WO2023024691A1 - 导光镜组、导光系统和头戴显示设备 - Google Patents

导光镜组、导光系统和头戴显示设备 Download PDF

Info

Publication number
WO2023024691A1
WO2023024691A1 PCT/CN2022/102057 CN2022102057W WO2023024691A1 WO 2023024691 A1 WO2023024691 A1 WO 2023024691A1 CN 2022102057 W CN2022102057 W CN 2022102057W WO 2023024691 A1 WO2023024691 A1 WO 2023024691A1
Authority
WO
WIPO (PCT)
Prior art keywords
light guide
light
guide lens
lens
end surface
Prior art date
Application number
PCT/CN2022/102057
Other languages
English (en)
French (fr)
Inventor
徐嘉谦
Original Assignee
歌尔光学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔光学科技有限公司 filed Critical 歌尔光学科技有限公司
Publication of WO2023024691A1 publication Critical patent/WO2023024691A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features

Definitions

  • the size of the display in the head mounted display is small.
  • the light In order to be able to clearly image the display screen at the position of the human eye, the light needs to be enlarged and transmitted through the lens.
  • the light needs to occupy a large area during the process of amplification and transmission.
  • Space volume in order to reduce the volume of the entire device, usually a catadioptric light path is designed inside the head-mounted display device, so that the light passes back and forth multiple times in a limited space.
  • the thickness of the lens is relatively thick, which occupies a large space, which is not conducive to wearing by the user.
  • the thickness of the lens is relatively thick in the catadioptric optical path, which occupies a large space and is not conducive to the user's wearing, it is necessary to provide a light guide mirror group, a light guide system and a head-mounted display device, which can reduce the The thickness of the lens saves space and improves the convenience for users to wear.
  • the present invention proposes a light guide mirror group, the light guide mirror group includes:
  • a light guide lens the light guide lens includes a first surface and a second surface oppositely arranged, the first surface has an in-coupling area where light is coupled in, and the second surface has an out-coupling area where light is out-coupled, so
  • the light guide lens also includes a first end surface and a second end surface oppositely arranged, and the first end surface and the second end surface are both located between the first surface and the second surface;
  • a beam splitter, the beam splitter is arranged on the second end surface of the light guide lens
  • the light is incident on the incoupling area of the first surface, passes through the first end surface and then shoots to the first surface, and the light passes through the first surface and the second surface in sequence in the light guide lens, And irradiate to the second end surface, the light is reflected by the light splitting element, and the light is emitted from the outcoupling area of the light guide lens.
  • the light guide mirror group further includes a reflector, the reflector is located on the first end surface of the light guide lens, the light passes through the first end surface and then shoots to the reflector, and the reflector will The light is reflected back to the first end surface and transmitted through the first end surface.
  • the reflector is a reflector
  • the mirror surface of the reflector is one of plane, free-form surface or aspheric surface.
  • the reflective member is a reflective lens
  • the reflective lens includes an incident surface facing the light guide lens and a reflective surface facing away from the light guide lens, at least one of the incident surface and the reflective surface is a free-form surface or an aspheric surface.
  • the reflector includes a main body, the main body is used to reflect light, the main body is spaced apart from the light guide lens, and the distance is from the first surface to the second surface gradually increase.
  • At least one of the first surface, the second surface, the first end surface and the second end surface of the light guide lens is a free-form surface or an aspheric surface.
  • the first surface is a convex surface
  • the second surface is a concave surface
  • both the first end surface and the second end surface are convex surfaces.
  • the light guide lens group includes a second protrusion and a second positioning groove, the second protrusion and the second positioning groove are oppositely arranged, and the second protrusion is disposed on the One of the reflector or the light guide lens, the second positioning groove is disposed on the other of the reflector or the light guide lens.
  • the light splitter is a semi-reflective and semi-permeable film.
  • the present invention also provides a light guide system, the light guide system includes a display and a light guide lens group as described above, and the display is arranged in one of the coupling regions of the light guide lens side.
  • the present invention also provides a head-mounted display device, the head-mounted display device includes a mirror frame and the above-mentioned light guide mirror group, and the light guide mirror group is arranged on the mirror frame.
  • the light enters the light guide lens through the coupling area of the light guide lens, and guides the first end face of the light guide lens, and the light meets the reflection condition on the first end face, such as setting a reflective film or is that the incident angle of light on the first end face is greater than or equal to the critical angle of total reflection.
  • the light is reflected for the first time at the first end face.
  • the light ray passes through the first end surface and shoots to the first surface. When the light ray shoots to the first surface, it satisfies the condition of total reflection of light, and the incident angle is greater than or equal to the critical angle.
  • the total reflection of light occurs on one surface, the second reflection occurs on the light, and the light hits the second surface.
  • the light on the second surface also satisfies the total reflection condition of light, the light also undergoes total reflection on the second surface, the light is reflected for the third time, and the light is directed to the second end surface of the light guide lens.
  • a light splitter is provided on the second end face, and the light splitter can complete the splitting of the incident light and reflect at least part of the light, that is, under the action of the light splitter on the second end face, the light undergoes a fourth reflection, and the light is split and reflected to The outcoupling region of the second surface and transmits out of the outcoupling region.
  • the light guide mirror group in this application can use more light reflections in a smaller space, so as to complete the magnification and transmission of light.
  • Smaller space means smaller lens, which in turn reduces the thickness of the lens and saves installation space.
  • the overall volume of the light guide lens group becomes smaller, and the volume of the corresponding head-mounted display device is also smaller, thereby improving the user's wearability. The convenience of wearing a display device.
  • FIG. 1 is a schematic structural view of the first embodiment of the light guiding mirror assembly of the present invention
  • Fig. 2 is a schematic structural view of the second embodiment of the light guiding mirror group of the present invention.
  • Fig. 3 is a schematic structural view of the third embodiment of the light guiding mirror group of the present invention.
  • Fig. 4 is the schematic diagram of the three-dimensional structure of the light guide mirror group in Fig. 3;
  • Fig. 5 is the schematic diagram of the side sectional structure of the light guide mirror group in Fig. 4;
  • Fig. 6 is a schematic diagram of an exploded structure of the light guide mirror group in Fig. 4;
  • FIG. 7 is a structural schematic diagram of another viewing angle of the light guide mirror group in FIG. 6 .
  • Light guide lens 230 Main body 110 first surface 30 correction lens 111 coupling area 40 first raised portion 120 second surface 50 first positioning slot 121 outcoupling area 60 second raised portion 130 first end face 70 Second positioning slot 140 second end face 80 monitor 20 reflector 810 the light 210 incident surface 90 outside light 220 Reflective surface the the
  • connection and “fixation” should be understood in a broad sense, for example, “fixation” can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • fixation can be a fixed connection, a detachable connection, or an integral body; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be an internal communication between two elements or an interaction relationship between two elements, unless otherwise clearly defined.
  • the size of the display in the head-mounted display device is relatively small, generally only a few inches, and the head-mounted display device can project a picture at the position of the human eye at a close distance, thereby providing an immersive experience for the user.
  • the internal design of the head-mounted display device has a catadioptric light path, so that the light passes back and forth multiple times in a limited space.
  • the number of refraction and reflections of light is relatively small.
  • the thickness of the lens is generally thicker, which causes the lens to occupy a large space, resulting in a larger volume of the head-mounted display device. , which is not conducive to wearing by the user.
  • the present embodiment provides a light guide lens group, which includes: a light guide lens 10 and a beam splitter (not shown). It should be noted that the light guide lens group in this embodiment is applied to a head-mounted display device, and the display principle of the head-mounted display device can be AR (Augmented Reality, augmented reality) display, or VR (Virtual Reality, virtual reality). )show.
  • AR Augmented Reality, augmented reality
  • VR Virtual Reality, virtual reality
  • the light guide lens 10 includes a first surface 110 and a second surface 120 oppositely arranged, the first surface 110 has an in-coupling region 111 into which the light 810 is coupled in, the second surface 120 has an out-coupling region 121 into which the light 810 is coupled out, and the light guide
  • the lens 10 also includes a first end face 130 and a second end face 140 oppositely arranged, and the first end face 130 and the second end face 140 are both located between the first surface 110 and the second surface 120; lens 10 , and finally exit the light guide lens 10 through the outcoupling region 121 .
  • the light guide lens 10 can be understood as a waveguide structure, and when the light 810 propagates in the light guide lens 10 , total reflection of light occurs.
  • the beam splitter is disposed on the second end surface 140 of the light guide lens 10 ; the function of the beam splitter is to split the incident light 810 and reflect the light 810 to the outcoupling area 121 of the light guide lens 10 .
  • the light splitting ratio of the light splitter can be adjusted, for example, 100% reflection. Or partial reflection, partial transmission, the ratio of reflection and transmission can be 1:1, 2:1, or 1:2, etc.
  • the light ray 810 is incident on the in-coupling region 111 of the first surface 110, passes through the first end face 130 and then shoots to the first surface 110, the light 810 passes through the first surface 110 and the second surface 120 in the light guide lens 10 in turn, and shoots to On the second end surface 140 , the light 810 is split and reflected by the light splitting element disposed on the second end surface 140 , and then exits through the outcoupling region 121 of the light guide lens 10 .
  • the light 810 When the light 810 passes in the light guide lens 10, the light 810 satisfies the total reflection condition of light on the first surface 110, the refractive index of the light guide lens 10 is greater than that of air, the light 810 shoots from the optically dense medium to the optically sparse medium, and the light 810 is in the The incident angle of the first surface 110 is greater than or equal to the critical angle of total reflection, so that the light 810 is totally reflected. Likewise, the light 810 is also totally reflected on the second surface 120 .
  • the light 810 enters the light guide lens 10 through the in-coupling region 111 of the light guide lens 10 , and is guided to the first end surface 130 of the light guide lens 10 .
  • the light 810 satisfies reflection conditions on the first end face 130 , for example, a reflective film is provided on the first end face 130 or the incident angle of the light 810 on the first end face 130 is greater than or equal to the critical angle of total reflection.
  • the light 810 is reflected for the first time at the first end surface 130 .
  • the light 810 is directed toward the first surface 110 after passing through the first end surface 130 .
  • the light ray 810 When the light ray 810 hits the first surface 110, it satisfies the condition of total reflection of light, and the incident angle is greater than or equal to the critical angle. reflection, the light 810 undergoes a second reflection, and the light 810 hits the second surface 120 . The light 810 also satisfies the total reflection condition of light on the second surface 120, the light 810 also undergoes total reflection of light on the second surface 120, the light 810 is reflected for the third time, and the light 810 is directed to the second end surface of the light guide lens 10 140.
  • the second end surface 140 is provided with a beam splitter, which can complete the splitting of the incident light 810 and reflect at least part of the light 810, that is, the light 810 undergoes a fourth reflection under the action of the beam splitter on the second end face 140 , the light 810 is spectroscopically reflected toward the outcoupling region 121 of the second surface 120 and transmitted out of the outcoupling region 121 .
  • the light ray 810 has undergone at least four reflections under the action of the light guide mirror group, that is to say, the light ray 810 has undergone more refraction and reflections in a limited space, so in the case of the same imaging picture size
  • the light guide mirror group in this embodiment can reflect the light 810 more times in a smaller space, so as to complete the magnification and transmission of the light 810 .
  • Smaller space means smaller lens, which in turn facilitates the reduction of the thickness of the lens and saves installation space.
  • the overall volume of the light guide lens group becomes smaller, and the volume of the corresponding head-mounted display device is also smaller, thereby improving the wearability of the user. The convenience of wearing a display device.
  • the light guide lens group further includes a reflector 20, and the reflector 20 is located at the first end surface 130 of the light guide lens 10, and the light is directed to the reflector 20 after passing through the first end surface 130, and the reflector 20 will The light 810 is reflected back to the first end surface 130 and transmitted through the first end surface 130 .
  • the reflector 20 is located on the first end face 130 of the light guide lens 10 ; the function of the reflector 20 is to reflect the incident light 810 , and the reflection principle of the reflector 20 includes specular reflection and polarized reflection. In the case of specular reflection, a reflection film is provided on the reflection member 20 .
  • the reflective member 20 is provided with a polarized reflective film.
  • the light 810 emitted from the first end surface 130 is directed to the reflector 20 , under the action of the reflector 20 , the light 810 is reflected for the first time, and the light 810 is reflected to the first end surface 130 of the light guide lens 10 .
  • the number of reflections is increased by adding the reflector 20 .
  • the overall volume of the compressed lens can be reduced, thereby reducing the thickness of the lens. Reducing the thickness of the lens can also reduce the corresponding mass, making the head-mounted display device lighter and more comfortable for the user to wear.
  • the reflector 20 can be a reflector or a reflector lens.
  • the reflector can be understood as having only one optical surface, and a reflective film layer is arranged on this optical surface.
  • the reflection principle of the reflective film layer can be Reflection of the entire visible light wave, but also reflection of light in certain polarization states. Simply understood, the thickness of the reflector is smaller than that of the reflector lens.
  • the reflector 20 is a reflector, the thickness is also smaller, which is convenient for miniaturization, and the mirror surface of the reflector is a plane, a free-form surface or an aspheric surface.
  • the reflector 20 is a reflective lens.
  • the reflective lens includes an incident surface 210 facing the light guide lens 10 and a reflective surface 220 away from the light guide lens 10.
  • the incident surface 210 and the reflective surface At least one of the surfaces 220 is a free-form surface or an aspheric surface. It is understandable that there are many options for face shape at this time, including at least the following:
  • a free-form surface can be understood as a combination of multiple aspheric surfaces, and one free-form surface can form multiple aspheric surfaces to eliminate aberration.
  • the space of multiple aspheric surfaces is replaced by the space of one free-form surface, thereby helping to reduce the volume of the light guide lens group.
  • At least one of the first surface 110 , the second surface 120 , the first end surface 130 and the second end surface 140 of the light guide lens 10 is a free-form surface or an aspheric surface.
  • the first surface 110, the second surface 120, the first end surface 130 and the second end surface 140 are all free-form surfaces, or the first surface 110, the second surface 120, the first end surface 130 and the second end surface 140 are all Aspherical.
  • two of the optical surfaces are free-form surfaces, and the other two are aspherical surfaces.
  • a free-form surface can be understood as a combination of multiple aspheric surfaces, and one free-form surface can form multiple aspheric surfaces to eliminate aberration.
  • the space of multiple aspheric surfaces is replaced by the space of one free-form surface, thereby helping to reduce the volume of the light guide lens group.
  • the second surface 120 in order to effectively diffuse and image the light 810, is set as a concave surface, so that when the light 810 passes through the outcoupling region 121 of the second surface 120, the light 810 is in the original incident direction Based on the diffusion to the surrounding, so as to enlarge the imaging.
  • the first end surface 130 is away from the human eye side, and the second end surface 140 is close to the human eye side, that is to say, the light 810 is transmitted from the side of the human head toward the center of the eyebrows. Since the head of the human body is roughly shaped like an arc, in order to conform to the design of the human body, the second surface 120 is designed as a concave surface.
  • the first surface 110 is designed as a convex surface
  • the second surface 120 is a concave surface, so the arc shape of the first surface 110
  • the arcs of the section and the arc section of the second surface 120 are substantially the same, or the arcs of the two are equal.
  • both the first end surface 130 and the second end surface 140 are set as convex surfaces, and the light rays 810 passing through the convex surfaces are further converged, so as to ensure that the light rays 810 passing through the first end surface 130 are incident on the first surface 110 .
  • the ambient light 90 passing through the second end surface 140 can be converged to human eyes.
  • the reflector 20 includes a main body 230 for reflecting the light 810 , the main body 230 is spaced apart from the light guide lens 10 , and the distance between the main body 230 gradually increases from the first surface 110 to the second surface 120 . It can be understood that, when the light 810 is emitted from the first end face 130 , the optical paths of the light 810 close to the second surface 120 and the light 810 close to the first surface 110 are different. The path traveled by the light ray 810 is longer than the path passed by the light ray 810 close to the first surface 110 .
  • the path of the light 810 close to the second surface 120 is longer than the path of the light 810 close to the first surface 110 .
  • the optical path of the light 810 is changed, and the aberration is eliminated by changing the optical path that the light 810 passes through.
  • the angle between the first end surface 130 and the first surface 110 is an acute angle
  • the angle between the first end surface 130 and the second surface 120 is an obtuse angle
  • the included angle between the second end surface 140 and the first surface 110 is an obtuse angle
  • the included angle between the second end surface 140 and the second surface 120 is an acute angle.
  • the thickness of the main body portion 230 gradually increases from the first surface 110 to the second surface 120 . Therefore, the optical path of the light 810 in the reflector 20 is also different. It can also be seen that the path of the light 810 close to the second surface 120 is longer than the path of the light 810 close to the first surface 110 . Thus, the optical path of the light 810 is changed, and the aberration is eliminated by changing the optical path that the light 810 passes through.
  • the light guide mirror group is applied to AR display.
  • the external light 810 needs to be transmitted into the light guide mirror group.
  • the light guide mirror The set includes a correction lens 30 for correcting the aberration of the transmitted light 810 , the correction lens 30 is arranged on the second end surface 140 of the light guide lens 10 , and the beam splitter is located between the second end surface 140 and the correction lens 30 .
  • the correction lens 30 has a light exit surface that is compatible with the second end surface 140 , for example, if the second end surface 140 is a convex surface, then the light exit surface of the correction lens 30 is a concave surface.
  • the correction lens 30 is a convex surface, so that the light guide lens 10 and the correction lens 30 can be better connected. And in order to ensure the integrity of the light guide lens 10 , the arc shape of the light incident surface of the correction lens 30 is arranged along the first surface 110 of the light guide lens 10 .
  • the light guide lens group includes a first raised portion 40 and a first positioning groove 50, the first raised portion 40 and the first positioning groove 50 are arranged oppositely, and the first raised portion 40
  • the first positioning groove 50 is disposed on the other of the correction lens 30 or the light guide lens 10 .
  • the first protrusion 40 can be positioned and fastened in the first positioning groove 50, thereby completing the assembly of the correction lens 30 and the light guide lens 10.
  • the first protrusion 40 is disposed on the correction lens 30
  • the first positioning groove 50 is disposed on the light guide lens 10 .
  • the first protrusion 40 is disposed on the light guide lens 10
  • the first positioning groove 50 is disposed on the correction lens 30 .
  • the depths of the two ends of the first positioning groove 50 are different, and the lengths of the two ends of the corresponding first protrusion 40 are also different. If the installation is reversed, the first protrusion 40 It is difficult to buckle into the first positioning groove 50 , and only when the installation direction is correct can the first protrusion 40 be accurately inserted into the first positioning groove 50 .
  • optical glue is arranged between the light guide lens 10 and the correction lens 30, thereby completing the light guide lens 10. It is glued and installed with the correction lens 30 to ensure that the installation is more firm.
  • the light guide lens group includes a second protrusion 60 and a second positioning groove 70, the second protrusion 60 and the second positioning groove 70 are arranged oppositely, and the second protrusion 60 is located on One of the reflector 20 or the light guide lens 10 , the second positioning groove 70 is disposed on the other of the reflector 20 or the light guide lens 10 .
  • the second protrusion 60 can be positioned and snapped into the second positioning groove 70 , so as to complete the assembly of the reflector 20 and the light guide lens 10 .
  • the second protrusion 60 is disposed on the reflector 20
  • the second positioning groove 70 is disposed on the light guide lens 10 .
  • the second protrusion 60 is disposed on the light guide lens 10
  • the second positioning groove 70 is disposed on the reflector 20 .
  • both the second protrusion 60 and the second positioning groove 70 can be provided on the reflector 20 .
  • both the second positioning groove 70 and the second protrusion 60 are provided on the light guide lens 10, so that the two are staggeredly interlocked to improve the firmness of the fixation.
  • optical glue can also be provided at the fastening position of the second protrusion 60 and the second positioning groove 70 to improve the firmness of the connection.
  • the light splitting element is a semi-reflective and semi-permeable film. That is to say, the light splitter has a film structure, and the thickness of the film structure is relatively thin, which is more conducive to reducing the thickness of the lens.
  • the light guide mirror group is applied to AR display, and the external light 90 needs to be injected into the head-mounted display device. When the external light 90 passes through the transflective film, it can transmit the light splitter, and at the same time, it can also ensure that the light 810 transmitted inside the light guide mirror group hits the light splitter, and is reflected by the light splitter to the outcoupling region 121 .
  • the light splitter can be coated to improve the firmness of the film. It can also be pasted, and the setting of the beam splitter is easier to operate.
  • the present invention also provides a light guide system.
  • the light guide system includes a display 80 and a light guide lens group as above.
  • the display 80 is disposed on one side of the coupling region 111 of the light guide lens 10 . That is to say, the position of the display 80 is set away from the user's face, and the display 80 will dissipate heat during work. Setting the display 80 away from the side of the user's facial skin can reduce the radiation of heat to the skin, reduce the discomfort of the user, and even avoid burns. user.
  • the present invention also provides a head-mounted display device.
  • the head-mounted display device includes a mirror frame and the above-mentioned light guide mirror group, and the light guide mirror group is arranged on the mirror frame.
  • the spectacle frame is used to form a bracket for supporting the light guide mirror group, and the light guide mirror group is arranged on the spectacle frame, which is convenient for the user to wear.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种导光镜组、导光系统和头戴显示设备。其中,导光镜组包括:导光透镜(10)和分光件,导光透镜(10)包括相对设置的第一表面(110)和第二表面(120),第一表面(110)具有光线(810)耦入的耦入区(111),第二表面(120)具有光线(810)耦出的耦出区(121),导光透镜(10)还包括相对设置的第一端面(130)和第二端面(140),第一端面(130)和第二端面(140)均位于第一表面(110)和第二表面(120)之间;分光件设于导光透镜(10)的第二端面(140)。光线(810)至少经过四次反射,从而能够减少透镜(10)厚度,节约空间,提高用户穿戴的便捷性。

Description

导光镜组、导光系统和头戴显示设备 技术领域
本发明涉及光学显示技术领域,尤其涉及一种导光镜组、导光系统和头戴显示设备。
背景技术
在头戴显示设备(Head Mount Display)中显示器的体积较小,为了能够将显示画面清晰的成像在人眼位置,需要将光线经过透镜放大传递,光线在放大传递的过程中需要占据较大的空间体积,为了减少整个设备的体积,通常在头戴显示设备的内部设计折反射光路,使光线在有限的空间内多次往返传递。但是目前的折反射光路中,透镜厚度较厚,占据了较大空间,如此不利于用户穿戴。
发明内容
基于此,针对折反射光路中,透镜厚度较厚,占据了较大空间,不利于用户穿戴的问题,有必要提供一种导光镜组、导光系统和头戴显示设备,旨在能够减少透镜厚度,节约空间,提高用户穿戴的便捷性。
为实现上述目的,本发明提出一种导光镜组,所述导光镜组包括:
导光透镜,所述导光透镜包括相对设置的第一表面和第二表面,所述第一表面具有光线耦入的耦入区,所述第二表面具有光线耦出的耦出区,所述导光透镜还包括相对设置的第一端面和第二端面,所述第一端面和所述第二端面均位于所述第一表面和所述第二表面之间;和
分光件,所述分光件设于所述导光透镜的第二端面;
光线于所述第一表面的耦入区入射,经所述第一端面后射向所述第一表面,光线在所述导光透镜内依次经过所述第一表面和所述第二表面,并射向所述第二端面,光线经所述分光件的分光反射,光线由所述导光透镜的耦出区射出。
可选地,所述导光镜组还包括反射件,所述反射件位于所述导光透镜的第一端面,光线经所述第一端面后射向所述反射件,所述反射件将光线反射回所述第一端面,并透射所述第一端面。
可选地,所述反射件为反射镜,所述反射镜的镜面为平面、自由曲面或非球面的一种。
可选地,所述反射件为反射透镜,所述反射透镜包括面向所述导光透镜的入射面和背离所述导光透镜的反射面,所述入射面和所述反射面至少其中之一是自由曲面或非球面。
可选地,所述反射件包括主体部,所述主体部用于反射光线,所述主体部与所述导光透镜间隔设置,且间隔距离自所述第一表面至所述第二表面方向逐渐增加。
可选地,所述主体部的厚度自所述第一表面至所述第二表面的方向逐渐增加。
可选地,所述导光透镜的第一表面、第二表面、第一端面和第二端面至少其中之一是自由曲面或非球面。
可选地,所述第一表面为凸起面,所述第二表面为凹陷面,所述第一端面和所述第二端面均为凸起面。
可选地,所述导光镜组包括校正透镜,所述校正透镜用于校正透射光线的像差,所述校正透镜设于所述导光透镜的第二端面,所述分光件位于所述第二端面和所述校正透镜之间。
可选地,所述导光镜组包括第一凸起部和第一定位槽,所述第一凸起部和所述第一定位槽相对设置,所述第一凸起部设于所述校正透镜或所述导光透镜其中之一,所述第一定位槽设于所述校正透镜或所述导光透镜的其中另一。
可选地,所述导光镜组包括第二凸起部和第二定位槽,所述第二凸起部和所述第二定位槽相对设置,所述第二凸起部设于所述反射件或所述导光透镜其中之一,所述第二定位槽设于所述反射件或所述导光透镜的其中另一。
可选地,所述分光件为半反半透膜。
此外,为了解决上述问题,本发明还提供一种导光系统,所述导光系统 包括显示器和如上文所述导光镜组,所述显示器设于所述导光透镜的耦入区的一侧。
此外,为了解决上述问题,本发明还提供一种头戴显示设备,所述头戴显示设备包括镜框和如上文所述导光镜组,所述导光镜组设于所述镜框。
本发明提出的技术方案中,光线经导光透镜的耦入区进入导光透镜,并射向导光透镜的第一端面,光线在第一端面满足反射条件,比如在第一端面设置反射膜或者是光线在第一端面的入射角度大于或等于全反射临界角。光线在第一端面发生了第一次反射。光线经第一端面后射向第一表面,光线在射向第一表面时,满足光的全反射条件,入射角大于等于临界角,光线由光密介质射向光疏介质,从而光线在第一表面发生了光的全反射,光线发生了第二次反射,光线射向第二表面。光线在第二表面,也满足光的全反射条件,光线在第二表面也发生光的全反射,光线发生了第三次反射,光线射向导光透镜的第二端面。在第二端面设置有分光件,分光件能够完成对入射光线的分光,将至少部分光线反射,即光线在第二端面的分光件的作用下,光线发生了第四反射,光线被分光反射向第二表面的耦出区,并透射出耦出区。由此可知,光线在导光镜组的作用下,至少经过了四次反射,也就是说,在有限的空间内光线发生了更多次的折反射,因此在成像画面尺寸相同的情况下,本申请中的导光镜组可以利用更小的空间更多次的光线反射,从而完成光线的放大传递。更小的空间意味着更小的透镜,继而使透镜的厚度减少,节约安装空间,导光镜组整体体积变小,则相应的头戴显示设备的体积也变小,由此提高用户穿戴头戴显示设备的便捷性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明导光镜组第一实施例的结构示意图;
图2为本发明导光镜组第二实施例的结构示意图;
图3为本发明导光镜组第三实施例的结构示意图;
图4为图3中导光镜组的立体结构示意图;
图5为图4中导光镜组的侧面剖面结构示意图;
图6为图4中导光镜组的分解结构示意图;
图7为图6中导光镜组的另一视角的结构示意图。
附图标号说明:
10 导光透镜 230 主体部
110 第一表面 30 校正透镜
111 耦入区 40 第一凸起部
120 第二表面 50 第一定位槽
121 耦出区 60 第二凸起部
130 第一端面 70 第二定位槽
140 第二端面 80 显示器
20 反射件 810 光线
210 入射面 90 外界光线
220 反射面    
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应 地随之改变。
另外,在本发明中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“固定”可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
另外,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
在相关技术中,在头戴显示设备中显示器的体积较小,一般只有几英寸,头戴显示设备能够将画面近距离的投射在人眼位置,从而为用户提供身临其境的体验。头戴显示设备的内部设计折反射光路,使光线在有限的空间内多次往返传递。但是目前的折反射光路中,光线的折反射次数较少,为了保证光线由足够长的光程,透镜厚度一般较厚,由此导致透镜占据了较大空间,造成头戴显示设备体积较大,不利于用户穿戴。
为了解决上述问题,参阅图1所示,本实施例提供一种导光镜组,导光镜组包括:导光透镜10和分光件(未标示)。需要说明的是,本实施例中的导光镜组应用于头戴显示设备,头戴显示设备的显示原理可以是AR(Augmented Realit,增强现实)显示,也可以是VR(Virtual Reality,虚拟现实)显示。
导光透镜10包括相对设置的第一表面110和第二表面120,第一表面110具有光线810耦入的耦入区111,第二表面120具有光线810耦出的耦出区121,导光透镜10还包括相对设置的第一端面130和第二端面140,第一端面130和第二端面140均位于第一表面110和第二表面120之间;光线810在耦入区111进入导 光透镜10,并最终由耦出区121射出导光透镜10。其中,导光透镜10可以理解为是一种波导结构,光线810在导光透镜10内传播时,发生光的全反射。
分光件设于导光透镜10的第二端面140;分光件的作用在于对入射的光线810进行分光,将光线810反射向导光透镜10的耦出区121。分光件的分光比例可以调整,例如100%反射。或者是部分反射,部分透射,反射和透射比可以是1:1,还可以是2:1,或者是1:2等。
光线810于第一表面110的耦入区111入射,经第一端面130后射向第一表面110,光线810在导光透镜10内依次经过第一表面110和第二表面120,并射向第二端面140,光线810经设于第二端面140的分光件分光反射,并经导光透镜10的耦出区121射出。光线810在导光透镜10内传递时,光线810在第一表面110满足光的全反射条件,导光透镜10的折射率大于空气,光线810由光密介质射向光疏介质,光线810在第一表面110的入射角大于或等于全反射的临界角,从而使光线810全反射。同样地,光线810在第二表面120也发生全反射。
本实施例提出的技术方案中,光线810经导光透镜10的耦入区111进入导光透镜10,并射向导光透镜10的第一端面130。光线810在第一端面130满足反射条件,比如在第一端面130设置反射膜或者是光线810在第一端面130的入射角度大于或等于全反射临界角。光线810在第一端面130发生了第一次反射。光线810经第一端面130后射向第一表面110。光线810在射向第一表面110时,满足光的全反射条件,入射角大于等于临界角,光线810由光密介质射向光疏介质,从而光线810在第一表面110发生了光的全反射,光线810发生了第二次反射,光线810射向第二表面120。光线810在第二表面120,也满足光的全反射条件,光线810在第二表面120也发生光的全反射,光线810发生了第三次反射,光线810射向导光透镜10的第二端面140。在第二端面140设置有分光件,分光件能够完成对入射光线810的分光,将至少部分光线810反射,即光线810在第二端面140的分光件的作用下,光线810发生了第四反射,光线810被分光反射向第二表面120的耦出区121,并透射出耦出区121。由此可知,光线810在导光镜组的作用下,至少经过了四次反射,也就是说,在有限的空间内光线810发生了更多次的折反射,因此在成像画面尺寸相同的情况下,本实施例中的导光镜组可以利用更小的空间更多次的光线810反射,从而完成光线810的放大传递。更小的空间意味着更小的透镜,继而便于透镜的厚度减少,节 约安装空间,导光镜组整体体积变小,则相应的头戴显示设备的体积也变小,由此提高用户穿戴头戴显示设备的便捷性。
在本申请的上述实施例中,导光镜组还包括反射件20,反射件20位于导光透镜10的第一端面130,光线经第一端面130后射向反射件20,反射件20将光线810反射回第一端面130,并透射第一端面130。反射件20位于导光透镜10的第一端面130;反射件20的作用在于将入射的光线810反射,反射件20的反射原理包括镜面反射和偏振反射。镜面反射时,在反射件20设置有反射膜。偏振反射时,反射件20设置有偏振反射膜。第一端面130射出的光线810射向反射件20,在反射件20的作用下,光线810第一次反射,光线810被反射向导光透镜10的第一端面130。本实施例通过增加反射件20,从而增加了一次反射次数,增加反射次数时,就可以减少压缩透镜的整体体积,从而减少透镜的厚度。减少了透镜的厚度也可以减少相应的质量,使头戴显示设备更轻,用户穿戴时也更加舒适。
进一步地,参阅图2所示,反射件20可以是反射镜也可以是反射透镜,反射镜可以理解为只有一个光学面,在这个光学面上设置反射膜层,反射膜层的反射原理可以是对整个可见光波反射,也可以是对某些偏振状态的光线反射。简单理解,反射镜的厚度小于反射透镜。反射件20为反射镜时,厚度也更小,便于体积小型化,反射镜的镜面为平面、自由曲面或非球面的一种。
在本申请的上述实施例中,参阅图3-图7所示,光线810经过多次反射,在光轴附近的光线810和远离光轴的边缘位置的光线810经过的光程路径会有差异。这种差异会导致像差的产生,为了减少像差,反射件20为反射透镜,反射透镜包括面向导光透镜10的入射面210和背离导光透镜10的反射面220,入射面210和反射面220至少其中之一是自由曲面或非球面。可以理解的是,此时面型有多种方案,至少包括以下几种:
第一种情况是,入射面210是自由曲面。第二情况是,入射面210是非球面。第三种情况是,反射面220是自由曲面。第四种情况是,反射面220是非球面。第五种情况是,入射面210和反射面220均是自由曲面。第六种情况是,入射面210和反射面220均是非球面。第七种情况是,入射面210是自由曲面,反射面220是非球面。第八种情况是,入射面210是非球面,反射面220是自由曲面。通过非球面的设计,光学面的中心位置到边缘位置的曲率是逐渐变化, 增加或者减小,通过这种曲率的逐渐变化,减少光线810在光轴位置和边缘位置的成像差异,从而减少像差。自由曲面可以理解为多个非球面的组合,通过一个自由曲面可以形成多个非球面的消除像差的效果。由此,通过一个自由曲面的空间替换多个非球面的空间,进而有助于减少导光镜组的体积。
在本申请的另一实施例中,为了减少像差,导光透镜10的第一表面110、第二表面120、第一端面130和第二端面140至少其中之一是自由曲面或非球面。可以理解的是,此时面型也具有多种方案。例如,第一表面110、第二表面120、第一端面130和第二端面140均为自由曲面,或者是,第一表面110、第二表面120、第一端面130和第二端面140均为非球面。也可以其中两个光学面为自由曲面,另外两个光学面为非球面。还可以是其中一个是自由曲面,另外三个是非球面。同样地,通过非球面的设计,光学面的中心位置到边缘位置的曲率是逐渐变化,增加或者减小,通过这种曲率的逐渐变化,减少光线810在光轴位置和边缘位置的成像差异,从而减少像差。自由曲面可以理解为多个非球面的组合,通过一个自由曲面可以形成多个非球面的消除像差的效果。由此,通过一个自由曲面的空间替换多个非球面的空间,进而有助于减少导光镜组的体积。
在本申请的一实施例中,为了将光线810有效的扩散成像,将第二表面120设置为凹陷面,如此光线810在经过第二表面120的耦出区121时,光线810在原来入射方向的基础上向四周扩散,从而放大成像。用户佩戴头戴显示设备时,第一端面130远离人眼侧,第二端面140靠近人眼的一侧,也就是说光线810是由人体头部的侧边向着眉心位置传递的。由于人体的头部大致成型弧形,为了符合人体设计,进而第二表面120设计为凹陷面。并且为了保证光线810能够准确的在第一表面110和第二表面120之间全反射,第一表面110设计为凸起面,第二表面120为凹陷面,由此第一表面110的弧形截面和第二表面120的弧形截面的弧度基本相同,或者两者弧度相等。
进一步地,光线810在两种不同介质间传递时,光线810在两者的表面会发折射,由光疏介质射向光密介质,且光线810的偏折方向朝向入光面的法线方向,进而在第一端面130和第二端面140均设置为凸起面,通过凸起面光线810进一步的会聚,从而保证经过第一端面130的光线810入射至第一表面110。经过第二端面140的外界光线90可以会聚至人眼。
在上述实施例中,为了进一步进行像差补偿,从而减少像差。反射件20包括主体部230,主体部230用于反射光线810,主体部230与导光透镜10间隔设置,且间隔距离自第一表面110至第二表面120方向逐渐增加。如此可以理解的,在光线810由第一端面130射出,靠近第二表面120的方向的光线810和靠近第一表面110的光线810两者经过的光程路径是不同的,靠近第二表面120的光线810经过的路径比靠近第一表面110的光线810经过的路径更长。光线810在由反射件20将光线810反射至第一端面130时,靠近第二表面120的光线810经过的路径比靠近第一表面110的光线810经过的路径长。由此改变了光线810的光程,通过改变光线810经过的光程路径来消除像差。需要指出的第一端面130与第一表面110的夹角为锐角,第一端面130与第二表面120的夹角为钝角。第二端面140与第一表面110的夹角为钝角,第二端面140与第二表面120的夹角为锐角。
为了进一步的进行像差补偿,主体部230的厚度自第一表面110至第二表面120的方向逐渐增加。由此光线810在反射件20内经过的光程路径也是不同的,同样可知的是,靠近第二表面120的光线810经过的路径比靠近第一表面110的光线810经过的路径更长。由此改变了光线810的光程,通过改变光线810经过的光程路径来消除像差。
在本申请的另一实施例中,导光镜组应用于AR显示,用户佩戴头戴显示设备时,需要外界的光线810透射入导光镜组,为了对外界光线90进行校正,导光镜组包括校正透镜30,校正透镜30用于校正透射光线810的像差,校正透镜30设于导光透镜10的第二端面140,分光件位于第二端面140和校正透镜30之间。校正透镜30具有和第二端面140相适配的出光面,比如说,第二端面140为凸起面,则校正透镜30的出光面为凹陷面。第二端面140为凹陷面时,则校正透镜30为凸起面,如此可以使导光透镜10和校正透镜30更好的对接。并且为了保证导光透镜10的整体性,校正透镜30的入光面的弧形沿着导光透镜10的第一表面110设置。
进一步地,为了便于校正透镜30的安装,导光镜组包括第一凸起部40和第一定位槽50,第一凸起部40和第一定位槽50相对设置,第一凸起部40设于校正透镜30或导光透镜10其中之一,第一定位槽50设于校正透镜30或导光透镜10的其中另一。第一凸起部40能够定位扣合于第一定位槽50中,从而完成 校正透镜30和导光透镜10的组装。具体来说,第一凸起部40设置在校正透镜30上,则第一定位槽50设置在导光透镜10上。第一凸起部40设置在导光透镜10上,则第一定位槽50设置在校正透镜30上。并且,为了防止安装时校正透镜30反向,第一定位槽50的两端深度不同,相应的第一凸起部40的两端长度也不同,如果安装反向,则第一凸起部40难以扣合入第一定位槽50,只有在安装方向准确的情况下,第一凸起部40才能准确插入到第一定位槽50内。另外,需要指出的是,在通过第一凸起部40和第一定位槽50扣合安装的基础上,在导光透镜10和校正透镜30之间设置有光学胶,从而完成导光透镜10和校正透镜30胶合安装,保证安装的更加牢固。
在本申请的其它实施例中,导光镜组包括第二凸起部60和第二定位槽70,第二凸起部60和第二定位槽70相对设置,第二凸起部60设于反射件20或导光透镜10其中之一,第二定位槽70设于反射件20或导光透镜10的其中另一。第二凸起部60能够定位扣合于第二定位槽70中,从而完成反射件20和导光透镜10的组装。具体来说,第二凸起部60设置在反射件20上,则第二定位槽70设置在导光透镜10上。第二凸起部60设置在导光透镜10上,则第二定位槽70设置在反射件20上。并且,为了安装的更加牢固,可以在反射件20上既设置第二凸起部60,又设置第二定位槽70。如此,则在导光透镜10上既设置第二定位槽70,又设置第二凸起部60,从而使两者交错扣合,提高固定的牢固性。进一步地,还可以在第二凸起部60和第二定位槽70的扣合位置设置光学胶,提高连接的牢固性。
在本申请的一实施例中,分光件为半反半透膜。也就是说分光件为膜层结构,膜层结构的厚度较薄,如此更有利于减少透镜厚度。本实施例中,导光镜组应用于AR显示,外界光线90需要射入头戴显示设备内。外界光线90经过半反半透膜时,可以透射分光件,同时也能保证在导光镜组内部传递的光线810射向分光件后,被分光件反射向耦出区121。另外,分光件可以采用镀膜的方式,提高膜层的牢固性。也可以采用粘贴的方式,粘贴的方式,分光件的设置更加容易操作。
再次参阅图3所示,本发明还提供一种导光系统,导光系统包括显示器80和如上文导光镜组,显示器80设于导光透镜10的耦入区111的一侧。也就是说 显示器80设置位置远离用户的面部,显示器80在工作时会散发热量,将显示器80设置远离用户面部皮肤的一侧,可以减少热量对皮肤的辐射,减少用户的不适感,甚至避免烫伤用户。
本发明的导光系统的实施方式可以参照上述导光镜组各实施例,在此不再赘述。
本发明还提供一种头戴显示设备,头戴显示设备包括镜框和如上文导光镜组,导光镜组设于镜框。镜框用于形成支撑导光镜组的支架,导光镜组设置在镜框上,便于用户穿戴。
本发明的头戴显示器的实施方式可以参照上述导光镜组各实施例,在此不再赘述。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (14)

  1. 一种导光镜组,其特征在于,所述导光镜组包括:
    导光透镜,所述导光透镜包括相对设置的第一表面和第二表面,所述第一表面具有光线耦入的耦入区,所述第二表面具有光线耦出的耦出区,所述导光透镜还包括相对设置的第一端面和第二端面,所述第一端面和所述第二端面均位于所述第一表面和所述第二表面之间;和
    分光件,所述分光件设于所述导光透镜的第二端面;
    光线于所述第一表面的耦入区入射,经所述第一端面后射向所述第一表面,光线在所述导光透镜内依次经过所述第一表面和所述第二表面,并射向所述第二端面,光线经所述分光件的分光反射,光线由所述导光透镜的耦出区射出。
  2. 如权利要求1所述的导光镜组,其特征在于,所述导光镜组还包括反射件,所述反射件位于所述导光透镜的第一端面,光线经所述第一端面后射向所述反射件,所述反射件将光线反射回所述第一端面,并透射所述第一端面。
  3. 如权利要求2所述的导光镜组,其特征在于,所述反射件为反射镜,所述反射镜的镜面为平面、自由曲面或非球面的一种。
  4. 如权利要求2所述的导光镜组,其特征在于,所述反射件为反射透镜,所述反射透镜包括面向所述导光透镜的入射面和背离所述导光透镜的反射面,所述入射面和所述反射面至少其中之一是自由曲面或非球面。
  5. 如权利要求4所述的导光镜组,其特征在于,所述反射透镜包括主体部,所述主体部用于反射光线,所述主体部与所述导光透镜间隔设置,且间隔距离自所述第一表面至所述第二表面方向逐渐增加。
  6. 如权利要求5所述的导光镜组,其特征在于,所述主体部的厚度自所 述第一表面至所述第二表面的方向逐渐增加。
  7. 如权利要求1至6中任一项所述的导光镜组,其特征在于,所述导光透镜的第一表面、第二表面、第一端面和第二端面至少其中之一是自由曲面或非球面。
  8. 如权利要求1至6中任一项所述的导光镜组,其特征在于,所述第一表面为凸起面,所述第二表面为凹陷面,所述第一端面和所述第二端面均为凸起面。
  9. 如权利要求1至6中任一项所述的导光镜组,其特征在于,所述导光镜组包括校正透镜,所述校正透镜用于校正透射光线的像差,所述校正透镜设于所述导光透镜的第二端面,所述分光件位于所述第二端面和所述校正透镜之间。
  10. 如权利要求9所述的导光镜组,其特征在于,所述导光镜组包括第一凸起部和第一定位槽,所述第一凸起部和所述第一定位槽相对设置,所述第一凸起部设于所述校正透镜或所述导光透镜其中之一,所述第一定位槽设于所述校正透镜或所述导光透镜的其中另一。
  11. 如权利要求2所述的导光镜组,其特征在于,所述导光镜组包括第二凸起部和第二定位槽,所述第二凸起部和所述第二定位槽相对设置,所述第二凸起部设于所述反射件或所述导光透镜其中之一,所述第二定位槽设于所述反射件或所述导光透镜的其中另一。
  12. 如权利要求1至6中任一项所述的导光镜组,其特征在于,所述分光件为半反半透膜。
  13. 一种导光系统,其特征在于,所述导光系统包括显示器和如权利要求1至12中任一项所述导光镜组,所述显示器设于所述导光透镜的耦入区的一 侧。
  14. 一种头戴显示设备,其特征在于,所述头戴显示设备包括镜框和如权利要求1至12中任一项所述导光镜组,所述导光镜组设于所述镜框。
PCT/CN2022/102057 2021-08-27 2022-06-28 导光镜组、导光系统和头戴显示设备 WO2023024691A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111008012.5 2021-08-27
CN202111008012.5A CN113820860B (zh) 2021-08-27 2021-08-27 导光镜组、导光系统和头戴显示设备

Publications (1)

Publication Number Publication Date
WO2023024691A1 true WO2023024691A1 (zh) 2023-03-02

Family

ID=78923522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102057 WO2023024691A1 (zh) 2021-08-27 2022-06-28 导光镜组、导光系统和头戴显示设备

Country Status (2)

Country Link
CN (1) CN113820860B (zh)
WO (1) WO2023024691A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820860B (zh) * 2021-08-27 2023-06-06 歌尔光学科技有限公司 导光镜组、导光系统和头戴显示设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020167463A1 (en) * 2001-02-05 2002-11-14 Kazutaka Inoguchi Optical system and image displaying apparatus using the same
CN107976807A (zh) * 2016-11-25 2018-05-01 上海渺视光学科技有限公司 一种增强现实式头戴显示器及其光路结构
CN108957750A (zh) * 2018-07-09 2018-12-07 歌尔科技有限公司 光学系统、头戴显示设备及智能眼镜
CN109154431A (zh) * 2016-02-18 2019-01-04 奥里姆光学有限公司 紧凑型头戴式显示系统
CN111458884A (zh) * 2020-05-27 2020-07-28 歌尔光学科技有限公司 光线传导结构和头戴显示设备
CN113820860A (zh) * 2021-08-27 2021-12-21 歌尔光学科技有限公司 导光镜组、导光系统和头戴显示设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020167463A1 (en) * 2001-02-05 2002-11-14 Kazutaka Inoguchi Optical system and image displaying apparatus using the same
CN109154431A (zh) * 2016-02-18 2019-01-04 奥里姆光学有限公司 紧凑型头戴式显示系统
CN107976807A (zh) * 2016-11-25 2018-05-01 上海渺视光学科技有限公司 一种增强现实式头戴显示器及其光路结构
CN108957750A (zh) * 2018-07-09 2018-12-07 歌尔科技有限公司 光学系统、头戴显示设备及智能眼镜
CN111458884A (zh) * 2020-05-27 2020-07-28 歌尔光学科技有限公司 光线传导结构和头戴显示设备
CN113820860A (zh) * 2021-08-27 2021-12-21 歌尔光学科技有限公司 导光镜组、导光系统和头戴显示设备

Also Published As

Publication number Publication date
CN113820860A (zh) 2021-12-21
CN113820860B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
TWI751262B (zh) 交疊的反射面構造
JP6774429B2 (ja) シースルーヘッドウェアラブルディスプレイのためのアイピースに対する処方修正の追加
CN104536088B (zh) 齿形镶嵌平面波导光学器件
CN104614858B (zh) 增强现实的锯齿结构平面波导目视光学显示器件
US20210215942A1 (en) Diffractive display element with grating mirror
US6493146B2 (en) Image display apparatus
CN112987166B (zh) 光波导组件和头戴显示设备
CN104597602A (zh) 高效耦合、结构紧凑的齿形镶嵌平面波导光学器件
CN104597565A (zh) 增强现实的齿形镶嵌平面波导光学器件
CN111448505B (zh) 具有偏振波导的近眼系统
CN216526543U (zh) 一种两片式波导光学模组及近眼显示设备
CN215117019U (zh) 一种光学镜组及近眼显示装置
TWM596873U (zh) 微型頭戴式顯示器之光學系統
US11698532B2 (en) Image display device
WO2023024691A1 (zh) 导光镜组、导光系统和头戴显示设备
CN211826725U (zh) 微型头戴显示器的光学系统
CN113391447A (zh) 微型头戴显示器的光学系统
JP2017058400A (ja) 画像表示装置
TW202134734A (zh) 微型頭戴顯示器之光學系統
CN112987165B (zh) 波导片、波导片的加工方法和头戴显示设备
CN111443484B (zh) 虚像显示装置
CN218956925U (zh) 一种曲面光波导及其近眼显示设备
CN115698822A (zh) 自由形式偏振光导
WO2023123920A1 (zh) 光传输结构和头戴显示设备
US7675685B2 (en) Image display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860038

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE