御装置との関係を示すブロック図である。FIG. 2 is a block diagram showing the relationship between the display device and the processing control device shown in FIG. 1. FIG. 第1の実施形態によるレーザ加工の加工経路の一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of a processing path of laser processing according to the first embodiment. 表示装置の表示部における表示態様の一例である。It is an example of the display mode in the display part of a display device. 表示装置の表示部における表示態様の一例である。It is an example of the display mode in the display part of a display device. 本発明の第2の実施形態による表示装置及び加工制御装置との関係を示すブロック図である。It is a block diagram showing the relationship between a display device and a processing control device according to a second embodiment of the present invention. 本発明の第3の実施形態による表示装置及び加工制御装置との関係を示すブロック図である。FIG. 7 is a block diagram showing the relationship between a display device and a processing control device according to a third embodiment of the present invention. 図4Aで示したエネルギ密度を加工パターンとして表示した表示態様の一例である。This is an example of a display mode in which the energy density shown in FIG. 4A is displayed as a processing pattern. 図4Bで示したエネルギ密度を加工パターンとして表示した表示態様の一例である。This is an example of a display mode in which the energy density shown in FIG. 4B is displayed as a processing pattern. 第4の実施形態による表示装置及び加工制御装置を含むレーザ加工装置の構成を示す概略図である。It is a schematic diagram showing the composition of a laser processing device including a display device and a processing control device by a 4th embodiment. 図8で示した表示装置及び加工制御装置との関係を示すブロック図である。9 is a block diagram showing the relationship between the display device and the processing control device shown in FIG. 8. FIG.
 以下、本発明の代表的な一例によるレーザ加工状態を表示する機能を備えた表示装置及びこれを含む加工制御装置の実施形態を図面と共に説明する。 Hereinafter, embodiments of a display device having a function of displaying a laser processing state and a processing control device including the display device according to a typical example of the present invention will be described with reference to the drawings.
<第1の実施形態>
 図1は、本発明の代表的な一例である第1の実施形態による表示装置及び加工制御装置を含むレーザ加工装置の構成を示す概略図である。また、図2は、図1で示した表示装置及び加工制御装置との関係を示すブロック図である。
<First embodiment>
FIG. 1 is a schematic diagram showing the configuration of a laser processing apparatus including a display device and a processing control device according to a first embodiment, which is a typical example of the present invention. Further, FIG. 2 is a block diagram showing the relationship between the display device and the processing control device shown in FIG. 1.
 図1に示すように、レーザ加工装置1は、その一例として、加工レーザ光LB発振するレーザ発振器10と、ワークWを保持する加工テーブル20と、ワークWに加工レーザ光LBを照射する加工ヘッド30と、当該加工ヘッド30を加工テーブル20に対して相対移動させる搬送機構40と、ワークWに対する所定のレーザ加工動作を制御する加工制御装置50と、を含む。また、加工制御装置50は、表示装置100と接続されている。 As shown in FIG. 1, the laser processing apparatus 1 includes, for example, a laser oscillator 10 that oscillates a processing laser beam LB, a processing table 20 that holds a workpiece W, and a processing head that irradiates the workpiece W with the processing laser beam LB. 30, a transport mechanism 40 that moves the processing head 30 relative to the processing table 20, and a processing control device 50 that controls a predetermined laser processing operation on the workpiece W. Further, the processing control device 50 is connected to a display device 100.
 本明細書におけるレーザ加工装置は、例えばレーザ溶接、レーザ切断、レーザ穴あけ(トレパニング)、レーザマーキング、レーザダイシングあるいはレーザアニール等のワークWに対して加工レーザ光を照射することにより、所定の加工を実行する任意の加工装置として適用し得る。なお、以下の実施形態においては、上記のレーザ加工のうちレーザ切断の場合をその一例として説明する。 The laser processing apparatus in this specification performs predetermined processing by irradiating a processing laser beam onto a workpiece W, such as laser welding, laser cutting, laser drilling (trepanning), laser marking, laser dicing, or laser annealing. It can be applied as any processing device. In addition, in the following embodiment, the case of laser cutting among the above-mentioned laser processing will be explained as an example.
 レーザ発振器10は、加工されるワークWの材質に応じて吸収効率が高い波長のレーザ源が適用される。このようなレーザ発振器10としては、その一例として、YAGレーザ、YVOレーザ、ファイバレーザ、ディスクレーザ等のファイバ伝送が可能なものが例示できる。また、レーザ発振器10から出力された加工レーザ光LBは、例えば光ファイバ等の伝送路12を介して加工ヘッド30に伝送される。 As the laser oscillator 10, a laser source with a wavelength having high absorption efficiency is applied depending on the material of the workpiece W to be processed. Examples of such a laser oscillator 10 include those capable of fiber transmission, such as a YAG laser, a YVO 4 laser, a fiber laser, and a disk laser. Furthermore, the processing laser beam LB output from the laser oscillator 10 is transmitted to the processing head 30 via a transmission path 12 such as an optical fiber.
 加工テーブル20は、その一例として、ワークWを取り付けるチャック機構(図示せず)を備え、ワークWを把持固定するように構成されている。また、加工テーブル20は、例えばワークWをXYZの3軸方向に移動させる機構だけでなく、回転機構を備えてもよい。 As an example, the processing table 20 includes a chuck mechanism (not shown) for attaching the workpiece W, and is configured to grip and fix the workpiece W. Furthermore, the processing table 20 may include not only a mechanism for moving the workpiece W in the three axial directions of XYZ, but also a rotation mechanism.
 加工ヘッド30は、その一例として、一端(上端)側から加工レーザ光LBが導入され、他端(下端)側のノズル32からワークWに向けて出射される。このとき、加工ヘッド30の内部に配置された集光レンズ(図示せず)により、加工レーザ光LBはワークW上の集光点FPで所定のビーム径に集光される。 As an example, the processing laser beam LB is introduced into the processing head 30 from one end (upper end) side, and is emitted toward the workpiece W from the nozzle 32 at the other end (lower end) side. At this time, the processing laser beam LB is focused to a predetermined beam diameter at a focusing point FP on the workpiece W by a condensing lens (not shown) disposed inside the processing head 30.
 また、加工ヘッド30には、高圧の酸素ガスや圧縮空気等が導入され、レーザ切断加工のアシストガスとしてノズル32から加工レーザ光LBとともに同軸に噴射される。さらに、加工ヘッド30には、その内部に加工レーザ光LBのレーザ出力値Pを測定する出力センサ(図示せず)を内蔵しており、その検出信号を加工制御装置50に送信する機能も備えている。 Further, high-pressure oxygen gas, compressed air, etc. are introduced into the processing head 30, and are injected coaxially with the processing laser beam LB from the nozzle 32 as an assist gas for laser cutting processing. Furthermore, the processing head 30 has a built-in output sensor (not shown) for measuring the laser output value P of the processing laser beam LB, and also has a function of transmitting the detection signal to the processing control device 50. ing.
 なお、加工レーザ光LBをワークWの集光点FPに照射する加工ヘッド30の構成として、上記したものに代えて、内部に例えばガルバノミラー等の走査光学ユニット(図示せず)を内蔵し、当該走査光学ユニットで加工レーザ光LBの光軸をワークWに対して走査するものとしてもよい。これにより、加工レーザ光LBをいわゆる長焦点レーザとすることで、より高速でのレーザ加工(リモート加工)が可能となる。 The processing head 30 for irradiating the processing laser beam LB onto the focal point FP of the workpiece W may have a scanning optical unit (not shown) such as a galvano mirror built therein instead of the above-mentioned structure. The scanning optical unit may scan the optical axis of the processing laser beam LB with respect to the workpiece W. Thereby, by using the processing laser beam LB as a so-called long focal length laser, higher speed laser processing (remote processing) becomes possible.
 搬送機構40は、その一例として、互いに直交するXYZの3軸方向に相対移動するリニア駆動体として構成され、その一端に加工ヘッド30が取り付けられる。なお、搬送機構40は、一端に加工ヘッド30を取り付けたロボットアームを備えた6軸又は7軸タイプの産業用ロボットとして構成されてもよい。 As an example, the transport mechanism 40 is configured as a linear drive body that moves relatively in three axes directions of X, Y, and Z that are orthogonal to each other, and the processing head 30 is attached to one end of the linear drive body. Note that the transport mechanism 40 may be configured as a 6-axis or 7-axis type industrial robot including a robot arm with the processing head 30 attached to one end.
 第1の実施形態による加工制御装置50は、その一例として図2に示すように、加工制御装置50の全体の動作を制御する主制御部52と、データベース等に格納された加工プログラムを読み込んで当該加工プログラムを解析するプログラム解析部54と、加工プログラムの解析結果に基づいて加工テーブル20及び搬送機構40との間で信号の送受信を行う照射位置指令部56と、加工プログラムの解析結果に基づいてレーザ発振器10との間で信号の送受信を行う発振指令部58と、を含む。また、第1の実施形態による加工制御装置50は、後述する入力インターフェース(図示せず)をさらに含み、加工プログラムの修正を手入力で行うように構成してもよい。 As shown in FIG. 2 as an example, the machining control device 50 according to the first embodiment includes a main control unit 52 that controls the overall operation of the machining control device 50, and a machining program that reads a machining program stored in a database or the like. A program analysis unit 54 that analyzes the machining program; an irradiation position command unit 56 that transmits and receives signals between the machining table 20 and the transport mechanism 40 based on the analysis result of the machining program; and an oscillation command section 58 that transmits and receives signals to and from the laser oscillator 10. Further, the machining control device 50 according to the first embodiment may further include an input interface (not shown) to be described later, and may be configured to manually modify the machining program.
[規則91に基づく訂正 04.10.2023]
 一方、第1の実施形態による表示装置100は、その一例として図2に示すように、表示装置100の全体の動作を制御する表示制御部110と、レーザ加工を行う加工レーザ光LBのレーザ出力値(P)及び照射座標値(x,y,z)を取得する加工データ取得部120と、レーザ出力値P及び照射座標値(x,y,z)に基づいて加工レーザ光LBの加工経路(後述する図3の符号S1~S6参照)上における単位加工長あたりのエネルギ密度Jを演算する演算部130と、演算されたエネルギ密度Jを加工経路と対応づけて表示する表示部140と、を備える。このような表示装置100は、図1に示すように、加工制御装置50と並ぶ据付型の装置として構成する以外にも、例えばタブレット端末等の携帯型の装置として構成してもよい。
[Amendment based on Rule 91 04.10.2023]
On the other hand, the display device 100 according to the first embodiment, as shown in FIG. A machining data acquisition unit 120 that acquires a value (P) and irradiation coordinate values (x, y, z), and a machining path of the machining laser beam LB based on the laser output value P and irradiation coordinate values (x, y, z). (See symbols S1 to S6 in FIG. 3, which will be described later) A calculation unit 130 that calculates the energy density J per unit machining length shown above, and a display unit 140 that displays the calculated energy density J in association with the machining path. Equipped with. As shown in FIG. 1, such a display device 100 may be configured not only as a stationary device alongside the processing control device 50 but also as a portable device such as a tablet terminal.
 加工制御装置50の主制御部52は、後述するプログラム解析部54で解析された制御指令をその内容毎に照射位置指令部56及び発振指令部58に送るとともに、レーザ加工装置1の図示を省略した各種センサ等を接続され、これらの検出信号を受信する。その一例として、主制御部52は、上記したレーザ加工装置1の加工ヘッド30に設けられた出力センサからの検出信号を受信し、これを加工レーザ光LBのレーザ出力値Pとして表示装置100の加工データ取得部120に送信する。 The main control unit 52 of the processing control device 50 sends control commands analyzed by a program analysis unit 54 (described later) to an irradiation position command unit 56 and an oscillation command unit 58 for each content, and the laser processing device 1 is not shown in the illustration. It is connected to various sensors, etc., and receives these detection signals. As an example, the main control unit 52 receives a detection signal from an output sensor provided in the processing head 30 of the laser processing apparatus 1 described above, and uses this as the laser output value P of the processing laser beam LB on the display device 100. It is transmitted to the processed data acquisition unit 120.
 プログラム解析部54は、その一例として、データベース等の外部記憶装置(図示せず)から加工プログラムのブロックを読み込んで解析することにより、加工プログラムにどのような制御指令が含まれているかを判別し、読み込んだ加工プログラムのブロックを一時的に記憶・保存する。そして、プログラム解析部54は、判別した加工プログラムの制御指令を主制御部52に送る。 For example, the program analysis unit 54 reads blocks of a machining program from an external storage device (not shown) such as a database and analyzes them to determine what kind of control commands are included in the machining program. , temporarily stores and saves the loaded machining program block. Then, the program analysis section 54 sends a control command for the determined machining program to the main control section 52.
 照射位置指令部56は、その一例として、主制御部52から加工プログラムに基づく加工レーザ光LBの光軸や焦点位置及びワークWの移動位置を含む制御指令を受信し、加工テーブル20及び搬送機構40に対して個別に駆動指令信号を出力する。また、照射位置指令部56は、加工テーブル20に対する指令位置と搬送機構40に対する移動位置とに基づいて、加工レーザ光LBがワークW上に照射された際の集光点FPの照射座標値(x,y,z)を算出して表示装置100の加工データ取得部120に送る機能も有する。 For example, the irradiation position command section 56 receives a control command including the optical axis and focal position of the processing laser beam LB based on the processing program and the movement position of the workpiece W from the main control section 52, and controls the processing table 20 and the transport mechanism. A drive command signal is individually outputted to each of the motors 40 and 40. Furthermore, the irradiation position command unit 56 determines the irradiation coordinate value ( x, y, z) and sends the calculated data to the processed data acquisition unit 120 of the display device 100.
 ここで、照射位置指令部56は、上記照射座標値(x,y,z)を算出するにあたり、例えば、加工テーブル20に指令されるワークWの移動後の代表位置(移動位置)と搬送機構40に指令される加工ヘッド30のノズル先端位置とに基づいて、加工レーザ光LBの光軸の延長線とワークWの上面との交点を照射座標値(x,y,z)として演算する手法などを用いることができる。また、加工プログラムに上記照射座標値(x,y,z)を含ませておき、当該照射座標値から加工テーブル20及び搬送機構40への移動指令値を逆算するように構成してもよい。 Here, in calculating the above-mentioned irradiation coordinate values (x, y, z), the irradiation position command unit 56 calculates, for example, the representative position (movement position) of the work W after movement instructed to the processing table 20 and the transport mechanism. A method of calculating the intersection of the extension line of the optical axis of the processing laser beam LB and the upper surface of the workpiece W as irradiation coordinate values (x, y, z) based on the nozzle tip position of the processing head 30 commanded by 40. etc. can be used. Alternatively, the processing program may include the irradiation coordinate values (x, y, z), and the movement command values for the processing table 20 and the transport mechanism 40 may be calculated backward from the irradiation coordinate values.
 発振指令部58は、その一例として、主制御部52から加工プログラムに基づく加工経路上の照射座標値(x,y,z)に対応する加工レーザ光LBの出力値を含む制御指令を受信し、レーザ発振器10に対して発振指令信号を出力する。ここで、本明細書において、加工レーザ光LBは連続発振とパルス発振のいずれの場合をも適用し得るが、第1の実施形態においては、発振指令信号として、出力指令値Cpでデューティ比Dのパルス発振を出力する場合を以下例示する。 For example, the oscillation command unit 58 receives a control command including an output value of the machining laser beam LB corresponding to the irradiation coordinate values (x, y, z) on the machining path based on the machining program from the main control unit 52. , outputs an oscillation command signal to the laser oscillator 10. Here, in this specification, the processing laser beam LB can be applied to either continuous oscillation or pulse oscillation, but in the first embodiment, the oscillation command signal is set to a duty ratio D with an output command value Cp. An example of outputting pulse oscillation is shown below.
 表示装置100の表示制御部110は、その一例として、内部に表示プログラムを保持し、当該表示プログラムに基づいて、加工データ取得部120、演算部130及び表示部140への駆動指令を出力する。なお、上記表示プログラムに基づく駆動指令をオペレータからの外部入力によるタイミングで選択的に行うように構成してもよい。 For example, the display control unit 110 of the display device 100 internally holds a display program, and outputs drive commands to the processed data acquisition unit 120, the calculation unit 130, and the display unit 140 based on the display program. Note that the drive command based on the display program may be selectively issued at a timing based on an external input from an operator.
 加工データ取得部120は、加工制御装置50の主制御部52あるいは照射位置指令部56から、加工レーザ光LBのレーザ出力値Pの実測値と照射座標値(x,y,z)の指令値とを取得し、取得したこれらの値のデータを表示制御部110及び演算部130に送る。また、加工データ取得部120は、取得したデータを一時保存するメモリ(図示せず)を備え、リアルタイムに取得したデータを加工終了まで一時的に保存する機能を備えるように構成してもよい。なお、表示制御部110は、加工データ取得部120から送られたデータに基づいて現在の加工位置や加工状態を把握することができる。 The machining data acquisition unit 120 receives the actual measured value of the laser output value P of the machining laser beam LB and the command value of the irradiation coordinate values (x, y, z) from the main control unit 52 or the irradiation position command unit 56 of the machining control device 50. and sends the data of these acquired values to the display control section 110 and the calculation section 130. Further, the processed data acquisition unit 120 may be configured to include a memory (not shown) that temporarily stores the acquired data, and has a function of temporarily storing the data acquired in real time until the end of the process. Note that the display control section 110 can grasp the current processing position and processing state based on the data sent from the processing data acquisition section 120.
 演算部130は、加工データ取得部120から送られたレーザ出力値P及び照射座標値(x,y,z)の各データに基づいて、加工レーザ光LBの加工経路上における単位加工長あたりのエネルギ密度Jを演算する。そして、演算したエネルギ密度Jのデータと加工データ取得部120からの各データとを表示部140に送る。 The calculation unit 130 calculates the value per unit machining length on the machining path of the machining laser beam LB based on the laser output value P and the irradiation coordinate values (x, y, z) sent from the machining data acquisition unit 120. Calculate energy density J. Then, the calculated energy density J data and each data from the processed data acquisition section 120 are sent to the display section 140.
 ここで、演算部130において実行される単位加工長あたりのエネルギ密度Jの演算は、その一例として以下のように行われる。すなわち、まず加工データ取得部120から送られた照射座標値(x,y,z)の時間に対して連続的な変位データを以下の数式1に代入することにより、加工レーザ光LBの加工経路上での照射位置(集光点FP)の加工速度Fを算出する。 Here, the calculation of the energy density J per unit machining length performed in the calculation unit 130 is performed as follows, as an example. That is, first, by substituting continuous displacement data for the time of the irradiation coordinate values (x, y, z) sent from the processing data acquisition unit 120 into the following formula 1, the processing path of the processing laser beam LB is determined. The processing speed F at the upper irradiation position (focusing point FP) is calculated.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 続いて、上記算出した加工速度Fと加工データ取得部120から送られた照射座標値(x,y,z)毎のレーザ出力値Pとを以下の数式2に代入することにより、加工レーザ光LBによる加工経路上の単位加工長あたりのエネルギ密度Jを算出する。そして、上述のように、演算部130はこのように算出された加工速度F及びエネルギ密度Jを加工経路上で互いに関連付けたデータとして表示部140に送る。 Next, by substituting the above calculated machining speed F and the laser output value P for each irradiation coordinate value (x, y, z) sent from the machining data acquisition unit 120 into the following formula 2, the machining laser beam The energy density J per unit machining length on the machining path by LB is calculated. Then, as described above, the calculation unit 130 sends the thus calculated machining speed F and energy density J to the display unit 140 as data associated with each other on the machining path.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 表示部140は、表示制御部110からの駆動指令に基づいて、演算部130から送られた各データを加工経路と対応づけて文字あるいは図表として表示する。このような表示部140としては、液晶表示パネルや有機ELディスプレイ等の公知の表示手段が例示できる。また、表示部140として、タッチパネル式のディスプレイを用いて、オペレータの入力が可能となるように構成してもよい。 Based on the drive command from the display control unit 110, the display unit 140 displays each data sent from the calculation unit 130 as characters or charts in association with the machining path. Examples of such a display section 140 include known display means such as a liquid crystal display panel and an organic EL display. Further, the display unit 140 may be configured to use a touch panel display to allow input by the operator.
 次に、図3及び図4を用いて、第1の実施形態による表示装置の具体的な動作事例を説明する。 Next, a specific example of the operation of the display device according to the first embodiment will be described using FIGS. 3 and 4.
 図3は、第1の実施形態によるレーザ加工の加工経路の一例を示す模式図である。また、図4A及び図4Bは、それぞれ表示装置の表示部における表示態様の一例である。なお、図4Aは図3に示す加工経路S1~S6上のすべての位置で同一のレーザ出力値Pで出力指令した場合を示し、図4Bは加工経路S1~S6毎にレーザ出力値Pを適切に指令して単位加工長あたりのエネルギ密度Jが一定となるように指令した場合を示している。 FIG. 3 is a schematic diagram showing an example of a processing path of laser processing according to the first embodiment. Further, FIGS. 4A and 4B are examples of display modes on the display section of the display device, respectively. Note that FIG. 4A shows the case where the same laser output value P is issued at all positions on the processing paths S1 to S6 shown in FIG. 3, and FIG. 4B shows the case where the laser output value P is appropriately set for each of the processing paths S1 to S6. This shows the case where the command is given so that the energy density J per unit machining length is constant.
[規則91に基づく訂正 04.10.2023]
 図3に示すように、第1の実施形態による加工経路S1~S6は、加工開始点P1から途中の通過点P2~P6を経由して加工開始点P1に戻る経路となっている。当該加工経路を加工レーザ光LBで走査することにより、ワークWから内側部分W1が切り抜かれるレーザ切断加工が実施される。
[Amendment based on Rule 91 04.10.2023]
As shown in FIG. 3, the machining paths S1 to S6 according to the first embodiment are routes that return from the machining start point P1 to the machining start point P1 via intermediate passing points P2 to P6. By scanning the processing path with the processing laser beam LB, laser cutting processing is performed in which the inner portion W1 is cut out from the workpiece W.
 また、第1の実施形態による加工経路S1~S6は、直線のみで形成される直線経路S1、S3及びS6と、曲線のみで形成される曲線経路S2と、通過点P5において2本の直線が交差する屈折経路S4+S5と、により構成されている。このような加工経路で加工レーザ光LBを走査する制御を行う場合、直線経路S1、S3、S6及び曲線経路S2では、それぞれの区間内において同一の加工速度で制御可能であるが、屈折経路S4+S5では、加工レーザ光LBの光軸の移動方向が切り替わるため、通過点P5の近傍において減速して再加速する必要がある。 Further, the machining paths S1 to S6 according to the first embodiment include straight paths S1, S3, and S6 formed only by straight lines, a curved path S2 formed only by curved lines, and two straight lines at the passing point P5. It is composed of intersecting refraction paths S4+S5. When controlling the scanning of the processing laser beam LB in such a processing path, the straight paths S1, S3, S6 and the curved path S2 can be controlled at the same processing speed within each section, but the refracted path S4+S5 In this case, since the moving direction of the optical axis of the processing laser beam LB is switched, it is necessary to decelerate and reaccelerate near the passing point P5.
 そこで、図4Aに示すように、加工経路上のすべての位置で同一のレーザ出力値Pとなるように制御した場合、例えば、切断面の性状等の品質の基準となる直線経路S1、S3及びS6での加工速度Fにおけるレーザ出力値Pが適正出力であるとすれば、曲線経路S2あるいは屈折経路S4+S5では加工速度Fが減速されるため、単位加工長あたりのエネルギ密度Jは、曲線経路S2及び屈折経路S4+S5において直線経路S1、S3、S6よりも大きくなる。このため、これら曲線経路S2及び屈折経路S4+S5では、ワークWに対する加工レーザ光LBによる入熱が過剰となってしまい、切断面にドロスが発生する等の品質低下が生じる一因となってしまう。 Therefore, as shown in FIG. 4A, if the laser output value P is controlled to be the same at all positions on the processing path, for example, the straight paths S1, S3 and If the laser output value P at the machining speed F in S6 is an appropriate output, the machining speed F is reduced in the curved path S2 or the refracted path S4+S5, so the energy density J per unit machining length is equal to the curved path S2. And the refraction path S4+S5 is larger than the straight paths S1, S3, and S6. Therefore, in these curved path S2 and refracted path S4+S5, excessive heat input by the processing laser beam LB to the workpiece W becomes a cause of quality deterioration such as generation of dross on the cut surface.
 これに対して、図4Bに示すように、加工経路S1~S6のすべての位置で単位加工長あたりのエネルギ密度Jが一定となるように制御する場合、加工経路S1~S6の各経路における加工速度Fに対応してレーザ出力値Pを増減させる(例えば、加工速度Fが大きくなればレーザ出力値Pも大きくなるよう指令し、加工速度Fが小さくなればレーザ出力値Pも小さくなるよう指令する)ようにレーザ発振器10に発振指令を行うことになる。このように、加工レーザ光LBの照射座標値(x,y,z)から算出された加工速度F及び当該座標値におけるレーザ出力値Pに基づいて単位加工長あたりのエネルギ密度Jを演算し、これを加工経路S1~S6上の位置ごとに対応づけて表示することにより、加工経路毎の入熱状況が把握できるため、切断面の性状等の加工品質を予測することが可能となる。 On the other hand, as shown in FIG. 4B, when controlling so that the energy density J per unit machining length is constant at all positions of the machining paths S1 to S6, the machining process at each of the machining paths S1 to S6 Increase or decrease the laser output value P in response to the speed F (for example, if the machining speed F increases, the laser output value P will be commanded to increase, and if the machining speed F decreases, the laser output value P will also decrease. An oscillation command is given to the laser oscillator 10 as shown in FIG. In this way, the energy density J per unit machining length is calculated based on the machining speed F calculated from the irradiation coordinate values (x, y, z) of the machining laser beam LB and the laser output value P at the coordinate values, By displaying this in association with each position on the machining paths S1 to S6, the heat input situation for each machining path can be grasped, making it possible to predict the machining quality such as the properties of the cut surface.
 なお、上記の具体例において、表示装置100の加工データ取得部120が、外部(加工制御装置50の主制御部52や照射位置指令部56)から加工レーザ光LBのレーザ出力値Pや照射座標値(x,y,z)をリアルタイムに取得する場合を例示したが、第1の実施形態の変形例として、加工制御装置50のプログラム解析部54で加工プログラムを解析した際に、当該加工プログラムに加工レーザ光LBの加工経路上におけるレーザ出力値Pや照射座標値(x,y,z)が含まれる場合、これらのデータを加工データ取得部120が主制御部52から直接取得することにより、実際の加工を行うことなく図4Aや図4Bに示したような表示を行うことができるため、加工プログラムからレーザ加工状態の予測を行うことも可能となる。 In the above specific example, the machining data acquisition unit 120 of the display device 100 acquires the laser output value P of the machining laser beam LB and the irradiation coordinates from the outside (the main control unit 52 and the irradiation position command unit 56 of the machining control device 50). Although the case where the values (x, y, z) are acquired in real time has been illustrated, as a modification of the first embodiment, when the machining program is analyzed by the program analysis unit 54 of the machining control device 50, the machining program includes the laser output value P and irradiation coordinate values (x, y, z) on the processing path of the processing laser beam LB, the processing data acquisition section 120 directly obtains these data from the main control section 52. Since the display as shown in FIGS. 4A and 4B can be performed without performing actual processing, it is also possible to predict the laser processing state from the processing program.
 また、第1の実施形態の別の変形例として、演算部130が、演算したエネルギ密度Jが所定範囲外(例えば、適切な切断面の性状となるエネルギ密度Jの上限又は下限の範囲外)となった場合に、レーザ加工状態に異常がある旨を表示する報知指令を表示部140に発するように構成してもよい。これにより、レーザ加工の実施中あるいは実施後に、レーザ加工に異常(大きな加工不良等)が存在するかどうかを把握することができる。 In addition, as another modification of the first embodiment, the calculation unit 130 calculates that the calculated energy density J is outside a predetermined range (for example, outside the upper or lower limit of the energy density J that provides appropriate properties of the cut surface). When this occurs, a notification command may be issued to the display unit 140 to indicate that there is an abnormality in the laser processing state. This makes it possible to determine whether there is an abnormality (such as a large processing defect) in the laser processing during or after the laser processing.
 上記のような構成を備えることにより、第1の実施形態による表示装置は、加工データ取得部で取得されたレーザ出力値及び照射座標値に基づいて、演算部が加工レーザ光の加工経路上における単位加工長あたりのエネルギ密度を演算し、表示部が演算されたエネルギ密度を加工経路と対応づけて表示する構成を用いて、加工経路上の単位加工長あたりのエネルギ密度を得ることにより、表示装置においてレーザ加工状態を容易に把握することができる。 By having the above-described configuration, the display device according to the first embodiment allows the calculation unit to determine the position of the processing laser beam on the processing path based on the laser output value and the irradiation coordinate value acquired by the processing data acquisition unit. By using a configuration in which the energy density per unit machining length is calculated and the display section displays the calculated energy density in association with the machining path, the energy density per unit machining length on the machining path is obtained. It is possible to easily understand the laser processing state in the device.
<第2の実施形態>
 図5は、本発明の第2の実施形態による表示装置及び加工制御装置との関係を示すブロック図である。なお、第2の実施形態においては、図1~図4に示した概略図等において、第1の実施形態と同一あるいは共通の構成を採用し得るものについては、同一の符号を付してこれらの繰り返しの説明は省略する。
<Second embodiment>
FIG. 5 is a block diagram showing the relationship between the display device and the processing control device according to the second embodiment of the present invention. In addition, in the second embodiment, in the schematic diagrams shown in FIGS. 1 to 4, the same reference numerals are given to those parts that can have the same or common configurations as those in the first embodiment. The explanation of the repetition of is omitted.
 図5に示すように、第2の実施形態による表示装置100において、加工データ取得部120が加工制御装置50の照射位置指令部56及び発振指令部58から、加工レーザ光LBのレーザ出力値Pの実測値と照射座標値(x,y,z)の指令値とを取得する点で、図2に示した第1の実施形態による表示装置100と構成が異なる。すなわち、第2の実施形態による表示装置100は、取得するレーザ出力値Pとして、加工レーザ光LBを発振するレーザ発振器10への出力指令値Cpを用いる。 As shown in FIG. 5, in the display device 100 according to the second embodiment, the machining data acquisition unit 120 receives the laser output value P of the machining laser beam LB from the irradiation position command unit 56 and the oscillation command unit 58 of the machining control device 50. The configuration differs from the display device 100 according to the first embodiment shown in FIG. 2 in that the actual measured value and the command value of the irradiation coordinate values (x, y, z) are acquired. That is, the display device 100 according to the second embodiment uses the output command value Cp to the laser oscillator 10 that oscillates the processing laser beam LB as the laser output value P to be acquired.
 すなわち、上記したとおり、加工制御装置50の発振指令部58が、加工プログラムの解析結果に基づいて、レーザ発振器10に対して出力指令値Cpでデューティ比Dのパルス発振による発振指令信号を出力するため、これらの出力指令値Cp及びデューティ比Dを以下に示す数式3に代入することにより、加工レーザ光LBの照射座標値(x,y,z)毎におけるレーザ出力値Pとして換算する。 That is, as described above, the oscillation command unit 58 of the processing control device 50 outputs an oscillation command signal by pulse oscillation with an output command value Cp and a duty ratio D to the laser oscillator 10 based on the analysis result of the processing program. Therefore, by substituting these output command value Cp and duty ratio D into Equation 3 shown below, it is converted into a laser output value P for each irradiation coordinate value (x, y, z) of the processing laser beam LB.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 そして、上記数式3で算出されたレーザ出力値Pを別途数式1で算出された加工速度Fとともに数式2に代入することにより、加工レーザ光LBによる加工経路上の単位加工長あたりのエネルギ密度Jを算出する。このように、加工レーザ光LBのレーザ出力値Pを出力センサ等で実測することなく、発振指令部58によるレーザ発振器10への発振指令信号を用いてレーザ加工状態の予測を行うことができる。 Then, by substituting the laser output value P calculated by the above formula 3 into the formula 2 together with the machining speed F separately calculated by the formula 1, the energy density J per unit machining length on the machining path by the machining laser beam LB is calculated. Calculate. In this way, the laser processing state can be predicted using the oscillation command signal sent to the laser oscillator 10 by the oscillation command unit 58 without actually measuring the laser output value P of the processing laser beam LB using an output sensor or the like.
