WO2023025209A1 - 等高支撑结构生成方法、装置、电子设备及存储介质 - Google Patents

等高支撑结构生成方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023025209A1
WO2023025209A1 PCT/CN2022/114589 CN2022114589W WO2023025209A1 WO 2023025209 A1 WO2023025209 A1 WO 2023025209A1 CN 2022114589 W CN2022114589 W CN 2022114589W WO 2023025209 A1 WO2023025209 A1 WO 2023025209A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
unit
contour
point
support
Prior art date
Application number
PCT/CN2022/114589
Other languages
English (en)
French (fr)
Inventor
易瑜
李翼龙
黄文界
Original Assignee
深圳市创必得科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市创必得科技有限公司 filed Critical 深圳市创必得科技有限公司
Publication of WO2023025209A1 publication Critical patent/WO2023025209A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/10Constructive solid geometry [CSG] using solid primitives, e.g. cylinders, cubes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/20Indexing scheme for editing of 3D models
    • G06T2219/2008Assembling, disassembling

Definitions

  • This application belongs to three-dimensional (Threee Dimension, 3D) printing model preprocessing technology field, specifically related to contour support structure generation method, device, electronic equipment and storage medium.
  • 3D printing technology is a new rapid prototyping technology based on digital models. It manufactures models by layer-by-layer printing. It is a completely different forming technology from traditional mold manufacturing.
  • 3D preprocessing software is generally used to preprocess the 3D model composed of triangular mesh splicing generated by industrial design software such as SOLIDWORKS, and then according to the generated slice data.
  • Light curing 3D printing The process of 3D printing is to first divide the digital model into several layer slices according to the specified layer height, and print layer by layer from low to high. Each layer is superimposed on the basis of the previous layer. If the current If the upper layer of the layer is empty, the current layer cannot be supported, and the printing will fail at this position. Therefore, it is necessary to add equal-height support units at the suspended position of the model to support the model body.
  • a single support unit can be manually added at a time, or multiple support units can be automatically added at one time for the entire model.
  • the speed of manually adding a single support unit is too slow, the workload is large, and the efficiency is too low; while the method of automatically adding multiple support units for the entire model at one time, because the thickness and size parameters of multiple support units are the same, if all If thicker support units are used, the support units are not easy to cut, which will increase the difficulty of removing the support units after printing; if all the support units are thinner, the support units are easy to cut after printing, but during the printing process, due to the support of the center of gravity of the model The unit is too thin, and the film is easy to break, resulting in printing failure; therefore, the special needs of the special model cannot be taken into account.
  • the method of manually adding a single support at a time and the method of automatically adding multiple support units at a time for the entire model have their own disadvantages; It is necessary to use other methods of adding contour support units in batches locally, combined with the method of manually adding support units, to take into account the needs of setting specific support units for special positions and improving printing efficiency.
  • One of the purposes of the embodiments of the present application is to generate a group of uniformly distributed multiple equal-height support units at the same height position of the 3D model through one operation to realize local equal-height support units at the same height position in view of the situation in the background technology
  • the parameters of each group of contour support units can be set to the same parameters or different parameters. Evenly select different heights for the side or bottom of the model, and repeat the same height position to generate a set of multiple evenly distributed equal-height support units through one operation. All support buried point positions can also be quickly generated in batches to add support units , to achieve the effect of one-time automatic addition that is full of multiple support units.
  • the first aspect of the embodiments of the present application provides a method for generating a contour support structure, which is executed based on computer operations, and includes the following steps:
  • a group of uniformly distributed multiple contour support units are generated at the same height of the surface of the 3D model and connected between the 3D model and the zero-plane platform through the display of the human-computer interaction interface;
  • the 3D model and the overall 3D data of the plurality of contour support units are stored in a storage unit.
  • multiple points and heights are selected by repeatedly operating the contact points of the contour support units of the 3D model on the human-computer interaction interface, and it is determined to generate the contour support units multiple times, so that the contour support units in the 3D model
  • Multiple sets of uniformly distributed multiple support units of equal height are respectively generated on the surface; parameters of the multiple sets of support units of equal height include a set of identical parameters or multiple sets of different parameters.
  • storing the overall three-dimensional data of the 3D model and the plurality of equal-height support units behind the storage unit including:
  • the second aspect of the embodiment of the present application provides a method for generating a contour support structure, which is used to illustrate the process of generating a contour support unit, including the following steps:
  • Each side of the closed polygon is taken as a unit of Y millimeters, and all segment points and endpoints and A point are obtained as the first set of sampling points;
  • the 3D model and the overall 3D data of the plurality of contour support units are stored in a storage unit.
  • the L is a positive integer or a decimal
  • the Y is a positive integer or a decimal
  • the ⁇ X is an error value smaller than Y.
  • the clock direction is counterclockwise or clockwise;
  • the number of closed polygons is one or more.
  • the equal-height support unit includes: a supporting center column, a supporting folded column, and a contact point of the folded column;
  • the contact point of the folding column is arranged at the end of the supporting folding column and connected with the surface of the 3D model;
  • the root of the supporting folded column is connected to the top of the supporting center column;
  • the bottom end of the supporting center column is connected to the zero plane platform
  • the shape of the supporting center column and the supporting folded column is conical, tapered column, cylindrical, square column or rhombus.
  • the included angle between the supporting folded column and the supporting central column is any angle between 90 degrees and 180 degrees.
  • the contour support unit includes: a supporting center column, a supporting folded column, a contact point of a folded column, and a bottom supporting platform and/or truss;
  • the contact point of the folding column is set at the end of the supporting folding column and connected with the surface of the 3D model
  • the root of the supporting folded column is connected to the top of the supporting center column;
  • the bottom end of the support center column is connected to the bottom support platform or the zero plane platform;
  • the bottom support platform is connected to the zero plane platform
  • the trusses are connected between adjacent supporting columns;
  • the shape of the supporting center column, the supporting folded column, and the truss is conical, conical, cylindrical, square or rhombic;
  • the shape of the bottom support platform is flat square, flat rhombus, flat circle or flat polygon.
  • a third aspect of the embodiments of the present application provides a device for generating a contour support structure, including:
  • a first model acquiring unit configured to load a 3D model
  • a first model determining unit configured to select the 3D model
  • a function selection unit is used for selecting the contour distribution instruction module
  • the selected unit of the contact point is used to select a point A and its height and determine to generate a support unit of equal height once;
  • the support unit generates a display unit, which is used to generate a group of uniformly distributed multiple contour support units connected between the 3D model and the zero plane platform at the same height of the surface of the 3D model;
  • the storage unit is used to store the 3D model and the overall three-dimensional data of the plurality of contour support units in the storage unit.
  • a fourth aspect of the embodiments of the present application provides a device for generating a contour support structure, including:
  • the second model obtaining unit is used to obtain the triangular mesh model of the 3D model
  • a second model determination unit configured to select the 3D model
  • a triangular mesh acquisition unit configured to traverse all the triangular meshes that form the 3D model
  • a grid plane point selection unit used to select a point A on the plane where all triangular grids of the 3D model are located
  • a cross-sectional plane determination unit configured to take a cross-sectional plane perpendicular to the Z axis through the point A;
  • a slice line segment determination unit configured to intersect the cross-sectional plane with all the triangular meshes to obtain slice line segments and line segment endpoints that intersect with all the triangular meshes;
  • the closed polygon determination unit is used to connect all slice line segments end to end in order to form a closed polygon
  • Sampling point set acquisition unit used for each side of the closed polygon to take Y millimeters as a unit to take points in segments, and obtain all segment points and endpoints and A point as the first set of sampling points;
  • the extraction point set acquisition unit is used to designate a clock direction starting from point A to anchor the extraction point, and sequentially extract sampling points with a linear distance of L+ ⁇ X mm from all the sampling points in the first set, and taking all the sampling points as a second set of extraction points;
  • a support unit generating unit configured to use all the extraction points in the second set as contact points of the contour support units, and lead downwards to connect multiple contour support units between the 3D model and the zero-plane platform;
  • the storage unit is used to store the 3D model and the overall three-dimensional data of the plurality of contour support units in the storage unit.
  • a fifth aspect of the embodiments of the present application provides an electronic device, including:
  • a memory unit communicatively coupled to the at least one processor
  • the storage unit stores instructions that can be executed by the at least one processor, and when the at least one processor executes the instructions, the equal-height support structure provided by the first aspect or the second aspect of the embodiments of the present application is realized The steps to generate the method.
  • the sixth aspect of the embodiment of the present application provides a non-transitory computer-readable storage medium, the non-transitory computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the second aspect of the embodiment of the present application is implemented.
  • the steps of the method for generating a contour support structure provided in the aspect are not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to the sixth aspect.
  • a seventh aspect of the embodiments of the present application provides a computer program product, where the computer program product includes computer instructions, and when the computer instructions are executed by a computer, the method for generating a contour support structure provided in the second aspect of the embodiments of the present application is implemented.
  • the contour support structure generation method provided in the first aspect of the embodiment of the present application can facilitate the user to generate a group of uniformly distributed multiple contour support units at the same height position of the 3D model in one operation, so as to realize the equal height position
  • the batch addition of local contour support units makes the operation of adding contour support units faster when preprocessing the 3D model, reducing workload and improving efficiency.
  • a plurality of points and heights are selected through repeated operations, and the contour support units are determined to be generated multiple times, so as to generate multiple sets of uniform support structures on the surface of the 3D model.
  • Distributed multiple equal-height support units, through relatively uniform selection of points at different height positions, can achieve a rapid effect similar to automatically adding multiple equal-height support units to the entire model at one time.
  • the contour support structure generation method provided in the first aspect of the embodiment of the present application by making multiple sets of contour support units adopt multiple sets of different parameters, setting different parameters such as diameter and shape for different special positions of the 3D model, It can meet the demand for strengthening the support of the special position of the 3D model.
  • the method for generating the contour support structure provided by the second aspect of the embodiment of the present application provides a feasible program execution method, by taking points on each side of the closed polygon in units of Y millimeters, and obtaining all Segmentation points, endpoints, and point A are the first set of sampling points; the density of sampling points can be controlled by adjusting the size of Y mm. The smaller X is, the denser the sampling points are. The next step is to extract the straight line distance in pairs of L+ ⁇ X mm The sampling points can achieve higher uniformity.
  • the contour support structure generation method provided in the second aspect of the embodiment of the present application provides a feasible program execution method; by taking points in segments of each side of the closed polygon with Y mm as the unit, and obtaining all Segmentation points, endpoints, and point A are used as the first set of sampling points; then specify a clock direction starting from point A to anchor the extraction point, and extract all the sampling points in the first set in pairs.
  • the straight-line distance is L+ ⁇
  • the sampling point of X mm, and all the sampling points are taken as the second set of extraction points; the density of the contact point of the contour support unit and the quantity of the contour support unit can be controlled by adjusting the numerical value of L, when Y
  • the calculation amount of the CPU of the computer can be reduced, and the speed and response speed of adding and generating contour support units when the computer runs the 3D printing model preprocessing software are improved.
  • Fig. 1 is the flowchart of method 1 for generating contour support structure provided by the embodiment of the present application
  • Fig. 2 is a flow chart of the method 2 for generating the contour support structure provided by the embodiment of the present application;
  • FIG. 3 is a three-dimensional schematic diagram of a triangular mesh of a 3D model provided by an embodiment of the present application
  • FIG. 4 is a three-dimensional schematic diagram of the intersection of the triangular mesh and the cross-sectional plane of the 3D model provided by the embodiment of the present application;
  • 5 is a schematic top view of the intersection of the triangular mesh and the cross-sectional plane of the 3D model provided by the embodiment of the present application;
  • FIG. 6 is a schematic diagram of a closed polygon of a slice line segment provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of points taken by segments of each side of a closed polygon provided by the embodiment of the present application.
  • Fig. 8 is a schematic diagram 1 of extracting uniform intervals of sampling points provided by the embodiment of the present application.
  • Fig. 9 is a schematic diagram 2 of extracting sampling points at uniform intervals provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of the extraction points provided by the embodiment of the present application corresponding to the three-dimensional coordinate system from the two-dimensional coordinate system;
  • Fig. 11 is a schematic diagram 1 of generating a contour support unit provided by the embodiment of the present application.
  • Fig. 12 is a schematic diagram 2 of generating a contour support unit provided by the embodiment of the present application.
  • Fig. 13 is a schematic diagram of Example 1 of generating a contour support unit provided by the embodiment of the present application;
  • Fig. 14 is a schematic diagram of the second embodiment of generating the contour support unit provided by the embodiment of the present application.
  • Fig. 15 is a schematic diagram of the third embodiment of generating the contour support unit provided by the embodiment of the present application.
  • Fig. 16 is a schematic diagram of the fourth embodiment of generating the contour support unit provided by the embodiment of the present application.
  • Fig. 17 is a structural diagram of the first contour support structure generation device provided by the embodiment of the present application.
  • Fig. 18 is a structural diagram of a second contour support structure generation device provided by the embodiment of the present application.
  • Fig. 19 is a structural block diagram 1 of the electronic device provided by the embodiment of the application.
  • Fig. 20 is a structural block diagram 2 of the electronic device provided by the embodiment of the application.
  • Fig. 21 is the subsequent manufacturing flow chart 1 of the contour support structure generation method 1 provided by the embodiment of the present application.
  • FIG. 22 is a flow chart 2 of the subsequent manufacturing of the contour support structure generation method 1 provided in the embodiment of the present application.
  • Triangular mesh model 1 closed polygon 10; triangular mesh 11; point A 12; end point 13; slice line segment 14; segmentation point 15; extraction point 16; cross-sectional plane 20; Supporting center column 301; supporting folded column 302; folded column contact point 303; bottom support platform 304; hidden contour line 305; truss 306; zero plane platform 40;
  • FIG. 1 is a flow chart of a method 1 for generating a contour support structure provided by an embodiment of the present application. As shown in Figure 1, the contour support structure generation method 1 includes the following steps performed by computer-based operations:
  • a group of uniformly distributed multiple contour support units are generated at the same height of the surface of the 3D model through the human-computer interaction interface and connected between the 3D model and the zero-plane platform;
  • step S06 subsequent slicing and 3D printing manufacturing steps are also included, and the subsequent steps include:
  • step S04 of the method multiple point heights are selected through repeated operations and the contour support units are determined to be generated multiple times, and multiple groups of uniformly distributed contour support units are respectively generated on the surface of the 3D model; the multiple groups of contour support units
  • the parameters of the contour support unit between different groups in include the same set of parameters or multiple sets of different parameters.
  • FIG. 2 is a flow chart of method 2 for generating a contoured support structure provided by an embodiment of the present application.
  • the equal-height support structure generation method 2 includes the following steps for illustrating the generation process of the equal-height support unit:
  • said L is a positive integer or a decimal
  • said Y is a positive integer or a decimal
  • said ⁇ X is an error value smaller than Y.
  • FIG. 3 is a perspective schematic diagram of a triangular mesh of a 3D model provided by an embodiment of the present application.
  • the triangular mesh model 1 of the 3D model can be obtained; the surface of the entire 3D model is approximately formed by the triangular mesh 11; in method 1, the user uses The mouse randomly selects a point A 12 on the surface of the 3D model; corresponding to step SS04 in method 2, selects a point A 12 on the plane of the triangular mesh 11 of the 3D model.
  • the projection point where the coordinate position of the mouse on the screen on the human-computer interaction interface is projected onto the plane of the triangular grid 11 is the point A 12 .
  • FIG. 4 is a perspective schematic diagram of the intersection of a triangular mesh and a cross-sectional plane of a 3D model provided by an embodiment of the present application.
  • cross-section plane 20 perpendicular to the Z axis is taken through point A 12;
  • Cross-section plane 20 intersects with all triangular meshes 11 in Figure 4 to obtain cross-section plane 20 A series of slice line segments 14 and endpoints 13 of the slice line segments.
  • FIG. 5 is a schematic top view of the intersection of the triangular mesh and the cross-sectional plane of the 3D model provided by the embodiment of the present application.
  • Fig. 5 same as Fig. 4, corresponding to step SS05 in method 2, cross-section plane 20 perpendicular to Z-axis is taken through point A 12;
  • Cross-section plane 20 intersects with all triangular grids 11 in Fig. 5 to obtain transverse A series of slice segments 14 on the section plane 20 and endpoints 13 of the slice segments.
  • FIG. 6 is a schematic diagram of a closed polygon of a slice line segment provided by an embodiment of the present application.
  • cross-section plane 20 intersects with all triangular meshes 11 among Fig. 4 and Fig. 5, the slice line segment 14 of each triangular mesh and the end point 13 of slice line segment;
  • the slice line segments 14 of each triangular mesh 11 are connected end to end in turn to form a closed polygon 10; the position of point A 12 in Fig. 6 falls in the middle of a slice line segment 14, and this is because in Fig. The point falls in the middle of the plane of the triangular mesh 11.
  • FIG. 7 is a schematic diagram of point selection for each side segment of a closed polygon provided by the embodiment of the present application.
  • each side of the closed polygon 10 is taken as a unit of Y mm, and points are obtained to include all segment points 15 and end points 13, and then A point 12 is added, and These sampling points are taken as the first set; the reason for adding point A 12 is that the follow-up contour support units 30 will take point A as the initial contact point, and be evenly arranged clockwise or counterclockwise.
  • FIG. 8 is a schematic diagram 1 of extracting uniform intervals of sampling points provided by the embodiment of the present application. As shown in Figure 8, corresponding to step SS09 in method 2, specify a clock direction starting from point A to anchor the extraction point, and extract all the sampling points in the first set in pairs with a linear distance of L+ ⁇ X mm The sampling points, and all the sampling points are taken as the second set of extraction points; in Fig.
  • step SS09 L+ ⁇ X mm is aimed at the situation that when the end of the L length is just between two sampling points, the extraction point needs to obtain a sampling point larger than the L length as the extraction point, so ⁇ X is an error value smaller than Y , used for point correction. In this way, it can be ensured
  • FIG. 9 is a schematic diagram 2 of extracting uniform intervals of sampling points provided by the embodiment of the present application. As shown in FIG. 9 , compared with FIG. 8 , the detailed segmentation point 15 is omitted in FIG. 9 , so the whole schematic diagram is more concise.
  • the points circled in Fig. 9 are the positions of the extraction points 16, and all the extraction points are taken as the second set, and these points will be used as the contact points of the contour support unit 30 and the model surface.
  • FIG. 10 is a schematic diagram of mapping the extraction points from the two-dimensional coordinate system to the three-dimensional coordinate system provided by the embodiment of the present application.
  • the extraction points circled by each circle in the closed polygon 10 in the XY two-dimensional coordinate system correspond to the XYZ three-dimensional coordinate system, and the extraction points 16 are evenly distributed on the same hidden contour line 305 .
  • FIG. 11 is a schematic diagram 1 of generating a contour support unit provided by an embodiment of the present application.
  • a uniform 9 extraction points 16 are distributed, and these 9 extraction points 16 are located on the same hidden contour line 305; these 9 extraction points 16 are also the contact points of the contour support unit described in step SS10 in method 2; in Fig. 11
  • the extraction point 16 is located at the same position as the folding column contact point 303;
  • the equal-height support unit 30 includes: a supporting center column 301, a supporting folded column 302, and a folded column contact point 303; Surface contact connection; the root of the support folded column 302 is connected to the top of the support center column 301; the bottom end of the support center column 301 is connected to the zero plane platform 40; the shape of the support center column 301 and the support fold column 302 It can be conical, conical, cylindrical, square or rhombic.
  • the supporting center column 301 in FIG. 11 is cylindrical, and the supporting folded column 302 is conical cylindrical;
  • the human-computer interaction interface shows that a group of 9 uniformly distributed support units 30 connected to Between the 3D model 100 and the zero plane platform 40 .
  • FIG. 12 is a schematic diagram 2 of generating a contour support unit provided by an embodiment of the present application.
  • a bottom support platform 304 has been added in each contour support unit 30 in Figure 12; the bottom end of the support center column 301 is connected to the bottom support platform 304; The bottom support platform 304 is connected to the zero-plane platform 40; the support center column 301 in this figure is cylindrical, and the support folding column 302 is a cone-shaped column; the shape of the bottom support platform can be flat Square, flat rhombus, flat circle or flat polygon; what the bottom support platform 40 described in Fig. 12 adopts is flat square.
  • Fig. 13 is the generation example 1 of the contour support unit provided by the present application.
  • FIG. 13 taking a 3D model 100 in the shape of a bat as an example, it exemplarily shows that there are a plurality of folded column contact points 303 evenly distributed on the hidden contour 305;
  • Point 303 leads down a plurality of equal-height support units 30 to be connected between the upper sphere of the 3D model 100 and the zero-plane platform 40;
  • each equal-height support unit 30 includes: a support center column 301, a support fold column 302, a fold Column contact point 303, bottom support platform 304;
  • the folded column contact point 303 is arranged at the end of the support folded column 302 and connected with the surface of the 3D model 100;
  • the root of the support folded column 302 is connected to the support center column 301 Top;
  • the bottom end of the support center column 301 is connected to the bottom support platform 304;
  • the bottom support platform 304 is connected to the zero plane platform 40; the overlapping positions
  • the angle between the supporting folded column 302 and the supporting center column 301 can be any angle, but in general practical use, when the included angle is less than 90 degrees, it is easy to cause printing failure in the 3D printing process.
  • the included angle between the column 302 and the support center column 301 may be 180 degrees, and at this time the contour support unit 30 is generally supported at the lowest point of the 3D model.
  • Fig. 14 is the second example of generation of the contour support unit provided by the present application.
  • a truss 306 is added between a plurality of equal-height support units 30, and the truss 306 is connected between adjacent support columns 301; the shape It is conical, conical column, cylindrical, square column or rhombus-shaped; the function of the truss 306 is to enhance the lateral stability of the support center column 301, so that multiple equal-height support units 30 are horizontally connected as a whole, It is beneficial to enhance the stability of the support structure of the overall model, and prevent the failure of the entire model due to the failure of a single contour support unit during the 3D printing process.
  • the truss 306 in FIG. 14 adopts two cylinders crossing each other to enhance the connection strength between the supporting central columns 301 of the printed model.
  • Fig. 15 is the generation embodiment 3 of the contour support unit provided by the present application.
  • Fig. 15 takes a 3D model 100 in the shape of a notched square as an example, exemplarily showing that there are a plurality of folded column contact points 303 evenly distributed on the hidden contour 305; correspondingly, the folded column
  • the contact point 303 leads down a plurality of equal-height support units 30 to be connected between the upper sphere of the 3D model 100 and the zero-plane platform 40; wherein, each equal-height support unit 30 includes: a support center column 301, a support folded column 302, The folding column contact point 303, the bottom support platform 304; the folding column contact point 303 is arranged at the end of the supporting folding column 302 and connected with the surface of the 3D model 100; the root of the supporting folding column 302 is connected to the supporting center column 301 The top of the support center column 301 is connected to the bottom support platform 304; the bottom support platform 304 is connected to the zero plane platform 40; in
  • Fig. 15 has two sets of hidden contour lines 305 at the same height in the lower part of the 3D model 100; Polygons; therefore, in combination with method 2 of the present application, it can be seen that when the 3D model 100 has multiple branch features, if a plurality of independent closed plane figures are obtained after the intersection of the cross-sectional plane 20 and the 3D model 100, the number of closed polygons for multiple.
  • Fig. 16 is the generation embodiment 4 of the contour support unit provided by the present application.
  • a truss 306 is added between a plurality of equal-height support units 30, and the truss 306 is connected between adjacent support columns 301; the shape It is conical, conical column, cylindrical, square column or rhombus-shaped; the function of the truss 306 is to enhance the lateral stability of the support center column 301, so that multiple equal-height support units 30 are horizontally connected as a whole, It is beneficial to enhance the stability of the support structure of the overall model, and prevent the failure of the entire model due to the fracture of a single support unit during the 3D printing process.
  • Fig. 17 is a structural diagram of the first contour support structure generation device provided by the embodiment of the present application. As shown in Figure 17, the first contour support structure generation device provided by the embodiment of the present application includes:
  • a first model acquiring unit 501 configured to load a 3D model
  • the contact point selection unit 504 is used to select a point A and its height and determine the support of the generated model once;
  • the support unit generation display unit 505 is used to generate a group of evenly distributed multiple contour support units at the same height of the surface of the 3D model and connect them between the 3D model and the zero-plane platform;
  • the storage unit 506 is configured to store the 3D model and the overall 3D data of the plurality of contour support units in the storage unit.
  • FIG. 18 is a structural diagram of a second contour support structure generation device provided by an embodiment of the present application. As shown in Figure 18, the second contour support structure generation device provided by the embodiment of the present application includes:
  • a second model acquisition unit 601 configured to acquire a triangular mesh model of the 3D model
  • Triangular mesh acquisition unit 603, configured to traverse all the triangular meshes that form the 3D model
  • Grid plane point selection unit 604 used to select a point A on the triangular grid plane of the 3D model
  • a cross-sectional plane determining unit 605, configured to take a cross-sectional plane perpendicular to the Z axis through point A;
  • Slice line segment determining unit 606 used to intersect the cross-sectional plane with all triangular meshes to obtain the slice line segment intersecting with the triangular meshes and the endpoint of the line segment;
  • a closed polygon determining unit 607 configured to connect all slice line segments end-to-end in turn to form a closed polygon
  • Sampling point set acquisition unit 608 for each side of the closed polygon with Y millimeters as the unit segmented points, and obtain all segmented points and endpoints and A point as the first set of sampling points;
  • the extraction point set acquisition unit 609 is used to designate a clock direction starting from point A to anchor the extraction point, and extract the sampling points whose linear distance is L+ ⁇ X mm in pairs from all the sampling points in the first set, and All sampling points are used as the second set of extraction points;
  • the support unit generating unit 610 is configured to use all the extracted points in the second set as the contact points of the contour support units, and lead downwards to connect multiple contour support units between the 3D model and the zero-plane platform;
  • the storage unit 506 is configured to store the 3D model and the overall 3D data of the plurality of contour support units in the storage unit.
  • FIG. 19 is a structural block diagram 1 of an electronic device provided by an embodiment of the application.
  • the electronic device 70 includes: at least one processor 701 (only one is shown in FIG. 19 ) and a storage unit 506; wherein, the storage unit 506 stores instructions executable by the processor 701, so When the processor 701 executes the instructions, the steps of the method for generating a contour support structure described in Method 1 or Method 2 of the present application are implemented.
  • FIG. 20 is a structural block diagram 2 of an electronic device provided in the embodiment of the application.
  • the electronic device 70 includes: a storage unit 506, at least one processor 701 (only one is shown in FIG. 20 ), a bus 703, an input unit 704, an output unit 705, and interfaces for connecting various components ( Including high-speed interface and low-speed interface).
  • the various components are connected to each other using a bus 703, and may be mounted on a common motherboard or otherwise as desired.
  • the processor 701 can process the instructions executed in the electronic device 70, and the instructions can include instructions stored in the storage unit 506, displayed on the output unit 705, or input by the input unit 704, for example, the output unit 705 is a display device coupled to the interface , the command can be used in the Graphical User Interface (Graphical Instructions for displaying graphic information on the User Interface (GUI); the input unit 704 may include instruction input devices such as a mouse, a keyboard, and a touch screen coupled to the interface.
  • GUI Graphical User Interface
  • the input unit 704 may include instruction input devices such as a mouse, a keyboard, and a touch screen coupled to the interface.
  • multiple processors 701 and/or multiple buses 703 may be used with multiple memory units 506, if desired.
  • multiple electronic devices 70 may be connected, with each electronic device 70 providing some of the necessary operations (eg, as a server array, a set of blade servers, or a multi-processor system).
  • An embodiment of the present application provides a non-transitory computer-readable storage medium, the non-transitory computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the equal-height support structure provided by Method 2 of the present application is realized The steps to generate the method.
  • the non-transitory computer-readable storage medium may be a storage unit 506, wherein the storage unit 506 stores instructions executable by at least one processor, and when the at least one processor executes the instructions, implements the method described in Method 2 of the present application.
  • the provided contour support structure generation method may be a storage unit 506, wherein the storage unit 506 stores instructions executable by at least one processor, and when the at least one processor executes the instructions, implements the method described in Method 2 of the present application.
  • the storage unit 506 can be used to store non-transitory software programs, non-transitory computer-executable programs and modules, for example, the first model acquisition unit 501 and the first model determination unit shown in FIG. 17 502 , a function selection unit 503 , a contact point selection unit 504 ; the second model acquisition unit 601 , the second model determination unit 602 , and the grid plane point selection unit 604 shown in FIG. 18 .
  • the processor 701 executes various functional applications and data processing operations of the server by running the non-transitory software programs, instructions and modules stored in the storage unit 506, for example, realizing the method for generating contour support structures provided by Method 2 of the present application A step of.
  • the storage unit 506 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the electronic device generated by the supporting structure wait.
  • the storage unit 506 may include a high-speed random access storage unit, and may also include a non-transitory storage unit, for example, at least one magnetic disk storage unit, flash memory device or other non-transitory solid-state storage unit.
  • the storage unit 506 may include storage units located remotely relative to the processor 701 , and these remote storage units may be connected to the electronic device generated by the support structure through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input unit 704 can receive input numbers or character information, and generate key signal input related to user settings and function control of the electronic equipment generated by the support structure, such as touch screen, keypad, mouse, trackpad, touchpad, pointing stick , one or more input units such as mouse buttons, trackballs, joysticks, etc.
  • the output device 705 may include a display device, an auxiliary lighting device (for example, a light emitting diode (Light Emitting Diode, LED)) and tactile feedback devices (e.g., vibration motors), etc.
  • Display devices may include, but are not limited to, liquid crystal displays (Liquid Crystal Display, LCD), LED display and plasma display.
  • the display device may be a touch screen.
  • Step S02 in combination with Step S02, Step S03, and Step S04 in Method 1 of the present application, it is necessary to select a 3D model through the input unit 704, or select a contour distribution instruction module, or select a point A.
  • Various implementations of the systems and techniques described herein may be implemented in digital electronic circuitry, integrated circuit systems, application specific integrated circuits (Application Specific Integrated Circuit, ASIC), computer hardware, firmware, software and/or their combination. These various embodiments may include being implemented in one or more computer programs executable and/or interpreted on a programmable system including at least one programmable processor, the programmable processor.
  • the processor which may be a dedicated or general-purpose programmable processor, may receive data and instructions from and transmit data and instructions to the storage system, at least one input unit, and at least one output device.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus and/or means for providing machine instructions and/or data to a programmable processor (such as , magnetic disk, optical disk, storage unit, programmable logic device (Programmable Logic Device, PLD)), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein can be implemented on a computer having a display device (e.g., a cathode ray tube (CRT) display device for displaying information to the user. Ray Tube, CRT) or LCD monitor); and a keyboard and pointing device (such as a mouse or trackball) through which the user can provide input to the computer.
  • a display device e.g., a cathode ray tube (CRT) display device for displaying information to the user. Ray Tube, CRT) or LCD monitor
  • a keyboard and pointing device such as a mouse or trackball
  • Other kinds of devices may also be used to provide interaction with the user; for example, the feedback provided to the user may be any form of sensory feedback (e.g., visual, auditory, or tactile feedback); input, speech input, or tactile input) to receive input from the user.
  • the systems and techniques described herein can be implemented on a computing system that includes back-end components (e.g., as a data server) or a computing system that includes middleware components (e.g., an application server) or a computing system that includes front-end components (e.g., with a graphics a user computer with a user interface or web browser through which a user can interact with embodiments of the systems and techniques described herein) or a Computing systems in any combination.
  • the components of the system can be interconnected by any form or medium of digital data communication (eg, a communication network). Examples of communication networks include: Local Area Networks (Local Area Network, LAN), Wide Area Network (Wide Area Network, WAN) and the Internet.
  • a computer system may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact through a communication network.
  • the relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
  • FIG. 21 is a flow chart 1 of the subsequent manufacturing of the contour support structure generation method 1 according to the embodiment of the present application.
  • the electronic equipment 70 in this figure adopts is a computer, and its output device 705 uses a computer monitor as the human-computer interaction display interface of the method 1 or 2 of the present application; its input device 704 uses a mouse 7041 and a keyboard 7042 respectively.
  • a human-computer interaction instruction input device As shown in Figure 21, what the electronic equipment 70 in this figure adopts is a computer, and its output device 705 uses a computer monitor as the human-computer interaction display interface of the method 1 or 2 of the present application; its input device 704 uses a mouse 7041 and a keyboard 7042 respectively.
  • a human-computer interaction instruction input device As shown in Figure 21, what the electronic equipment 70 in this figure adopts is a computer, and its output device 705 uses a computer monitor as the human-computer interaction display interface of the method 1 or 2 of the present application; its input device 704 uses a mouse 7041 and a keyboard 7042 respectively
  • step S07 in Figure 1 it can be seen that after slicing the overall three-dimensional data and storing the overall three-dimensional slice data in the computer storage unit; it is also necessary to pass step S08 to import the overall three-dimensional slice data to the 3D printing device through the removable storage device 71 72 for additive printing manufacturing.
  • the removable storage device 71 mainly stores the overall three-dimensional slice data
  • the 3D printing device 72 imports the overall three-dimensional slice data in the mobile storage device 71 to perform additive printing to generate a print model 73 .
  • FIG. 22 is a flow chart 2 of subsequent manufacturing of method 1 for generating a contoured support structure according to an embodiment of the present application.
  • the electronic equipment 70 in this figure adopts is a computer, and its output device 705 uses a computer monitor as the human-computer interaction display interface of the method 1 or 2 of the present application; its input device 704 uses a mouse 7041 and a keyboard 7042 respectively.
  • a human-computer interaction instruction input device As shown in Figure 22, what the electronic equipment 70 in this figure adopts is a computer, and its output device 705 uses a computer monitor as the human-computer interaction display interface of the method 1 or 2 of the present application; its input device 704 uses a mouse 7041 and a keyboard 7042 respectively.
  • a human-computer interaction instruction input device As shown in Figure 22, what the electronic equipment 70 in this figure adopts is a computer, and its output device 705 uses a computer monitor as the human-computer interaction display interface of the method 1 or 2 of the present application; its input device 704 uses a mouse 7041 and a
  • step S07 in Figure 1 it can be seen that after slicing the overall three-dimensional data and storing the overall three-dimensional slice data in the computer storage unit; it is also necessary to pass step S08 to import the overall three-dimensional slice data to the 3D printing device through the removable storage device 71 72 for additive printing manufacturing.
  • the removable storage device 71 mainly stores the overall three-dimensional slice data
  • the 3D printing device 72 imports the overall three-dimensional slice data in the mobile storage device 71 to perform additive printing to generate a print model 73; combined with Figures 13-16 of this application
  • the printed model 73 is composed of the contour support unit 30 and the 3D model 100 .

Abstract

本申请属于3D打印模型预处理技术领域,涉及等高支撑结构生成方法、装置、电子设备及存储介质,其中,方法包括:加载3D模型;选定目标3D模型;通过人机交互界面选择支撑类功能菜单栏中的等高分布指令模块;通过人机交互界面为3D模型的等高支撑单元的接触点选定一个A点及高度并确定生成模型支撑一次;人机交互界面显示在3D模型的表面同一高度生成一组均匀分布的多个等高支撑单元连接于3D模型和零平面平台之间;将3D模型和多个等高支撑单元的整体三维数据储存于存储单元。本申请能一次操作生成一组均匀分布的多个等高支撑单元,使得添加支撑结构的操作更高效。

Description

等高支撑结构生成方法、装置、电子设备及存储介质
本申请要求于2021年08月27日在中国国家专利局提交的、申请号为202110993454.3、发明名称为“等高支撑结构生成方法、装置、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于三维(Three Dimension,3D)打印模型预处理技术领域,具体涉及等高支撑结构生成方法、装置、电子设备及存储介质。
背景技术
3D打印技术是以数字化模型为基础的新型快速成型技术,通过逐层打印的方式来制造模型,是与传统模具生产制造完全不同的成型技术。目前,在现有的光固化3D打印技术中,普遍先采用3D预处理软件对SOLIDWORKS等工业设计软件生成的三角网格拼接组成的3D模型进行模型预处理后,再根据所生成的切片数据进行光固化3D打印。3D打印处理过程为,先把数字化模型按照指定的层高分成若干个层切片,从低到高一层一层往上打印,每一层都是在前面一层的基础上进行叠加,如果当前层的上一层为空,则当前层不能被撑住,该位置就会打印失败。因此,需要在模型的悬空位置添加等高支撑单元,使模型本体受到支撑。
现有技术中,可以手动单次添加单个支撑单元,也可以针对整个模型一次自动添加多个支撑单元。但是手动单次添加单个支撑单元的方式速度太慢,工作量大,效率太低;而针对整个模型一次自动添加多个支撑单元的方式,由于多个支撑单元的粗细、大小参数一致,如果全部采用较粗的支撑单元,支撑单元不易剪断,会增加打印后去除支撑单元的难度;如果全部采用较细支撑单元,打印后支撑单元虽易剪断,但是打印过程中,由于模型的重心位置的支撑单元太细,脱膜容易断裂,造成打印失败;因此,无法兼顾特殊模型的特殊需要,采用手动单次添加单个支撑的方式和针对整个模型一次自动添加多个支撑单元的方式各有弊端;还需要采用其他局部批量添加等高支撑单元的方式,结合手动添加支撑单元的方式,来兼顾对特殊位置设定特定的支撑单元和提高打印效率的需要。
技术问题
本申请实施例的目的之一在于:针对背景技术中的情况,在3D模型的同一高度位置通过一次操作生成一组均匀分布的多个等高支撑单元,实现等高位置的局部等高支撑单元的批量添加,各组等高支撑单元的参数可以设置为相同参数,也可以设置为不同参数。对模型侧部或底部均匀选定不同高度,重复进行在同一高度位置,通过一次操作生成一组多个均匀分布的等高支撑单元的操作,全部支撑埋点位置也可快速批量生成添加支撑单元,实现一次自动添加即布满多个支撑单元的效果。
技术解决方案
为了解决上述技术问题,本申请实施例采用的技术方案是:
本申请实施例的第一方面提供一种等高支撑结构生成方法,基于计算机的操作执行,包括以下步骤:
通过计算机运行3D打印模型预处理软件并加载3D模型;
通过所述3D打印模型预处理软件的人机交互界面选定目标3D模型;
通过所述人机交互界面选择支撑类功能菜单栏中的等高分布指令模块;
通过所述人机交互界面为所述3D模型的等高支撑单元的接触点选定一个A点及高度,并确定生成等高支撑单元一次;
通过所述人机交互界面显示在所述3D模型的表面的同一高度生成一组均匀分布的多个等高支撑单元连接于所述3D模型和零平面平台之间;
将所述3D模型和所述多个等高支撑单元的整体三维数据储存于存储单元。
可选地,通过重复操作所述人机交互界面所述3D模型的等高支撑单元的接触点选定多个点及高度,并确定生成等高支撑单元多次,以在所述3D模型的表面分别生成多组均匀分布的多个等高支撑单元;所述多组等高支撑单元的参数包括一组相同的参数或多组不同的参数。
可选地,将所述3D模型和所述多个等高支撑单元的整体三维数据储存于存储单元之后,包括:
对整体三维数据进行切片并将整体三维切片数据保存于计算机存储单元;
通过可移动存储设备将整体三维切片数据导入到3D打印设备进行增材打印制造。
本申请实施例的第二方面提供一种等高支撑结构生成方法,用于说明等高支撑单元的生成过程,包括以下步骤:
获取3D模型的三角网格模型;
选定所述3D模型;
遍历拼接组成所述3D模型的所有三角网格;
在所述3D模型的三角网格平面选择一个A点;
过所述A点取垂直于Z轴的横截平面;
将所述横截平面与所述所有三角网格进行求交计算,获得与所述所有三角网格相交的切片线段及线段端点;
将所有切片线段依次首尾相连形成闭合多边形;
对所述闭合多边形的各边以Y毫米为单位分段取点,并获取全部分段点和端点以及A点作为取样点的第一集合;
指定一个时钟方向以所述A点为起始锚定提取点,对所述第一集合中的全部取样点依次两两提取直线距离为L+△X毫米的取样点,并将所述全部取样点作为提取点的第二集合;
将所述第二集合中的全部提取点作为等高支撑单元的接触点,并向下引出多个等高支撑单元连接于3D模型和零平面平台之间;
将所述3D模型和所述多个等高支撑单元的整体三维数据储存于存储单元。
可选地,所述L为正整数或小数,所述Y为正整数或小数,所述△X为小于Y的误差值。
可选地,所述时钟方向为逆时针方向或顺时针方向;
所述闭合多边形的数量为一个或多个。
可选地,所述等高支撑单元包括:支撑中柱、支撑折柱、折柱接触点;
所述折柱接触点设置于所述支撑折柱的末端并与所述3D模型的表面接触连接;
所述支撑折柱的根部连接于所述支撑中柱的顶端;
所述支撑中柱的底端连接于零平面平台;
所述支撑中柱、所述支撑折柱的形状为圆锥形、锥柱形、圆柱形、方柱形或菱柱形。
可选地,所述支撑折柱与所述支撑中柱的夹角为90度-180度之间的任意角度。
可选地,所述等高支撑单元包括:支撑中柱、支撑折柱、折柱接触点,以及底部支撑平台和/或桁架;
所述折柱接触点设置于所述支撑折柱的末端并与所述3D模型表面接触连接;
所述支撑折柱的根部连接于所述支撑中柱的顶端;
所述支撑中柱的底端连接于所述底部支撑平台或零平面平台;
所述底部支撑平台连接于零平面平台;
所述桁架连接于相邻的所述支撑中柱之间;
所述支撑中柱、所述支撑折柱、所述桁架的形状为圆锥形、锥柱形、圆柱形、方柱形或菱柱形;
所述底部支撑平台的形状为扁平方形、扁平菱形、扁平圆形或扁平多边形。
本申请实施例的第三方面提供一种等高支撑结构生成装置,包括:
第一模型获取单元,用于加载3D模型;
第一模型确定单元,用于选定所述3D模型;
功能选择单元,用于选择等高分布指令模块;
接触点选定单元,用于选定一个A点及高度并确定生成等高支撑单元一次;
支撑单元生成显示单元,用于在所述3D模型的表面的同一高度生成一组均匀分布的多个等高支撑单元连接于所述3D模型和零平面平台之间;
存储单元,用于将所述3D模型和所述多个等高支撑单元的整体三维数据储存于存储单元。
本申请实施例的第四方面提供一种等高支撑结构生成装置,包括:
第二模型获取单元,用于获取3D模型的三角网格模型;
第二模型确定单元,用于选定所述3D模型;
三角网格获取单元,用于遍历拼接组成所述3D模型的所有三角网格;
网格平面选点单元,用于在所述3D模型的所有三角网格所在的平面选择一个A点;
横截平面确定单元,用于过所述A点取垂直于Z轴的横截平面;
切片线段确定单元,用于将所述横截平面与所述所有三角网格求交计算获得与所述所有三角网格相交的切片线段及线段端点;
闭合多边形确定单元,用于将所有切片线段依次首尾相连形成闭合多边形;
取样点集合获取单元,用于对所述闭合多边形的各边以Y毫米为单位分段取点,并获取全部分段点和端点以及A点作为取样点的第一集合;
提取点集合获取单元,用于指定一个时钟方向以A点为起始锚定提取点,对所述第一集合中的全部取样点依次两两提取直线距离为L+△X毫米的取样点,并将所述全部取样点作为提取点的第二集合;
支撑单元生成单元,用于将所述第二集合中的全部提取点作为等高支撑单元的接触点,并向下引出多个等高支撑单元连接于3D模型和零平面平台之间;
存储单元,用于将3D模型和所述多个等高支撑单元的整体三维数据储存于存储单元。
本申请实施例的第五方面提供一种电子设备,包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储单元;
其中,所述存储单元存储有可被所述至少一个处理器执行的指令,所述至少一个处理器执行所述指令时实现本申请实施例的第一方面或第二方面提供的等高支撑结构生成方法的步骤。
本申请实施例的第六方面提供一种非瞬时计算机可读存储介质,所述非瞬时计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例的第二方面提供的等高支撑结构生成方法的步骤。
本申请实施例的第七方面提供一种计算机程序产品,所述计算机程序产品包括计算机指令,所述计算机指令被计算机执行时实现本申请实施例的第二方面提供的等高支撑结构生成方法。
有益效果
1.本申请实施例的第一方面提供的等高支撑结构生成方法,可以方便用户对3D模型的同一高度位置通过一次操作生成一组均匀分布的多个等高支撑单元,实现等高位置的局部等高支撑单元的批量添加,使得在对3D模型进行预处理时,添加等高支撑单元的操作速度更快,以减小工作量和提高效率。
2.本申请实施例的第一方面提供的等高支撑结构生成方法,通过重复操作选定多个点及高度,并确定生成等高支撑单元多次,以在3D模型表面分别生成多组均匀分布的多个等高支撑单元,通过对不同高度位置的进行相对均匀的选点,可以实现与对整个模型一次自动添加多个等高支撑单元相近似的快速效果。
3.本申请实施例的第一方面提供的等高支撑结构生成方法,通过使得多组等高支撑单元采用多组不同的参数,针对3D模型的不同特殊位置设置不同的直径、外形等参数,可以满足对3D模型的特殊位置加强支撑的需求。
4.本申请实施例的第二方面提供的等高支撑结构生成方法,提供了一种切实可行的程序执行方法,通过对闭合多边形的各边以Y毫米为单位分段取点,并获取全部分段点和端点以及A点作为取样点的第一集合;可以通过调控Y毫米的大小来控制取点密度,X越小,取样点越密集,下一步两两提取直线距离为L+△X毫米的取样点,可以取得更高的均匀度。
5.本申请实施例的第二方面提供的等高支撑结构生成方法,提供了一种切实可行的程序执行方法;通过对闭合多边形的各边以Y毫米为单位分段取点,并获取全部分段点和端点以及A点作为取样点的第一集合;再指定一个时钟方向以A点为起始锚定提取点,对第一集合中的全部取样点依次两两提取直线距离为L+△X毫米的取样点,并将全部取样点作为提取点的第二集合;可以通过调控L的数值大小,来控制等高支撑单元的接触点的疏密程度以及等高支撑单元的数量,当Y较大且L值也较大时,由于取样点的数量减少,可以减少计算机的CPU的运算量,提高计算机运行3D打印模型预处理软件时添加和生成等高支撑单元的速度和响应速度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的等高支撑结构生成方法1的流程图;
图2为本申请实施例提供的等高支撑结构生成方法2的流程图;
图3为本申请实施例提供的3D模型的三角网格的立体示意图;
图4为本申请实施例提供的3D模型的三角网格与横截平面相交的立体示意图;
图5为本申请实施例提供的3D模型的三角网格与横截平面相交的顶视示意图;
图6为本申请实施例提供的切片线段的闭合多边形的示意图;
图7为本申请实施例提供的闭合多边形各边分段取点的示意图;
图8为本申请实施例提供的对取样点匀距提取的示意图1;
图9为本申请实施例提供的对取样点匀距提取的示意图2;
图10为本申请实施例提供的提取点由二维坐标系对应到三维坐标系的示意图;
图11为本申请实施例提供的等高支撑单元生成示意图1;
图12为本申请实施例提供的等高支撑单元生成示意图2;
图13为本申请实施例提供的等高支撑单元生成实施例1的示意图;
图14为本申请实施例提供的等高支撑单元生成实施例2的示意图;
图15为本申请实施例提供的等高支撑单元生成实施例3的示意图;
图16为本申请实施例提供的等高支撑单元生成实施例4的示意图;
图17为本申请实施例提供的第一种等高支撑结构生成装置的结构图;
图18为本申请实施例提供的第二种等高支撑结构生成装置的结构图;
图19为申请实施例提供的电子设备的结构框图1;
图20为申请实施例提供的电子设备结构框图2;
图21为本申请实施例提供的等高支撑结构生成方法1的后续制造流程图1;
图22为本申请实施例提供的等高支撑结构生成方法1的后续制造流程图2。
标号说明:
三角网格模型1;闭合多边形10;三角网格11;A点12;端点13;切片线段14;分段点15;提取点16;横截平面20;等高支撑单元30;3D模型100;支撑中柱301;支撑折柱302;折柱接触点303;底部支撑平台304;隐藏等高线305;桁架306;零平面平台40;
第一模型获取单元501;第一模型确定单元502;功能选择单元503;接触点选定单元504;支撑单元生成显示单元505;存储单元506;第二模型获取单元601;第二模型确定单元602;三角网格获取单元603;网格平面选点单元604;横截平面确定单元605;切片线段确定单元606;闭合多边形确定单元607;取样点集合获取单元608;提取点集合获取单元609;支撑单元生成单元610;电子设备70;处理器701;计算机程序702;总线703;输入单元704;输出单元705;可移动存储设备71;3D打印设备72;打印模型73;鼠标7041;键盘7042。
本发明的实施方式
以下结合附图对本申请的示范性实施例做出说明,其中包括本申请实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本申请的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。
图1为本申请实施例提供的等高支撑结构生成方法1的流程图。如图1所示,等高支撑结构生成方法1包括基于计算机的操作执行的以下步骤:
S01、通过计算机运行3D打印模型预处理软件并加载3D模型;
S02、通过所述3D打印模型预处理软件的人机交互界面选定目标3D模型;
S03、通过其人机交互界面选择支撑类功能菜单栏中的等高分布指令模块;
S04、通过其人机交互界面为3D模型的等高支撑单元的接触点选定一个A点及高度,并确定生成等高支撑单元一次;
S05、通过人机交互界面显示在3D模型的表面的同一高度生成有一组均匀分布的多个等高支撑单元连接于3D模型和零平面平台之间;
S06、将3D模型和多个等高支撑单元的整体三维数据储存于存储单元。
此外,步骤S06之后,还包括后续的切片及3D打印制造步骤,后续步骤包括:
S07、对整体三维数据进行切片并将整体三维切片数据保存于计算机存储单元;
S08、通过可移动存储设备将整体三维切片数据导入到3D打印设备进行增材打印制造。
在本方法步骤S04中,通过重复操作选定多点高度并确定生成等高支撑单元多次,3D模型表面分别生成多组多个均匀分布的等高支撑单元;所述多组等高支撑单元中不同组之间的等高支撑单元参数包括一组相同的参数或多组不同的参数。
图2为本申请实施例提供的等高支撑结构生成方法2的流程图。如图2所示,等高支撑结构生成方法2,其包括用于说明等高支撑单元的生成过程的以下步骤:
SS01、获取3D模型的三角网格模型;
SS02、选定3D模型;
SS03、遍历拼接组成3D模型的所有三角网格;
SS04、在3D模型的三角网格平面选择一个A点;
SS05、过A点取垂直于Z轴的横截平面;
SS06、将横截平面与所有三角网格求交计算,获得与所有三角网格相交的切片线段及线段端点;
SS07、将所有切片线段依次首尾相连形成闭合多边形;
SS08、对闭合多边形的各边以Y毫米为单位分段取点,并获取全部分段点和端点以及A点作为取样点的第一集合;
SS09、指定一个时钟方向以A点为起始锚定提取点,对第一集合中的全部取样点依次两两提取直线距离为L+△X毫米的取样点,并将全部取样点作为提取点的第二集合;
SS10、将第二集合中的全部提取点作为等高支撑单元的接触点,并向下引出多个等高支撑单元连接于3D模型和零平面平台之间;
SS11、将3D模型和多个等高支撑单元的整体三维数据储存于存储单元。
在本方法步骤S08、S09中,所述L为正整数或小数,所述Y为正整数或小数,所述△X为小于Y的误差值。
图3为本申请实施例提供的3D模型的三角网格的立体示意图。如图3所示,计算机运行3D打印模型预处理软件并加载3D模型后;可以获取3D模型的三角网格模型1;整个3D模型的表面由三角网格11近似构成;在方法1中用户利用鼠标在3D模型表面随机选择一个A点12;则对应于方法2中的步骤SS04,在3D模型的三角网格11的平面选择一个A点12。具体的,在实际操作中,人机交互界面上鼠标在屏幕上的坐标位置投影于三角网格11的平面的投影点即为A点12。
图4为本申请实施例提供的3D模型的三角网格与横截平面相交的立体示意图。如图4所示,对应于方法2中的步骤SS05,过A点12取垂直于Z轴的横截平面20;图4中横截平面20与所有三角网格11相交获得横截平面20上的一系列切片线段14和切片线段的端点13。
图5为本申请实施例提供的3D模型的三角网格与横截平面相交的顶视示意图。如图5所示,与图4相同,对应于方法2中步骤SS05,过A点12取垂直于Z轴的横截平面20;图5中横截平面20与所有三角网格11相交获得横截平面20上的一系列切片线段14和切片线段的端点13。
图6为本申请实施例提供的切片线段的闭合多边形的示意图。如图6所示,由图4和图5中横截平面20与所有三角网格11相交,每个三角网格的切片线段14及切片线段的端点13;对应于方法2中的步骤SS07,将每个三角网格11的切片线段14依次首尾相连形成闭合多边形10;图6中A点12的位置落在一条切片线段14的中部,这是因为在图3中的对A点12的取点落在三角网格11的平面中部。
图7为本申请实施例提供的闭合多边形各边分段取点的示意图。如图7所示,对应于方法2中的步骤SS08,对闭合多边形10的各边以Y毫米为单位分段取点,获得包含全部分段点15和端点13,再加入A点12,并将这些取样点作为第一集合;加入A点12的原因在于后续的等高支撑单元30将会以A点为起始接触点,顺时针或逆时针均匀排列。
图8为本申请实施例提供的对取样点匀距提取的示意图1。如图8所示,对应于方法2中的步骤SS09,指定一个时钟方向以A点为起始锚定提取点,对第一集合中的全部取样点依次两两提取直线距离为L+△X毫米的取样点,并将全部取样点作为提取点的第二集合;图8中,以逆时针方向开始,由A点起始依次测定A点与其后各个取样点之间的距离,当测得某个取样点与A点之间的距离小于L毫米时,则该取样点不是提取点;当依次测得某个取样点与A点之间的距离大于或等于L毫米时,则该取样点为提取点;再以该提取点开始,依次测定该提取点与其后各个取样点之间的距离,当测得某个取样点与该提取点之间的距离小于L毫米时,则该取样点不是提取点;当依次测得某个取样点与该提取点间距离大于或等于L毫米时,则该取样点为提取点;依次类推,直到全部提取点获取完毕;需要加以说明的是,步骤SS09中,L+△X毫米针对的情况是,当L长度的末端刚好处于两个取样点之间时,则提取点需要获取大于L长度的取样点作为提取点,所以△X为小于Y的误差值,用于取点修正。这样就能够保证后续等高支撑单元30之间的距离相对更均匀。
图9为本申请实施例提供的对取样点匀距提取的示意图2。如图9所示,图9相对图8省略了细密的分段点15,所以整个示意图更为简洁。图9中圆圈圈出的点即为提取点16的位置,全部提取点作为第二集合,这些点将作为等高支撑单元30的与模型表面的接触点。
图10为本申请实施例提供的提取点由二维坐标系对应到三维坐标系的示意图。如图10所示,XY二维坐标系下的闭合多边形10中各个圆圈圈出的提取点对应到XYZ三维坐标系中,提取点16均匀分布于同一隐藏等高线305上。
图11为本申请实施例提供的等高支撑单元的生成示意图1。如图11所示,对3D模型100运用方法1或方法2,在3D模型100的表面取点一个A点12后,结合图3到图10的过程,可以最后在3D模型100的表面获得均匀分布的9个提取点16,且这9个提取点16位于同一隐藏等高线305上;这9个提取点16同时也是方法2中步骤SS10所述的等高支撑单元接触点;图11中提取点16与折柱接触点303位于同一位置;
在此基础上,对应于方法2中的步骤SS10,将这9个提取点16作为等高支撑单元接触点并向下引出多个等高支撑单元30连接于3D模型100和零平面平台40之间;在图11中,等高支撑单元30包括:支撑中柱301、支撑折柱302、折柱接触点303;所述折柱接触点303设置于支撑折柱302的末端并与3D模型100表面接触连接;所述支撑折柱302的根部连接于支撑中柱301的顶端;所述支撑中柱301的底端连接于零平面平台40;所述支撑中柱301、支撑折柱302的形状可以为圆锥形、锥柱形、圆柱形、方柱形或菱柱形,图11中所述支撑中柱301采用的是圆柱形,所述支撑折柱302采用的是锥柱形;
对应于方法1中的步骤S05,则人机交互界面显示为,在3D模型100表面同一高度上,即同一隐藏等高线305上,生成有一组均匀分布的9个等高支撑单元30连接于3D模型100和零平面平台40之间。
图12为本申请实施例提供的等高支撑单元的生成示意图2。如图12所示,在图11的基础上,图12中的每个等高支撑单元30中都增加了底部支撑平台304;所述支撑中柱301的底端连接于底部支撑平台304;所述底部支撑平台304连接于零平面平台40;本图中所述支撑中柱301采用的是圆柱形,所述支撑折柱302采用的是锥柱形;所述底部支撑平台的形状可以为扁平方形、扁平菱形、扁平圆形或扁平多边形;图12中所述底部支撑平台40采用的是扁平方形。
图13为本申请提供的等高支撑单元的生成实施例1。如图13所示,图13以一个形状为球棒的3D模型100为例,示例性的示出隐藏等高线305上均匀分布有多个折柱接触点303;相应的,由折柱接触点303向下引出多个等高支撑单元30连接于3D模型100的上部球体和零平面平台40之间;其中,每个等高支撑单元30包括:支撑中柱301、支撑折柱302、折柱接触点303、底部支撑平台304;所述折柱接触点303设置于支撑折柱302的末端并与3D模型100的表面接触连接;所述支撑折柱302的根部连接于支撑中柱301的顶端;所述支撑中柱301的底端连接于底部支撑平台304;所述底部支撑平台304连接于零平面平台40;在图13中所述底部支撑平台304相互之间重叠的位置结合为一个整体,有利于加强整体模型的支撑结构与3D打印机的成型平台的之间的粘合性,防止在3D打印环节模型脱落。具体的,所述支撑折柱302与支撑中柱301的夹角可以是任意角度,但是在一般实际使用中,夹角小于90度时容易在3D打印环节出现打印失败的情况,必要时支撑折柱302与支撑中柱301的夹角可以为180度,此时等高支撑单元30一般支撑于3D模型的最低点。
图14为本申请提供的等高支撑单元的生成实施例2。如图14所示,图14在图13的基础上,在多个等高支撑单元30之间增加了桁架306,所述桁架306连接于相邻的支撑中柱301之间;所述的形状为圆锥形、锥柱形、圆柱形、方柱形或菱柱形;所述桁架306的作用在于增强支撑中柱301的横向稳定性,使多个等高支撑单元30横向连接为一个整体,有利于增强整体模型的支撑结构的稳定性,在3D打印环节防止单个等高支撑单元断裂导致整个模型打印失败。图14中的桁架306采用的是两个圆柱进行十字交叉,以增强打印后模型的支撑中柱301之间的连接强度。
图15为本申请提供的等高支撑单元的生成实施例3。如图15所示,图15以一个形状为凹口方块的3D模型100为例,示例性的示出隐藏等高线305上均匀分布有多个折柱接触点303;相应的,由折柱接触点303向下引出多个等高支撑单元30连接于3D模型100的上部球体和零平面平台40之间;其中,每个等高支撑单元30包括:支撑中柱301、支撑折柱302、折柱接触点303、底部支撑平台304;所述折柱接触点303设置于支撑折柱302的末端并与3D模型100的表面接触连接;所述支撑折柱302的根部连接于支撑中柱301的顶端;所述支撑中柱301的底端连接于底部支撑平台304;所述底部支撑平台304连接于零平面平台40;在图15中所述底部支撑平台304相互之间重叠的位置结合为一个整体,有利于加强整体模型的支撑结构与3D打印机的成型平台的之间的粘合性,防止在3D打印环节模型脱落。
图15相较于图13的特别之处在于,图15在3D模型100的下部位置,同一高度上具有两组隐藏等高线305;这是因为横截平面20横截模型获得了两个闭合多边形;因此结合本申请的方法2,可知,当3D模型100具有多个分支特征时,若横截平面20与3D模型100相交后获得多个独立的闭合平面图形,则所述闭合多边形的数量为多个。
特别的,本实施例中,由于按照方法2,横截平面横截隐藏等高线305的位置时会产生两个闭合多边形,而A点只会落在其中一个闭合多边形上,因此另一个闭合多边形上并未指定起始锚定提取点,所以在可以将其闭合多边形上的一个随机分段点或端点指定为始锚定提取点,或者将其闭合多边形上距离A点最远或最近的分段点或端点作为起始锚定提取点,再结合方法2中步骤SS09的方法取得等高支撑单元接触点。
图16为本申请提供的等高支撑单元的生成实施例4。如图16所示,图16在图15的基础上,在多个等高支撑单元30之间增加了桁架306,所述桁架306连接于相邻的支撑中柱301之间;所述的形状为圆锥形、锥柱形、圆柱形、方柱形或菱柱形;所述桁架306的作用在于增强支撑中柱301的横向稳定性,使多个等高支撑单元30横向连接为一个整体,有利于增强整体模型支撑结构的稳定性,在3D打印环节防止单个支撑单元的断裂导致整个模型打印失败。
图17为本申请实施例提供的第一种等高支撑结构生成装置的结构图。如图17所示,本申请实施例提供的第一种等高支撑结构生成装置,包括:
第一模型获取单元501,用于加载3D模型;
第一模型确定单元502,用于选定3D模型;
功能选择单元503,用于选择等高分布指令模块;
接触点选定单元504,用于选定一个A点及高度并确定生成模型支撑一次;
支撑单元生成显示单元505,用于在3D模型的表面的同一高度生成一组均匀分布的多个等高支撑单元连接于3D模型和零平面平台之间;
存储单元506,用于将3D模型和多个等高支撑单元的整体三维数据储存于存储单元。
图18为本申请实施例提供的第二种等高支撑结构生成装置的结构图。如图18所示,本申请实施例提供的第二种等高支撑结构生成装置,包括:
第二模型获取单元601,用于获取3D模型的三角网格模型;
第二模型确定单元602,用于选定3D模型;
三角网格获取单元603,用于遍历拼接组成3D模型的所有三角网格;
网格平面选点单元604,用于在3D模型的三角网格平面选择一个A点;
横截平面确定单元605,用于过A点取垂直于Z轴的横截平面;
切片线段确定单元606,用于将横截平面与所有三角网格求交计算获得与三角网格相交的切片线段及线段端点;
闭合多边形确定单元607,用于将所有切片线段依次首尾相连形成闭合多边形;
取样点集合获取单元608,用于对闭合多边形的各边以Y毫米为单位分段取点,并获取全部分段点和端点以及A点作为取样点的第一集合;
提取点集合获取单元609,用于指定一个时钟方向以A点为起始锚定提取点,对第一集合中的全部取样点依次两两提取直线距离为L+△X毫米的取样点,并将全部取样点作为提取点的第二集合;
支撑单元生成单元610,用于将第二集合中的全部提取点作为等高支撑单元的接触点,并向下引出多个等高支撑单元连接于3D模型和零平面平台之间;
存储单元506,用于将3D模型和多个等高支撑单元的整体三维数据储存于存储单元。
图19为申请实施例提供的电子设备的结构框图1。如图19所示,电子设备70包括:至少一个处理器701(图19中仅示出一个)和一个存储单元506;其中,所述存储单元506存储有可被处理器701执行的指令,所述处理器701执行所述指令时实现本申请方法1或2所述的等高支撑结构生成方法的步骤。
图20为申请实施例提供的电子设备的结构框图2。如图20所示,电子设备70包括:存储单元506、至少一个处理器701(图20中仅示出一个)、总线703、输入单元704、输出单元705,以及用于连接各部件的接口(包括高速接口和低速接口)。各个部件利用总线703互相连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器701可以对电子设备70内执行的指令进行处理,指令可以包括存储在存储单元506中、输出单元705上显示或输入单元704输入的指令,例如,输出单元705是耦合至接口的显示设备时,指令可以是用于在图形用户界面(Graphical User Interface,GUI)上显示图形信息的指令;输入单元704可以包括耦合至接口的鼠标、键盘、触摸屏等指令输入设备。在其它实施方式中,若需要,可以将多个处理器701和/或多条总线703与多个存储单元506一起使用。同样,可以连接多个电子设备70,各个电子设备70提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器或者多处理器系统)。
本申请实施例提供一种非瞬时计算机可读存储介质,所述非瞬时计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请方法2所提供的等高支撑结构生成方法的步骤。所述非瞬时计算机可读存储介质可以是存储单元506,其中,所述存储单元506存储有可由至少一个处理器执行的指令,所述至少一个处理器执行所述指令时实现本申请方法2所提供的等高支撑结构生成方法。
存储单元506作为一种非瞬时计算机可读存储介质,可用于存储非瞬时软件程序、非瞬时计算机可执行程序以及模块,例如,图17所示的第一模型获取单元501、第一模型确定单元502、功能选择单元503、接触点选定单元504;图18所示的第二模型获取单元601、第二模型确定单元602、网格平面选点单元604。处理器701通过运行存储在存储单元506中的非瞬时软件程序、指令以及模块,以执行服务器的各种功能应用以及数据处理操作,例如,实现本申请方法2所提供的等高支撑结构生成方法的步骤。
存储单元506可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据支撑结构生成的电子设备的使用所创建的数据等。此外,存储单元506可以包括高速随机存取存储单元,还可以包括非瞬时存储单元,例如,至少一个磁盘存储单元件、闪存器件或其他非瞬时固态存储单元件。在一些实施例中,存储单元506可包括相对于处理器701远程设置的存储单元,这些远程存储单元可以通过网络连接至支撑结构生成的电子设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入单元704可接收输入的数字或字符信息,以及产生与支撑结构生成的电子设备的用户设置以及功能控制有关的键信号输入,例如,触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等输入单元。
输出装置705可以包括显示设备、辅助照明装置(例如,发光二极管(Light Emitting Diode,LED))和触觉反馈装置(例如,振动电机)等。显示设备可以包括但不限于,液晶显示器(Liquid Crystal Display,LCD)、LED显示器和等离子体显示器。在一些实施方式中,显示设备可以是触摸屏。
特别地,结合本申请方法1中的步骤S02、步骤S03、步骤S04;均需要通过输入单元704来选定3D模型,或选择等高分布指令模块,或选定一个A点。
此处描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、专用集成电路(Application Specific Integrated Circuit,ASIC)、计算机硬件、固件、软件和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入单元和至少一个输出装置接收数据和指令,并且将数据和指令传输至存储系统、至少一个输入单元和至少一个输出装置。
这些计算程序(也称作程序、软件、软件应用或者代码)包括可编程处理器的机器指令,并且可以利用高级过程和/或面向对象的编程语言和/或汇编/机器语言来实施这些计算程序。如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备和/或装置(例如,磁盘、光盘、存储单元、可编程逻辑装置(Programmable Logic Device,PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,阴极射线管(Cathode Ray Tube,CRT)或者LCD监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈或者触觉反馈);并且可以用任何形式(包括声音输入、语音输入或者触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)或者包括中间件部件的计算系统(例如,应用服务器)或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)或者包括这种后台部件、中间件部件或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(Local Area Network,LAN)、广域网(Wide Area Network,WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请公开的技术方案所期望的结果,本文在此不进行限制。
图21为本申请实施例等高支撑结构生成方法1的后续制造流程图1。如图21所示,本图中电子设备70采用的是计算机,其输出装置705采用电脑显示器作为本申请方法1或2的人机交互显示界面;其输入装置704则分别以鼠标7041、键盘7042作为人机交互指令输入设备。
结合图1中的步骤S07可知,对整体三维数据进行切片并将整体三维切片数据保存于计算机存储单元后;还需要通过步骤S08,将整体三维切片数据通过可移动存储设备71导入到3D打印设备72进行增材打印制造。图21中可移动存储设备71主要存储的是整体三维切片数据,3D打印设备72导入移动存储设备71中的整体三维切片数据后进行增材打印制造生成打印模型73。
图22为本申请实施例等高支撑结构生成方法1的后续制造流程图2。如图22所示,本图中电子设备70采用的是计算机,其输出装置705采用电脑显示器作为本申请方法1或2的人机交互显示界面;其输入装置704则分别以鼠标7041、键盘7042作为人机交互指令输入设备。
结合图1中的步骤S07可知,对整体三维数据进行切片并将整体三维切片数据保存于计算机存储单元后;还需要通过步骤S08,将整体三维切片数据通过可移动存储设备71导入到3D打印设备72进行增材打印制造。图22中可移动存储设备71主要存储的是整体三维切片数据,3D打印设备72导入移动存储设备71中的整体三维切片数据后进行增材打印制造生成打印模型73;结合本申请图13-16的实施例,打印模型73由等高支撑单元30和3D模型100构成。
上述具体实施方式,并不构成对本申请保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本申请的精神和原则之内所作的修改、等同替换和改进等,均应包含在本申请保护范围之内。

Claims (14)

  1. 一种等高支撑结构生成方法,其特征在于,包括:
    通过计算机运行3D打印模型预处理软件并加载3D模型;
    通过所述3D打印模型预处理软件的人机交互界面选定目标3D模型;
    通过所述人机交互界面选择支撑类功能菜单栏中的等高分布指令模块;
    通过所述人机交互界面为所述3D模型的等高支撑单元的接触点选定一个A点及高度,并确定生成等高支撑单元一次;
    通过所述人机交互界面显示在所述3D模型的表面的同一高度生成一组均匀分布的多个等高支撑单元连接于所述3D模型和零平面平台之间;
    将所述3D模型和所述多个等高支撑单元的整体三维数据储存于存储单元。
  2. 根据权利要求1所述的等高支撑结构生成方法,其特征在于,通过重复操作所述人机交互界面所述3D模型的等高支撑单元的接触点选定多个点及高度,并确定生成等高支撑单元多次,以在所述3D模型的表面分别生成多组均匀分布的多个等高支撑单元;所述多组等高支撑单元的参数包括一组相同的参数或多组不同的参数。
  3. 根据权利要求2所述的等高支撑结构生成方法,其特征在于,将所述3D模型和所述多个等高支撑单元的整体三维数据储存于存储单元之后,包括:
    对整体三维数据进行切片并将整体三维切片数据保存于计算机存储单元;
    通过可移动存储设备将整体三维切片数据导入到3D打印设备进行增材打印制造。
  4. 一种等高支撑结构生成方法,其特征在于,包括以下步骤:
    获取3D模型的三角网格模型;
    选定所述3D模型;
    遍历拼接组成所述3D模型的所有三角网格;
    在所述3D模型的三角网格平面选择一个A点;
    过所述A点取垂直于Z轴的横截平面;
    将所述横截平面与所述所有三角网格进行求交计算,获得与所述所有三角网格相交的切片线段及线段端点;
    将所有切片线段依次首尾相连形成闭合多边形;
    对所述闭合多边形的各边以Y毫米为单位分段取点,并获取全部分段点和端点以及A点作为取样点的第一集合;
    指定一个时钟方向以所述A点为起始锚定提取点,对所述第一集合中的全部取样点依次两两提取直线距离为L+△X毫米的取样点,并将所述全部取样点作为提取点的第二集合;
    将所述第二集合中的全部提取点作为等高支撑单元的接触点,并向下引出多个等高支撑单元连接于3D模型和零平面平台之间;
    将所述3D模型和所述多个等高支撑单元的整体三维数据储存于存储单元。
  5. 根据权利要求4所述的等高支撑结构生成方法,其特征在于,所述L为正整数或小数,所述Y为正整数或小数,所述△X为小于Y的误差值。
  6. 根据权利要求4所述的等高支撑结构生成方法,其特征在于,所述时钟方向为逆时针方向或顺时针方向;
    所述闭合多边形的数量为一个或多个。
  7. 根据权利要求1或4所述的等高支撑结构生成方法,其特征在于,所述等高支撑单元包括:支撑中柱、支撑折柱、折柱接触点;
    所述折柱接触点设置于所述支撑折柱的末端并与所述3D模型的表面接触连接;
    所述支撑折柱的根部连接于所述支撑中柱的顶端;
    所述支撑中柱的底端连接于零平面平台;
    所述支撑中柱、所述支撑折柱的形状为圆锥形、锥柱形、圆柱形、方柱形或菱柱形。
  8. 根据权利要求7所述的等高支撑结构生成方法,其特征在于,所述支撑折柱与所述支撑中柱的夹角为90度-180度之间的任意角度。
  9. 根据权利要求1或4所述的等高支撑结构生成方法,其特征在于,所述等高支撑单元包括:支撑中柱、支撑折柱、折柱接触点,以及底部支撑平台和/或桁架;
    所述折柱接触点设置于所述支撑折柱的末端并与所述3D模型表面接触连接;
    所述支撑折柱的根部连接于所述支撑中柱的顶端;
    所述支撑中柱的底端连接于所述底部支撑平台或零平面平台;
    所述底部支撑平台连接于零平面平台;
    所述桁架连接于相邻的所述支撑中柱之间;
    所述支撑中柱、所述支撑折柱、所述桁架的形状为圆锥形、锥柱形、圆柱形、方柱形或菱柱形;
    所述底部支撑平台的形状为扁平方形、扁平菱形、扁平圆形或扁平多边形。
  10. 一种等高支撑结构生成装置,其特征在于,包括:
    第一模型获取单元,用于加载3D模型;
    第一模型确定单元,用于选定所述3D模型;
    功能选择单元,用于选择等高分布指令模块;
    接触点选定单元,用于选定一个A点及高度并确定生成等高支撑单元一次;
    支撑单元生成显示单元,用于在所述3D模型的表面的同一高度生成一组均匀分布的多个等高支撑单元连接于所述3D模型和零平面平台之间;
    存储单元,用于将所述3D模型和所述多个等高支撑单元的整体三维数据储存于存储单元。
  11. 一种等高支撑结构生成装置,其特征在于,包括:
    第二模型获取单元,用于获取3D模型的三角网格模型;
    第二模型确定单元,用于选定所述3D模型;
    三角网格获取单元,用于遍历拼接组成所述3D模型的所有三角网格;
    网格平面选点单元,用于在所述3D模型的三角网格平面选择一个A点;
    横截平面确定单元,用于过所述A点取垂直于Z轴的横截平面;
    切片线段确定单元,用于将所述横截平面与所述所有三角网格求交计算获得与所述所有三角网格相交的切片线段及线段端点;
    闭合多边形确定单元,用于将所有切片线段依次首尾相连形成闭合多边形;
    取样点集合获取单元,用于对所述闭合多边形的各边以Y毫米为单位分段取点,并获取全部分段点和端点以及A点作为取样点的第一集合;
    提取点集合获取单元,用于指定一个时钟方向以A点为起始锚定提取点,对所述第一集合中的全部取样点依次两两提取直线距离为L+△X毫米的取样点,并将所述全部取样点作为提取点的第二集合;
    支撑单元生成单元,用于将所述第二集合中的全部提取点作为等高支撑单元的接触点,并向下引出多个等高支撑单元连接于3D模型和零平面平台之间;
    存储单元,用于将3D模型和所述多个等高支撑单元的整体三维数据储存于存储单元。
  12. 一种电子设备,其特征在于,包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储单元;
    其中,所述存储单元存储有可被所述至少一个处理器执行的指令,所述至少一个处理器执行所述指令时实现如权利要求1至9任一项所述的等高支撑结构生成方法的步骤。
  13. 一种非瞬时计算机可读存储介质,其特征在于,所述非瞬时计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求4至9任一项所述的等高支撑结构生成方法的步骤。
  14. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令被计算机执行时实现如权利要求4至9任一项所述的等高支撑结构生成方法的步骤。
PCT/CN2022/114589 2021-08-27 2022-08-24 等高支撑结构生成方法、装置、电子设备及存储介质 WO2023025209A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110993454.3 2021-08-27
CN202110993454.3A CN113733566B (zh) 2021-08-27 2021-08-27 等高支撑结构生成方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023025209A1 true WO2023025209A1 (zh) 2023-03-02

Family

ID=78733321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114589 WO2023025209A1 (zh) 2021-08-27 2022-08-24 等高支撑结构生成方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN113733566B (zh)
WO (1) WO2023025209A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113733566B (zh) * 2021-08-27 2023-06-06 深圳市创必得科技有限公司 等高支撑结构生成方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0911341A (ja) * 1995-06-29 1997-01-14 Toyota Motor Corp 光造形におけるモデル支持手段によるモデル支持方法および構造
CN110202146A (zh) * 2019-06-27 2019-09-06 南京工业大学 同步打印砂型支撑辅助增材制造金属零件的方法
US20200276763A1 (en) * 2017-11-14 2020-09-03 Atum Holding B.V. Object Support During 3D Printing of an Object Based on a Model
CN111859489A (zh) * 2020-07-27 2020-10-30 深圳市纵维立方科技有限公司 支撑结构生成方法、装置、电子设备以及存储介质
CN112706407A (zh) * 2021-01-27 2021-04-27 苏州铼赛智能科技有限公司 数据处理方法、3d打印设备及其打印方法、存储介质
US20210221069A1 (en) * 2017-09-30 2021-07-22 Zhejiang University A 3d printing method
CN113733566A (zh) * 2021-08-27 2021-12-03 深圳市创必得科技有限公司 等高支撑结构生成方法、装置、电子设备及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103496166A (zh) * 2013-10-16 2014-01-08 西安科技大学 一种基于快速成型技术的微纳传感器制造方法及装置
US9688029B2 (en) * 2014-08-19 2017-06-27 Autodesk, Inc. Support posts for improved flexural strength in 3D-printed objects
JP6538434B2 (ja) * 2015-06-17 2019-07-03 ローランドディー.ジー.株式会社 サポートの配置決定装置、3次元造形システム、および、サポートの配置決定方法
CN109624325B (zh) * 2018-12-19 2020-07-10 华中科技大学 一种生成3d打印模型的树形支撑结构的方法
CN111859488B (zh) * 2020-07-27 2024-03-29 深圳市纵维立方科技有限公司 支撑结构生成方法、装置、电子设备以及存储介质
CN112157911B (zh) * 2020-09-11 2022-08-30 华侨大学 一种自支撑的3d打印梯度弹性多孔材料微结构设计方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0911341A (ja) * 1995-06-29 1997-01-14 Toyota Motor Corp 光造形におけるモデル支持手段によるモデル支持方法および構造
US20210221069A1 (en) * 2017-09-30 2021-07-22 Zhejiang University A 3d printing method
US20200276763A1 (en) * 2017-11-14 2020-09-03 Atum Holding B.V. Object Support During 3D Printing of an Object Based on a Model
CN110202146A (zh) * 2019-06-27 2019-09-06 南京工业大学 同步打印砂型支撑辅助增材制造金属零件的方法
CN111859489A (zh) * 2020-07-27 2020-10-30 深圳市纵维立方科技有限公司 支撑结构生成方法、装置、电子设备以及存储介质
CN112706407A (zh) * 2021-01-27 2021-04-27 苏州铼赛智能科技有限公司 数据处理方法、3d打印设备及其打印方法、存储介质
CN113733566A (zh) * 2021-08-27 2021-12-03 深圳市创必得科技有限公司 等高支撑结构生成方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN113733566B (zh) 2023-06-06
CN113733566A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
CN109624325B (zh) 一种生成3d打印模型的树形支撑结构的方法
CN111859488B (zh) 支撑结构生成方法、装置、电子设备以及存储介质
WO2023025209A1 (zh) 等高支撑结构生成方法、装置、电子设备及存储介质
CN111859489B (zh) 支撑结构生成方法、装置、电子设备以及存储介质
JP7318159B2 (ja) テキスト誤り訂正方法、装置、電子デバイス及び可読記憶媒体
CN111259474B (zh) 大体量bim模型数据处理及加载方法和设备
CN109639583A (zh) 拓扑图绘制方法、装置及电子设备
CN112765695A (zh) 支撑体生成方法、3d打印机、计算机装置及存储介质
CN104951632A (zh) 用于圆台表面混凝土结构的三维布筋方法
CN116954873B (zh) 异构计算系统及其算力节点选择方法、装置、设备、介质
CN109544703B (zh) 一种易于实现交互的数据中心Web3D模型加载方法
CN109446082B (zh) 多线程测试流程项目配置系统
CN114564268A (zh) 一种设备管理方法、装置、电子设备和存储介质
CN112700555B (zh) 高可配组态化3d数据可视化实现方法、电子设备、存储介质
CN108694300A (zh) 一种有限元子模型自动生成的方法
WO2018059678A1 (en) Variational modeling method and system for editing of geometric objects
CN115130042B (zh) 利用Modelica web的图形化建模方法
US11925520B2 (en) Method of producing a dental object
CN117077294B (zh) 基于参数化的结构网格生成方法、装置、设备及介质
JP7253002B2 (ja) 電子地図表示方法、装置、機器及び読み取り可能な記憶媒体
CN115653635B (zh) 一种盾构机管片姿态的确定方法、装置、设备及存储介质
CN115100364B (zh) 输电线路激光点云数据的可视化方法、装置、设备及介质
CN112402973B (zh) 模型细节判断方法、终端设备及计算机可读存储介质
CN114911276A (zh) 摇摆试验台测控方法、装置、上位机测控系统及存储介质
CN117830579A (zh) 踢脚信息的确定方法、装置、计算机设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE