WO2023026337A1 - Weighing device and weighing method using three-axis acceleration sensor - Google Patents

Weighing device and weighing method using three-axis acceleration sensor Download PDF

Info

Publication number
WO2023026337A1
WO2023026337A1 PCT/JP2021/030859 JP2021030859W WO2023026337A1 WO 2023026337 A1 WO2023026337 A1 WO 2023026337A1 JP 2021030859 W JP2021030859 W JP 2021030859W WO 2023026337 A1 WO2023026337 A1 WO 2023026337A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
weighing
sensor
acceleration
output
Prior art date
Application number
PCT/JP2021/030859
Other languages
French (fr)
Japanese (ja)
Inventor
健 井原
剛 松田
吉一 長根
Original Assignee
株式会社 エー・アンド・デイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 エー・アンド・デイ filed Critical 株式会社 エー・アンド・デイ
Priority to PCT/JP2021/030859 priority Critical patent/WO2023026337A1/en
Publication of WO2023026337A1 publication Critical patent/WO2023026337A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/01Testing or calibrating of weighing apparatus

Definitions

  • the present invention relates to a weighing device and weighing method using a triaxial acceleration sensor.
  • a balance which is a weighing device, uses a weight sensor to measure the component Wv of a load perpendicular to the weighing pan, and uses the gravitational acceleration g at the location where the balance is installed to determine the mass m of the object placed on the weighing pan as follows: It is obtained from the formula (1).
  • the mass measured by the balance that is, the measured value m can be said to be a true value.
  • FIG. 10(B) when the direction in which the gravitational acceleration g acts does not match the direction perpendicular to the weighing pan, a component Wh that cannot be detected by the balance is generated, and the weight value m is lighter than the true value.
  • the weighed value contains an error when the following two occur.
  • a typical balance is equipped with a level (bubble bubble) to detect the tilt of the balance.
  • Japanese Laid-Open Patent Publication No. 2002-100000 discloses a technique for more accurately controlling the level of a balance by detecting air bubbles in a level with an optical sensor.
  • the present invention has been made based on the above-mentioned conventional problems and the above-mentioned knowledge of the inventors. It is an object of the present invention to provide a weighing device and a weighing method that automatically solves
  • a weighing device includes a weighing pan, a weight sensor connected to the weighing pan, x and y on a plane parallel to the horizontal of the weight sensor, and the weight sensor.
  • a three-axis acceleration sensor for detecting acceleration changes in the three axes of x, y, and z by setting z in a direction perpendicular to the horizontal of the weight sensor;
  • a storage unit for storing three-axis reference outputs, and an arithmetic processing unit, wherein the arithmetic processing unit compares the three-axis current outputs of the three-axis acceleration sensor with the reference outputs to determine x and/or Alternatively, if the output of y has changed, it detects that there is a tilt, and if the output of z has changed, it detects that there is a change in the installation location and notifies the user.
  • the arithmetic processing unit uses equation (14) to calculate the measured value m detected by the weight sensor as It is also preferable to correct to the corrected metric value m'.
  • the arithmetic processing unit changes the value of gravitational acceleration used for calculating the weight value m detected by the weight sensor to the three-axis acceleration sensor. It is also preferable to change the local gravitational acceleration value glocal obtained using the z-axis output of the axial acceleration sensor to obtain the corrected metric value m'.
  • the arithmetic processing unit changes the value of the gravitational acceleration used in the equation (14) to the three-axis acceleration sensor. It is also preferable to correct the measured value m detected by the weight sensor to a corrected measured value m' by changing the local gravitational acceleration glocal obtained using the three-axis outputs of the acceleration sensor.
  • the arithmetic processing unit when the corrected weight value m' of the object to be weighed exceeds the range of the allowable threshold for the reference mass of the object to be weighed, the arithmetic processing unit warns the user that the error cannot be eliminated by correction. is also preferred.
  • a weighing method includes a weighing pan, a weight sensor connected to the weighing pan, x and y on a plane parallel to the horizontal plane of the weight sensor, and (A) using a weighing device equipped with a three-axis acceleration sensor that detects acceleration changes in the three-axis directions of x, y, and z by setting z in the direction perpendicular to the horizontal direction of the weight sensor; (B) comparing said current output with said three-axis reference output when the weight sensor is horizontal; (C) said (B) ) if the output of x and/or y has changed in step (D) if the output of z has changed in step (B) is characterized by notifying the user that there is a change in the installation location.
  • step (E) if the output of x and/or y has changed in step (B), the weight value m detected by the weight sensor is corrected using equation (14). and (F) if only the output of z has changed in step (B), the gravitational acceleration value used to calculate the weighing value m detected by the weight sensor is changed. , changing the local gravitational acceleration value glocal obtained using the z-axis output of the three-axis acceleration sensor to obtain a corrected metric value m'; and x and/or y outputs have changed, the value of the gravitational acceleration used in the above equation (14) is replaced by the local gravitational acceleration glocal and correcting the measured value m detected by the weight sensor to a corrected measured value m'.
  • FIG. 10 is a diagram showing results of correction using a triaxial acceleration sensor
  • 1 is a configuration block diagram of a weighing device according to a first embodiment of the present invention
  • FIG. It is a schematic perspective view of the same weighing device. It is a flowchart of the weighing method using the same weighing device.
  • FIG. 4 is a configuration block diagram of a weighing device according to a second embodiment of the present invention; It is a flowchart of the weighing method using the same weighing device.
  • FIG. 4 is a diagram showing a preferred mounting form of an acceleration sensor in the embodiments;
  • FIG. 4 is a diagram showing a preferred mounting form of an acceleration sensor in the embodiments; It is a figure showing consideration about the weighing value of a balance.
  • a balance generally includes a weighing pan and a weight sensor connected to the weighing pan to measure the load component Wv perpendicular to the weighing pan, Using the gravitational acceleration g at the place where the balance is installed, the mass m (weighing value) of the object to be weighed is obtained from equation (1).
  • the weight value m measured by the balance contains an error.
  • the balance tilts and the load component Wv perpendicular to the weighing pan decreases
  • the gravitational acceleration g changes
  • the inventors have proposed that the tilt and gravitational acceleration of the balance can be detected by mounting a triaxial acceleration sensor on the balance. ii) both were considered to be auto-detectable by the balance. Secondly, the inventors have found that by using the value of the triaxial acceleration sensor, the balance can detect the change in the weight value resulting from the decrease in the load component Wv perpendicular to the weighing pan and the change in the gravitational acceleration g. I thought that it would be possible to automatically correct it after identifying it.
  • FIG. 1 is a diagram showing the relationship between the tilt angle and each component of gravitational acceleration when a triaxial acceleration sensor is mounted on a certain virtual plane vp.
  • This three-axis acceleration sensor (hereinafter referred to as an acceleration sensor) detects acceleration of the virtual plane vp in orthogonal three-axis directions.
  • the x and y of the acceleration sensor are on the virtual plane vp, and the z is in the direction perpendicular to the virtual plane vp.
  • Each component of gravitational acceleration g for this three-axis acceleration sensor is expressed as "gx, gy, gz".
  • the gx and gy components are on the virtual plane vp, and the gz component is in the direction perpendicular to the virtual plane vp.
  • the tilt angle ⁇ is the angle between the direction of the gravitational acceleration g and the direction of the gz component.
  • each component output by the acceleration sensor at the tilt angle ⁇ be "Xout( ⁇ ), Yout( ⁇ ), and Zout( ⁇ )".
  • the equations (2), (3) and (4) can be expressed.
  • the balance calculates the weight value m (mass m( ⁇ )) measured by the balance based on the equations (13) and (5) by the following equation: (14) is performed to calculate a corrected measured value m'.
  • FIG. 2 is a diagram showing the results of verification of correction using a triaxial acceleration sensor.
  • a balance with a weighing capacity of 10 kg and a minimum display of 0.01 g was used, and the weighing object placed on the weighing pan was 10000 g.
  • the tilt angle from the installation surface (horizontal) of the balance is changed from 0° to 0.5°.
  • a corrected metric value m' was obtained.
  • a corrected weight value m' of 10000 g was obtained at any tilt angle.
  • the balance When the acceleration sensor detects a change in the gravitational acceleration g, the balance replaces the value of the gravitational acceleration g used to calculate the weighing value m detected by the weight sensor in Equation (1) with the acceleration obtained in Equation (15).
  • the measured value is obtained by changing the value of the local gravitational acceleration glocal obtained using the output of the sensor.
  • the divided value is taken as the corrected metric value m' (equation (16)).
  • the local gravitational acceleration glocal is stored in (1) the numerical value of the gravitational acceleration at the representative point in the storage unit of the balance (for example, Ibaraki 9.79952 [m/s2], Sapporo 9.80478 [ m/s2], Osaka 9.79703 [m/s2], etc.), select the point closest to the place where the balance is installed (on-site), or (2) adjust using a weight at the place where the balance is installed (on-site). Therefore, it was sought after.
  • the numerical value of the gravitational acceleration at the representative point in the storage unit of the balance for example, Ibaraki 9.79952 [m/s2], Sapporo 9.80478 [ m/s2], Osaka 9.79703 [m/s2], etc.
  • the local gravitational acceleration glocal of the balance using the output value of the acceleration sensor can be reflected, so the weighing accuracy is improved more than the conventional technique, and This has the advantage of eliminating the need for on-site adjustments using weights each time the balance is installed in a different location.
  • the sine term of equation (17) is obtained from equation (5) including gx( ⁇ ) and gy( ⁇ ) detected by the acceleration sensor. Therefore, the local gravitational acceleration glocal can be obtained from equation (17) by substituting the output values of x, y, and z of the acceleration sensor. In other words, the balance uses the local gravitational acceleration glocal ( ⁇ 0) to replace the weight value m (mass m( ⁇ )) measured by the balance when both tilting of the balance and changes in gravitational acceleration occur. Then, the corrected measurement value m' is calculated by the following equation (18).
  • the balance can automatically detect changes in the tilt of the balance and changes in the installation location, and reduce weighing error caused by changes. can be automatically corrected.
  • Pattern (1) z only changes
  • Pattern (2) x and/or y changes (i.e. x and y change, x change, or y change)
  • Pattern (3) z and x and/or y change (i.e. x, y, z all change, x and z change, or y and z change)
  • pattern (1) the balance detects that the installation location has changed and notifies the user. Then, the weight value is corrected by the equation (16).
  • the gravitational acceleration g uses the local gravitational acceleration glocal. If pattern (2) occurs: the balance detects that a tilt has occurred and notifies the user. Then, the weight value is corrected using equation (14). For the gravitational acceleration g, the value used last time is used as it is. If pattern (3) occurs: the balance detects changes in both tilt and gravitational acceleration and notifies the user. Then, the weight value is corrected by the equation (18).
  • the gravitational acceleration g uses the local gravitational acceleration glocal.
  • FIG. 3 is a configuration block diagram of the weighing apparatus according to the first embodiment of the present invention
  • FIG. 4 is a schematic perspective view of the weighing apparatus.
  • the weighing device is an electronic scale (hereinafter referred to as balance 1).
  • the balance 1 has a main body case 10 , a weighing pan 11 , a weight sensor 12 , an arithmetic processing section 13 , a storage section 14 , an operation section 15 , a display section 16 and a triaxial acceleration sensor 20 .
  • the body case 10 houses a Roberval mechanism 12' that connects the weighing pan 11 and the weight sensor 12.
  • the Roberval mechanism 12' is a structure for transmitting the load received by the weighing pan 11 to the weight sensor 12, and is formed of a rectangular metal block. It is a well-known one comprising a fixed portion to be fixed, upper and lower secondary rods connecting the floating portion and the fixed portion, and a load transmission portion for transmitting the load acting on the floating portion to the weight sensor 12 .
  • the weighing pan 11 is supported by a Roberval mechanism 12 ′ and placed on the body case 10 .
  • the weighing pan 11 has a horizontal surface 11' on which an object to be weighed is placed.
  • an electromagnetic balance type, strain gauge type, capacitance type, or the like is used for the weight sensor 12.
  • the load detected by the weight sensor 12 is A/D converted and input to the arithmetic processing unit 13, where it is converted into a weight value.
  • a balance generally measures the load component Wv perpendicular to the weighing pan, and uses the gravitational acceleration g at the location where the balance is installed to calculate the weight of the weighing object from equation (1).
  • the weight sensor 12 is placed on a horizontally leveled table while the main body case 10 is being held while using, for example, a level. 12 is mounted so as to keep horizontal (for example, it is mounted so that the plane provided by Roberval mechanism 12' keeps horizontal).
  • the weighing pan 11 is supported downward in a direction perpendicular to the horizontal plane of the weight sensor 12 by a pan boss (not shown) protruding from the Roberval mechanism 12', and the horizontal plane 11' of the weighing pan 11 coincides with the horizontal plane of the weight sensor. installed to do so.
  • the three-axis acceleration sensor 20 (hereinafter referred to as the acceleration sensor 20) is an IC module equipped with a sensor that integrates a spring and a weight and an element that detects displacement when acceleration is applied to the sensor.
  • the acceleration sensor 20 is arranged on a virtual plane vp parallel to the horizontal of the weight sensor 12, and the x and y of the acceleration sensor 20 are arranged in the virtual plane vp, and the z is arranged in a direction perpendicular to the virtual plane vp.
  • x and y are set parallel to the horizontal of the weight sensor 12
  • z is set in the direction perpendicular to the horizontal of the weight sensor 12
  • orthogonal three-axis directions (x, y, Detect the acceleration of z).
  • the acceleration sensor 20 is attached so that the horizontal plane of the acceleration sensor 20 and the horizontal plane of the weight sensor 12 are aligned.
  • the purpose of this embodiment is to detect and correct the change due to the inclination of the load received by the weight sensor 12, by attaching the acceleration sensor 20 and the weight sensor 12 so that they are horizontally aligned, both can be corrected.
  • the origin of the tilt angle is the same, and the error can be reduced.
  • the virtual plane vp on which the acceleration sensor 20 is arranged may be set at any position within the main body case 10 as long as it does not interfere with the weight sensor 12 .
  • a suitable setting of the virtual plane vp on which the acceleration sensor 20 is mounted, that is, the mounting position of the acceleration sensor 20 will be described later. Note that the x-axis and y-axis settings in FIG. 4 may be reversed.
  • the reference output "Xout ( 0), Yout(0), and Zout(0)'' are measured and stored in the storage unit 14, which will be described later.
  • the operation unit 15 and the display unit 16 are provided on the front side surface of the body case 10 of the balance 1. From the operation unit 15, a weighing operation, which will be described later, can be performed.
  • the display unit 16 displays a screen associated with weighing, which will be described later.
  • the arithmetic processing unit 13 is a microcontroller in which, for example, a CPU, ROM, RAM, etc. are mounted on an integrated circuit.
  • the arithmetic processing unit 13 has an acceleration change detection unit 131 and a change notification unit 132 for detecting changes in acceleration using the acceleration sensor 20 . Further, the arithmetic processing unit 13 has a tilt correcting unit 133 and a gravity correcting unit 134 in order to perform correction accompanying changes in acceleration.
  • the functions of the functional units 131, 132, 133, and 134 are implemented by, for example, reading and executing programs stored in the storage unit 14 by the CPU. The details of the function of each functional unit will be described later in "2-2. Weighing Method".
  • the storage unit 14 is a semiconductor memory device such as RAM, flash memory, or a storage medium such as a memory card.
  • the storage unit 14 stores various programs for calculation of the calculation processing unit 13 . Further, the storage unit 14 stores reference outputs “Xout(0), Yout(0), Zout(0)” of the acceleration sensor 20 for detecting changes using the acceleration sensor 20 .
  • the above is the configuration of the balance 1 using the acceleration sensor 20 according to the first embodiment. Next, a weighing method using the balance 1 will be described.
  • FIG. 5 is a flowchart of a weighing method using the weighing device according to the first embodiment. This flow is automatically started before the balance 1 shifts to weighing mode, such as when the power of the balance 1 is turned on or when the balance 1 has not been used for a certain period of time.
  • step S101 the acceleration change detection unit 131 functions to acquire the current outputs "Xout(1), Yout(1), Zout(1)" of the acceleration sensor 20.
  • step S102 the acceleration change detection unit 131 reads out the reference outputs "Xout(0), Yout(0), Zout(0)" and the current outputs "Xout(1), Yout(1)”. ), Zout(1)".
  • step S103 the acceleration change detection unit 131 determines which change in the next pattern corresponds.
  • step S104 the change notification unit 132 functions to notify the user that there is no change in acceleration.
  • the change notification unit 132 displays, on the display unit 16, for example, a message that there is no change in acceleration, or in other words, a message that there is no abnormality in the tilt of the balance or gravitational acceleration.
  • the balance 1 shifts to the weighing mode.
  • step S103 the flow moves to steps S105 and S106.
  • step S106 the change notification unit 132 notifies the user that pattern (1) has changed.
  • the change notification unit 132 displays, on the display unit 16, for example, a message indicating that there is a change in the acceleration in the z direction, or in other words, that a change in the installation location will affect the measured value.
  • the gravity correction unit 134 applies the current outputs "Xout(1), Yout(1), and Zout(1) of the acceleration sensor 20 to Equation (15) to determine the local gravitational acceleration glocal, and in Equation (16) , to determine the weight value.
  • the balance 1 shifts to the weighing mode.At this time, the gravity correction unit 134 detects changes in the installation location (acceleration in the z direction It is also preferable to notify the user that the correction corresponding to the change) has been set.In subsequent weighings, the balance 1 uses the correction weighing value m' obtained by equation (16) as the true value for correction.
  • the measured value m' is displayed on the display unit 16 and recorded in the storage unit 14 or a designated storage device.
  • step S109 the change notification unit 132 notifies the user that pattern (2) has changed.
  • the change notification unit 132 displays a message on the display unit 16, for example, that there is a change in the acceleration in the x and y directions, or in other words that the tilt of the balance affects the weighing value.
  • the inclination correction unit 133 makes settings so as to correct the measurement value by Equation (14).
  • the balance 1 shifts to the weighing mode.
  • the tilt correction unit 133 preferably notifies the user that correction corresponding to the tilt of the balance (change in acceleration in the x and y directions) has been set.
  • the balance 1 displays the corrected weighed value m′ on the display unit 16 as the corrected weighed value m′ corrected by the equation (14) as the true value, and displays it on the storage unit 14 or the specified Record to an external storage device.
  • step S112 the change notification unit 132 notifies the user that pattern (3) has changed.
  • the change notification unit 132 displays, for example, a message on the display unit 16 that there is a change in the acceleration in the x, y and z directions, or in other words, that the tilt of the balance and the change in the installation location will affect the weighing value. indicate.
  • the flow moves to step S113, and both the gravity correction section 134 and the tilt correction section 133 function.
  • the gravity correction unit 134 functions to obtain the local gravitational acceleration glocal from the current outputs "Xout(1), Yout(1), and Zout(1) of the acceleration sensor 20 by Equation (17).
  • the tilt correction unit 133 functions to set the weighing value to be obtained by the formula (18), which is obtained by applying the local gravitational acceleration glocal to the formula (14).When this setting is completed, the balance 1 enters the weighing mode.
  • the tilt correction unit 133 and the gravity correction unit 134 notify the user that corrections corresponding to both the tilt of the balance and changes in the installation location (changes in acceleration in the x, y, and z directions) have been set.
  • the balance 1 obtains the corrected weighing value m' using the formula (18), displays it on the display unit 16, and stores it in the storage unit 14 or a designated external storage device. Record.
  • Second Embodiment In the second embodiment, the weighing method in the first embodiment is combined with daily inspection.
  • the same reference numerals are used for the elements described in the first embodiment, and the description is omitted.
  • FIG. 6 is a configuration block diagram of a weighing apparatus according to a second embodiment of the present invention.
  • the balance 1 includes a main body case 10, a weighing pan 11, a weight sensor 12, an arithmetic processing unit 13, a storage unit 14, an operation unit 15, a display unit 16, a triaxial acceleration sensor 20, a built-in weight 17, a weight adjustment unit 18, It has a level 19 .
  • the built-in weight 17 and the weight addition/removal unit 18 are known in balances with an automatic calibration function. Before the balance 1 is shipped from the factory, the built-in weight 17 is weighed in advance by setting the balance 1 on a horizontally secured stand, and the reference mass "mw0" is stored.
  • the weight addition/removal unit 18 has a motor and a cam controlled by the arithmetic processing unit 13, and loads and unloads the built-in weight 17 multiple times with respect to the weight receiving portion 17'.
  • the weight receiving portion 17 ′ is linked to the aforementioned beam, and the load of the built-in weight 17 is transmitted to the weight sensor 12 .
  • a pump type may be employed for the weight addition/removal unit 18 .
  • the level 19 is a well-known one that allows the user to visually check whether the air bubble is positioned in the center of the reference line.
  • the level 19 is provided on the front side surface of the main body case 10 .
  • the arithmetic processing unit 13 has a daily inspection unit 135 that executes a daily inspection application.
  • the storage unit 14 stores a program for executing the daily inspection application, the reference mass "mw0" of the built-in weight 17, and the allowable threshold for the reference mass "mw0".
  • FIG. 7 is a flowchart of a weighing method using the weighing device according to the second embodiment.
  • the balance 1 has a "daily check" button on the operation unit 15, and a display unit 16 displays a screen for guiding the check of items (1) to (5) related to daily check by the daily check application. Since the daily inspection application is publicly known, the details are omitted.
  • the weighing method of this embodiment combines part of this daily inspection with the weighing method of the first embodiment.
  • step S200 Confirmation of horizontal state, the user is instructed to confirm whether the bubble in the level 19 is within the reference line.
  • a screen prompting you to The user adjusts the adjuster (not shown) connected to the main body case 10 to adjust the position of the bubble.
  • the adjuster not shown
  • step S201 the acceleration change detection unit 131 acquires the current outputs "Xout(1), Yout(1), Zout(1)" of the acceleration sensor 20, as in step S101.
  • step S202 to S213 are the same as S102 to S113 of the first embodiment.
  • the flow proceeds to step S214.
  • step S214 the daily inspection unit 135 weighs the built-in weight 17 as item (4): confirmation of reproducibility.
  • the built-in weight 17 is measured with the corrected weighing value m' according to the settings in steps S207, S210, and S213.
  • step S215 the daily inspection unit 135 compares the measured value m' of the built-in weight 17 with the reference mass mw0 to determine whether there is any problem. If the error between the weighed value m′ and the reference mass mw0 is within the allowable threshold, the daily inspection unit 135 determines that there is no problem (YES), and considers the balance 1 to have cleared item (1) and item (4). , After confirming the remaining items, shift to weighing mode.
  • step S215 the daily inspection unit 135 determines that there is a problem (NO), and proceeds to step S216.
  • step S216 the daily inspection unit 135 determines that software correction cannot eliminate the error in the resolution of the balance 1, and issues a warning to the user.
  • the daily check unit 135 displays, for example, a warning message on the display unit 16 to retry the sensitivity adjustment using an external weight.
  • the built-in weight 17 is used as the object to be weighed. This embodiment can be implemented because it is only necessary to perform item (4).
  • the virtual plane vp on which the acceleration sensor 20 is arranged may be set at any position within the main body case 10 as long as it does not interfere with the weight sensor 12 (Roberval mechanism 12'). is preferred.
  • FIG. 8 is a diagram showing a suitable attachment form of the acceleration sensor 20 in the first and second embodiments, and is an example in which the acceleration sensor 20 is attached to the "lower case".
  • FIG. 8 is a longitudinal end view of the balance 1.
  • the body case 10 has a divided structure of an upper case 10u and a lower case 10d, and the upper case 10u and the lower case 10d are fitted together with a sealing material such as silicone rubber interposed therebetween.
  • the acceleration sensor 20 is placed on a sensor mounting plate 21 and is fixed to the inner surface of the lower case 10d with screws, preferably via three or more mounting bosses 22 in order to prevent the sensor from wobbling.
  • the sensor installation plate 21 has a flush plane, and the sensor installation plate 21 serves as a virtual plane vp. Note that the IC substrate of the acceleration sensor 20 may be used as it is for the sensor mounting plate 21 .
  • the acceleration sensor 20 is fixed to the lower case 10d after the sensor mounting plate 21 is confirmed to be horizontal by using a level, for example, on a level table. be.
  • the weight sensor 12 (Roberval mechanism 12') is placed on a horizontally secured table via the support member 10c, for example, using a level or the like to confirm that it is kept horizontal. and fixed to the body case 10 . Therefore, if the acceleration sensor 20 is also attached horizontally to the main body case 10, it can be attached so that the horizontality of the acceleration sensor 20 and the horizontality of the weight sensor 12 match.
  • FIG. 9 is a diagram showing a suitable attachment form of the acceleration sensor 20 in the first and second embodiments, and is an example in which the acceleration sensor 20 is attached to the "upper case".
  • the acceleration sensor 20 is similarly mounted on a sensor installation plate 21 and screw-fixed to the case inner surface of the upper case 10u via three or more mounting bosses 22 .
  • the acceleration sensor 20 is placed on a horizontally secured stand and, for example, using a level, it is confirmed that the sensor installation plate 21 is kept horizontal. , so that the acceleration sensor 20 and the weight sensor 12 are mounted horizontally.
  • the weight sensor 12 is fixed to the upper case 10u in FIGS. 8 and 9, it is not limited to this, and may be fixed to the lower case 10d.
  • the fixed position of the acceleration sensor 20 is preferably matched with the case on the side where the weight sensor 12 is fixed.

Abstract

Provided is a weighing device and a weighing method that enable automatic solution of a problem caused by changes in three-axis directions by using a three-axis acceleration sensor. A weighing device (1) comprises: a weighing tray (11); a weight sensor (12) connected to the weighing tray; a three-axis acceleration sensor (20) that sets x and y on a plane parallel to the horizontal of the weight sensor and z in a direction perpendicular to the horizontal of the weight sensor, and detects acceleration changes in the three axes of x, y, and z; a storage unit (14) that stores reference outputs of the three-axis acceleration sensor along the three axes when the weight sensor is horizontally situated; and an arithmetic operation unit (13). The arithmetic operation unit compares currently-obtained outputs of the three-axis acceleration sensor in along the three axes with the reference outputs, detects existence of inclination when an output along x and/or y has been changed and existence of an installation place change when an output along z has been changed, and notifies of a user of the change.

Description

三軸加速度センサを利用した計量装置および計量方法Weighing device and weighing method using triaxial acceleration sensor
 本発明は、三軸加速度センサを利用した計量装置および計量方法に関する。 The present invention relates to a weighing device and weighing method using a triaxial acceleration sensor.
 計量装置である天びんは、計量皿に対して垂直な荷重の成分Wvを重量センサで測定し、天びんが設置された場所における重力加速度gを用いて、計量皿に載った物の質量mを、式(1)から求めている。 A balance, which is a weighing device, uses a weight sensor to measure the component Wv of a load perpendicular to the weighing pan, and uses the gravitational acceleration g at the location where the balance is installed to determine the mass m of the object placed on the weighing pan as follows: It is obtained from the formula (1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
図10(A)に示すように、重力加速度gが働く方向と計量皿に対して垂直な方向が一致する場合は、天びんが測定した質量、即ち計量値mは真の値と言える。一方、図10(B)に示すように、重力加速度gが働く方向と計量皿に対して垂直な方向が一致しない場合は、天びんが検出できない成分Whが発生し、天びんが測定した計量値mは真の値よりも軽くなる。 As shown in FIG. 10A, when the direction in which the gravitational acceleration g acts coincides with the direction perpendicular to the weighing pan, the mass measured by the balance, that is, the measured value m can be said to be a true value. On the other hand, as shown in FIG. 10(B), when the direction in which the gravitational acceleration g acts does not match the direction perpendicular to the weighing pan, a component Wh that cannot be detected by the balance is generated, and the weight value m is lighter than the true value.
 上述の天びんの事情から、次の2つが生じた場合、計量値は誤差を含むと言える。
(i)天びんが傾斜して、計量皿に対して垂直な荷重成分Wvが減少した場合
(ii)天びんが設置された場所が変わり、重力加速度gが変化した場合
 上記(i)に対し、一般的な天びんは、天びんの傾きを検出するための水平器(気泡玉)を備えている。例えば特許文献1では、水平器の気泡を光センサで検出して、天びんの水平をより正確に管理する技術が開示されている。
Due to the circumstances of the balance described above, it can be said that the weighed value contains an error when the following two occur.
(i) When the balance tilts and the load component Wv perpendicular to the weighing pan decreases (ii) When the location where the balance is installed changes and the gravitational acceleration g changes A typical balance is equipped with a level (bubble bubble) to detect the tilt of the balance. For example, Japanese Laid-Open Patent Publication No. 2002-100000 discloses a technique for more accurately controlling the level of a balance by detecting air bubbles in a level with an optical sensor.
特開2016-038377号公報JP 2016-038377 A
 上記(i)に対しては、特許文献1のような技術はあるものの、気泡の周りに複数の光センサを搭載する必要があり、構成が複雑となる。 For the above (i), although there is a technique such as Patent Document 1, it is necessary to mount a plurality of optical sensors around the bubble, which makes the configuration complicated.
 上記(ii)に対しては、ユーザーに、天びんの設置場所を変えた場合は分銅を用いて感度調整をするようにお願いをしているが、対応はユーザー次第であり、実施されていない場合がある。 Regarding (ii) above, we ask the user to adjust the sensitivity using a weight when the installation location of the balance is changed. There is
 これらの問題に対して、発明者らは、天びんの三軸方向の加速度を検出することで、上記(i)および(ii)の問題を、天びん自身が検出し、天びん自身で解決できるのではないかと考えた。 With respect to these problems, the inventors believe that the balance itself can detect the above problems (i) and (ii) by detecting the acceleration of the balance in three axial directions, and the balance itself can solve them. I wondered.
 本発明は、前記した従来の問題点および発明者らの前記した知見に基づいてなされたもので、三軸加速度センサを利用して、三軸方向の加速度変化を自動で検出し、変化による問題を自動で解決する計量装置および計量方法を提供することを目的とする。 The present invention has been made based on the above-mentioned conventional problems and the above-mentioned knowledge of the inventors. It is an object of the present invention to provide a weighing device and a weighing method that automatically solves
 上記課題を解決するために、本発明のある態様の計量装置は、計量皿と、前記計量皿に接続された重量センサと、前記重量センサの水平と平行な面にxとy,前記重量センサの水平に対して垂直な方向にzを設定して,x,y,zの三軸の加速度変化を検出する三軸加速度センサと、前記重量センサが水平の時の前記三軸加速度センサの前記三軸の基準出力を記憶する記憶部と、演算処理部と、を備え、前記演算処理部は、前記三軸加速度センサの前記三軸の現在出力を前記基準出力と比較して,xおよび/またはyの出力が変化していた場合は傾きがあることを検出し,zの出力が変化していた場合は設置場所に変化があることを検出し、ユーザーに通知することを特徴とする。 In order to solve the above problems, a weighing device according to one aspect of the present invention includes a weighing pan, a weight sensor connected to the weighing pan, x and y on a plane parallel to the horizontal of the weight sensor, and the weight sensor. a three-axis acceleration sensor for detecting acceleration changes in the three axes of x, y, and z by setting z in a direction perpendicular to the horizontal of the weight sensor; A storage unit for storing three-axis reference outputs, and an arithmetic processing unit, wherein the arithmetic processing unit compares the three-axis current outputs of the three-axis acceleration sensor with the reference outputs to determine x and/or Alternatively, if the output of y has changed, it detects that there is a tilt, and if the output of z has changed, it detects that there is a change in the installation location and notifies the user.
 上記態様において、前記演算処理部は、前記三軸加速度センサのxおよび/またはyの出力が変化していた場合は、式(14)を使用して、前記重量センサが検出した計量値mを補正計量値m´に補正するのも好ましい。 In the above aspect, if the output of x and/or y of the three-axis acceleration sensor has changed, the arithmetic processing unit uses equation (14) to calculate the measured value m detected by the weight sensor as It is also preferable to correct to the corrected metric value m'.
 上記態様において、前記演算処理部は、前記三軸加速度センサのzの出力のみが変化していた場合は、前記重量センサが検出する計量値mの算出に使用する重力加速度の値を、前記三軸加速度センサの前記z軸の出力を用いて求められる現地の重力加速度の値glocalに変更して、補正計量値m´とするのも好ましい。 In the above aspect, when only the output of z of the three-axis acceleration sensor has changed, the arithmetic processing unit changes the value of gravitational acceleration used for calculating the weight value m detected by the weight sensor to the three-axis acceleration sensor. It is also preferable to change the local gravitational acceleration value glocal obtained using the z-axis output of the axial acceleration sensor to obtain the corrected metric value m'.
 上記態様において、前記演算処理部は、前記三軸加速度センサのzとxおよび/またはyの出力が変化していた場合は、前記式(14)に使用する重力加速度の値を、前記三軸加速度センサの前記三軸の出力を用いて求められる現地の重力加速度glocalに変更して、前記重量センサが検出した計量値mを補正計量値m´に補正するのも好ましい。 In the above aspect, if the outputs of z and x and/or y of the three-axis acceleration sensor have changed, the arithmetic processing unit changes the value of the gravitational acceleration used in the equation (14) to the three-axis acceleration sensor. It is also preferable to correct the measured value m detected by the weight sensor to a corrected measured value m' by changing the local gravitational acceleration glocal obtained using the three-axis outputs of the acceleration sensor.
 上記態様において、前記演算処理部は、計量物の前記補正計量値m´が、前記計量物の基準質量に対する許容閾値の範囲を超える場合は、補正では誤差を取り切れないとしてユーザーに警告を出すのも好ましい。 In the above aspect, when the corrected weight value m' of the object to be weighed exceeds the range of the allowable threshold for the reference mass of the object to be weighed, the arithmetic processing unit warns the user that the error cannot be eliminated by correction. is also preferred.
 また、上記課題を解決するために、本発明のある態様の計量方法は、計量皿と、前記計量皿に接続された重量センサと,前記重量センサの水平と平行な面にxとy、前記重量センサの水平に対して垂直な方向にzを設定して、x,y,zの三軸方向の加速度変化を検出する三軸加速度センサと,を備えた計量装置を用いて、(A)前記三軸加速度センサの前記三軸の現在出力を取得するステップと、(B)前記現在出力を重量センサが水平の時の前記三軸の基準出力と比較するステップと、(C)前記(B)のステップでxおよび/またはyの出力が変化していた場合は、傾きがあることをユーザーに通知するステップと、(D)前記(B)のステップでzの出力が変化していた場合は、設置場所に変化があることをユーザーに通知するステップと、を有することを特徴とする。 In order to solve the above problems, a weighing method according to an aspect of the present invention includes a weighing pan, a weight sensor connected to the weighing pan, x and y on a plane parallel to the horizontal plane of the weight sensor, and (A) using a weighing device equipped with a three-axis acceleration sensor that detects acceleration changes in the three-axis directions of x, y, and z by setting z in the direction perpendicular to the horizontal direction of the weight sensor; (B) comparing said current output with said three-axis reference output when the weight sensor is horizontal; (C) said (B) ) if the output of x and/or y has changed in step (D) if the output of z has changed in step (B) is characterized by notifying the user that there is a change in the installation location.
 上記態様において、(E)前記(B)のステップでxおよび/またはyの出力が変化していた場合は、式(14)を使用して、前記重量センサが検出した計量値mを補正計量値m´に補正するステップと、(F)前記(B)のステップでzの出力のみが変化していた場合は、前記重量センサが検出する計量値mの算出に使用する重力加速度の値を、前記三軸加速度センサの前記z軸の出力を用いて求められる現地の重力加速度の値glocalに変更して、補正計量値m´とするステップと、(G)前記(B)のステップでzとxおよび/またはyの出力が変化していた場合は前記式(14)に使用する重力加速度の値を、前記三軸加速度センサの前記三軸の出力を用いて求められる現地の重力加速度glocalに変更して、前記重量センサが検出した計量値mを補正計量値m´に補正するステップと、を有するのも好ましい。 In the above aspect, (E) if the output of x and/or y has changed in step (B), the weight value m detected by the weight sensor is corrected using equation (14). and (F) if only the output of z has changed in step (B), the gravitational acceleration value used to calculate the weighing value m detected by the weight sensor is changed. , changing the local gravitational acceleration value glocal obtained using the z-axis output of the three-axis acceleration sensor to obtain a corrected metric value m'; and x and/or y outputs have changed, the value of the gravitational acceleration used in the above equation (14) is replaced by the local gravitational acceleration glocal and correcting the measured value m detected by the weight sensor to a corrected measured value m'.
 上記態様において、(H)計量物を計量し、前記計量物の前記補正計量値m´が、前記計量物の基準質量に対する許容閾値の範囲を超える場合は、補正では誤差を取り切れないとしてユーザーに警告を出すステップを有するのも好ましい。 In the above aspect, (H) weighing an object, and if the corrected weight value m' of the object exceeds the allowable threshold range for the reference mass of the object, the error cannot be eliminated by correction, and the user It is also preferred to have the step of alerting the
 本発明によれば、三軸方向の加速度変化を自動で検出し、変化による問題を自動で解決する計量装置および計量方法を提供することができる。 According to the present invention, it is possible to provide a weighing device and a weighing method that automatically detect changes in acceleration in three axial directions and automatically solve problems caused by the changes.
三軸加速度センサの各成分の関係を示す図である。It is a figure which shows the relationship of each component of a triaxial acceleration sensor. 三軸加速度センサを使用した補正の結果を示す図である。FIG. 10 is a diagram showing results of correction using a triaxial acceleration sensor; 本発明の第一の実施形態に係る計量装置の構成ブロック図である。1 is a configuration block diagram of a weighing device according to a first embodiment of the present invention; FIG. 同計量装置の概略斜視図である。It is a schematic perspective view of the same weighing device. 同計量装置を用いた計量方法のフロー図である。It is a flowchart of the weighing method using the same weighing device. 本発明の第二の実施形態に係る計量装置の構成ブロック図である。FIG. 4 is a configuration block diagram of a weighing device according to a second embodiment of the present invention; 同計量装置を用いた計量方法のフロー図である。It is a flowchart of the weighing method using the same weighing device. 実施の形態らにおいて好適な加速度センサの取り付け形態を示す図である。FIG. 4 is a diagram showing a preferred mounting form of an acceleration sensor in the embodiments; 実施の形態らにおいて好適な加速度センサの取り付け形態を示す図である。FIG. 4 is a diagram showing a preferred mounting form of an acceleration sensor in the embodiments; 天びんの計量値に関する考察を表す図である。It is a figure showing consideration about the weighing value of a balance.
 まず、本発明の好適な実施の形態を想到するに至るまでの、発明者の考察について、図面に基づき説明する。 First, the inventor's considerations up to the point of conceiving the preferred embodiment of the present invention will be described based on the drawings.
1.発明者による考察
1-1.天びんの問題点
 図10を用いて前述したように、一般的に、天びんは、計量皿と該計量皿に接続された重量センサを備え、計量皿に対して垂直な荷重成分Wvを測定し、天びんが設置された場所における重力加速度gを用いて、式(1)から、計量物の質量m(計量値)を求めている。
1. Consideration by the inventor 1-1. Problems with Balances As described above with reference to FIG. 10, a balance generally includes a weighing pan and a weight sensor connected to the weighing pan to measure the load component Wv perpendicular to the weighing pan, Using the gravitational acceleration g at the place where the balance is installed, the mass m (weighing value) of the object to be weighed is obtained from equation (1).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 このため、次の2つが生じた場合、天びんの測定した計量値mは誤差を含む。
(i)天びんが傾斜して、計量皿に対して垂直な荷重成分Wvが減少した場合
(ii)天びんが設置された場所が変わり、重力加速度gが変化した場合
Therefore, when the following two occur, the weight value m measured by the balance contains an error.
(i) When the balance tilts and the load component Wv perpendicular to the weighing pan decreases (ii) When the location where the balance is installed changes and the gravitational acceleration g changes
1-2.問題解決のための考察
 この問題に対し、発明者らは、天びんに、三軸加速度センサを搭載することによって、天びんの傾斜と重力加速度が検出できるから、第一に、上記(i)と(ii)の両方を、天びんが自動検出できると考えた。第二に、発明者らは、三軸加速度センサの値を利用することによって、天びんが、計量皿に対して垂直な荷重成分Wvの減少と重力加速度gの変化に由来する計量値の変化を識別した上で自動補正できるのではないかと考えた。
1-2. Considerations for Solving Problems To solve this problem, the inventors have proposed that the tilt and gravitational acceleration of the balance can be detected by mounting a triaxial acceleration sensor on the balance. ii) both were considered to be auto-detectable by the balance. Secondly, the inventors have found that by using the value of the triaxial acceleration sensor, the balance can detect the change in the weight value resulting from the decrease in the load component Wv perpendicular to the weighing pan and the change in the gravitational acceleration g. I thought that it would be possible to automatically correct it after identifying it.
 図1は、ある仮想面vp上に三軸加速度センサを搭載した時の、傾斜角と重力加速度の各成分の関係を示す図である。この三軸加速度センサ(以下、加速度センサと称する)は仮想面vpの直交三軸方向の加速度を検出する。加速度センサのx,yは仮想面vpにあり、zは仮想面vpと垂直な方向にある。この三軸加速度センサに対する重力加速度gの各成分を“gx,gy,gz”と表記する。gx,gy成分は仮想面vpにあり、仮想面vpと垂直な方向にgz成分がある。傾斜角θは、重力加速度gの方向とgz成分の方向とのなす角となる。 FIG. 1 is a diagram showing the relationship between the tilt angle and each component of gravitational acceleration when a triaxial acceleration sensor is mounted on a certain virtual plane vp. This three-axis acceleration sensor (hereinafter referred to as an acceleration sensor) detects acceleration of the virtual plane vp in orthogonal three-axis directions. The x and y of the acceleration sensor are on the virtual plane vp, and the z is in the direction perpendicular to the virtual plane vp. Each component of gravitational acceleration g for this three-axis acceleration sensor is expressed as "gx, gy, gz". The gx and gy components are on the virtual plane vp, and the gz component is in the direction perpendicular to the virtual plane vp. The tilt angle θ is the angle between the direction of the gravitational acceleration g and the direction of the gz component.
 傾斜角θで加速度センサが出力する各成分をそれぞれ、“Xout(θ),Yout(θ),Zout(θ)”とする。加速度センサが検出する重力加速度gを、g={gx(θ),gy(θ),gz(θ)}としたとき、gx(θ),gy(θ),gz(θ)はそれぞれ、傾斜角θ=0の時の出力“Xout(0),Yout(0),Zout(0)”を利用して、式(2),(3),(4)で表せる。但し、Ax,Ay,Azは比例係数で、g=|g|である。 Let each component output by the acceleration sensor at the tilt angle θ be "Xout(θ), Yout(θ), and Zout(θ)". When the gravitational acceleration g detected by the acceleration sensor is g={gx(θ), gy(θ), gz(θ)}, gx(θ), gy(θ), and gz(θ) are the inclination Using the outputs "Xout(0), Yout(0), Zout(0)" when the angle .theta.=0, the equations (2), (3) and (4) can be expressed. However, Ax, Ay, and Az are proportional coefficients, and g=|g|.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 加速度センサの傾斜角θと重力加速度gの関係は、図1を参照すると、
Figure JPOXMLDOC01-appb-M000006
The relationship between the tilt angle θ of the acceleration sensor and the gravitational acceleration g is shown in FIG.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
となる。
Figure JPOXMLDOC01-appb-M000008
becomes.
1-3. 天びんの傾斜に対する補正
 天びんの傾斜、すなわち、計量皿に対して垂直な荷重成分Wvの減少に対する計量値の補正について考察する。天びんの傾斜は、加速度センサのx,yの出力を監視すれば、検知することができる。天びんの傾斜角θ=0のときの計量物の質量をm(0)、傾斜角がθのときの計量物の質量をm(θ)とする。天びんの計量皿上の荷重をW、計量皿に対して垂直な荷重成分をWvとする。ここで、前述の仮想面vpを、重量センサの水平と平行に設定すると、傾斜角θ=0のときは、W=m(0),重力加速度g=Wvとなるので、式(7)の関係がなりたつ。
1-3. Correction for Balance Tilt Consider the correction of the weight value for balance tilt, ie a decrease in the load component Wv perpendicular to the weighing pan. The tilt of the balance can be detected by monitoring the x and y outputs of the acceleration sensor. Let m(0) be the mass of the weighing object when the tilt angle of the balance is θ=0, and m(θ) be the mass of the weighing object when the tilt angle is θ. Let W be the load on the weighing pan of the balance, and Wv be the load component perpendicular to the weighing pan. Here, if the aforementioned virtual plane vp is set parallel to the horizontal plane of the weight sensor, when the tilt angle θ=0, W=m(0) and gravitational acceleration g=Wv. A relationship is formed.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 しかし、傾斜角θ≠0の場合、式(6)より、計量皿に対して垂直な重力加速度gz(θ)は式(8)であるので、計量皿に対して垂直な荷重成分Wvは式(9)となり、 However, when the tilt angle θ≠0, the gravitational acceleration gz(θ) perpendicular to the weighing pan is given by Equation (8) from Equation (6), so the load component Wv perpendicular to the weighing pan is given by Equation (8) (9) becomes
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
ここから、式(10)~式(13)の式変形が成り立つ。
Figure JPOXMLDOC01-appb-M000011
From this, formula transformations of formulas (10) to (13) hold.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 天びんは、質量m(θ)を計量値として取得する。式(12)や式(13)から、天びんは、傾斜角θがある場合、傾斜角θ=0のときの計量値m(0)に対して、θを含む補正項が乗算されるため、質量を過小評価してしまうことが分かる。したがって、傾斜角θがある場合、正しい質量(計量値)を出すには、傾斜角θがある時の質量m(θ)を、θを含む補正項、cosθまたは√1-sin2θ、で割る必要がある。 The balance acquires the mass m(θ) as a weighing value. From equations (12) and (13), when the balance has an inclination angle θ, the weighing value m(0) when the inclination angle θ=0 is multiplied by a correction term including θ. It turns out that you underestimate the mass. Therefore, when there is an inclination angle θ, in order to obtain the correct mass (measurement value), it is necessary to divide the mass m(θ) when there is an inclination angle θ by the correction term including θ, cosθ or √1-sin2θ. There is
 補正項について、理論上は、式(12)と式(13)のどちらで計算しても値は等しくなる。しかし、現実にはθ≃0のきわめて微小な傾斜(0.1°以下)の検出を想定しているため、式(12)の余弦の成分を用いては微小な角度変化は分からない。このため、補正項としては、式(13)の正弦の成分を使用するのが好ましい。 Regarding the correction term, theoretically, the value will be the same regardless of which formula (12) or (13) is used. However, in reality, it is assumed that an extremely small tilt (0.1° or less) of θ≃0 is detected, so a small angle change cannot be detected using the cosine component of Equation (12). . Therefore, it is preferable to use the sine component of equation (13) as the correction term.
 したがって、天びんは、加速度センサが傾斜角θを検出した場合は、式(13)と式(5)に基づいて、天びんが測定した計量値m(質量m(θ))を、次に示す式(14)で補正して、補正計量値m´を算出する。 Therefore, when the acceleration sensor detects the tilt angle θ, the balance calculates the weight value m (mass m(θ)) measured by the balance based on the equations (13) and (5) by the following equation: (14) is performed to calculate a corrected measured value m'.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 図2は、三軸加速度センサを使用した補正を検証した結果を示す図である。検証において、天びんは、秤量10kgで最小表示が0.01gのものを使用し、計量皿に載せる計量物は10000gとした。ここで、天びんの設置面(水平である)からの傾斜角を0°から0.5°に変化させ、この傾斜角をθとして、計量物の計量値mを式(14)で補正して、補正計量値m´を求めた。図2に示す通り、いずれの傾斜角においても、補正計量値m´は10000gが得られた。 FIG. 2 is a diagram showing the results of verification of correction using a triaxial acceleration sensor. In the verification, a balance with a weighing capacity of 10 kg and a minimum display of 0.01 g was used, and the weighing object placed on the weighing pan was 10000 g. Here, the tilt angle from the installation surface (horizontal) of the balance is changed from 0° to 0.5°. , a corrected metric value m' was obtained. As shown in FIG. 2, a corrected weight value m' of 10000 g was obtained at any tilt angle.
1-4. 天びんの設置場所の変化に対する補正
 工場からの出荷や施設の移動などにより天びんが設置された場所が変わることによる、重力加速度gの変化に対する計量値の補正について考察する。重力加速度gの変化は、重量センサの水平に対して垂直な方向の重力加速度gz(θ)を監視すれば、検知することができる。前述の通り、天びんでは、計量値mは、計量皿に対して垂直な荷重の成分Wvを使って、式(1)で求められる。したがって、式(1)に使用する“g”の値を、天びんの移動前の値から、天びんの移動後の値(以降、「現地の重力加速度“glocal”」と称する)に変更すれば、天びんが設置された場所の変化に由来する誤差は解消できる。
1-4. Correction for changes in the location of the balance Consider the correction of weighing values for changes in the gravitational acceleration g due to changes in the location where the balance is installed due to shipment from the factory or movement of facilities. A change in the gravitational acceleration g can be detected by monitoring the gravitational acceleration gz(θ) in the direction perpendicular to the horizontal direction of the weight sensor. As described above, in the balance, the weight value m is obtained by Equation (1) using the component Wv of the load perpendicular to the weighing pan. Therefore, if the value of "g" used in equation (1) is changed from the value before movement of the balance to the value after movement of the balance (hereinafter referred to as "local gravitational acceleration "glocal"), Errors due to changes in the location where the balance is installed can be eliminated.
 ここで、現地の重力加速度glocalは、加速度センサの出力値を用いて求められる。式(6)から、glocalは式(15)である。 Here, the local gravitational acceleration glocal is obtained using the output value of the acceleration sensor. From equation (6), glocal is equation (15).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 天びんは、加速度センサが重力加速度gの変化を検出した場合は、式(1)で重量センサが検出する計量値mの算出に使用する重力加速度gの値を、式(15)で得られる加速度センサの出力を用いて求められる現地の重力加速度glocalの値に変更して、計量値を求める。ここで、この考察では、天びんの設置場所が変化した場合、つまり加速度センサのz成分のみが変化した場合を検討しているため、式(15)において、傾斜角θはゼロであり、glocal = gz(θ=0)である。言い換えると、天びんは、加速度センサが重力加速度gの変化を検出した場合は、重量センサで測定された計量皿に対して垂直な荷重成分Wvを現地の重力加速度glocal(但し、θ=0)で割った値を、補正計量値m´とする(式(16))。 When the acceleration sensor detects a change in the gravitational acceleration g, the balance replaces the value of the gravitational acceleration g used to calculate the weighing value m detected by the weight sensor in Equation (1) with the acceleration obtained in Equation (15). The measured value is obtained by changing the value of the local gravitational acceleration glocal obtained using the output of the sensor. Here, in this consideration, since the case where the installation location of the balance changes, that is, the case where only the z component of the acceleration sensor changes, in equation (15), the tilt angle θ is zero and glocal = gz(θ=0). In other words, when the acceleration sensor detects a change in gravitational acceleration g, the balance converts the load component Wv perpendicular to the weighing pan measured by the weight sensor to the local gravitational acceleration glocal (where θ=0). The divided value is taken as the corrected metric value m' (equation (16)).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 なお、従来技術では、現地の重力加速度glocalは、(1)天びんの記憶部に代表地点の重力加速度の数値を記憶しておき(例えば茨城9.79952[m/s2],札幌9.80478[m/s2],大阪9.79703[m/s2]など)、天びんの設置場所(現地)に最も近い地点を選択するか、(2)天びんの設置場所(現地)で分銅を用いて調整することで、求められていた。これに対し、加速度センサを利用する上記の考察を使用すれば、加速度センサの出力値を用いた天びんの現地の重力加速度glocalを反映できるため、従来技術の手法よりも計量精度が向上し、かつ天びんの設置場所を変えたとき、その都度現地で行っていた分銅による調整が必要なくなるという利点がある。 In the conventional technology, the local gravitational acceleration glocal is stored in (1) the numerical value of the gravitational acceleration at the representative point in the storage unit of the balance (for example, Ibaraki 9.79952 [m/s2], Sapporo 9.80478 [ m/s2], Osaka 9.79703 [m/s2], etc.), select the point closest to the place where the balance is installed (on-site), or (2) adjust using a weight at the place where the balance is installed (on-site). Therefore, it was sought after. On the other hand, if the above consideration using the acceleration sensor is used, the local gravitational acceleration glocal of the balance using the output value of the acceleration sensor can be reflected, so the weighing accuracy is improved more than the conventional technique, and This has the advantage of eliminating the need for on-site adjustments using weights each time the balance is installed in a different location.
1-5. 天びんの傾斜と設置場所の変化の両方が起きた場合の補正
 計量皿に対して垂直な荷重成分Wvの減少と重力加速度gの変化の両方が起きた場合の計量値の補正について考察する。両方が起きた場合は、上記1-3と1-4の考察に基づき、傾きに関する式(14)に使用する“g”の値を、現地の重力加速度glocalに変更すれば、両方の誤差を解消できる。glocalは、式(15)であり、さらに式(17)への式変形が成り立つ。
1-5. Correction when both the tilt of the balance and the change in the installation location occur Consider the correction of the weighing value when both a decrease in the load component Wv perpendicular to the weighing pan and a change in the gravitational acceleration g occur. If both occur, based on considerations 1-3 and 1-4 above, both errors can be corrected by changing the value of "g" used in equation (14) for inclination to the local gravitational acceleration glocal. can be resolved. glocal is Eq. (15), and a further transformation to Eq. (17) holds.
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 式(17)の正弦項は、加速度センサが検出するgx(θ),gy(θ)を含む式(5)から求められる。したがって、現地の重力加速度glocalは、式(17)から、加速度センサのx,y,zの出力値を代入することで求められる。言い換えると、天びんは、天びんの傾斜と重力加速度の変化の両方が起きた場合は、天びんが測定した計量値m(質量m(θ))を、現地の重力加速度glocal(θ≠0)を用いて、次に示す式(18)で補正して、補正計量値m´を算出する。 The sine term of equation (17) is obtained from equation (5) including gx(θ) and gy(θ) detected by the acceleration sensor. Therefore, the local gravitational acceleration glocal can be obtained from equation (17) by substituting the output values of x, y, and z of the acceleration sensor. In other words, the balance uses the local gravitational acceleration glocal (θ≠0) to replace the weight value m (mass m(θ)) measured by the balance when both tilting of the balance and changes in gravitational acceleration occur. Then, the corrected measurement value m' is calculated by the following equation (18).
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
1-6. 三軸加速度センサを利用した計量方法
 以上の考察から、発明者らは、第一に、天びんに三軸加速度センサを搭載し、天びんが水平(傾斜角θ=0)の時の基準出力“Xout(0),Yout(0),Zout(0)”と、現在出力“Xout(1),Yout(1),Zout(1)”を比較することで、(i)天びんの傾斜と、(ii)設置場所に由来する変化を、区別した上で、天びん自身で検出することができると考えた。さらに、発明者らは、第二に、天びんが傾斜した場合の計量値は上記1-3の考察に基づいて補正でき、天びんの設置場所が変わった場合の計量値は上記1-4の考察に基づいて補正でき、両方が起きた場合の計量値は上記1-5の考察に基づいて補正できると確信した。
1-6. Weighing method using a three-axis acceleration sensor Based on the above considerations, the inventors first proposed that a three-axis acceleration sensor be mounted on the balance, and the reference output "Xout By comparing (0), Yout(0), Zout(0)” with the current output “Xout(1), Yout(1), Zout(1)”, (i) the tilt of the balance and (ii) ) It was thought that the balance itself could detect changes caused by the installation location after distinguishing them. Furthermore, the inventors secondly found that the weight value when the balance is tilted can be corrected based on the consideration of 1-3 above, and the weight value when the installation location of the balance is changed can be corrected based on the consideration of 1-4 above. , and the metric value when both occur can be corrected based on considerations 1-5 above.
 したがって、天びんに三軸加速度センサを搭載し、次の三つの加速度変化パターンを検出することで、天びんは、天びんの傾斜と設置場所の変化を自動で検出し、変化に由来する計量値の誤差を自動で補正することができる。
パターン(1)zのみが変化
パターン(2)xおよび/またはyが変化(すなわち、xとyが変化、xが変化、またはyが変化)
パターン(3)zとxおよび/またはyが変化(すなわち、x,y,z全てが変化、xとzが変化、またはyとzが変化)
Therefore, by equipping the balance with a 3-axis acceleration sensor and detecting the following three acceleration change patterns, the balance can automatically detect changes in the tilt of the balance and changes in the installation location, and reduce weighing error caused by changes. can be automatically corrected.
Pattern (1) z only changes Pattern (2) x and/or y changes (i.e. x and y change, x change, or y change)
Pattern (3) z and x and/or y change (i.e. x, y, z all change, x and z change, or y and z change)
 パターン(1)が生じた場合:天びんは、設置場所が変化したことを検出し、ユーザーに通知する。そして、式(16)で計量値の補正を行う。重力加速度gは現地の重力加速度glocalを使用する。
パターン(2)が生じた場合:天びんは、傾きが生じたことを検出し、ユーザーに通知する。そして、式(14)を使用して計量値の補正を行う。重力加速度gは、前回使用した値をそのまま使用する。
パターン(3)が生じた場合:天びんは、傾きと重力加速度の両方に変化が生じたことを検出し、ユーザーに通知する。そして、式(18)で計量値の補正を行う。重力加速度gは現地の重力加速度glocalを使用する。
When pattern (1) occurs: the balance detects that the installation location has changed and notifies the user. Then, the weight value is corrected by the equation (16). The gravitational acceleration g uses the local gravitational acceleration glocal.
If pattern (2) occurs: the balance detects that a tilt has occurred and notifies the user. Then, the weight value is corrected using equation (14). For the gravitational acceleration g, the value used last time is used as it is.
If pattern (3) occurs: the balance detects changes in both tilt and gravitational acceleration and notifies the user. Then, the weight value is corrected by the equation (18). The gravitational acceleration g uses the local gravitational acceleration glocal.
 以上の考察に基づいて、本発明の好適な実施の形態を、図面に基づき説明する。 Based on the above considerations, preferred embodiments of the present invention will be described with reference to the drawings.
2.第一の実施形態
2-1.計量装置(天びん)の構成
 図3は本発明の第一の実施形態に係る計量装置の構成ブロック図、図4は同計量装置の概略斜視図である。計量装置は、電子秤である(以降、天びん1とする)。天びん1は、本体ケース10、計量皿11、重量センサ12、演算処理部13、記憶部14、操作部15、表示部16、そして三軸加速度センサ20を有する。
2. First Embodiment 2-1. Configuration of Weighing Apparatus (Balance) FIG. 3 is a configuration block diagram of the weighing apparatus according to the first embodiment of the present invention, and FIG. 4 is a schematic perspective view of the weighing apparatus. The weighing device is an electronic scale (hereinafter referred to as balance 1). The balance 1 has a main body case 10 , a weighing pan 11 , a weight sensor 12 , an arithmetic processing section 13 , a storage section 14 , an operation section 15 , a display section 16 and a triaxial acceleration sensor 20 .
 図4に示すように、本体ケース10の中には、計量皿11と重量センサ12を接続するロバーバル機構12´が収容されている。ロバーバル機構12´は、計量皿11が受けた荷重を重量センサ12に伝達するための構造であり、矩形の金属ブロックにより形成され、計量皿11からの荷重を受ける浮き部と,本体ケース10に固定される固定部と,浮き部と固定部を接続する上下の副桿と,浮き部に作用した荷重を重量センサ12に伝達する荷重伝達部を備える、公知のものである。計量皿11は、ロバーバル機構12´によって支持され、本体ケース10の上に配置される。計量皿11は水平面11´を有し、水平面11´に計量物が載置される。重量センサ12には、電磁平衡式、歪ゲージ式、または静電容量式等が用いられる。重量センサ12が検出した荷重はA/D変換されて演算処理部13に入力し、計量値に変換される。 As shown in FIG. 4, the body case 10 houses a Roberval mechanism 12' that connects the weighing pan 11 and the weight sensor 12. As shown in FIG. The Roberval mechanism 12' is a structure for transmitting the load received by the weighing pan 11 to the weight sensor 12, and is formed of a rectangular metal block. It is a well-known one comprising a fixed portion to be fixed, upper and lower secondary rods connecting the floating portion and the fixed portion, and a load transmission portion for transmitting the load acting on the floating portion to the weight sensor 12 . The weighing pan 11 is supported by a Roberval mechanism 12 ′ and placed on the body case 10 . The weighing pan 11 has a horizontal surface 11' on which an object to be weighed is placed. For the weight sensor 12, an electromagnetic balance type, strain gauge type, capacitance type, or the like is used. The load detected by the weight sensor 12 is A/D converted and input to the arithmetic processing unit 13, where it is converted into a weight value.
 前述したように、一般的に、天びんは、計量皿に対して垂直な荷重成分Wvを測定し、天びんが設置された場所における重力加速度gを用いて、式(1)から、計量物の計量値mを求めている。この原理を利用するために、前提として、重量センサ12は、天びん1の組み立て時に、水平が確保されている台の上で、本体ケース10に対して、例えば水平器などを用いながら、重量センサ12が水平を保つように取り付けられる(例えば、ロバーバル機構12´の備える平面が水平を保つように取り付けられる)。計量皿11は、ロバーバル機構12´から突出する皿ボス(図示略)によって、重量センサ12の水平に対して垂直の方向から下方支持され、計量皿11の水平面11´が重量センサの水平に一致するように取り付けられる。 As described above, a balance generally measures the load component Wv perpendicular to the weighing pan, and uses the gravitational acceleration g at the location where the balance is installed to calculate the weight of the weighing object from equation (1). We are looking for the value m. In order to utilize this principle, it is assumed that the weight sensor 12 is placed on a horizontally leveled table while the main body case 10 is being held while using, for example, a level. 12 is mounted so as to keep horizontal (for example, it is mounted so that the plane provided by Roberval mechanism 12' keeps horizontal). The weighing pan 11 is supported downward in a direction perpendicular to the horizontal plane of the weight sensor 12 by a pan boss (not shown) protruding from the Roberval mechanism 12', and the horizontal plane 11' of the weighing pan 11 coincides with the horizontal plane of the weight sensor. installed to do so.
 三軸加速度センサ20(以下、加速度センサ20と称する)は、バネと重りが一体化したセンサとセンサに加速度が加わったときの変位を捉える要素を備えたICモジュールである。加速度センサ20は、重量センサ12の水平と平行な仮想面vp上に配置され、加速度センサ20のxとyは仮想面vpに、zは仮想面vpと垂直な方向に配置される。これにより、加速度センサ20は、重量センサ12の水平と平行にxとy、重量センサ12の水平に対して垂直な方向にzが設定され、仮想面vpの直交三軸方向(x,y,z)の加速度を検出する。すなわち、加速度センサ20は、加速度センサ20の水平と重量センサ12の水平が一致するように取り付けられる。本形態では、重量センサ12が受ける荷重の傾斜による変化分を検知して補正することを目的としているため、加速度センサ20の水平と重量センサ12の水平が一致するように取り付けることで、両者の傾斜角の原点が一致し、誤差を減らすことができる。加速度センサ20を配置する仮想面vpは、重量センサ12と干渉しない位置であれば、本体ケース10内の任意の位置に設定されてよい。加速度センサ20を搭載する仮想面vpの好適な設定、すなわち加速度センサ20の取り付け位置については、後述する。なお、図4のx軸とy軸の設定は逆でもよい。 The three-axis acceleration sensor 20 (hereinafter referred to as the acceleration sensor 20) is an IC module equipped with a sensor that integrates a spring and a weight and an element that detects displacement when acceleration is applied to the sensor. The acceleration sensor 20 is arranged on a virtual plane vp parallel to the horizontal of the weight sensor 12, and the x and y of the acceleration sensor 20 are arranged in the virtual plane vp, and the z is arranged in a direction perpendicular to the virtual plane vp. Thus, in the acceleration sensor 20, x and y are set parallel to the horizontal of the weight sensor 12, z is set in the direction perpendicular to the horizontal of the weight sensor 12, and orthogonal three-axis directions (x, y, Detect the acceleration of z). That is, the acceleration sensor 20 is attached so that the horizontal plane of the acceleration sensor 20 and the horizontal plane of the weight sensor 12 are aligned. In this embodiment, since the purpose of this embodiment is to detect and correct the change due to the inclination of the load received by the weight sensor 12, by attaching the acceleration sensor 20 and the weight sensor 12 so that they are horizontally aligned, both can be corrected. The origin of the tilt angle is the same, and the error can be reduced. The virtual plane vp on which the acceleration sensor 20 is arranged may be set at any position within the main body case 10 as long as it does not interfere with the weight sensor 12 . A suitable setting of the virtual plane vp on which the acceleration sensor 20 is mounted, that is, the mounting position of the acceleration sensor 20 will be described later. Note that the x-axis and y-axis settings in FIG. 4 may be reversed.
 加速度センサ20を天びん1に取り付けた後、天びん1を工場から出荷する前に、水平が確保されている台の上で、すなわち重量センサ12が水平な状態で、各成分の基準出力“Xout(0),Yout(0),Zout(0)”が測定され、後述する記憶部14に記憶される。 After the acceleration sensor 20 is attached to the balance 1 and before the balance 1 is shipped from the factory, the reference output "Xout ( 0), Yout(0), and Zout(0)'' are measured and stored in the storage unit 14, which will be described later.
 操作部15および表示部16は、天びん1の本体ケース10の前側面に設けられている。操作部15からは、後述する計量の操作が行える。表示部16には、後述する計量に伴う画面が表示される。 The operation unit 15 and the display unit 16 are provided on the front side surface of the body case 10 of the balance 1. From the operation unit 15, a weighing operation, which will be described later, can be performed. The display unit 16 displays a screen associated with weighing, which will be described later.
 演算処理部13は、例えばCPU,ROM,RAM等を集積回路に実装したマイクロコントローラである。演算処理部13は、加速度センサ20を利用した加速度変化の検出のために、加速度変化検出部131と変化通知部132を有する。また、演算処理部13は、加速度変化に伴う補正を行うために、傾斜補正部133と重力補正部134を有する。機能部131,132,133,および134の機能は、例えば、CPUが記憶部14に記憶されているプログラムを読み出して実行することにより実現される。各機能部の機能の詳細は、後述する“2-2.計量方法”において説明する。 The arithmetic processing unit 13 is a microcontroller in which, for example, a CPU, ROM, RAM, etc. are mounted on an integrated circuit. The arithmetic processing unit 13 has an acceleration change detection unit 131 and a change notification unit 132 for detecting changes in acceleration using the acceleration sensor 20 . Further, the arithmetic processing unit 13 has a tilt correcting unit 133 and a gravity correcting unit 134 in order to perform correction accompanying changes in acceleration. The functions of the functional units 131, 132, 133, and 134 are implemented by, for example, reading and executing programs stored in the storage unit 14 by the CPU. The details of the function of each functional unit will be described later in "2-2. Weighing Method".
 記憶部14は、RAM、フラッシュメモリ等の半導体メモリ素子、またはメモリーカード等の記憶媒体である。記憶部14には、演算処理部13の演算のための各種プログラムが格納されている。さらに、記憶部14は、加速度センサ20を利用した変化の検出のために、加速度センサ20の基準出力“Xout(0),Yout(0),Zout(0)”を記憶している。 The storage unit 14 is a semiconductor memory device such as RAM, flash memory, or a storage medium such as a memory card. The storage unit 14 stores various programs for calculation of the calculation processing unit 13 . Further, the storage unit 14 stores reference outputs “Xout(0), Yout(0), Zout(0)” of the acceleration sensor 20 for detecting changes using the acceleration sensor 20 .
 以上が、第一の実施形態に係る、加速度センサ20を利用した天びん1の構成である。次に、係る天びん1による計量方法を説明する。 The above is the configuration of the balance 1 using the acceleration sensor 20 according to the first embodiment. Next, a weighing method using the balance 1 will be described.
2-2.計量方法
 図5は、第一の実施形態に係る計量装置を用いた計量方法のフロー図である。本フローは、天びん1の電源が入れられた時、または天びん1が一定時間未使用であった時など、天びん1が計量モードに移る前に、自動で開始される。
2-2. Weighing Method FIG. 5 is a flowchart of a weighing method using the weighing device according to the first embodiment. This flow is automatically started before the balance 1 shifts to weighing mode, such as when the power of the balance 1 is turned on or when the balance 1 has not been used for a certain period of time.
 フローが開始されると、まず、ステップS101で、加速度変化検出部131が機能して、加速度センサ20の現在出力“Xout(1),Yout(1),Zout(1)”を取得する。 When the flow starts, first, in step S101, the acceleration change detection unit 131 functions to acquire the current outputs "Xout(1), Yout(1), Zout(1)" of the acceleration sensor 20.
 次に、ステップS102に移行して、加速度変化検出部131は、基準出力“Xout(0),Yout(0),Zout(0)”を読み出して、現在出力“Xout(1),Yout(1),Zout(1)”と比較する。 Next, in step S102, the acceleration change detection unit 131 reads out the reference outputs "Xout(0), Yout(0), Zout(0)" and the current outputs "Xout(1), Yout(1)". ), Zout(1)".
 次にステップS103に移行して、加速度変化検出部131は、次のパターンのどの変化に当たるかを判断する。
パターン(1):zのみが変化
パターン(2):xおよび/またはyが変化
パターン(3):zとxおよび/またはyが変化
Next, in step S103, the acceleration change detection unit 131 determines which change in the next pattern corresponds.
Pattern (1): Only z is changed Pattern (2): x and/or y are changed Pattern (3): z and x and/or y are changed
 パターン(1)~(3)のいずれの変化もなかった場合は、ステップS104に移行して、変化通知部132が機能して、加速度変化が無いことをユーザーに通知する。変化通知部132は、例えば表示部16に、加速度変化が無いこと、または具体的に言い換えて、天びんの傾斜や重力加速度に異常が無い旨のメッセージを表示する。変化通知部132による通知が終わると、天びん1は計量モードへ移行する。 If there is no change in any of patterns (1) to (3), the process proceeds to step S104, and the change notification unit 132 functions to notify the user that there is no change in acceleration. The change notification unit 132 displays, on the display unit 16, for example, a message that there is no change in acceleration, or in other words, a message that there is no abnormality in the tilt of the balance or gravitational acceleration. After the notification by the change notification unit 132 ends, the balance 1 shifts to the weighing mode.
 一方、ステップS103でパターン(1)が検出された場合は、フローはステップS105、ステップS106に移行する。ステップS106で、変化通知部132は、パターン(1)の変化が有ったことをユーザーに通知する。変化通知部132は、例えば表示部16に、z方向の加速度に変化があること、または具体的に言い換えて、設置場所の変化によって計量値に影響が有る旨のメッセージを表示する。 On the other hand, if pattern (1) is detected in step S103, the flow moves to steps S105 and S106. In step S106, the change notification unit 132 notifies the user that pattern (1) has changed. The change notification unit 132 displays, on the display unit 16, for example, a message indicating that there is a change in the acceleration in the z direction, or in other words, that a change in the installation location will affect the measured value.
 次に、フローはステップS107に移行して、重力補正部134が機能する。重力補正部134は、加速度センサ20の現在出力“Xout(1),Yout(1),Zout(1)を式(15)に適用して現地の重力加速度glocalを求めて、式(16)で、計量値を求めるように設定する。重力補正部134による補正の設定が完了すると、天びん1は計量モードへ移行する。この時、重力補正部134は、設置場所の変化(z方向の加速度に変化)に対応した補正が設定されたことをユーザーに通知するのも好ましい。そして、以降の計量では、天びん1は、式(16)で得られる補正計量値m´を真の値として、補正計量値m´を、表示部16に表示し、記憶部14または指定された記憶装置に記録する。 Next, the flow moves to step S107, and the gravity correction unit 134 functions. The gravity correction unit 134 applies the current outputs "Xout(1), Yout(1), and Zout(1) of the acceleration sensor 20 to Equation (15) to determine the local gravitational acceleration glocal, and in Equation (16) , to determine the weight value.When the setting of the correction by the gravity correction unit 134 is completed, the balance 1 shifts to the weighing mode.At this time, the gravity correction unit 134 detects changes in the installation location (acceleration in the z direction It is also preferable to notify the user that the correction corresponding to the change) has been set.In subsequent weighings, the balance 1 uses the correction weighing value m' obtained by equation (16) as the true value for correction. The measured value m' is displayed on the display unit 16 and recorded in the storage unit 14 or a designated storage device.
 ステップS103でパターン(2)が検出された場合は、フローはステップS108、ステップS109に移行する。ステップS109で、変化通知部132は、パターン(2)の変化が有ったことをユーザーに通知する。変化通知部132は、例えば表示部16に、x,y方向の加速度に変化があること、または言い換えて、天びんの傾斜によって計量値に影響が有る旨のメッセージを表示する。 If pattern (2) is detected in step S103, the flow moves to steps S108 and S109. In step S109, the change notification unit 132 notifies the user that pattern (2) has changed. The change notification unit 132 displays a message on the display unit 16, for example, that there is a change in the acceleration in the x and y directions, or in other words that the tilt of the balance affects the weighing value.
 次に、フローは、ステップS110に移行して、傾斜補正部133が機能する。傾斜補正部133は、式(14)によって、計量値を補正するように設定する。傾斜補正部133による補正の設定が完了すると、天びん1は計量モードへ移行する。この時、傾斜補正部133は、天びんの傾き(x,y方向の加速度に変化)に対応した補正が設定されたことをユーザーに通知するのも好ましい。そして、以降の計量では、天びん1は、式(14)で補正した補正計量値m´を真の値として、補正計量値m´を、表示部16に表示し、記憶部14または指定された外部記憶装置に記録する。 Next, the flow moves to step S110, and the tilt correction section 133 functions. The inclination correction unit 133 makes settings so as to correct the measurement value by Equation (14). When the setting of the correction by the tilt correction section 133 is completed, the balance 1 shifts to the weighing mode. At this time, the tilt correction unit 133 preferably notifies the user that correction corresponding to the tilt of the balance (change in acceleration in the x and y directions) has been set. Then, in subsequent weighing, the balance 1 displays the corrected weighed value m′ on the display unit 16 as the corrected weighed value m′ corrected by the equation (14) as the true value, and displays it on the storage unit 14 or the specified Record to an external storage device.
 ステップS103でパターン(3)が検出された場合は、フローはステップS111、ステップS112に移行する。ステップS112で、変化通知部132は、パターン(3)の変化が有ったことをユーザーに通知する。変化通知部132は、例えば表示部16に、x,y方向およびz方向の加速度に変化があること、または言い換えて、天びんの傾斜と設置場所の変化によって計量値に影響が有る旨のメッセージを表示する。 If pattern (3) is detected in step S103, the flow moves to steps S111 and S112. In step S112, the change notification unit 132 notifies the user that pattern (3) has changed. The change notification unit 132 displays, for example, a message on the display unit 16 that there is a change in the acceleration in the x, y and z directions, or in other words, that the tilt of the balance and the change in the installation location will affect the weighing value. indicate.
 次に、フローは、ステップS113に移行して、重力補正部134と傾斜補正部133の両方が機能する。先に、重力補正部134が機能して、加速度センサ20の現在出力“Xout(1),Yout(1),Zout(1)から式(17)で現地の重力加速度glocalを求める。次に、傾斜補正部133が機能して、式(14)に現地の重力加速度glocalを適用した、式(18)で、計量値を求めるように設定する。この設定が完了すると、天びん1は計量モードへ移行する。この時、傾斜補正部133および重力補正部134は、天びんの傾斜と設置場所の変化の両方(x,y,z方向の加速度に変化)に対応した補正が設定されたことをユーザーに通知するのも好ましい。そして、以降の計量では、天びん1は式(18)を用いて補正計量値m´を求め、表示部16に表示し、記憶部14または指定された外部記憶装置に記録する。 Next, the flow moves to step S113, and both the gravity correction section 134 and the tilt correction section 133 function. First, the gravity correction unit 134 functions to obtain the local gravitational acceleration glocal from the current outputs "Xout(1), Yout(1), and Zout(1) of the acceleration sensor 20 by Equation (17). Next, The tilt correction unit 133 functions to set the weighing value to be obtained by the formula (18), which is obtained by applying the local gravitational acceleration glocal to the formula (14).When this setting is completed, the balance 1 enters the weighing mode. At this time, the tilt correction unit 133 and the gravity correction unit 134 notify the user that corrections corresponding to both the tilt of the balance and changes in the installation location (changes in acceleration in the x, y, and z directions) have been set. In subsequent weighing, the balance 1 obtains the corrected weighing value m' using the formula (18), displays it on the display unit 16, and stores it in the storage unit 14 or a designated external storage device. Record.
2-3.効果
 以上、本形態の天びん1によれば、天びん1に三軸加速度センサ20を搭載したことにより、
(i)天びんが傾斜して、計量皿に対して垂直な荷重成分Wvが減少した場合
(ii)天びんが設置された場所が変わり、重力加速度gが変化した場合
の両方の問題を、天びん1で検出することができる。
2-3. Effect As described above, according to the balance 1 of the present embodiment, by mounting the triaxial acceleration sensor 20 on the balance 1,
(i) when the balance is tilted and the load component Wv perpendicular to the weighing pan decreases, and (ii) when the location where the balance is installed changes and the gravitational acceleration g changes. can be detected by
 特に、三軸加速度センサ20で、x,y,zの出力の変化を同時に監視することで、上記(i)と(ii)のどちらの問題に由来するのかを識別することができ、それぞれの問題に対応して適切に計量値を補正することができる。 In particular, by simultaneously monitoring changes in x, y, and z outputs with the three-axis acceleration sensor 20, it is possible to identify which of the above problems (i) and (ii) is caused, and It is possible to appropriately correct the metric value in response to the problem.
 また、上記(i)については、三軸加速度センサ20を取り付けるだけでよいので、構成が複雑にならない。上記(ii)については、設置場所の変化に由来する対応はユーザー任せになっていたのに対し、天びん自身が検知し、自動で補正することが可能になる。 Also, with regard to (i) above, it is only necessary to attach the triaxial acceleration sensor 20, so the configuration does not become complicated. Regarding the above (ii), while it was left up to the user to deal with changes in the installation location, the balance itself can detect and automatically correct it.
3.第二の実施形態
 第二の実施形態では、第一の実施形態における計量方法を日常点検に組み合わせる。第一の実施形態で説明した要素については、同一の符号を用いて説明を割愛する。
3. Second Embodiment In the second embodiment, the weighing method in the first embodiment is combined with daily inspection. The same reference numerals are used for the elements described in the first embodiment, and the description is omitted.
3-1.計量装置(天びん)の構成
 図6は本発明の第二の実施形態に係る計量装置の構成ブロック図である。天びん1は、本体ケース10、計量皿11、重量センサ12、演算処理部13、記憶部14、操作部15、表示部16、三軸加速度センサ20、さらに、内蔵分銅17、分銅加除ユニット18、水平器19を有する。
3-1. Configuration of Weighing Apparatus (Balance) FIG. 6 is a configuration block diagram of a weighing apparatus according to a second embodiment of the present invention. The balance 1 includes a main body case 10, a weighing pan 11, a weight sensor 12, an arithmetic processing unit 13, a storage unit 14, an operation unit 15, a display unit 16, a triaxial acceleration sensor 20, a built-in weight 17, a weight adjustment unit 18, It has a level 19 .
 内蔵分銅17と分銅加除ユニット18は、自動校正(キャリブレーション)機能付きの天びんにおいて、公知のものである。内蔵分銅17は、天びん1を工場から出荷する前に、天びん1を水平が確保されている台に設置して、予め計量され、基準質量“mw0”が記憶される。分銅加除ユニット18は、演算処理部13によってモータとカムが制御され、分銅受け部17´に対して、内蔵分銅17を複数回載せ降ろしする。分銅受け部17´は前述のビームにリンクされており、内蔵分銅17の荷重は重量センサ12に伝達される。なお、分銅加除ユニット18には、ポンプ式が採用されてもよい。 The built-in weight 17 and the weight addition/removal unit 18 are known in balances with an automatic calibration function. Before the balance 1 is shipped from the factory, the built-in weight 17 is weighed in advance by setting the balance 1 on a horizontally secured stand, and the reference mass "mw0" is stored. The weight addition/removal unit 18 has a motor and a cam controlled by the arithmetic processing unit 13, and loads and unloads the built-in weight 17 multiple times with respect to the weight receiving portion 17'. The weight receiving portion 17 ′ is linked to the aforementioned beam, and the load of the built-in weight 17 is transmitted to the weight sensor 12 . A pump type may be employed for the weight addition/removal unit 18 .
 水平器19は、基準線の中央に気泡が位置しているかをユーザーが目視で確認する、公知のものである。水平器19は、本体ケース10の前側面に設けられている。 The level 19 is a well-known one that allows the user to visually check whether the air bubble is positioned in the center of the reference line. The level 19 is provided on the front side surface of the main body case 10 .
 演算処理部13は、日常点検アプリケーションを実行する、日常点検部135を有する。記憶部14には、日常点検アプリケーションを実行するためのプログラムと、内蔵分銅17の基準質量“mw0”と、基準質量“mw0”に対する許容閾値が記憶される。 The arithmetic processing unit 13 has a daily inspection unit 135 that executes a daily inspection application. The storage unit 14 stores a program for executing the daily inspection application, the reference mass "mw0" of the built-in weight 17, and the allowable threshold for the reference mass "mw0".
3-2.計量方法
 図7は、第二の実施形態に係る計量装置を用いた計量方法のフロー図である。ここで、天びんの日常点検では、(1)水平状態の確認,(2)汚れ・異物の確認,(3)ゼロ点戻りの確認,(4)再現性の確認,(5)偏置誤差の確認,などが行われる。天びん1は、操作部15に「日常点検」ボタンを備え、日常点検アプリケーションによって、日常点検に係る項目(1)~(5)のチェックを誘導する画面が表示部16に表示される。日常点検アプリケーションについては公知であるため、詳細は割愛する。本形態の計量方法は、この日常点検の一部に第一の実施形態の計量方法を組み合わせる。
3-2. Weighing Method FIG. 7 is a flowchart of a weighing method using the weighing device according to the second embodiment. Here, in the daily inspection of the balance, (1) confirmation of horizontal condition, (2) confirmation of dirt and foreign matter, (3) confirmation of zero point return, (4) confirmation of reproducibility, (5) confirmation of eccentricity error confirmation, etc. The balance 1 has a "daily check" button on the operation unit 15, and a display unit 16 displays a screen for guiding the check of items (1) to (5) related to daily check by the daily check application. Since the daily inspection application is publicly known, the details are omitted. The weighing method of this embodiment combines part of this daily inspection with the weighing method of the first embodiment.
 フローが開始されると、日常点検部135が機能して、項目(1):水平状態の確認のために、ステップS200で、水平器19の気泡が基準線内にあるか確認するよう、ユーザーを誘導する画面が表示される。ユーザーは、本体ケース10に接続されたアジャスタ(図示略)を調整して、気泡の位置を調整する。ただし、この作業は手動であるため、きわめて微小な傾斜(0.1°以下)が残る可能性がある。 When the flow is started, the daily inspection unit 135 functions, and in step S200, for item (1): Confirmation of horizontal state, the user is instructed to confirm whether the bubble in the level 19 is within the reference line. A screen prompting you to The user adjusts the adjuster (not shown) connected to the main body case 10 to adjust the position of the bubble. However, since this work is manual, there is a possibility that a very small tilt (0.1° or less) remains.
 ステップS200の手動の水平調整が終わったあと、フローはステップS201に移行する。ステップS201では、ステップS101と同様、加速度変化検出部131が、加速度センサ20の現在出力“Xout(1),Yout(1),Zout(1)”を取得する。 After the manual horizontal adjustment in step S200 is completed, the flow moves to step S201. In step S201, the acceleration change detection unit 131 acquires the current outputs "Xout(1), Yout(1), Zout(1)" of the acceleration sensor 20, as in step S101.
 以降のステップS202~S213は、第一の実施形態のS102~S113と同一である。ステップS207,S210,S213のそれぞれで、補正の設定が完了すると、フローはステップS214に移行する。 The subsequent steps S202 to S213 are the same as S102 to S113 of the first embodiment. When the correction setting is completed in each of steps S207, S210, and S213, the flow proceeds to step S214.
 ステップS214で、日常点検部135は、項目(4):再現性の確認として、内蔵分銅17を計量する。このとき、内蔵分銅17は、ステップS207,S210,S213のそれぞれの設定により、補正計量値m´で測定される。 In step S214, the daily inspection unit 135 weighs the built-in weight 17 as item (4): confirmation of reproducibility. At this time, the built-in weight 17 is measured with the corrected weighing value m' according to the settings in steps S207, S210, and S213.
 次に、フローはステップS215に移行して、日常点検部135は、内蔵分銅17の計量値m´を基準質量mw0と比較し、問題ないか判断する。日常点検部135は、計量値m´と基準質量mw0の誤差が許容閾値の範囲内であれば、問題なしとして(YES)、天びん1は項目(1)と項目(4)はクリアしたものとして、残りの項目を確認後、計量モードへ移行する。 Next, the flow moves to step S215, where the daily inspection unit 135 compares the measured value m' of the built-in weight 17 with the reference mass mw0 to determine whether there is any problem. If the error between the weighed value m′ and the reference mass mw0 is within the allowable threshold, the daily inspection unit 135 determines that there is no problem (YES), and considers the balance 1 to have cleared item (1) and item (4). , After confirming the remaining items, shift to weighing mode.
 一方、ステップS215で計量値m´と基準質量mw0の誤差が許容閾値の範囲を超える場合は、日常点検部135は、問題ありとして(NO)、ステップS216に移行する。ステップS216で、日常点検部135は、天びん1の分解能に対してソフトウェア的補正では誤差を取り切れないと判断して、ユーザーに警告を出す。日常点検部135は、例えば表示部16に、外部分銅を用いて感度調整をやり直すよう、警告メッセージを表示する。 On the other hand, if the error between the measured value m' and the reference mass mw0 exceeds the allowable threshold range in step S215, the daily inspection unit 135 determines that there is a problem (NO), and proceeds to step S216. In step S216, the daily inspection unit 135 determines that software correction cannot eliminate the error in the resolution of the balance 1, and issues a warning to the user. The daily check unit 135 displays, for example, a warning message on the display unit 16 to retry the sensitivity adjustment using an external weight.
3-3.効果
 以上、本形態によれば、第一の実施形態における効果に加えて、天びんの日常点検に三軸加速度センサ20を使用した計量方法を組み合わせることで、人的な操作では取り切れない微小な傾斜に対して、有効に補正を行うことができる。
3-3. Effect As described above, according to the present embodiment, in addition to the effect of the first embodiment, by combining the weighing method using the triaxial acceleration sensor 20 for the daily inspection of the balance, it is possible to obtain a very small amount that cannot be removed by human operation. It is possible to effectively correct the tilt.
 なお、本形態では、(4):再現性の確認のために、内蔵分銅17を計量物として用いたが、内蔵分銅17を持たない天びんであっても、基準質量が既知の外部分銅を用いて項目(4)を行えばよいだけであるので、本形態の実施は可能である。 In this embodiment, (4): To confirm reproducibility, the built-in weight 17 is used as the object to be weighed. This embodiment can be implemented because it is only necessary to perform item (4).
4.加速度センサの取り付け位置
 加速度センサ20は、加速度センサ20の水平と重量センサ12の水平が一致するように取り付けることが重要である。加速度センサ20を配置する仮想面vpは、重量センサ12(ロバーバル機構12´)と干渉しない位置であれば、本体ケース10内の任意の位置に設定されてよいが、例えば以下の構成で取り付けるのが好ましい。
4. Mounting Position of Acceleration Sensor It is important to mount the acceleration sensor 20 so that the horizontal plane of the acceleration sensor 20 and the horizontal plane of the weight sensor 12 are aligned. The virtual plane vp on which the acceleration sensor 20 is arranged may be set at any position within the main body case 10 as long as it does not interfere with the weight sensor 12 (Roberval mechanism 12'). is preferred.
 図8は、第一および第二の実施形態において好適な加速度センサ20の取り付け形態を示す図であり、加速度センサ20が「下ケース」に取り付けられる例である。図8は天びん1の縦端面図である。 FIG. 8 is a diagram showing a suitable attachment form of the acceleration sensor 20 in the first and second embodiments, and is an example in which the acceleration sensor 20 is attached to the "lower case". FIG. 8 is a longitudinal end view of the balance 1. FIG.
 本体ケース10は、上ケース10uと下ケース10dの分割構造となっており、上ケース10uと下ケース10dはシリコンゴムなどのシール材を介した状態で嵌合される。加速度センサ20は、センサ設置板21に載せられ、センサのぐらつきを抑えるため、好ましくは3本以上の取り付けボス22を介して、下ケース10dのケース内面に、例えばネジ固定される。センサ設置板21は面一の平面を備えるものであり、センサ設置板21が仮想面vpとなる。なお、センサ設置板21は、加速度センサ20のIC基板をそのまま利用してもよい。 The body case 10 has a divided structure of an upper case 10u and a lower case 10d, and the upper case 10u and the lower case 10d are fitted together with a sealing material such as silicone rubber interposed therebetween. The acceleration sensor 20 is placed on a sensor mounting plate 21 and is fixed to the inner surface of the lower case 10d with screws, preferably via three or more mounting bosses 22 in order to prevent the sensor from wobbling. The sensor installation plate 21 has a flush plane, and the sensor installation plate 21 serves as a virtual plane vp. Note that the IC substrate of the acceleration sensor 20 may be used as it is for the sensor mounting plate 21 .
 加速度センサ20は、天びん1の組み立て時に、水平が確保されている台の上で、例えば水平器などを用いながら、センサ設置板21が水平を保つように確認されて、下ケース10dに固定される。 When the balance 1 is assembled, the acceleration sensor 20 is fixed to the lower case 10d after the sensor mounting plate 21 is confirmed to be horizontal by using a level, for example, on a level table. be.
 ここで、前述したように、重量センサ12(ロバーバル機構12´)は、支持部材10cを介して、例えば水平が確保されている台の上で水平器などを用いて、水平を保つように確認されて、本体ケース10に固定されている。このため、加速度センサ20も、本体ケース10に対して水平に取り付ければ、加速度センサ20の水平と重量センサ12の水平が一致するように取り付けることができる。 Here, as described above, the weight sensor 12 (Roberval mechanism 12') is placed on a horizontally secured table via the support member 10c, for example, using a level or the like to confirm that it is kept horizontal. and fixed to the body case 10 . Therefore, if the acceleration sensor 20 is also attached horizontally to the main body case 10, it can be attached so that the horizontality of the acceleration sensor 20 and the horizontality of the weight sensor 12 match.
 図9は、第一および第二の実施形態において好適な加速度センサ20の取り付け形態を示す図であり、加速度センサ20が「上ケース」に取り付けられる例である。加速度センサ20は、同様に、センサ設置板21に載せられ、3本以上の取り付けボス22を介して、上ケース10uのケース内面に、ネジ固定される。同様に、加速度センサ20は、天びん1の組み立て時に、水平が確保されている台の上で、例えば水平器などを用いながら、センサ設置板21が水平を保つように確認されて、本体ケース10に固定されるので、加速度センサ20の水平と重量センサ12の水平が一致するように取り付けられる。 FIG. 9 is a diagram showing a suitable attachment form of the acceleration sensor 20 in the first and second embodiments, and is an example in which the acceleration sensor 20 is attached to the "upper case". The acceleration sensor 20 is similarly mounted on a sensor installation plate 21 and screw-fixed to the case inner surface of the upper case 10u via three or more mounting bosses 22 . Similarly, when the balance 1 is assembled, the acceleration sensor 20 is placed on a horizontally secured stand and, for example, using a level, it is confirmed that the sensor installation plate 21 is kept horizontal. , so that the acceleration sensor 20 and the weight sensor 12 are mounted horizontally.
 なお、図8,図9では、重量センサ12は、上ケース10uに固定されているが、これに限定されず、下ケース10dに固定される構成であってもよい。加速度センサ20の固定位置は、重量センサ12が固定される側のケースに一致させるのが好ましい。 Although the weight sensor 12 is fixed to the upper case 10u in FIGS. 8 and 9, it is not limited to this, and may be fixed to the lower case 10d. The fixed position of the acceleration sensor 20 is preferably matched with the case on the side where the weight sensor 12 is fixed.
 以上、本発明の好ましい実施の形態について述べたが、上記の実施の形態は本発明の一例であり、これらを当業者の知識に基づいて組み合わせることが可能であり、そのような形態も本発明の範囲に含まれる。 Although preferred embodiments of the present invention have been described above, the above embodiments are examples of the present invention, and it is possible to combine them based on the knowledge of those skilled in the art. included in the range of
1 天びん
11 計量皿
11´ 計量皿の水平面
12 重量センサ
13 演算処理部
14 記憶部
17 内蔵分銅
20 三軸加速度センサ
1 balance 11 weighing pan 11' horizontal plane of weighing pan 12 weight sensor 13 arithmetic processing unit 14 storage unit 17 built-in weight 20 triaxial acceleration sensor

Claims (8)

  1.  計量皿と、
     前記計量皿に接続された重量センサと、
     前記重量センサの水平と平行な面にxとy、前記重量センサの水平に対して垂直な方向にzを設定して、x,y,zの三軸の加速度変化を検出する三軸加速度センサと、
     前記重量センサが水平の時の前記三軸加速度センサの前記三軸の基準出力を記憶する記憶部と、
     演算処理部と、を備え、
     前記演算処理部は、前記三軸加速度センサの前記三軸の現在出力を前記基準出力と比較して、xおよび/またはyの出力が変化していた場合は傾きがあることを検出し、zの出力が変化していた場合は設置場所に変化があることを検出し、ユーザーに通知する
     ことを特徴とする計量装置。
    a weighing pan;
    a weight sensor connected to the weighing pan;
    A three-axis acceleration sensor for detecting changes in acceleration in the three axes of x, y, and z by setting x and y in a plane parallel to the horizontal plane of the weight sensor and z in a direction perpendicular to the horizontal plane of the weight sensor. and,
    a storage unit that stores the triaxial reference output of the triaxial acceleration sensor when the weight sensor is horizontal;
    and an arithmetic processing unit,
    The arithmetic processing unit compares the current output of the three axes of the three-axis acceleration sensor with the reference output, detects that there is a tilt when the output of x and/or y has changed, and z A metering device characterized by detecting a change in the installation location and notifying the user when the output of the device has changed.
  2.  前記演算処理部は、前記三軸加速度センサのxおよび/またはyの出力が変化していた場合は、式(14)を使用して、前記重量センサが検出した計量値mを補正計量値m´に補正する
     ことを特徴とする請求項1に記載の計量装置。
    Figure JPOXMLDOC01-appb-M000001
     但し、
     g:重力加速度の値
     θ:重力加速度の方向と三軸加速度センサが検出するz軸とのなす角
     gx(θ):三軸加速度センサが検出するxの出力の値
     gy(θ):三軸加速度センサが検出するyの出力の値
    If the output of x and/or y of the three-axis acceleration sensor has changed, the arithmetic processing unit converts the measured value m detected by the weight sensor to the corrected measured value m using equation (14). The weighing device according to claim 1, wherein the correction is made to '.
    Figure JPOXMLDOC01-appb-M000001
    however,
    g: Gravitational acceleration value θ: Angle formed by the direction of gravity acceleration and the z-axis detected by the triaxial acceleration sensor gx(θ): Output value of x detected by the triaxial acceleration sensor gy(θ): Triaxial y output value detected by the accelerometer
  3.  前記演算処理部は、前記三軸加速度センサのzの出力のみが変化していた場合は、前記重量センサが検出する計量値mの算出に使用する重力加速度の値を、前記三軸加速度センサの前記z軸の出力を用いて求められる現地の重力加速度の値glocalに変更して、補正計量値m´とする
     ことを特徴とする請求項1に記載の計量装置。
    When only the output of z of the three-axis acceleration sensor has changed, the arithmetic processing unit converts the gravitational acceleration value used for calculating the weight value m detected by the weight sensor to the value of the three-axis acceleration sensor. 2. The weighing device according to claim 1, wherein the value glocal of the local gravitational acceleration obtained using the z-axis output is changed to a corrected weighing value m'.
  4.  前記演算処理部は、前記三軸加速度センサのzとxおよび/またはyの出力が変化していた場合は、前記式(14)に使用する重力加速度の値を、前記三軸加速度センサの前記三軸の出力を用いて求められる現地の重力加速度glocalに変更して、前記重量センサが検出した計量値mを補正計量値m´に補正する
     ことを特徴とする請求項2に記載の計量装置。
    When the outputs of z and x and/or y of the three-axis acceleration sensor have changed, the arithmetic processing unit converts the gravitational acceleration value used in the equation (14) to the 3. The weighing device according to claim 2, wherein the weighing value m detected by the weight sensor is corrected to a corrected weighing value m' by changing to the local gravitational acceleration glocal obtained using three-axis outputs. .
  5.  前記演算処理部は、計量物の前記補正計量値m´が、前記計量物の基準質量に対する許容閾値の範囲を超える場合は、補正では誤差を取り切れないとしてユーザーに警告を出す
     ことを特徴とする請求項2~4のいずれかに記載の計量装置。
    When the corrected weighed value m′ of the object to be weighed exceeds a range of an allowable threshold for the reference mass of the object to be weighed, the arithmetic processing unit warns the user that the error cannot be eliminated by correction. The weighing device according to any one of claims 2 to 4.
  6.  計量皿と、前記計量皿に接続された重量センサと、前記重量センサの水平と平行な面にxとy、前記重量センサの水平に対して垂直な方向にzを設定して、x,y,zの三軸方向の加速度変化を検出する三軸加速度センサと、を備えた計量装置を用いて、
     (A)前記三軸加速度センサの前記三軸の現在出力を取得するステップと、
     (B)前記現在出力を重量センサが水平の時の前記三軸の基準出力と比較するステップと、
     (C)前記(B)のステップでxおよび/またはyの出力が変化していた場合は、傾きがあることをユーザーに通知するステップと、
     (D)前記(B)のステップでzの出力が変化していた場合は、設置場所に変化があることをユーザーに通知するステップと、
     を有することを特徴とする計量方法。
    A weighing pan, a weight sensor connected to the weighing pan, x and y in a plane parallel to the horizontal of the weight sensor, and z in a direction perpendicular to the horizontal of the weight sensor, x, y , z using a weighing device equipped with a three-axis acceleration sensor that detects changes in acceleration in the three-axis directions,
    (A) obtaining current outputs of the three axes of the three-axis acceleration sensor;
    (B) comparing the current output to the triaxial reference output when the weight sensor is horizontal;
    (C) notifying the user that there is a tilt if the x and/or y outputs have changed in step (B) above;
    (D) if the output of z has changed in step (B) above, a step of notifying the user that the installation location has changed;
    A weighing method characterized by having
  7.  (E)前記(B)のステップでxおよび/またはyの出力が変化していた場合は、式(14)を使用して、前記重量センサが検出した計量値mを補正計量値m´に補正するステップと、
     (F)前記(B)のステップでzの出力のみが変化していた場合は、前記重量センサが検出する計量値mの算出に使用する重力加速度の値を、前記三軸加速度センサの前記z軸の出力を用いて求められる現地の重力加速度の値glocalに変更して、補正計量値m´とするステップと、
     (G)前記(B)のステップでzとxおよび/またはyの出力が変化していた場合は前記式(14)に使用する重力加速度の値を、前記三軸加速度センサの前記三軸の出力を用いて求められる現地の重力加速度glocalに変更して、前記重量センサが検出した計量値mを補正計量値m´に補正するステップと、
     を有することを特徴とする請求項6に記載の計量方法。
    (E) If the output of x and/or y has changed in step (B) above, use equation (14) to convert the measured value m detected by the weight sensor to the corrected measured value m'. a correcting step;
    (F) If only the output of z has changed in step (B), the gravitational acceleration value used to calculate the weighing value m detected by the weight sensor is changed to the z a step of changing the value glocal of the local gravitational acceleration obtained using the output of the shaft to obtain a corrected metric value m';
    (G) If the outputs of z and x and/or y have changed in step (B), the value of the gravitational acceleration used in the formula (14) is a step of correcting the measured value m detected by the weight sensor to a corrected measured value m' by changing the local gravitational acceleration glocal obtained using the output;
    The weighing method according to claim 6, characterized by comprising:
  8.  (H)計量物を計量し、前記計量物の前記補正計量値m´が、前記計量物の基準質量に対する許容閾値の範囲を超える場合は、補正では誤差を取り切れないとしてユーザーに警告を出すステップと、
     を有することを特徴とする請求項7に記載の計量方法。
    (H) Weighing an object, and if the corrected weight value m′ of the object exceeds the allowable threshold range for the reference mass of the object, warn the user that the error cannot be eliminated by correction. a step;
    The weighing method according to claim 7, characterized by comprising:
PCT/JP2021/030859 2021-08-23 2021-08-23 Weighing device and weighing method using three-axis acceleration sensor WO2023026337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/030859 WO2023026337A1 (en) 2021-08-23 2021-08-23 Weighing device and weighing method using three-axis acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/030859 WO2023026337A1 (en) 2021-08-23 2021-08-23 Weighing device and weighing method using three-axis acceleration sensor

Publications (1)

Publication Number Publication Date
WO2023026337A1 true WO2023026337A1 (en) 2023-03-02

Family

ID=85321618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030859 WO2023026337A1 (en) 2021-08-23 2021-08-23 Weighing device and weighing method using three-axis acceleration sensor

Country Status (1)

Country Link
WO (1) WO2023026337A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268147A (en) * 2007-04-25 2008-11-06 Tanita Corp Weighing apparatus
US20090306924A1 (en) * 2008-06-10 2009-12-10 Datalogic Scanning, Inc. Automatic calibration system for scanner-scale or other scale system
JP2011158404A (en) * 2010-02-02 2011-08-18 Kochi Univ Of Technology Mobile floor reaction force measuring device
CN102778287A (en) * 2012-07-27 2012-11-14 中山佳维电子有限公司 System and method for controlling tiltable weighing electronic scale
JP2014163856A (en) * 2013-02-27 2014-09-08 Hirose Denshi System Kk Electronic measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268147A (en) * 2007-04-25 2008-11-06 Tanita Corp Weighing apparatus
US20090306924A1 (en) * 2008-06-10 2009-12-10 Datalogic Scanning, Inc. Automatic calibration system for scanner-scale or other scale system
JP2011158404A (en) * 2010-02-02 2011-08-18 Kochi Univ Of Technology Mobile floor reaction force measuring device
CN102778287A (en) * 2012-07-27 2012-11-14 中山佳维电子有限公司 System and method for controlling tiltable weighing electronic scale
JP2014163856A (en) * 2013-02-27 2014-09-08 Hirose Denshi System Kk Electronic measuring device

Similar Documents

Publication Publication Date Title
US7906737B2 (en) Electronic scale comprising an inclinometer and corresponding signal evaluation method
JP5046509B2 (en) Gradient sensor and method of using the same
US7964806B2 (en) Electronic scale comprising a bubble level
JP4990360B2 (en) Top balance with corner load sensor
JP2008268147A (en) Weighing apparatus
EP2856090A2 (en) Weight scale for a patient lift system, a control system for the weight scale, and a method for weighing a patient supported on the weight scale
JP5084326B2 (en) Load cell unit and weighing device
CN101782449A (en) Calibration table of micro pressure sensor
WO2023026337A1 (en) Weighing device and weighing method using three-axis acceleration sensor
US11300442B2 (en) Weighing apparatus with alignment of accelerometer coordinate system and load cell coordinate system and related method
JP2005121405A (en) Dead weight meter for vehicle
EP0432979A2 (en) Scale for operation under oscillating conditions
JP6990486B1 (en) Tilt detection method and equipment for that
JPS58115327A (en) Electronic scale with horizontal error compensating means
JP4845793B2 (en) Weighing device correction method
WO2023047564A1 (en) Weighing device equipped with three-axis acceleration sensor and inspection method therefor
KR100449780B1 (en) Apparatus and method for measuring slant using load-cell, and electrical scale and method for compensating measurement error using the same
US4757867A (en) Single load cell weighing systems
JP3163448U (en) Electronic scales
US20230228615A1 (en) Method for configuring a calibration mechanism and force sensor thereof
KR102538936B1 (en) Electronic scales with imporved precision
CN217358734U (en) Device for compensating all-round tilting weighing error of electronic scale
JPS6361919A (en) Fuel rest meter for vehicle
JP2006138714A (en) Weighing apparatus with built-in calibration device
JP3621188B2 (en) Mass measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954954

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543501

Country of ref document: JP