 上記のような構成を備えることにより、第2の実施形態による表示装置は、第1の実施形態で説明した効果に加えて、加工レーザ光のレーザ出力値をレーザ発振器への発振指令信号に含まれる出力指令値を用いて換算することにより、加工中のレーザ出力値を実測するための出力センサ等の検出手段を省略することが可能となる。 By having the above configuration, the display device according to the second embodiment can include the laser output value of the processing laser beam in the oscillation command signal to the laser oscillator, in addition to the effects described in the first embodiment. By performing the conversion using the output command value, it is possible to omit detection means such as an output sensor for actually measuring the laser output value during processing.
<第3の実施形態>
 図6は、本発明の第3の実施形態による表示装置及び加工制御装置との関係を示すブロック図である。なお、第3の実施形態においては、図1~図5に示した概略図等において、第1及び第2の実施形態と同一あるいは共通の構成を採用し得るものについては、同一の符号を付してこれらの繰り返しの説明は省略する。
<Third embodiment>
FIG. 6 is a block diagram showing the relationship between the display device and the processing control device according to the third embodiment of the present invention. In addition, in the third embodiment, in the schematic diagrams shown in FIGS. 1 to 5, the same reference numerals are given to parts that can adopt the same or common configurations as those in the first and second embodiments. A repeated explanation of these steps will be omitted.
 図6に示すように、第3の実施形態による表示装置100において、加工データ取得部120で取得した照射座標値(x,y,z)と演算部130で演算されたエネルギ密度Jとに基づいて、加工経路に沿った加工パターンを作成するパターン作成部150をさらに備える点で、図2に示した第1の実施形態による表示装置100と構成が異なる。すなわち、第3の実施形態による表示装置100は、第1の実施形態の図4A又は図4Bで示したグラフではなく、加工経路を模した加工パターンに演算したエネルギ密度Jのデータを反映して表示する。 As shown in FIG. 6, in the display device 100 according to the third embodiment, based on the irradiation coordinate values (x, y, z) acquired by the processing data acquisition unit 120 and the energy density J calculated by the calculation unit 130, The configuration differs from the display device 100 according to the first embodiment shown in FIG. 2 in that it further includes a pattern creation section 150 that creates a processing pattern along the processing path. That is, the display device 100 according to the third embodiment reflects the data of the energy density J calculated on the machining pattern simulating the machining path, instead of the graph shown in FIG. 4A or FIG. 4B of the first embodiment. indicate.
 図7A及び図7Bは、図4A及び図4Bでそれぞれ示したエネルギ密度を加工パターンとして表示した表示態様の一例である。図7A及び図7Bに示すように、加工経路上のすべての位置で同一のレーザ出力値Pとなるように制御した場合に、パターン作成部150が、加工経路S1~S6上の照射座標値(x,y,z)とエネルギ密度Jとを対応づけて、図3で示した加工経路を模した平面状の加工パターンを作成する。そして、表示部140は、作成された加工パターンを表示する。 FIGS. 7A and 7B are examples of display modes in which the energy densities shown in FIGS. 4A and 4B, respectively, are displayed as processing patterns. As shown in FIGS. 7A and 7B, when the laser output value P is controlled to be the same at all positions on the processing path, the pattern creation unit 150 creates the irradiation coordinate values ( x, y, z) and the energy density J to create a planar processing pattern that imitates the processing path shown in FIG. 3. The display unit 140 then displays the created machining pattern.
 このとき、加工パターンをエネルギ密度Jの値に応じて着色あるいは濃淡で表現することにより、加工経路S1~S6上のエネルギ密度Jの高低を表示する。例えば、図7Aに示すように、直線経路S1、S3及びS6での単位加工長あたりのエネルギ密度Jが適正な加工状態となる「所定範囲」内にあるとした場合、加工速度Fが小さくエネルギ密度Jが大きくなる曲線経路S2や屈折経路S4+S5での表示をその密度の大小に応じて濃淡のグラデーションで行う。 At this time, the machining pattern is colored or expressed in shading according to the value of the energy density J, thereby displaying the height of the energy density J on the machining paths S1 to S6. For example, as shown in FIG. 7A, if the energy density J per unit machining length on straight paths S1, S3, and S6 is within a "predetermined range" that provides an appropriate machining state, the machining speed F is small and the energy The curved path S2 and the refracted path S4+S5 where the density J increases are displayed in a gradation of shading depending on the density.
 特に、図7Aに示す加工パターンでは、屈折経路S4+S5において、通過点P5に向けて徐々に加工速度Fが低下するように変化するため、単位加工長あたりのエネルギ密度Jは領域A2から領域A3に向けて徐々に大きくなるように徐々に濃い表示となる。このような加工パターンによる表示によれば、加工経路上のどの位置が適正なエネルギ密度の範囲にあるかを直感的に把握することができる(逆の意味では、加工経路上で加工精度が低下する位置あるいは領域を視認できる)。 In particular, in the machining pattern shown in FIG. 7A, in the refraction path S4+S5, the machining speed F gradually decreases toward the passing point P5, so the energy density J per unit machining length changes from area A2 to area A3. The display gradually becomes darker as it gradually increases in size. By displaying such machining patterns, it is possible to intuitively understand which position on the machining path is within the appropriate energy density range. location or area).
 一方、図7Bに示すように、加工経路上のすべての位置で単位加工長あたりのエネルギ密度Jが一定となるようにレーザ出力値Pを制御した場合は、すべての加工経路において所定範囲を示す加工パターンの表示となる。これにより、レーザ加工状態も適正に終了したものと推定できる。 On the other hand, as shown in FIG. 7B, when the laser output value P is controlled so that the energy density J per unit machining length is constant at all positions on the machining path, a predetermined range is shown in all the machining paths. The machining pattern will be displayed. Accordingly, it can be assumed that the laser processing state has been properly completed.
 なお、上記した図7A及び図7Bの具体例においては、加工パターンを2次元の平面状のものとして表現する場合を例示したが、ワークの形状や加工経路に応じて加工パターンを3次元の立体的に表現するように構成してもよい。また、単位加工長あたりのエネルギ密度を着色あるいは濃淡で表示する場合を例示したが、加工パターンの幅によってエネルギ密度の大小を表現するように構成してもよい。これらの表現により、オペレータに対してさらに直感的な視覚情報を与えることが可能となる。 In the specific example shown in FIGS. 7A and 7B, the machining pattern is expressed as a two-dimensional planar one, but depending on the shape of the workpiece and the machining path, the machining pattern can be expressed as a three-dimensional solid. It may be configured to express the Moreover, although the case where the energy density per unit machining length is displayed in color or shading has been exemplified, it may be configured so that the magnitude of the energy density is expressed by the width of the machining pattern. These representations make it possible to provide more intuitive visual information to the operator.
 上記のような構成を備えることにより、第3の実施形態による表示装置は、第1の実施形態で説明した効果に加えて、加工経路に沿った加工パターンを作成するパターン作成部をさらに設けることにより、エネルギ密度の分布を加工パターンで直感的に視認できるようになる。特に、加工経路上のエネルギ密度を着色あるいは濃淡で表示することにより、どの位置又は領域で加工精度が低下するかを把握することが可能となる。 By having the above-described configuration, the display device according to the third embodiment has, in addition to the effects described in the first embodiment, a pattern creation section that creates a processing pattern along the processing path. This makes it possible to intuitively check the energy density distribution in the machining pattern. In particular, by displaying the energy density on the machining path in color or in shading, it becomes possible to grasp at which position or region the machining accuracy decreases.
<第4の実施形態>
 図8は、第4の実施形態による表示装置及び加工制御装置を含むレーザ加工装置の構成を示す概略図である。また、図9は、図8で示した表示装置及び加工制御装置との関係を示すブロック図である。なお、第3の実施形態においては、図1~図7に示した概略図等において、第1~第3の実施形態と同一あるいは共通の構成を採用し得るものについては、同一の符号を付してこれらの繰り返しの説明は省略する。
<Fourth embodiment>
FIG. 8 is a schematic diagram showing the configuration of a laser processing apparatus including a display device and a processing control device according to the fourth embodiment. Further, FIG. 9 is a block diagram showing the relationship between the display device and the processing control device shown in FIG. 8. In addition, in the third embodiment, in the schematic diagrams shown in FIGS. 1 to 7, the same reference numerals are given to parts that can have the same or common configurations as those in the first to third embodiments. A repeated explanation of these steps will be omitted.
 図8に示すように、第4の実施形態によるレーザ加工装置1の加工制御装置50は、表示装置100を一体に組み込む構成を採用した点において、図1に示した第1の実施形態による加工制御装置50及び表示装置100と構成が異なる。なお、図8においては、表示装置100が加工制御装置50と同一の筐体内に組み込まれた場合を例示しているが、図1で示した表示装置100に加工制御装置50を組み込むように構成してもよい。 As shown in FIG. 8, the processing control device 50 of the laser processing apparatus 1 according to the fourth embodiment is different from the processing according to the first embodiment shown in FIG. The configuration is different from that of the control device 50 and the display device 100. Although FIG. 8 shows an example in which the display device 100 is incorporated into the same housing as the processing control device 50, it is also possible to configure the display device 100 shown in FIG. 1 to include the processing control device 50. You may.
[規則91に基づく訂正 04.10.2023]
 加工制御装置50は、その一例として図9に示すように、加工制御装置50の全体の動作を制御する主制御部52と、データベース等に格納された加工プログラムを読み込んで当該加工プログラムを解析するプログラム解析部54と、加工プログラムの解析結果に基づいて加工テーブル20及び搬送機構40との間で信号の送受信を行う照射位置指令部56と、加工プログラムの解析結果に基づいてレーザ発振器10との間で信号の送受信を行う発振指令部58と、オペレータが各種情報を入力するための入力インターフェース60と、一体に組み込まれた表示装置100と、を含む。そして、表示装置100は、第1の実施形態の場合と同様に、表示装置100の全体の動作を制御する表示制御部110と、レーザ加工を行う加工レーザ光LBのレーザ出力値(P)及び照射座標値(x,y,z)を取得する加工データ取得部120と、レーザ出力値P及び照射座標値(x,y,z)に基づいて加工レーザ光LBの加工経路上における単位加工長あたりのエネルギ密度Jを演算する演算部130と、演算されたエネルギ密度Jを加工経路と対応づけて表示する表示部140と、を備えている。
[Amendment based on Rule 91 04.10.2023]
As shown in FIG. 9 as an example, the machining control device 50 includes a main control unit 52 that controls the overall operation of the machining control device 50, and reads a machining program stored in a database or the like and analyzes the machining program. A program analysis section 54, an irradiation position command section 56 that transmits and receives signals between the processing table 20 and the transport mechanism 40 based on the analysis results of the processing program, and a laser oscillator 10 based on the analysis results of the processing program. It includes an oscillation command section 58 for transmitting and receiving signals between the two, an input interface 60 for an operator to input various information, and a display device 100 integrated therein. As in the case of the first embodiment, the display device 100 includes a display control unit 110 that controls the overall operation of the display device 100, and a laser output value (P) and a laser output value (P) of the processing laser beam LB that performs laser processing. A machining data acquisition unit 120 that acquires irradiation coordinate values (x, y, z), and a unit machining length on the machining path of the machining laser beam LB based on the laser output value P and the irradiation coordinate values (x, y, z). It includes a calculation section 130 that calculates the energy density J per area, and a display section 140 that displays the calculated energy density J in association with the machining path.
 また、図9に示すように、第4の実施形態による加工制御装置50においては、主制御部52が表示装置100の表示制御部110と信号のやり取りを行うように構成されており、表示部140にレーザ加工装置1の動作を制御する上での必要な各種情報等を表示するよう指令を発することができる。なお、図9においては、加工制御装置50の主制御部52と表示装置100の表示制御部110とが別体で構成されている場合を例示しているが、主制御部52が表示制御部110の機能を兼ねるように統合して構成してもよい。 Further, as shown in FIG. 9, in the processing control device 50 according to the fourth embodiment, the main control section 52 is configured to exchange signals with the display control section 110 of the display device 100. A command can be issued to 140 to display various information necessary for controlling the operation of the laser processing apparatus 1. Note that although FIG. 9 illustrates a case where the main control unit 52 of the processing control device 50 and the display control unit 110 of the display device 100 are configured separately, the main control unit 52 is a display control unit. 110 may be integrated and configured to serve the functions of 110.
 入力インターフェース60は、その一例として、入力ボタンやテンキー等を含む情報入力端末として構成される。これにより、表示装置100の表示部140に表示されたエネルギ密度Jの結果を見たオペレータが、加工速度Fやレーザ出力値P(あるいは出力指令値Cp)等の加工プログラムにおける各種パラメータを手入力により修正することができる。なお、図8及び図9においては、入力インターフェース60と表示装置100の表示部140とが別体に構成されている場合を例示しているが、表示部140としてタッチ入力が可能なパネル表示手段を採用して、両者を統合するように構成してもよい。 The input interface 60 is configured as an information input terminal including, for example, input buttons and a numeric keypad. As a result, the operator who sees the result of the energy density J displayed on the display unit 140 of the display device 100 manually inputs various parameters in the machining program, such as the machining speed F and the laser output value P (or output command value Cp). It can be corrected by Although FIGS. 8 and 9 illustrate a case where the input interface 60 and the display unit 140 of the display device 100 are configured separately, the display unit 140 may be a panel display unit that allows touch input. It is also possible to adopt a configuration that integrates the two.
 上記のような構成を備えることにより、第4の実施形態による加工制御装置は、第1の実施形態で説明した効果に加えて、表示装置を加工制御装置に組み込んだことにより、内部の構成を統合し得るとともに、全体のサイズをコンパクトにまとめることが可能となる。 By having the above configuration, the machining control device according to the fourth embodiment has the effects described in the first embodiment, and by incorporating the display device into the machining control device, the internal configuration can be improved. It is possible to integrate them and to make the overall size compact.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。本発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 Note that the present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the spirit. Within the scope of the present invention, any component of the embodiments may be modified or any component of the embodiments may be omitted.
 例えば、第1の実施形態から第4の実施形態で示した具体例は、それぞれの特徴を組合せて適用してもよい。例えば、第2の実施形態で示した表示装置と第4の実施形態で示した加工制御装置とを組合せた構成とすることも可能である。 For example, the specific examples shown in the first to fourth embodiments may be applied by combining their respective characteristics. For example, it is also possible to have a configuration in which the display device shown in the second embodiment and the processing control device shown in the fourth embodiment are combined.
 1 レーザ加工装置
 10 レーザ発振器
 12 伝送路
 20 加工テーブル
 30 加工ヘッド
 32 ノズル
 40 搬送機構
 50 加工制御装置
 52 主制御部
 54 プログラム解析部
 56 照射位置指令部
 58 発振指令部
 60 入力インターフェース
 100 表示装置
 110 表示制御部
 120 加工データ取得部
 130 演算部
 140 表示部
 150 パターン作成部
1 Laser processing device 10 Laser oscillator 12 Transmission path 20 Processing table 30 Processing head 32 Nozzle 40 Transport mechanism 50 Processing control device 52 Main control section 54 Program analysis section 56 Irradiation position command section 58 Oscillation command section 60 Input interface 100 Display device 110 Display Control unit 120 Processing data acquisition unit 130 Calculation unit 140 Display unit 150 Pattern creation unit

Claims (13)

  1.  単位加工長あたりのエネルギ密度に基づくレーザ加工状態を表示する機能を備えた表示装置であって、
     レーザ加工を行う加工レーザ光のレーザ出力値及び前記加工レーザ光の照射座標値を取得する加工データ取得部と、
     前記レーザ出力値及び前記照射座標値に基づいて前記加工レーザ光の加工経路上における単位加工長あたりのエネルギ密度を演算する演算部と、
     前記エネルギ密度を前記加工経路上の位置と対応づけて表示する表示部と、
    を備えた表示装置。
    A display device having a function of displaying a laser processing state based on energy density per unit processing length,
    a processing data acquisition unit that obtains a laser output value of a processing laser beam that performs laser processing and an irradiation coordinate value of the processing laser beam;
    a calculation unit that calculates an energy density per unit machining length on a machining path of the machining laser beam based on the laser output value and the irradiation coordinate value;
    a display unit that displays the energy density in association with a position on the processing path;
    A display device equipped with
  2.  前記加工データ取得部は、前記加工レーザ光の前記レーザ出力値及び前記照射座標値を、前記レーザ加工の加工中にリアルタイムで取得する
    請求項1に記載の表示装置。
    The display device according to claim 1, wherein the machining data acquisition unit acquires the laser output value and the irradiation coordinate value of the machining laser beam in real time during the laser machining.
  3.  前記加工データ取得部は、前記加工レーザ光の前記レーザ出力値及び前記照射座標値を、前記レーザ加工を制御する加工プログラムを解析して取得する
    請求項1に記載の表示装置。
    The display device according to claim 1, wherein the machining data acquisition unit acquires the laser output value and the irradiation coordinate value of the machining laser beam by analyzing a machining program that controls the laser machining.
  4.  前記レーザ出力値として、前記加工レーザ光を発振するレーザ発振器への出力指令値を用いる
    請求項1~3のいずれか1項に記載の表示装置。
    4. The display device according to claim 1, wherein the laser output value is an output command value to a laser oscillator that oscillates the processing laser beam.
  5.  前記照射座標値と前記エネルギ密度とに基づいて前記加工経路に沿った加工パターンを作成するパターン作成部をさらに備え、
     前記表示部は、前記加工パターンを着色あるいは濃淡で表現することにより、前記加工経路上の前記エネルギ密度を表示する
    請求項1~4のいずれか1項に記載の表示装置。
    further comprising a pattern creation unit that creates a processing pattern along the processing path based on the irradiation coordinate value and the energy density,
    5. The display device according to claim 1, wherein the display section displays the energy density on the machining path by coloring or shading the machining pattern.
  6.  前記演算部は、演算した前記エネルギ密度が所定範囲外となった場合に、異常がある旨を表示する報知指令を前記表示部に発する
    請求項1~5のいずれか1項に記載の表示装置。
    The display device according to any one of claims 1 to 5, wherein the calculation unit issues a notification command to the display unit to display that there is an abnormality when the calculated energy density falls outside a predetermined range. .
  7.  加工プログラムに基づいてレーザ加工装置を制御する加工制御装置であって、
     前記加工プログラムを解析するプログラム解析部と、
     解析された前記加工プログラムに基づいてレーザ発振器に加工レーザ光の発振指令を出力する発振指令部と、
     解析された前記加工プログラムに基づいて前記加工レーザ光とワークとの相対移動指令を出力する照射位置指令部と、
     単位加工長あたりのエネルギ密度に基づくレーザ加工状態を表示する機能を有する表示装置と、
    を備え、
     前記表示装置は、
     レーザ加工を行う加工レーザ光のレーザ出力値及び前記加工レーザ光の照射座標値を取得する加工データ取得部と、
     前記レーザ出力値及び前記照射座標値に基づいて前記加工レーザ光の加工経路上における単位加工長あたりのエネルギ密度を演算する演算部と、
     前記エネルギ密度を前記加工経路上の位置と対応づけて表示する表示部と、
    をさらに備えた加工制御装置。
    A processing control device that controls a laser processing device based on a processing program,
    a program analysis unit that analyzes the machining program;
    an oscillation command unit that outputs a processing laser beam oscillation command to a laser oscillator based on the analyzed processing program;
    an irradiation position command unit that outputs a relative movement command between the processing laser beam and the workpiece based on the analyzed processing program;
    a display device having a function of displaying a laser processing state based on energy density per unit processing length;
    Equipped with
    The display device includes:
    a processing data acquisition unit that obtains a laser output value of a processing laser beam that performs laser processing and an irradiation coordinate value of the processing laser beam;
    a calculation unit that calculates an energy density per unit machining length on a machining path of the machining laser beam based on the laser output value and the irradiation coordinate value;
    a display unit that displays the energy density in association with a position on the processing path;
    A processing control device further equipped with
  8.  前記加工データ取得部は、前記加工レーザ光の前記レーザ出力値及び前記照射座標値を、前記レーザ加工の加工中にリアルタイムで取得する
    請求項7に記載の加工制御装置。
    The processing control device according to claim 7, wherein the processing data acquisition unit obtains the laser output value and the irradiation coordinate value of the processing laser beam in real time during the laser processing.
  9.  前記加工データ取得部は、前記加工レーザ光の前記レーザ出力値及び前記照射座標値を、前記レーザ加工を制御する加工プログラムを解析して取得する
    請求項7に記載の加工制御装置。
    The processing control device according to claim 7, wherein the processing data acquisition unit obtains the laser output value and the irradiation coordinate value of the processing laser beam by analyzing a processing program that controls the laser processing.
  10.  前記レーザ出力値として、前記加工レーザ光を発振するレーザ発振器への出力指令値を用いる
    請求項7~9のいずれか1項に記載の加工制御装置。
    The processing control device according to any one of claims 7 to 9, wherein an output command value to a laser oscillator that oscillates the processing laser beam is used as the laser output value.
  11.  前記照射座標値と前記エネルギ密度とに基づいて前記加工経路に沿った加工パターンを作成するパターン作成部をさらに備え、
     前記表示部は、前記加工パターンを着色あるいは濃淡で表現することにより、前記加工経路上の前記エネルギ密度を表示する
    請求項7~10のいずれか1項に記載の加工制御装置。
    further comprising a pattern creation unit that creates a processing pattern along the processing path based on the irradiation coordinate value and the energy density,
    The processing control device according to any one of claims 7 to 10, wherein the display section displays the energy density on the processing path by coloring or shading the processing pattern.
  12.  前記演算部は、演算した前記エネルギ密度が所定範囲外となった場合に、異常がある旨を表示する報知指令を前記表示部に発する
    請求項7~11のいずれか1項に記載の加工制御装置。
    The processing control according to any one of claims 7 to 11, wherein the calculation unit issues a notification command to the display unit to display that there is an abnormality when the calculated energy density falls outside a predetermined range. Device.
  13.  前記加工プログラムの修正を行う入力インターフェースをさらに含む
    請求項7~12のいずれか1項に記載の加工制御装置。
    The machining control device according to any one of claims 7 to 12, further comprising an input interface for modifying the machining program.
PCT/JP2021/031559 2021-08-27 2021-08-27 Display device provided with function for displaying laser machining state, and machining control device comprising same WO2023026483A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023543619A JPWO2023026483A1 (en) 2021-08-27 2021-08-27
PCT/JP2021/031559 WO2023026483A1 (en) 2021-08-27 2021-08-27 Display device provided with function for displaying laser machining state, and machining control device comprising same
CN202180101648.6A CN117836085A (en) 2021-08-27 2021-08-27 Display device having function of displaying laser processing state and processing control device including the display device
DE112021007853.4T DE112021007853T5 (en) 2021-08-27 2021-08-27 DISPLAY DEVICE HAVING A FUNCTION FOR DISPLAYING A LASER PROCESSING CONDITION AND PROCESSING CONTROL DEVICE PROVIDED THEREWITH

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/031559 WO2023026483A1 (en) 2021-08-27 2021-08-27 Display device provided with function for displaying laser machining state, and machining control device comprising same

Publications (2)

Publication Number Publication Date
WO2023026483A1 WO2023026483A1 (en) 2023-03-02
WO2023026483A9 true WO2023026483A9 (en) 2024-01-04

Family

ID=85322594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031559 WO2023026483A1 (en) 2021-08-27 2021-08-27 Display device provided with function for displaying laser machining state, and machining control device comprising same

Country Status (4)

Country Link
JP (1) JPWO2023026483A1 (en)
CN (1) CN117836085A (en)
DE (1) DE112021007853T5 (en)
WO (1) WO2023026483A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6506341B2 (en) * 2017-04-07 2019-04-24 ファナック株式会社 Machining path display device
CN112770865B (en) * 2018-09-27 2023-09-29 Ipg光子公司 System and method for visualizing laser energy distribution provided by different near field scan patterns

Also Published As

Publication number Publication date
JPWO2023026483A1 (en) 2023-03-02
WO2023026483A1 (en) 2023-03-02
CN117836085A (en) 2024-04-05
DE112021007853T5 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
CN108406091B (en) Laser processing head and laser processing system with imaging device
JP4353219B2 (en) Laser processing apparatus and control method of laser processing apparatus
US8103381B2 (en) Laser processing robot control system, control method and control program medium
KR101142618B1 (en) Laser processing system, method of and system for setting laser processing data, and computer readable medium having computer program for setting laser processing data
JP6838017B2 (en) Teaching device, teaching method, and teaching program for laser machining
EP1661657B1 (en) Laser processing robot system with a scanning head and a rapid movable support mechanism ; Method for controlling the same
JP6325646B1 (en) Laser processing robot system for performing laser processing using robot and control method of laser processing robot
JP4800939B2 (en) Laser processing apparatus, program creation apparatus, and laser processing method
WO2019188155A1 (en) Laser cutting device and laser cutting method
JP6836558B2 (en) Teaching device for laser machining
US20100305757A1 (en) Method And Device For Controlling An Auxiliary Tool Axis Of A Tool Being Guided By A Manipulator
JP4958506B2 (en) Laser processing apparatus, height offset adjustment method in three-dimensional laser processing, and laser processing apparatus control program
JP2008030091A (en) Laser beam machining apparatus and method, device, method and program for setting laser beam machining condition, computer-readable recording medium and equipment with the program recorded therein
KR100736689B1 (en) Teaching apparatus and method for remote laser welding head
WO2023026483A9 (en) Display device provided with function for displaying laser machining state, and machining control device comprising same
JP2017029992A (en) Laser machining device
US10953490B2 (en) Laser machining apparatus
JP2008030070A5 (en)
WO2022181643A1 (en) Teaching device and teaching method for teaching operation of laser processing device
JP2008080360A (en) Position detection system for automatic welding machine
JP2002035981A (en) Scanning type laser beam processing device and laser beam processing method capable of processing simulation
JP7295355B1 (en) Machining information display device, laser processing control device, and processing information display program
JP2012139732A (en) Laser processing apparatus, device for setting laser processing condition, laser processing method, method for setting laser processing condition, program for setting laser processing condition, computer-readable recording medium, and recording equipment
US20230264302A1 (en) Repair welding segment detection method and repair welding segment detection device
WO2019167487A1 (en) Laser machining device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955093

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543619

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112021007853

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 202180101648.6

Country of ref document: CN