WO2023024657A1 - 快速吊装式换电站及换电系统 - Google Patents

快速吊装式换电站及换电系统 Download PDF

Info

Publication number
WO2023024657A1
WO2023024657A1 PCT/CN2022/098482 CN2022098482W WO2023024657A1 WO 2023024657 A1 WO2023024657 A1 WO 2023024657A1 CN 2022098482 W CN2022098482 W CN 2022098482W WO 2023024657 A1 WO2023024657 A1 WO 2023024657A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
swapping
station
driving
compartment
Prior art date
Application number
PCT/CN2022/098482
Other languages
English (en)
French (fr)
Inventor
姚帅
刘大为
刘明义
马满堂
李�昊
朱连峻
周科
裴杰
曹传钊
朱勇
曹曦
徐若晨
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023024657A1 publication Critical patent/WO2023024657A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present disclosure relates to the technical field of electric control systems of power swapping stations, and in particular to a fast hoisting power swapping station and a power swapping system.
  • Lithium-ion batteries and new energy electric vehicles have gradually matured in the past ten years and have developed rapidly in our country.
  • Electric energy is the main alternative energy source for vehicles in the future, because electric energy can be converted from various clean and renewable energy sources such as solar energy, water energy, wind energy, and nuclear energy, and it can also reduce the dependence of various industries on non-renewable energy sources such as petroleum.
  • the concept of environmental protection, low-carbon economy, and energy consumption reduction being valued by people, the automobile industry is facing increasingly severe challenges due to a series of negative effects such as exhaust emissions polluting the environment and high energy consumption.
  • new energy vehicles can effectively reduce vehicle exhaust pollution.
  • the energy supplement of new energy electric vehicles can be divided into two modes: plug-in charging and battery replacement.
  • plug-in charging mode there are three major problems: high initial cost of purchasing batteries, long charging time, and low charging safety.
  • plug-in charging In this mode, the charging load of new energy electric vehicles has significant temporal and spatial randomness, which will have an adverse impact on the operation and planning of the power grid.
  • the battery swap model combined with large-scale centralized charging has become another competitive business technology model for the current development of electric vehicles. First, this model can effectively reduce the energy supply time of electric vehicles. Second, in this mode, charging safety can be managed centrally to ensure the safety and reliability of the battery system.
  • side-plug-in battery swap vehicles have a compact structure and low investment in the construction of the power station; hoisting-type battery swap vehicles have the ability to pass through harsh road conditions The investment in the mechanical parts of the power station and replacement station is relatively low.
  • the battery-swapping robot of the battery-swapping station in the related art is composed of a spreader.
  • the overall process of battery-swapping is that the vehicle enters the battery-swapping area of the battery-swapping station, the vehicle turns on the battery-swapping switch, and the vehicle and station control are connected via Bluetooth.
  • the battery swapping switch of the battery swapping robot the vehicle locking mechanism is opened, and a battery compartment command is issued, and the battery swapping robot moves to the top of the vehicle to complete positioning.
  • the battery compartment grabs the full battery, and the battery replacement robot moves to the top of the vehicle and puts down the full battery to complete the battery replacement.
  • the battery change time of the battery change system in the related art is 5-6 minutes, and the robot takes up nearly half of the battery change time, which greatly affects the battery change time.
  • the power efficiency reduces the operation capacity of the power station; at the same time, the long time for power replacement will directly cause the vehicles to queue up for power replacement, which greatly reduces the efficiency of vehicle operation.
  • the battery replacement area is a dangerous area for operation. In theory, there is a risk of falling from a high altitude. Once the battery pack falls from a high altitude, it may cause a fire risk.
  • Embodiments of the present disclosure provide a fast-mounted battery swapping station and a battery swapping system, which greatly reduces the battery swapping time of the swapping station, reduces the time consumed by the battery swapping robot during the battery swapping process, and can reduce the battery swapping process It is controlled within 2-3 minutes, which greatly improves the efficiency of battery swapping and improves the operation capacity of the battery swapping station; at the same time, the shortening of the battery swapping time directly reduces the situation of vehicles queuing up for battery swapping, greatly improving the efficiency of vehicle operation.
  • the embodiment of the first aspect of the present disclosure proposes a fast hoisting battery swap station, including a support structure, a driving beam, a driving device and a battery compartment, wherein the running beam is arranged above the supporting structure, the driving device is slidably arranged on the driving beam, and the battery
  • the warehouse is set at the bottom of the supporting structure, under the driving beam; the battery pack and charging stand are set in the battery compartment; the battery pack completes the charging operation on the charging stand, and the driving device picks and places the battery pack; the driving device uses the battery replacement controller
  • the controlled battery swapping robot consists of two spreaders.
  • the service vehicle is a heavy-duty mining truck with a battery pack on its back, and the charging stand of the battery compartment can be fully utilized without increasing the number of battery compartments.
  • the two spreaders are synchronously or independently controlled when moving horizontally; and independently controlled when moving up and down.
  • the spreader is controlled by the battery-changing controller, and it is synchronously or individually controlled when moving horizontally; it is individually controlled when moving up and down.
  • the two spreaders are synchronized when moving horizontally, and controlled separately when moving up and down.
  • a parking platform is set in the power exchange station; the position corresponding to the upper driving beam of the parking platform is the standby position of the driving device; the driving device runs to the standby position after running; the battery compartment is set on one side or both sides of the parking platform side.
  • the quick-mounting type battery swapping station of the embodiment of the present disclosure there are two standby positions on the left and the right.
  • the same battery compartment is used to take and place the battery pack each time.
  • the number of battery packs and charging seats in the battery compartment is the same;
  • the battery pack is smaller than the number of charging stations.
  • the battery swapping robot runs to the area on the opposite side of the battery compartment and puts down the battery.
  • the spreader can run in reverse. In the case of arrangement on both sides of the battery compartment, stop at the nearby standby position after the battery replacement is completed.
  • an anti-drop platform is set under the standby position; the parking platform is located between the anti-fall platforms.
  • a sunken driving lane is set in the swap station; the sunken lane is a pit-type parking platform dug downwards with the horizon as a plane to accommodate the swapping vehicles; a shockproof plate is arranged under the standby position.
  • the support structure includes a superstructure support frame based on the horizon and a substructure foundation based on the horizon, and the foundation is arranged below the support frame; several support frames are symmetrically arranged around the driving beam .
  • the embodiment of the second aspect of the present disclosure proposes a fast-mounted power-swapping station power-swapping system, which at least includes:
  • the signal connection system connected with the vehicle power exchange system
  • a battery-swapping robot system the battery-swapping robot system is connected to the station control system for receiving and responding to action instructions of the station control system;
  • a battery compartment system the battery compartment system is connected to the station control system for charging the battery pack and feeding back the power signal of the battery pack.
  • the fast hoisting power station battery replacement system of the embodiment of the disclosure is mainly developed for mining trucks and long-distance heavy trucks.
  • the basic working principle is that after the vehicle arrives at the designated area, the station control system issues instructions, and the vehicle battery replacement system controls the battery pack locking mechanism. Open the lock, the battery swap robot will swap the battery, and the battery pack locking mechanism will be closed and locked to complete the battery swap after the battery swap.
  • Mining trucks and long-distance heavy trucks in mining areas have the characteristics of continuous working hours and high operating intensity, so the efficiency of power swap will be the key factor affecting the operation capacity of power swap stations and the efficiency of vehicle operation.
  • the battery swapping system of the battery swapping robot receives an action command from the station control system, and grabs the battery pack with the most charge nearby.
  • the battery-swapping robot used in the embodiment of the present disclosure is composed of two spreaders, which effectively shortens the time occupied by the battery-swapping robot during operation, and increases the battery-swapping efficiency by nearly 100% with a minimal increase in cost, greatly improving The operational capability of the power station has been improved.
  • a battery pack anti-drop platform is set under the standby position of the battery swap robot to effectively prevent battery pack drop accidents caused by the failure of the battery swap robot.
  • Fig. 1 is a schematic structural diagram of a power station in the prior art.
  • FIG. 2 is a schematic structural diagram of the power station provided in Embodiment 2.
  • FIG. 2 is a schematic structural diagram of the power station provided in Embodiment 2.
  • FIG. 3 is a top view of the power exchange station provided in Embodiment 2.
  • FIG. 3 is a top view of the power exchange station provided in Embodiment 2.
  • FIG. 4 is a top view of another power station provided in Embodiment 2.
  • FIG. 4 is a top view of another power station provided in Embodiment 2.
  • FIG. 5 is a schematic structural diagram of another power station provided in Embodiment 2.
  • FIG. 5 is a schematic structural diagram of another power station provided in Embodiment 2.
  • FIG. 6 is a top view of the switching station in FIG. 5 provided in Embodiment 2.
  • FIG. 6 is a top view of the switching station in FIG. 5 provided in Embodiment 2.
  • FIG. 7 is a schematic diagram of the operation flow of the battery swapping station in FIG. 2 provided in Embodiment 2.
  • FIG. 7 is a schematic diagram of the operation flow of the battery swapping station in FIG. 2 provided in Embodiment 2.
  • 1 is the support structure
  • 2 is the driving beam
  • 3 is the battery compartment
  • 4 is the battery pack
  • 5 is the charging stand
  • 6 is the spreader
  • 7 is the battery replacement robot
  • 8 is the vehicle
  • 9 is the standby position
  • 10 is the anti- Fall off the platform.
  • the battery replacement robot 7 in the existing battery replacement station is composed of a spreader 6.
  • the overall process of battery replacement is that the vehicle 8 enters the battery replacement area of the battery replacement station, the vehicle 8 turns on the battery replacement switch, and the vehicle 8 communicates with the station control via Bluetooth.
  • Make signal connection turn on the battery replacement switch of the battery replacement robot 7, open the locking mechanism of the vehicle 8, and issue an instruction to take the battery compartment 3, the battery replacement robot 7 moves to the top of the vehicle 8 to complete the positioning, and the battery replacement robot 7 grabs the empty battery and moves to Put down the empty compartment, the battery swapping robot 7 moves to the full battery compartment 3 to grab the full battery, and the battery swapping robot 7 moves to the top of the vehicle 8 and puts down the full battery to complete the battery swap.
  • the battery change time of the existing battery change system is 5-6 minutes, and the battery change process of the battery change robot 7 takes up nearly half of the battery change time.
  • the power exchange efficiency is reduced, and the operating capacity of the power exchange station is reduced; at the same time, the longer battery exchange time will directly cause the battery exchange vehicles 8 to line up for battery exchange, which greatly reduces the operating efficiency of the vehicle 8 .
  • this embodiment proposes a quick-lifting type battery swap station, including a support structure 1, a driving beam 2, a driving device and a battery compartment 3, wherein the running beam is arranged above the supporting structure 1, and the driving device is slidably arranged On the driving beam 2, the battery compartment 3 is arranged at the bottom of the supporting structure 1, below the driving beam 2; the battery pack 4 and the charging stand 5 are arranged in the battery compartment 3; the battery pack 4 completes the charging operation on the charging stand 5, and the driving device is The battery pack 4 is used for pick-and-place operations; the driving device is a battery-swapping robot 7 composed of two spreaders 6 controlled by a battery-swapping controller.
  • a power exchange robot 7 is composed of two spreaders 6.
  • the overall process of power exchange is that the vehicle 8 enters the power exchange area of the power exchange station, and the locking mechanism of the vehicle 8 is opened.
  • the electric controller controls the movement to the battery compartment 3, and after one sling 6 grabs the full battery pack 4, the battery replacement robot 7 moves to make the other sling 6 locate and grab the empty battery pack 4 on the vehicle 8 to be replaced.
  • This embodiment greatly reduces the power exchange time of the power exchange station, reduces the time consumed by the battery exchange robot 7 moving during the battery exchange process, and can control the battery exchange process within 2-3 minutes, greatly improving the power exchange efficiency , improve the operation capacity of the battery swapping station; at the same time, the shortening of the battery swapping time directly reduces the situation that the swapping vehicles 8 line up for swapping, and greatly improves the operating efficiency of the vehicles 8.
  • the 3-position arrangement of the battery compartment can be fixed or mobile according to the actual situation.
  • the battery compartment 3 is arranged with a rotating charging rack, which can effectively reduce the movement distance of the battery replacement robot 7 and improve system stability. sex,
  • the two spreaders 6 are synchronously or independently controlled when moving horizontally; and independently controlled when moving up and down.
  • the two hangers 6 move simultaneously or separately when moving horizontally, but the two hangers 6 are independently controlled when moving up and down, and move up and down separately.
  • the two spreaders 6 are synchronized when moving horizontally and controlled independently when moving up and down.
  • a parking platform is set in the power exchange station; the position corresponding to the upper driving beam 2 of the parking platform is the standby position 9 of the driving device; the driving device runs to the standby position 9 after running; the battery compartment 3 is set on the parking platform. one or both sides.
  • the number of battery packs 4 and charging bases 5 in the battery compartment 3 is the same;
  • the number of battery packs 4 in the battery compartment 3 is less than that of the charging stand 5 .
  • the robot runs to the opposite side of the battery compartment 3 and puts down the battery.
  • a spreader 6 reverse operation gets final product.
  • the two sides of the battery compartment 3 are arranged, it stops at the nearby standby position 9 after the battery replacement is completed.
  • the battery replacement robots 7 when the battery compartment 3 is arranged on both sides of the parking platform, as shown in Fig. Arrange one for each, one of the battery replacement robots 7 first locates the standby position 9, grabs the battery pack 4 above the vehicle 8 and moves it away, and the other battery replacement robot 7 grabs the battery compartment 3 full of battery packs 4 to the standby position 9 Put down the battery pack 4 to complete the battery replacement.
  • an anti-fall platform 10 is arranged below the standby position 9 ; and the parking platform is located between the anti-fall platforms 10 .
  • the battery pack anti-drop platform can be arranged only under the standby position 9, or it can be arranged as a whole at the arrangement position of the battery compartment 3 of the swapping station, and it can be arranged as a whole at the arrangement position of the battery compartment 3 of the swapping station.
  • a maintenance channel and a sinking pool for the battery pack 4 can be set under the falling platform to effectively prevent the risk of crushing injuries during the maintenance process.
  • the height of the battery in the standby position 9 from the fall prevention platform is generally 5-10cm, and it can also be adjusted according to actual operational needs.
  • a sunken driving lane is set in the swap station; the sunken lane is a pit-type parking platform dug downward to accommodate the battery swapping vehicle 8 with the horizon as a plane; a shockproof plate is arranged under the standby position 9 .
  • the sunken driveway is a ship-shaped structure including gentle slope sections at both ends and a platform section between the gentle slope sections; the deepest height of the sunken lane from the platform section to the horizon is 3-4 meters, and the gentle slope section The slope is less than 20%.
  • the width of the sunken driving lane is the vehicle width + 1 m, and the slope of the sunken driving lane meets the climbing requirement of the vehicle 8 with no load. Drainage ditches shall be dug on both sides of the bottom of the depressed carriageway, and a drainage system shall be set in the gutters.
  • the drainage system at least includes a backup water pump to perform drainage operations when necessary.
  • An automatic lifting platform is set in the sunken traffic lane, and the battery swapping vehicle 8 is parked on the automatic hoisting platform to realize up-and-down lifting in the sunken traffic lane.
  • the height of the charging stand 5 is not lower than the roof height of the battery exchange vehicle 8 when the battery exchange vehicle 8 enters the bottom of the recessed driveway.
  • the height of the driving beam 2 is at least the sum of the height of the charging base 5 from the horizon, the height of the bottom of the driving device from the driving beam 2 and the height of the battery pack 4 .
  • the support structure 1 includes a superstructure support frame based on the horizon and a substructure foundation based on the horizon, and the foundation is arranged below the support frame; 2 weeks.
  • the embodiment of the present disclosure also proposes a power exchange system of a fast hoisting power exchange station, as shown in FIG. 7 , the power exchange system of a rapid hoisting power exchange station at least includes:
  • a signal connection system connected to the battery swapping system of the vehicle 8;
  • the battery exchange system of the battery exchange robot 7, the battery exchange system of the battery exchange robot 7 is connected to the station control system, and is used to receive and respond to the action instructions of the station control system;
  • the battery compartment 3 system which is connected to the station control system, is used to complete the charging of the battery pack 4 and feed back the power signal of the battery pack 4 .
  • one power exchange robot 7 is set to be composed of two spreaders 6 .
  • the process of the power exchange system at the power exchange station is that the vehicle 8 enters the power exchange station, the vehicle 8 turns on the power exchange switch, and the vehicle 8 and the station control system perform signal connection through the signal connection system.
  • the signal connection system is the Bluetooth system, and the vehicle 8 exchanges power.
  • the system makes the locking mechanism of the vehicle 8 open, the station control system receives the unlock signal of the vehicle 8, and issues an instruction, the battery compartment 3 system powers off the battery compartment 3, and feeds back the charging power signal of the battery pack 4 in the battery compartment 3 to the station control system. system, the station control system controls the battery exchange robot 7.
  • the battery exchange system turns on the battery exchange switch of the battery exchange robot 7.
  • the battery exchange robot 7 moves to use Another spreader 6 locates and grabs the empty battery pack 4 of the vehicle 8, puts down the full battery pack 4 according to the positioning information, and completes the battery swap. After the vehicle 8 drives out, the battery swap robot 7 moves to put down the empty battery for charging.
  • the battery swapping system of the battery swapping robot 7 receives an action command from the station control system, and grabs the battery pack 4 with the most charged capacity nearby.
  • the battery compartment 3 of this embodiment is set on both sides of the parking platform and two battery-swapping robots 7 are installed. Signal, send instructions, let the two battery replacement robots complete their own actions respectively, and cooperate to complete the overall battery replacement process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

提出了一种快速吊装式换电站及换电系统,其中快速吊装式换电站包括:支撑结构、行车梁、行车装置和电池仓,其中,所述行车梁设置在所述支撑结构上方,所述行车装置滑动设置在所述行车梁上,所述电池仓设置在所述支撑结构底部,位于所述行车梁下方;所述电池仓内设置电池包和充电座;所述电池包在所述充电座上完成充电作业;所述行车装置对所述电池包进行取放作业;所述行车装置为利用换电控制器控制的具有两个吊具组成的换电机器人。

Description

快速吊装式换电站及换电系统
相关申请的交叉引用
本申请基于申请号为202110966703.X、申请日为2021年8月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及换电站电控系统技术领域,具体涉及一种快速吊装式换电站及换电系统。
背景技术
锂离子电池和新能源电动车在近十年来逐渐成熟,在我国发展迅速。电能是未来汽车类交通工具的主要替代能源,因为电能可以由太阳能、水能、风能以及核能等多种清洁可再生能源转换得到,也可以减少各产业对石油等不再生能源的依赖性。随着环境保护、低碳经济、降低能耗的理念为人们所重视,汽车工业因其尾气排放污染环境、高能耗等一系列负效应,面临日益严峻的挑战。相对传统的燃油汽车,新能源汽车能够有效降低汽车排放废气污染。从环境角度讲,新能源汽车废气排出量比传统汽车可减少92%-98%,从而实现交通能源多元化,保护环境;从能源角度讲,全球石油危机日益严重,汽车工业又是能耗的最大组成部分,新能源汽车的开发和使用有效解决了交通能源重消耗的问题,实现了低碳经济可持续发展。
新能源电动汽车能源补充可以分为插充和换电两种模式,其中在插充模式下,主要有购买电池初期成本高、充电时间长以及充电安全性低三大类问题,另外,插充模式下,新能源电动车充电负荷具有显著的时空随机性,对电网的运行和规划会带来不利影响。而换电模式配合大规模集中型充电已经成为当前电动汽车发展的另一个具备竞争力的商业技术模式,第一,该模式下可以有效减少电动汽车的能源补给时间。第二,该模式下可以集中管理充电安全性,保证电池系统的安全可靠性。第三,通过合理的商业运作模式,采用电池租赁方式,既可以有效控制商务成本,又可以集中有效的管控电池系统的溯源性。根据车辆类型的不同,一般可更换电池包安装的位置有底盘下方(轿车、SUV等乘用车)、车架侧/后方和车架上方(巴士、载重卡车、矿山机械重型车辆等)。不同的安装方式,换电的方法也不同。例如底盘下方一般采用下方托举式换电,车架侧/后方一般采用侧插式换电,车架上方一般采用吊装式换电。侧 插式换电和吊装式换电适用场景不同,也各有优缺点,一般来讲侧插式换电车辆结构紧凑、换电站建筑部分投资较低;吊装式换电车辆恶劣路况的通过能力强、换电站机械部分投资较低。
对于吊装式换电站,相关技术中换电站换电机器人是由一个吊具组成,换电整体流程为车辆进入换电站换电区域,车辆开启换电开关,车辆与站控通过蓝牙进行信号连接,开启换电机器人换电开关,车辆锁止机构打开,下发放取电池仓指令,换电机器人移动至车辆上方完成定位,换电机器人抓取空电池移动至空仓位放下,换电机器人移动至满电池仓抓取满电池,换电机器人移动至车辆上方放下满电池,完成换电。因电池仓位分布远近不一导致每次换电时间不一致,相关技术中的换电系统换电时间在5-6分钟,其中机器人放取电池运行过程占据近一半换电时间,极大影响了换电效率,降低了换电站运营能力;同时换电时间较长将直接造成换电车辆排队换电,大大的降低了车辆运营效率。且由于电池起吊高度较高,换电区域属于作业危险区,理论上存在高空跌落风险,一旦电池包高空跌落,可能造成火灾风险。
因此,亟待提供一种提高了电效率缩短换电时间、并降低高空跌落的风险的快速吊装式换电站及换电系统。
发明内容
本公开实施例提供了一种快速吊装式换电站及换电系统,其大幅降低了换电站的换电时间,减少了在换电过程中换电机器人移动所消耗的时间,可将换电过程控制在2-3分钟,极大的提高了换电效率,提升了换电站运营能力;同时换电时间的缩短直接减少了换电车辆排队换电的情况,大大提高了车辆运营效率。
本公开第一方面实施例提出了一种快速吊装式换电站,包括支撑结构、行车梁、行车装置和电池仓,其中,行梁设置在支撑结构上方,行车装置滑动设置在行车梁上,电池仓设置在支撑结构底部,位于行车梁下方;电池仓内设置电池包和充电座;电池包在充电座上完成充电作业,行车装置对电池包进行取放作业;行车装置为利用换电控制器控制的具有两个吊具组成的换电机器人。
根据本公开实施例的快速吊装式换电站,服务车辆为后背电池包的重卡矿卡,在不增加电池仓数量的基础上,可充分利用电池仓充电座。
根据本公开的一个实施例,两个吊具在水平移动时同步或单独控制;在上下移动时单独控制。
吊具收到换电控制器控制,水平移动时同步或单独控制;在上下移动时单独控制。
根据本公开实施例的快速吊装式换电站,两个吊具在水平移动时同步;在上下移动时单独控制。
根据本公开的一个实施例,换电站内设置停车台;停车台对应上方行车梁的位置为行车装置待机位;行车装置运行结束后运行到待机位;电池仓设置在停车台的一侧或两侧。
根据本公开实施例的快速吊装式换电站,待机位为左右两个。每次取放电池包的为同一电池仓。
根据本公开的一个实施例,在电池仓设置在停车台的一侧的情况下,电池仓内电池包和充电座数量相同;在电池仓设置在停车台的两侧的情况下,电池仓内电池包小于充电座数量。
根据本公开实施例的快速吊装式换电站,在换电完成后,在电池仓设置在停车台的一侧的情况下,换电机器人运行到电池仓对侧区域放下电池,下次换电两个吊具反向运行即可。在电池仓两侧布置的情况下,换电完成后停在就近待机位。
根据本公开的一个实施例,待机位下方设置防掉落平台;停车台位于防掉落平台之间。
根据本公开的一个实施例,换电站内设置凹陷行车道;凹陷行车道为以地平线为平面,向下挖出的容纳换电车辆的坑道式停车台;待机位下方设置布置防震板。
根据本公开的一个实施例,支撑结构包括以地平线为基准的上层建筑支撑架和以地平线为基准的下层建筑地基,地基设置在支撑架的下方;支撑架为若干个分别对称设置在行车梁四周。
本公开第二方面实施例提出了一种快速吊装式换电站换电系统,至少包括:
站控系统;
与车辆换电系统连接的信号连接系统;
换电机器人换电系统,所述换电机器人换电系统与站控系统连接,用于接收并响应站控系统动作指令;和
电池仓系统,所述电池仓系统与站控系统连接,用于完成电池包充电,并反馈电池包电量信号。
本公开实施例的快速吊装式换电站换电系统,主要针对矿区矿卡及长途重卡开发,基本工作原理是车辆到达指定区域后,站控系统发出指令,车辆换电系统控制电池包锁止机构打开锁止,换电机器人进行换电,换电结束电池包锁止机构闭合锁止完成换电。矿区矿卡及长途重卡具有工作时间连续、作业强度高的特点,因而换电效率将是影响换电站运营能力及车辆运营效率的关键因素。
根据本公开的一个实施例,换电机器人换电系统接收站控系统动作指令,就近抓取充电量最多的电池包。
本公开实施例提出的适用于吊装式换电车辆的坑道式换电站,具有如下技术效果:
1.提升换电站运营能力。本公开实施例使用的换电机器人由两个吊具组成,有效的缩短了换电机器人在运行过程中占用的时间,在增加极少量成本的情况下提高了近1倍换电效率,大幅提升了换电站的运营能力。
2.提高车辆运营效率。换电时间的缩短,直接提升了每小时的换电车辆数量,大大降低了换电车辆排队等待的发生,提高了车辆的运营效率。
3.降低风险。在换电机器人待机位下方设置电池包防跌落平台,有效防止因换电机器人故障引发的电池包跌落事故。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为现有技术中的换电站结构示意图。
图2为实施例2中提供的换电站结构示意图。
图3为实施例2中提供的换电站俯视图。
图4为实施例2中提供的又一换电站俯视图。
图5为实施例2中提供的另一换电站结构示意图。
图6为实施例2中提供的图5换电站俯视图。
图7为实施例2中提供的图2的换电站作业流程示意图。
其中,1为支撑结构,2为行车梁,3为电池仓,4为电池包,5为充电座,6为吊具,7为换电机器人,8为车辆,9为待机位,10为防掉落平台。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面结合附图和具体实施方式对本公开进行进一步的详细描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但是,本公开还可以采用其他不同于在此描述的其他方式来实施,因此,本公开的保护范围并不受下面公开的具体实施例的限制。
实施例1
如图1,提供了现有换电站换电机器人7是由一个吊具6组成,换电整体流程为车辆8进入换电站换电区域,车辆8开启换电开关,车辆8与站控通过蓝牙进行信号连接,开启换电机器人7换电开关,车辆8锁止机构打开,下发放取电池仓3指令,换电机器人7移动至车辆8上方完成定位,换电机器人7抓取空电池移动至空仓位放下,换电机器人7移动至满电池仓3抓取满电池,换电机器人7移动至车辆8上方放下满电池,完成换电。因电池仓3位分布远近不一导致每次换电时间不一致,现有换电系统换电时间在5-6分钟,其中换电机器人7放取电池运行过程占据近一半换电时间,极大降低了换电效率,降低了换电站运营能力;同时换电时间较长将直接造成换电车辆8排队换电,大大的降低了车辆8运营效率。
实施例2
下面参考图2-图7描述根据本公开实施例的快速吊装式换电站。
如图2-3,本实施例提出了一种快速吊装式换电站,包括支撑结构1、行车梁2、行车装置和电池仓3,其中,行梁设置在支撑结构1上方,行车装置滑动设置在行车梁2上,电池仓3设置在支撑结构1底部,位于行车梁2下方;电池仓3内设置电池包4和充电座5;电池包4在充电座5上完成充电作业,行车装置对电池包4进行取放作业;行车装置为利用换电控制器控制的具有两个吊具6组成的换电机器人7。
本实施例中一台换电机器人7由两个吊具6组成,换电整体流程为车辆8进入换电站换电区域,车辆8锁止机构打开,换电机器人7根据电池仓3信息由换电控制器控制移动至电池仓3,由一个吊具6抓取满电池包4后,换电机器人7移动使另一个吊具6定位并抓取车辆8上待换电的空电池包4,根据吊具6定位信息放下满电池包4到车辆8上,完成换电,车辆8驶出,换电机器人7移动使空电池包4到达电池仓3,进行充电。本实施例大幅降低了换电站的换电时间,减少了在换电过程中换电机器人7移动所消耗的时间,可将换电过程控制在2-3分钟,极大的提高了换电效率,提升了换电站运营能力;同时换电时间的缩短直接减少了换电车辆8排队换电的情况,大大的提高了车辆8运营效率。
在本公开实施例中,电池仓3位布置可根据实际情况布置成固定式或移动式,例如可理解为电池仓3布置旋转式充电架可有效的减少换电机器人7运动行程,提高系统稳定性,
根据本公开的一个实施例,两个吊具6在水平移动时同步或单独控制;在上下移动时单独控制。
本实施例中,可理解为两个吊具6在水平移动时,同时移动或单独移动,但是两 个吊具6在上下移动时单独控制,进行上下各自移动。在本申请实施例中,两个吊具6在水平移动时同步;在上下移动时单独控制。
根据本公开的一个实施例,换电站内设置停车台;停车台对应上方行车梁2的位置为行车装置待机位9;行车装置运行结束后运行到待机位9;电池仓3设置在停车台的一侧或两侧。
根据本公开实施例的快速吊装式换电站,待机位9为左右两个。
根据本公开的一个实施例,如图2-3所示在电池仓3设置在停车台的一侧的情况下,电池仓3内电池包4和充电座5数量相同;如图4所示在电池仓3设置在停车台的两侧的情况下,电池仓3内电池包4小于充电座5数量。
根据本公开实施例的快速吊装式换电站,在换电完成后,在电池仓3设置在停车台的一侧的情况下,机器人运行到电池仓3对侧区域放下电池,下次换电两个吊具6反向运行即可。在电池仓3两侧布置的情况下,换电完成后停在就近待机位9。
根据本公开的一个实施例,在电池仓3设置在停车台的两侧的情况下,如图5-6所示,可设置设置两台换电机器人7,在停车台两侧电池仓3内各布置一台,其中一台换电机器人7先进行待机位9定位,将车辆8上空电池包4抓取并移动离开,另一换电机器人7抓取电池仓3满电池包4到待机位9放下电池包4,完成换电。
根据本公开的一个实施例,待机位9下方设置防掉落平台10;停车台位于防掉落平台10之间。
根据本公开实施例的快速吊装式换电站,电池包防跌落平台可只在待机位9下方布置,也可以在换电站电池仓3布置位置整体布置,在换电站电池仓3布置位置整体布置的情况下,跌落平台下方可设置维修通道及电池包4沉水池,有效防止维修过程中发生的砸伤风险。待机位9电池距防止跌落平台的高度一般为5-10cm,也可根据实际运营需求调整。
根据本公开的一个实施例,换电站内设置凹陷行车道;凹陷行车道为以地平线为平面,向下挖出的容纳换电车辆8的坑道式停车台;待机位9下方设置布置防震板。
根据本公开实施例的快速吊装式换电站,凹陷行车道为船型结构包括两端的缓坡段和缓坡段之间的平台段;凹陷行车道最深高度平台段到地平线距离为3-4米,缓坡段的坡度小于20%。本公开实施例中凹陷行车道宽度为车宽度+1m,凹陷行车道的坡度满足车辆8空载爬坡需求。凹陷行车道底部两侧挖设排水沟,并在排水沟内设置排水系统。本公开实施例中排水系统至少包括设置备用水泵,在必要时进行排水作业。凹陷行车道内设置自动升降台,换电车辆8停至于自动升降台上,在凹陷行车道内实现上下升降。充电座5的高度不低于与换电车辆8进入凹陷行车道最底部时的换电车辆 8的车顶高度。行车梁2的高度至少为充电座5距离地平线的高度、行车装置底部距离行车梁2高度和电池包4高度三者之和。
根据本公开的一个实施例,支撑结构1包括以地平线为基准的上层建筑支撑架和以地平线为基准的下层建筑地基,地基设置在支撑架的下方;支撑架为若干个分别对称设置在行车梁2四周。
本公开实施例还提出了一种快速吊装式换电站换电系统,如图7所示,该快速吊装式换电站换电系统至少包括:
站控系统;
与车辆8换电系统连接的信号连接系统;
换电机器人7换电系统,该换电机器人7换电系统与站控系统连接,用于接收并响应站控系统动作指令;
电池仓3系统,该电池仓3系统与站控系统连接,用于完成电池包4充电,并反馈电池包4电量信号。
本实施例中将一台换电机器人7设置为由两个吊具6组成。换电站换电系统流程为车辆8进入换电站,车辆8开启换电开关,车辆8与站控系统通过信号连接系统进行信号连接,其中本实施例中信号连接系统为蓝牙系统,车辆8换电系统使得车辆8锁止机构打开,站控系统接收到车辆8解锁信号,下发指令,电池仓3系统使得电池仓3断电,且将电池仓3内电池包4充电电量信号反馈到站控系统,站控系统控制换电机器人7换电系统开启换电机器人7换电开关,根据电池包4充电电量信号电池仓3,其中一个吊具6抓取满电池后,换电机器人7移动使另一吊具6定位并抓取车辆8空电池包4,根据定位信息放下满电池包4,完成换电,车辆8驶出后,换电机器人7移动使放下空电池,进行充电。
根据本公开的一个实施例,换电机器人7换电系统接收站控系统动作指令,就近抓取充电量最多的电池包4。
根据本公开的一个实施例,本实施例电池仓3设置在停车台的两侧设置两台换电机器人7,本实施例需要换电机器人换电系统根据站控系统及两台换电机器人反馈的信号,发送指令,让两台换电机器人分别完成自己的动作,配合完成整体换电过程。
以上仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (9)

  1. 一种快速吊装式换电站,其特征在于,包括支撑结构、行车梁、行车装置和电池仓,其中,所述行车梁设置在所述支撑结构上方,所述行车装置滑动设置在所述行车梁上,所述电池仓设置在所述支撑结构底部,位于所述行车梁下方;所述电池仓内设置电池包和充电座;所述电池包在所述充电座上完成充电作业;所述行车装置对所述电池包进行取放作业;所述行车装置为利用换电控制器控制的具有两个吊具组成的换电机器人。
  2. 根据权利要求1所述的换电站,其特征在于,所述两个吊具在水平移动时同步或单独控制;在上下移动时单独控制。
  3. 根据权利要求1或2所述的换电站,其特征在于,所述换电站内设置停车台;所述停车台对应上方所述行车梁的位置为所述行车装置待机位;所述行车装置运行结束后停到所述待机位;所述电池仓设置在所述停车台的一侧或两侧。
  4. 根据权利要求3所述的换电站,其特征在于,在所述电池仓设置在所述停车台的一侧的情况下,所述电池仓内所述电池包和所述充电座数量相同;在所述电池仓设置在所述停车台的两侧的情况下,所述电池仓内所述电池包小于所述充电座数量。
  5. 根据权利要求3或4所述的换电站,其特征在于,所述待机位下方设置防掉落平台;所述停车台位于所述防掉落平台之间。
  6. 根据权利要求3至5中任一项所述的换电站,其特征在于,所述换电站内设置凹陷行车道;所述凹陷行车道为以地平线为平面,向下挖出的容纳换电车辆的坑道式停车台;所述待机位下方设置布置防震板。
  7. 根据权利要求1至6中任一项所述的换电站,其特征在于,所述支撑结构包括以所述地平线为基准的上层建筑支撑架和以所述地平线为基准的下层建筑地基,所述地基设置在所述支撑架的下方;所述支撑架为若干个分别对称设置在所述行车梁四周。
  8. 一种快速吊装式换电站换电系统,其特征在于,至少包括:
    站控系统;
    与车辆换电系统连接的信号连接系统;
    换电机器人换电系统,所述换电机器人换电系统与所述站控系统连接,用于接收并响应所述站控系统动作指令;和
    电池仓系统,所述电池仓系统与所述站控系统连接,用于完成所述电池包充电,并反馈所述电池包电量信号。
  9. 根据权利要求8所述的系统,其特征在于,所述换电机器人换电系统接收所述站控系统动作指令,就近抓取充电量最多的所述电池包。
PCT/CN2022/098482 2021-08-23 2022-06-13 快速吊装式换电站及换电系统 WO2023024657A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110966703.X 2021-08-23
CN202110966703.XA CN113401001A (zh) 2021-08-23 2021-08-23 一种快速吊装式换电站及换电系统

Publications (1)

Publication Number Publication Date
WO2023024657A1 true WO2023024657A1 (zh) 2023-03-02

Family

ID=77674453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098482 WO2023024657A1 (zh) 2021-08-23 2022-06-13 快速吊装式换电站及换电系统

Country Status (2)

Country Link
CN (1) CN113401001A (zh)
WO (1) WO2023024657A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113401001A (zh) * 2021-08-23 2021-09-17 中国华能集团清洁能源技术研究院有限公司 一种快速吊装式换电站及换电系统
CN113910974B (zh) * 2021-12-10 2022-04-22 中国华能集团清洁能源技术研究院有限公司 一种换电站电池包的应急处理系统及方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2679456A1 (en) * 2012-06-27 2014-01-01 Kookmin University Industry Academy Cooperation Foundation Battery exchanging-type charging station system for electric vehicle
CN104860201A (zh) * 2015-06-19 2015-08-26 上海海事大学 一种基于霍尔效应原理的双吊具桥吊摆角测量装置及其方法
KR20180117986A (ko) * 2017-04-20 2018-10-30 엘에스산전 주식회사 전기 버스의 배터리 교체 시스템 및 그의 동작 방법
CN108946480A (zh) * 2018-08-01 2018-12-07 上海海事大学 基于电磁感应的双吊具桥吊同步误差测量装置及其方法
CN110862008A (zh) * 2019-12-17 2020-03-06 上海玖行能源科技有限公司 一种电动重卡充电换系统
CN111959340A (zh) * 2020-08-20 2020-11-20 博众精工科技股份有限公司 一种换电站及换电站的运营方法
CN112455269A (zh) * 2020-11-27 2021-03-09 国网智慧能源交通技术创新中心(苏州)有限公司 一种充换电结合的充电车辆调度系统和调度方法
CN213619441U (zh) * 2020-09-21 2021-07-06 北京长峰天通科技有限公司 一种车辆充换电系统
CN213619440U (zh) * 2020-09-21 2021-07-06 北京长峰天通科技有限公司 一种车辆充换电系统
CN113232551A (zh) * 2021-06-29 2021-08-10 博众精工科技股份有限公司 一种换电站
CN113401001A (zh) * 2021-08-23 2021-09-17 中国华能集团清洁能源技术研究院有限公司 一种快速吊装式换电站及换电系统
CN214689107U (zh) * 2021-02-03 2021-11-12 上海弗则新能源科技有限公司 一种电动重卡电池箱快换系统
CN216139870U (zh) * 2021-08-23 2022-03-29 中国华能集团清洁能源技术研究院有限公司 一种快速吊装式换电站及换电系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2737694B1 (fr) * 1995-08-09 1997-09-26 Belaud Maurice Joseph Procede d'adaptation de l'energie embarquee aux besoins de vehicules electriques de types et de gabarits differents avec les dispositifs specialement concus pour la mise en oeuvre
CN204815421U (zh) * 2015-07-28 2015-12-02 国网河南省电力公司南阳供电公司 一种电力系统登杆作业坠杆缓冲垫
CN106891865B (zh) * 2016-10-12 2021-07-23 蔚来(安徽)控股有限公司 用于电动汽车的底盘式换电站及其换电方法
CN108545601A (zh) * 2018-07-03 2018-09-18 浙江融乐环境科技有限公司 一种水泵用吊运设备
CN110395226A (zh) * 2019-07-08 2019-11-01 关仁舟 用于换电站的卡位交换式动力电池平移主机
CN212101733U (zh) * 2020-05-11 2020-12-08 河南东起机械有限公司 一种铝厂专用绝缘桥式起重机
CN212637218U (zh) * 2020-05-25 2021-03-02 奥动新能源汽车科技有限公司 换电站
CN113135438A (zh) * 2021-04-25 2021-07-20 上海海事大学 一种基于深层地下通道的地下集装箱物流装卸系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2679456A1 (en) * 2012-06-27 2014-01-01 Kookmin University Industry Academy Cooperation Foundation Battery exchanging-type charging station system for electric vehicle
CN104860201A (zh) * 2015-06-19 2015-08-26 上海海事大学 一种基于霍尔效应原理的双吊具桥吊摆角测量装置及其方法
KR20180117986A (ko) * 2017-04-20 2018-10-30 엘에스산전 주식회사 전기 버스의 배터리 교체 시스템 및 그의 동작 방법
CN108946480A (zh) * 2018-08-01 2018-12-07 上海海事大学 基于电磁感应的双吊具桥吊同步误差测量装置及其方法
CN110862008A (zh) * 2019-12-17 2020-03-06 上海玖行能源科技有限公司 一种电动重卡充电换系统
CN111959340A (zh) * 2020-08-20 2020-11-20 博众精工科技股份有限公司 一种换电站及换电站的运营方法
CN213619440U (zh) * 2020-09-21 2021-07-06 北京长峰天通科技有限公司 一种车辆充换电系统
CN213619441U (zh) * 2020-09-21 2021-07-06 北京长峰天通科技有限公司 一种车辆充换电系统
CN112455269A (zh) * 2020-11-27 2021-03-09 国网智慧能源交通技术创新中心(苏州)有限公司 一种充换电结合的充电车辆调度系统和调度方法
CN214689107U (zh) * 2021-02-03 2021-11-12 上海弗则新能源科技有限公司 一种电动重卡电池箱快换系统
CN113232551A (zh) * 2021-06-29 2021-08-10 博众精工科技股份有限公司 一种换电站
CN113401001A (zh) * 2021-08-23 2021-09-17 中国华能集团清洁能源技术研究院有限公司 一种快速吊装式换电站及换电系统
CN216139870U (zh) * 2021-08-23 2022-03-29 中国华能集团清洁能源技术研究院有限公司 一种快速吊装式换电站及换电系统

Also Published As

Publication number Publication date
CN113401001A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
WO2023024657A1 (zh) 快速吊装式换电站及换电系统
CN104260759B (zh) 一种城市轨道交通节能优化方法及系统
CN101834455B (zh) 电动汽车充电站系统及其匹配充电方法
WO2006050637A1 (fr) Systeme d'alimentation d'autobus electriques
CN102431526A (zh) 一种新型动力电池更换系统
CN102039876A (zh) 电动车快速换装动力电池的系统及方法
CN110605986B (zh) 一种离网可移动快充系统及其管理方法
CN211139084U (zh) 重型车辆集装箱换电站
CN105515133A (zh) 一种纯电动计程车的充电方法和智能管理设施及方法
CN204407958U (zh) 一种用于电动汽车充电的悬挂轨道式机器人
CN216139870U (zh) 一种快速吊装式换电站及换电系统
CN115284248A (zh) 一种防侧倾移动充电桩机器人及充电方法
CN114771337A (zh) 一种可移动式顶部重卡换电站
CN107697037B (zh) 电动车电池智能装卸载移动充电装置与方法
CN113492718A (zh) 一种可用于吊装式换电的可移动式换电站
CN216033888U (zh) 一种适用于吊装式换电车辆的坑道式换电站
CN213056847U (zh) 一种用于临时用电工程的移动式储能车
CN114194981A (zh) 一种基于重载汽车提升的公路交通运输和电力储能系统
CN204304564U (zh) 一种节能环保型充电车
CN102545301A (zh) 橇装式电动车充电站
CN113733967A (zh) 一种适用于吊装式换电车辆的坑道式换电站
CN202574216U (zh) 城市悬挂轻轨新能源电动公交列车
CN106285111A (zh) 一种搬运机器人
CN114932833A (zh) 一种集成式重卡充换电站
CN205840432U (zh) 一种光储一体化新能源立体车库

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22860004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE