WO2019061841A1 - 一种基于实时可调导流罩转角的多级潮流能水轮机 - Google Patents

一种基于实时可调导流罩转角的多级潮流能水轮机 Download PDF

Info

Publication number
WO2019061841A1
WO2019061841A1 PCT/CN2017/115450 CN2017115450W WO2019061841A1 WO 2019061841 A1 WO2019061841 A1 WO 2019061841A1 CN 2017115450 W CN2017115450 W CN 2017115450W WO 2019061841 A1 WO2019061841 A1 WO 2019061841A1
Authority
WO
WIPO (PCT)
Prior art keywords
shroud
blade
hyperbolic
diameter
section
Prior art date
Application number
PCT/CN2017/115450
Other languages
English (en)
French (fr)
Inventor
张玉全
郑源
李东阔
臧伟
杨春霞
Original Assignee
河海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河海大学 filed Critical 河海大学
Publication of WO2019061841A1 publication Critical patent/WO2019061841A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/264Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/121Blades, their form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/16Stators
    • F03B3/18Stator blades; Guide conduits or vanes, e.g. adjustable
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/10Geometry two-dimensional
    • F05B2250/15Geometry two-dimensional spiral
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/60Control system actuates through
    • F05B2270/602Control system actuates through electrical actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention belongs to the technical field of fluid machinery and hydropower engineering equipment, and particularly relates to a multi-stage tidal energy turbine based on real-time adjustable deflector angle.
  • the turbine impeller is one of the most critical components of the marine tidal generator.
  • the performance of the impeller directly affects the performance of the entire unit, and its manufacturing cost also accounts for about 20% of the entire generator set.
  • the impeller blades of the traditional low-micro-head turbines generally adopt asymmetrically twisted tubular blades, while the marine tidal energy generating turbines mostly draw on the fan blades.
  • the applicable conditions and operating ranges are different, the impeller structure is complex, the manufacturing cost is high, and the operating efficiency is high. Lower.
  • Chinese Patent Application No. 20131049613.9 discloses "a marine turbine capable of generating a turbine impeller with a shroud", the solution comprising a rotating shaft and a hub and a blade mounted on the hub, the rotating shaft, the hub and the blade are all placed in the impeller chamber, the impeller The two ends of the chamber are the inlet side and the outlet side respectively, and the water flows from the inlet side to the outlet side in the axial direction, and the hub adopts a spherical shape to facilitate the installation of the blade, thereby improving the functional force of the blade.
  • the scheme also has the following disadvantages: First, the structure of the shroud is simple, and the angle of attack of the shroud cannot be adjusted in real time according to the inflow angle, so that it does not function well and directly affects economic performance; Graded ocean current turbines are less efficient in generating electricity from ocean currents.
  • Chinese Patent Application No. 201310496522.0 discloses a two-way impeller of a turbine having a shroud for ocean current power generation, comprising a rotating shaft and a hub installed in the impeller chamber, and an "S" type blade mounted on the hub and having a number of 5-7; the impeller chamber
  • the two sides are the inlet side and the outlet side respectively; when generating electricity in the forward direction, the water flows through the shroud from the inlet side to the outlet side in the axial direction. When generating electricity in the reverse direction, the water flows through the axial side of the outlet side. To the water inlet side.
  • the scheme can efficiently convert sea flow energy under the two-way flow current, it has the following disadvantages: First, it belongs to single-stage ocean current turbine, and the efficiency of power generation by sea current energy is low; second, turbine blade design is still traditional. The design, the airfoil is too simple, can not make good use of the water energy flowing through the runner; third, the angle of attack design of the shroud is limited, and the shroud can not be adjusted in real time.
  • Cidal current tidal current turbine generator set with a shroud type elliptical trajectory which includes a shroud, a rail bracket, an elliptical rail, a linear bearing, a guiding arm, a straight blade, etc.
  • a shroud is used It has improved the energy-collecting effect of tidal energy, but it also has the following shortcomings: First, its vertical-axis blade adopts single elliptical blade design, which can not provide efficient output power; second, it belongs to single-stage ocean current turbine, which utilizes the efficiency of ocean current energy generation. Lower.
  • the object of the present invention is to provide a multi-stage tidal energy turbine based on real-time adjustable shroud angle to overcome the deficiencies of the prior art.
  • the invention has the advantages of simple structure and high efficiency, and can be used for a marine tidal power generating turbine. It can also be used for power generation under the conditions of small tidal currents such as mountains, plains, mountain springs and pond dams.
  • a multi-stage tidal energy turbine based on a real-time adjustable shroud angle includes a shroud, a hub fixedly disposed on the rotating shaft, and a base impeller fixedly disposed on the hub, the rotating shaft, The hub and the base impeller are both disposed in the shroud, and further comprising: a support shaft with a real-time adjustable shroud corner, and an energizing runner with a variable radius hyperbolic spiral blade, the increase The rotating wheel is located at the outlet end of the shroud, and the hyperbolic spiral spiral blade is gradually stretched according to the spiral line of the hyperbolic spiral along the axial direction of the rotating shaft, and has a space cross-twisted shape and is uniformly distributed and rotated.
  • the intersection of the sections of the hyperbolic spiral spiral blade having the rotation surface around the rotation axis is an origin establishing coordinate system, and the hyperbolic spiral spiral blade is on the outer circumference of the rotation axis.
  • the coordinates of the key points at the maximum radius on the section airfoil curve at different axial distances are expressed as follows, where X represents the spatial abscissa value of the key points on the section airfoil curve of the hyperbolic spiral spiral blade, Y 102cm axial parameter table at key points on the cross section of the airfoil profile hyperbolic spiral helical blade spatial ordinate values, hyperbolic spiral helical blade airfoil from the leading edge of the hub cross-section in Table 1,
  • the two ends of the shroud are respectively an inlet side and a water outlet side, and a water flow flows axially from the inlet side to the outlet side;
  • the base impeller includes three blades having a twisted shape, and the shroud The lower end is fixedly connected with the support shaft of the real-time adjustable shroud corner, and the central part of the support shaft is provided with a hydraulic slewing bearing for controlling the corner of the shroud; the diameter D h of the rotating shaft and the diameter D 0 of the base impeller
  • the ratio is 0.21 to 0.28, the ratio of the diameter D 1 of the middle section of the shroud to the diameter D 0 of the foundation impeller is 1.05 to 1.13, and the ratio of the diameter D 2 of the inlet side of the shroud to the diameter D 0 of the foundation impeller is 1.20 to 1.27, the ratio of the diameter D 3 of the water outlet side of the shroud to the diameter D 0 of the foundation impeller is 1.68 to 1.75; the blades of the
  • the realization principle of the present invention is: in the application process, when the water flows from the water inlet of the shroud into the tidal energy turbine, the work is performed on the base runner and the booster runner in turn, and the runner is rotated by the external force, thereby driving The main shaft rotates, and then the torque is transmitted to the generator set connected to it to generate tidal energy into electricity.
  • the spiral blade in the shape of a hyperbolic spiral helix can be set to different pitches according to the tidal flow velocity and adjust the spatial distortion degree, which greatly ensures the stability of the rotation of the energizing runner; after the water flows out of the energizing runner , from the outlet of the shroud.
  • the hyperbolic spiral spiral blade behind the turbine of the present invention has a variable cross-section function in the radial direction, and the metal hinged telescopic device makes the blade radius variable, so that the flow rate at the outlet of the shroud can be adjusted, further improving The adjustment capability of the turbine.
  • the shroud of the multi-stage tidal energy turbine of the invention adopts a small-sized inlet and a large horn shape design, can improve the concentrating energy gathering effect, and improve the output power of the tidal energy turbine to enhance the efficiency of the tidal energy turbine.
  • the present invention adopts a support shaft and a rotating bearing device for adjusting the corner of the shroud to adapt to small changes in the flow angle of the ocean current, so that the overall working state of the multi-stage tidal energy turbine can achieve efficiency. The highest point.
  • the base impeller adopts three blades with a twisted shape, and the airfoil of the blade gradually changes from the middle of the blade to the blade root and the blade edge.
  • the increase therefore, can generate a large blade torque, thereby increasing the output of the foundation impeller, and the overall structure of the basic impeller is simple, and it is very convenient from manufacturing to installation.
  • the multi-stage tidal energy turbine with the adjustable angle deflector of the present invention further comprises adding an energizing runner on the basis of the tidal current of the base runner, so that in the case of the same tidal energy, the present
  • the invented multi-stage tidal energy turbine significantly increases the tidal current energy conversion rate based on the existing base runner, and the energy-increasing effect is remarkable, thereby improving the power generation of the multi-stage tidal energy turbine.
  • the hyperbolic spiral spiral blade of the present invention has a hyperbolic spiral shape, and is gradually stretched along the axial direction of the rotating shaft to form a spatially twisted shape and uniformly distributed on the outer circumference of the rotating shaft to perform a uniform rotational motion, thereby greatly reducing
  • the hydraulic friction collision reduces the energy loss of the water flow after the water flow passes through the base runner, thereby improving the energy-receiving effect of the multi-stage tidal energy turbine.
  • the multi-stage tidal energy turbine with the adjustable angle guide hood of the invention has the shape of the inlet and the large outlet of the horn, which can improve the concentrating energy gathering function, and not only improve the flow.
  • the flow rate of the multi-stage tidal energy turbine can improve the inflow effect, smooth the water flow, and ensure the stability of the whole machine operation; especially by using the support shaft and the rotating bearing device for adjusting the angle of the guide hood to facilitate In order to adapt to the small changes in the flow angle of the trend, the multi-stage tidal energy turbine can work at the highest efficiency point.
  • the multi-stage tidal energy turbine with the adjustable angle guide hood of the invention can adapt to the characteristics of tidal current water flow, and can drive the generator to generate electricity at a flow rate of more than 1 m/s, which can ensure low flow rate. Start-up, can also be applied to the water conversion of micro-head water from 0.2m to 1.5m.
  • Figure 1 is a schematic illustration of the dimensional relationship of the various components of the base impeller of the present invention.
  • FIG. 2 is a schematic perspective view of a basic impeller blade of the present invention.
  • FIG 3 is a top plan view of a base impeller blade of the present invention.
  • Figure 4 is a left side elevational view of the base impeller blade of the present invention.
  • Figure 5 is a front elevational view of the base impeller blade of the present invention.
  • Figure 6 is a perspective view showing the structure of a hyperbolic spiral spiral blade of the present invention.
  • Fig. 7 is a structural schematic view showing the hyperbolic spiral of the hyperbolic spiral spiral blade-enhancing rotor blade of the present invention.
  • Figure 8 is a perspective view showing the structure of a multi-stage tidal energy turbine runner of the present invention.
  • Figure 9 is a schematic illustration of a cross-sectional profile of a hyperbolic helical helical blade taken at 102 cm axially in the leading edge of the hub of the present invention.
  • Figure 10 is a schematic illustration of a cross-sectional profile of a hyperbolic helical helical blade taken at 132 cm axially in the leading edge of the hub of the present invention.
  • a multi-stage tidal energy turbine based on a real-time adjustable shroud angle comprising a shroud 1, a hub 3 fixedly disposed on the rotating shaft 2, and a fixed arrangement on the hub 3
  • the base impeller, the rotating shaft 2, the hub 3 and the base impeller are all disposed in the shroud 1, wherein: a support shaft 7 with a real-time adjustable deflector 1 corner, and a double curved snail with a variable radius
  • the axial direction is gradually stretched, and is spatially intersected and twisted and evenly distributed on the circumferential inner wall of the rotating shaft 2, and the intersection of the respective sections of the hyperbolic helical spiral blade 9 with the rotating surface 2 as the central rotating surface is
  • the origin establishes a coordinate system, and the hyperbolic spiral spiral blade
  • the two ends of the shroud 1 are respectively a water inlet side 5 and a water outlet side 6, and a water flow flows axially from the water inlet side 5 to the water outlet side 6;
  • the base impeller includes three blades having a twisted shape. 4
  • the lower end of the shroud 1 is fixedly connected with the support shaft 7 of the real-time adjustable shroud 1 corner, the central portion of the support shaft 7 is provided with a hydraulic slewing bearing 8 for controlling the corner of the shroud 1;
  • H ratio of the diameter D of the base of the impeller diameter D 2 0 is 0.21 to 0.28, the intermediate shroud segment 1 and a base diameter D of the impeller diameter D 0 ratio of 1.05 to 1.13, the water deflector cover 1 the diameter D 2.
  • a water shroud side diameter D 6 of the base 3 of the ratio of the impeller diameter D 0 is from 1.68 to 1.75; blade base of the impeller 4 is rotated in conjunction with the rotating shaft 2 by the impact of the water flow.
  • the parameters of the mounting angle of each section of the twisted-shaped blade 4 of the present invention are as shown in Table 3, and the parameters of the chord length of each section of the twisted-shaped blade 4 are shown. As shown in Table 4,
  • Section number Mounting angle (°) Section number Mounting angle (°) 1002 40.14 1012 20.29 1003 38.23 1013 18.67 1005 35.27 1015 15.63 1006 32.69 1016 14.13 1007 30.23 1017 12.58 1008 27.94 1018 10.86 1009 25.81 1019 8.66 1010 23.84 1020 5.92
  • the installation angle and the number of sections from the blade root to the tip are fitted to the 6th power.
  • the installation angle fitting equation is:
  • chord length and the number of sections of the blade 4 with a twisted shape from the root to the tip of the blade are 7-square fitting, and the chord length fitting equation is:
  • Y -9.60 ⁇ 10 -8 x 7 +6.85 ⁇ 10 -6 x 6 -1.99 ⁇ 10 -4 x 5 +3.07 ⁇ 10 -3 x 4 -2.64 ⁇ 10 -2 x 3 +1.21 ⁇ 10 -1 x 2 -2.18 ⁇ 10 -1 x+0.37.
  • the hub of a spherical shape of the projection 3 of the present invention the ratio of the intermediate hub segment length L 1 of a length L 0 and the shroud 3 is 0.29 to 0.36, an inlet of the shroud segment length
  • the ratio of L 2 to the length L 1 of the intermediate section of the shroud 1 is 0.08 to 0.15
  • the ratio of the length L 3 of the outlet section of the shroud 1 to the length L 1 of the intermediate section of the shroud 1 is 0.51 to 0.58
  • the ratio of the diameter Dp of 7 to the total length (L 1 + L 2 + L 3 ) of the shroud 1 is 0.2 to 0.3, and the distance from the center of the support shaft 7 to the front end of the shroud 1 (L 4 + 0.5 Dp)
  • the ratio of the total length (L 1 + L 2 + L 3 ) of the shroud 1 is 0.45 to 0.65
  • the ratio of the height Hp of the hydraulic slewing bearing 8 to the diameter Dp of the support shaft 7 is 0.15-0.35; when the incoming flow direction is not perpendicular to the inlet plane of the inlet side 5 of the shroud 1, the motor in the support shaft 7 is activated, The rotation angle of the shroud 1 is adjusted to the optimum angle of arrival by the hydraulic slewing bearing 8; the hydraulic slewing bearing 8 adjusts the angle of the shroud 1 to -8 degrees to +8 in consideration of structural stability and weak incoming current variation. degree.
  • each of the interfaces in the vertical flow direction of the shroud 1 of the present invention is rectangular, and the height of each rectangle remains unchanged.
  • the center of the shroud 1 and the hub 3 Axis symmetry; each of the flow guides 1 has a uniform cross-section, two segments are flared, and the middle transitions to a straight line through a streamline shape.
  • the inlet diameter of the shroud 1 of the present invention is 302 cm, the diameter of the base runner is 240 cm, the diameter of the rotating shaft is 50 cm, the diameter of the middle section of the shroud 1 is 270 cm, and the diameter of the outlet section of the shroud 1 It is 238 cm; the inlet section of the shroud 1 has a length of 22 cm, the length of the intermediate section is 144 cm, and the length of the outlet section is 84 cm.
  • the length of the support shaft 7 is 50 cm.
  • the diameter of the inlet of the shroud 1 of the present invention is 453 cm, the diameter of the base runner is 356 cm, the diameter of the rotating shaft 2 is 75 cm, and the diameter of the middle section of the shroud 1 is 405 cm, and the diameter of the shroud 1 is
  • the diameter of the outlet section is 624cm; the length of the inlet section of the shroud 1 is 33cm, the length of the intermediate section is 216cm, the length of the outlet section is 125cm; the length of the support shaft 7 is 110cm, when the flow direction and the inlet side of the shroud 1
  • the hydraulic slewing bearing 8 adjusts the relative initial angle of the shroud 1 to 8 degrees so that the incoming flow direction is perpendicular to the inlet side entrance plane of the shroud 1.
  • the multi-stage tidal energy turbine based on the real-time adjustable shroud angle can be self-starting at a flow rate above 1 m/s and has high efficiency.
  • the tidal energy power generating turbine of the present invention can not only protect the natural environment well, but also greatly reduce the cost of the generator set and achieve the purpose of efficiently utilizing the tidal energy.
  • the invention has been verified by trial and error and has achieved satisfactory trial results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Hydraulic Turbines (AREA)

Abstract

一种基于实时可调导流罩转角的多级潮流能水轮机,包括导流罩(1)、固定设置在转动轴(2)上的轮毂(3)、固定设置在轮毂(3)上的基础叶轮,还包括实时可调导流罩转角的支撑轴(7)、带半径可变的双曲螺线螺旋形叶片(9)的增能转轮,双曲螺线螺旋形叶片(9)是根据双曲螺线的螺旋线沿转动轴(2)的轴向逐渐拉伸,呈空间交叉扭曲形状并均匀分布设置在转动轴(2)的周向内壁上。该水轮机结构简单,效率高,既可用于海洋潮流能发电,也可在山区、山泉以及塘坝溪水等微小潮流能条件下发电使用。

Description

一种基于实时可调导流罩转角的多级潮流能水轮机 技术领域
本发明属于流体机械及水电工程设备技术领域,特别是涉及一种基于实时可调导流罩转角的多级潮流能水轮机。
背景技术
当今世界各国把开发水电放在了能源开发的优先位置。我国水能资源总量十分丰富,不仅有中、高水头资源,而且还有约0.8~1.0亿千瓦的低水头资源(含潮流能),开发利用新能源特别是开发利用海洋能源发电具有极大的发展潜力。海流能发电是依靠海潮流的冲击力使水轮机高速旋转,然后带动发电机发电,不需要较高水头来创造初始压力,仅依靠海潮流的流速就能实现发电,其经济价值十分显著。
水轮机叶轮作为海潮流发电机组最为关键的部件之一,叶轮的性能直接影响着整个机组的性能,其制造成本也占到了整个发电机组的20%左右。传统的低微水头水轮机的叶轮叶片一般采用不对称扭曲贯流式叶片,而海潮流能发电水轮机大多借鉴风机叶片,两者适用条件及运行范围不同,叶轮结构复杂,制造成本较高,且运行效率较低。
中国专利申请20131049613.9公开了“一种海流能发电具有导流罩的水轮机叶轮”,该方案包括转轴和轮毂以及安装固定在轮毂上的叶片,所述转轴、轮毂以及叶片均置于叶轮室内,叶轮室两端分别为进水侧和出水侧,水流从进水侧沿轴向流向出水侧,轮毂采用球面形,方便叶片的安装于固定,从而提高叶片的做功能力。但该方案还存在以下不足:一是导流罩的结构简单,不能根据入流角度实时调整导流罩的迎角,因此不能起到较好的聚能作用,直接影响经济性能;二是属于单级海流能水轮机,利用海流能发电的效率较低。
中国专利申请201310496522.0公开了一种海流能发电具有导流罩的水轮机双向叶轮,包括安装在叶轮室内的转轴和轮毂以及安装固定在轮毂上数量为5~7个的“S”型叶片;叶轮室两侧分别为进水侧和出水侧;正向发电时,水流经过导流罩从进水侧沿轴向流向出水侧,反向发电时,水流则是通过出水侧轴向流 向进水侧。虽然该方案在双向流动的海流下,能够高效地转化海流动能,但还存在以下不足:一是属于单级海流能水轮机,利用海流能发电的效率较低;二是水轮机叶片设计仍然属于传统设计,翼型过于简单,不能很好的利用流经转轮的水体能量;三是导流罩的迎角设计受限,且导流罩无法实时可调。
中国专利申请20121034270.9公开了“带导流罩式椭圆轨迹竖轴潮流能水轮机发电机组,该装置包括导流罩、导轨支架、椭圆导轨、线性轴承、导向臂、直叶片等。虽然采用导流罩提高了对潮流能的聚能效果,但还存在以下不足:一是其垂直轴叶片采用单椭圆叶片设计,不能提供高效的输出功率;二是属于单级海流能水轮机,利用海流能发电的效率较低。
综上所述,如何克服现有技术所存在的不足已成为当今流体机械及水电工程设备技术领域中亟待解决的重点难题之一。
发明内容
本发明的目的是为克服现有技术的不足而提供一种基于实时可调导流罩转角的多级潮流能水轮机,本发明的结构简单,效率高,既可用于海洋潮流能发电的水轮机,也可在山区、平原、山泉以及塘坝溪水等微小潮流能条件下发电使用。
根据本发明提出的一种基于实时可调导流罩转角的多级潮流能水轮机,包括导流罩、固定设置在转动轴上的轮毂、固定设置在轮毂上的基础叶轮,所述转动轴、轮毂和基础叶轮均设置于导流罩内,其特征在于,还包括实时可调导流罩转角的支撑轴、带半径可变的双曲螺线螺旋形叶片的增能转轮,所述增能转轮位于导流罩的出口端,所述双曲螺线螺旋形叶片是根据双曲螺线的螺旋线沿转动轴的轴向逐渐拉伸,呈空间交叉扭曲形状并均匀分布设置在转动轴的周向内壁上,以所述转动轴为中心旋转面的双曲螺线螺旋形叶片的各截面的交点为原点建立坐标系,所述双曲螺线螺旋形叶片在转动轴外周上,不同轴向距离下的截面翼型曲线上半径最大处的关键点的坐标以如下方式表示,以X代表双曲螺线螺旋形叶片的截面翼型曲线上的关键点的空间横坐标值,以Y代表双曲螺线螺旋形叶片的截面翼型曲线上的关键点的空间纵坐标值,双曲螺线螺旋形叶片的截面翼型距离轮毂的前缘轴向102cm处的参数参见表1,
表1:
序号 X Y 序号 X Y
1 -11.6497 -8.4642 7 -10.5696 -10.1952
2 -12.9441 -9.4046 8 -11.8313 -11.2449
3 -15.533 -11.2855 9 -14.3449 -13.3561
4 -18.1219 -13.1664 10 -16.8479 -15.48
5 -20.7108 -15.0473 11 -19.3428 -17.6133
6 -23.2996 -16.9282 12 -21.8319 -19.7534
拟合后的两条曲线方程分别为:
双曲螺线螺旋形叶片的左弦:y=-0.0001x3-0.0009x2+0.7187x-0.0273;
双曲螺线螺旋形叶片的右弦:y=-0.0038x2+0.7609x-1.7670;
距离轮毂的前缘轴向132cm处的参数参见表2,
表2:
序号 X Y 序号 X Y
1 -49.9814 29.3239 7 -46.5993 33.8564
2 -55.5149 32.6196 8 -51.777 37.6182
3 -61.0502 35.9122 9 -56.9547 41.38
4 -66.587 39.2024 10 -62.1324 45.1418
5 -77.6637 45.7775 11 -72.4879 52.6655
6 -83.203 49.0634 12 -77.6656 56.4273
拟合后的两条曲线方程分别为:
双曲螺线螺旋形叶片的左弦:y=-0.0002x2-0.6118x-0.8041;
双曲螺线螺旋形叶片的右弦:y=-0.7267x+0.0004;
所述导流罩的两端分别为进水侧和出水侧,水流从所述进水侧沿轴向流向所述出水侧;所述基础叶轮包括3枚呈扭曲形状的叶片,导流罩的下端与实时可调导流罩转角的支撑轴固定连接,所述支撑轴的中部设有用于控制导流罩转角的液压转盘轴承;所述转动轴的直径Dh与基础叶轮的直径D0的比值为0.21~0.28,导流罩的中间段直径D1与基础叶轮的直径D0的比值为1.05~1.13,导流罩的进水侧的直径D2与基础叶轮的直径D0的比值为1.20~1.27,导流罩的出水侧的直径D3与基础叶轮的直径D0的比值为1.68~1.75;基础叶轮的叶片受到水流的冲击而与转动轴连动旋转。
本发明的实现原理是:本发明在应用过程中,当水流从导流罩进水口流入潮流能水轮机后,依次对基础转轮和增能转轮做功,转轮所受外力之后旋转,进而带动主轴旋转,然后将力矩传递给与之相连的发电机组发电,将潮流能转化为电 能。其中呈双曲螺线螺旋线形状的螺旋形叶片可根据潮流流速不同设置成不同的螺距并调节空间扭曲度,极大的保证了增能转轮转动的稳定性;水流出增能转轮后,从导流罩出口流出。由于增能转轮能够将流出基础转轮的水流的动能再次转换成转轮的旋转机械能,从而很好地解决了水能多次能量转换的难题,提高了潮流能水轮机的输出功率,以增强潮流能水轮机的效率。同时,本发明的水轮机后方的双曲螺线螺旋形叶片在径向拥有变截面功能,其采用金属铰接的伸缩装置使得叶片半径可变,从而使得导流罩出口处流量可调节,进一步提升了水轮机的调节能力。本发明的多级潮流能水轮机的导流罩采用进口小和出口大的喇叭形状设计,能够提高潮流能的聚能作用,提高了潮流能水轮机的输出功率,以增强潮流能水轮机的效率。同时为实时调节迎流方向,本发明采用了用于调节导流罩转角的支撑轴及转动轴承装置以适应海洋流来流角的微小变化,使多级潮流能水轮机整体工作状态能够达到效率的最高点。
本发明与现有技术相比其显著优点是:
第一,本发明的一种带转角可调导流罩的多级潮流能水轮机,其基础叶轮采用3枚呈扭曲形状的叶片,由于该叶片的翼型从叶片中间向叶根和叶缘逐渐增大,因此能够产生较大的叶片扭矩,从而提高基础叶轮的出力,同时基础叶轮整体结构简单,从加工制造到安装都十分方便。
第二,本发明的一种带转角可调导流罩的多级潮流能水轮机,还包括在基础转轮潮流能利用的基础上增设增能转轮,使得在相同的潮流能情况下,本发明的多级潮流能水轮机对潮流能转换率在现有基础转轮的基础上明显增加,增能效果显著,从而提高了多级潮流能水轮机的发电功率。
第三,本发明的双曲螺线螺旋形叶片呈双曲螺线形状,以沿转动轴的轴向渐变拉伸形成空间扭曲形状均匀分布设置在转动轴的外周上做匀速旋转运动,大大减少了水力摩擦碰撞,降低了水流经过基础转轮后,再次利用的水流的能量损失,从而提高了多级潮流能水轮机获能的功效。
第四,本发明的一种带转角可调导流罩的多级潮流能水轮机,其导流罩采用进口小和出口大的喇叭形状设计,能够提高潮流能的聚能作用,不仅提高流经多级潮流能水轮机的潮流流速,而且改善入流效果,平稳水流,保证整机运行的稳定性;特别是通过采用调节导流罩转角的支撑轴及转动轴承装置,以利 于适应潮流来流角的微小变化,使多级潮流能水轮机整体工作在最高效率点。
第五,本发明的一种带转角可调导流罩的多级潮流能水轮机,能够适应潮流能水流的特点,在水流流速1m/s以上就可以驱动发电机发电,既可保证低流速自启动,也可适用于0.2m-1.5m的微水头水流水能转化。
附图说明
图1是本发明的基础叶轮各部件尺寸关系的示意图。
图2是本发明的基础叶轮叶片的立体结构示意图。
图3是本发明的基础叶轮叶片的俯视图。
图4是本发明的基础叶轮叶片的左视图。
图5是本发明的基础叶轮叶片的正视图。
图6是本发明的双曲螺线螺旋形叶片的立体结构示意图。
图7是本发明的双曲螺线螺旋形叶片增能转轮叶片的双曲螺线的结构示意图。
图8是本发明的多级潮流能水轮机转轮的立体结构示意图。
图9是本发明在轮毂的前缘轴向102cm处采集的双曲螺线螺旋形叶片的截面型线的示意图。
图10是本发明在轮毂的前缘轴向132cm处采集的双曲螺线螺旋形叶片的截面型线的示意图。
图中编号说明:导流罩1、转动轴2、轮毂3、叶片4、基础叶轮的进水侧5、基础叶轮的出水侧6、支撑轴7、液压转盘轴承8、双曲螺线螺旋形叶片9、基础叶轮的直径D0、导流罩1的进口内径D1、导流罩1的进口外径D2、导流罩1的出口直径D3、轮毂3的直径Dh、轮毂3的长度L0、导流罩1的中间段长度L1、导流罩1的进口段长度L2、导流罩1的出口段长度L3、支撑轴7的直径Dp、支撑轴7的前端至导流罩1的入口截面距离L4、液压转盘轴承8至导流罩1下部的距离H1、液压转盘轴承8的高度Hp、双曲螺线螺旋形叶片9处于半径最小状态时叶片的最大半径Rmin、双曲螺线螺旋形叶片9处于半径最大状态时叶片的最大半径Rmax
具体实施方式
下面结合附图和实施例对本发明的具体实施方式做进一步的详细说明。
实施例1:
结合图1至图10,本发明提出的一种基于实时可调导流罩转角的多级潮流能水轮机,包括导流罩1、固定设置在转动轴2上的轮毂3、固定设置在轮毂3上的基础叶轮,所述转动轴2、轮毂3和基础叶轮均设置于导流罩1内,其中:还包括实时可调导流罩1转角的支撑轴7、带半径可变的双曲螺线螺旋形叶片9的增能转轮,所述增能转轮位于导流罩1的出口端,所述双曲螺线螺旋形叶片9是根据双曲螺线的螺旋线沿转动轴2的轴向逐渐拉伸,呈空间交叉扭曲形状并均匀分布设置在转动轴2的周向内壁上,以所述转动轴2为中心旋转面的双曲螺线螺旋形叶片9的各截面的交点为原点建立坐标系,所述双曲螺线螺旋形叶片9在转动轴2外周上,不同轴向距离下的截面翼型曲线上半径最大处的关键点的坐标以如下方式表示,以X代表双曲螺线螺旋形叶片9的截面翼型曲线上的关键点的空间横坐标值,以Y代表双曲螺线螺旋形叶片9的截面翼型曲线上的关键点的空间纵坐标值,双曲螺线螺旋形叶片9的截面翼型距离轮毂3的前缘轴向102cm处的参数参见表1,
表1:
序号 X Y 序号 X Y
1 -11.6497 -8.4642 7 -10.5696 -10.1952
2 -12.9441 -9.4046 8 -11.8313 -11.2449
3 -15.533 -11.2855 9 -14.3449 -13.3561
4 -18.1219 -13.1664 10 -16.8479 -15.48
5 -20.7108 -15.0473 11 -19.3428 -17.6133
6 -23.2996 -16.9282 12 -21.8319 -19.7534
拟合后的两条曲线方程分别为:
双曲螺线螺旋形叶片9的左弦:y=-0.0001x3-0.0009x2+0.7187x-0.0273;
双曲螺线螺旋形叶片9的右弦:y=-0.0038x2+0.7609x-1.7670;
距离轮毂的前缘轴向132cm处的参数参见表2,
表2:
序号 X Y 序号 X Y
1 -49.9814 29.3239 7 -46.5993 33.8564
2 -55.5149 32.6196 8 -51.777 37.6182
3 -61.0502 35.9122 9 -56.9547 41.38
4 -66.587 39.2024 10 -62.1324 45.1418
5 -77.6637 45.7775 11 -72.4879 52.6655
6 -83.203 49.0634 12 -77.6656 56.4273
拟合后的两条曲线方程分别为:
双曲螺线螺旋形叶片9的左弦:y=-0.0002x2-0.6118x-0.8041;
双曲螺线螺旋形叶片9的右弦:y=-0.7267x+0.0004;
所述导流罩1的两端分别为进水侧5和出水侧6,水流从所述进水侧5沿轴向流向所述出水侧6;所述基础叶轮包括3枚呈扭曲形状的叶片4,导流罩1的下端与实时可调导流罩1转角的支撑轴7固定连接,所述支撑轴7的中部设有用于控制导流罩1转角的液压转盘轴承8;所述转动轴2的直径Dh与基础叶轮的直径D0的比值为0.21~0.28,导流罩1的中间段直径D1与基础叶轮的直径D0的比值为1.05~1.13,导流罩1的进水侧5的直径D2与基础叶轮的直径D0的比值为1.20~1.27,导流罩1的出水侧6的直径D3与基础叶轮的直径D0的比值为1.68~1.75;基础叶轮的叶片4受到水流的冲击而与转动轴2连动旋转。
实施例2:
结合图2至图5,本发明所述的呈扭曲形状的叶片4的每个截面的安装角的参数如表3所示,所述呈扭曲形状的叶片4的每个截面的弦长的参数如表4所示,
表3:
截面序号 安装角(°) 截面序号 安装角(°)
1002 40.14 1012 20.29
1003 38.23 1013 18.67
1005 35.27 1015 15.63
1006 32.69 1016 14.13
1007 30.23 1017 12.58
1008 27.94 1018 10.86
1009 25.81 1019 8.66
1010 23.84 1020 5.92
从叶根到叶尖安装角与截面个数为6次方拟合,安装角拟合方程为:
Y=-9.21×10-7x6+8.33×10-5x5-3.71×10-3x4+8.39×10-2x3-0.899x2+2.06x+38.86;
表4:
Figure PCTCN2017115450-appb-000001
Figure PCTCN2017115450-appb-000002
呈扭曲形状的叶片4从叶根到叶尖叶片的弦长与截面个数为7次方拟合,弦长拟合方程为:
Y=-9.60×10-8x7+6.85×10-6x6-1.99×10-4x5+3.07×10-3x4-2.64×10-2x3+1.21×10-1x2-2.18×10-1x+0.37。
实施例3:
结合图1,本发明所述的轮毂3的形状呈球面凸起,轮毂3的长度L0与导流罩1的中间段长度L1的比值为0.29~0.36,导流罩1的进口段长度L2与导流罩1的中间段长度L1的比值为0.08~0.15,导流罩1的出口段长度L3与导流罩1的中间段长度L1的比值为0.51~0.58,支撑轴7的直径Dp与导流罩1的总长度(L1+L2+L3)的比值为0.2~0.3,支撑轴7的中心至导流罩1的前端距离(L4+0.5Dp)与导流罩1的总长度(L1+L2+L3)的比值为0.45~0.65,液压转盘轴承8至导流罩1下部的距离H1与支撑轴7的直径Dp的比值为1.2~2.6,液压转盘轴承8的高度Hp与支撑轴7的直径Dp的比值为0.15-0.35;当来流方向不垂直于导流罩1的进水侧5入口平面时,支撑轴7中电机启动,通过液压转盘轴承8调节导流罩1的转角至最佳迎流角;考虑到结构稳定性及潮流微弱的来流变化,液压转盘轴承8调节导流罩1的角度为-8度至+8度。
实施例4:
结合图1,本发明所述的导流罩1的垂直来流方向的各个界面均为矩形,各个矩形的高度保持不变,垂直来流方向的界面中,导流罩1与轮毂3的中心轴对称;导流罩1的各个俯视截面相等、两段为喇叭形、中间通过流线形过渡到直线。
下面结合附图进一步公开本发明的主要部件尺寸的具体实施例。
实施例5:
结合图1,本发明所述导流罩1的进口直径为302cm、基础转轮直径为240cm,转动轴直径为50cm,导流罩1的中间段直径为270cm,导流罩1的出口段直径为238cm;导流罩1的进口段长度为22cm、中间段长度144cm、出口段长度为84cm。支撑轴7的长度为50cm,当来流方向与导流罩1的进水侧入口平面夹角为85度时,液压转盘轴承8调节导流罩1的相对初始角度为5度,使 来流方向垂直于导流罩1的进水侧入口平面。
实施例6:
结合图1,本发明所述导流罩1的进口直径为453cm、基础转轮的直径为356cm,转动轴2的直径为75cm,导流罩1的中间段直径为405cm,导流罩1的出口段直径为624cm;导流罩1的进口段长度为33cm、中间段长度为216cm、出口段长度为125cm;支撑轴7的长度为110cm,当来流方向与导流罩1的进水侧入口平面夹角为82度时,液压转盘轴承8调节导流罩1的相对初始角度为8度,使来流方向垂直于导流罩1的进水侧入口平面。
经试验验证,本发明的一种基于实时可调导流罩转角的多级潮流能水轮机在1m/s以上的流速情况下即可自启动,并且具有高效率。相对于传统的筑坝发电,运用本发明的潮流能发电水轮机,不仅能够很好的保护自然环境,而且还大大降低了发电机组的造价成本,达到高效利用潮流能的目的。
本发明的具体实施方式中未涉及的说明属于本领域公知的技术,可参考公知技术加以实施。
本发明经反复试验验证,取得了满意的试用效果。
以上具体实施方式及实施例是对本发明提出的一种基于实时可调导流罩转角的多级潮流能水轮机技术思想的具体支持,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在本技术方案基础上所做的任何等同变化或等效的改动,均仍属于本发明技术方案保护的范围。

Claims (4)

  1. 一种基于实时可调导流罩转角的多级潮流能水轮机,包括导流罩(1)、固定设置在转动轴(2)上的轮毂(3)、固定设置在轮毂(3)上的基础叶轮,所述转动轴(2)、轮毂(3)和基础叶轮均设置于导流罩(1)内,其特征在于,还包括实时可调导流罩(1)转角的支撑轴(7)、带半径可变的双曲螺线螺旋形叶片(9)的增能转轮,所述增能转轮位于导流罩(1)的出口端,所述双曲螺线螺旋形叶片(9)是根据双曲螺线的螺旋线沿转动轴(2)的轴向逐渐拉伸,呈空间交叉扭曲形状并均匀分布设置在转动轴(2)的周向内壁上,以所述转动轴(2)为中心旋转面的双曲螺线螺旋形叶片(9)的各截面的交点为原点建立坐标系,所述双曲螺线螺旋形叶片(9)在转动轴(2)外周上,不同轴向距离下的截面翼型曲线上半径最大处的关键点的坐标以如下方式表示,以X代表双曲螺线螺旋形叶片(9)的截面翼型曲线上的关键点的空间横坐标值,以Y代表双曲螺线螺旋形叶片(9)的截面翼型曲线上的关键点的空间纵坐标值,双曲螺线螺旋形叶片(9)的截面翼型距离轮毂(3)的前缘轴向102cm处的参数参见表1,
    表1:
    序号 X Y 序号 X Y 1 -11.6497 -8.4642 7 -10.5696 -10.1952 2 -12.9441 -9.4046 8 -11.8313 -11.2449 3 -15.533 -11.2855 9 -14.3449 -13.3561 4 -18.1219 -13.1664 10 -16.8479 -15.48 5 -20.7108 -15.0473 11 -19.3428 -17.6133 6 -23.2996 -16.9282 12 -21.8319 -19.7534
    拟合后的两条曲线方程分别为:
    双曲螺线螺旋形叶片(9)的左弦:y=-0.0001x3-0.0009x+0.7187x-0.0273;
    双曲螺线螺旋形叶片(9)的右弦:y=-0.0038x2+0.7609x-1.7670;
    距离轮毂的前缘轴向132cm处的参数参见表2,
    表2:
    序号 X Y 序号 X Y 1 -49.9814 29.3239 7 -46.5993 33.8564 2 -55.5149 32.6196 8 -51.777 37.6182 3 -61.0502 35.9122 9 -56.9547 41.38 4 -66.587 39.2024 10 -62.1324 45.1418 5 -77.6637 45.7775 11 -72.4879 52.6655 6 -83.203 49.0634 12 -77.6656 56.4273
    拟合后的两条曲线方程分别为:
    双曲螺线螺旋形叶片(9)的左弦:y=-0.0002x2-0.6118x-0.8041;
    双曲螺线螺旋形叶片(9)的右弦:y=-0.7267x+0.0004;
    所述导流罩(1)的两端分别为进水侧(5)和出水侧(6),水流从所述进水侧(5)沿轴向流向所述出水侧(6);所述基础叶轮包括3枚呈扭曲形状的叶片(4),导流罩(1)的下端与实时可调导流罩(1)转角的支撑轴(7)固定连接,所述支撑轴(7)的中部设有用于控制导流罩(1)转角的液压转盘轴承(8);所述转动轴(2)的直径Dh与基础叶轮的直径D0的比值为0.21~0.28,导流罩(1)的中间段直径D1与基础叶轮的直径D0的比值为1.05~1.13,导流罩(1)的进水侧(5)的直径D2与基础叶轮的直径D0的比值为1.20~1.27,导流罩(1)的出水侧(6)的直径D3与基础叶轮的直径D0的比值为1.68~1.75;基础叶轮的叶片(4)受到水流的冲击而与转动轴(2)连动旋转。
  2. 根据权利要求1所述的一种基于实时可调导流罩转角的多级潮流能水轮机,其特征在于,所述呈扭曲形状的叶片(4)的每个截面的安装角的参数如表3所示,所述呈扭曲形状的叶片(4)的每个截面的弦长的参数如表4所示,
    表3:
    截面序号 安装角(°) 截面序号 安装角(°) 1002 40.14 1012 20.29 1003 38.23 1013 18.67 1005 35.27 1015 15.63 1006 32.69 1016 14.13 1007 30.23 1017 12.58 1008 27.94 1018 10.86 1009 25.81 1019 8.66 1010 23.84 1020 5.92
    从叶根到叶尖安装角与截面个数为6次方拟合,安装角拟合方程为:
    Y=-9.21×10-7x6+8.33×10-5x5-3.71×10-3x4+8.39×10-2x3-0.899x2+2.06x+38.86;
    表4:
    Figure PCTCN2017115450-appb-100001
    Figure PCTCN2017115450-appb-100002
    呈扭曲形状的叶片(4)从叶根到叶尖的弦长与截面个数为7次方拟合,弦长拟合方程为:
    Y=-9.60×10-8x7+6.85×10-6x6-1.99×10-4x5+3.07×10-3x4-2.64×10-2x3+1.21×10-1x2-2.18×10-1x+0.37。
  3. 根据权利要求2所述的一种基于实时可调导流罩转角的多级潮流能水轮机,其特征在于,所述轮毂(3)的形状呈球面凸起,轮毂(3)的长度L0与导流罩(1)的中间段的长度L1的比值为0.29~0.36,导流罩(1)的进口段的长度L2与导流罩(1)的中间段的长度L1的比值为0.08~0.15,导流罩(1)的出口段的长度L3与导流罩(1)的中间段的长度L1的比值为0.51~0.58,支撑轴(7)的直径Dp与导流罩(1)的总长度(L1+L2+L3)的比值为0.2~0.3,支撑轴(7)的中心至导流罩(1)的前端距离(L4+0.5Dp)与导流罩(1)的总长度(L1+L2+L3)的比值为0.45~0.65,液压转盘轴承(8)至导流罩(1)下部的距离H1与支撑轴(7)的直径Dp的比值为1.2~2.6,液压转盘轴承(8)的高度Hp与支撑轴(7)的直径Dp的比值为0.15-0.35;当来流方向不垂直于导流罩(1)的进水侧(5)入口平面时,支撑轴(7)中电机启动,通过液压转盘轴承(8)调节导流罩(1)的转角,该转角的角度为-8度至+8度。
  4. 根据权利要求3所述的一种基于实时可调导流罩转角的多级潮流能水轮机,其特征在于,所述导流罩(1)的垂直来流方向的各个界面均为矩形,各个矩形的高度保持不变,垂直来流方向的界面中,导流罩(1)与轮毂(3)的中心轴对称;导流罩(1)的各个俯视截面相等、两段为喇叭形、中间段通过流线形过渡到直线。
PCT/CN2017/115450 2017-09-26 2017-12-11 一种基于实时可调导流罩转角的多级潮流能水轮机 WO2019061841A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710881025.0 2017-09-26
CN201710881025.0A CN107524557B (zh) 2017-09-26 2017-09-26 一种基于实时可调导流罩转角的多级潮流能水轮机

Publications (1)

Publication Number Publication Date
WO2019061841A1 true WO2019061841A1 (zh) 2019-04-04

Family

ID=60736208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115450 WO2019061841A1 (zh) 2017-09-26 2017-12-11 一种基于实时可调导流罩转角的多级潮流能水轮机

Country Status (2)

Country Link
CN (1) CN107524557B (zh)
WO (1) WO2019061841A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109440745B (zh) * 2018-11-28 2020-12-08 王杰 一种增压进水的农田水利灌溉沟渠的河水引进导流装置
CN109681369A (zh) * 2018-11-29 2019-04-26 河海大学 一种带等径螺线形尾水流增流装置的增流式智能水轮机系统
CN109322777A (zh) * 2018-11-29 2019-02-12 河海大学 一种用于增流式智能水轮机系统的尾水流增流装置
CN109667699A (zh) * 2018-11-29 2019-04-23 河海大学 一种用于增流式智能水轮机系统的尾水流状态控制器
CN109681366A (zh) * 2018-11-29 2019-04-26 河海大学 带有连锁线形尾水流增流装置的智能水轮机系统
CN109667695A (zh) * 2018-11-29 2019-04-23 河海大学 具有唢呐形尾水流增流装置的增流式水轮机系统
CN109611264A (zh) * 2018-11-29 2019-04-12 河海大学 一种带渐伸线形尾水流增流装置的增流式智能水轮机系统
CN109854440A (zh) * 2018-11-29 2019-06-07 河海大学 一种带流线形尾水流增流装置的增流式智能水轮机系统
CN109854439A (zh) * 2018-11-29 2019-06-07 河海大学 带有伯努利螺线形尾水流增流装置的增流式水轮机系统
CN109404200A (zh) * 2018-11-29 2019-03-01 河海大学 具有黄金螺线形尾水流增流装置的智能水轮机系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413472A (zh) * 2008-11-27 2009-04-22 上海交通大学 河道水流自由式发电装置
CN101737224A (zh) * 2009-12-22 2010-06-16 华南理工大学 内外套轴单灯泡体贯流式的两级转轮水轮机
CN101889128A (zh) * 2007-10-04 2010-11-17 斯蒂芬·马克·韦斯特 涡轮组件
DE102011116682A1 (de) * 2011-10-21 2013-04-25 Rüdiger Ufermann "Anordnung für ein Meeresströmungskraftwerk für geringe Strömungsgeschwindigkeiten"
CN103502632A (zh) * 2011-04-27 2014-01-08 约尼·约凯拉 水力涡轮机和水电站
CN103939264A (zh) * 2014-05-04 2014-07-23 钟群明 水流发电机组
CN104179625A (zh) * 2014-07-31 2014-12-03 河海大学 直管式超微型水轮机
CN105736230A (zh) * 2016-02-02 2016-07-06 河海大学 一种带等速螺旋形叶片的水平轴潮流能水轮机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH158916A (de) * 1931-10-20 1932-12-15 Weber Wilhelm Wasserturbine.
CN103061964B (zh) * 2007-11-16 2015-05-13 自然能技术有限公司 发电机
CN202832943U (zh) * 2012-09-25 2013-03-27 吴春根 一种水流发电机
CN105697224B (zh) * 2016-02-02 2016-09-28 河海大学 一种利用潮流能发电的斐波那契螺旋形水轮机
CN105736229B (zh) * 2016-02-02 2017-12-26 河海大学 一种带喇叭螺旋形叶片的水平轴潮流能水轮机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101889128A (zh) * 2007-10-04 2010-11-17 斯蒂芬·马克·韦斯特 涡轮组件
CN101413472A (zh) * 2008-11-27 2009-04-22 上海交通大学 河道水流自由式发电装置
CN101737224A (zh) * 2009-12-22 2010-06-16 华南理工大学 内外套轴单灯泡体贯流式的两级转轮水轮机
CN103502632A (zh) * 2011-04-27 2014-01-08 约尼·约凯拉 水力涡轮机和水电站
DE102011116682A1 (de) * 2011-10-21 2013-04-25 Rüdiger Ufermann "Anordnung für ein Meeresströmungskraftwerk für geringe Strömungsgeschwindigkeiten"
CN103939264A (zh) * 2014-05-04 2014-07-23 钟群明 水流发电机组
CN104179625A (zh) * 2014-07-31 2014-12-03 河海大学 直管式超微型水轮机
CN105736230A (zh) * 2016-02-02 2016-07-06 河海大学 一种带等速螺旋形叶片的水平轴潮流能水轮机

Also Published As

Publication number Publication date
CN107524557A (zh) 2017-12-29
CN107524557B (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
WO2019061841A1 (zh) 一种基于实时可调导流罩转角的多级潮流能水轮机
US4398096A (en) Aero electro turbine
CN106593744A (zh) 一种布置了潮流能转轮的竖井贯流式水轮机
CN107237718A (zh) 一种吸收潮汐能的多级叶轮转动装置
WO2020010872A1 (zh) 一种超低水头水力发电机
CN109441691B (zh) 一种尾水管带整流板混流式水轮机
CN203906174U (zh) 一种涡流式动力机构
CN111878282A (zh) 潮流双转轮组合水轮机
CN201433854Y (zh) 螺旋形柔性叶片涡轮机
CN101571093A (zh) 离心式水轮机
CN108361145B (zh) 一种基于传统威尔斯式透平进行优化的自俯仰控制叶片式透平
CN103590962B (zh) 一种用于微水头的水泵水轮机机组
WO2019061840A1 (zh) 一种复合式多级潮流能发电的水轮机
CN114776520B (zh) 一种savonius透平增压泵
CN201065807Y (zh) 高比速整装轴流定桨式水轮发电机组
WO2019061839A1 (zh) 一种带增能转轮的潮流能水轮机
CN102926912B (zh) 一种升力型垂直轴水轮机
CN109185009A (zh) 一种无源自适应往返双向水流的叶轮装置
US1748892A (en) Hydraulic process and apparatus
CN111749838B (zh) 一种河流发电装置
CN2484415Y (zh) 一种水力、风力发电机叶轮
CN204572334U (zh) 一种低速风力双重引射混合器
CN108412668B (zh) 一种双涵道水轮机发电系统
CN207406432U (zh) 一种基于实时可调导流罩转角的潮流能水轮机
CN111577508A (zh) 一种带有双进口式蜗壳的高比转速轴流式水轮机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927473

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927473

Country of ref document: EP

Kind code of ref document: A1