WO2023025237A1 - 将流体能转换为机械能的基础机构 - Google Patents

将流体能转换为机械能的基础机构 Download PDF

Info

Publication number
WO2023025237A1
WO2023025237A1 PCT/CN2022/114747 CN2022114747W WO2023025237A1 WO 2023025237 A1 WO2023025237 A1 WO 2023025237A1 CN 2022114747 W CN2022114747 W CN 2022114747W WO 2023025237 A1 WO2023025237 A1 WO 2023025237A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
shaft
hub
turbine
blades
Prior art date
Application number
PCT/CN2022/114747
Other languages
English (en)
French (fr)
Inventor
黄始征
Original Assignee
黄始征
黄渭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄始征, 黄渭 filed Critical 黄始征
Publication of WO2023025237A1 publication Critical patent/WO2023025237A1/zh
Priority to US18/489,161 priority Critical patent/US20240068439A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/002Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/14Rotors having adjustable blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to hydraulic and wind power equipment, especially a basic mechanism for converting fluid energy into mechanical energy.
  • the object of the present invention is achieved in this way: a basic mechanism for converting fluid energy into mechanical energy, the hub cap, cone cap seat, hub main shell and hub chassis are fixedly connected to form a complete hub, and the cross section of the hub is in the form of a ring
  • the conical cap seat is set on the upper end of the hub main shell, and the hub chassis is set on the lower end of the hub main shell.
  • the top surface of the conical cap seat is a conical surface inclined downward.
  • the way in the hub is fixed and assembled with the hub.
  • the lock motor is installed on the hub chassis, the stepping self-locking motor is erected and fixed, and its end face with the power output shaft is set up, and the gear is fixed on the power output shaft.
  • the inner built-in turbine shaft section then forms a through hole through its center.
  • the bottom of the annular body of the chainring is provided with a first ring gear and a second ring gear that both surround the built-in turbine shaft section.
  • the first ring gear surrounds the second ring gear along the circumferential direction.
  • the second ring gear is arranged around the built-in turbine shaft in the circumferential direction
  • the first ring gear is composed of external helical teeth which are continuously and evenly distributed around the second ring gear in the circumferential direction
  • the second ring gear is composed of
  • the shaft section of the turbine main shaft located in the hub is composed of continuous and evenly distributed inner spur teeth.
  • the gear plate and the protective cover can rotate around the built-in turbine shaft section together.
  • the blade indexing plate is arranged in a ring shape and is fixed on the inner peripheral surface of the main hub shell.
  • the blade index plate is evenly distributed along the circumferential direction and has a third shaft hole
  • the peripheral wall of the hub main shell is uniformly distributed along the circumferential direction and has a second shaft hole
  • a bearing is installed in the third shaft hole.
  • the third shaft hole is arranged radially through the blade index plate and the second shaft hole is passed through the hub main shell.
  • the bearing is sleeved on the shaft section located in the third shaft hole, and the inner end of the driving blade shaft is in the The inside of the hub protrudes from the inner peripheral surface of the blade indexing disc and its outer end protrudes out of the hub, and the driving blade shafts are evenly distributed along the circumferential direction in the manner of radially passing through the blade indexing disc through the third shaft hole.
  • the inner end is provided with a bevel gear, and the chainring is loaded on the inner end of the blade shaft through the first ring gear.
  • the outer helical teeth of the first ring gear mesh with the bevel gear, the inner straight teeth mesh with the gear, and the outer gear of the driving blade shaft.
  • the end is fixed with a blade seat, and all the blade seats are arranged evenly around the circumference of the hub and respectively fixed to the blades.
  • the center of the blade in its own width direction extends radially toward the blade hub.
  • the centerline of the blade is located at the vertical
  • the center in the radial direction of the hub extends along the length of the blade.
  • the blade is generally cylindrical in shape.
  • the annular steel belt runs through the circumferential direction of itself with the first shaft-through holes uniformly distributed around the hub.
  • the blade shaft extends from the blade One end protruding from the root end is fixed to the blade seat, and the other end protruding from the blade head end of the blade shaft passes through the ring-shaped steel belt through the first shaft-through hole and is assembled with the ring-shaped steel belt in a self-rotating manner.
  • the ring-shaped steel belt Correspondingly, the ring-shaped steel belt is passed through the blade shaft in a way around the blade and the hub.
  • the ring-shaped steel belt is fixed to the shaft section of the turbine main shaft protruding from the top of the cone cap seat through a cable.
  • the blade head is fixed with a blade baffle.
  • the baffle is perpendicular to the plane tangent to the bottom of the convex surface of the blade, and the blade The baffle is in seamless contact with the concave curved surface of the blade.
  • the purpose of the present invention is to provide a basic mechanism for converting fluid energy into mechanical energy, greatly improve the utilization efficiency of turbine fluid energy and fluid resource utilization, and make a substantial breakthrough in wind power and wind power generation technology and industry.
  • Fig. 1a is a schematic cross-sectional structure schematic diagram of the main body of the present invention.
  • Fig. 1b is a schematic top view sectional structure diagram of the main body of the present invention.
  • Fig. 1c is a schematic diagram of the cross-sectional structure of blade embodiment 1 of the present invention.
  • Fig. 1d is a schematic cross-sectional structure diagram of blade embodiment 2 of the present invention.
  • Fig. 2a1 is a schematic diagram of the cross-sectional space posture structure of two adjacent blades of the present invention when the relative horizontal plane is at an angle of 25°;
  • Fig. 2a2 is a schematic diagram of the spatial posture structure of two adjacent groups of blade baffles and their blades at an angle of 25° relative to the horizontal plane of the blades of the present invention
  • Fig. 2b1 is a schematic diagram of the cross-sectional space attitude structure of two adjacent blades of the present invention when the relative horizontal plane is at an angle of 30°;
  • Figure 2b2 is a schematic diagram of the cross-sectional spatial attitude structure of two adjacent straight blades at an angle of 30° relative to the horizontal plane (schematic diagram for research purposes);
  • Fig. 2c is a schematic diagram of the cross-sectional space posture structure of two adjacent blades of the present invention when the relative horizontal plane is at an angle of 60°;
  • Fig. 2d is a schematic diagram of the spatial posture structure of a single set of blade baffles and blades of the present invention when the blades form an included angle of 90° with respect to the horizontal plane.
  • a basic mechanism that converts fluid energy into mechanical energy is characterized in that: the hub cap 11, the cone cap seat 4, the hub main shell 3 and the hub chassis 2-1 are fixed and assembled into a complete
  • the cross section of the hub is circular
  • the conical cap seat 4 is arranged on the upper end of the hub main shell 3
  • the hub chassis 2-1 is arranged on the lower end of the wheel hub main shell 3
  • the top surface of the conical cap seat 4 is inclined downward.
  • the turbine main shaft 1 is fixed and fitted with the hub in such a way that it passes through the axial center of the hub bottom (hub chassis 2-1) vertically into the hub, and the bottom of the hub (hub chassis 2-1) runs through a first
  • the shaft hole 22 is equipped with a shaft sleeve 23 on the first shaft hole 22.
  • the shaft sleeve 23 passes through the hub chassis 2-1 through the first shaft hole 22 and is fixed to the hub chassis 2-1.
  • the shaft sleeve 23 is fixedly set on the turbine main shaft 1 Above, the turbine main shaft 1 passes through the hub chassis 2-1 through the shaft sleeve 23 and the first shaft hole 22, and is fixed to the hub chassis 2-1 through the shaft sleeve 23 and the first shaft hole 22, and a blade indexing plate is installed in the hub 5.
  • Gear disc presser 6-1, rolling wheel 6-2, bevel gear 7-2, gear disc 8, gear 9, bearing 18 and stepping self-locking motor 10 stepping self-locking motor 10 is installed on the hub chassis 2-1, the stepping self-locking motor 10 is erected and fixed with the end face of the power output shaft 10a facing upwards, and the gear 9 is fixedly set on the power output shaft 10a, and the toothed disc 8 is generally ring-shaped and surrounds the turbine main shaft 1.
  • the built-in turbine shaft section located in the hub then forms a through hole 25 through its center.
  • the bottom of the annular body of the chainring 8 is provided with a first ring gear and a second ring gear both surrounding the built-in turbine shaft section.
  • the first ring gear Set around the second ring gear in the circumferential direction the second ring gear is set around the built-in turbine shaft section in the circumferential direction
  • the first ring gear is composed of external helical teeth 8a that are continuously and evenly distributed around the second ring gear in the circumferential direction
  • the ring is composed of straight inner teeth 8b which are continuously and evenly distributed around the shaft section of the turbine main shaft 1 located in the hub in the circumferential direction.
  • a circular protective cover 19 is installed in the hub.
  • the center of the protective cover 19 runs through a second Two through shaft holes 24, the built-in turbine shaft section is installed in a manner that passes through the protective cover plate 19 through the second through shaft hole 24, and the inner peripheral surface of the second through shaft hole 24 cooperates with the radial clearance of the built-in turbine shaft section to protect
  • the outer peripheral surface of the outermost edge of the cover plate 19 and the inner peripheral surface of the through hole 25 are seamlessly spliced and fixed, the toothed plate 8 and the protective cover plate 19 can jointly rotate around the shaft section of the built-in turbine, and the blade index plate 5 is arranged in a ring shape And fixed on the inner peripheral surface of the hub main shell, the blade indexing plate 5 is uniformly distributed along the circumferential direction and provided with a third shaft hole 7-3, and the peripheral wall of the hub main shell 3 is uniformly distributed along the circumferential direction and provided with a second shaft hole 20.
  • Bearings 18 are installed in the third shaft hole 7-3, and the active blade shaft 7-1 uniformly distributed along the circumferential direction passes through the blade indexing plate 5 in the radial direction through the third shaft hole 7-3 and passes through the second shaft hole 20.
  • the hub main shell 3 is set, the bearing 18 is sleeved on the shaft section located in the third shaft hole 7-3, the inner end of the driving blade shaft 7-1 protrudes from the inner peripheral surface of the blade indexing disc 5 in the hub and Its outer end protrudes outside the hub, and the driving blade shaft 7-1 passes through the blade radially through the third shaft hole 7-3 accordingly.
  • the form of the indexing disc 5 is evenly distributed along the circumferential direction, and the inner end of the driving blade shaft 7-1 is provided with a bevel gear 7-2, and the toothed disc 8 is loaded on the inner end of the blade shaft 7-1 through the first ring gear.
  • the outer helical teeth 8a of the ring gear mesh with the bevel gear 7-2, the inner straight teeth 8b mesh with the gear 9, and the outer end of the driving blade shaft 7-1 is fixedly connected with blade seats 12.
  • the blades 13 are arranged and fixed respectively, and the blade bases 12 are provided with installation holes, and the threaded fasteners 21 are fastened on the installation holes by threads, and the installation holes and the threaded fasteners 21 that are fastened together fix the blades 13.
  • the center of the blade 13 in its own width direction and generally extends radially toward the hub of the blade 13, and the centerline of the blade 13 is located at the center of the blade 13 in a direction perpendicular to the radial direction of the hub and along the The length of the blade 13 extends, and the blade 13 is generally cylindrical.
  • the blade 13 is composed of a solid blade 13-1 or a hollow blade 13-2.
  • the orthographic projection of the solid blade 13-1 on the radial direction of its cylinder is Isosceles trapezoidal, the inner concave curved surface 13-1a and the outer convex curved surface 12-1b of the solid core blade 13-1 are cylindrical, the cross section of the solid core blade 13-1 is correspondingly in the shape of an arc segment, and the inner concave curved surface 13
  • the circle where -1a is located coincides with the geometric center of the circle where the convex curved surface 12-1b is located, the radius of the circle where the concave curved surface 13-1a is located is correspondingly smaller than the radius of the circle where the convex curved surface 12-1b is located, and the cross-sectional thickness of the solid core blade 13-1 is equal everywhere
  • the hollow blade 13-2 is composed of an inner concave curved blade 13-2a and an outer convex curved blade 13-2b, and the orthographic projection of the inner concave curved blade 13-2a and the outer convex curved blade 13-2b on
  • the radius of the circle where the concave curved surface blade 13-2a and the convex curved surface blade 13-2b are located is not equal and the geometric centers are staggered along the axis of the cylinder where the blade 13 is located, the symmetrical equal-length edges of the concave curved surface blade 13-2a and The symmetrical isosceles edges of the blades with convex curved surface 13-2b are fitted and fixed to each other, so that a gap is formed between the blades with concave curved surface 13-2a and the blade with convex curved surface 13-2b and runs through the blade 13 along the length direction of the hollow core blade 13-2.
  • the through-type gap 13-2c the cross-section of the through-type gap 13-2c is crescent-shaped, the thickness of the cross-section of the through-type gap 13-2c decreases symmetrically and continuously in the direction away from its center line, and the blade 13 is in the cylinder where it is located.
  • the orthographic projection in the radial direction is an isosceles trapezoid, and its width in the direction perpendicular to the radial direction of the hub increases continuously from the root end of the blade 13 to the head end (from narrow to wide), and the blade axis 16-2
  • the center of the through-type gap 13-2c extends along the length direction of the blade 13. Through the through-type gap 13-2c, it passes through the blade 13 and fits together with the blade 13.
  • first shaft holes 16-3 one end of the blade shaft 16-2 protruding from the root end of the blade 13 is fixedly connected to the blade seat 12, and the other end of the blade shaft 16-2 protruding from the head end of the blade 13 passes through the first
  • the shaft-through hole 16-3 passes through the annular steel belt 16-1 and is assembled with the annular steel belt 16-1 in a self-rotating manner, and the annular steel belt 16-1 passes through the blade shaft 16 in a manner surrounding the blade 13 and the hub.
  • the annular steel belt 16-1 is fixedly connected to the shaft section of the turbine main shaft 1 protruding from the top of the cone cap seat through the cable 14, and the head end of the blade 13 is fixedly equipped with a blade baffle plate 15,
  • the blade baffle 15 is perpendicular to the plane tangent to the bottom of the convex curved surface of the blade 13 , and the blade baffle 15 is in seamless contact with the concave curved surface of the blade 13 .
  • Turbine structure of the present invention design concept and basis
  • the novel turbine of the present invention adopts the axial flow of the steam turbine with thin slice blades. No matter in the wind power, artesian hydraulic power or dam-building hydropower station, the fluid directly hits the turbine plane, and there is no pre-guiding part, which is conducive to the fluid being fully intercepted. , which is composed of a group of specially shaped leaves.
  • the hub can be made larger, and the wind force and hydraulic power shared by the hub surface will be split into the blade area through the pointed cap in front of the hub, which will increase the turbine speed. shaft torque.
  • the blade 13 Due to the large diameter of the hub of the present invention, the blade 13 can be installed without twisting, but its cross section will be made into a "crescent" curved shape (cylindrical shape as a whole), as shown in Figure 1c and Figure 1d, the cross section is " The arrangement and angular position of the crescent-shaped blades 13 on the turbine disk are shown in Figures 2a, 2b, 2c, and 2d.
  • the angular position line is a tangent line with the midpoint "O" of the "crescent" arc as the tangent point.
  • the angle between the line OO' and the midpoint of the turbine blade is named, which has the following considerations: 1.
  • the blade is placed according to Figure 2a1, 2a2, 2b1, 2c and the included angle with the turbine rotating surface is between 25° to 90° Any angular position between them, as shown in Figure 2a, Figure 2b, and Figure 2c, the impact force of the fluid on the concave surface of the blade 13 is always greater than the impact force on the convex surface of the blade 13, or the fluid is always directed at the concave surface of the blade 13 Forward, and after the fluid enters the channel between two adjacent curved blades 13, it exerts pressure on the concave surface of the blade 13 throughout the whole process.
  • the inertia of water is used here.
  • the inertia of water is used here.
  • the pressure is gradually increased, the pressure
  • the static inertia of the rubber hose is exceeded, the curved rubber hose will start to straighten.
  • the pressure increases to a certain value, not only the curved part will straighten, but also the water pipe will flow in the opposite direction of the jet due to the jet force of the water outlet.
  • the included angle is 30°
  • point O is the blade
  • the center of rotation of 13 that is, the blade shaft 16-2 in Fig. 1a
  • the distance OO' between the two blades is 1.075 half of the blade YM.
  • XZ is the edge of the blade after the wind bundle enters the blade channel Line
  • the landing point is Z
  • ZM is the overlapping part of the two blades 13
  • neither the steam turbine nor the Baihetan water turbine has this overlapping part
  • XY is the air inlet line of the blade 13 channel, so there is a ⁇ XYZ, in Fig.
  • the arrows above XY represent wind streamlines (that is, wind energy momentum).
  • the width of the blade 13ZM is 0.4 of the width of the entire blade YM, which is the overlapping part, while in Figure 2b1
  • the channel behind the "crescent" curved blade 13XZ is still shrinking, and the air channel section at the air outlet is only about a quarter of the original inlet section, which makes the wind speed inevitably increase, and the accelerated wind will also affect the curved blade ZM Partially pushing and shoving, this is the aforementioned "fluid with a certain flow rate and flow has the inertia to move forward in a straight line", and the fluid is accelerated and discharged in the continuously shrinking channel, so there is a reverse thrust acting on the MZ can increase the thrust "F" in the circumferential direction of the turbine, and in Figure 2b2, the ZM superposition section of the straight blade is meaningless, so the water energy utilization rate of the "crescent" curved blade 13 is naturally high.
  • the utilization rate is estimated to be 0.7-0.8. This estimate is based on the above step-by-step deduction, which cannot be achieved by a turbine composed of straight blades.
  • a turbine composed of "crescent" curved blades 13 the smaller the angle between the blades 13 and the rotating surface of the turbine, the faster the accelerated fluid discharge speed will be, and the greater the reverse thrust will be, which is conducive to the improvement of fluid energy utilization.
  • the included angle is so small that the fluid circulation is not smooth, it will become resistance, and the fluid pressure will be directly added to the turbine disk. There is an optimal angle here, which will be determined by blowing experiments.
  • the blades 13 with different curvatures are the most suitable
  • the wind turbine is a model with a large diameter and very thin blades.
  • the arc design is conducive to the rigidity of the blades 13.
  • Large-scale turbines can add ribs in the middle of the blade along the length direction-blade shaft and several tendons (veins) . Heating wires can be added on the veins, such as electric blankets to prevent freezing in winter.
  • the wind turbine is large in size and rotates non-directionally, so there cannot be a casing.
  • a vertical blade 13 blade baffle 15 is specially made at the outer end of the blade 13, as shown in Figure 2a2. When the included angle is 25°, the two blades In the case of intersection, the blade baffle 15 has the effect of enhancing the rigidity of the blade.
  • the width of the blade baffle 15 is half of the chord length of the graduation circle here, which is called a half baffle. As shown in Figure 2d, in the middle of the blade baffle 15 Open arc-shaped perforation 17, and arc-shaped perforation 17 is to set up for the drag cable 14 that connects turbine main shaft 1 and the annular steel ring 16-1 outside blade 13 respectively, and drag cable 14 connects annular steel ring 16-1, can resist wind. tension.
  • the outer end of the blade shaft 16-2 is inserted in the preset hole (shaft hole) provided by the annular steel ring 16-1 (rotatable), like this, the blade 13, the annular steel ring 16-1, and the drag cable 14 are Constructing a mutually restrictive whole, the stay cable 14 is connected to the annular steel ring 16-1 through the arc-shaped perforation 17, and when the blade 13 rotates, the arc-shaped perforation 17 provides a movable space for the stay cable 14. As shown in Figure 2a2, when the included angle changes to 25°, the baffle has actually blocked the entire periphery of the blade, which is in line with "the lower the wind speed, the less the wind will be lost".
  • the wind energy on the area shared by the larger hub will be provided by the pointed windshield (hub cap 11) in front of the hub. Guide vane area, which will instead increase the wind energy density in the blade area and increase the rotational moment.
  • the included angle of the blade 13 The bigger it is, the closer the landing point Z of the edge line XZ of the wind bundle is to the end of the front blade. If the included angle exceeds 60°, the Z point of the XZ line as shown in Figure 2c will disappear, the wind will fall into the air, and the utilization rate of the wind will decrease. very low.
  • the included angle 85°-90°, as shown in Figure 2d, it is the state that the wind is cut out, the wind has no effect on the blades, and the turbine stops.
  • the diameter of the air outlet at point M is related to the curvature of the blade.
  • the blade 13 (large turbine blade )
  • the circle where the bottom of the blade is located is the blade indexing plate 5 in Figure 1a, which refers to the size of the outer circle of the hub. This depends on the power of the wind turbine. After the power is determined, it is divided into each blade. How much power does the blade have? As shown in Figure 1a, in the power of the blade, it is first necessary to estimate the shaft diameter and shaft length of the active blade shaft 7-1 at the bottom of the blade under the maximum load strength, and then arrange these gear shafts along the circumferential direction ( bearing 18), the blade root circle (the circle where the blade bottom is located) is easily determined.
  • the blade root circle and the number of divisions also determine the thickness of the blade seat 12, and the thickness of the blade seat 12 is related to The peripheral dimensions of the hub are related.
  • the blade 13 of the blade seat 12 changes to the minimum angular position of 25°, the adjacent surfaces of the adjacent blade seats shall not collide.
  • the included angle of the blade 13 is At 30°, the outlet of the blade 13 is already less than 20°, and in Fig. 2a1, when the blade is at an angle of 25°, the outlet of the blade 13 channel is not closed, and there is still room.
  • the turbine main shaft 1 can also be used as an external power inlet, relying on the hub chassis 2, supported by the hub shell 3, and equipped with a blade indexing plate 5 (acting as an inertia wheel), the blades are divided Bevel gears 7-2 are evenly distributed around the circumference of the dial 5, and an annular toothed disc 8 with external helical teeth 8a and internal straight teeth 8b is arranged on the outside of a group of bevel gears 7-2.
  • the toothed disc 8 and the bevel gear 7-2 are stable Engagement, based on the blade indexing disc 5, set several tooth disc pressers 6 (press irons) with rollers, and the power output shaft protruding from the top of the controlled stepping self-locking motor 10 is equipped with a gear 9, step Enter self-locking motor 10 rotating blade 13 and promptly change angle.
  • the blade 13 should remain in the 85°-90° cut-out state. As shown in Figure 2d, not working does not mean that there is no wind. As long as there is wind, the wind signal collector will send the signal to the microelectronic controller.
  • the electric controller sends an electric signal command to the stepping self-locking motor 10 to control the stepping self-locking motor 10 to finally drive the blade 13 to change the angle, and the motor turns the blade from 90° to an angle suitable for starting the generator to start working.
  • the micro-electronic controller will instruct the motor to stop, but it cannot stop immediately due to the inertia of the wind wheel.
  • the electromagnetic mechanical brake disc 2-2 is added for turbine braking.
  • the gap T shown in Fig. 2d is the active area of the blade edge during wind reverse braking, and the point L of the cross-section of the cable 14 passing through the arc-shaped perforation 17 of the half baffle is related to the gap T.
  • the steam turbine wind and water turbine is a small, light-weight self-flow energy conversion device. It is estimated that the conversion rate can reach 0.7-0.8, and only 0.6 is used in the following example. In terms of wind energy in nature, the low wind speed area is the most widely distributed and lasts longer.
  • the cut-in wind speed is generally 3-5m/s. If the present invention is adopted, the cut-in wind speed can be advanced to 2-3m /s, the rated wind speed that the three-leaf fan can receive is about 11.4-13.5m/s, and it is also useful for 14-16m/s. The duration is considerable.
  • the wind turbine After passing this range, the wind turbine will adjust the angle and abandon the wind, reducing the utilization rate. Before this range, the wind power of 9-11m/s cannot meet the rated requirements of the generator. If the wind turbine of the present invention is adopted, the rated wind speed can be advanced to 9-11m/s, and the generator can reach the rated output, but after 11m/s, the wind energy is surplus again, and the wind still has to be abandoned, so as to improve the utilization of wind energy rate is meaningless. According to the data, there is a solution to this problem by using double windings, but the weight of the unit has increased, and the power has not been increased a lot. Therefore, another generator should be introduced to absorb the wind energy from high wind speed.
  • variable speed and generator placed at high altitude should be placed under the tower-on the ground, and only the wind turbine, brakes, triangular transmission and rudder are kept on the top, and the center of gravity is moved down. It is feasible to arrange double hair later. This is also convenient for low-level installation, management and maintenance, and the tower is much lighter.
  • the present invention relies on the vertical impact of the fluid on the plane of the turbine, without any pre-installation, such as a volute, a guide groove, and a guide vane, before the turbine.
  • the planar turbine composed of "crescent" curved blades and the tapered and overlapping rear channels formed by steplessly variable angles are the key to efficiently intercepting fluid energy, entering the curved and tapered channels
  • the fluid will exert pressure on the concave surface of the blade in the whole process, which is in line with the principle of "flowing water rushing against the curved bank”.
  • the tapered channel of the planar turbine formed by the "crescent" curved blades will accelerate the discharge of the fluid, and the resulting tail spray effect can increase the rotational force of the turbine and improve energy efficiency.
  • the "crescent" curved blades are only suitable for single-stage turbines.
  • the densely placed “crescent” curved blades and the stepless variable angle wind energy collection have a high interception rate, and the double generators can be used to move the center of gravity of the wind turbine down, which is easy to install on the roof of the city, and the city's electricity can be obtained locally.
  • the invention utilizes a wide-angle variable angle to make the blades reverse moderately, and utilizes wind force reverse braking and mechanical electromagnetic brake to lock the turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Wind Motors (AREA)

Abstract

一种流体能转换为机械能的基础机构,在轮毂内安设有叶片分度盘(5)、齿盘压具(6-1)、滚压轮(6-2)、锥齿轮(7-2)、齿盘(8)、齿轮(9)、轴承(18)和步进自锁电机(10),叶片(13)总体呈圆柱面状,环形钢带(16-1)沿自身周向贯穿开设有围绕轮毂环向均布的第一穿轴孔(16-3),叶片轴(16-2)从叶片(13)根端伸出的一端固接叶片座(12),叶片轴(16-2)从叶片(13)头端伸出的另一端经第一穿轴孔(16-3)穿过环形钢带(16-1)并以自转的方式与环形钢带(16-1)配装在一起,环形钢带(16-1)相应以环绕叶片(13)和轮毂的方式通过叶片轴(16-2)穿接环形钢带(16-1),环形钢带(16-1)通过拉索(14)固接涡轮主轴(1)从锥帽座(4)顶部伸出的轴段上,叶片(13)头端固装有叶片挡板(15),叶片挡板(15)垂直于与叶片(13)外凸曲面(12-1b)最底部相切的平面,叶片挡板(15),与叶片(13)内凹曲面(13-1a)无缝接触配合。该机构能够提高涡轮流体能的使用效率和流体资源利用率。

Description

将流体能转换为机械能的基础机构 技术领域
本发明涉及水力风力装备,特别是将流体能转换为机械能的基础机构。
背景技术
把风能水能转化为机械能的设备多种多样,转化都是以风力水力推动对涡轮旋转面有一定安装角的叶片而产生的。也就是风和流动的水直接推动叶片产生旋转动力。唯有三叶风机是二次转化,即先靠风吹让叶片转起来,再靠叶片转动的速度产生一个大于风速并切割风使机翼型叶片产生升力,从而形成涡轮周向推力,所以三叶风机很在意叶尖速与风速之比“λ”值。然而,在三叶风力机风能利用效率上专家贝兹给出了一个极限风能利用系数CP(β、λ)值是0.593,从现有三叶风机的风能利用率实际看,在最好的情况下都没有超过0.474。大多都在0.42以下,要达到0.5都难,更别说0.593。这关键应是涡轮总体的设计运行理念,叶片参数的选择上,虽然追求大扫风面、长叶片(长力臂),但叶片间的空档的风能都逃逸了,从长期的动力转换机械的转换效率上证实,汽轮机燃气轮机的整个设计制造运行都是十分成功和可靠的。这些涡轮都是在高温高压(气流速度极快)的环境中运行的,都是密集的叶片满布涡轮盘面,谨防流体逸漏,高能流体都是在直冲涡轮平面没有额外阻挡,所以流体能截获效率很高,观察白鹤滩新型水涡轮,确实也是密置叶片涡轮,但没有选择轴流,水是以斜角式切入平涡轮,是古往今来传统造纸、水磨、水碾等水轮机给水方式的延伸和改进,并没有用现代数学、物理学概念进行升格,而且是带有阻挡型前置设施的,这是值得探讨的。同时叶片采用类船型推进器叶片,从形状上看,加工并不简单。
技术问题
(略)
技术解决方案
本发明的目的是这样实现的:一种将流体能转换为机械能的基础机构,轮毂帽、锥帽座、轮毂主壳体和轮毂底盘固定装接成完整的轮毂,轮毂的横截面呈圆环形,锥帽座设置在轮毂主壳体上端,轮毂底盘设置在轮毂主壳体下端,锥帽座顶面为向下倾斜的圆锥面,涡轮主轴以竖直从轮毂底盘轴向中心部位穿至轮毂内的方式与轮毂相互固定配装,在轮毂内安设有叶片分度盘、齿盘压具、滚压轮、锥齿轮、齿盘、齿轮、轴承和步进自锁电机,步进自锁电机安装在轮毂底盘上,步进自锁电机竖立固定且其具有动力输出轴的端面朝上设置,在动力输出轴上固定套装有齿轮,齿盘总体呈环形的状态环绕涡轮主轴位于轮毂内的内置涡轮轴段继而形成贯穿其中心的通孔,齿盘的环状体底部设置有均环绕内置涡轮轴段的第一齿圈和第二齿圈,第一齿圈沿周向环绕第二齿圈设置,第二齿圈沿周向环绕内置涡轮轴段设置,第一齿圈由沿周向环绕第二齿圈连续均布的外斜齿构成,第二齿圈由沿周向环绕涡轮主轴位于轮毂内的轴段连续均布的内直齿构成,齿盘与防护盖板能共同围绕内置涡轮轴段自转,叶片分度盘呈环状设置且固装在轮毂主壳体内周面上,叶片分度盘沿周向均布贯穿开设有第三轴孔,轮毂主壳体周壁沿周向均布贯穿开设有第二轴孔,在第三轴孔内安装有轴承,沿周向均布的主动叶片轴经第三轴孔沿径向穿过叶片分度盘设置且经第二轴孔穿过轮毂主壳体设置,轴承套装在位于第三轴孔内的轴段上,主动叶片轴的内端在轮毂内从叶片分度盘内周面伸出且其外端伸出至轮毂之外,主动叶片轴相应以经第三轴孔径向穿过叶片分度盘的方式沿周向均布,主动叶片轴的内端设置有锥齿轮,齿盘通过第一齿圈装载在叶片轴的内端上,第一齿圈的外斜齿与锥齿轮相互啮合,内直齿与齿轮相互啮合,主动叶片轴的外端固接有叶片座,所有叶片座以围绕轮毂周向均布设置且分别固接叶片,叶片在其自身宽度方向上的中心且总体朝叶片轮毂的径向延伸,叶片的中心线位于叶片在垂直于轮毂径向的方向上的中心并沿着叶片的长度延伸,叶片总体呈圆柱面状,环形钢带沿自身周向贯穿开设有围绕轮毂环向均布的第一穿轴孔,叶片轴从叶片根端伸出的一端固接叶片座,叶片轴从叶片头端伸出的另一端经第一穿轴孔穿过环形钢带并以自转的方式与环形钢带配装在一起,环形钢带相应以环绕叶片和轮毂的方式通过叶片轴穿接环形钢带,环形钢带通过拉索固接涡轮主轴从锥帽座顶部伸出的轴段上,叶片头端固装有叶片挡板,叶片挡板垂直于与叶片外凸曲面最底部相切的平面,叶片挡板与叶片内凹曲面无缝接触配合。
有益效果
本发明的目的在于提供一种将流体能转换为机械能的基础机构,大幅度提高涡轮流体能的使用效率和流体资源利用率,使风力、风力发电技术和产业有实质性的重大突破。
附图说明
下面将结合附图对本发明作进一步说明。
图1a为本发明主体主视剖视结构示意图;
图1b为本发明主体俯视剖视结构示意图;
图1c为本发明叶片实施例1横截面结构示意图;
图1d为本发明叶片实施例2横截面结构示意图;
图2a1为本发明相邻两个叶片在相对水平面呈25°夹角时的横截面空间姿态结构示意图;
图2a2为本发明相邻两组叶片挡板及其叶片在叶片相对水平面呈25°夹角时的空间姿态结构示意图;
图2b1为本发明相邻两个叶片在相对水平面呈30°夹角时的横截面空间姿态结构示意图;
图2b2为相邻两个平直叶片在相对水平面呈30°夹角时的横截面空间姿态结构示意图(研究用原理示意图);
图2c为本发明相邻两个叶片在相对水平面呈60°夹角时的横截面空间姿态结构示意图;
图2d为本发明单组叶片挡板及其叶片在叶片相对水平面呈90°夹角时的空间姿态结构示意图。
本发明的最佳实施方式
(略)
本发明的实施方式
一种将流体能转换为机械能的基础机构,如图1a-图2d所示,其特征在于:轮毂帽11、锥帽座4、轮毂主壳体3和轮毂底盘2-1固定装接成完整的轮毂,轮毂的横截面呈圆环形,锥帽座4设置在轮毂主壳体3上端,轮毂底盘2-1设置在轮毂主壳体3下端,锥帽座4顶面为向下倾斜的圆锥面,涡轮主轴1以竖直从轮毂底部(轮毂底盘2-1)轴向中心部位穿至轮毂内的方式与轮毂相互固定配装,轮毂底部(轮毂底盘2-1)贯穿开设有第一轴孔22,在第一轴孔22上安装有轴套23,轴套23经第一轴孔22穿过轮毂底盘2-1与轮毂底盘2-1固定,轴套23固定套装在涡轮主轴1上,涡轮主轴1经轴套23和第一轴孔22穿过轮毂底盘2-1通过轴套23和第一轴孔22固接轮毂底盘2-1,在轮毂内安设有叶片分度盘5、齿盘压具6-1、滚压轮6-2、锥齿轮7-2、齿盘8、齿轮9、轴承18和步进自锁电机10,步进自锁电机10安装在轮毂底盘2-1上,步进自锁电机10竖立固定且其具有动力输出轴10a的端面朝上设置,在动力输出轴10a上固定套装有齿轮9,齿盘8总体呈环形的状态环绕涡轮主轴1位于轮毂内的内置涡轮轴段继而形成贯穿其中心的通孔25,齿盘8的环状体底部设置有均环绕内置涡轮轴段的第一齿圈和第二齿圈,第一齿圈沿周向环绕第二齿圈设置,第二齿圈沿周向环绕内置涡轮轴段设置,第一齿圈由沿周向环绕第二齿圈连续均布的外斜齿8a构成,第二齿圈由沿周向环绕涡轮主轴1位于轮毂内的轴段连续均布的内直齿8b构成,在轮毂内配装有呈圆形的防护盖板19,防护盖板19中心处贯穿开设有第二穿轴孔24,内置涡轮轴段以经第二穿轴孔24穿过防护盖板19的方式安设,第二穿轴孔24的内周面与内置涡轮轴段径向间隙配合,防护盖板19其最外边缘的外周面与通孔25的内周面相互无缝拼接固定,齿盘8与防护盖板19能共同围绕内置涡轮轴段自转,叶片分度盘5呈环状设置且固装在轮毂主壳体内周面上,叶片分度盘5沿周向均布贯穿开设有第三轴孔7-3,轮毂主壳体3周壁沿周向均布贯穿开设有第二轴孔20,在第三轴孔7-3内安装有轴承18,沿周向均布的主动叶片轴7-1经第三轴孔7-3沿径向穿过叶片分度盘5设置且经第二轴孔20穿过轮毂主壳体3设置,轴承18套装在位于第三轴孔7-3内的轴段上,主动叶片轴7-1的内端在轮毂内从叶片分度盘5内周面伸出且其外端伸出至轮毂之外,主动叶片轴7-1相应以经第三轴孔7-3径向穿过叶片分度盘5的方式沿周向均布,主动叶片轴7-1的内端设置有锥齿轮7-2,齿盘8通过第一齿圈装载在叶片轴7-1的内端上,第一齿圈的外斜齿8a与锥齿轮7-2相互啮合,内直齿8b与齿轮9相互啮合,主动叶片轴7-1的外端固接有叶片座12,所有叶片座12以围绕轮毂周向均布设置且分别固接叶片13,叶片座12均开设有安装孔,螺纹紧固件21通过螺纹紧固在安装孔上,相互紧固在一起的安装孔和螺纹紧固件21将叶片13固装在叶片座12上,叶片13在其自身宽度方向上的中心且总体朝叶片13轮毂的径向延伸,叶片13的中心线位于叶片13在垂直于轮毂径向的方向上的中心并沿着叶片13的长度延伸,叶片13总体呈圆柱面状,叶片13由实芯叶片13-1或空芯叶片13-2构成,实芯叶片13-1在其所在圆柱体径向上的正投影均呈等腰梯形,实芯叶片13-1的内凹曲面13-1a和外凸曲面12-1b均呈圆柱面状,实芯叶片13-1的横截面相应呈圆弧线段状,内凹曲面13-1a所在圆与外凸曲面12-1b所在圆几何中心重合,内凹曲面13-1a所在圆半径相应小于外凸曲面12-1b所在圆半径,实芯叶片13-1的横截面厚度处处相等,空芯叶片13-2由内凹曲面叶片13-2a和外凸曲面叶片13-2b构成,内凹曲面叶片13-2a和外凸曲面叶片13-2b在其所在圆柱体径向上的正投影均呈等腰梯形,凹曲面叶片13-2a和外凸曲面叶片13-2b均呈圆柱面状,内凹曲面叶片13-2a和外凸曲面叶片13-2b各自的横截面也均相应呈圆弧线段状,内凹曲面叶片13-2a和外凸曲面叶片13-2b所在圆半径不相等且几何中心沿叶片13所在圆柱体轴相互错开,内凹曲面叶片13-2a的对称等长边沿和外凸曲面叶片13-2b的对称等腰边沿相互贴合固接,以至内凹曲面叶片13-2a和外凸曲面叶片13-2b之间形成沿空芯叶片13-2长度方向贯穿叶片13的贯穿式空隙13-2c,贯穿式空隙13-2c横截面呈月牙形,贯穿式空隙13-2c横截面的厚度朝着离开其中心线的方向相应对称连续变小,叶片13在其所在圆柱体径向上的正投影呈等腰梯形且其垂直于轮毂径向的方向上的宽度朝着离开轮毂的方向从叶片13根端至头端连续变大(由窄变宽),叶片轴16-2在贯穿式空隙13-2c的中心沿叶片13长度方向延伸,经贯穿式空隙13-2c穿过叶片13与叶片13配装在一起,环形钢带16-1沿自身周向贯穿开设有围绕轮毂环向均布的第一穿轴孔16-3,叶片轴16-2从叶片13根端伸出的一端固接叶片座12,叶片轴16-2从叶片13头端伸出的另一端经第一穿轴孔16-3穿过环形钢带16-1并以自转的方式与环形钢带16-1配装在一起,环形钢带16-1相应以环绕叶片13和轮毂的方式通过叶片轴16-2穿接环形钢带16-1,环形钢带16-1通过拉索14固接涡轮主轴1从锥帽座顶部伸出的轴段上,叶片13头端固装有叶片挡板15,叶片挡板15垂直于与叶片13外凸曲面最底部相切的平面,叶片挡板15与叶片13内凹曲面无缝接触配合。
本发明涡轮结构,设计理念及依据
本发明新型涡轮采用汽轮机轴流密置薄片型叶片,不管在风力,自流水力和筑坝型水电站中,都是流体直击涡轮平面,没有前置导流部,这有利于流体能被充分截取,它是由一组特殊造型的叶片构成。
在风力机、自流水力机中,为应对不稳定的风和自流水,涡轮轮毂内设有精细的大角位无级变角系统,涡轮结构如图1(图1a、图1b、图1c、图1d)、图2(图2a1、图2a2、图2c、图2d)所示。
在风力机、自流水力机设计中,由于本发明有众多叶片的变角系统,可以把轮毂做大一些,轮毂面所摊的风力、水力通过毂前尖顶帽劈向叶片区反倒会增加涡轮轴的扭矩。由于本发明轮毂直径较大,叶片13无须扭曲就可装下,但其横截面要做成“月牙”弯型(总体呈圆柱面状),如图1c、图1d所示,横截面呈“月牙”弯型的叶片13在涡轮盘上的布置及角位变化如图2a、2b、2c、2d所示,这个角位线是以“月牙”弧的中点“O”为切点的切线与涡轮叶片中点间连线OO′夹角命名的,这有如下几点考虑:1、设叶片按图2a1、2a2、2b1、2c摆出与涡轮旋转面夹角在25°到90°之间的任何角位,如图2a、图2b、图2c运行时,流体对叶片13凹面的冲击力总是大于对叶片13凸面的冲击力,或者说流体总是以冲着叶片13凹面的方式前行的,而且流体进入相邻两弯曲的叶片13之间的通道后,是全程对叶片13的凹面施压,其原因是:具有一定流量、流速的流体有自取直线通行的惯量所致。为了方便理解流体惯量现象,这里就拿水的惯量说事。在日常宏观现象中,如在一段薄壁弯曲的断头胶管中有水流过,当胶管中水压很低时,水静静地流着,弯管没有反应,当逐渐加大水压,压力超过胶管静惯性时,弯曲的胶管就开始变直,当压力再加大到某一数值时,不单是弯曲的部分要变直,而且还会因出水口的喷射力使水管向射水的反向倒退(尾喷效应);在另一则实践中,如河流中水流对弯曲的河岸的冲击行为,在一段比较平直的河床中,流着一定流速、流量的水,假设这水流是由无数个相互平行的水流线组成,当这些水流线突然碰到与流水有一定抵角的岸边,这些水流线先是按原来所处位置先后触岸,先触岸的水流线把部分能量传到岸上后再反射向前行进(由于水流是连续性的后浪推前浪),同时各流线都会前行,并受到已触岸又反射前行的流线的冲击干扰,它们会相互冲撞,换位、交混成了纹流。如果前边的河岸逐渐变直和平缓了,这些变成纹流的水流线会重新整合为新的顺流带着剩余的能量,基本无阻挡地向下游流去,但如果前边的河岸还是弯曲的。上述的“流体行为”还会不断上演,水流能就不断地传到弯曲的岸上,这种现象在所有的弯曲的河床中冲刷的流沙走向和沙丘堆积的形状或者在现场都十分清晰地被观察到,一些有一定弯曲度河流的沙土岸在不筑坝的情况下一再向下游溃崩的原因正是如此。“水流冲曲岸”是一个极其复杂的流体动力行为的力学过程—即流体动能损耗—传递原理,也是一个常见的现象。这正是本发明要利用的地方。“月牙”弯型叶片的理论支撑点就在这里。2、汽轮机中由于整个涡轮盘面小,叶片小且多,靠一级涡轮叶片截获高压蒸汽能有限,只能靠多级完成,而风力机、自流水力机涡轮不可能也没有必要做成多级,就只能在叶片上做文章。进一步以新型涡轮及相关配套安排,立足建立一个能最大限度地截获流体能的系统工程新模型。
新型涡轮设计思考点及运行解读
1、由于叶片13的“月牙”型曲面设计,在叶片13摆角小于90°的任何角位,如图2a所示的涡轮旋转面与叶片的夹角25°中,叶片通道总是处在渐缩的收敛形,两叶片13合看似乎是一个弯曲的牛角,由于风(空气)有巨大的可压缩性,当风进入弯曲且渐缩的通道时,会受到挤压必然会增强对叶片13凹面的冲击力,用图2b1和图2b2解析风力冲击两种叶片的过程相信能说明问题,在图2b2中,我们采用平直叶片进行分析,这里,夹角为30°,O点为叶片13的旋转轴心,也就是图1a中的叶片轴16-2,两叶片的间距OO′是叶片YM一半的1.075,从图2b2中看,XZ为风束进入叶片通道靠后一叶片的边缘线,落点为Z,ZM为两叶片13的交叠部分,汽轮机涡轮和白鹤滩水涡轮都没有这个交叠部分,XY为叶片13通道的风入口线,这样就有一个△XYZ,在图2b2中,XY上边各箭头代表风流线(就是风能动量)。当各流线越过XY线进入XYZ三角区域后,会受到叶片13YM的阻挡,它们会相互挤压、碰撞、交混、换位并完成部分能量的传递,使叶片YM产生一个对涡轮的周向推力“F”后带着剩余能量重新(大致)整合为顺流通过XZ线进入后通道,风束过了XZ线就无阻挡地排出了,而汽轮机涡轮和白鹤滩水涡轮都没有这个后通道。这时,叶片13通道已被压缩到原迎风面约二分之一,因为叶片都是平直的,这时风力对叶片13ZM部分再也没有传递力的作用了,而是顺着叶片13通道直接溜走,溜走的风能量约占入口处风能量的百分之四十左右,这就是平直叶片的不足之处,如果是“月牙”弯型叶片情况就不一样了。在图2b1中,XYZ△区域与图2b2的△区域类似,都承担着同样的能量传递作用,图2b2中,叶片13ZM的宽度是整个叶片YM宽度的0.4,就是那个交叠部分,而图2b1“月牙”弯型叶片13XZ后边的通道还在收缩,到风出口处风道截面就只有原入口处截面的约四分之一,这使风速必然加快,加快的风还会对弯曲的叶片ZM部分进行推搡,这就是前文所说的“具有一定流速、流量的流体有自取直线前行的惯性”,而且流体是在不断收缩的通道中加速排出的,这就有一个反推力作用于MZ,就能增加涡轮周向的推力“F”,而在图2b2里,平直叶片的ZM叠加段是没意义的,所以“月牙”弯型叶片13的水能利用率自然就高了,估计利用率在0.7~0.8,这个估值是根据以上逐步推论得来的,这是平直叶片构成的涡轮没法达到的。在“月牙”弯型叶片13构成的涡轮中,叶片13与涡轮旋转面夹角愈小,流体加速排出速度愈快,这样反推力就越大,这都有利于流体能利用率的提高。但如果夹角小到流体流通不畅时就会变成阻力,流体压力就直接加到涡轮盘上了,这里有一个最佳角位,要靠吹风实验来确定,不同曲率的叶片13,最佳角位也不同,在图2d里暂定弧线YM(全叶片)半径R=OO长度的2.5。
2、风涡轮是一个直径较大,叶片很薄的机型,弧形设计有利于叶片13的刚性,大型涡轮可在叶片顺长方向的中间加叶筋—叶片轴和若干枝筋(叶脉)。叶脉上可以加电热丝,如电热毯冬季防冰冻。风涡轮个头大,又是不定向转动,不能有围壳,为防止风能逃逸,特在叶片13外端做一个垂直叶片13的叶片挡板15,如图2a2中夹角为25°时两叶片交会时的情形,叶片挡板15有增强叶片刚性的作用。在风速低时,提高风能利用率特别重要,叶片挡板15的宽度取此处分度圆弦长的一半,这被称之为半挡板,如图2d所示,在叶片挡板15的中部开设有弧形穿孔17,弧形穿孔17是为分别连接涡轮主轴1和叶片13外的环形钢圈16-1的拉索14所设,拉索14连接环形钢圈16-1,可抗衡风的张力。叶片轴16-2的外端头插在环形钢圈16-1贯穿开设有的预设孔(轴孔)内(可转动),这样,叶片13、环形钢圈16-1、拉索14就构成一个相互制约的整体,拉索14是穿过弧形穿孔17和环形钢圈16-1连接的,当叶片13转动时,弧形穿孔17给拉索14提供了活动的空间。从图2a2所示,当夹角角位变到25°时,挡板实际已把叶片外围全部挡住了,这符合“风速越低越不能让风流失”,当风速高时应当弃风,所以,半挡板的设置就够了,从图2a2和图2b1可以看出,叶片轴心o点至拉索14设有的弧形穿孔17中心的距离是分度圆弧的0.2~0.3,保证叶片转动时,拉索14不受干扰,同时当叶片13控制到25°或转到95°~100°(风力反向制动)时,叶片13与拉索14互不相碰。
3、叶片13的长度、宽度、厚度及叶片根端的宽度及叶片根端所在圆(轮毂外圆),由于由叶片、轮毂壳体等构成的涡轮轮盘很大,叶片很多,风能密度又不高,风涡轮的轮毂就不要做得过小,要给诸多叶片的变角系统留下足够的活动空间,较大的轮毂所摊面积上的风能将由轮毂前的尖顶风罩(轮毂帽11)导向叶片区,这反而会增加叶片区的风能密度,增加旋转力矩,在图2a1里,即在叶片25°角位下,弯曲的叶片弧ZM长度比图2b1的30°夹角的弧线ZM更长,也就是叶片在夹角为25°时的风能利用率比在夹角为30°时的风能利用率更高,这是显而易见的,况且夹角在25°时的风出口比在30°时的风出口更小,这时,风出口截面大约只有风入口截面的四分之一,在同一时段风速下,排出风速更快,所产生的反冲力就更大,助推涡轮旋转的力就更大,这就是“月牙”弯型叶片的广角位变角的特有功能,从已给出的叶片角位图(图2a、图2b、图2c、图2d)看,叶片13夹角越大,风束边缘线XZ的落点Z越接近前边叶片的末端,如果夹角超过60°,如图2c所示XZ线的Z点就没有了,风就落空了,风的利用率就很低。当夹角为85°-90°时,如图2d所示,就是风切出状态,风对叶片就无作用了,涡轮就停转了。
4、分析各角位图很容易观察到M点风出口处口径大小跟叶片的曲率有关,曲率越大,M点出口就越小,在如图1c中,是指的叶片13(大涡轮叶片))的内弧所在圆半径,根据叶片角位图,如图2b1所示,在叶片顶端分度圆此处的弦长设为OO′,叶片弧一半的弦长为OM,设定OO′=1.075~1.1OM,这适用于叶片顶端,叶片底端全弧长取叶片顶端全弧长的0.6,叶片顶端至叶片底端的厚度递增,宽度减少,厚度要增加可以保证叶片13的强度。5、叶片底端所在圆(含叶片座),就是图1a中的叶片分度盘5,是指轮毂外圆究竟要多大,这要从风力机的功率考虑,功率确定后,摊到每片叶片有多少功率,如图1a所示,在叶片功率中,首先要估算叶片底端的主动叶片轴7-1的最大载荷强度下的轴径、轴长,然后沿周向排布这些齿轮轴(含轴承18),叶根圆(叶片底端所在圆)就容易被确定了,同时,如图1a所示,叶根圆和分度数还决定了叶片座12的厚度,叶片座12的厚度与轮毂外围尺寸有关,叶片座12在叶片13变到最小角位25°时,相邻叶片座的相邻面以不碰为准,其中,从图2b1就可以看出,在叶片13夹角为30°时,叶片13出口处已经不足20°,而在图2a1中,在叶片为夹角25°时,叶片13通道出口并没有关闭,还有余地。
变角系统
如图1a、图1b所示,涡轮主轴1还可作为外电源入口,以轮毂底盘2为依托,以轮毂壳体3为支承,安装有叶片分度盘5(起惯性轮作用),叶片分度盘5环周均布着锥齿轮7-2,在一群锥齿轮7-2的外侧设有外斜齿8a、内直齿8b的环形齿盘8,齿盘8与锥齿轮7-2稳定啮合,以叶片分度盘5为基础,设几个带滚子的齿盘压具6(压铁),受控的步进自锁电机10顶端伸出的动力输出轴安装有齿轮9,步进自锁电机10转动叶片13即变角。当风涡轮不工作时,叶片13应保持在85°-90°切出状态。如图2d所示,不工作不等于没风,只要有风,风信号采集器就会把信号传给微电控制器,当要启动风力机时,和步进自锁电机10配套使用的微电控制器发送电信号指令给步进自锁电机10,以控制步进自锁电机10最终驱动叶片13进行变角,电机把叶片从90°转到适合发电机起动的角位开始工作。当电网或风电系统要停机脱网时,微电控制器会指令电机停车,但由于风轮的惯性而不能立即停车,这时,微电控制器设有一个供叶片转角的机构,使叶片转角到90°~100°,即叶片反向翻转,借风力刹车,再加上电磁机械刹车盘2-2供涡轮制动。图2d里所示的间隙T为风力反向制动时叶片边沿活动区,穿过半档板的弧形穿孔17的拉索14横截面L点与间隙T间隙有关。
开发汽轮机涡轮式风力机、水力机的意义
绿色清洁能源的开发利用是永久的话题,就算核聚变发电开发成功作为补充,其它绿色能源的开发利用也不会少,只是在自然风、自流水和筑坝水能利用效率上都是值得探讨的,而流体能源转化的设计理念,结构形式运行理念是能源转化效率的决定因素,本说明开头就提到三叶风机截能形式是二次转化,肯定没有一次直接转化更有效,因为,二次转化时必须承担第一次转化过程中的能量损失,三叶风机的扫风面,占地面积与空域都十分庞大,但风能利用率又不是很高,因此,探索提高风、水能利用率的努力一直在进行,采用汽轮机涡轮式风、水涡轮是一款个头小,重量轻的自流能转换装置,预计转换率可达0.7~0.8,在后边举例中只用0.6。在自然界中就风能而言,低风速区域分布最广,持续时长更多,在三叶风机中,一般切入风速取3~5m/s,如果采用本发明,可以把切入风速提前到2~3m/s,三叶风机可接收的额定风速约11.4~13.5m/s,也有用14~16m/s的,与之配套的发电机选在这个风速档与之配伍,可见这个风速档区的风力持续时长是可观的,过了这个档区,风力机就要调角弃风,降低利用率,而在这个档区之前的9~11m/s的风功率又达不到发电机的额定要求,如采用本发明的风涡轮则可把额定风速提前到9~11m/S,发电机就可达到额定输出,但过了11m/s以后,风能又过剩了,还是得弃风,这样提高风能利用率就没有意义。从资料中看,是有采用双绕组解决这个问题的,但机组重量增加了,并没有提高很多功率,所以,应该引入另一台发电机来吸纳高风速得来的风能。这在原三叶风力发电系统的布置方法上是不行的,因此,应把置于高空的变速及发电机都放置塔下-地面上,上面只保留风力机、刹车、三角传动和方向舵,重心下移后安排双发就可行了。这样也便于低位安装,管理维修,塔架也就变轻了许多。
本发明是靠流体垂直冲击涡轮平面,在涡轮前不设任何前置设施,如涡壳、导流槽、导流叶片。本发明在风能和自流水能中采用“月牙”弯型叶片构成的平面涡轮加上无级变角形成的渐缩和交叠的后通道是高效截获流体能的关键,进入弯曲且渐缩通道的流体会全程对叶片凹面进行施压,符合“流水冲曲岸”的原理。“月牙”弯型叶片构成的平面涡轮的渐缩通道会使流体加速排出,造成的尾喷效应能增加涡轮旋转力,提高能效,“月牙”弯型叶片只适用于单级涡轮。密置“月牙”弯型叶片加无级变角风能采集面宽截获率高,可以使用双发把风力机重心下移,便于在城市楼顶安装,城市用电可就地取材。本发明利用广角位变角可使叶片适度反向,利用风力反制动加机械电磁刹车锁定涡轮。
工业实用性
(略)
序列表自由内容
(无)

Claims (5)

  1. 一种将流体能转换为机械能的基础机构,其特征在于:轮毂帽、锥帽座、轮毂主壳体和轮毂底盘固定装接成完整的轮毂,轮毂的横截面呈圆环形,锥帽座设置在轮毂主壳体上端,轮毂底盘设置在轮毂主壳体下端,锥帽座顶面为向下倾斜的圆锥面,涡轮主轴以竖直从轮毂底盘轴向中心部位穿至轮毂内的方式与轮毂相互固定配装,在轮毂内安设有叶片分度盘、齿盘压具、滚压轮、锥齿轮、齿盘、齿轮、轴承和步进自锁电机,步进自锁电机安装在轮毂底盘上,步进自锁电机竖立固定且其具有动力输出轴的端面朝上设置,在动力输出轴上固定套装有齿轮,齿盘总体呈环形的状态环绕涡轮主轴位于轮毂内的内置涡轮轴段继而形成贯穿其中心的通孔,齿盘的环状体底部设置有均环绕内置涡轮轴段的第一齿圈和第二齿圈,第一齿圈沿周向环绕第二齿圈设置,第二齿圈沿周向环绕内置涡轮轴段设置,第一齿圈由沿周向环绕第二齿圈连续均布的外斜齿构成,第二齿圈由沿周向环绕涡轮主轴位于轮毂内的轴段连续均布的内直齿构成,齿盘与防护盖板能共同围绕内置涡轮轴段自转,叶片分度盘呈环状设置且固装在轮毂主壳体内周面上,叶片分度盘沿周向均布贯穿开设有第三轴孔,轮毂主壳体周壁沿周向均布贯穿开设有第二轴孔,在第三轴孔内安装有轴承,沿周向均布的主动叶片轴经第三轴孔沿径向穿过叶片分度盘设置且经第二轴孔穿过轮毂主壳体设置,轴承套装在位于第三轴孔内的轴段上,主动叶片轴的内端在轮毂内从叶片分度盘内周面伸出且其外端伸出至轮毂之外,主动叶片轴相应以经第三轴孔径向穿过叶片分度盘的方式沿周向均布,主动叶片轴的内端设置有锥齿轮,齿盘通过第一齿圈装载在叶片轴的内端上,第一齿圈的外斜齿与锥齿轮相互啮合,内直齿与齿轮相互啮合,主动叶片轴的外端固接有叶片座,所有叶片座以围绕轮毂周向均布设置且分别固接叶片,叶片在其自身宽度方向上的中心且总体朝叶片轮毂的径向延伸,叶片的中心线位于叶片在垂直于轮毂径向的方向上的中心并沿着叶片的长度延伸,叶片总体呈圆柱面状,环形钢带沿自身周向贯穿开设有围绕轮毂环向均布的第一穿轴孔,叶片轴从叶片根端伸出的一端固接叶片座,叶片轴从叶片头端伸出的另一端经第一穿轴孔穿过环形钢带并以自转的方式与环形钢带配装在一起,环形钢带相应以环绕叶片和轮毂的方式通过叶片轴穿接环形钢带,环形钢带通过拉索固接涡轮主轴从锥帽座顶部伸出的轴段上,叶片头端固装有叶片挡板,叶片挡板垂直于与叶片外凸曲面最底部相切的平面,叶片挡板与叶片内凹曲面无缝接触配合。
  2. 根据权利要求1所述的将流体能转换为机械能的基础机构,其特征是:轮毂底盘贯穿开设有第一轴孔,在第一轴孔上安装有轴套,轴套经第一轴孔穿过轮毂 盘与轮毂底盘固定,轴套固定套装在涡轮主轴上,涡轮主轴经轴套和第一轴孔穿过轮毂底盘通过轴套和第一轴孔固接轮毂底盘。
  3. 根据权利要求1所述的将流体能转换为机械能的基础机构,其特征是:在轮毂内配装有呈圆形的防护盖板,防护盖板中心处贯穿开设有第二穿轴孔,内置涡轮轴段以经第二穿轴孔穿过防护盖板的方式安设,第二穿轴孔的内周面与内置涡轮轴段径向间隙配合,防护盖板其最外边缘的外周面与通孔的内周面相互无缝拼接固定。
  4. 根据权利要求1所述的将流体能转换为机械能的基础机构,其特征是:叶片座均开设有安装孔,螺纹紧固件通过螺纹紧固在安装孔上,相互紧固在一起的安装孔和螺纹紧固件将叶片固装在叶片座上。
  5. 根据权利要求1所述的将流体能转换为机械能的基础机构,其特征是:叶片由实芯叶片或空芯叶片构成,实芯叶片在其所在圆柱体径向上的正投影均呈等腰梯形,实芯叶片的内凹曲面和外凸曲面均呈圆柱面状,实芯叶片的横截面相应呈圆弧线段状,内凹曲面所在圆与外凸曲面所在圆几何中心重合,内凹曲面所在圆半径相应小于外凸曲面所在圆半径,实芯叶片的横截面厚度处处相等,空芯叶片由内凹曲面叶片和外凸曲面叶片构成,内凹曲面叶片和外凸曲面叶片在其所在圆柱体径向上的正投影均呈等腰梯形,凹曲面叶片和外凸曲面叶片均呈圆柱面状,内凹曲面叶片和外凸曲面叶片各自的横截面也均相应呈圆弧线段状,内凹曲面叶片和外凸曲面叶片所在圆半径不相等且几何中心沿叶片所在圆柱体轴相互错开,内凹曲面叶片的对称等长边沿和外凸曲面叶片的对称等腰边沿相互贴合固接,以至内凹曲面叶片和外凸曲面叶片之间形成沿空芯叶片长度方向贯穿叶片的贯穿式空隙,贯穿式空隙横截面呈月牙形,贯穿式空隙横截面的厚度朝着离开其中心线的方向相应对称连续变小,叶片在其所在圆柱体径向上的正投影呈等腰梯形且其垂直于轮毂径向的方向上的宽度朝着离开轮毂的方向从叶片根端至头端连续变大,叶片轴在贯穿式空隙的中心沿叶片长度方向延伸,经贯穿式空隙穿过叶片与叶片配装在一起。
PCT/CN2022/114747 2021-08-26 2022-08-25 将流体能转换为机械能的基础机构 WO2023025237A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/489,161 US20240068439A1 (en) 2021-08-26 2023-10-18 Basic mechanism for converting fluid energy into mechanical energy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110990236.4 2021-08-26
CN202110990236 2021-08-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/489,161 Continuation US20240068439A1 (en) 2021-08-26 2023-10-18 Basic mechanism for converting fluid energy into mechanical energy

Publications (1)

Publication Number Publication Date
WO2023025237A1 true WO2023025237A1 (zh) 2023-03-02

Family

ID=85322441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114747 WO2023025237A1 (zh) 2021-08-26 2022-08-25 将流体能转换为机械能的基础机构

Country Status (2)

Country Link
US (1) US20240068439A1 (zh)
WO (1) WO2023025237A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462145A (en) * 1993-03-03 1995-10-31 Fichtel & Sachs Ag Hydrokinetic lockup torque converter with lockup clutch
WO2011065720A2 (ko) * 2009-11-24 2011-06-03 Rho Young Gyu 수직형 풍력발전용 틸트식 회전날개장치
US20150211485A1 (en) * 2014-01-30 2015-07-30 Transco Products, Inc. Vertical-axis fluid turbine
WO2020110133A1 (en) * 2018-11-26 2020-06-04 Ethirajulu Damodaran Vertical axis gliding blade wind turbine
WO2021009460A1 (fr) * 2019-07-15 2021-01-21 Safran Aircraft Engines Module de turbomachine pour une helice a calage variable des pales et turbomachine le comportant
CN112469895A (zh) * 2018-06-20 2021-03-09 思吉科能源解决方案有限责任公司 动流体能转换系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462145A (en) * 1993-03-03 1995-10-31 Fichtel & Sachs Ag Hydrokinetic lockup torque converter with lockup clutch
WO2011065720A2 (ko) * 2009-11-24 2011-06-03 Rho Young Gyu 수직형 풍력발전용 틸트식 회전날개장치
US20150211485A1 (en) * 2014-01-30 2015-07-30 Transco Products, Inc. Vertical-axis fluid turbine
CN112469895A (zh) * 2018-06-20 2021-03-09 思吉科能源解决方案有限责任公司 动流体能转换系统
WO2020110133A1 (en) * 2018-11-26 2020-06-04 Ethirajulu Damodaran Vertical axis gliding blade wind turbine
WO2021009460A1 (fr) * 2019-07-15 2021-01-21 Safran Aircraft Engines Module de turbomachine pour une helice a calage variable des pales et turbomachine le comportant

Also Published As

Publication number Publication date
US20240068439A1 (en) 2024-02-29

Similar Documents

Publication Publication Date Title
KR101383849B1 (ko) 전방향식 풍력 터빈
US6357997B1 (en) Ribbon drive power generation apparatus and method
JP2004528509A (ja) 集風式風力発電方法とその設備
CA2645296A1 (en) Annular multi-rotor double-walled turbine
WO2019061841A1 (zh) 一种基于实时可调导流罩转角的多级潮流能水轮机
CN107237718A (zh) 一种吸收潮汐能的多级叶轮转动装置
CN203098139U (zh) 一种适用于小型风力发电机的双叶轮对转风轮结构
CN109441691B (zh) 一种尾水管带整流板混流式水轮机
CN101813047A (zh) 喷射式反作用力圆盘发电机
CN101067409B (zh) 立轴风力机风轮
CN205277683U (zh) 一种阶梯马格努斯型风力叶片及风力机
WO2023025237A1 (zh) 将流体能转换为机械能的基础机构
CN1587683B (zh) 多风轮强力发电机
CN201121558Y (zh) 立轴风力机的风轮
CN105402083A (zh) 一种阶梯马格努斯型风力叶片及风力机
CN214998002U (zh) 一种带有换向机构的潮流能水轮机实验装置
CN214741863U (zh) 一种利用格栅降低尾流的风力发电系统
CN204572334U (zh) 一种低速风力双重引射混合器
CN114704426A (zh) 一种风力采集装置、储气设备和发电系统
CN210370998U (zh) 一种垂直水轮发电机
CN113417785A (zh) 一种带有换向机构的潮流能水轮机实验装置及实验方法
JPH07208320A (ja) 高層タワーに積層搭載用の垂直軸風車
CN208456777U (zh) 轴柱结构一轴多机气动减速单臂升阻结合垂直轴风力机
CN101660495A (zh) 导流体风力涡轮发电设备
CN206397650U (zh) 新型多叶多节风叶轮及其风力发电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE