WO2023024684A1 - 数据传输的方法和装置 - Google Patents

数据传输的方法和装置 Download PDF

Info

Publication number
WO2023024684A1
WO2023024684A1 PCT/CN2022/101022 CN2022101022W WO2023024684A1 WO 2023024684 A1 WO2023024684 A1 WO 2023024684A1 CN 2022101022 W CN2022101022 W CN 2022101022W WO 2023024684 A1 WO2023024684 A1 WO 2023024684A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
information
transmission
air interface
service
Prior art date
Application number
PCT/CN2022/101022
Other languages
English (en)
French (fr)
Inventor
张伟
徐日东
施迅
孙艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023024684A1 publication Critical patent/WO2023024684A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the communication field, and more specifically, to a data transmission method and device.
  • the 5th generation (5th generation, 5G) 5G system is oriented to the business (to business, ToB) industry scenario, and has high requirements for a service level agreement (SLA) with deterministic delay.
  • SLA service level agreement
  • the uplink and downlink data of 5G terminals will be Bit errors, packet loss, etc. occur randomly, resulting in retransmission delays, making the network unable to meet service delay requirements stably, and in severe cases may cause service damage or even equipment shutdown.
  • the quality of the air interface is poor and the service is damaged, how to reduce the delay of retransmission is an urgent problem to be solved.
  • the present application provides a method and device for data transmission, which can reduce the time delay of retransmission and improve the success rate of redundant transmission when the service is damaged due to poor air interface quality.
  • a method for data transmission including: a first control entity determines parameters for transmitting data according to information for scheduling air interface resources, where the parameters for transmitting data include a first number M; the first A control entity transmits first information to a first execution entity, where the first information includes first quintuple information corresponding to service data and the parameters used to transmit data, and the first information is used to instruct the first execution entity to transmit
  • the first transmission data includes the business data and M copy data, the M copy data is obtained by copying the business data M times, and M is a positive integer;
  • the first control entity sends The entity transmits second information, where the second information is used to instruct the second execution entity to deduplicate the second transmission data, where the second information includes second quintuple information corresponding to the first transmission data, and the first transmission
  • the data includes the second transmission data, wherein the second 5-tuple information includes the first 5-tuple information.
  • the first control entity instructs the first execution entity to perform redundant transmission of the copied data and the original data, which reduces the delay of retransmission; the first control entity according to the air interface Scheduling information determines redundant transmission parameters, which can prevent the original data and copied data from being packaged into the same transmission block for transmission, reduce the possibility of simultaneous transmission failure of original data and copied data, reduce the failure of redundant mechanisms, and improve the efficiency of redundant transmission. Success rate; by implementing redundant transmission at the fine-grained level to the business flow (quintuple) level, the accuracy of redundant transmission control is improved.
  • the information for scheduling air interface resources includes: the ratio of uplink time slots and downlink time slots used to transmit the first transmission data, pre-scheduled for The time period of the time slot for transmitting the first transmission data, the parameter for transmitting data also includes an interval period, and the interval period is used to indicate the transmission interval of the service data and any one of the M copies of data, or
  • the information for scheduling air interface resources includes: the radio access network device used to transmit the first transmission data has the function of independently allocating transmission blocks to different service quality flows, and the parameters for transmitting data also include the M The third five-tuple information corresponding to the copied data, the service quality flow corresponding to the third five-tuple information is different from the service quality flow corresponding to the first five-tuple information, wherein the second five-tuple information also includes For the third quintuple information, the information for scheduling air interface resources is received by the first control entity from the radio access network device, or the information for scheduling air interface resources is pre
  • the method further includes: the first control entity acquires an air interface quality indicator, where the air interface quality indicator includes at least one of the following: reference signal received power, reference signal received quality , signal-to-interference-plus-noise ratio, initial transmission/retransmission bit error rate; the first control entity determines parameters for transmitting data according to the information used for scheduling air interface resources, including: the first control entity determines parameters for The resource information and the air interface quality indicator determine the parameter for transmitting data.
  • the method further includes: the first control entity acquires third information that the air interface quality index satisfies the first condition in different time periods, resulting in service damage; the first The control entity determines, according to the third information, that the air interface quality index satisfies the first condition, which results in service damage; the first control entity determines a transmission period according to the period law, and the transmission period is used to instruct the first control entity only when the The M copies of replicated data are transmitted within the transmission period.
  • the above solution realizes redundant transmission by time period by obtaining the law of air interface quality damage, that is, redundant transmission is performed during the time period when the air interface quality is resource usage.
  • the air interface quality indicator satisfies a first condition, including: the reference signal received power is lower than a first threshold, or the reference signal received quality is lower than a second threshold, Or the signal-to-interference-plus-noise ratio is lower than the third threshold, or the initial transmission/retransmission bit error rate is higher than the fourth threshold, and the service damage includes: the delay is higher than the fifth threshold, or the packet loss rate is higher than Sixth threshold.
  • the parameter for transmitting data further includes the transmission period.
  • the first control entity obtains the third information that the air interface quality index satisfies the first condition at different time periods, resulting in service damage, including: the first control entity is in The third information from the first detection entity is received at different time periods, where the third information is used to indicate that the air interface quality indicator meets the first condition and the service is damaged.
  • a data transmission method including: a first execution entity receives first information from a first control entity, where the first information includes first quintuple information and the parameters for transmitting data, The parameter for transmitting data includes a first quantity M, and the parameter for transmitting data is determined according to the information for scheduling air interface resources; the first execution entity sends the second execution entity to the second execution entity according to the first information
  • the first transmission data includes the service data and M copies of data, the service data is determined according to the first quintuple information, and the M copies of the copy data are obtained by copying the service data M times, M is a positive integer.
  • the first execution entity when the quality of the air interface is poor and the service is damaged, performs redundant transmission of the duplicate data and the original data according to the instruction of the first control entity, which reduces the delay of retransmission; according to the air interface scheduling information
  • the determined redundant transmission parameters can prevent the original data and the copied data from being packaged into the same transmission block for transmission, reduce the possibility of simultaneous transmission failure of the original data and the copied data, reduce the failure of the redundancy mechanism, and improve the success of the redundant transmission rate; through the realization of fine-grained redundant transmission down to the level of business flow (quintuple), the control accuracy of redundant transmission is improved.
  • the parameter for transmitting data further includes an interval period, and the interval period is used to indicate the sending interval of the service data and the M copies of data, and the first The execution entity sends the first transmission data to the second execution entity according to the first information, including: the transceiver module, specifically configured to send any of the following items to the second execution entity at intervals: the business data, the One of the M copies of the copied data; or, the parameter for transmitting data further includes the third quintuple information corresponding to the M copies of the copied data, and the service quality flow corresponding to the third quintuple information is the same as the first The QoS streams corresponding to the five-tuple information are different, and the transceiver module is further configured to send the first transmission data to the second execution entity through different QoS streams.
  • the method further includes: the parameter for transmitting data further includes a transmission period, and the first control entity only transmits during the transmission according to the parameter for transmitting data The M copies of replicated data are transmitted within a time period.
  • a method for data transmission including: the second execution entity receives second information from the first control entity, the second information includes second five-tuple information, and the second five-tuple information is the same as Corresponding to the first transmission data; the second execution entity receives the second transmission data from the first execution entity; the second execution entity deduplicates the second transmission data according to the second information, and the first transmission data includes the Second transmission data, the second transmission data is determined according to the second quintuple information.
  • the second execution entity receiving the second transmission data from the first execution entity includes: the second execution entity receiving the third transmission data from the first execution entity transmit data; after an interval period, the second execution entity receives fourth transmission data from the first execution entity, the second transmission data includes the third transmission data and the fourth transmission data; or, the second execution entity Receive third transmission data and fourth transmission data from the first execution entity through different quality of service streams, the third transmission data corresponds to the first five-tuple information, the fourth transmission data corresponds to the third five-tuple information
  • the second transmission data includes the third transmission data and the fourth transmission data, and the second five-tuple information includes first five-tuple information and third five-tuple information.
  • the second execution entity receiving the second transmission data from the first execution entity includes: the second execution entity receiving the second transmission data within a transmission period .
  • a method for data transmission including: the first detection entity determines that the air interface quality indicator meets the first condition, and the air interface quality indicator meets the first condition, including: the reference signal received power is lower than the first threshold, Or the received quality of the reference signal is lower than the second threshold, or the signal-to-interference-plus-noise ratio is lower than the third threshold, or the initial transmission/retransmission bit error rate is higher than the fourth threshold; the first detection entity determines that the service is affected loss, the service damage includes: the delay is higher than the fifth threshold, or the packet loss rate is higher than the sixth threshold; the first detection entity sends third information to the first control entity in different time periods, and the third information uses The service is damaged due to indicating that the air interface quality indicator satisfies the first condition.
  • a device for data transmission which is characterized in that it includes: a processing module, configured to determine parameters for transmitting data according to information for scheduling air interface resources, where the parameters for transmitting data include the first Quantity M; a transceiver module, configured to transmit the first information to the first execution entity, the first information includes the first quintuple information corresponding to the service data and the parameters used to transmit the data, the first information is used to indicate the The first execution entity transmits the first transmission data, the first transmission data includes the business data and M copies of the data, the M copies of the data are obtained by copying the business data M times, and M is a positive integer; the transceiver module, It is also used to transmit second information to the second execution entity, the second information is used to instruct the second execution entity to deduplicate the second transmission data, and the second information includes the second five-element corresponding to the first transmission data Group information, the first transmission data includes the second transmission data, wherein the second five-tuple information includes the first five-
  • the first control entity instructs the first execution entity to perform redundant transmission of the copied data and the original data, which reduces the delay of retransmission; the first control entity according to the air interface Scheduling information determines redundant transmission parameters, which can prevent the original data and copied data from being packaged into the same transmission block for transmission, reduce the possibility of simultaneous transmission failure of original data and copied data, reduce the failure of redundant mechanisms, and improve the efficiency of redundant transmission. Success rate; by implementing redundant transmission at the fine-grained level to the business flow (quintuple) level, the accuracy of redundant transmission control is improved.
  • the information for scheduling air interface resources includes: the ratio of uplink time slots and downlink time slots used to transmit the first transmission data, pre-scheduled for The time period of the time slot for transmitting the first transmission data, the parameter for transmitting data also includes an interval period, and the interval period is used to indicate the transmission interval of the service data and any one of the M copies of data, or
  • the information for scheduling air interface resources includes: the radio access network device used to transmit the first transmission data has the function of independently allocating transmission blocks to different quality of service streams, and the parameters for transmitting data also include the M shares Copying the third quintuple information corresponding to the data, the quality of service flow corresponding to the third quintuple information is different from the service quality flow corresponding to the first quintuple information, wherein the second quintuple information also includes the In the third quintuple information, the information for scheduling air interface resources is received by the first control entity from the radio access network device, or the information for scheduling air
  • the processing module is further configured to obtain an air interface quality indicator, where the air interface quality indicator includes at least one of the following: reference signal received power, reference signal received quality, signal and Interference plus noise ratio, initial transmission/retransmission bit error rate; the processing module is also used to determine parameters for transmitting data according to the information used to schedule air interface resources, including: the processing module is also used for the first control The entity determines the parameter for transmitting data according to the information for scheduling air interface resources and the air interface quality index.
  • the air interface quality indicator includes at least one of the following: reference signal received power, reference signal received quality, signal and Interference plus noise ratio, initial transmission/retransmission bit error rate
  • the processing module is also used to obtain the third information that the air interface quality index meets the first condition in different time periods, resulting in service damage; the processing module also uses Determining, according to the third information, that the air interface quality index satisfies the first condition and results in a period of service damage; the processing module is further configured to determine a transmission period according to the period of time, and the transmission period is used to instruct the first control entity to only The M copies of replicated data are transmitted within the transmission period.
  • the air interface quality indicator satisfies the first condition, including: the reference signal received power is lower than a first threshold, or the reference signal received quality is lower than a second threshold, Or the signal-to-interference-plus-noise ratio is lower than the third threshold, or the initial transmission/retransmission bit error rate is higher than the fourth threshold, and the service damage includes: the delay is higher than the fifth threshold, or the packet loss rate is higher than Sixth threshold.
  • the parameter for transmitting data further includes the transmission period.
  • the transceiver module is further configured to receive the third information from the first detection entity at different time periods, the third information is used to indicate the air interface quality indicator Satisfying the first condition results in the loss of the business.
  • a device for data transmission including: a transceiver module, configured to receive first information from a first control entity, the first information includes first quintuple information and the parameter for transmitting data , the parameter used to transmit data includes a first number M, the parameter used to transmit data is determined according to the information used to schedule air interface resources; Sending the first transmission data, the first transmission data includes the service data and M copies of data, the service data is determined according to the first quintuple information, and the M copies of the service data are copied M times of the service data Obtained, M is a positive integer.
  • the first execution entity when the quality of the air interface is poor and the service is damaged, performs redundant transmission of the duplicate data and the original data according to the instruction of the first control entity, which reduces the delay of retransmission; according to the air interface scheduling information
  • the determined redundant transmission parameters can prevent the original data and the copied data from being packaged into the same transmission block for transmission, reduce the possibility of simultaneous transmission failure of the original data and the copied data, reduce the failure of the redundancy mechanism, and improve the success of the redundant transmission rate; through the realization of fine-grained redundant transmission down to the level of business flow (quintuple), the control accuracy of redundant transmission is improved.
  • the parameter for transmitting data further includes an interval period, and the interval period is used to indicate the sending interval of the service data and the M copy data
  • the transceiver module specifically for sending any of the following items to the second execution entity at intervals: the business data, one of the M copies of data; or, the parameter for transmitting data also includes the M copies of data
  • the third quintuple information corresponding to the data, the quality of service flow corresponding to the third quintuple information is different from the quality of service flow corresponding to the first quintuple information, and the transceiver module is also specifically used to pass different quality of service flows to The second execution entity sends the first transmission data.
  • the parameter for transmitting data further includes a transmission period
  • the transceiver module is further configured to transmit only within the transmission period according to the parameter for transmitting data The M copies of data.
  • a device for data transmission including: a transceiver module, configured to receive second information from a first control entity, the second information includes second five-tuple information, and the second five-tuple information Corresponding to the first transmission data; the second execution entity receives second transmission data from the first execution entity; a processing module, configured to deduplicate the second transmission data according to the second information, and the first transmission data includes The second transmission data is determined according to the second five-tuple information.
  • the transceiver module is further configured to receive the second transmission data from the first execution entity, including: the second execution entity receives the transmission data from the first execution entity third transmission data; after the interval period, the transceiver module is further configured to receive fourth transmission data from the first execution entity, the second transmission data includes the third transmission data and the fourth transmission data; or, the The transceiver module is further configured to receive third transmission data and fourth transmission data from the first execution entity through different quality of service streams, the third transmission data corresponds to the first five-tuple information, and the fourth transmission data corresponds to the first five-tuple information.
  • the second transmission data includes the third transmission data and the fourth transmission data, and the second five-tuple information includes first five-tuple information and third five-tuple information.
  • the transceiver module is further configured to receive the second transmission data within a transmission period.
  • a data transmission device including: a processing module, configured to determine that an air interface quality indicator meets a first condition, the air interface quality indicator meets the first condition, including: the reference signal received power is lower than a first threshold , or the reference signal reception quality is lower than the second threshold, or the signal-to-interference-plus-noise ratio is lower than the third threshold, or the initial transmission/retransmission bit error rate is higher than the fourth threshold; the processing module is also used to Determining that the service is damaged, the service damage includes: the delay is higher than the fifth threshold, or the packet loss rate is higher than the sixth threshold; the transceiver module is used to send the third information to the first control entity in different time periods, the first The third information is used to indicate that the air interface quality indicator meets the first condition and the service is damaged.
  • a communication device which is characterized by comprising: a processor and a memory; the memory is used to store a computer program; the processor is used to execute the computer program stored in the memory, to The communication device is made to execute the communication method described in any one of the first aspect to the fourth aspect.
  • a computer-readable storage medium wherein a computer program is stored on the computer-readable storage medium, and when the computer program runs on a computer, the computer executes the first aspect. to the communication method described in any one of the fourth aspect.
  • a chip system which is characterized in that it includes: a processor, configured to call and run a computer program from a memory, so that a communication device installed with the chip system executes the first aspect to the fourth aspect The communication method described in any aspect.
  • Figure 1 shows the current 5G network architecture.
  • Fig. 2 shows a schematic structural diagram of a multi-access edge computing architecture.
  • FIG. 3 shows a schematic interaction diagram of a data transmission method 300 provided in this application.
  • FIG. 4 shows a schematic interaction diagram of a data transmission method 400 provided in this application.
  • FIG. 5 shows a schematic interaction diagram of a data transmission method 500 provided in this application.
  • FIG. 6 shows a schematic interaction diagram of a data transmission method 600 provided in this application.
  • FIG. 7 shows a schematic interaction diagram of a data transmission method 700 provided in this application.
  • Fig. 8 shows a schematic block diagram of the uplink scheduling interval of original data and duplicate data.
  • Fig. 9 is a schematic block diagram of a communication device for secure communication provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an apparatus 20 for secure communication provided by an embodiment of the present application.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access wideband code division multiple access
  • GPRS general packet radio service
  • long term evolution long term evolution, LTE
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile telecommunications system
  • WiMAX global interconnection microwave access
  • V2X vehicle to everything
  • V2V Vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2P Vehicle to pedestrian
  • V2N vehicle to network communication
  • FIG. 1 provides a network architecture, and each network element that may be involved in the network architecture will be described separately below with reference to FIG. 1 .
  • User equipment can be called terminal equipment, terminal, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication equipment, User Agent or User Device.
  • the UE can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital assistant (personal digital assistant, PDA), having a wireless communication function Handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks or future evolutions of public land mobile networks (public land mobile network, PLMN) or non-terrestrial Network (non-terrestrial networks, NTN) terminal equipment, etc., can also be terminal equipment, logical entities, intelligent equipment, such as mobile phones, intelligent terminals and other terminal equipment, or communication equipment such as servers, gateways, base stations, controllers, etc., or physical Networked devices, such as sensors, electricity
  • Access network Provides network access functions for authorized users in a specific area, and can use transmission tunnels of different qualities according to user levels and business requirements.
  • the access network may be an access network using different access technologies.
  • 3GPP access technologies such as those employed in 3G, 4G or 5G systems
  • non-3GPP non-3rd Generation Partnership Project
  • the 3GPP access technology refers to the access technology that complies with the 3GPP standard specification.
  • the access network adopting the 3GPP access technology is called the radio access network (radio access network, RAN).
  • the access network equipment in the 5G system is called Next generation Node Base station (gNB).
  • gNB Next generation Node Base station
  • a non-3GPP access technology refers to an access technology that does not comply with 3GPP standard specifications, for example, an air interface technology represented by an access point (access point, AP) in wifi.
  • An access network that implements a network access function based on a wireless communication technology may be referred to as a radio access network (radio access network, RAN).
  • the wireless access network can manage wireless resources, provide access services for terminals, and complete the forwarding of control signals and user data between terminals and the core network.
  • the radio access network can be, for example, a base station (NodeB), an evolved base station (evolved NodeB, eNB or eNodeB), a base station (gNB) in a 5G mobile communication system, a base station in a future mobile communication system, or an AP in a WiFi system, etc. It can also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario, or the access network device can be a relay station, an access point, a vehicle device, a wearable device, or a network in a future 5G network equipment or network equipment in the future evolved PLMN network.
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment.
  • Access and mobility management function entity: mainly used for mobility management and access management, etc., and can be used to implement mobility management entity (mobility management entity, MME) function except session Functions other than management, for example, functions such as lawful interception, or access authorization (or authentication).
  • AMF access and mobility management function
  • MME mobility management entity
  • session Functions other than management for example, functions such as lawful interception, or access authorization (or authentication).
  • Session management function session management function, SMF
  • SMF session management function
  • IP internet protocol
  • a user plane function (UPF) entity namely, a data plane gateway. It can be used for packet routing and forwarding, or quality of service (QoS) processing of user plane data, etc.
  • User data can be accessed to a data network (data network, DN) through this network element. In the embodiment of this application, it can be used to realize the function of the user plane gateway.
  • Data network A network used to provide data transmission.
  • DN Data network
  • a network used to provide data transmission For example, a network of an operator's business, an Internet (Internet) network, a business network of a third party, and the like.
  • Authentication server function authentication server function, AUSF
  • AUSF authentication server function
  • Network exposure function network exposure function, NEF
  • NEF network exposure function
  • Network function (NF) repository function (NRF) entity used to store the description information of the network function entity and the services it provides, and support service discovery, network element entity discovery, etc.
  • Policy control function Policy control function
  • PCF Policy control function
  • Unified data management (UDM) entity used to handle user identification, access authentication, registration, or mobility management.
  • Application function Application function, AF entity: It is used for data routing affected by applications, accessing network elements with open functions, or interacting with policy frameworks for policy control, etc.
  • it may be a V2X application server, a V2X application enabling server, or a drone server (may include a drone supervision server, or a drone application service server).
  • the N1 interface is the reference point between the terminal and the AMF entity;
  • the N2 interface is the reference point between the AN and the AMF entity, and is used for non-access stratum (non-access stratum, NAS) messages Sending, etc.
  • the N3 interface is the reference point between (R)AN and UPF entities, used to transmit user plane data, etc.;
  • the N4 interface is the reference point between the SMF entity and the UPF entity, used to transmit tunnels such as N3 connections Identification information, data cache indication information, and downlink data notification messages and other information;
  • the N6 interface is the reference point between the UPF entity and the DN, and is used to transmit user plane data, etc.
  • FIG. 1 can be applied to the embodiment of the present application.
  • the network architecture applicable to the embodiment of the present application is not limited thereto. Any network architecture that can realize the functions of the above-mentioned network elements is applicable to Example of this application.
  • the AMF entity, SMF entity, UPF entity, NEF entity, AUSF entity, NRF entity, PCF entity, and UDM entity shown in FIG. 1 can be understood as network elements used to implement different functions in the core network. Combined into network slices on demand. These network elements of the core network may be independent devices, or may be integrated into the same device to implement different functions, which is not limited in this application. It should be noted that the foregoing "network element" may also be referred to as an entity, device, device, or module, etc., which are not specifically limited in this application.
  • the name of the interface between network elements in FIG. 1 is just an example, and the name of the interface in a specific implementation may be another name, which is not specifically limited in this application.
  • the name of the message (or signaling) transmitted between the above network elements is only an example, and does not constitute any limitation on the function of the message itself.
  • Fig. 2 shows a schematic structural diagram of a multi-access edge computing architecture.
  • the multi-access edge computing (MEC) architecture includes MEC system level (MEC system level) and MEC host level (MEC host level).
  • the MEC host layer includes MEC host (MEC host), MEC platform (MEC platform), MEC service (MEC service), and MEC application (MEC application, MEC app).
  • MEC host includes an MEC platform, a virtualization infrastructure (virtualisation infrastructure), and an MEC application.
  • the MEC platform provides some basic functions for running MEC apps, such as MEC Service discovery, registration, access, and data plane traffic forwarding.
  • MEC Service provides external services for use by MEC Platform and MEC app.
  • the wireless network information service (radio network information service) in MEC service can provide terminal air interface bearer information, PLMN information, etc.
  • 5G-oriented business (to business, ToB) industry scenarios have high requirements for service level agreement (service level agreement, SLA) with deterministic delay.
  • SLA service level agreement
  • the electromagnetic environment in industrial parks, ports and other industrial sites is complex. Problems such as multipath, occlusion, sudden interference, and co-channel interference will cause the quality of the air interface to deteriorate, and 5G terminal uplink and downlink data will randomly experience bit errors and packet loss. As a result, retransmission delays are generated, making the network unable to meet service delay requirements stably, resulting in service damage and even equipment shutdown.
  • the following describes the retransmission delay caused by packet loss due to poor air interface quality, which cannot meet service delay requirements.
  • the following two examples use a programmable logic controller (programmable logic controller, PLC) and use the Profinet communication protocol, and the delay requirement is 16ms@99.9%.
  • Example 1 Remote control when an automated guided vehicle (AGV) fails: the operation center detects an AGV failure, remotely controls the AGV to drive out for maintenance, and the AGV automatically stops if it does not receive a control command for more than 3 cycles.
  • AGV automated guided vehicle
  • Example 2 Remote control of tire cranes/track cranes: The operator realizes real-time crane control in the operation center, and the crane does not receive a control command for more than 3 cycles and stops in an emergency.
  • the media access control media access control
  • radio link control layer radio link control layer
  • packet data convergence protocol packet data convergence protocol
  • PDCP packet data convergence protocol
  • a transport layer such as a transmission control protocol (transmission control protocol, TCP) protocol also has a retransmission function.
  • TCP transmission control protocol
  • both the MAC layer and the RLC layer perform retransmission after receiving the acknowledgment of transmission failure, and the retransmission takes a long time.
  • the PDCP duplication function copies data packets through the PDCP layer, and then sends two copies of data packets through two cells, and the PDCP layer at the receiving end performs deduplication processing after receiving the data packets. Although doing so can reduce the transmission delay, this function requires two cells to perform, and it is not applicable to a scenario with only one cell.
  • the transport layer performs retransmission, taking TCP as an example, it also needs to confirm the transmission failure before starting the retransmission, which will bring a large delay.
  • the air interface quality index includes but is not limited to reference signal received power (reference signal received power, RSRP), reference signal received quality (reference signal received quality, RSRQ), signal to interference plus noise ratio (signal to interference plus noise ratio, SINR), initial transmission/retransmission bit error rate, etc.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • SINR signal to interference plus noise ratio
  • initial transmission/retransmission bit error rate etc.
  • Air interface scheduling information It is some information related to air interface scheduling, or related information used to schedule air interface resources, such as time slot ratio, scheduling cycle, whether different QoS flows support independent allocation of transmission blocks, etc.
  • the time slot configuration can be understood as representing the configuration ratio of an uplink (uplink, UL) time slot (slot) and a downlink (downlink, DL) time slot.
  • Scheduling period refers to the time interval of each pre-scheduling when pre-scheduling is enabled.
  • Whether different QoS flows support independent allocation of transport blocks can be understood as, if the base station does not support this capability, then the allocation of each transport block is calculated according to the scheduling period and time slot ratio, and there is a time gap between each transport block Interval, if the base station supports it, then the transmission block can be allocated based on the QoS flow, and different QoS flows can independently allocate transmission blocks according to the scheduling cycle and time slot ratio, so that the original data packet and copying can be controlled during redundant transmission. Packets are transported using different QoS streams so that they are not packed into the same transport block.
  • Service damage It can be understood as the loss of data transmission between two network devices, or it can be understood as packet loss or delay increase in the control flow or service flow between two network devices.
  • Redundant transmission can be done in many ways. For example, in the time dimension, data packets can be sent repeatedly after a certain interval. In the space dimension, redundant data packets can be controlled to be sent through different air interface resources (for example, through different 5QI transmission), in the encoding dimension, the original data packet can be redundantly encoded (such as BATS, FEC) before being sent, and redundancy in three dimensions can also be performed at the same time.
  • time dimension data packets can be sent repeatedly after a certain interval.
  • redundant data packets can be controlled to be sent through different air interface resources (for example, through different 5QI transmission)
  • the original data packet in the encoding dimension, the original data packet can be redundantly encoded (such as BATS, FEC) before being sent, and redundancy in three dimensions can also be performed at the same time.
  • FIG. 3 is a schematic interaction diagram of a data transmission method 300 of the present application.
  • the first control entity determines parameters for transmitting data according to the information for scheduling air interface resources, the parameters for transmitting data include a first number M, and the first number M is used to instruct the first execution entity to copy service data M copies of data are obtained M times.
  • the first control entity determines parameters for transmitting data according to the information for scheduling air interface resources. For details, refer to the description in S406.
  • the information used to schedule air interface resources includes: the ratio of uplink time slots and downlink time slots used to transmit the first transmission data, the time period of the pre-scheduled time slots used to transmit the first transmission data, using
  • the parameters for transmitting data also include an interval period, and the interval period is used to indicate the sending interval of the business data and the M copy data.
  • the first control entity can regulate the transmission interval of service data and copy data according to the information on regulating the above-mentioned air interface resources, so as to prevent service data and copy data from being packaged on the same transmission block at the same time, and reduce the simultaneous transmission of original data and copy data.
  • the transmission fails, resulting in the failure of the redundancy mechanism.
  • the information used for scheduling air interface resources includes: the wireless access network device used to transmit the first transmission data has the function of independently allocating transmission blocks to different service quality flows, and the parameters used for transmitting data also include: Including the third quintuple information corresponding to M copies of data, the quality of service flow corresponding to the third quintuple information is different from the service quality flow corresponding to the first quintuple information, wherein the second quintuple information also includes the first quintuple information In the three-to-five-tuple information, the information used to schedule the air interface resources is received by the first control entity from the radio access network device, or the information used to schedule the air interface resources is pre-configured.
  • service data and replicated data correspond to different quintuple information, that is, the two can carry different QoS flows for transmission, and can also reduce the failure of simultaneous transmission of original data and replicated data, resulting in failure of the redundancy mechanism.
  • the first control entity obtains an air interface quality index
  • the air interface quality index includes at least one of the following: reference signal received power, reference signal received quality, signal-to-interference-plus-noise ratio, initial transmission/retransmission bit error rate;
  • a control entity determining parameters for data transmission according to information for scheduling air interface resources includes: a first control entity determining parameters for data transmission according to information for scheduling air interface resources and an air interface quality index.
  • the first control entity transmits the first information to the first execution entity.
  • the first execution entity receives the first information from the first control entity.
  • the first information includes the first quintuple information corresponding to the service data and Parameters for transmitting data, the first information is used to instruct the first execution entity to transmit first transmission data, the first transmission data includes the business data and M copies of data, and the M copies of data are the business data It is obtained by copying M times, and M is a positive integer.
  • transmission involved in this application may be implemented through signaling interaction, or may be implemented through internal circuit transmission.
  • the first execution entity may transmit service data according to parameters used for transmitting data. Specifically, the first execution entity may identify the business data according to the first quintuple information, and copy the business data M times according to the first quantity M to obtain M copies of the data, and then the first execution entity copies the business data and the M copies The data is sent to the second execution entity.
  • the first control entity transmits the second information to the second execution entity.
  • the second execution entity receives the second information from the first control entity, and the second information is used to instruct the second execution entity to carry out the second transmission data.
  • the second information includes second 5-tuple information corresponding to the first transmission data
  • the first transmission data includes the second transmission data
  • the second 5-tuple information includes the first 5-tuple information.
  • the first transmission data here is the data sent by the first execution entity to the second execution entity
  • the second transmission data is the data actually received by the second execution entity.
  • it may Bit errors and packet loss may occur randomly, so that the transmission of some data packets fails, and the first transmission data includes the second transmission data.
  • the quintuple information sent by the first control entity to the second execution entity is quintuple information corresponding to the first transmission data, and since the first transmission data includes the second transmission data, the first quintuple information includes The 5-tuple information corresponds to the second transmission data, so the second execution entity can identify the second transmission data according to the second 5-tuple information.
  • the first quintuple information is the quintuple information of the service data
  • the second quintuple information is the quintuple information of the service data and the quintuple information of the M copy data.
  • the second 5-tuple information includes the first 5-tuple information, and it can be understood that the second 5-tuple information may be the same as or different from the first 5-tuple information.
  • the business data and M copies of the copied data are mapped to the same quintuple, that is, the 5QI is not distinguished when sending the original data and the copied data; when the two are different, the business data and the M copies of the copied data are mapped to Different quintuples, i.e. distinguish 5QI when sending original data and copied data.
  • the first execution entity sends the first transmission data to the second execution entity according to the first information.
  • the second execution entity receives the second transmission data from the first execution entity.
  • the first transmission data includes business data and M shares
  • the business data is determined according to the information of the first quintuple, and the M copies of the replicated data are obtained by replicating the business data M times, where M is a positive integer.
  • the parameters used to transmit data in the first information may also include other content besides the first number M, and the first execution entity sends the first transmission data to the second execution entity according to the first information
  • the sending method will also be different according to the difference of the first message.
  • the parameters for data transmission also include an interval period, the interval period is used to indicate the sending interval of business data and M copy data, and the first execution entity sends the first transmission data to the second execution entity according to the first information, including : the first execution entity sends service data to the second execution entity; after an interval period, the first execution entity sends M copies of data to the second execution entity; correspondingly, the second execution entity receives after an interval period, the second execution entity receives fourth transmission data from the first execution entity, where the second transmission data includes the third transmission data and the fourth transmission data.
  • the service data and the third transmission data may be the same, or the third transmission data may be included in the service data.
  • the M copies of data and the fourth transmission data may be the same, or the fourth transmission data may be included in the M copies of data.
  • the parameters used to transmit data also include the third quintuple information corresponding to the M copy data, the quality of service flow corresponding to the third quintuple information is different from the service quality flow corresponding to the first quintuple information, and the second quintuple information corresponds to An execution entity sends the first transmission data to the second execution entity according to the first information, including: the first execution entity sends the first transmission data to the second execution entity through different quality of service streams, and correspondingly, the second execution entity passes Different QoS streams receive third transmission data and fourth transmission data from the first execution entity, the third transmission data corresponds to the first quintuple information, and the fourth transmission data corresponds to the third quintuple information Corresponding to the group information, the second transmission data includes the third transmission data and the fourth transmission data, and the second five-tuple information includes first five-tuple information and third five-tuple information.
  • the service data and the third transmission data may be the same, or the third transmission data may be included in the service data.
  • the M copies of data and the fourth transmission data may be the same, or the fourth transmission data may be included in the M copies of data.
  • the second execution entity deduplicates the second transmission data according to the second information, the first transmission data includes the second transmission data, and the second transmission data is determined according to the second quintuple information.
  • the second transmission data received by the second execution entity may be the same as the first transmission data, or may be included in the first transmission data.
  • the second execution entity identifies the second transmission data from the received data according to the second quintuple information.
  • deduplication when the first execution entity performs redundant transmission, the same ID is added to the header of the data packet of the business data and the duplicate data, and the second execution entity will include the received second transmission data Packets with duplicate IDs are discarded.
  • the duplicate data and the original data are transmitted redundantly, which reduces the delay of retransmission;
  • the redundant transmission parameters are determined according to the air interface scheduling information of the base station, which can Avoid the original data and copied data being packaged into the same transmission block for transmission, reduce the possibility of simultaneous transmission failure of the original data and the copied data, and reduce the failure of the redundancy mechanism; Redundant transmission, improving the control accuracy during redundant transmission.
  • method 300 also includes:
  • step 1 the first detection entity determines that the air interface quality index satisfies the first condition, and determines that the service is damaged.
  • the air interface quality index meets the first condition, including: the received power of the reference signal is lower than the first threshold, or the received quality of the reference signal is lower than the second threshold, or the signal-to-interference-plus-noise ratio is lower than the third threshold, or the initial transmission/ The retransmission bit error rate is higher than the fourth threshold.
  • Business damage includes: the delay is higher than the fifth threshold, or the packet loss rate is higher than the sixth threshold;
  • Step 2 The first control entity acquires third information indicating that the air interface quality indicator meets the first condition and causes service damage in different time periods, and the third information is used to indicate that the air interface quality indicator meets the first condition and causes service loss.
  • the third information may be transmitted by the first detection entity to the first control entity. Specifically, when the first detection entity and the first control entity are deployed on the same device, the third information may be transmitted by the first control entity based on the two time, or when the first detection entity and the first control entity are deployed on different devices, the third information may be sent by the first detection entity to the first control entity, or in other ways. Applications are not limited to this.
  • step 3 the first control entity finds out the period pattern of service impairment due to air interface quality impairment according to the third information, and determines the period during which redundant transmission needs to be performed.
  • the first control entity determines that the air interface quality index satisfies the first condition and results in service loss; the first control entity determines the transmission time period according to the time period law, and the transmission time period is used to instruct the first control entity to transmit only within the transmission time period M copies of replicated data.
  • Step 4 the first control entity sends the transmission period to the first execution entity.
  • the parameters for data transmission sent by the first control entity to the first execution entity further include a transmission period.
  • the first control entity only transmits M copy data to the first execution entity within the transmission period according to the data transmission parameters, and correspondingly, the second execution entity receives the second transmission data within the transmission period.
  • redundant transmission by time period is realized, that is, redundant transmission is performed during the time period when the air interface quality is damaged, and redundant transmission is not performed during the time period when the air interface quality is better, reducing Occupation of air interface resources.
  • At least one module in (b) in FIG. 3 needs to be included in the entire communication system.
  • the module deployment mode in (b) in Figure 3 is relatively flexible, and can be deployed in existing architectures such as the MEC platform and the 5G core network (5G core, 5GC) control plane, or independently.
  • the redundant transmission control module 3011 can be deployed independently, that is, the first control entity in the method 300 alone has the function of the redundant transmission control module 3011; or, the redundant transmission control module 3011 can be deployed on the MEC platform, That is, the first control entity in the method 300 may be an MEC service in the MEC platform, and the MEC service includes a redundant transmission control module 3011; or, the redundant transmission control module 3011 may be deployed on the 5GC control plane as an independent
  • the network element may be deployed in an existing network element of the 5GC control plane, that is, the first control entity in the method 300 may be a new network element in the 5GC control plane, and the network element separately has a redundant transmission control module 3011 function, or the first control entity in the method 300 may be an existing network element in the 5GC control plane, for example, it may be a UPF, and the network element includes a redundant transmission control module 3011, and the network element has 3011 on the basis of the original function function.
  • the air interface poor quality detection module 3021 can be deployed independently, that is, the first detection entity in the method 300 has the function of the air interface poor quality detection module 3021 alone, or the air interface poor quality detection module 3021 can be deployed on the MEC platform, that is, the method
  • the first detection entity in 300 may be an MEC service in the MEC platform, and the MEC service includes an air interface poor quality detection module 3021, or the first detection entity is a part of the MEC service; or, the air interface poor quality detection module 3021 may be deployed in The 5GC control plane, as an independent network element of the 5GC control plane or deployed in an existing network element of the 5GC control plane, that is, the first detection entity in method 300 may be a new network element in the 5GC control plane, and the network The element alone has the function of the air interface poor quality detection module 3021, or the first detection entity in the method 300 can be an existing network element in the 5GC control plane, for example, it can be a UPF, and the network element includes the air interface poor quality detection module 3021, the
  • the redundant transmission execution module 3031 on the terminal side can be deployed on the terminal, that is, the first execution entity or the second execution entity in method 300 is a terminal device; or, the redundant transmission execution module 3031 can be deployed independently, that is, the method 300
  • the first execution entity or the second execution entity is a device that has the function of the redundant transmission execution module 3031 alone.
  • the redundant transmission control module 3041 on the network side can be deployed on the MEC platform, that is, the first execution entity or the second execution entity in the method 300 can be the MEC service in the MEC platform, and the MEC service includes the redundant transmission control module 3041, or, the first execution entity or the second execution entity is a part of the MEC service; or, 3041 can be deployed in the UPF, that is, the first execution entity or the second execution entity in method 300 can be the UPF; or, 3041 can be independent Deployment, that is, the first execution entity or the second execution entity in the method 300 independently has the function of the redundant transmission control module 3041 .
  • MEC services include air interface poor quality detection module and redundant transmission control module. Two cases of downlink redundant transmission are introduced in this embodiment of the present application.
  • the redundant transmission control module and the air interface quality detection module are deployed on the MEC platform.
  • the services provided by these two modules belong to the category of MEC services.
  • the redundant transmission execution module on the network side is deployed on the UPF, and the redundant transmission execution module on the terminal side is deployed on the UE.
  • FIG. 4 is a schematic interaction diagram of a method 400 of the present application.
  • the embodiment of the present application is introduced by taking uplink redundant transmission as an example, that is, the terminal side performs redundant transmission, and the network side performs deduplication on received data.
  • the MEC App sends terminal information, service flow information, and service flow transmission thresholds to the redundant transmission control module deployed on the MEC platform.
  • the MEC App calls the interface provided by the MEC service composed of the "air interface poor quality detection module” and the “redundant transmission control module”, and sets the IMSI of the terminal to enable the redundant transmission function for the MEC service, the terminal's IP address, The five-tuple information of the service flow, the 5G quality of service identifier (5QI) of the service flow, the threshold of the delay index allowed by the service flow, the threshold of the packet loss rate, etc.
  • 5QI 5G quality of service identifier
  • the IMSI of the terminal to enable the redundant transmission function and the IP address of the terminal are parameters related to sending redundant transmission to the terminal for the MEC service to follow.
  • the quintuple information of the service flow and the 5QI of the service flow are parameters related to deduplication that are convenient for the MEC service to send to the network side in the future.
  • the quintuple information includes source IP, destination IP, source port, destination port, and protocol type .
  • the delay index threshold may be a delay confidence threshold, or may also be a statistical distribution threshold of delays in intervals.
  • the MEC app sends the above information to the interface provided by the MEC service, and then the redundant transmission control module obtains the above information from the interface, or other modules of the MEC service obtain and parse the information from the interface and transmit it
  • the control module is transmitted to the redundancy, or in other ways, which is not limited in this application.
  • the MEC service returns the setting success/failure to the MEC app.
  • the redundant transmission Service periodically queries the UPF for the delay indicator and the packet loss rate indicator of the service flow.
  • the delay index of the service flow needs to distinguish the uplink and downlink, that is, when the uplink redundant transmission and the downlink redundant transmission, the thresholds corresponding to the delay indexes of the service flow can be the same or different. When the corresponding thresholds of the two are different, A distinction needs to be made here.
  • the indicators mentioned in this application that require uplink and downlink requirements are generally similar to the distinctions here, unless otherwise specified.
  • the UPF replies to the redundant transmission Service the delay index and the packet loss rate index of the service flow in the corresponding period.
  • the air interface quality detection module queries the gNodeB for the air interface quality index.
  • air interface quality indicators include but are not limited to reference signal received power (reference signal received power, RSRP), reference signal received quality (reference signal received quality, RSRQ), signal to interference plus noise ratio (signal to interference plus noise ratio, SINR), initial transmission/retransmission bit error rate (distinguish between uplink and downlink), etc.
  • the method of obtaining service delay, packet loss rate, and air interface quality index by the "air interface poor quality detection module” is not limited to the method of obtaining from UPF or gNodeB involved in this application.
  • it can also Obtained through the interface of the network data analytics function (NWDAF).
  • the gNodeB returns the air interface quality indicator to the air interface quality detection module.
  • the method 400 may optionally include S402c and S402d. If S402c and S402d are executed, in the subsequent step S403, it may be determined whether the service impairment is caused by poor air interface quality, otherwise, the determination is not performed. Similarly, if S402c and S402d are executed, the MEC platform will take the air interface quality index as an influencing factor into consideration when determining the parameters of redundant transmission in the subsequent step S406; otherwise, the MEC platform will determine the parameters of redundant transmission according to other influencing factors .
  • the air interface quality detection module determines whether the service is damaged.
  • the air interface quality detection module compares the delay index and packet loss rate index of the current period received from the UPF in S402b with the threshold of the delay index and the packet loss rate configured by the MEC app in S401a, and determines whether the service is affected. Loss, distinguish between up and down when judging.
  • the air interface quality detection module may periodically determine whether the service is damaged, and similarly, periodically report whether the service is damaged. For example, judge and report whether the service is damaged in the current cycle every 10 minutes, or judge and report whether the business is damaged in the current cycle every 5 minutes.
  • the periodic law of service damage may be determined according to the reported results of whether the service is damaged in different periods.
  • the air interface quality damage here can be specifically manifested as air interface quality indicators that do not meet the threshold requirements, such as RSRP, RSRQ, and SINR are lower than the specified threshold, and the bit error rate is higher than the specified threshold.
  • the "poor air interface quality detection module” may further determine whether service impairment is caused by poor air interface quality according to the air interface quality index queried from the gNodeB in S402c and S402d. As an example, if the air interface quality index also deteriorates during the service impairment period, it can be considered that the service impairment is caused by the poor air interface quality.
  • the air interface quality detection module reports service damage to the redundant transmission control module.
  • the redundant transmission control module queries the gNodeB for air interface scheduling information.
  • the redundant transmission control module sends the 5QI corresponding to the service flow of the terminal to the gNodeB to obtain the scheduling information of the service flow of the terminal, because some scheduling information may be at the 5QI level, such as the scheduling period.
  • the gNodeB returns air interface scheduling information to the redundant transmission control module.
  • the redundant transmission control module can obtain the air interface scheduling information according to the above method, or can also read the information from the local configuration file, or it can also be the air interface scheduling information obtained by other means, and this application does not do this limited.
  • the redundant transmission control module decides parameters of redundant transmission.
  • the redundant transmission control module also needs to determine that the redundant transmission execution module on the UE side continues to perform redundant transmission, or performs redundant transmission by time period, or performs redundant transmission according to other rules.
  • the redundant transmission control module can determine the time rule of service damage according to whether the service is damaged in each time period reported by the air interface poor quality detection module. If the business damage has regularity in time, for example, the damage of periodic business occurs regularly in certain time periods, then redundant transmission can be started only in these time periods; if there is no regularity, redundant transmission can be continued. remaining transfers.
  • the redundant transmission control module may determine to perform redundant transmission in certain time periods according to other rules, or pre-configure a time period that requires redundant transmission, which is not limited in this embodiment.
  • the redundant transmission control module needs to calculate the parameters of the redundant transmission first, and then send the parameters to the redundant transmission execution module, so that the redundant transmission execution module can follow the redundant transmission
  • the parameters are transmitted redundantly.
  • Air interface quality index According to this indicator, the number of retransmissions that need to be calculated can be calculated. For example, when the indicator is poor, the number of retransmissions should be more, otherwise less.
  • the air interface scheduling information of the base station specifically referring to the scheduling period, time slot ratio, whether different QoS flows support independent allocation of transmission blocks, etc.
  • Time slot ratio which means the ratio of uplink (uplink, UL) time slot (slot) and downlink (downlink, DL) time slot.
  • Scheduling cycle refers to the time interval of each pre-scheduling when pre-scheduling is enabled.
  • the scheduling period is used to calculate which time slots can send uplink data.
  • the time slot ratio is 7:3, and the scheduling period is 1 time slot, which means that all three UL time slots in (a) in Figure 8 can send uplink data.
  • the time slot ratio is 7:3, and the scheduling period is 2 time slots, then the third UL time slot in (a) in Figure 8 cannot send uplink data because the scheduling period is 2 time slots , since the interval between the second UL time slot and the third UL time slot in (a) in Figure 8 is 1 time slot, when the second UL time slot sends uplink data, the third UL time slot cannot Send uplink data.
  • Whether different QoS streams support independent allocation of transport blocks means that if the base station does not support this capability, then the allocation of each transport block is calculated according to the scheduling period and time slot ratio, and the interval between each transport block is If there is a time interval, if the base station supports it, then the transmission block can be allocated based on the QoS flow, and different QoS flows can independently allocate transmission blocks according to the scheduling cycle and time slot ratio, so that the original data packet can be controlled during redundant transmission , Duplicate packets are transported using different QoS streams so that they are not packed into the same transport block.
  • Redundant transmission mode refers to whether the original data packet and the duplicate data packet are sent using different QoS flows.
  • the base station supports different QoS streams to independently allocate transmission blocks, then the original data packet and the duplicate data packet are sent using different QoS streams during redundant transmission, and different QoS streams are implemented through different quintuples, so it is necessary to output the original Five-tuple information for packets and replicated packets. If the base station does not support different QoS streams to allocate transport blocks independently, then the original data packet and the duplicate data packet are sent using the same QoS stream, but there is an interval between sending, so that the original data packet and the duplicate data are packaged into different transport blocks .
  • Redundant transmission interval refers to the sending interval of the original data packet and the duplicate data packet.
  • Number of redundant transmissions refers to copying several data packets for sending.
  • calculation method here is just an example, and the calculation goal is still to make the original data packet and the duplicate data packet be sent through different transmission blocks.
  • a) As mentioned above, first determine the way of redundant transmission, whether to achieve the purpose of sending through different transmission blocks through different QoS flows. If possible, output the quintuple information sent by the original data packet and the duplicate data packet to distinguish different QoS flows.
  • the original data packet can continue to use the original quintuple information of the service flow, and the quintuple information used by the copied data packet can be obtained by reading configuration files and other methods.
  • the method for calculating the redundant transmission interval is related to the scheduling period and the time slot ratio.
  • the scheduling cycle is 1 time slot, the time slot ratio is 7:3, each time slot is 0.5 ms, the redundant transmission interval is 2 ms, and the number of redundant transmissions is 2 times as an example.
  • Carry out deduction It should be noted that if the original data packet and the duplicate data packet send uplink data in the same time slot, they will be packaged into the same transmission block, so the original data block and the duplicate data block need to be sent through different time slots. Judging from the results of the deduction, this goal can be achieved.
  • the transmitted message needs to be transmitted in the UL time slot.
  • the original message arrives in the second time slot, which is DL time slot slot
  • the original message will not be sent, but is sent in the fifth time slot, that is, the first UL time slot
  • the duplicate message arrives in the sixth time slot, which is a DL time slot, then
  • the duplicate message will not be sent, but will be sent in the ninth time slot, that is, the second UL time slot.
  • the redundant transmission control module sends a redundant transmission instruction to the redundant transmission execution module on the terminal side, including parameters of redundant transmission and characteristics of service flows requiring redundant transmission.
  • the redundant transmission control module will also send the quintuple information that needs to be transmitted redundantly to the redundant transmission instruction module at the terminal side. Specifically, corresponding to a) and b) in "3. Calculation method" in S406, the redundant transmission control module will send the same or different quintuple information.
  • the redundant transmission instruction is also used to instruct the redundant transmission executing module on the terminal side whether to perform continuous redundant transmission or to perform redundant transmission according to a certain rule, which corresponds to the content determined by the redundant transmission control module in S406.
  • the parameters of the redundant transmission are the parameters output by the redundant transmission control module in S406: redundant transmission mode, redundant transmission interval, and redundant transmission times.
  • the feature of the service flow here may be five-tuple information.
  • the redundant transmission execution module at the terminal side returns a response to the redundant transmission control module.
  • the redundant transmission control module sends the service flow characteristics to be deduplicated to the redundant transmission execution module deployed in the UPF.
  • the service flow feature here may be five-tuple information of the service flow.
  • the five-tuple information of the service flow in S408a in S407a is the same, that is, the five-tuple information corresponding to the service flow for redundant transmission is the same as that for the service flow that needs to be deduplicated.
  • the redundant transmission execution module deployed in the UPF sends a response to the redundant transmission control module.
  • the redundant transmission execution module on the terminal side identifies the service flow that needs redundant transmission.
  • the redundant transmission execution module on the terminal side identifies the service flow that needs redundant transmission according to the characteristics of the service flow received in S407a (for example, it may be quintuple information).
  • the redundant transmission executing module on the terminal side determines the service flow requiring redundant transmission according to the five-tuple information including the original data packet and the duplicate data packet in the "redundant transmission mode" received in S407a.
  • the terminal application (for example, an app) can send the service flow to the redundant transmission execution module by calling the "redundant transmission execution module" application programming interface (application programming interface, API), The redundant transmission execution module sends in S410 according to the redundant transmission parameters.
  • the terminal application can also place the redundant transmission execution module between the application layer and the transport layer protocol, so that the redundant transmission execution module can intercept the traffic and then perform redundant transmission, or it can also be implemented in other ways. Applications are not limited to this.
  • the redundant transmission execution module on the terminal side sends the service flow according to the parameter of the redundant transmission.
  • the redundant transmission execution module at the terminal side continuously performs redundant transmission or performs redundant transmission within a specified time period according to the instruction in S407a.
  • the gNodeB forwards the service flow to the UPF.
  • the redundant transmission execution module deployed in the UPF identifies the retransmitted service flow, and performs deduplication.
  • the UPF After the service flow arrives at the UPF, the UPF identifies the service flow according to the quintuple information of the service flow to be deduplicated received in S408a, and deduplicates the service flow.
  • the deduplication may be implemented by discarding the data packet with the same ID as before when it is received. Subsequently, in S413, the deduplicated service flow is forwarded to the MEC App.
  • the UPF sends the service flow to the MEC app.
  • the data packets are duplicated and transmitted redundantly, and the redundant transmission parameters are determined according to the air interface scheduling information of the base station.
  • the failure of the remaining mechanism By implementing redundant transmission at the level of fine-grained business flow (quintuple), the accuracy of control during redundant transmission is improved, and at the same time, the occupation of air interface resources is reduced through redundant transmission in different time periods.
  • FIG. 5 is a schematic interaction diagram of a method 500 of the present application.
  • the embodiment of the present application is introduced by taking downlink redundant transmission as an example, that is, the network side performs redundant transmission, and the terminal side performs deduplication on received data.
  • S501-S506 refer to the description of S401-S406.
  • the difference between S506 and S406 is that when determining the parameters of redundant transmission in S506, the input parameters do not include the "air interface scheduling information of the base station" involved in S406.
  • the redundant transmission control module sends a redundant transmission instruction to the redundant transmission execution module of the UPF, which includes the parameters of the redundant transmission and the characteristics of the service flow that needs the redundant transmission.
  • the instruction of redundant transmission is also used to indicate whether the redundant transmission execution module performs continuous redundant transmission or performs redundant transmission according to a certain rule, which corresponds to the content determined by the redundant transmission control module in S506.
  • the parameters of redundant transmission are the parameters output by the redundant transmission control module in S506: redundant transmission mode, redundant transmission interval, redundant transmission times.
  • the feature of the service flow here may be five-tuple information.
  • the redundant transmission execution module of the UPF returns a response to the redundant transmission control module.
  • the redundant transmission control module sends the service flow characteristics to be deduplicated to the redundant transmission execution module deployed in the UPF.
  • the service flow feature here may be five-tuple information of the service flow.
  • the five-tuple information of the service flow in S508a in S507a is the same, that is, the five-tuple information corresponding to the service flow for redundant transmission and the service flow to be deduplicated is the same.
  • the redundant transmission execution module deployed in the UE returns a response to the redundant transmission control module.
  • the MEC app sends the service flow to the UPF.
  • the redundant transmission execution module of the UPF identifies a service flow requiring redundant transmission.
  • the redundant transmission execution module of the UPF identifies the service flow that needs redundant transmission according to the characteristics of the service flow received in S507a (for example, it may be quintuple information). Exemplarily, the redundant transmission execution module of the UPF determines the service flow requiring redundant transmission according to the five-tuple information including the original data packet and the duplicate data packet in the "redundant transmission mode" received in S507a.
  • the redundant transmission execution module of the UPF sends the service flow to the gNodeB according to the parameter of the redundant transmission.
  • the redundant transmission execution module of the UPF performs redundant transmission continuously or within a specified time period according to the instruction in S507a.
  • the gNodeB forwards the service flow to the UE.
  • the redundant transmission execution module deployed in the UE identifies the retransmitted service flow, and performs deduplication.
  • the UE After the service flow arrives at the UE, the UE identifies the service flow according to the five-tuple information of the service flow requiring deduplication received in S508a, and deduplicates the service flow.
  • the deduplication may be implemented by discarding the data packet with the same ID as before when it is received.
  • the data packets are duplicated and transmitted redundantly, and the redundant transmission parameters are determined according to the air interface scheduling information of the base station.
  • the failure of the remaining mechanism By implementing redundant transmission at the level of fine-grained business flow (quintuple), the accuracy of control during redundant transmission is improved, and at the same time, the occupation of air interface resources is reduced through redundant transmission in different time periods.
  • MEC platform deploying MEC service includes air interface poor quality detection module, redundant transmission control module and redundant
  • the embodiment of the present application is introduced in two cases of redundant transmission and downlink redundant transmission.
  • the redundant transmission control module, the air interface quality detection module and the redundant transmission execution module are deployed on the MEC platform, and the services provided by these three modules belong to the category of MEC services.
  • FIG. 6 is a schematic interaction diagram of a method 600 of the present application.
  • the embodiment of the present application is introduced by taking uplink redundant transmission as an example, that is, the terminal side performs redundant transmission, and the network side forwards the redundantly transmitted data to the MEC platform after receiving the redundantly transmitted data, and the MEC platform receives The received data is deduplicated.
  • S607 For details about S601-S607, refer to S401-S407.
  • the redundant transmission control module also sends the IP address of the redundant transmission execution module of the MEC platform to the redundant transmission execution module deployed in the UE, so that the UE can establish the "redundant transmission execution module" tunnel.
  • the redundant transmission control module sends the service flow characteristics to be deduplicated to the redundant transmission execution module deployed on the MEC platform.
  • the service flow feature here may be five-tuple information of the service flow.
  • the five-tuple information of the service flow in S608a in S607a is the same, that is, the five-tuple information corresponding to the service flow for redundant transmission and the service flow to be deduplicated is the same.
  • the redundant transmission execution module deployed on the MEC platform returns a response to the redundant transmission control module.
  • the redundant transmission execution module on the terminal side identifies the service flow that needs redundant transmission.
  • the redundant transmission execution module on the terminal side identifies the service flow that needs redundant transmission according to the characteristics of the service flow received in S607a (for example, it may be quintuple information).
  • the redundant transmission execution module at the terminal side determines the service flow requiring redundant transmission according to the five-tuple information including the original data packet and the duplicate data packet in the "redundant transmission mode" received in S607a.
  • the terminal application (for example, an app) can send the service flow to the redundant transmission execution module by calling the "redundant transmission execution module" application programming interface (application programming interface, API), The redundant transmission execution module sends in S610 according to the redundant transmission parameters.
  • the terminal application can also place the redundant transmission execution module between the application layer and the transport layer protocol, so that the redundant transmission execution module can intercept the traffic and then perform redundant transmission, or it can also be implemented in other ways. Applications are not limited to this.
  • the redundant transmission executing module on the terminal side sends the service flow to the gNodeB according to the parameter of the redundant transmission.
  • the redundant transmission executing module at the terminal side continuously performs redundant transmission or performs redundant transmission within a specified time period according to the instruction in S607a.
  • the UE establishes a tunnel to the redundant transmission control module.
  • the tunnel outer IP in the data packet of the above service flow is UE IP ⁇ MEC platform redundant transmission execution module IP
  • the tunnel outer IP is UE IP ⁇ MEC APP IP.
  • the data packet is first sent to the destination IP of the outer layer of the tunnel, and then sent to the destination IP of the inner layer of the tunnel by the destination IP of the outer layer of the tunnel.
  • the front of ⁇ is the source IP address
  • the back of ⁇ is the destination address.
  • the gNodeB forwards the service flow to the UPF.
  • the UPF forwards the service flow to the redundant transmission execution module of the MEC platform.
  • the redundant transmission execution module deployed on the MEC platform identifies the retransmitted service flow, and performs deduplication.
  • the redundant transmission execution module of the MEC platform identifies the service flow according to the five-tuple information of the service flow to be deduplicated received in S608a, and deduplicates the service flow.
  • the deduplication may be implemented by discarding the data packet with the same ID as before received by the redundant transmission execution module of the MEC platform. Subsequently, in S613, the deduplicated service flow is forwarded to the MEC App.
  • the MEC platform sends the service flow to the MEC app.
  • the MEC platform needs to remove the tunnel outer IP header and tunnel header in the data packet, and then forward the data packet to the MEC app.
  • the data packets are duplicated and transmitted redundantly, and the redundant transmission parameters are determined according to the air interface scheduling information of the base station.
  • the failure of the remaining mechanism By implementing redundant transmission at the level of fine-grained business flow (quintuple), the accuracy of control during redundant transmission is improved, and at the same time, the occupation of air interface resources is reduced through redundant transmission in different time periods.
  • FIG. 7 is a schematic interaction diagram of a method 700 of the present application.
  • the downlink redundant transmission is taken as an example to introduce the embodiment of the present application, that is, the MEC platform performs redundant transmission of data, and the network side forwards the redundantly transmitted data to the terminal side after receiving the redundantly transmitted data, and the terminal side Perform deduplication on received data.
  • the redundant transmission control module sends a redundant transmission instruction to the redundant transmission execution module of the MEC platform, including parameters of redundant transmission and characteristics of service flows requiring redundant transmission.
  • the instruction of redundant transmission is also used to indicate whether the redundant transmission execution module performs continuous redundant transmission or performs redundant transmission according to a certain rule, which corresponds to the content determined by the redundant transmission control module in S706.
  • the parameters of redundant transmission are the parameters output by the redundant transmission control module in S706: redundant transmission mode, redundant transmission interval, and redundant transmission times.
  • the feature of the service flow here may be five-tuple information.
  • the redundant transmission execution module of the MEC platform returns a response to the redundant transmission control module.
  • the redundant transmission control module sends the service flow characteristics that need to be deduplicated to the redundant transmission execution module deployed in the UE.
  • the service flow feature here may be five-tuple information of the service flow.
  • the five-tuple information of the service flow in S708a in S707a is the same, that is, the five-tuple information corresponding to the service flow for redundant transmission is the same as that for the service flow that needs to be deduplicated.
  • the redundant transmission execution module deployed in the UE returns a response to the redundant transmission control module.
  • the MEC app sends a service flow to the UPF.
  • the redundant transmission execution module of the MEC platform identifies a service flow requiring redundant transmission.
  • the redundant transmission execution module identifies the service flow that needs redundant transmission according to the feature of the service flow received in S707a (for example, it may be quintuple information).
  • the redundant transmission execution module determines the service flow requiring redundant transmission according to the five-tuple information including the original data packet and the duplicate data packet in the "redundant transmission mode" received in S707a.
  • the redundant transmission execution module of the MEC platform sends the service flow to the UPF according to the parameters of the redundant transmission.
  • the redundant transmission execution module of the UPF performs redundant transmission continuously or within a specified time period according to the instruction in S707a.
  • the UPF forwards the service flow to the gNodeB.
  • the gNodeB forwards the service flow to the UE.
  • the redundant transmission execution module deployed in the UE identifies the retransmitted service flow, and performs deduplication.
  • the UE After the service flow arrives at the UE, the UE identifies the service flow according to the five-tuple information of the service flow to be deduplicated received in S708a, and deduplicates the service flow.
  • the deduplication may be implemented by discarding the data packet with the same ID as before when it is received.
  • the data packets are duplicated and transmitted redundantly, and the redundant transmission parameters are determined according to the air interface scheduling information of the base station.
  • the failure of the remaining mechanism By implementing redundant transmission at the level of fine-grained business flow (quintuple), the accuracy of control during redundant transmission is improved, and at the same time, the occupation of air interface resources is reduced through redundant transmission in different time periods.
  • the embodiment of the present application also provides a communication system 3000, as shown in (b) in FIG. 3 .
  • the system 3000 can include a first communication device.
  • the redundant transmission execution module 3031 can be deployed on the terminal side, and the redundant transmission execution module 3031 can be deployed independently or on the UE; the redundant transmission execution module 3041 can be deployed on the network side, for example Deployed on the UPF; the poor air interface quality detection module 3021 and the redundant transmission module 3011 can be deployed on the MEC EC platform, or more specifically, can be used as a module in the MEC service, or can be deployed independently.
  • the redundant transmission execution module 3031 can be deployed on the terminal side, and the redundant transmission execution module 3031 can be deployed independently or on the UE; the redundant transmission execution module 3041 can be deployed on the network side, for example Deployed on the UPF; the poor air interface quality detection module 3021 and the redundant transmission module 3011 can be deployed on the MEC EC platform, or more specifically, can be used as a module in the MEC service, or can be deployed independently.
  • this possible design reference may be made to the above-mentioned methods 400 and 500 .
  • the redundant transmission execution module 3031 can be deployed on the terminal side, and the redundant transmission execution module 3031 can be deployed independently or on the UE; the redundant transmission execution module 3041 can be deployed on the MEC
  • the platform or more specifically, can be used as a module in the MEC service; the air interface poor quality detection module 3021 and the redundant transmission module 3011 can be deployed on the MEC EC platform, or more specifically, can be used as a module in the MEC service, or It can also be deployed independently.
  • Fig. 9 is a schematic block diagram of a communication device for secure communication provided by an embodiment of the present application.
  • the communication device 10 may include a transceiver module 11 and a processing module 12 .
  • the transceiver module 11 can be used for receiving information sent by other devices, and can also be used for sending information to other devices. For example, receiving first information or sending second information.
  • the processing module 12 may be used for performing content processing of the device, for example, determining parameters for transmitting data according to information for scheduling air interface resources.
  • the communication device 10 may correspond to the first control entity or the redundant transmission control module in the foregoing method embodiments.
  • the communication device 10 may correspond to the first control entity or the redundant transmission control module in any one of the methods 300 to 700 according to the embodiment of the present application, and each unit in the communication device 10 is for The operations performed by the first control entity or the redundant transmission control module in the corresponding method are realized.
  • the transceiving module 11 is configured to execute steps S302 and S303, and the processing module 12 is configured to execute S301.
  • the transceiver module 11 is configured to perform steps S401a, S401b, S404, S416, S405a, S405b, S407a, S407b, S408a, S408b, S413, processing Module 12 is used to execute S406.
  • the transceiver module 11 is used to perform steps S501a, S501b, S504, S416, S505a, S505b, S507a, S507b, S508a, S508b, S509, processing Module 12 is used to execute S506.
  • the transceiver module 11 is configured to perform steps S601a, S601b, S604, S416, S605a, S605b, S607a, S607b, S608a, S608b, S613, processing Module 12 is used to execute S606.
  • the transceiver module 11 is used to perform steps S701a, S701b, S704, S416, S705a, S705b, S707a, S707b, S708a, S708b, S709, processing Module 12 is used to execute S706.
  • the processing module 12 is configured to determine parameters for transmitting data according to information for scheduling air interface resources, where the parameters for transmitting data include a first number M;
  • the transceiver module 11 is configured to transmit the first information to the first execution entity, the first information includes the first quintuple information corresponding to the business data and the parameters for transmitting data, the first information is used to indicate the first
  • the execution entity transmits first transmission data, the first transmission data includes the business data and M copies of data, the M copies of data are obtained by copying the business data M times, and M is a positive integer;
  • the transceiver module 11 is further configured to transmit second information to the second execution entity, the second information is used to instruct the second execution entity to deduplicate the second transmission data, and the second information includes the corresponding
  • the first transmission data includes the second transmission data, wherein the second five-tuple information includes the first five-tuple information.
  • the information for scheduling air interface resources includes: the ratio of uplink time slots and downlink time slots used to transmit the first transmission data, the pre-scheduled time period of the time slots used to transmit the first transmission data, the The parameter for transmitting data also includes an interval period, which is used to indicate the transmission interval of the service data and any one of the M copies of data, or the information for scheduling air interface resources includes:
  • the first wireless access network device for transmitting data has the function of independently allocating transmission blocks to different service quality streams, and the parameters for transmitting data also include the third quintuple information corresponding to the M copies of data, the first The QoS flow corresponding to the three-five-tuple information is different from the QoS flow corresponding to the first five-tuple information, wherein the second five-tuple information also includes the third five-tuple information, which is used to schedule air interface resources
  • the information is received by the first control entity from the radio access network device, or the information for scheduling air interface resources is preconfigured.
  • the processing module 12 is also used for the first control entity to acquire an air interface quality indicator, where the air interface quality indicator includes at least one of the following: reference signal received power, reference signal received quality, signal to interference plus noise ratio, initial Transmission/retransmission bit error rate;
  • the processing module 12 is also configured to determine parameters for transmitting data according to the information for scheduling air interface resources, including:
  • the processing module 12 is further used for the first control entity to determine the parameter for transmitting data according to the information for scheduling air interface resources and the air interface quality indicator.
  • the processing module 12 is further configured to obtain third information that the air interface quality index meets the first condition and causes business damage in different time periods;
  • the processing module 12 is further configured to determine, according to the third information, the rule of the period in which the air interface quality index satisfies the first condition and causes business damage;
  • the processing module 12 is further configured to determine a transmission period according to the period rule, and the transmission period is used to instruct the first control entity to transmit the M copies of the copied data only within the transmission period.
  • the air interface quality indicator satisfies the first condition, including: the reference signal received power is lower than a first threshold, or the reference signal received quality is lower than a second threshold, or the signal-to-interference-plus-noise ratio is lower than a third threshold threshold, or the initial transmission/retransmission bit error rate is higher than the fourth threshold, and the service damage includes: the delay is higher than the fifth threshold, or the packet loss rate is higher than the sixth threshold.
  • the parameter for transmitting data also includes the transmission period.
  • the transceiving module 11 is further configured to receive the third information from the first detection entity at different time periods, where the third information is used to indicate that the air interface quality indicator meets the first condition and the service is damaged.
  • the communication device 10 may correspond to the first execution entity or the redundant transmission execution module in the foregoing method embodiments.
  • the communication device 10 may correspond to the first execution entity or the redundant transmission execution module in any one of the methods 300 to 700 according to the embodiment of the present application, and each unit in the communication device 10 is for The operations performed by the first execution entity or the redundant transmission execution module in the corresponding method are implemented.
  • the transceiver module 11 is configured to execute steps S302, S303, and S304.
  • the transceiver module 11 is configured to execute steps S407a, S407b, and S410, and the processing module 12 is configured to execute step S409.
  • the transceiver module 11 is used to perform steps S502a, S502b, S507a, S507b, S509, and S511, and the processing module 12 is used to Execute step S510.
  • the transceiver module 11 is configured to execute steps S607a, S607b, and S610, and the processing module 12 is configured to execute step S609.
  • the transceiver module 11 is used to perform steps S707a, S707b, S709, and S711a, and the processing module 12 is used to perform step S710 .
  • the transceiver module 11 is configured to receive first information from a first control entity, where the first information includes first quintuple information and the parameter for transmitting data, the The parameters used to transmit data include a first quantity M, and the parameters used to transmit data are determined according to air interface scheduling information;
  • the transceiver module 11 is further configured to send the first transmission data to the second execution entity according to the first information, the first transmission data includes the business data and M copy data, and the business data is based on the first five-element Determined by the group information, the M copies of replicated data are obtained by replicating the service data M times, where M is a positive integer.
  • the parameter for transmitting data further includes an interval period, and the interval period is used to indicate the sending interval of the service data and any one of the M copies of data, and the first executing entity, according to the first information Sending the first transmission data to the second execution entity includes:
  • the first execution entity sends any of the following items to the second execution entity every interval:
  • the parameters for transmitting data further include third quintuple information corresponding to the M copies of data, and the quality of service flow corresponding to the third quintuple information is the same as the quality of service flow corresponding to the first quintuple information different,
  • the first execution entity sends the first transmission data to the second execution entity according to the first information, including:
  • the first execution entity sends the first transmission data to the second execution entity through different QoS streams.
  • the parameter for data transmission also includes a transmission period
  • the transceiver module 11 is further configured to transmit the M copies of the copied data only within the transmission period according to the parameter for data transmission.
  • the communication device 10 may correspond to the second execution entity or the redundant transmission execution module in the foregoing method embodiments.
  • the communication device 10 may correspond to the second execution entity or the redundant transmission execution module in any of the methods 300 to 700 according to the embodiment of the present application, and each unit in the communication device 10 is for The operations performed by the second execution entity or the redundant transmission execution module in the corresponding method are realized.
  • the transceiving module 11 is configured to execute steps S304 and S303, and the processing module 12 is configured to execute step S305.
  • the transceiver module 11 is used to perform steps S402a, S402b, S408a, S408b, S411, S413, and the processing module 12 is used to Execute step S412.
  • the transceiver module 11 is configured to execute steps S508a, S508b, and S512
  • the processing module 12 is configured to execute step S513.
  • the transceiver module 11 is used to perform steps S608a, S608b, S611b, and S613, and the processing module 12 is used to perform step S612 .
  • the transceiver module 11 is used to perform steps S7008a, S708b, and S711c, and the processing module 12 is used to perform step S712.
  • the transceiver module 11 is configured to receive second information from the first control entity, where the second information includes second five-tuple information, and the second five-tuple information is the same as the first five-tuple information.
  • the second execution entity receives the second transmission data from the first execution entity;
  • the processing module 12 is configured to deduplicate the second transmission data according to the second information, the first transmission data includes the Second transmission data, the second transmission data is determined according to the second quintuple information.
  • the transceiver module 11 is further configured to receive the second transmission data from the first execution entity, including: the second execution entity receives the third transmission data from the first execution entity; after an interval period, the transmission and reception The module 11 is further configured to receive fourth transmission data from the first execution entity, the second transmission data includes the third transmission data and the fourth transmission data; or, the transceiver module 11 is further configured to pass different The quality of service flow receives third transmission data and fourth transmission data from the first execution entity, the third transmission data corresponds to the first five-tuple information, the fourth transmission data corresponds to the third five-tuple information, the The second transmission data includes the third transmission data and the fourth transmission data, and the second five-tuple information includes first five-tuple information and third five-tuple information.
  • the transceiver module 11 is specifically further configured to receive the second transmission data within a transmission period.
  • the transceiver module 11 is used to perform steps S402a-S402d, S404, and the processing module 12 is used to perform step S403.
  • the transceiver module 11 is configured to execute steps S502a-S502d, S504, and the processing module 12 is configured to execute step S503.
  • the transceiver module 11 is used to perform steps S602a-S602d, S604, and the processing module 12 is used to perform step S603.
  • the transceiver module 11 is configured to execute steps S702a-S702d, S704, and the processing module 12 is configured to execute step S703.
  • the processing module 12 is configured to determine that the air interface quality indicator satisfies the first condition, and the air interface quality indicator satisfies the first condition, including: the reference signal received power is lower than the first threshold, or The reference signal reception quality is lower than the second threshold, or the signal-to-interference-plus-noise ratio is lower than the third threshold, or the initial transmission/retransmission bit error rate is higher than the fourth threshold; the processing module 12 is also used to determine The business is damaged, and the business damage includes: the delay is higher than the fifth threshold, or the packet loss rate is higher than the sixth threshold; the transceiver module 11 is used to send the third information to the first control entity in different time periods, the first The third information is used to indicate that the air interface quality indicator meets the first condition and the service is damaged.
  • FIG. 10 is a schematic diagram of a data transmission device 20 provided by an embodiment of the present application.
  • the device 20 may be a first control entity or a redundant transmission control module, or may be a chip or a chip system located on the first control entity or the redundant transmission control module.
  • the apparatus 20 may be the first execution entity or the redundant transmission execution module, or may be a chip or a chip system located on the first execution entity or the redundant transmission execution module.
  • the apparatus 20 may be the second execution entity or the redundant transmission execution module, or may be a chip or a chip system located on the second execution entity or the redundant transmission execution module.
  • the device 20 may be the first detection entity or the air interface poor quality detection module, or may be a chip or a chip system on the first detection entity or the air interface poor quality detection module.
  • the device 20 may include a processor 21 (ie, an example of a processing module) and a memory 22 .
  • the memory 22 is used to store instructions
  • the processor 21 is used to execute the instructions stored in the memory 22, so that the device 20 realizes the execution of the equipment in the above-mentioned various possible designs in the corresponding methods as shown in Fig. 1 to Fig. 8 step.
  • the device 20 may also include an input port 23 (ie, an example of a transceiver module) and an output port 24 (ie, another example of a transceiver module).
  • the processor 21 , the memory 22 , the input port 23 and the output port 24 can communicate with each other through internal connection paths, and transmit control and/or data signals.
  • the memory 22 is used to store a computer program, and the processor 21 can be used to call and run the computer program from the memory 22, to control the input port 23 to receive signals, and to control the output port 24 to send signals, so as to complete the terminal equipment or Steps of the radio access network device or UE or base station.
  • the memory 22 can be integrated in the processor 21 or can be set separately from the processor 21 .
  • the input port 23 is a receiver
  • the output port 24 is a transmitter.
  • the receiver and the transmitter may be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as transceivers.
  • the input port 23 is an input interface
  • the output port 24 is an output interface
  • the functions of the input port 23 and the output port 34 may be realized by a transceiver circuit or a dedicated chip for transceiver.
  • the processor 21 may be realized by a dedicated processing chip, a processing circuit, a processor or a general-purpose chip.
  • a general-purpose computer to implement the device provided in the embodiment of the present application.
  • the program codes to realize the functions of the processor 21 , the input port 23 and the output port 24 are stored in the memory 22 , and the general processor realizes the functions of the processor 21 , the input port 23 and the output port 24 by executing the codes in the memory 22 .
  • each module or unit in the apparatus 20 can be used to execute each action or process performed by the device (for example, terminal device) performing random access in the above method, and here, in order to avoid redundant description, its detailed description is omitted.
  • the processor may be a central processing unit (CPU, central processing unit), and the processor may also be other general-purpose processors, digital signal processors (DSP, digital signal processor), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the embodiment of the present application also provides a computer-readable storage medium, on which is stored the information used to implement the method described above by the first control entity or the redundant transmission control module or the first execution entity or the second execution entity or the first detection The computer instructions of the method performed by the physical or air interface poor quality detection module or the redundant transmission execution module.
  • the computer when the computer program is executed by a computer, the computer can implement the method described above by the first control entity or the redundant transmission control module or the first execution entity or the second execution entity or the first detection entity or the poor air interface quality.
  • the embodiment of the present application also provides a computer-readable storage medium, on which is stored the information used to implement the method described above by the first control entity or the redundant transmission control module or the first execution entity or the second execution entity or the first detection The computer instructions of the method performed by the physical or air interface poor quality detection module or the redundant transmission execution module.
  • the computer when the computer program is executed by a computer, the computer can implement the method described above by the first control entity or the redundant transmission control module or the first execution entity or the second execution entity or the first detection entity or the poor air interface quality.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • Double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the above-mentioned embodiments may be implemented in whole or in part by software, hardware, firmware or other arbitrary combinations.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product comprises one or more computer instructions or computer programs.
  • the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit. If the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据传输的方法和装置,该方法通过第一控制实体根据用于调度空口资源的信息确定用于传输数据的参数,随后将用于传输数据的参数发送给第一执行实体,第一执行实体根据该用于传输数据的参数对该数据进行冗余传输,冗余传输的接收方为第二执行实体。本申请提供的一种安全通信的方法与装置,在空口质量较差而导致业务受损时,能够降低重传的时延,提高冗余传输的成功率。

Description

数据传输的方法和装置
本申请要求于2021年8月26日提交中国国家知识产权局、申请号为202110990138.0、发明名称为“数据传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种数据传输的方法和装置。
背景技术
第五代(5th generation,5G)5G系统面向企业(to business,ToB)行业场景对时延确定性的服务等级协议(service level agreement,SLA)要求较高。而实际上,以工业园区、港口等行业场所为例,由于其电磁环境复杂,存在多径、遮挡、突发干扰、同频干扰等导致空口质量变差的问题,因此5G终端上下行数据会随机出现误码、丢包等情况,从而产生重传时延,使得网络无法稳定地满足业务时延的需求,严重时可能导致业务受损甚至设备停机。在空口质量较差而导致业务受损时,如何降低重传的时延,是亟待解决的问题。
发明内容
本申请提供一种数据传输的方法和装置,在空口质量较差而导致业务受损时,能够降低重传的时延,提高冗余传输的成功率。
第一方面,提供了一种数据传输的方法,包括:第一控制实体根据用于调度空口资源的信息确定用于传输数据的参数,该用于传输数据的参数包括第一数量M;该第一控制实体向第一执行实体传输第一信息,该第一信息包括业务数据对应的第一五元组信息和该用于传输数据的参数,该第一信息用于指示该第一执行实体传输第一传输数据,该第一传输数据包括该业务数据和M份复制数据,该M份复制数据是将该业务数据复制M次得到的,M为正整数;该第一控制实体向第二执行实体传输第二信息,该第二信息用于指示该第二执行实体对第二传输数据进行去重,该第二信息包括该第一传输数据对应的第二五元组信息,该第一传输数据包括该第二传输数据,其中,该第二五元组信息包括该第一五元组信息。
上述方案,在空口质量较差而导致业务受损时,第一控制实体指示第一执行实体将复制数据与原始数据一起进行冗余传输,降低了重传的时延;第一控制实体根据空口调度信息确定冗余传输参数,能够避免原始数据和复制数据被打包到同一传输块进行传输,降低原始数据与复制数据同时传输失败的可能性,减少冗余机制失效的情况,提高冗余传输的成功率;通过实现细粒度到业务流(五元组)级别的冗余传输,提高冗余传输时控制的精度。
结合第一方面,在第一方面的某些实现方式中,该用于调度空口资源的信息包括:用于传输该第一传输数据的上行时隙和下行时隙的配比、预调度用于传输该第一传输数据的时隙的时间周期,该用于传输数据的参数还包括间隔时段,该间隔时段用于指示该业务数据和该M份复制数据中的任一份的发送间隔,或者,该用于调度空口资源的信息包括:用于传输该第一传输数据的无线接入网设备具备给不同的服务质量流独立分配传输块的功能,该用于传输数据的参数还包括该M份复制数据对应的第三五元组信息,该第三五元组信息对应的服务质量流与该第一五元组信息对应的服务质量流不同,其中,该第二五元组信息还包括该第三五元组信息,该用于调度空口资源的信息是该第一控制实体从该无线接入网设备接收的,或者,该用于调度空口资源的信息是预配置的。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一控制实体获取空口质量指标,该空口质量指标包括以下至少一项:参考信号接收功率、参考信号接收质量、信号与干扰加噪声比、初传/重传误码率;该第一控制实体根据用于调度空口资源的信息确定用于传输数据的参数,包括:该第一控制实体根据用于调度空口资源的信息和该空口质量指标确定该用于传输数据的参数。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该第一控制实体在不同时间段获取空口质量指标满足第一条件导致业务受损的第三信息;该第一控制实体根据该第三信息确定空口质量指标满足第一条件导致业务受损的时段规律;该第一控制实体根据该时段规律确定传输时段,该传输时段用于指示该第一控制实体仅在该传输时段内传输该M份复制数据。
上述方案,通过获取空口质量受损的规律,实现分时段的冗余传输,即,在空口质量受损的时段进行冗余传输,在空口质量较好的时段不进行冗余传输,降低对空口资源的占用。
结合第一方面,在第一方面的某些实现方式中,该空口质量指标满足第一条件,包括:该参考信号接收功率低于第一阈值,或该参考信号接收质量低于第二阈值,或该信号与干扰加噪声比低于第三阈值,或该初传/重传误码率高于第四阈值,该业务受损包括:时延高于第五阈值,或丢包率高于第六阈值。
结合第一方面,在第一方面的某些实现方式中,该用于传输数据的参数还包括该传输时段。
结合第一方面,在第一方面的某些实现方式中,该第一控制实体在不同时间段获取空口质量指标满足第一条件导致业务受损的第三信息,包括:该第一控制实体在不同时间段接收来自第一检测实体的该第三信息,该第三信息用于指示该空口质量指标满足第一条件导致该业务受损。
第二方面,提供了一种数据传输的方法,包括:第一执行实体接收来自第一控制实体的第一信息,该第一信息包括第一五元组信息和该用于传输数据的参数,该用于传输数据的参数包括第一数量M,该用于传输数据的参数是根据用于调度空口资源的信息确定的;该第一执行实体根据该第一信息向第二执行实体发送该第一传输数据,该第一传输数据包括该业务数据和M份复制数据,该业务数据是根据该第一五元组信息确定的,该M份复制数据是将该业务数据复制M次得到的,M为正整数。
上述方案,在空口质量较差而导致业务受损时,第一执行实体根据第一控制实体的指 示将复制数据与原始数据一起进行冗余传输,降低了重传的时延;根据空口调度信息确定的冗余传输参数,能够避免原始数据和复制数据被打包到同一传输块进行传输,降低原始数据与复制数据同时传输失败的可能性,减少冗余机制失效的情况,提高冗余传输的成功率;通过实现细粒度到业务流(五元组)级别的冗余传输,提高冗余传输时控制的精度。
结合第二方面,在第二方面的某些实现方式中,该用于传输数据的参数还包括间隔时段,该间隔时段用于指示该业务数据和该M份复制数据的发送间隔,该第一执行实体根据该第一信息向第二执行实体发送该第一传输数据,包括:该收发模块,具体用于每隔该间隔时段向该第二实行实体发送以下任意一项:该业务数据、该M份复制数据中的一份;或者,该用于传输数据的参数还包括该M份复制数据对应的第三五元组信息,该第三五元组信息对应的服务质量流与该第一五元组信息对应的服务质量流不同,该收发模块,具体还用于通过不同的服务质量流向该第二执行实体发送该第一传输数据。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该用于传输数据的参数还包括传输时段,该第一控制实体根据该用于传输数据的参数仅在该传输时段内传输该M份复制数据。
第三方面,提供了一种数据传输的方法,包括:第二执行实体接收来第一控制实体的第二信息,该第二信息包括第二五元组信息,该第二五元组信息与第一传输数据对应;该第二执行实体接收来自第一执行实体的第二传输数据;该第二执行实体根据该第二信息对该第二传输数据进行去重,该第一传输数据包括该第二传输数据,该第二传输数据是根据该第二五元组信息确定的。
结合第三方面,在第三方面的某些实现方式中,该第二执行实体接收来自第一执行实体的第二传输数据,包括:该第二执行实体接收来自该第一执行实体的第三传输数据;间隔时段之后,该第二执行实体接收来自该第一执行实体的第四传输数据,该第二传输数据包括该第三传输数据和该第四传输数据;或者,该第二执行实体通过不同的服务质量流接收来自该第一执行实体的第三传输数据和第四传输数据,该第三传输数据与第一五元组信息对应,该第四传输数据与第三五元组信息对应,该第二传输数据包括该第三传输数据和该第四传输数据,该第二五元组信息包括第一五元组信息和第三五元组信息。
结合第三方面,在第三方面的某些实现方式中,该第二执行实体接收来自第一执行实体的第二传输数据,包括:该第二执行实体在传输时段内接收该第二传输数据。
第四方面,提供了一种数据传输的方法,包括:第一检测实体确定空口质量指标满足第一条件,该空口质量指标满足第一条件,包括:该参考信号接收功率低于第一阈值,或该参考信号接收质量低于第二阈值,或该信号与干扰加噪声比低于第三阈值,或该初传/重传误码率高于第四阈值;该第一检测实体确定业务受损,该业务受损包括:时延高于第五阈值,或丢包率高于第六阈值;该第一检测实体在不同时间段向第一控制实体发送第三信息,该第三信息用于指示该空口质量指标满足第一条件导致该业务受损。
第五方面,提供了一种数据传输的装置,其特征在于,包括:处理模块,用于根据用于调度空口资源的信息确定用于传输数据的参数,该用于传输数据的参数包括第一数量M;收发模块,用于向第一执行实体传输第一信息,该第一信息包括业务数据对应的第一五元组信息和该用于传输数据的参数,该第一信息用于指示该第一执行实体传输第一传输数据,该第一传输数据包括该业务数据和M份复制数据,该M份复制数据是将该业务数据复制 M次得到的,M为正整数;该收发模块,还用于向第二执行实体传输第二信息,该第二信息用于指示该第二执行实体对第二传输数据进行去重,该第二信息包括该第一传输数据对应的第二五元组信息,该第一传输数据包括该第二传输数据,其中,该第二五元组信息包括该第一五元组信息。
上述方案,在空口质量较差而导致业务受损时,第一控制实体指示第一执行实体将复制数据与原始数据一起进行冗余传输,降低了重传的时延;第一控制实体根据空口调度信息确定冗余传输参数,能够避免原始数据和复制数据被打包到同一传输块进行传输,降低原始数据与复制数据同时传输失败的可能性,减少冗余机制失效的情况,提高冗余传输的成功率;通过实现细粒度到业务流(五元组)级别的冗余传输,提高冗余传输时控制的精度。
结合第五方面,在第五方面的某些实现方式中,该用于调度空口资源的信息包括:用于传输该第一传输数据的上行时隙和下行时隙的配比、预调度用于传输该第一传输数据的时隙的时间周期,该用于传输数据的参数还包括间隔时段,该间隔时段用于指示该业务数据和该M份复制数据的任一份的发送间隔,或者,该用于调度空口资源的信息包括:用于传输该第一传输数据的无线接入网设备具备给不同的服务质量流独立分配传输块的功能,该用于传输数据的参数还包括该M份复制数据对应的第三五元组信息,该第三五元组信息对应的服务质量流与该第一五元组信息对应的服务质量流不同,其中,该第二五元组信息还包括该第三五元组信息,该用于调度空口资源的信息是该第一控制实体从该无线接入网设备接收的,或者,该用于调度空口资源的信息是预配置的。
结合第五方面,在第五方面的某些实现方式中,该处理模块,还用于获取空口质量指标,该空口质量指标包括以下至少一项:参考信号接收功率、参考信号接收质量、信号与干扰加噪声比、初传/重传误码率;该处理模块,还用于根据用于调度空口资源的信息确定用于传输数据的参数,包括:该处理模块,还用于该第一控制实体根据用于调度空口资源的信息和该空口质量指标确定该用于传输数据的参数。
结合第五方面,在第五方面的某些实现方式中,该处理模块,还用于在不同时间段获取空口质量指标满足第一条件导致业务受损的第三信息;该处理模块,还用于根据该第三信息确定空口质量指标满足第一条件导致业务受损的时段规律;该处理模块,还用于根据该时段规律确定传输时段,该传输时段用于指示该第一控制实体仅在该传输时段内传输该M份复制数据。
结合第五方面,在第五方面的某些实现方式中,该空口质量指标满足第一条件,包括:该参考信号接收功率低于第一阈值,或该参考信号接收质量低于第二阈值,或该信号与干扰加噪声比低于第三阈值,或该初传/重传误码率高于第四阈值,该业务受损包括:时延高于第五阈值,或丢包率高于第六阈值。
结合第五方面,在第五方面的某些实现方式中,该用于传输数据的参数还包括该传输时段。
结合第五方面,在第五方面的某些实现方式中,该收发模块,还用于在不同时间段接收来自第一检测实体的该第三信息,该第三信息用于指示该空口质量指标满足第一条件导致该业务受损。
第六方面,提供了一种数据传输的装置,包括:收发模块,用于接收来自第一控制实 体的第一信息,该第一信息包括第一五元组信息和该用于传输数据的参数,该用于传输数据的参数包括第一数量M,该用于传输数据的参数是根据用于调度空口资源的信息确定的;该收发模块,还用于根据该第一信息向第二执行实体发送该第一传输数据,该第一传输数据包括该业务数据和M份复制数据,该业务数据是根据该第一五元组信息确定的,该M份复制数据是将该业务数据复制M次得到的,M为正整数。
上述方案,在空口质量较差而导致业务受损时,第一执行实体根据第一控制实体的指示将复制数据与原始数据一起进行冗余传输,降低了重传的时延;根据空口调度信息确定的冗余传输参数,能够避免原始数据和复制数据被打包到同一传输块进行传输,降低原始数据与复制数据同时传输失败的可能性,减少冗余机制失效的情况,提高冗余传输的成功率;通过实现细粒度到业务流(五元组)级别的冗余传输,提高冗余传输时控制的精度。
结合第六方面,在第六方面的某些实现方式中,该用于传输数据的参数还包括间隔时段,该间隔时段用于指示该业务数据和该M份复制数据的发送间隔,该收发模块,具体用于每隔该间隔时段向该第二实行实体发送以下任意一项:该业务数据、该M份复制数据中的一份;或者,该用于传输数据的参数还包括该M份复制数据对应的第三五元组信息,该第三五元组信息对应的服务质量流与该第一五元组信息对应的服务质量流不同,该收发模块具体还用于通过不同的服务质量流向该第二执行实体发送该第一传输数据。
结合第六方面,在第六方面的某些实现方式中,该用于传输数据的参数还包括传输时段,该收发模块,还用于根据该用于传输数据的参数仅在该传输时段内传输该M份复制数据。
第七方面,提供了一种数据传输的装置,包括:收发模块,用于接收来第一控制实体的第二信息,该第二信息包括第二五元组信息,该第二五元组信息与第一传输数据对应;该第二执行实体接收来自第一执行实体的第二传输数据;处理模块,用于根据该第二信息对该第二传输数据进行去重,该第一传输数据包括该第二传输数据,该第二传输数据是根据该第二五元组信息确定的。
结合第七方面,在第七方面的某些实现方式中,该收发模块,还用于接收来自第一执行实体的第二传输数据,包括:该第二执行实体接收来自该第一执行实体的第三传输数据;间隔时段之后,该收发模块,还用于接收来自该第一执行实体的第四传输数据,该第二传输数据包括该第三传输数据和该第四传输数据;或者,该收发模块,还用于通过不同的服务质量流接收来自该第一执行实体的第三传输数据和第四传输数据,该第三传输数据与第一五元组信息对应,该第四传输数据与第三五元组信息对应,该第二传输数据包括该第三传输数据和该第四传输数据,该第二五元组信息包括第一五元组信息和第三五元组信息。
结合第七方面,在第七方面的某些实现方式中,该收发模块,具体还用于在传输时段内接收该第二传输数据。
第八方面,提供了一种数据传输的装置,包括:处理模块,用于确定空口质量指标满足第一条件,该空口质量指标满足第一条件,包括:该参考信号接收功率低于第一阈值,或该参考信号接收质量低于第二阈值,或该信号与干扰加噪声比低于第三阈值,或该初传/重传误码率高于第四阈值;该处理模块,还用于确定业务受损,该业务受损包括:时延高于第五阈值,或丢包率高于第六阈值;收发模块,用于在不同时间段向第一控制实体发送第三信息,该第三信息用于指示该空口质量指标满足第一条件导致该业务受损。
第九方面,提供了一种通信装置,其特征在于,包括:处理器和存储器;所述存储器,用于存储计算机程序;所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行第一方面至第四方面任一方面所述的通信方法。
第十方面,提供了一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行第一方面至第四方面任一方面所述的通信方法。
第十一方面,提供了一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统地通信设备执行第一方面至第四方面任一方面所述的通信方法。
附图说明
图1是示出了当前的5G网络架构。
图2示出了多接入边缘计算架构的示意性结构图。
图3示出了本申请提供的数据传输的方法300的示意性交互图。
图4示出了本申请提供的数据传输的方法400的示意性交互图。
图5示出了本申请提供的数据传输的方法500的示意性交互图。
图6示出了本申请提供的数据传输的方法600的示意性交互图。
图7示出了本申请提供的数据传输的方法700的示意性交互图。
图8示出了原始数据与复制数据上行调度的间隔的示意性框图。
图9是本申请实施例提供的用于安全通信的通信装置的示意性框图。
图10为本申请实施例提供的安全通信的装置20的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例提供的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)或者未来的3GPP系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(device to device,D2D)通信,机器到机器(machine to machine,M2M)通信,机器类型通信(machine type communication,MTC),车辆与万物(vehicle to everything,V2X)通信(也可以称为车辆网通信),例如,车辆与车辆(vehicle to vehicle,V2V)通信(也可以称为车到车通信)、车辆与基础设施(vehicle to infrastructure,V2I)通信(也可以称为车到基础设施通信), 车辆与行人(vehicle to pedestrian,V2P)通信(也可以称为车到人通信),车辆与网络(vehicle to network,V2N)通信(也可以称为车到网络通信)。
图1提供了一种网络架构,下面结合图1对该网络架构中可能涉及的各个网元分别进行说明。
1、用户设备(user equipment,UE):可以称终端设备、终端、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。UE还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中或者非陆地网络(non-terrestrial networks,NTN)的终端设备等,还可以是端设备,逻辑实体,智能设备,如手机,智能终端等终端设备,或者服务器,网关,基站,控制器等通信设备,或者物联网设备,如传感器,电表,水表等物联网(internet of things,IoT)设备。还可以是具有通信功能的无人机(unmanned aerial vehicle或uncrewed aerial vehicle,UAV)。本申请实施例对此并不限定。
2、接入网(access network,AN):为特定区域的授权用户提供入网功能,并能够根据用户的级别,业务的需求等使用不同质量的传输隧道。接入网络可以为采用不同接入技术的接入网络。目前的无线接入技术有两种类型:3GPP接入技术(例如3G、4G或5G系统中采用的无线接入技术)和非第三代合作伙伴计划(non-3GPP)接入技术。3GPP接入技术是指符合3GPP标准规范的接入技术,采用3GPP接入技术的接入网络称为无线接入网络(radio access network,RAN),其中,5G系统中的接入网设备称为下一代基站节点(next generation Node Base station,gNB)。非3GPP接入技术是指不符合3GPP标准规范的接入技术,例如,以wifi中的接入点(access point,AP)为代表的空口技术。
基于无线通信技术实现接入网络功能的接入网可以称为无线接入网(radio access network,RAN)。无线接入网能够管理无线资源,为终端提供接入服务,进而完成控制信号和用户数据在终端和核心网之间的转发。
无线接入网例如可以是基站(NodeB)、演进型基站(evolved NodeB,eNB或eNodeB)、5G移动通信系统中的基站(gNB)、未来移动通信系统中的基站或WiFi系统中的AP等,还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该接入网设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
3、接入和移动管理功能(access and mobility management function,AMF)实体:主要用于移动性管理和接入管理等,可以用于实现移动性管理实体(mobility management entity,MME)功能中除会话管理之外的其它功能,例如,合法监听、或接入授权(或鉴权)等功能。
4、会话管理功能(session management function,SMF)实体:主要用于会话管理、UE的互联网协议(internet protocol,IP)地址分配和管理、选择可管理用户平面功能、策 略控制、或收费功能接口的终结点以及下行数据通知等。
5、用户平面功能(user plane function,UPF)实体:即,数据面网关。可用于分组路由和转发、或用户面数据的服务质量(quality of service,QoS)处理等。用户数据可通过该网元接入到数据网络(data network,DN)。在本申请实施例中,可用于实现用户面网关的功能。
6、数据网络(DN):用于提供传输数据的网络。例如,运营商业务的网络、因特(Internet)网、第三方的业务网络等。
7、认证服务功能(authentication server function,AUSF)实体:主要用于用户鉴权等。
8、网络开放功能(network exposure function,NEF)实体:用于安全地向外部开放由3GPP网络功能提供的业务和能力等。
9、网络存储功能(network function(NF)repository function,NRF)实体:用于保存网络功能实体以及其提供服务的描述信息,以及支持服务发现,网元实体发现等。
10、策略控制功能(policy control function,PCF)实体:用于指导网络行为的统一策略框架,为控制平面功能网元(例如AMF,SMF网元等)提供策略规则信息等。
11、统一数据管理(unified data management,UDM)实体:用于处理用户标识、接入鉴权、注册、或移动性管理等。
12、应用功能(application function,AF)实体:用于进行应用影响的数据路由,接入网络开放功能网元,或,与策略框架交互进行策略控制等。例如可以是V2X应用服务器,V2X应用使能服务器,还可以是无人机服务器(可以包括无人机监管服务器,或无人机应用业务服务器)。
在图1所示的网络架构中,N1接口为终端与AMF实体之间的参考点;N2接口为AN和AMF实体的参考点,用于非接入层(non-access stratum,NAS)消息的发送等;N3接口为(R)AN和UPF实体之间的参考点,用于传输用户面的数据等;N4接口为SMF实体和UPF实体之间的参考点,用于传输例如N3连接的隧道标识信息,数据缓存指示信息,以及下行数据通知消息等信息;N6接口为UPF实体和DN之间的参考点,用于传输用户面的数据等。
应理解,上述图1所示的网络架构可以应用于本申请实施例,此外,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。
还应理解,图1中所示的AMF实体、SMF实体、UPF实体、NEF实体、AUSF实体、NRF实体、PCF实体、UDM实体可以理解为核心网中用于实现不同功能的网元,例如可以按需组合成网络切片。这些核心网网元可以各自独立的设备,也可以集成于同一设备中实现不同的功能,本申请对此不做限定。需要说明的是,上述“网元”也可以称为实体、设备、装置或模块等,本申请并未特别限定。
还应理解,上述命名仅为用于区分不同的功能,并不代表这些网元分别为独立的物理设备,本申请对于上述网元的具体形态不作限定,例如,可以集成在同一个物理设备中,也可以分别是不同的物理设备。此外,上述命名仅为便于区分不同的功能,而不应对本申请构成任何限定,本申请并不排除在5G网络以及未来其它的网络中采用其他命名的可能。例如,在6G网络中,上述各个网元中的部分或全部可以沿用5G中的术语,也可能采用 其他名称等。在此进行统一说明,以下不再赘述。
还应理解,图1中的各个网元之间的接口名称只是一个示例,具体实现中接口的名称可能为其他的名称,本申请对此不作具体限定。此外,上述各个网元之间的所传输的消息(或信令)的名称也仅仅是一个示例,对消息本身的功能不构成任何限定。
图2示出了多接入边缘计算架构的示意性结构图。多接入边缘计算(multi-access edge computing,MEC)架构包括MEC系统层(MEC system level)和MEC主机层(MEC host level)。MEC主机层包括MEC主机(MEC host)、MEC平台(MEC platform)、MEC服务(MEC service)、MEC应用(MEC application,MEC app)。其中,MEC主机包括MEC平台、虚拟基础设施(virtualisation infrastructure)、和MEC应用。MEC平台为运行MEC app提供一些基础功能,比如MEC Service的发现、注册、访问,数据面流量的转发等。MEC Service对外提供服务,供MEC Platform、MEC app使用,比如MEC service中的无线网络信息服务(radio network information service)可以提供终端的空口承载信息、PLMN信息等。
5G面向企业(to business,ToB)行业场景对时延确定性的服务等级协议(service level agreement,SLA)要求高。而实际上,工业园区、港口等行业场所的电磁环境复杂,存在多径、遮挡、突发干扰、同频干扰等问题会使得空口质量变差,5G终端上下行数据随机出现误码丢包,从而产生重传时延,使得网络无法稳定满足业务时延需求,导致业务受损甚至设备停机。
下面以港口场景为例,介绍由于空口质量变差造成丢包,从而产生的重传时延无法满足业务时延的需求。以下两种示例使用了可编程逻辑控制器(programmable logic controller,PLC),并采用Profinet通信协议,时延要求是16ms@99.9%。
示例1:自动导引车(automated guided vehicle,AGV)故障时远程控制:操作中心检测到AGV故障,远程控制AGV驶出维修,AGV超3个周期未收到控制指令自动停止。
示例2:轮胎吊/轨道吊的远程控制:操作人员在操作中心实现实时吊机控制,吊机超3个周期未收到控制指令紧急停机。
实际港口运行中,由于空口环境受到小区同频干扰、周边信号突发干扰等影响,会出现丢包重传,导致连续多个周期的控制指令时延超过16ms,不满足业务需求。
目前,在NR标准定义的用户面协议栈中,媒体访问控制(media access control,MAC)、无线链路控制层(radio link control,RLC)和分组数据汇聚协议(packet data convergence protocol,PDCP)三层协议均提供了重传功能。传输层如传输控制协议(transmission control protocol,TCP)协议也具有重传功能。然而,MAC层、RLC层都是收到传输失败的确认后才进行重传,重传耗时长。PDCP复制(duplication)功能通过PDCP层对数据包进行复制,然后将两份数据包通过两个小区发出去,收端的PDCP层收到数据包后再做去重处理。这样做虽然可以降低传输时延,但是该功能需要有两个小区才能进行,对于只有一个小区的场景不适用。而传输层进行重传时,以TCP为例,也是需要确认发送失败之后才启动重传,都会带来较大时延。
为了方便介绍本申请的技术方案,下面对本申请中涉及的一些名词进行解释。
(1)空口质差,可以理解为空口质量较差,空口质量的一些指标低于某一阈值或者高于某一阈值。具体地,空口质量指标包括但不限于参考信号接收功率(reference signal  received power,RSRP)、参考信号接收质量(reference signal received quality,RSRQ)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、初传/重传误码率等。当SINR低于某一阈值或误码率高于某一阈值时,可以认为空口质差。
(2)空口调度信息:是与空口调度有关的一些信息,或者说用于调度空口资源的相关信息,如时隙配比、调度周期、不同QoS流是否支持独立分配传输块等。具体地,时隙配比可以理解为是表示上行(uplink,UL)时隙(slot)和下行(downlink,DL)时隙的配比。调度周期是指打开预调度的情况下,每次预调度的时间间隔。不同QoS流是否支持独立分配传输块可以理解为,如果基站不支持这个能力,那么每次传输块的分配是要根据调度周期、时隙配比来计算,则每个传输块之间是有时间间隔的,如果基站支持的话,那么传输块可以以QoS流为对象分配,不同的QoS流独立的按调度周期、时隙配比来分配传输块,那么冗余传输时可以控制原始数据包、复制数据包使用不同的QoS流传输,这样他们就不会被打包到同一个传输块里。
(3)业务受损:可以理解为两个网络设备之间的数据传输受损,或者可以理解为两个网络设备之间的控制流或业务流等出现丢包或时延增大等情况。
(4)冗余传输:冗余传输可以有多种方式,比如时间维度上可以将数据包间隔一定时间后重复发送,空间维度上可以控制冗余数据包通过不同的空口资源发送(比如通过不同的5QI发送),编码维度上可以对原始的数据包进行冗余编码(比如BATS、FEC)后再发送,也可以同时有进行三个维度上的冗余。
下面结合图3至图7介绍本申请提供的数据传输的方法。
下面结合图3,对本申请实施例的数据传输的方法300进行详细说明。图3中的(a)是本申请数据传输的方法300的示意性交互图。
S301,第一控制实体根据用于调度空口资源的信息确定用于传输数据的参数,该用于传输数据的参数包括第一数量M,第一数量M用于指示第一执行实体将业务数据复制M次得到M份复制数据。
第一控制实体根据用于调度空口资源的信息确定用于传输数据的参数。具体可以参见S406中的描述。
可能的情况一,用于调度空口资源的信息包括:用于传输第一传输数据的上行时隙和下行时隙的配比、预调度用于传输第一传输数据的时隙的时间周期,用于传输数据的参数还包括间隔时段,间隔时段用于指示业务数据和M份复制数据的发送间隔。
具体可以参见方法400中S406中的“三、计算方法”中的b)。
应理解,第一控制实体可以根据调控上述空口资源的信息来调控业务数据和复制数据的发送间隔,从而避免业务数据和复制数据同时被打包到同一个传输块上,减少原始数据和复制数据同时传输失败,导致冗余机制失效的情况。
或者,可能的情况二,用于调度空口资源的信息包括:用于传输第一传输数据的无线接入网设备具备给不同的服务质量流独立分配传输块的功能,用于传输数据的参数还包括M份复制数据对应的第三五元组信息,第三五元组信息对应的服务质量流与第一五元组信息对应的服务质量流不同,其中,第二五元组信息还包括第三五元组信息,用于调度空口资源的信息是第一控制实体从无线接入网设备接收的,或者,用于调度空口资源的信息是预配置的。
具体可以参见方法400中S406中的“三、计算方法”中的a)。
应理解,业务数据与复制数据与不同的五元组信息对应,即可以把两者承载不同的QoS流进行传输,也可以减少原始数据和复制数据同时传输失败,导致冗余机制失效的情况。
可选地,第一控制实体获取空口质量指标,空口质量指标包括以下至少一项:参考信号接收功率、参考信号接收质量、信号与干扰加噪声比、初传/重传误码率;上述第一控制实体根据用于调度空口资源的信息确定用于传输数据的参数,包括:第一控制实体根据用于调度空口资源的信息和空口质量指标确定用于传输数据的参数。
具体可以参考S406中的相关描述。
S302,第一控制实体向第一执行实体传输第一信息,相应的,第一执行实体接收来自第一控制实体的第一信息,该第一信息包括业务数据对应的第一五元组信息和用于传输数据的参数,该第一信息用于指示该第一执行实体传输第一传输数据,该第一传输数据包括该业务数据和M份复制数据,该M份复制数据是将该业务数据复制M次得到的,M为正整数。
需要说明的是,本申请中涉及的传输可以通过信令交互实现,也可以通过内部电路传输实现。
应理解,第一执行实体可以根据用于传输数据的参数传输业务数据。具体地,第一执行实体可以根据第一五元组信息识别出业务数据,并根据第一数量M将业务数据复制M次得到M份复制数据,随后第一执行实体将业务数据和M份复制数据发送给第二执行实体。
S303,第一控制实体向第二执行实体传输第二信息,相应地,第二执行实体接收来自第一控制体的第二信息,第二信息用于指示第二执行实体对第二传输数据进行去重,第二信息包括第一传输数据对应的第二五元组信息,第一传输数据包括第二传输数据,其中,第二五元组信息包括第一五元组信息。
应理解,这里的第一传输数据是第一执行实体向第二执行实体发送的数据,第二传输数据是第二执行实体实际接收到的数据,第一传输数据在实际传输的过程中,可能会随机出现误码丢包,使得部分数据包传输失败,所述第一传输数据包括第二传输数据。
还应理解,第一控制实体给第二执行实体发送的五元组信息是第一传输数据对应的五元组信息,由于第一传输数据包括第二传输数据,所以第一五元组信息包括第二传输数据对应的五元组信息,所以第二执行实体可以根据该第二五元组信息识别出第二传输数据。
还应理解,第一五元组信息是业务数据的五元组信息,第二五元组信息是业务数据的五元组信息和M份复制数据的五元组信息。第二五元组信息包括第一五元组信息,可以理解为,第二五元组信息可以与第一五元组信息相同,也可以不同。具体的,两者相同时,业务数据与M份复制数据映射到相同的五元组,即在发送原始数据和复制数据时不区分5QI;两者不同时,业务数据与M份复制数据映射到不同的五元组,即在发送原始数据和复制数据时区分5QI。
S304,第一执行实体根据第一信息向第二执行实体发送第一传输数据,相应地,第二执行实体接收来自第一执行实体的第二传输数据,第一传输数据包括业务数据和M份复制数据,业务数据是根据第一五元组信息确定的,M份复制数据是将业务数据复制M次 得到的,M为正整数。
其中,第一传输数据和第二传输数据的关系如上所述。
可选地,第一信息中用于传输数据的参数还可以包括除了第一数量M之外的其他内容,而第一执行实体在根据第一信息向第二执行实体发送第一传输数据时的发送方式也会根据第一信息的不同而有所区别。
方式一,用于传输数据的参数还包括间隔时段,间隔时段用于指示业务数据和M份复制数据的发送间隔,第一执行实体根据第一信息向第二执行实体发送第一传输数据,包括:第一执行实体向第二执行实体发送业务数据;间隔时段之后,第一执行实体向第二执行实体发送M份复制数据;相应地,所述第二执行实体接收来自所述第一执行实体的第三传输数据;间隔时段之后,所述第二执行实体接收来自所述第一执行实体的第四传输数据,所述二传输数据包括所述第三传输数据和所述第四传输数据。
其中,业务数据与第三传输数据可以相同,或者第三传输数据可以包含于业务数据。M份复制数据与第四传输数据可以相同,或者,第四传输数据可以包含于M份复制数据。
方式二,用于传输数据的参数还包括M份复制数据对应的第三五元组信息,第三五元组信息对应的服务质量流与第一五元组信息对应的服务质量流不同,第一执行实体根据第一信息向第二执行实体发送第一传输数据,包括:第一执行实体通过不同的服务质量流向第二执行实体发送第一传输数据,相应地,所述第二执行实体通过不同的服务质量流接收来自所述第一执行实体的第三传输数据和第四传输数据,所述第三传输数据与第一五元组信息对应,所述第四传输数据与第三五元组信息对应,所述第二传输数据包括所述第三传输数据和所述第四传输数据,所述第二五元组信息包括第一五元组信息和第三五元组信息。
其中,业务数据与第三传输数据可以相同,或者第三传输数据可以包含于业务数据。M份复制数据与第四传输数据可以相同,或者,第四传输数据可以包含于M份复制数据。
需要说明的是,本申请实施例并不限定S302与S303的执行顺序。
S305,第二执行实体根据第二信息对第二传输数据进行去重,第一传输数据包括第二传输数据,第二传输数据是根据第二五元组信息确定的。
应理解,如前所述,第二执行实体接收到的第二传输数据可以与第一传输数据相同,也可以包含于第一传输数据。第二执行实体根据第二五元组信息从接收到的数据中识别出第二传输数据。
关于去重,作为一个示例,第一执行实体在进行冗余传输时,在业务数据和复制数据的数据包的头部增加同一个ID,第二执行实体会将接收到的第二传输数据中与之前ID重复的数据包丢弃。
本申请实施例,在空口质量较差而导致业务受损时,将复制数据与原始数据一起进行冗余传输,降低了重传的时延;根据基站的空口调度信息确定冗余传输参数,能够避免原始数据和复制数据被打包到同一传输块进行传输,降低原始数据与复制数据同时传输失败的可能性,减少冗余机制失效的情况;通过实现细粒度到业务流(五元组)级别的冗余传输,提高冗余传输时控制的精度。
可选地,方法300还包括:
步骤1,第一检测实体确定空口质量指标满足第一条件,确定业务受损。
其中,空口质量指标满足第一条件,包括:参考信号接收功率低于第一阈值,或参考信号接收质量低于第二阈值,或信号与干扰加噪声比低于第三阈值,或初传/重传误码率高于第四阈值。业务受损包括:时延高于第五阈值,或丢包率高于第六阈值;
步骤2,第一控制实体在不同时间段获取空口质量指标满足第一条件导致业务受损的第三信息,第三信息用于指示空口质量指标满足第一条件导致业务受损。该第三信息可以是第一检测实体向第一控制实体传输的,具体地,第一检测实体与第一控制实体部署在同一个设备上时,第三信息可以是第一控制实体根据两者时间的接口获取的,或者,第一检测实体与第一控制实体部署在不同的设备上时,第三信息可以是第一检测实体发送给第一控制实体的,或者还可以是其他方式,本申请对此不做限定。
步骤3,第一控制实体根据第三信息找到由于空口质量受损而导致业务受损的时段规律,并且判断出需要进行冗余传输的时段。
第一控制实体根据第三信息确定空口质量指标满足第一条件导致业务受损的时段规律;第一控制实体根据时段规律确定传输时段,传输时段用于指示第一控制实体仅在传输时段内传输M份复制数据。
步骤4,第一控制实体将传输时段发送给第一执行实体。
具体地,第一控制实体向第一执行实体发送的用于传输数据的参数还包括传输时段。
第一控制实体根据用于传输数据的参数仅在传输时段内向第一执行实体传输M份复制数据,相应地,第二执行实体在传输时段内接收第二传输数据。
具体可以参考S406中的相关描述。
本申请实施例,通过获取空口质量受损的规律,实现分时段的冗余传输,即,在空口质量受损的时段进行冗余传输,在空口质量较好的时段不进行冗余传输,降低对空口资源的占用。
应理解,在实现本申请提供的数据传输的方法时,整个通信系统中需要包括图3中的(b)中的至少一个模块。图3中的(b)中的模块部署方式比较灵活,可以部署在MEC平台、5G核心网(5G core,5GC)控制面等现有的架构中,也可以独立部署。具体地,(1)冗余传输控制模块3011可以独立部署,即方法300中的第一控制实体单独具备冗余传输控制模块3011的功能;或者,冗余传输控制模块3011可以部署在MEC平台,即方法300中的第一控制实体可以是MEC平台中的MEC服务,该MEC服务包括冗余传输控制模块3011;或者,冗余传输控制模块3011可以部署在5GC控制面,作为5GC控制面的独立网元或者部署在5GC控制面的现有网元中,即,方法300中的第一控制实体可以是5GC控制面中的一个新的网元,该网元单独具备冗余传输控制模块3011的功能,或者方法300中的第一控制实体可以是5GC控制面中的现有网元,例如可以是UPF,该网元包括冗余传输控制模块3011,该网元在原有功能的基础上具备3011的功能。(2)空口质差检测模块3021可以独立部署,即方法300中的第一检测实体单独具备空口质差检测模块3021的功能,或者,空口质差检测模块3021,可以部署在MEC平台,即方法300中的第一检测实体可以是MEC平台中的MEC服务,该MEC服务包括空口质差检测模块3021,或者第一检测实体是MEC服务中的一部分;或者,空口质差检测模块3021可以部署在5GC控制面,作为5GC控制面的独立网元或者部署在5GC控制面的现有网元中,即,方法300中的第一检测实体可以是5GC控制面中的一个新的网元,该网元单独具备空口 质差检测模块3021的功能,或者方法300中的第一检测实体可以是5GC控制面中的现有网元,例如可以是UPF,该网元包括空口质差检测模块3021,该网元在原有功能的基础上具备3021的功能。(3)终端侧的冗余传输执行模块3031可以部署在终端,即方法300中的第一执行实体或第二执行实体为终端设备;或者,冗余传输执行模块3031可以独立部署,即方法300中的第一执行实体或第二执行实体为单独具备冗余传输执行模块3031功能的设备。(4)网络侧的冗余传输控制模块3041可以部署在MEC平台,即方法300中的第一执行实体或第二执行实体可以是MEC平台中的MEC服务,该MEC服务包括冗余传输控制模块3041,或者,第一执行实体或第二执行实体是MEC服务中的一部分;或者,3041可以部署在UPF,即方法300中第一执行实体或第二执行实体可以是UPF;或者,3041可以独立部署,即方法300中的第一执行实体或第二执行实体单独具备冗余传输控制模块3041功能。
下面结合图4和图5,以UE和UPF分别部署冗余传输执行模块,MEC平台部署MEC服务,MEC服务包括空口质差检测模块和冗余传输控制模块为例,分别从上行冗余传输和下行冗余传输两种情况,对本申请实施例进行介绍。
冗余传输控制模块和空口质量检测模块部署在MEC平台,这两个模块提供的服务属于MEC服务的类别,网络侧的冗余传输执行模块部署在UPF,终端侧的冗余传输执行模块部署在UE。
下面结合图4,对本申请实施例的数据传输的方法400进行详细说明。图4是本申请的方法400的示意性交互图。具体地,在方法400中,以上行冗余传输为例对本申请实施例进行介绍,即终端侧进行冗余传输,网络侧对接收到的数据执行去重。
S401a,MEC App向部署在MEC平台的冗余传输控制模块发送终端的信息、业务流的信息、业务流传输的阈值。
具体地,MEC App调用由“空口质差检测模块”和“冗余传输控制模块”组成的MEC服务提供的接口,为MEC服务设置要打开冗余传输功能的终端的IMSI、终端的IP地址、业务流的五元组信息、业务流的5G服务质量标志(5G quality of service identifier,5QI)、该业务流允许的时延指标的阈值、丢包率的阈值等。
应理解,这里的要打开冗余传输功能的终端的IMSI、终端的IP地址是便于MEC服务后续向终端发送冗余传输相关的参数。这里的业务流的五元组信息、业务流的5QI是便于MEC服务后续向网络侧发送去重相关的参数,其中,五元组信息包括源IP、目的IP、源端口、目的端口、协议类型。这里的时延指标阈值可以是时延置信度的阈值,或者也可以是时延按区间的统计分布的阈值。其中,时延置信度的阈值可以是时延小于第一阈值的概率,比如,设置第一阈值=10ms,时延置信度的阈值为99.999%,即,设置时延小于10ms的概率为99.999%,这里的第一阈值可以是预先设置的,也可以是MEC APP配置的。
应理解,在具体实现中,MEC app向MEC服务提供的接口发送上述信息,随后由冗余传输控制模块从该接口获取上述信息,或者,由MEC服务的其他模块从该接口获取并解析后传输给冗余传输控制模块,或者还可以是其他方式,本申请对此不做限定。
S401b,MEC服务向MEC app回复设置成功/失败。
S402a,冗余传输Service周期性向UPF查询该业务流的时延指标、丢包率指标。
应理解,业务流的时延指标需要区分上下行,即上行冗余传输和下行冗余传输时,业 务流的时延指标对应的阈值可以相同也可以不同,在两者对应的阈值不同时,需要对此进行区分。本申请中提及的需要需求上下行的指标,如果没有特殊说明,一般均与这里的区分类似。
S402b,UPF向冗余传输Service回复对应周期内该业务流的时延指标、丢包率指标。
可选地,S402c,空口质量检测模块向gNodeB查询空口质量指标。
应理解,空口质量指标包括但不限于参考信号接收功率(reference signal received power,RSRP)、参考信号接收质量(reference signal received quality,RSRQ)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、初传/重传误码率(区分上行、下行)等。
需要说明的是,在本申请实施例中,“空口质差检测模块”获取业务时延、丢包率、空口质量指标的方式不限于本申请涉及的从UPF或gNodeB获取的方式,比如还可以通过网络数据分析功能(network data analytics function,NWDAF)的接口获取。
可选地,S402d,gNodeB向空口质量检测模块回复空口质量指标。
应理解,方法400中可选包括S402c和S402d。如果执行S402c和S402d,后续步骤S403中可以判断业务受损是否是空口质差导致的,反之则不进行该判断。类似地,如果执行S402c和S402d,后续步骤S406中MEC平台确定冗余传输的参数时会将空口质量指标作为影响因素考虑在内;反之,MEC平台则会根据其他影响因素确定冗余传输的参数。
S403,空口质量检测模块判断业务是否受损。
具体地,空口质量检测模块将S402b中从UPF接收的当前周期的时延指标和丢包率指标和S401a中MEC app配置的时延指标的阈值、丢包率的阈值相比较,判断业务是否受损,判断时区分上下行。
作为一个示例,空口质量检测模块可以周期性判断业务是否受损,类似地,也周期性上报业务是否受损。比如说,每10分钟判断和上报一次在当前周期内业务是否受损,或者,每5分钟判断和上报一次在当前周期内业务是否受损。后续步骤S406中可以根据上报的不同周期业务是否受损的结果确定业务受损的周期性规律。例如,这里的空口质量受损具体可以表现为,空口质量指标不满足阈值要求,如RSRP、RSRQ、SINR低于规定的阈值,误码率高于规定的阈值等。
可选的,“空口质差检测模块”可以进一步根据S402c、S402d中向gNodeB查询的空口质量指标判断业务受损是否是空口质差导致的。作为一个示例,若业务受损期间,空口质量指标也变差,那么就可以认为是空口质差导致的业务受损。
S404,空口质量检测模块向冗余传输控制模块上报业务受损。
可选地,如果在S403中判断出业务受损是由空口质差导致的,则在S404中也会向冗余传输控制模块上报业务受损是由空口质差导致。
S405a,冗余传输控制模块向gNodeB查询空口调度信息。
作为一个示例,冗余传输控制模块向gNodeB发送终端的业务流对应的5QI,来获取该终端业务流的调度信息,因为有些调度信息可能是5QI级别的,比如调度周期。
其中,关于空口调度信息的介绍详见S406中相应的内容。
S405b,gNodeB向冗余传输控制模块返回空口调度信息。
应理解,冗余传输控制模块可以根据上述方法获取空口调度信息,或者,也可以从本 地配置文件中读取这些信息,或者还可以是通过其他方式获取的空口调度信息,本申请对此不做限定。
S406,冗余传输控制模块决策冗余传输的参数。
应理解,冗余传输控制模块还需要确定UE侧的冗余传输执行模块持续进行冗余传输,或者按时段进行冗余传输,或者,按照其他规则进行冗余传输。
作为一个示例,冗余传输控制模块可以根据空口质差检测模块上报的各时间周期业务是否受损来判断业务受损的时间规律。如果业务受损在时间上存在规律,例如周期业务的受损固定地在某几个时间周期内发生,那么可以只在这几个时间周期启动冗余传输,若无规律,那么可以持续进行冗余传输。
作为一个示例,冗余传输控制模块可以根据其他规则确定在某些时间段进行冗余传输,或者预先配置需要冗余传输的时间段,本实施例对此并不限定。
但是不论按某种方式进行冗余传输,冗余传输控制模块都需要先计算出冗余传输的参数,在将该参数发送给冗余传输执行模块,以便于冗余传输执行模块按照冗余传输的参数进行冗余传输。
下面分别从输入参数、输出参数、计算方法的角度举例介绍计算冗余传输参数的可能的方法。
一、输入参数:
(1)空口质量指标。根据该指标可以计算需要重传的次数,比如指标较差时,重传次数多一些,否则少一些。
应理解,如果执行了步骤S402c和S402d,则将空口质量指标作为输入参数,反之则不考虑。
(2)基站的空口调度信息,具体是指调度周期、时隙配比、不同QoS流是否支持独立分配传输块等。
应理解,如果执行了步骤S405a和S405b,则将空口质量指标作为输入参数,反之则不考虑。
a)时隙配比,是表示上行(uplink,UL)时隙(slot)和下行(downlink,DL)时隙的配比。如图8中的(a)所示,将特殊(special,S)时隙也用来发送下行数据,以DL时隙:UL时隙=7:3为例的时隙配比。
b)调度周期,是指打开预调度的情况下,每次预调度的时间间隔。
配合时隙配比,调度周期用来计算哪些时隙可以发送上行数据。作为一个示例,时隙配比是7:3,调度周期是1时隙,那么表示他图8中的(a)中的3个UL时隙都可以发送上行数据。作为另一个示例,时隙配比是7:3,调度周期是2时隙,那么图8中的(a)中的第3个UL时隙不能发送上行数据,因为调度周期为2时隙时,由于图8中的(a)中的第二个UL时隙和第三UL时隙的间隔是1时隙,因此当第二个UL时隙发送上行数据时,第三个UL时隙不能发送上行数据。
c)不同QoS流是否支持独立分配传输块,是指,如果基站不支持这个能力,那么每次传输块的分配是要根据调度周期、时隙配比来计算,则每个传输块之间是有时间间隔的,如果基站支持的话,那么传输块可以以QoS流为对象分配,不同的QoS流独立的按调度周期、时隙配比来分配传输块,那么冗余传输时可以控制原始数据包、复制数据包使用不 同的QoS流传输,这样他们就不会被打包到同一个传输块里。
二、输出参数:
a)冗余传输的方式:是指原始数据包、复制数据包是否采用不同的QoS流发送。
如果基站支持不同的QoS流独立分配传输块,那么冗余传输时原始数据包和复制数据包采用不同的QoS流来发送,不同的QoS流时通过不同的五元组来实现,因此需要输出原始数据包和复制数据包的五元组信息。如果基站不支持不同的QoS流独立分配传输块,那么原始数据包和复制数据包采用相同的QoS流发送,但是发送时要有间隔时间,以便原始数据包和复制数据被打包到不同的传输块。
b)冗余传输间隔:是指原始数据包和复制数据包的发送间隔。
c)冗余传输次数:是指复制几份数据包进行发送。
三、计算方法:
需要说明的是,这里的计算方法只是一个举例,计算的目标还是使原始数据包和复制数据包通过不同的传输块发送。
a)如前所述,先确定冗余传输的方式,是否通过不同的QoS流来达到通过不同的传输块发送的目的。如果可以的话,那么要输出原始数据包、复制数据包发送的五元组信息,用以区分不同的QoS流。原始数据包可以继续沿用业务流原来的五元组信息,复制数据包使用何种五元组信息可以通过读取配置文件等方式获取。
b)如果无法通过不同的QoS流来达到通过不同的传输块发送的目的,那么就用相同的QoS流,复制数据包可以和原始数据包使用相同的五元组。这样的话需要计算冗余传输的间隔。
作为一个示例,计算冗余传输间隔的方法和调度周期、时隙配比有关系。
图8中的(b)以调度周期为1个时隙,时隙配比为7:3,每个时隙为0.5ms,冗余传输间隔为2ms,冗余传输次数为2次为例,进行推演。需要说明的是,如果原始数据包、复制数据包在相同的时隙发送上行数据,它们就会被打包到相同的传输块,因此需要让原始数据块、复制数据块通过不同的时隙发送。从推演的结果来看,是可以达到这个目的的。
方法400中进行的上行冗余传输,传输的报文需要在UL时隙才能被传输,如图8中的(b)所示,原始报文在第二时隙到达,该时隙为DL时隙,则原始报文不会被发送,而是在第五个时隙,即第一个UL时隙被发送,复制报文在第六个时隙到达,该时隙为DL时隙,则复制报文不会被发送,而是在第九个时隙,即第二个UL时隙被发送。
S407a,冗余传输控制模块向终端侧的冗余传输执行模块发送冗余传输的指令,其中包冗余传输的参数、需要冗余传输的业务流的特征。
另外,冗余传输控制模块还会向终端侧的冗余传输指示模块发送需要进行冗余传输的五元组信息。具体地,与S406中“三、计算方法”中的a)和b)对应,冗余传输控制模块会发送相同或不同的五元组信息。
冗余传输的指令还用于指示终端侧的冗余传输执行模块是进行持续冗余传输还是按照某个规律进行冗余传输,这里与S406中冗余传输控制模块确定的内容对应。
这里的冗余传输的参数即为S406中冗余传输控制模块输出的参数:冗余传输的方式、冗余传输间隔、冗余传输次数。
这里的业务流的特征可以是五元组信息。
S407b,终端侧的冗余传输执行模块向冗余传输控制模块回复响应。
S408a,冗余传输控制模块向部署在UPF的冗余传输执行模块发送需要去重的业务流特征。
这里的业务流特征可以是业务流的五元组信息。
需要说明的是,S407a中S408a中的业务流的五元组信息是一样的,即进行冗余传输的业务流和需要执行去重的业务流对应的五元组信息是一样的。
S408b,部署在UPF的冗余传输执行模块向冗余传输控制模块回复响应。
S409,终端侧的冗余传输执行模块识别需要冗余传输的业务流。
终端侧的冗余传输执行模块根据S407a中接收的业务流的特征(例如可以是五元组信息)识别需要冗余传输的业务流。示例性地,终端侧的冗余传输执行模块根据S407a中接收的“冗余传输的方式”中包括原始数据包和复制数据包的五元组信息确定需要冗余传输的业务流。
作为一个示例,在具体实现中,终端应用(例如可以是app)可以通过调用“冗余传输执行模块”应用程序接口(application programming interface,API)的方式将业务流发给冗余传输执行模块,由冗余传输执行模块在S410中根据冗余传输参数进行发送。或者,终端应用也可以将冗余传输执行模块放置在应用层和传输层协议中间,以便于冗余传输执行模块对流量进行拦截后执行冗余传输,或者,还可以通过其他的方式实现,本申请对此不做限定。
S410,终端侧的冗余传输执行模块根据冗余传输的参数发送业务流。
具体地,终端侧的冗余传输执行模块根据S407a中的指令持续进行冗余传输或在指定的时间段进行冗余传输。
S411,gNodeB向UPF转发业务流。
S412,部署在UPF的冗余传输执行模块识别重传的业务流,执行去重。
业务流到达UPF后,UPF根据S408a中接收的需要去重的业务流的五元组信息识别业务流,并对业务流进行去重。
作为一个示例,比如终端在进行冗余传输时,对于包内容相同的数据包,在数据包的头部增加同一个ID。那么,去重的实现方式可以是,当收到与之前重复ID的数据包后,则将其丢弃。随后,在S413中将去重后的业务流往MEC App转发。
S413,UPF向MEC app发送业务流。
本申请实施例,将数据包复制后冗余传输,而且根据基站的空口调度信息确定冗余传输参数,既降低了时延,同时又避免了原始和复制数据包被打包到同一传输块,冗余机制失效的问题。通过实现细粒度到业务流(五元组)级别的冗余传输,提高冗余传输时控制的精度,同时通过分时段的冗余传输,降低对空口资源的占用。
下面结合图5,对本申请实施例的数据传输的方法500进行详细说明。图5是本申请的方法500的示意性交互图。具体地,在方法500中,以下行冗余传输为例对本申请实施例进行介绍,即网络侧进行冗余传输,终端侧对接收到的数据执行去重。
S501-S506可以参见S401-S406的描述。其中,S506与S406的区别在于,S506中确定冗余传输的参数时,输入参数中不包括S406中涉及的“基站的空口调度信息”。
S507a,冗余传输控制模块向UPF的冗余传输执行模块发送冗余传输的指令,其中包 冗余传输的参数、需要冗余传输的业务流的特征。
冗余传输的指令还用于指示冗余传输执行模块是进行持续冗余传输还是按照某个规律进行冗余传输,这里与S506中冗余传输控制模块确定的内容对应。
这里的冗余传输的参数即为S506中冗余传输控制模块输出的参数:冗余传输的方式、冗余传输间隔、冗余传输次数。
这里的业务流的特征可以是五元组信息。
S507b,UPF的冗余传输执行模块向冗余传输控制模块回复响应。
S508a,冗余传输控制模块向部署在UPF的冗余传输执行模块发送需要去重的业务流特征。
这里的业务流特征可以是业务流的五元组信息。
需要说明的是,S507a中S508a中的业务流的五元组信息是一样的,即进行冗余传输的业务流和需要执行去重的业务流对应的五元组信息是一样的。
S508b,部署在UE的冗余传输执行模块向冗余传输控制模块回复响应。
S509,MEC app向UPF发送业务流。
S510,UPF的冗余传输执行模块识别需要冗余传输的业务流。
UPF的冗余传输执行模块根据S507a中接收的业务流的特征(例如可以是五元组信息)识别需要冗余传输的业务流。示例性地,UPF的冗余传输执行模块根据S507a中接收的“冗余传输的方式”中包括原始数据包和复制数据包的五元组信息确定需要冗余传输的业务流。
S511,UPF的冗余传输执行模块根据冗余传输的参数向gNodeB发送业务流。
具体地,UPF的冗余传输执行模块根据S507a中的指令持续进行冗余传输或在指定的时间段进行冗余传输。
S512,gNodeB向UE转发业务流。
S513,部署在UE的冗余传输执行模块识别重传的业务流,执行去重。
业务流到达UE后,UE根据S508a中接收的需要去重的业务流的五元组信息识别业务流,并对业务流进行去重。
作为一个示例,比如UPF在进行冗余传输时,对于包内容相同的数据包,在数据包的头部增加同一个ID。那么,去重的实现方式可以是,当收到与之前重复ID的数据包后,则将其丢弃。
本申请实施例,将数据包复制后冗余传输,而且根据基站的空口调度信息确定冗余传输参数,既降低了时延,同时又避免了原始和复制数据包被打包到同一传输块,冗余机制失效的问题。通过实现细粒度到业务流(五元组)级别的冗余传输,提高冗余传输时控制的精度,同时通过分时段的冗余传输,降低对空口资源的占用。
下面结合图6和图7,以UE部署冗余传输执行模块,MEC平台部署MEC服务,MEC服务包括空口质差检测模块、冗余传输控制模块和冗余传输执行模块为例,分别从上行冗余传输和下行冗余传输两种情况,对本申请实施例进行介绍。
其中,冗余传输控制模块、空口质量检测模块和冗余传输执行模块部署在MEC平台,这三个模块提供的服务属于MEC服务的类别。
下面结合图,对本申请实施例的数据传输的方法600进行详细说明。图6是本申请的方法600的示意性交互图。具体地,在方法600中,以上行冗余传输为例对本申请实施例 进行介绍,即终端侧进行冗余传输,网络侧收到冗余传输的数据后转发给MEC平台,MEC平台对对接收到的数据执行去重。
S601-S607具体可以参见S401-S407。其中,S607与S407的区别在于:冗余传输控制模块还向部署在UE的冗余传输执行模块发送MEC平台的冗余传输执行模块的IP地址,以便UE能建立到“冗余传输执行模块”的隧道。
S608a,冗余传输控制模块向部署在MEC平台的冗余传输执行模块发送需要去重的业务流特征。
这里的业务流特征可以是业务流的五元组信息。
需要说明的是,S607a中S608a中的业务流的五元组信息是一样的,即进行冗余传输的业务流和需要执行去重的业务流对应的五元组信息是一样的。
S608b,部署在MEC平台的冗余传输执行模块向冗余传输控制模块回复响应。
S609,终端侧的冗余传输执行模块识别需要冗余传输的业务流。
终端侧的冗余传输执行模块根据S607a中接收的业务流的特征(例如可以是五元组信息)识别需要冗余传输的业务流。示例性地,终端侧的冗余传输执行模块根据S607a中接收的“冗余传输的方式”中包括原始数据包和复制数据包的五元组信息确定需要冗余传输的业务流。
作为一个示例,在具体实现中,终端应用(例如可以是app)可以通过调用“冗余传输执行模块”应用程序接口(application programming interface,API)的方式将业务流发给冗余传输执行模块,由冗余传输执行模块在S610中根据冗余传输参数进行发送。或者,终端应用也可以将冗余传输执行模块放置在应用层和传输层协议中间,以便于冗余传输执行模块对流量进行拦截后执行冗余传输,或者,还可以通过其他的方式实现,本申请对此不做限定。
S610,终端侧的冗余传输执行模块根据冗余传输的参数向gNodeB发送业务流。
具体地,终端侧的冗余传输执行模块根据S607a中的指令持续进行冗余传输或在指定的时间段进行冗余传输。
示例性地,UE建立到冗余传输控制模块的隧道。具体地,上述业务流的数据包中的隧道外层IP为UE IP→MEC平台的冗余传输执行模块IP,隧道外层IP为UE IP→MEC APP IP。数据包先发送到隧道外层的目的IP,再由隧道外层的目的IP送到隧道内层的目的IP。其中,→前面为源IP地址,→后面为目的地址。
S611a,gNodeB向UPF转发业务流。
S611b,UPF向MEC平台的冗余传输执行模块转发业务流。
S612,部署在MEC平台的冗余传输执行模块识别重传的业务流,执行去重。
业务流到达MEC平台后,MEC平台的冗余传输执行模块根据S608a中接收的需要去重的业务流的五元组信息识别业务流,并对业务流进行去重。
作为一个示例,比如终端在进行冗余传输时,对于包内容相同的数据包,在数据包的头部增加同一个ID。那么,去重的实现方式可以是,当MEC平台的冗余传输执行模块收到与之前重复ID的数据包后,则将其丢弃。随后,在S613中将去重后的业务流往MEC App转发。
S613,MEC平台向MEC app发送业务流。
示例性地,MEC平台需要去掉数据包中的隧道外层IP头和隧道头,然后将数据包转发给MEC app。
本申请实施例,将数据包复制后冗余传输,而且根据基站的空口调度信息确定冗余传输参数,既降低了时延,同时又避免了原始和复制数据包被打包到同一传输块,冗余机制失效的问题。通过实现细粒度到业务流(五元组)级别的冗余传输,提高冗余传输时控制的精度,同时通过分时段的冗余传输,降低对空口资源的占用。
下面结合图,对本申请实施例的数据传输的方法700进行详细说明。图7是本申请的方法700的示意性交互图。具体地,在方法700中,以下行冗余传输为例对本申请实施例进行介绍,即MEC平台对数据进行冗余传输,网络侧收到冗余传输的数据后转发给终端侧,终端侧对对接收到的数据执行去重。
S701-S706具体可以参见S401-S406的描述。
S707a,冗余传输控制模块向MEC平台的冗余传输执行模块发送冗余传输的指令,其中包冗余传输的参数、需要冗余传输的业务流的特征。
冗余传输的指令还用于指示冗余传输执行模块是进行持续冗余传输还是按照某个规律进行冗余传输,这里与S706中冗余传输控制模块确定的内容对应。
这里的冗余传输的参数即为S706中冗余传输控制模块输出的参数:冗余传输的方式、冗余传输间隔、冗余传输次数。
这里的业务流的特征可以是五元组信息。
S707b,MEC平台的冗余传输执行模块向冗余传输控制模块回复响应。
S708a,冗余传输控制模块向部署在UE的冗余传输执行模块发送需要去重的业务流特征。
这里的业务流特征可以是业务流的五元组信息。
需要说明的是,S707a中S708a中的业务流的五元组信息是一样的,即进行冗余传输的业务流和需要执行去重的业务流对应的五元组信息是一样的。
S708b,部署在UE的冗余传输执行模块向冗余传输控制模块回复响应。
S709,MEC app向UPF发送业务流。
S710,MEC平台的冗余传输执行模块识别需要冗余传输的业务流。
该冗余传输执行模块根据S707a中接收的业务流的特征(例如可以是五元组信息)识别需要冗余传输的业务流。
示例性地,该冗余传输执行模块根据S707a中接收的“冗余传输的方式”中包括原始数据包和复制数据包的五元组信息确定需要冗余传输的业务流。
S711a,MEC平台的冗余传输执行模块根据冗余传输的参数向UPF发送业务流。
具体地,UPF的冗余传输执行模块根据S707a中的指令持续进行冗余传输或在指定的时间段进行冗余传输。
S711b,UPF向gNodeB转发业务流。
S711c,gNodeB向UE转发业务流。
S712,部署在UE的冗余传输执行模块识别重传的业务流,执行去重。
业务流到达UE后,UE根据S708a中接收的需要去重的业务流的五元组信息识别业 务流,并对业务流进行去重。
作为一个示例,比如UPF在进行冗余传输时,对于包内容相同的数据包,在数据包的头部增加同一个ID。那么,去重的实现方式可以是,当收到与之前重复ID的数据包后,则将其丢弃。
本申请实施例,将数据包复制后冗余传输,而且根据基站的空口调度信息确定冗余传输参数,既降低了时延,同时又避免了原始和复制数据包被打包到同一传输块,冗余机制失效的问题。通过实现细粒度到业务流(五元组)级别的冗余传输,提高冗余传输时控制的精度,同时通过分时段的冗余传输,降低对空口资源的占用。
本申请实施例还提供一种通信系统3000,如图3中的(b)所示。该系统3000可以包括第一通信设备。
一种可能的设计,冗余传输执行模块3031可以部署在终端侧,冗余传输执行模块3031可以是独立部署,也可以是部署在UE上;冗余传输执行模块3041可以部署在网络侧,例如部署在UPF上;空口质差检测模块3021和冗余传输模块3011可以部署在MEC EC平台,或者更具体地,可以作为MEC服务中的一个模块,或者也可以独立部署。该种可能设计在具体实现中可以参见上述方法400和500。
在另一种可能的设计中,冗余传输执行模块3031可以部署在终端侧,冗余传输执行模块3031可以是独立部署,也可以是部署在UE上;冗余传输执行模块3041可以部署在MEC平台,或者更具体地,可以作为MEC服务中的一个模块;空口质差检测模块3021和冗余传输模块3011可以部署在MEC EC平台,或者更具体地,可以作为MEC服务中的一个模块,或者也可以独立部署。该种可能设计在具体实现中可以参见上述方法600和700。
以上,结合图1至图8详细说明了本申请实施例提供的方法。以下,结合9至图10详细说明本申请实施例提供的装置。
图9是本申请实施例提供的用于安全通信的通信装置的示意性框图。如图9所示,该通信装置10可以包括收发模块11和处理模块12。
其中,收发模块11可以用于接收其他装置发送的信息,还可以用于向其他装置发送信息。比如,接收第一信息或发送第二信息。处理模块12可以用于进行装置的内容处理,比如,根据用于调度空口资源的信息确定用于传输数据的参数。
在一种可能的设计中,该通信装置10可对应于上述方法实施例中的第一控制实体或冗余传输控制模块。
具体地,该通信装置10可对应于根据本申请实施例的方法300至方法700中任一方法中的第一控制实体或冗余传输控制模块,并且,该通信装置10中的各单元分别为了实现相应方法中由第一控制实体或冗余传输控制模块所执行的操作。
示例性的,在该通信装置10对应于方法300中的第一控制实体时,收发模块11用于执行步骤S302、S303,处理模块12用于执行S301。
示例性的,在该通信装置10对应于方法400中的冗余传输控制模块时,收发模块11用于执行步骤S401a、S401b、S404、S416S405a、S405b、S407a、S407b、S408a、S408b、S413,处理模块12用于执行S406。
示例性的,在该通信装置10对应于方法500中的冗余传输控制模块时,收发模块11 用于执行步骤S501a、S501b、S504、S416S505a、S505b、S507a、S507b、S508a、S508b、S509,处理模块12用于执行S506。
示例性的,在该通信装置10对应于方法600中的冗余传输控制模块时,收发模块11用于执行步骤S601a、S601b、S604、S416S605a、S605b、S607a、S607b、S608a、S608b、S613,处理模块12用于执行S606。
示例性的,在该通信装置10对应于方法700中的冗余传输控制模块时,收发模块11用于执行步骤S701a、S701b、S704、S416S705a、S705b、S707a、S707b、S708a、S708b、S709,处理模块12用于执行S706。
具体地,在一种可能的实施例中,处理模块12,用于根据用于调度空口资源的信息确定用于传输数据的参数,该用于传输数据的参数包括第一数量M;
收发模块11,用于向第一执行实体传输第一信息,该第一信息包括业务数据对应的第一五元组信息和该用于传输数据的参数,该第一信息用于指示该第一执行实体传输第一传输数据,该第一传输数据包括该业务数据和M份复制数据,该M份复制数据是将该业务数据复制M次得到的,M为正整数;
该收发模块11,还用于向第二执行实体传输第二信息,该第二信息用于指示该第二执行实体对第二传输数据进行去重,该第二信息包括该第一传输数据对应的第二五元组信息,该第一传输数据包括该第二传输数据,其中,该第二五元组信息包括该第一五元组信息。
其中,该用于调度空口资源的信息包括:用于传输该第一传输数据的上行时隙和下行时隙的配比、预调度用于传输该第一传输数据的时隙的时间周期,该用于传输数据的参数还包括间隔时段,该间隔时段用于指示该业务数据和该M份复制数据中的任一份的发送间隔,或者,该用于调度空口资源的信息包括:用于传输该第一传输数据的无线接入网设备具备给不同的服务质量流独立分配传输块的功能,该用于传输数据的参数还包括该M份复制数据对应的第三五元组信息,该第三五元组信息对应的服务质量流与该第一五元组信息对应的服务质量流不同,其中,该第二五元组信息还包括该第三五元组信息,该用于调度空口资源的信息是该第一控制实体从该无线接入网设备接收的,或者,该用于调度空口资源的信息是预配置的。
可选地,该处理模块12,还用于该第一控制实体获取空口质量指标,该空口质量指标包括以下至少一项:参考信号接收功率、参考信号接收质量、信号与干扰加噪声比、初传/重传误码率;
该处理模块12,还用于根据用于调度空口资源的信息确定用于传输数据的参数,包括:
该处理模块12,还用于该第一控制实体根据用于调度空口资源的信息和该空口质量指标确定该用于传输数据的参数。
可选地,该处理模块12,还用于在不同时间段获取空口质量指标满足第一条件导致业务受损的第三信息;
该处理模块12,还用于根据该第三信息确定空口质量指标满足第一条件导致业务受损的时段规律;
该处理模块12,还用于根据该时段规律确定传输时段,该传输时段用于指示该第一 控制实体仅在该传输时段内传输该M份复制数据。
可选地,该空口质量指标满足第一条件,包括:该参考信号接收功率低于第一阈值,或该参考信号接收质量低于第二阈值,或该信号与干扰加噪声比低于第三阈值,或该初传/重传误码率高于第四阈值,该业务受损包括:时延高于第五阈值,或丢包率高于第六阈值。
可选地,该用于传输数据的参数还包括该传输时段。
可选地,该收发模块11,还用于在不同时间段接收来自第一检测实体的该第三信息,该第三信息用于指示该空口质量指标满足第一条件导致该业务受损。
在另一种可能的设计中,该通信装置10可对应于上述方法实施例中的第一执行实体或冗余传输执行模块。
具体地,该通信装置10可对应于根据本申请实施例的方法300至方法700中任一方法中的第一执行实体或冗余传输执行模块,并且,该通信装置10中的各单元分别为了实现相应方法中由第一执行实体或冗余传输执行模块所执行的操作。
示例性的,在该通信装置10对应于方法300中的第一执行实体时,收发模块11用于执行步骤S302、S303、S304。
示例性的,在该通信装置10对应于方法400中的部署在UE的冗余传输执行模块时,收发模块11用于执行步骤S407a、S407b、S410,处理模块12用于执行步骤S409。
示例性的,在该通信装置10对应于方法500中的部署在UPF的冗余传输执行模块时,收发模块11用于执行步骤S502a、S502b、S507a、S507b、S509、S511,处理模块12用于执行步骤S510。
示例性的,在该通信装置10对应于方法600中的部署在UE的冗余传输执行模块时,收发模块11用于执行步骤S607a、S607b、S610,处理模块12用于执行步骤S609。
示例性的,在该通信装置10对应于方法700中的部署在MEC平台的冗余传输执行模块时,收发模块11用于执行步骤S707a、S707b、S709、S711a,处理模块12用于执行步骤S710。
具体地,在一种可能的实施例中,收发模块11,用于接收来自第一控制实体的第一信息,该第一信息包括第一五元组信息和该用于传输数据的参数,该用于传输数据的参数包括第一数量M,该用于传输数据的参数是根据空口调度信息确定的;
该收发模块11,还用于根据该第一信息向第二执行实体发送该第一传输数据,该第一传输数据包括该业务数据和M份复制数据,该业务数据是根据该第一五元组信息确定的,该M份复制数据是将该业务数据复制M次得到的,M为正整数。
可选地,该用于传输数据的参数还包括间隔时段,该间隔时段用于指示该业务数据和该M份复制数据中的任一份的发送间隔,该第一执行实体根据该第一信息向第二执行实体发送该第一传输数据,包括:
所述第一执行实体每隔所述间隔时段向所述第二实行实体发送以下任意一项:
所述业务数据、所述M份复制数据中的一份;
或者,该用于传输数据的参数还包括该M份复制数据对应的第三五元组信息,该第三五元组信息对应的服务质量流与该第一五元组信息对应的服务质量流不同,
该第一执行实体根据该第一信息向第二执行实体发送该第一传输数据,包括:
该第一执行实体通过不同的服务质量流向该第二执行实体发送该第一传输数据。
可选地,该用于传输数据的参数还包括传输时段,该收发模块11,还用于根据该用于传输数据的参数仅在该传输时段内传输该M份复制数据。
在另一种可能的设计中,该通信装置10可对应于上述方法实施例中的第二执行实体或冗余传输执行模块。
具体地,该通信装置10可对应于根据本申请实施例的方法300至方法700中任一方法中的第二执行实体或冗余传输执行模块,并且,该通信装置10中的各单元分别为了实现相应方法中由第二执行实体或冗余传输执行模块所执行的操作。
示例性的,在该通信装置10对应于方法300中的第二执行实体时,收发模块11用于执行步骤S304、S303,处理模块12用于执行步骤S305。
示例性的,在该通信装置10对应于方法400中的部署在UPF的冗余传输执行模块时,收发模块11用于执行步骤S402a、S402b、S408a、S408b、S411、S413,处理模块12用于执行步骤S412。
示例性的,在该通信装置10对应于方法500中的部署在UE的冗余传输执行模块时,收发模块11用于执行步骤S508a、S508b、S512,处理模块12用于执行步骤S513。
示例性的,在该通信装置10对应于方法600中的部署在MEC平台的冗余传输执行模块时,收发模块11用于执行步骤S608a、S608b、S611b、S613,处理模块12用于执行步骤S612。
示例性的,在该通信装置10对应于方法700中的部署在UE的冗余传输执行模块时,收发模块11用于执行步骤S7008a、S708b、S711c,处理模块12用于执行步骤S712。
具体地,在一种可能的实施例中,收发模块11,用于接收来第一控制实体的第二信息,该第二信息包括第二五元组信息,该第二五元组信息与第一传输数据对应;该第二执行实体接收来自第一执行实体的第二传输数据;处理模块12,用于根据该第二信息对该第二传输数据进行去重,该第一传输数据包括该第二传输数据,该第二传输数据是根据该第二五元组信息确定的。
可选地,该收发模块11,还用于接收来自第一执行实体的第二传输数据,包括:该第二执行实体接收来自该第一执行实体的第三传输数据;间隔时段之后,该收发模块11,还用于接收来自该第一执行实体的第四传输数据,该第二传输数据包括该第三传输数据和该第四传输数据;或者,该收发模块11,还用于通过不同的服务质量流接收来自该第一执行实体的第三传输数据和第四传输数据,该第三传输数据与第一五元组信息对应,该第四传输数据与第三五元组信息对应,该第二传输数据包括该第三传输数据和该第四传输数据,该第二五元组信息包括第一五元组信息和第三五元组信息。
可选地,该收发模块11,具体还用于在传输时段内接收该第二传输数据。
示例性的,在该通信装置10对应于方法400中的部署在UPF的冗余传输执行模块时,收发模块11用于执行步骤S402a-S402d、S404,处理模块12用于执行步骤S403。
示例性的,在该通信装置10对应于方法500中的部署在UE的冗余传输执行模块时,收发模块11用于执行步骤S502a-S502d、S504,处理模块12用于执行步骤S503。
示例性的,在该通信装置10对应于方法600中的部署在MEC平台的冗余传输执行模块时,收发模块11用于执行步骤S602a-S602d、S604,处理模块12用于执行步骤S603。
示例性的,在该通信装置10对应于方法700中的部署在UE的冗余传输执行模块时,收发模块11用于执行步骤S702a-S702d、S704,处理模块12用于执行步骤S703。
具体地,在一种可能的实施例中,处理模块12,用于确定空口质量指标满足第一条件,该空口质量指标满足第一条件,包括:该参考信号接收功率低于第一阈值,或该参考信号接收质量低于第二阈值,或该信号与干扰加噪声比低于第三阈值,或该初传/重传误码率高于第四阈值;该处理模块12,还用于确定业务受损,该业务受损包括:时延高于第五阈值,或丢包率高于第六阈值;收发模块11,用于在不同时间段向第一控制实体发送第三信息,该第三信息用于指示该空口质量指标满足第一条件导致该业务受损。
图10为本申请实施例提供的数据传输的装置20的示意图。
在一种可能的设计中,该装置20可以为第一控制实体或冗余传输控制模块,也可以为位于第一控制实体或冗余传输控制模块上的芯片或芯片系统等。
在一种可能的设计中,该装置20可以为第一执行实体或冗余传输执行模块,也可以为位于第一执行实体或冗余传输执行模块上的芯片或芯片系统等。
在一种可能的设计中,该装置20可以为第二执行实体或冗余传输执行模块,也可以为位于第二执行实体或冗余传输执行模块上的芯片或芯片系统等。
在一种可能的设计中,该装置20可以为第一检测实体或空口质差检测模块,也可以为位于第一检测实体或空口质差检测模块上的芯片或芯片系统等。
该装置20可以包括处理器21(即,处理模块的一例)和存储器22。该存储器22用于存储指令,该处理器21用于执行该存储器22存储的指令,以使该装置20实现如图1至图8中对应的方法中上述各种可能的设计中的设备执行的步骤。
进一步地,该装置20还可以包括输入口23(即,收发模块的一例)和输出口24(即,收发模块的另一例)。进一步地,该处理器21、存储器22、输入口23和输出口24可以通过内部连接通路互相通信,传递控制和/或数据信号。该存储器22用于存储计算机程序,该处理器21可以用于从该存储器22中调用并运行该计算机程序,以控制输入口23接收信号,控制输出口24发送信号,完成上述方法中终端设备或无线接入网设备或UE或基站的步骤。该存储器22可以集成在处理器21中,也可以与处理器21分开设置。
可选地,若该报文传输的装置20为通信设备,该输入口23为接收器,该输出口24为发送器。其中,接收器和发送器可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为收发器。
可选地,若该装置20为芯片或电路,该输入口23为输入接口,该输出口24为输出接口。
作为一种实现方式,输入口23和输出口34的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器21可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
作为另一种实现方式,可以考虑使用通用计算机的方式来实现本申请实施例提供的设备。即将实现处理器21、输入口23和输出口24功能的程序代码存储在存储器22中,通用处理器通过执行存储器22中的代码来实现处理器21、输入口23和输出口24的功能。
其中,装置20中各模块或单元可以用于执行上述方法中进行随机接入的设备(例如,终端设备)所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
该装置20所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
应理解,本申请实施例中,该处理器可以为中央处理单元(CPU,central processing unit),该处理器还可以是其他通用处理器、数字信号处理器(DSP,digital signal processor)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由第一控制实体或冗余传输控制模块或第一执行实体或第二执行实体或第一检测实体或空口质差检测模块或冗余传输执行模块执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由第一控制实体或冗余传输控制模块或第一执行实体或第二执行实体或第一检测实体或空口质差检测模块或冗余传输执行模块执行的方法。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述方法实施例中由第一控制实体或冗余传输控制模块或第一执行实体或第二执行实体或第一检测实体或空口质差检测模块或冗余传输执行模块执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法实施例中由第一控制实体或冗余传输控制模块或第一执行实体或第二执行实体或第一检测实体或空口质差检测模块或冗余传输执行模块执行的方法。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个 或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (23)

  1. 一种数据传输的方法,其特征在于,包括:
    第一控制实体根据用于调度空口资源的信息确定用于传输数据的参数,所述用于传输数据的参数包括第一数量M;
    所述第一控制实体向第一执行实体传输第一信息,所述第一信息包括业务数据对应的第一五元组信息和所述用于传输数据的参数,所述第一信息用于指示所述第一执行实体传输第一传输数据,所述第一传输数据包括所述业务数据和M份复制数据,所述M份复制数据是将所述业务数据复制M次得到的,M为正整数;
    所述第一控制实体向第二执行实体传输第二信息,所述第二信息用于指示所述第二执行实体对第二传输数据进行去重,所述第二信息包括所述第一传输数据对应的第二五元组信息,所述第一传输数据包括所述第二传输数据,其中,所述第二五元组信息包括所述第一五元组信息。
  2. 根据权利要求1所述的方法,其特征在于,
    所述用于调度空口资源的信息包括:用于传输所述第一传输数据的上行时隙和下行时隙的配比、预调度用于传输所述第一传输数据的时隙的时间周期,
    所述用于传输数据的参数还包括间隔时段,所述间隔时段用于指示所述业务数据和所述M份复制数据中任一份的发送间隔,
    或者,所述用于调度空口资源的信息包括:用于传输所述第一传输数据的无线接入网设备具备给不同的服务质量流独立分配传输块的功能,
    所述用于传输数据的参数还包括所述M份复制数据对应的第三五元组信息,所述第三五元组信息对应的服务质量流与所述第一五元组信息对应的服务质量流不同,
    其中,所述第二五元组信息还包括所述第三五元组信息,
    所述用于调度空口资源的信息是所述第一控制实体从所述无线接入网设备接收的,或者,所述用于调度空口资源的信息是预配置的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述第一控制实体获取空口质量指标,所述空口质量指标包括以下至少一项:参考信号接收功率、参考信号接收质量、信号与干扰加噪声比、初传/重传误码率;
    所述第一控制实体根据用于调度空口资源的信息确定用于传输数据的参数,包括:
    所述第一控制实体根据用于调度空口资源的信息和所述空口质量指标确定所述用于传输数据的参数。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述第一控制实体在不同时间段获取空口质量指标满足第一条件导致业务受损的第三信息;
    所述第一控制实体根据所述第三信息确定空口质量指标满足第一条件导致业务受损的时段规律;
    所述第一控制实体根据所述时段规律确定传输时段,所述传输时段用于指示所述第一控制实体仅在所述传输时段内传输所述M份复制数据。
  5. 根据权利要求4所述的方法,其特征在于,所述空口质量指标满足第一条件,包括:所述参考信号接收功率低于第一阈值,或所述参考信号接收质量低于第二阈值,或所述信号与干扰加噪声比低于第三阈值,或所述初传/重传误码率高于第四阈值,所述业务受损包括:时延高于第五阈值,或丢包率高于第六阈值。
  6. 根据权利要求5所述的方法,其特征在于,所述用于传输数据的参数还包括所述传输时段。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一控制实体在不同时间段获取空口质量指标满足第一条件导致业务受损的第三信息,包括:
    所述第一控制实体在不同时间段接收来自第一检测实体的所述第三信息,所述第三信息用于指示所述空口质量指标满足第一条件导致所述业务受损。
  8. 一种数据传输的方法,其特征在于,包括:
    第一执行实体接收来自第一控制实体的第一信息,所述第一信息包括第一五元组信息和所述用于传输数据的参数,所述用于传输数据的参数包括第一数量M,所述用于传输数据的参数是根据空口调度信息确定的;
    所述第一执行实体根据所述第一信息向第二执行实体发送所述第一传输数据,所述第一传输数据包括所述业务数据和M份复制数据,所述业务数据是根据所述第一五元组信息确定的,所述M份复制数据是将所述业务数据复制M次得到的,M为正整数。
  9. 根据权利要求8所述的方法,其特征在于,
    所述用于传输数据的参数还包括间隔时段,所述间隔时段用于指示所述业务数据和所述M份复制数据的发送间隔,
    所述第一执行实体根据所述第一信息向第二执行实体发送所述第一传输数据,包括:
    所述第一执行实体每隔所述间隔时段向所述第二实行实体发送以下任意一项:
    所述业务数据、所述M份复制数据中的一份;
    或者,
    所述用于传输数据的参数还包括所述M份复制数据对应的第三五元组信息,所述第三五元组信息对应的服务质量流与所述第一五元组信息对应的服务质量流不同,
    所述第一执行实体根据所述第一信息向第二执行实体发送所述第一传输数据,包括:
    所述第一执行实体通过不同的服务质量流向所述第二执行实体发送所述第一传输数据。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述用于传输数据的参数还包括传输时段,
    所述第一控制实体根据所述用于传输数据的参数仅在所述传输时段内传输所述M份复制数据。
  11. 一种数据传输的装置,其特征在于,包括:
    处理模块,用于根据用于调度空口资源的信息确定用于传输数据的参数,所述用于传输数据的参数包括第一数量M;
    收发模块,用于向第一执行实体传输第一信息,所述第一信息包括业务数据对应的第一五元组信息和所述用于传输数据的参数,所述第一信息用于指示所述第一执行实体传输第一传输数据,所述第一传输数据包括所述业务数据和M份复制数据,所述M份复制数 据是将所述业务数据复制M次得到的,M为正整数;
    所述收发模块,还用于向第二执行实体传输第二信息,所述第二信息用于指示所述第二执行实体对第二传输数据进行去重,所述第二信息包括所述第一传输数据对应的第二五元组信息,所述第一传输数据包括所述第二传输数据,其中,所述第二五元组信息包括所述第一五元组信息。
  12. 根据权利要求11所述的装置,其特征在于,
    所述用于调度空口资源的信息包括:用于传输所述第一传输数据的上行时隙和下行时隙的配比、预调度用于传输所述第一传输数据的时隙的时间周期,
    所述用于传输数据的参数还包括间隔时段,所述间隔时段用于指示所述业务数据和所述M份复制数据中的任一份的发送间隔,
    或者,所述用于调度空口资源的信息包括:用于传输所述第一传输数据的无线接入网设备具备给不同的服务质量流独立分配传输块的功能,
    所述用于传输数据的参数还包括所述M份复制数据对应的第三五元组信息,所述第三五元组信息对应的服务质量流与所述第一五元组信息对应的服务质量流不同,
    其中,所述第二五元组信息还包括所述第三五元组信息,
    所述用于调度空口资源的信息是所述第一控制实体从所述无线接入网设备接收的,或者,所述用于调度空口资源的信息是预配置的。
  13. 根据权利要求11或12所述的装置,其特征在于,
    所述处理模块,还用于所述第一控制实体获取空口质量指标,所述空口质量指标包括以下至少一项:参考信号接收功率、参考信号接收质量、信号与干扰加噪声比、初传/重传误码率;
    所述处理模块,还用于根据用于调度空口资源的信息确定用于传输数据的参数,包括:
    所述处理模块,还用于所述第一控制实体根据用于调度空口资源的信息和所述空口质量指标确定所述用于传输数据的参数。
  14. 根据权利要求13所述的装置,其特征在于,
    所述处理模块,还用于在不同时间段获取空口质量指标满足第一条件导致业务受损的第三信息;
    所述处理模块,还用于根据所述第三信息确定空口质量指标满足第一条件导致业务受损的时段规律;
    所述处理模块,还用于根据所述时段规律确定传输时段,所述传输时段用于指示所述第一控制实体仅在所述传输时段内传输所述M份复制数据。
  15. 根据权利要求14所述的装置,其特征在于,所述空口质量指标满足第一条件,包括:所述参考信号接收功率低于第一阈值,或所述参考信号接收质量低于第二阈值,或所述信号与干扰加噪声比低于第三阈值,或所述初传/重传误码率高于第四阈值,所述业务受损包括:时延高于第五阈值,或丢包率高于第六阈值。
  16. 根据权利要求15所述的装置,其特征在于,所述用于传输数据的参数还包括所述传输时段。
  17. 根据权利要求15或16所述的装置,其特征在于,
    所述收发模块,还用于在不同时间段接收来自第一检测实体的所述第三信息,所述第 三信息用于指示所述空口质量指标满足第一条件导致所述业务受损。
  18. 一种数据传输的装置,其特征在于,包括:
    收发模块,用于接收来自第一控制实体的第一信息,所述第一信息包括第一五元组信息和所述用于传输数据的参数,所述用于传输数据的参数包括第一数量M,所述用于传输数据的参数是根据空口调度信息确定的;
    所述收发模块,还用于根据所述第一信息向第二执行实体发送所述第一传输数据,所述第一传输数据包括所述业务数据和M份复制数据,所述业务数据是根据所述第一五元组信息确定的,所述M份复制数据是将所述业务数据复制M次得到的,M为正整数。
  19. 根据权利要求18所述的装置,其特征在于,
    所述用于传输数据的参数还包括间隔时段,所述间隔时段用于指示所述业务数据和所述M份复制数据的发送间隔,
    所述收发模块,具体用于每隔所述间隔时段向所述第二实行实体发送以下任意一项:
    所述业务数据、所述M份复制数据中的一份;
    或者,所述用于传输数据的参数还包括所述M份复制数据对应的第三五元组信息,所述第三五元组信息对应的服务质量流与所述第一五元组信息对应的服务质量流不同,
    所述收发模块具体还用于通过不同的服务质量流向所述第二执行实体发送所述第一传输数据。
  20. 根据权利要求18或19所述的装置,其特征在于,
    所述用于传输数据的参数还包括传输时段,
    所述收发模块,还用于根据所述用于传输数据的参数仅在所述传输时段内传输所述M份复制数据。
  21. 一种通信装置,其特征在于,包括:
    处理器和存储器;
    所述存储器,用于存储计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,以使得所述通信装置执行权利要求1至7中任一项所述的通信方法,或执行权利要求8至10中任一项所述的通信方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至7中任一项所述通信方法,或执行如权利要求8至10中任一项所述的通信方法。
  23. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片系统地通信设备执行如权利要求1至7中任一项所述的通信方法,或执行如权利要求8至10中任一项所述的通信方法。
PCT/CN2022/101022 2021-08-26 2022-06-24 数据传输的方法和装置 WO2023024684A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110990138.0 2021-08-26
CN202110990138.0A CN115913466A (zh) 2021-08-26 2021-08-26 数据传输的方法和装置

Publications (1)

Publication Number Publication Date
WO2023024684A1 true WO2023024684A1 (zh) 2023-03-02

Family

ID=85321391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101022 WO2023024684A1 (zh) 2021-08-26 2022-06-24 数据传输的方法和装置

Country Status (2)

Country Link
CN (1) CN115913466A (zh)
WO (1) WO2023024684A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190215726A1 (en) * 2018-01-11 2019-07-11 Comcast Cable Communications, Llc Cell Configuration For Packet Duplication
CN112399530A (zh) * 2019-08-16 2021-02-23 中国移动通信有限公司研究院 数据传输方法、装置、相关设备及存储介质
WO2021049994A1 (en) * 2019-09-13 2021-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Methods, apparatus and machine-readable media relating to transmission and reconstruction of data streams using data duplication
WO2021056589A1 (zh) * 2019-09-29 2021-04-01 华为技术有限公司 一种数据传输方法及装置
WO2021114107A1 (zh) * 2019-12-10 2021-06-17 华为技术有限公司 一种数据传输方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190215726A1 (en) * 2018-01-11 2019-07-11 Comcast Cable Communications, Llc Cell Configuration For Packet Duplication
CN112399530A (zh) * 2019-08-16 2021-02-23 中国移动通信有限公司研究院 数据传输方法、装置、相关设备及存储介质
WO2021049994A1 (en) * 2019-09-13 2021-03-18 Telefonaktiebolaget Lm Ericsson (Publ) Methods, apparatus and machine-readable media relating to transmission and reconstruction of data streams using data duplication
WO2021056589A1 (zh) * 2019-09-29 2021-04-01 华为技术有限公司 一种数据传输方法及装置
WO2021114107A1 (zh) * 2019-12-10 2021-06-17 华为技术有限公司 一种数据传输方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on NR Industrial Internet of Things (IoT); Release 16", 3GPP DRAFT; R2-1902776_TR 38.825 V0.1.1, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, 8 March 2019 (2019-03-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051692210 *
WEN, PINGPING: "Data Duplication Technique Supporting URLLC Service in 5G Network", WUXIAN HULIAN KEJI - WIRELESS INTERNET TECHNOLOGY, JIANGSU SHENG KEXUE JISHU QINGBAOSUO, CN, no. 10, 25 May 2018 (2018-05-25), CN , pages 20 - 22, XP009543780, ISSN: 1672-6944 *

Also Published As

Publication number Publication date
CN115913466A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
KR102224214B1 (ko) 사이드링크 데이터 복제를 위한 방법 및 디바이스
US20210289391A1 (en) Quality of service support for sidelink relay service
EP3420763B1 (en) Methods and apparatuses for allocating resources based on a priority map
WO2019091098A1 (zh) D2d通信中资源配置的方法、终端设备和网络设备
TW201944806A (zh) 利用服務資料適配協定層來促進服務品質流重映射
EP3672318A1 (en) Method and apparatus for transmitting packet in wireless communication system
WO2019091143A1 (zh) D2d通信中资源配置的方法、终端设备和网络设备
WO2019214135A1 (zh) 通信方法和设备
WO2020042123A1 (zh) 发送上行信号的方法和设备
US20210120478A1 (en) Network coding in an integrated access and backhaul network
WO2020087785A1 (zh) 无线通信方法、终端设备和网络设备
WO2020077577A1 (zh) 数据包传输方法和设备
CN116260737A (zh) 实现非互联网协议数据会话的新无线电蜂窝服务质量
JP7488839B2 (ja) 通信方法、端末装置及びネットワーク装置
WO2019076347A1 (zh) 通信方法和通信装置
CN109891970A (zh) 无线网络中的数据传输方法、装置和系统
EP4175356A1 (en) Wireless communication method, terminal device, and network device
US20220286899A1 (en) Interface between a radio access network and an application
WO2023024684A1 (zh) 数据传输的方法和装置
WO2023155655A1 (zh) 算力能力感知方法和装置
WO2023185769A1 (zh) 通信方法、通信装置和通信系统
WO2022222748A1 (zh) 中继通信方法和装置
WO2022227022A1 (en) Relay operations in wireless communication
WO2023185608A1 (zh) 一种数据传输的方法及通信装置
EP4152813A1 (en) Wireless communication method, terminal device and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE