WO2023024639A1 - 超声空化参数调整方法和超声空化装置 - Google Patents

超声空化参数调整方法和超声空化装置 Download PDF

Info

Publication number
WO2023024639A1
WO2023024639A1 PCT/CN2022/097141 CN2022097141W WO2023024639A1 WO 2023024639 A1 WO2023024639 A1 WO 2023024639A1 CN 2022097141 W CN2022097141 W CN 2022097141W WO 2023024639 A1 WO2023024639 A1 WO 2023024639A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavitation
data
intensity distribution
intensity
ultrasonic
Prior art date
Application number
PCT/CN2022/097141
Other languages
English (en)
French (fr)
Inventor
郭威
吴方刚
Original Assignee
飞依诺科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 飞依诺科技(苏州)有限公司 filed Critical 飞依诺科技(苏州)有限公司
Publication of WO2023024639A1 publication Critical patent/WO2023024639A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes

Definitions

  • the invention relates to the technical field of ultrasonic detection and ultrasonic imaging, in particular to an ultrasonic cavitation parameter adjustment method and an ultrasonic cavitation device.
  • Ultrasonic cavitation technology is widely used in medical or chemical fields. By applying ultrasonic energy, the tiny bubbles in the liquid vibrate and grow until a certain energy threshold is reached, and the bubbles collapse and close sharply to promote liquid emulsification, gel liquefaction, solid Dispersion, and the effect of enhancing drug absorption capacity.
  • the technical solution provided by the prior art is to assist the operator to adjust artificially by showing the strongest MI value (Mechanical Index, mechanical index) under the current sound field, but the above solutions can only It serves as a reference for the control of steady-state cavitation and transient cavitation. Due to the large number of parameters affecting cavitation and the uneven energy distribution of the ultrasonic sound field, operators often cannot manually adjust the ultrasonic cavitation parameters to Best state.
  • One of the objectives of the present invention is to provide a method for adjusting ultrasonic cavitation parameters to solve the technical problems in the prior art that cavitation parameter adjustment effects are poor and optimal parameters cannot be automatically adapted according to operator needs.
  • One of the objectives of the present invention is to provide an ultrasonic cavitation device.
  • an embodiment of the present invention provides a method for adjusting ultrasonic cavitation parameters, including: receiving a detection frame selection signal, analyzing the detection frame position, and obtaining the marker position; retrieving the preset intensity distribution map Collecting the cavitation intensity data at the marked position, screening the cavitation intensity distribution map with the largest cavitation intensity data, to obtain the optimal intensity distribution map; extracting the cavitation output parameters corresponding to the optimal intensity distribution map, to obtain the optimal Output parameters and output.
  • the method further includes: outputting at least two sets of cavitation trigger signals with at least two sets of preset cavitation output parameters; Two sets of radio frequency data, at least two cavitation intensity distribution diagrams are obtained according to the analysis of the radio frequency data, and an intensity distribution atlas is established.
  • the method specifically includes: calculating and obtaining corresponding cavitation intensity data according to the radio frequency data; respectively performing mapping on the cavitation intensity data to obtain false color data, and
  • the cavitation intensity distribution map was generated from the pseudo-color data described above.
  • the method specifically includes: receiving echo data corresponding to the cavitation trigger signal; performing processing on the echo data to obtain corresponding radio frequency data; extracting radio frequency data from the radio frequency data
  • the sub-harmonic signal of the two-dimensional scanning plane is calculated to obtain the total pressure data of at least the first test point; according to the total pressure data of the first test point and the liquid pressure data of the first test point, the calculation is obtained. Cavitation intensity data for the first test point.
  • the cavitation intensity data is the difference between the total pressure data and the liquid pressure data.
  • the method specifically includes: traversing all the cavitation intensity data to obtain maximum intensity data and minimum intensity data; According to the grayscale data and the RGB mapping curve, the pseudo-color data corresponding to the grayscale data is obtained by mapping, and according to the pseudo-color data Generate a cavitation intensity distribution map; wherein, the grayscale data satisfies: x is the cavitation intensity data, g is the pseudo-color data corresponding to the cavitation intensity data, x max is the maximum intensity data, and x min is the minimum intensity data.
  • the method specifically includes: retrieving and calculating the average value of the grayscale data of each cavitation intensity distribution map at the marked position in the intensity distribution atlas; A cavitation intensity distribution diagram of the data mean value to obtain an optimal intensity distribution diagram; wherein, the grayscale data mean value is used to characterize the cavitation intensity at the position of the mark.
  • the method further includes: receiving an ultrasonic detection image; and superimposing the optimal intensity distribution map translucently on the ultrasonic detection image, generating a cavitation display image and outputting .
  • the method specifically includes: selecting a region of interest in the ultrasonic detection image; setting the optimal intensity distribution map to have a first weight, and setting the region of interest With a second weight, the optimal intensity distribution map and the region of interest are weighted and mixed to generate and output a cavitation display image; wherein the value range of the first weight and the second weight is 0 to 1 , and the sum of the first weight and the second weight is 1.
  • an embodiment of the present invention provides an ultrasonic cavitation device, including a main control module, an ultrasonic probe, an image processing module, a storage module, and a parameter setting module.
  • the ultrasonic cavitation device performs any of the above tasks.
  • a method for adjusting ultrasonic cavitation parameters described in the technical proposal performs parameter adjustment.
  • the ultrasonic cavitation parameter adjustment method selects the cavitation intensity distribution map corresponding to the largest cavitation intensity data by analyzing the cavitation intensity data at the marked position in the preset intensity distribution map, and Adjust the output parameters to the optimal output parameters corresponding to the cavitation intensity distribution map, so that regardless of the position of the selected frame, the most suitable preset cavitation output parameters can be retrieved, avoiding manual adjustments by the operator, and achieving improved efficiency , Realize overall automation and ensure the best technical effect of output cavitation.
  • Fig. 1 is a structural principle diagram of an ultrasonic cavitation device in an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the steps of the ultrasonic cavitation parameter adjustment method in an embodiment of the present invention
  • Fig. 3 is a schematic diagram of the steps of the ultrasonic cavitation parameter adjustment method in another embodiment of the present invention.
  • Fig. 4 is a schematic diagram of the steps of the cavitation intensity distribution map preset process of the first embodiment of the ultrasonic cavitation parameter adjustment method in another embodiment of the present invention
  • Fig. 5 is a schematic diagram of the steps of step 221 of the second embodiment of the ultrasonic cavitation parameter adjustment method in another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of steps in step 222 of the third embodiment of the method for adjusting ultrasonic cavitation parameters in another embodiment of the present invention.
  • Fig. 7 is a schematic diagram of the steps of the ultrasonic cavitation parameter adjustment method in another embodiment of the present invention.
  • Fig. 8 is a schematic diagram of the steps of the first embodiment of the ultrasonic cavitation parameter adjustment method in another embodiment of the present invention.
  • Fig. 9 is a schematic diagram of the steps of the second embodiment of the method for adjusting ultrasonic cavitation parameters in another embodiment of the present invention.
  • Ultrasonic cavitation is used in medical and chemical fields. By applying ultrasonic energy, the cavitation nucleus vibrates, grows and continuously gathers energy under the action of the sound field, and finally collapses and closes sharply, thereby improving the drug absorption capacity of the target lesion to assist treatment, or Accelerate the mixing between different media to accelerate physical or chemical reactions.
  • cavitation nuclei are defined as micron-sized or smaller air bubbles existing in living organisms, and specifically refer to tiny air bubbles existing in liquids in one embodiment of the present invention.
  • the ultrasonic cavitation device applies ultrasonic energy through the ultrasonic probe.
  • the sound field formed by the ultrasonic probe emitting ultrasonic waves is often of uneven intensity, resulting in the sound field intensity in different areas within the scanning range of the ultrasonic probe.
  • the above MI value Mechanical Index, mechanical index
  • the cavitation effect is also different. In this way, if the sound field is always established with the same parameters, it will be impossible to concentrate the sound field on the target to be treated, and the auxiliary effect on treatment and response will be greatly weakened.
  • an embodiment of the present invention provides an ultrasonic cavitation device to solve the problems in the prior art and improve the auxiliary effect of ultrasonic cavitation.
  • the ultrasonic cavitation device includes a main control module 11, an ultrasonic probe 12, an image processing module 13, a storage module 14, and a parameter setting module 15. Adjustments to enhance the effects of cavitation.
  • the main control module 11 is connected with the peripheral display device and the operating device, receives the detection frame selected by the operator on the display device through the operating device, receives the mark position analyzed by the image processing module 13 and executes it in the storage module 14. Retrieval, put the retrieved qualified images into the image processing module 13 for processing, extract the corresponding parameters and output them to the parameter setting module 15 to perform parameter setting; in some specific embodiments, the main control module 11 also It can be further configured to perform steps such as outputting cavitation trigger signals, receiving echo data, receiving radio frequency data, forwarding false color data, receiving and outputting cavitation display images, etc. This point can be adjusted according to the needs of those skilled in the art, and the present invention does not This is limited.
  • the display device can specifically refer to the display screen of the host computer or other computers, and the operating device can specifically refer to devices such as the host computer, keyboard and mouse set, etc., and the display device is at least used to display the .
  • the image received and output by the ultrasonic cavitation device, and the operating device is at least used for inputting a detection frame selection signal.
  • the ultrasonic probe 12 is connected to the main control module 11 and the parameter setting module 15. In one embodiment, it is configured to integrate the output function of cavitation, the feedback function of cavitation and the function of ultrasonic imaging. Of course, in other embodiments, the above functions can be separately Set in different devices, at this time, at least the part of the ultrasonic probe 12 that is used to output cavitation is configured to connect to the parameter setting module 15, and the part of the ultrasonic probe 12 that is used for feedback of cavitation and for ultrasonic imaging Part is configured to be connected to the main control module 11; further, the ultrasonic probe 12 is at least configured to accept the cavitation output parameter setting of the parameter setting module 15, output the cavitation effect, and receive the cavitation effect feedback data, in a specific In the embodiment, it can also be configured to output and receive ultrasound signals for imaging, which can be adjusted according to the needs of those skilled in the art.
  • the image processing module 13 is connected to the main control module 11, configured to analyze and output the position of the detection frame in the image (or display screen), analyze and output the cavitation output parameters corresponding to the filtered cavitation intensity distribution map; in one implementation In the mode, it can also be configured to perform steps such as calculating the cavitation intensity distribution map according to the feedback data, establishing and outputting the intensity distribution atlas, generating and outputting the cavitation display image; of course, the image processing module 13 and the main control module 11 can be divided into The body settings can also be integrated, and the functions corresponding to the two modules can also be configured to be undertaken by the other one.
  • the storage module 14 is connected to the main control module 11, configured to accept the retrieval of the main control module 11, store the intensity distribution atlas, and store the data and process images involved in the method of adjusting ultrasonic cavitation parameters; the parameter setting module 15 is connected to the main control module 15 respectively.
  • the control module 11 and the ultrasonic probe 12 are configured to receive and output cavitation output parameters.
  • the ultrasonic cavitation device can also specifically include an echo processing module 16, a bandpass filter 17, and a data processing module 18 connected in sequence, and the echo processing module 16 and the data processing module 18 are connected with the main control module respectively. 11 connection; wherein, the echo processing module 16 is configured to perform processing on the echo data forwarded by the main control module 11 to obtain radio frequency data, and the bandpass filter 17 is configured to extract and output subharmonic signals in the radio frequency data, the data The processing module 18 is configured to calculate cavitation intensity data according to the sub-harmonic signal and/or radio frequency data, perform mapping on the cavitation intensity data to obtain and output pseudo-color data; of course, the above-mentioned modules are not necessary technical features for realizing the expected technical effect of the present invention, Modules and functional configurations can be adjusted as needed. Some of the above-mentioned data and images are process data content, and some are final output data content. The output data content may also contain other process data content before. Of course, those skilled in the art can also use Process data content
  • an embodiment of the present invention provides a method for adjusting ultrasonic cavitation parameters, as shown in Figure 2, including:
  • Step 31 receiving the detection frame selection signal, analyzing the detection frame position, and obtaining the marker position;
  • Step 32 retrieve the cavitation intensity data at the marked position in the preset intensity distribution atlas set, and filter the cavitation intensity distribution diagram with the largest cavitation intensity data to obtain the optimal intensity distribution diagram;
  • Step 33 extracting the cavitation output parameters corresponding to the optimal intensity distribution graph, obtaining the optimal output parameters and outputting them.
  • the detection frame is an area selected by the operator in the display screen, which can be a frame with a certain area, or a point or point set, etc.
  • the display screen is defined as an ultrasonic detection image in one embodiment, and the operation The operator selects an area on the ultrasonic detection image as a selected frame as required, and generates a corresponding selected signal.
  • the process of analyzing the position of the detection frame can refer to the two diagonal points of the detection frame or the position of the geometric center.
  • a plane Cartesian coordinate system can be established on the display screen and the position can be expressed in the form of coordinates.
  • the reference point can also be set in the display screen to match the position of the geometric center. The relative position of the reference point determines the position of the detection frame, and the embodiments formed according to the usual means of those skilled in the art are within the protection scope of the present invention.
  • the marked position generated by executing the above process is stored, and the main control module 11 uses the marked position as a reference to retrieve the cavitation intensity data at the marked position of each cavitation intensity distribution map in the intensity distribution atlas.
  • the marked position is displayed as a box or point set with an area, scan the area area in the cavitation intensity distribution map to obtain the average or weighted cavitation intensity data and compare them; if the marked position is displayed as For a single point, locate the corresponding position in the cavitation intensity distribution map, and extract the cavitation intensity data for comparison.
  • the cavitation intensity distribution diagram in this embodiment is defined as the distribution of the cavitation effect output by the ultrasonic probe 12 in the display screen under a certain parameter combination (ie, cavitation output parameters).
  • the cavitation intensity near the center of the ultrasonic probe 12 is stronger than the cavitation intensity far from the center, but under different parameter settings, the regional distribution of stronger cavitation intensity and weaker cavitation intensity There is a difference with the size of the area.
  • the cavitation intensity distribution map generated under different setting parameter states is preset in the device for query and call.
  • the intensity distribution atlas is defined in this embodiment as a collection of multiple cavitation intensity distribution atlases under different parameter setting states, and the specific form can be adjusted according to the needs of those skilled in the art.
  • the cavitation intensity data is the data at different regions in the cavitation intensity distribution diagram, and is used to represent the cavitation intensity in this region in the cavitation intensity distribution diagram;
  • the cavitation output parameter is the parameter setting condition for generating each cavitation intensity distribution map.
  • the cavitation output parameters correspond to the cavitation intensity distribution map, and the cavitation intensity data correspond to a certain area in the cavitation intensity distribution map.
  • the above-mentioned intensity distribution atlas can be obtained by pre-computing with reference to big data, or it can be obtained by using the ultrasonic cavitation device provided by the present invention to perform detection and calculation.
  • another embodiment of the present invention provides A method for adjusting ultrasonic cavitation parameters is proposed, as shown in Figure 3, which specifically includes:
  • Step 21 outputting at least two sets of cavitation trigger signals with at least two sets of preset cavitation output parameters
  • Step 22 analyzing and obtaining at least two sets of radio frequency data corresponding to at least two sets of cavitation trigger signals, obtaining at least two cavitation intensity distribution maps according to the analysis of the radio frequency data, and establishing an intensity distribution atlas;
  • Step 31 receiving the detection frame selection signal, analyzing the detection frame position, and obtaining the marker position;
  • Step 32 retrieve the cavitation intensity data at the marked position in the preset intensity distribution atlas set, and filter the cavitation intensity distribution diagram with the largest cavitation intensity data to obtain the optimal intensity distribution diagram;
  • Step 33 extracting the cavitation output parameters corresponding to the optimal intensity distribution graph, obtaining the optimal output parameters and outputting them.
  • the cavitation trigger signal contains at least the data affecting the effect of cavitation in the cavitation output parameters, such as transmission frequency, transmission period, sound power and PRF (Pulse Repetition Frequency, pulse repetition frequency) and other information, two sets of cavitation output parameters and corresponding Among the cavitation trigger signals, there is a difference in at least one of the above parameters, so that at least two cavitation intensity distribution maps with different intensity distributions are obtained.
  • PRF Pulse Repetition Frequency, pulse repetition frequency
  • the feedback form of cavitation is mainly radio frequency signals in this embodiment, so the cavitation intensity distribution diagram is analyzed and calculated according to the radio frequency data corresponding to the cavitation trigger signal in this embodiment, and the feedback form has other embodiments
  • the above steps 21 to 22 can of course be adjusted accordingly, as long as it is enough to generate two different cavitation intensity distribution maps.
  • the order of steps 21 and 22 and steps 31 to 33 can be adjusted, as long as the intensity distribution atlas is preset before step 32 is performed, the expected technical effect of the present invention can be achieved.
  • step 21 and step 22 can be configured to be performed in an environment different from step 31 to step 32, and the environment is One embodiment is defined as a pure water environment injected with contrast medium and free of air bubbles, which can be set up in a sink.
  • the detection surface of the ultrasonic probe 12 is set parallel to the water surface of the water tank and immersed in the water.
  • the cavitation intensity distribution diagram mentioned above can be a simple grayscale image, and the distribution of cavitation intensity is represented by the size of the grayscale data, but in this embodiment, in order to improve the display effect of the cavitation intensity distribution diagram, further
  • the first embodiment shown in Figure 4 is provided, specifically including:
  • Step 21 outputting at least two sets of cavitation trigger signals with at least two sets of preset cavitation output parameters
  • Step 221 analyzing and obtaining at least two sets of radio frequency data corresponding to at least two sets of cavitation trigger signals, and calculating corresponding cavitation intensity data;
  • Step 222 respectively perform mapping on the cavitation intensity data to obtain pseudo-color data, and generate a cavitation intensity distribution map based on the pseudo-color data, and establish an intensity distribution atlas;
  • Step 31 receiving the detection frame selection signal, analyzing the detection frame position, and obtaining the marker position;
  • Step 32 retrieve the cavitation intensity data at the marked position in the preset intensity distribution atlas set, and filter the cavitation intensity distribution diagram with the largest cavitation intensity data to obtain the optimal intensity distribution diagram;
  • Step 33 extracting the cavitation output parameters corresponding to the optimal intensity distribution graph, obtaining the optimal output parameters and outputting them.
  • the mapping process of pseudo-color data is to use the cavitation intensity data as the code value, correspondingly look up the R, G, and B intensity values corresponding to the cavitation intensity data in the CLUT (Color Look-Up Table), and then execute map. Since the mapped pseudo-color data still contains cavitation intensity data representing cavitation intensity, and the human eye is more sensitive to color than grayscale, the corresponding generated cavitation intensity distribution map can more significantly represent the cavitation intensity. Distribution.
  • the obtained cavitation intensity distribution diagram or intensity distribution atlas can not only be stored in the storage module 14, but also be output to a display device for display.
  • the cavitation trigger signal is output to the ultrasonic probe 12.
  • the ultrasonic probe 12 performs cavitation correspondingly and receives the echo signal representing the cavitation effect.
  • the collection of the echo signal is performed according to the time course, and the establishment of the cavitation intensity distribution map
  • the relative positional relationship between depth and lateral direction is required.
  • a second implementation of the above-mentioned process is further provided. For example, as shown in Figure 5, it specifically includes:
  • Step 21 outputting at least two sets of cavitation trigger signals with at least two sets of preset cavitation output parameters
  • Step 2211 receiving echo data corresponding to the cavitation trigger signal
  • Step 2212 perform processing on the echo data to obtain corresponding radio frequency data
  • Step 2213 extract the sub-harmonic signal in the radio frequency data, and calculate the total pressure data of at least the first test point in the two-dimensional scanning plane;
  • Step 2214 according to the total pressure data of the first test point and the liquid pressure data of the first test point, calculate the cavitation intensity data of the first test point;
  • Step 222 respectively perform mapping on the cavitation intensity data to obtain pseudo-color data, and generate a cavitation intensity distribution map based on the pseudo-color data, and establish an intensity distribution atlas;
  • Step 31 receiving the detection frame selection signal, analyzing the detection frame position, and obtaining the marker position;
  • Step 32 retrieve the cavitation intensity data at the marked position in the preset intensity distribution atlas set, and filter the cavitation intensity distribution diagram with the largest cavitation intensity data to obtain the optimal intensity distribution diagram;
  • Step 33 extracting the cavitation output parameters corresponding to the optimal intensity distribution graph, obtaining the optimal output parameters and outputting them.
  • the process of processing the echo data to obtain the radio frequency data may have a specific configuration manner.
  • the echo data may be used to perform beamforming, and the formed receiving beam may be used as the radio frequency data.
  • the radio frequency data is extracted by the band-pass filter 17 to obtain a sub-harmonic signal.
  • the sub-harmonic signal has a strong correlation with the pressure in the water body. Therefore, the present embodiment utilizes the amplitude variation of the sub-harmonic signal, The total pressure data of at least the first test point in the water body can be calculated.
  • the sub-harmonic signal is distinguished from the first harmonic component (the first harmonic component) or the second harmonic component (the second harmonic component), and in this embodiment specifically refers to the sub-harmonic component (subharmonic component, or subharmonic components), which have a better correlation with pressure, and the estimated total pressure data is more accurate.
  • the cavitation intensity data is set as the difference between the total pressure data and the liquid pressure data, that is:
  • P final is the equivalent cavitation intensity data
  • P ultrasound is the sound field pressure emitted by the ultrasonic probe 12
  • P bubble is the pressure generated by cavitation nucleus (micro bubble) resonance, that is, the actual cavitation intensity data
  • P cal is the all The total pressure data
  • P water is the liquid pressure data.
  • the principle of the above derivation formula is that the actual cavitation intensity data P bubble has a strong correlation with the parameters affecting the sound field pressure P ultrasound , especially with the sparse pressure peak (PRP, Peak Rarefactional Pressure), pulse repetition frequency (PRF, Pulse Repetition Frequency), and pulse duration (PD, Pulse Duration), so it can be considered that there is a corresponding relationship between the cavitation intensity data P bubble and the sound field pressure P ultrasound , and the sound field pressure P ultrasound can be converted into the cavitation intensity data P
  • the parameters of the bubble can also define an equivalent cavitation intensity data P final to represent the current cavitation intensity.
  • the first test point will be simultaneously affected by the liquid pressure P water , the actual cavitation intensity P bubble and the sound field pressure P ultrasound during operation, that is, it will be affected by the liquid pressure P water and the equivalent cavitation intensity
  • the combined effect of the data P final constitutes the total pressure P cal detected by the ultrasonic probe 12 .
  • the above relational formula can be used to simply calculate the cavitation intensity data that can represent the cavitation intensity, that is, the equivalent cavitation intensity data.
  • step 2213 and step 2214 can be split into two stages.
  • the ultrasonic probe 12 No cavitation is applied to the water body, and only the liquid pressure P water of the first test point is measured.
  • the ultrasonic probe 12 applies cavitation to the water body, and the total pressure data P of the first test point is measured cal , so that the data measured in the two stages are used to make a difference, and the equivalent cavitation intensity data representing the cavitation effect is obtained.
  • the present invention simply calls the cavitation intensity data for comparison, and then determines the cavitation output parameters. In fact, using the original (equivalent) cavitation intensity data is enough to achieve the purpose of the invention. Further, in order to improve the display quality of the cavitation intensity distribution diagram, the third embodiment of this embodiment provides a technical solution for generating the cavitation intensity distribution diagram by mapping the pseudo-color data from the grayscale data, as shown in FIG. 6 , Specifically include:
  • Step 21 outputting at least two sets of cavitation trigger signals with at least two sets of preset cavitation output parameters
  • Step 221 analyzing and obtaining at least two sets of radio frequency data corresponding to at least two sets of cavitation trigger signals, and calculating corresponding cavitation intensity data;
  • Step 2221 traversing all cavitation intensity data to obtain maximum intensity data and minimum intensity data
  • Step 2222 according to the maximum intensity data, the minimum intensity data and the cavitation intensity data, calculate the grayscale data corresponding to the cavitation intensity data;
  • Step 2223 according to the grayscale data and the RGB mapping curve, map to obtain the pseudo-color data corresponding to the grayscale data, and generate a cavitation intensity distribution map according to the pseudo-color data;
  • Step 31 receiving the detection frame selection signal, analyzing the detection frame position, and obtaining the marker position;
  • Step 32 retrieve the cavitation intensity data at the marked position in the preset intensity distribution atlas set, and filter the cavitation intensity distribution diagram with the largest cavitation intensity data to obtain the optimal intensity distribution diagram;
  • Step 33 extracting the cavitation output parameters corresponding to the optimal intensity distribution graph, obtaining the optimal output parameters and outputting them.
  • the grayscale data satisfies: x is the cavitation intensity data, g is the pseudo-color data corresponding to the cavitation intensity data, x max is the maximum intensity data, and x min is the minimum intensity data.
  • the cavitation intensity data with a large data range can be first mapped to the grayscale data in the range of 0 to 255, and then the grayscale data can be mapped to pseudo-color data by means of table lookup or curve mapping, and finally according to the current space Generate a cavitation intensity distribution map for all the pseudo-color data corresponding to the output parameters.
  • the cavitation intensity data will not be lost during the process of mapping and generating the cavitation intensity distribution map, or set an independent step before step 32 to convert the false color data
  • the grayscale data is re-converted into cavitation intensity data, or the retrieved cavitation intensity data in step 32 is changed to retrieved grayscale data or retrieved pseudo-color data, all of which can achieve the desired technical effect.
  • the cavitation intensity distribution map generated by the above steps is displayed in color, the area with large cavitation intensity data value (strong cavitation effect) is displayed in dark red or red, and the area with small cavitation intensity data value (weak cavitation effect) It is shown as purple or blue-purple, and the areas in between are shown as yellow, green, etc.
  • FIG. 7 For the technical solution of using grayscale data instead of cavitation intensity data to perform retrieval and screening, another embodiment of the present invention provides an ultrasonic cavitation parameter adjustment method as shown in Figure 7, which specifically includes:
  • Step 21 outputting at least two sets of cavitation trigger signals with at least two sets of preset cavitation output parameters
  • Step 221 analyzing and obtaining at least two sets of radio frequency data corresponding to at least two sets of cavitation trigger signals, and calculating corresponding cavitation intensity data;
  • Step 2221 traversing all cavitation intensity data to obtain maximum intensity data and minimum intensity data
  • Step 2222 according to the maximum intensity data, the minimum intensity data and the cavitation intensity data, calculate the grayscale data corresponding to the cavitation intensity data;
  • Step 2223 according to the grayscale data and the RGB mapping curve, map to obtain the pseudo-color data corresponding to the grayscale data, and generate a cavitation intensity distribution map according to the pseudo-color data;
  • Step 31 receiving the detection frame selection signal, analyzing the detection frame position, and obtaining the marker position;
  • Step 321 retrieve and calculate the mean value of the gray data at the marked position of each cavitation intensity distribution map in the intensity distribution map set;
  • Step 322 screening the cavitation intensity distribution diagram with the largest gray data mean value to obtain the optimal intensity distribution diagram
  • Step 33 extracting the cavitation output parameters corresponding to the optimal intensity distribution graph, obtaining the optimal output parameters and outputting them.
  • the mean value of the gray data is used to represent the cavitation intensity data at the marked position.
  • the present invention provides another embodiment, which specifically includes the first embodiment as shown in Figure 8 and the second embodiment as shown in Figure 9 example.
  • Step 30 receiving an ultrasonic detection image
  • Step 31 receiving the detection frame selection signal, analyzing the detection frame position, and obtaining the marker position;
  • Step 32 retrieve the cavitation intensity data at the marked position in the preset intensity distribution atlas set, and filter the cavitation intensity distribution diagram with the largest cavitation intensity data to obtain the optimal intensity distribution diagram;
  • Step 33 extracting the cavitation output parameters corresponding to the optimal intensity distribution diagram, obtaining the optimal output parameters and outputting them;
  • Step 34 translucently superimposing the optimal intensity distribution diagram on the ultrasonic detection image, generating and outputting a cavitation display image.
  • Ultrasonic detection images are usually black and white images, and the optimal intensity distribution map that is processed into translucency and displayed as color is superimposed on the ultrasonic detection image, which can clearly show the current detection target and space.
  • the relationship between the distribution of cavitation intensity so that the operator understands the current situation of detection (or imaging) and cavitation application.
  • other methods can be used to generate a cavitation display image that can integrate the characteristics of both the optimal intensity distribution map and the ultrasonic detection image, and the expected technical effect can also be achieved.
  • step 30 and step 34 is also not limited, as long as step 30 is executed before step 34 and step 34 is executed after step 32, the expected technical effect can be achieved.
  • Step 30 receiving an ultrasonic detection image
  • Step 31 receiving the detection frame selection signal, analyzing the detection frame position, and obtaining the marker position;
  • Step 32 retrieving the cavitation intensity data at the marked position in the preset intensity distribution atlas, screening the cavitation intensity distribution diagram with the largest cavitation intensity data, and obtaining the optimal intensity distribution diagram;
  • Step 33 extracting the cavitation output parameters corresponding to the optimal intensity distribution diagram, obtaining the optimal output parameters and outputting them;
  • Step 341 selecting a region of interest in the ultrasonic testing image
  • Step 342 setting the optimal intensity distribution map to have a first weight, setting the region of interest to have a second weight, performing weighted mixing of the optimal intensity distribution map and the region of interest, generating a cavitation display image and outputting it.
  • the first weight and the second weight range from 0 to 1, and the sum of the first weight and the second weight is 1. In this way, by adjusting the values of the first weight and the second weight, the transparency of the optimal intensity distribution map can be adjusted, and the display effect of the cavitation display image can be changed.
  • the region of interest (ROI, Region of Interest) described here is applied in the field of image processing and machine vision, and is defined as a frame, circle, ellipse, etc. from the processed image (ultrasonic detection image in this embodiment) Outline the area that needs to be processed, often used in Halcon, OpenCV, Matlab and other software.
  • the ultrasonic detection image may be globally selected as the region of interest, or a detection frame or other regions input by the operator may be selected as the region of interest.
  • the ultrasonic detection image, the cavitation intensity distribution map, and the cavitation display image have the same size, preferably the same size as the display screen.
  • the order of the steps can be adjusted according to the needs of those skilled in the art without affecting the realization of the technical effect. It should be noted that the multiple ultrasonic cavitation parameter adjustment methods provided by the present invention cannot be viewed in isolation, and the steps of each embodiment or example can of course be combined and/or replaced, and the new embodiment thus generated should be included in the present invention within the scope of protection.
  • the ultrasonic cavitation parameter adjustment method selects the cavitation intensity distribution map corresponding to the largest cavitation intensity data by analyzing the cavitation intensity data at the marked position in the preset intensity distribution map set, and adjusts the output parameters as The optimal output parameters corresponding to the cavitation intensity distribution map, so that regardless of the position of the selected frame, the most suitable preset cavitation output parameters can be retrieved, avoiding manual adjustments by the operator, achieving improved efficiency and global automation , To ensure the best technical effect of output cavitation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声空化参数调整方法和执行该超声空化参数调整方法的超声空化装置,其中参数调整方法包括:接收检测框选定信号,分析检测框位置,得到标记位置;检索预设的强度分布图集中该标记位置的空化强度数据,筛选具有最大空化强度数据的空化强度分布图,得到最优强度分布图;提取该最优强度分布图对应的空化输出参数,得到最优输出参数并输出。

Description

超声空化参数调整方法和超声空化装置
本申请要求了申请日为2021年08月23日,申请号为202110970195.2,发明名称为“超声空化参数调整方法和超声空化装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及超声检测与超声成像技术领域,尤其涉及一种超声空化参数调整方法和超声空化装置。
背景技术
超声空化技术广泛应用于医疗或化学等领域,通过施加超声波能量使液体中的微小气泡振动并生长,直至达到一定能量阈值后,气泡发生急剧崩溃闭合,达到促成液体乳化、凝胶液化、固体分散,以及提升药物吸收能力的效果。在调整超声空化参数的过程中,现有技术提供的技术方案在于,通过示出当前声场下最强的MI值(Mechanical Index,机械指数)来辅助操作者人为地调节,但以上方案仅能对稳态空化和瞬态空化的控制起到参考作用,由于影响空化作用的参数繁多,且超声波声场的能量分布不均匀,操作者往往不能做到将超声空化参数手动地调节至最佳状态。
发明内容
本发明的目的之一在于提供一种超声空化参数调整方法,以解决现有技术中,空化参数调节效果差,无法根据操作者需要自动地适配最优参数的技术问题。
本发明的目的之一在于提供一种超声空化装置。
为实现上述发明目的之一,本发明一实施方式提供一种超声空化参数调整方法,包括:接收检测框选定信号,分析所述检测框位置,得到标记位置;检索预设的强度分布图集中所述标记位置的空化强度数据,筛选具有最大空化强度数据的空化强度分布图,得到最优强度分布图;提取所述最优强度分布图对应的空化输出参数,得到最优输出参数并输出。
作为本发明一实施方式的进一步改进,所述方法还包括:以至少两组预设空化输出参数输出至少两组空化触发信号;分析得到与所述至少两组空化触发信号对应的至少两组射频数据,根据所述射频数据分析得到至少两张空化强度分布图,建立强度分布图集。
作为本发明一实施方式的进一步改进,所述方法具体包括:根据所述射频数据,计 算得到对应的空化强度数据;分别对所述空化强度数据执行映射,得到伪彩数据,并根据所述伪彩数据生成空化强度分布图。
作为本发明一实施方式的进一步改进,所述方法具体包括:接收与所述空化触发信号对应的回波数据;对所述回波数据执行处理,对应得到射频数据;提取所述射频数据中的次谐波信号,计算得到二维扫描平面内至少第一测试点的总压强数据;根据所述第一测试点的总压强数据和所述第一测试点的液体压强数据,计算得到所述第一测试点的空化强度数据。
作为本发明一实施方式的进一步改进,所述空化强度数据为所述总压强数据和所述液体压强数据的差。
作为本发明一实施方式的进一步改进,所述方法具体包括:遍历所有所述空化强度数据,得到最大强度数据和最小强度数据;根据所述最大强度数据、所述最小强度数据和所述空化强度数据,计算得到与所述空化强度数据对应的灰度数据;根据所述灰度数据和RGB映射曲线,映射得到所述灰度数据对应的伪彩数据,并根据所述伪彩数据生成空化强度分布图;其中,所述灰度数据满足:
Figure PCTCN2022097141-appb-000001
x为所述空化强度数据,g为所述空化强度数据对应的所述伪彩数据,x max为所述最大强度数据,x min为所述最小强度数据。
作为本发明一实施方式的进一步改进,所述方法具体包括:检索并计算所述强度分布图集中,每张空化强度分布图在所述标记位置处的灰度数据均值;筛选具有最大灰度数据均值的空化强度分布图,得到最优强度分布图;其中,所述灰度数据均值用以表征所述标记位置处的所述空化强度。
作为本发明一实施方式的进一步改进,所述方法还包括:接收超声检测图像;以及,将所述最优强度分布图半透明叠加于所述超声检测图像之上,生成空化显示图像并输出。
作为本发明一实施方式的进一步改进,所述方法具体包括:在所述超声检测图像中选定感兴趣区域;设定所述最优强度分布图具有第一权重,设定所述感兴趣区域具有第二权重,将所述最优强度分布图和所述感兴趣区域进行加权混合,生成空化显示图像并输出;其中所述第一权重和所述第二权重取值范围为0至1,且所述第一权重和所述第二权重之和为1。
为实现上述发明目的之一,本发明一实施方式提供一种超声空化装置,包括主控模块、超声探头、图像处理模块、存储模块和参数设定模块,所述超声空化装置执行上述任一种技术方案所述的超声空化参数调整方法进行参数调整。
与现有技术相比,本发明提供的超声空化参数调整方法,通过分析预设强度分布图集中标记位置的空化强度数据,选取最大的空化强度数据对应的空化强度分布图,并调整输出参数为该空化强度分布图对应的最优输出参数,如此不管选定框位置如何,均能够检索得到最合适的预设空化输出参数,规避操作者的人为调节,达到了提升效率、实现全局自动化、保证输出空化作用最优的技术效果。
附图说明
图1是本发明一实施方式中超声空化装置的结构原理图;
图2是本发明一实施方式中超声空化参数调整方法的步骤原理图;
图3是本发明另一实施方式中超声空化参数调整方法的步骤原理图;
图4是本发明另一实施方式中超声空化参数调整方法的第一实施例的空化强度分布图预设过程的步骤原理图;
图5是本发明另一实施方式中超声空化参数调整方法的第二实施例的步骤221的步骤原理图;
图6是本发明另一实施方式中超声空化参数调整方法的第三实施例的步骤222的步骤原理图;
图7是本发明再一实施方式中超声空化参数调整方法的步骤原理图;
图8是本发明又一实施方式中超声空化参数调整方法的第一实施例的步骤原理图;
图9是本发明又一实施方式中超声空化参数调整方法的第二实施例的步骤原理图。
具体实施方式
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
需要说明的是,术语“包括”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
超声空化作用应用于医疗和化学领域,通过施加超声波能量,使空化核在声场作用下振动、生长并不断聚集能量,最终急剧崩溃闭合,从而提升目标病灶的药物吸收能力 以辅助治疗,或加速不同介质之间的混合以加速物理或化学反应。其中,空化核定义为生物体内存在的微米级及以下的小气泡,在本发明一实施方式中特指液体中存在的微小气泡。
超声空化装置通过超声探头施加超声波能量,综合考虑探头体积和目标环境等多方面因素,超声探头发射超声波形成的声场往往强度不均,导致超声探头扫查范围内,不同区域声场强度也即所述MI值(Mechanical Index,机械指数)不同,产生的空化效应也不同。如此,若始终以相同的参数建立声场,则会导致无法集中声场重点施加至待处理目标处,对治疗和反应的辅助作用极大减弱。
为此,本发明一实施方式提供一种超声空化装置,以解决现有技术中的问题,提升超声空化的辅助效果。如图1所示,超声空化装置包括主控模块11、超声探头12、图像处理模块13、存储模块14以及参数设定模块15,超声空化装置配置为执行超声空化参数调整方法进行参数调整,增强空化作用的效果。
具体地,主控模块11与外设的显示装置和操作装置连接,接收操作者通过操作装置在显示装置中选定的检测框,接收图像处理模块13分析得到的标记位置在存储模块14中执行检索,将检索到的符合条件的图像放入图像处理模块13中执行处理,提取得到对应参数后输出至参数设定模块15执行参数设定;在一些具体的实施方式中,主控模块11还可以进一步配置为执行输出空化触发信号、接收回波数据、接收射频数据、转发伪彩数据、接收并输出空化显示图像等步骤,此点可以根据本领域技术人员需要进行调整,本发明不在此进行限制。
值得注意地,在一种实施方式中,显示装置可以特指上位机或其他计算机的显示屏,操作装置可以特指计算机的主机、键鼠套装等装置,显示装置至少用于显示本发明涉及的、超声空化装置接收和输出的图像,操作装置至少用于输入检测框选定信号。
超声探头12连接主控模块11和参数设定模块15,在一种实施方式中配置为集成空化作用输出功能、空化作用反馈功能以及超声成像功能,当然其他实施方式中可以将上述功能分别设置于不同的装置中,此时,至少超声探头12中用于输出空化作用的部分被配置为连接参数设定模块15,且超声探头12中用于反馈空化作用和用于超声成像的部分被配置为连接主控模块11;进一步地,超声探头12至少配置为接受参数设定模块15的空化输出参数设定,输出空化作用,接收空化作用反馈的数据,在一种具体的实施方式中还可以配置为用于输出和接收用于成像的超声信号,此点可以根据本领域技术人员的需要进行调整。
图像处理模块13连接主控模块11,配置为分析并输出检测框在图像(或显示画面) 中的位置,分析并输出筛选后的空化强度分布图对应的空化输出参数;在一种实施方式中,还可以配置为执行根据反馈的数据计算得到空化强度分布图、建立并输出强度分布图集、生成并输出空化显示图像等步骤;当然图像处理模块13与主控模块11可以分体设置也可以集成设置,两个模块对应的功能同样可以配置为由其中另一承担。
存储模块14连接主控模块11,配置为接受主控模块11检索,存储强度分布图集,存储执行超声空化参数调整方法中涉及的数据和过程图像;所述参数设定模块15分别连接主控模块11和超声探头12,配置为接收和输出空化输出参数。
应当理解地,上述关于模块的说明均通过模块相互的功能进行区分,并不代表在本实施方式中,上述模块必然分体设置,或上述模块所执行的功能只能由对应模块唯一承担,本领域技术人员对模块和功能进行调整所产生的其他实施方式均在本发明的保护范围内。
在一种实施方式中,超声空化装置还可以具体包括依次连接的回波处理模块16、带通滤波器17以及数据处理模块18,回波处理模块16和数据处理模块18分别与主控模块11连接;其中,回波处理模块16配置为对主控模块11转发的回波数据执行处理得到射频数据,带通滤波器17配置为提取所述射频数据中的次谐波信号并输出,数据处理模块18配置为根据次谐波信号和/或射频数据计算空化强度数据,对空化强度数据执行映射得到并输出伪彩数据;当然上述模块并非实现本发明预期技术效果的必要技术特征,模块及功能配置可根据需要调整,上述涉及的数据和图像一些为过程数据内容,一些为最终输出的数据内容,输出的数据内容之前还可能包含其他过程数据内容,本领域技术人员当然也可以将过程数据内容作为输出。
为进一步实现发明预期的技术效果,本发明一实施方式提供一种超声空化参数调整方法,如图2所示,包括:
步骤31,接收检测框选定信号,分析检测框位置,得到标记位置;
步骤32,检索预设的强度分布图集中所述标记位置的空化强度数据,筛选具有最大空化强度数据的空化强度分布图,得到最优强度分布图;
步骤33,提取最优强度分布图对应的空化输出参数,得到最优输出参数并输出。
其中,检测框是操作者在显示画面中选定的区域,可以是具有一定面积的框体,也可以是点或点集等形式,显示画面在一种实施方式中定义为超声检测图像,操作者根据需要在超声检测图像上选定区域作为选定框,并生成相应的选定信号。分析检测框位置的过程可参考检测框的对角两点或几何中心的位置,可以在显示画面建立平面直角坐标系并以坐标形式表示位置,也可以在显示画面中设定参考点,以与参考点的相对位置确 定检测框的位置,此处根据本领域技术人员惯用手段形成的实施方式,均在本发明保护范围内。
执行上述过程生成的标记位置被存储,主控模块11以所述标记位置为参考检索强度分布图集中,每张空化强度分布图在标记位置处的空化强度数据。标记位置展现为具有面积的框体或点集时,在空化强度分布图中对所述面积区域进行扫查,求得平均或加权后的空化强度数据并进行比较;如若标记位置展现为单个点时,则定位空化强度分布图中对应位置,提取空化强度数据进行比较。
值得注意地,所述空化强度分布图在本实施方式中定义为,超声探头12在某一参数组合(也即空化输出参数)的设定下输出的空化作用在显示画面中的分布情况,通常情况下靠近超声探头12中心位置的空化强度较远离中心位置的空化强度更强,但在不同参数设定前提下,较强空化强度和较弱空化强度的区域分布情况和面积大小具有差异,本实施方式中,将配置在不同设定参数状态下生成的空化强度分布图预设在装置中,以供查询调用。所述强度分布图集在本实施方式中定义为,上述不同参数设定状态下的多张空化强度分布图形成的集合,具体形式可以根据本领域技术人员需要进行调整。
在此需要对空化强度数据和空化输出参数进行区分,空化强度数据是空化强度分布图中不同区域处的数据情况,用于表征空化强度分布图中该区域的空化强度;空化输出参数则是生成每张空化强度分布图的参数设定条件。空化输出参数与空化强度分布图对应,空化强度数据和空化强度分布图中某个区域对应。
上述强度分布图集可以是参考大数据进行前置运算得到的,也可以是利用本发明提供的超声空化装置执行探测和计算得到的,对于后一种情况,本发明另一种实施方式提供了一种超声空化参数调整方法,如图3所示,具体包括:
步骤21,以至少两组预设空化输出参数输出至少两组空化触发信号;
步骤22,分析得到与至少两组空化触发信号对应的至少两组射频数据,根据射频数据分析得到至少两张空化强度分布图,建立强度分布图集;
步骤31,接收检测框选定信号,分析检测框位置,得到标记位置;
步骤32,检索预设的强度分布图集中所述标记位置的空化强度数据,筛选具有最大空化强度数据的空化强度分布图,得到最优强度分布图;
步骤33,提取最优强度分布图对应的空化输出参数,得到最优输出参数并输出。
空化触发信号至少包含空化输出参数中影响空化作用效果的数据,例如发射频率、发射周期、声功率和PRF(Pulse Repetition Frequency,脉冲重复频率)等信息,两组空化输出参数及对应的空化触发信号之间,上述参数至少有一种存在差别,从而得到强度 分布情况不同的至少两张空化强度分布图。
空化作用的反馈形式在本实施方式中主要为射频信号,因而空化强度分布图在本实施方式中根据空化触发信号对应的射频数据分析并计算得到,在反馈形式具有其他实施方式的情况下,上述步骤21至步骤22当然可以对应调整,只要足以产生两张相互区别的空化强度分布图即可。此外,步骤21和步骤22与步骤31至步骤33的先后顺序可以进行调整,只要在执行步骤32之前对所述强度分布图集预设完毕,即可达到本发明预期的技术效果。
为了排除不必要的探测目标对空化作用的反馈信号(例如回波信号)的干扰,优选地,步骤21和步骤22可以配置为在区分于步骤31至步骤32的环境中执行,该环境在一种实施方式中被定义为注射有造影剂且不含气泡的纯净水环境,该环境可以在水槽中搭建。操作过程中,超声探头12的探测面(一种实施方式中为超声单元阵列)被设置为与水槽的水面平行且浸入水中。本领域技术人员当然可以采用其他技术手段,达到与上述技术方案相同的效果。
前文所述的空化强度分布图可以为简单的灰度图,通过灰度数据的大小表征空化强度的分布情况,但在该实施方式中,为了提升空化强度分布图的显示效果,进一步提供了如图4所示的第一实施例,具体包括:
步骤21,以至少两组预设空化输出参数输出至少两组空化触发信号;
步骤221,分析得到与至少两组空化触发信号对应的至少两组射频数据,计算得到对应的空化强度数据;
步骤222,分别对空化强度数据执行映射,得到伪彩数据,并根据所述伪彩数据生成空化强度分布图,并建立强度分布图集;
步骤31,接收检测框选定信号,分析检测框位置,得到标记位置;
步骤32,检索预设的强度分布图集中所述标记位置的空化强度数据,筛选具有最大空化强度数据的空化强度分布图,得到最优强度分布图;
步骤33,提取最优强度分布图对应的空化输出参数,得到最优输出参数并输出。
伪彩数据的映射过程为,以空化强度数据作为代码值,在CLUT(Color Look-Up Table,色彩查找表)中对应查找该空化强度数据对应的R、G、B强度值,进而执行映射。由于映射得到的伪彩数据仍然包含表征空化强度的空化强度数据,且人眼对色彩较灰度更为敏感,因此对应生成的空化强度分布图能够更为显著地表示空化强度的分布情况。得到的空化强度分布图或强度分布图集不仅可以存储于存储模块14中,当然也可以输出至显示装置进行显示。
空化触发信号输出至超声探头12,超声探头12对应执行空化作用并接收表征空化作用效果的回波信号,回波信号的收集是根据时间进程执行的,而空化强度分布图的建立需要深度和横向相对位置关系进行,关于如何将回波信号转化为可用于生成空化强度分布图的数据,可以具有多种实施方式,在该实施方式中进一步提供了关于上述过程的第二实施例,如图5所示,具体包括:
步骤21,以至少两组预设空化输出参数输出至少两组空化触发信号;
步骤2211,接收与空化触发信号对应的回波数据;
步骤2212,对回波数据执行处理,对应得到射频数据;
步骤2213,提取射频数据中的次谐波信号,计算得到二维扫描平面内至少第一测试点的总压强数据;
步骤2214,根据第一测试点的总压强数据和第一测试点的液体压强数据,计算得到第一测试点的空化强度数据;
步骤222,分别对空化强度数据执行映射,得到伪彩数据,并根据所述伪彩数据生成空化强度分布图,并建立强度分布图集;
步骤31,接收检测框选定信号,分析检测框位置,得到标记位置;
步骤32,检索预设的强度分布图集中所述标记位置的空化强度数据,筛选具有最大空化强度数据的空化强度分布图,得到最优强度分布图;
步骤33,提取最优强度分布图对应的空化输出参数,得到最优输出参数并输出。
回波数据处理得到射频数据的过程可以具有具体配置方式,在一种实施方式中可利用回波数据执行波束形成,以形成后的接收波束作为所述射频数据。射频数据通过带通滤波器17的提取得到次谐波信号,在静水环境下,次谐波信号与水体内压强具有极强的相关性,因而本实施方式利用次谐波信号的振幅变化情况,能够计算得到水体内至少第一测试点的总压强数据。
需要注意地,次谐波信号区分于一次谐波分量(the first harmonic component)或二次谐波分量(the second harmonic component),在本实施方式中特指次谐波分量(subharmonic component,或称亚谐波分量),其与压强的相关性更好,估算得出的总压强数据更为准确。
空化强度数据与总压强数据的关系式可以具有不同的实施方式,在本实施例中,设定空化强度数据为总压强数据和液体压强数据的差值,也即:
P final=P ultrasound+P bubble=P cal-P water
其中,P final为等效空化强度数据,P ultrasound为超声探头12发射的声场压强,P bubble为 空化核(微小气泡)共振产生的压强,也即实际空化强度数据,P cal为所述总压强数据,P water为所述液体压强数据。上述推导公式的原理在于,实际空化强度数据P bubble与影响声场压强P ultrasound的参数具有极强的相关性,特别是与稀疏压力峰值(PRP,Peak Rarefactional Pressure)、脉冲重复频率(PRF,Pulse Repetition Frequency),以及脉冲持续时间(PD,Pulse Duration),因此可以认为空化强度数据P bubble与声场压强P ultrasound之间具有对应关系,声场压强P ultrasound可以被换算为带有空化强度数据P bubble的参数,当然也可以定义一个等效空化强度数据P final来表征当前空化强度。
进一步地,至少第一测试点在操作过程中会同时受到液体压强P water、实际空化强度P bubble以及声场压强P ultrasound的共同作用,也即受到液体压强P water和所述等效空化强度数据P final的共同作用,从而构成超声探头12探测得到的总压强P cal。如此,利用上述关系式可以简单地利用减法运算计算得出可以表征空化强度的空化强度数据,也即所述等效空化强度数据。
此处需要说明地,对于液体压强P water,可以通过其他多种实施方式进行测量,当然在本实施方式中,步骤2213和步骤2214可以拆分成两个阶段,在第一阶段,超声探头12不对水体施加空化作用,仅测量所述第一测试点的液体压强P water,在第二阶段下,超声探头12对水体施加空化作用,测得所述第一测试点的总压强数据P cal,由此利用两阶段下分别测得的数据作差,得到表征空化作用的等效空化强度数据。
本发明单纯调用空化强度数据进行比较,进而确定空化输出参数,实际上利用原始的(等效)空化强度数据就足以实现发明目的。进一步地,该实施方式第三实施例为了提高空化强度分布图的显示质量,提供了一种由灰度数据映射伪彩数据以生成空化强度分布图的技术方案,如图6所示,具体包括:
步骤21,以至少两组预设空化输出参数输出至少两组空化触发信号;
步骤221,分析得到与至少两组空化触发信号对应的至少两组射频数据,计算得到对应的空化强度数据;
步骤2221,遍历所有空化强度数据,得到最大强度数据和最小强度数据;
步骤2222,根据最大强度数据、最小强度数据和空化强度数据,计算得到与空化强度数据对应的灰度数据;
步骤2223,根据灰度数据和RGB映射曲线,映射得到灰度数据对应的伪彩数据,并根据伪彩数据生成空化强度分布图;
步骤31,接收检测框选定信号,分析检测框位置,得到标记位置;
步骤32,检索预设的强度分布图集中所述标记位置的空化强度数据,筛选具有最大空化强度数据的空化强度分布图,得到最优强度分布图;
步骤33,提取最优强度分布图对应的空化输出参数,得到最优输出参数并输出。
其中,灰度数据满足:
Figure PCTCN2022097141-appb-000002
x为所述空化强度数据,g为所述空化强度数据对应的所述伪彩数据,x max为所述最大强度数据,x min为所述最小强度数据。如此可以将数据范围大的空化强度数据首先映射到数据量为0至255范围内生成灰度数据,然后利用查表或曲线映射等方式将灰度数据映射为伪彩数据,最终根据当前空化输出参数对应的所有伪彩数据生成一张空化强度分布图。
当然由于后续步骤需要查找空化强度分布图中的空化强度数据情况,因此映射生成空化强度分布图的过程并不丢失空化强度数据,或在步骤32之前设置独立的步骤将伪彩数据或灰度数据重新转换为空化强度数据,或变更步骤32中检索空化强度数据为检索灰度数据或检索伪彩数据,均能够达到预期技术效果。
经过上述步骤生成的空化强度分布图显示为彩色,空化强度数据值大(空化作用强)的区域被显示为深红色或红色,空化强度数据值小(空化作用弱)的区域被显示为紫色或蓝紫色,介于强弱之间的区域显示为黄色、绿色等颜色。
当然由均匀分布的数据映射形成伪彩数据并进一步生成伪彩图像,还存在多种可替换的实施方式,本领域技术人员可以替换地实施于本发明提供的技术方案中。
针对利用灰度数据代替空化强度数据执行检索和筛选的技术方案,本发明再一实施方式中提供了如图7所示的超声空化参数调整方法,具体包括:
步骤21,以至少两组预设空化输出参数输出至少两组空化触发信号;
步骤221,分析得到与至少两组空化触发信号对应的至少两组射频数据,计算得到对应的空化强度数据;
步骤2221,遍历所有空化强度数据,得到最大强度数据和最小强度数据;
步骤2222,根据最大强度数据、最小强度数据和空化强度数据,计算得到与空化强度数据对应的灰度数据;
步骤2223,根据灰度数据和RGB映射曲线,映射得到灰度数据对应的伪彩数据,并根据伪彩数据生成空化强度分布图;
步骤31,接收检测框选定信号,分析检测框位置,得到标记位置;
步骤321,检索并计算强度分布图集中,每张空化强度分布图在标记位置处的灰度数据均值;
步骤322,筛选具有最大灰度数据均值的空化强度分布图,得到最优强度分布图;
步骤33,提取最优强度分布图对应的空化输出参数,得到最优输出参数并输出。
其中,灰度数据均值用以表征标记位置处的空化强度数据。
需要说明地,一方面,取均值只是本发明其中一个实施方式中提供的方案,在其他实施方式中还可以执行加权融合等算法实现预期技术效果;另一方面,细化的步骤321和步骤322只需要根据空化强度数据计算得到的灰度数据即可执行,因此步骤2223的伪彩映射过程并非本实施方式的必要技术特征。
在显示画面定义为超声检测图像这一特殊的工作条件下,本发明提供又一实施方式,该实施方式具体包括如图8所示的第一实施例,以及如图9所示的第二实施例。
该实施方式的第一实施例提供的超声空化参数调整方法,具体包括:
步骤30,接收超声检测图像;
步骤31,接收检测框选定信号,分析检测框位置,得到标记位置;
步骤32,检索预设的强度分布图集中所述标记位置的空化强度数据,筛选具有最大空化强度数据的空化强度分布图,得到最优强度分布图;
步骤33,提取最优强度分布图对应的空化输出参数,得到最优输出参数并输出;
步骤34,将最优强度分布图半透明叠加于超声检测图像之上,生成空化显示图像并输出。
超声检测图像,特别是B型超声检测图像通常是黑白色的图像,将处理成半透明且显示为彩色的最优强度分布图叠加于超声检测图像之上,可以清楚地表现当前探测目标与空化强度分布之间的关系,以使操作者了解当前探测(或称成像)和空化作用施加的情况。当然,采用其他方式生成能够融合最优强度分布图和超声检测图像两者特征的空化显示图像,同样可以达到预期技术效果。
此外,步骤30和步骤34的先后顺序同样不做限制,只要满足步骤30在步骤34之前执行,步骤34在步骤32之后执行即可实现预期技术效果。
该实施方式的第二实施例提供的超声空化参数调整方法,具体包括:
步骤30,接收超声检测图像;
步骤31,接收检测框选定信号,分析检测框位置,得到标记位置;
步骤32,检索预设的强度分布图集中所述标记位置的空化强度数据,筛选具有最大 空化强度数据的空化强度分布图,得到最优强度分布图;
步骤33,提取最优强度分布图对应的空化输出参数,得到最优输出参数并输出;
步骤341,在超声检测图像中选定感兴趣区域;
步骤342,设定最优强度分布图具有第一权重,设定感兴趣区域具有第二权重,将最优强度分布图和感兴趣区域进行加权混合,生成空化显示图像并输出。
其中,第一权重和第二权重取值范围为0至1,且第一权重和第二权重之和为1。如此,可以通过调整第一权重和第二权重的数值,调整最优强度分布图的透明度,改变空化显示图像的显示效果。
此处所述感兴趣区域(ROI,Region of Interest)应用在图像处理和机器视觉领域中,定义为从被处理的图像(本实施方式中的超声检测图像)以方框、圆、椭圆等方式勾勒出需要处理的区域,常应用于Halcon、OpenCV、Matlab等软件中。在一具体实施方式中,可以将超声检测图像全局选定为感兴趣区域,也可以将检测框或其他操作者输入的区域选定为感兴趣区域。在另一具体实施方式中,超声检测图像、空化强度分布图、空化显示图像具有相同的尺寸,优选地与所述显示画面尺寸相同。
此外,对于本发明提供的超声空化参数调整方法对应的多种实施方式和实施例,其步骤的先后顺序可以根据本领域技术人员需要、在不影响实现技术效果的前提下进行调整,同时需要注意地,不能孤立的看待本发明提供的多个超声空化参数调整方法,每个实施方式或实施例的步骤当然可以进行组合和/或替换,如此产生的新的实施方式应包含在本发明的保护范围内。
综上,本发明提供的超声空化参数调整方法,通过分析预设强度分布图集中标记位置的空化强度数据,选取最大的空化强度数据对应的空化强度分布图,并调整输出参数为该空化强度分布图对应的最优输出参数,如此不管选定框位置如何,均能够检索得到最合适的预设空化输出参数,规避操作者的人为调节,达到了提升效率、实现全局自动化、保证输出空化作用最优的技术效果。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种超声空化参数调整方法,其特征在于,包括:
    接收检测框选定信号,分析所述检测框位置,得到标记位置;
    检索预设的强度分布图集中所述标记位置的空化强度数据,筛选具有最大空化强度数据的空化强度分布图,得到最优强度分布图;
    提取所述最优强度分布图对应的空化输出参数,得到最优输出参数并输出。
  2. 根据权利要求1所述的超声空化参数调整方法,其特征在于,所述方法还包括:
    以至少两组预设空化输出参数输出至少两组空化触发信号;
    分析得到与所述至少两组空化触发信号对应的至少两组射频数据,根据所述射频数据分析得到至少两张空化强度分布图,建立强度分布图集。
  3. 根据权利要求2所述的超声空化参数调整方法,其特征在于,所述方法具体包括:
    根据所述射频数据,计算得到对应的空化强度数据;
    分别对所述空化强度数据执行映射,得到伪彩数据,并根据所述伪彩数据生成空化强度分布图。
  4. 根据权利要求3所述的超声空化参数调整方法,其特征在于,所述方法具体包括:
    接收与所述空化触发信号对应的回波数据;
    对所述回波数据执行处理,对应得到射频数据;
    提取所述射频数据中的次谐波信号,计算得到二维扫描平面内至少第一测试点的总压强数据;
    根据所述第一测试点的总压强数据和所述第一测试点的液体压强数据,计算得到所述第一测试点的空化强度数据。
  5. 根据权利要求4所述的超声空化参数调整方法,其特征在于,所述空化强度数据为所述总压强数据和所述液体压强数据的差。
  6. 根据权利要求3所述的超声空化参数调整方法,其特征在于,所述方法具体包括:
    遍历所有所述空化强度数据,得到最大强度数据和最小强度数据;
    根据所述最大强度数据、所述最小强度数据和所述空化强度数据,计算得到与所述空化强度数据对应的灰度数据;
    根据所述灰度数据和RGB映射曲线,映射得到所述灰度数据对应的伪彩数据,并根据所述伪彩数据生成空化强度分布图;其中,所述灰度数据满足:
    Figure PCTCN2022097141-appb-100001
    x为所述空化强度数据,g为所述空化强度数据对应的所述伪彩数据,x max为所述最大强度数据,x min为所述最小强度数据。
  7. 根据权利要求6所述的超声空化参数调整方法,其特征在于,所述方法具体包括:
    检索并计算所述强度分布图集中,每张空化强度分布图在所述标记位置处的灰度数据均值;
    筛选具有最大灰度数据均值的空化强度分布图,得到最优强度分布图;其中,所述灰度数据均值用以表征所述标记位置处的所述空化强度。
  8. 根据权利要求1所述的超声空化参数调整方法,其特征在于,所述方法还包括:
    接收超声检测图像;以及,
    将所述最优强度分布图半透明叠加于所述超声检测图像之上,生成空化显示图像并输出。
  9. 根据权利要求8所述的超声空化参数调整方法,其特征在于,所述方法具体包括:
    在所述超声检测图像中选定感兴趣区域;
    设定所述最优强度分布图具有第一权重,设定所述感兴趣区域具有第二权重,将所述最优强度分布图和所述感兴趣区域进行加权混合,生成空化显示图像并输出;其中所述第一权重和所述第二权重取值范围为0至1,且所述第一权重和所述第二权重之和为1。
  10. 一种超声空化装置,其特征在于,包括主控模块、超声探头、图像处理模块、存储模块和参数设定模块,所述超声空化装置执行权利要求1-9任一项所述的超声空化参数调整方法进行参数调整。
PCT/CN2022/097141 2021-08-23 2022-06-06 超声空化参数调整方法和超声空化装置 WO2023024639A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110970195.2 2021-08-23
CN202110970195.2A CN113663622B (zh) 2021-08-23 2021-08-23 超声空化参数调整方法和超声空化装置

Publications (1)

Publication Number Publication Date
WO2023024639A1 true WO2023024639A1 (zh) 2023-03-02

Family

ID=78545189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097141 WO2023024639A1 (zh) 2021-08-23 2022-06-06 超声空化参数调整方法和超声空化装置

Country Status (2)

Country Link
CN (1) CN113663622B (zh)
WO (1) WO2023024639A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117038530A (zh) * 2023-10-07 2023-11-10 东莞市楷德精密机械有限公司 一种半导体清洗设备的智能控制方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113663622B (zh) * 2021-08-23 2022-12-23 飞依诺科技股份有限公司 超声空化参数调整方法和超声空化装置
CN114813037B (zh) * 2022-04-21 2023-06-20 中国船舶科学研究中心 一种空化流动结构频率分布特征分析方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249367A (zh) * 2011-04-02 2011-11-23 河海大学常州校区 水处理中超声声强检测与控制方法
CN103235041A (zh) * 2013-04-26 2013-08-07 西安交通大学 基于超声主动空化成像的空化起始阈值分布重建方法
US20150141734A1 (en) * 2012-03-08 2015-05-21 (Inserm) Institut National De La Sante Et De La Re Cherche Medicale Method for determining optimized parameters of a device generating a plurality of ultrasound beams focused in a region of interest
CN105496455A (zh) * 2015-12-10 2016-04-20 飞依诺科技(苏州)有限公司 一种超声空化强度的调节方法和装置
CN108827876A (zh) * 2018-04-03 2018-11-16 中国科学院声学研究所 一种空化云空化强度的测量方法
CN111220700A (zh) * 2019-12-09 2020-06-02 中北大学 超声空化泡运动矢量估计方法
CN113663622A (zh) * 2021-08-23 2021-11-19 飞依诺科技(苏州)有限公司 超声空化参数调整方法和超声空化装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004112093A2 (en) * 2003-06-06 2004-12-23 P.C.T. Systems, Inc. Method and apparatus to process substrates with megasonic energy
JP2015185813A (ja) * 2014-03-26 2015-10-22 株式会社Screenホールディングス 基板洗浄方法および基板洗浄装置
CN104215581B (zh) * 2014-07-30 2017-08-25 中国科学院声学研究所 一种检测超声空化强度的装置及方法
CN105548006B (zh) * 2015-11-27 2019-07-16 西安科技大学 一种检测超声空化强度的系统
CN106950832B (zh) * 2017-03-08 2020-01-31 杭州电子科技大学 一种利用空化强度反馈的超声分散控制装置
CN113040814B (zh) * 2021-03-11 2023-12-22 飞依诺科技股份有限公司 超声微泡空化设备的成像处理方法及成像处理系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102249367A (zh) * 2011-04-02 2011-11-23 河海大学常州校区 水处理中超声声强检测与控制方法
US20150141734A1 (en) * 2012-03-08 2015-05-21 (Inserm) Institut National De La Sante Et De La Re Cherche Medicale Method for determining optimized parameters of a device generating a plurality of ultrasound beams focused in a region of interest
CN103235041A (zh) * 2013-04-26 2013-08-07 西安交通大学 基于超声主动空化成像的空化起始阈值分布重建方法
CN105496455A (zh) * 2015-12-10 2016-04-20 飞依诺科技(苏州)有限公司 一种超声空化强度的调节方法和装置
CN108827876A (zh) * 2018-04-03 2018-11-16 中国科学院声学研究所 一种空化云空化强度的测量方法
CN111220700A (zh) * 2019-12-09 2020-06-02 中北大学 超声空化泡运动矢量估计方法
CN113663622A (zh) * 2021-08-23 2021-11-19 飞依诺科技(苏州)有限公司 超声空化参数调整方法和超声空化装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117038530A (zh) * 2023-10-07 2023-11-10 东莞市楷德精密机械有限公司 一种半导体清洗设备的智能控制方法及系统
CN117038530B (zh) * 2023-10-07 2024-01-16 东莞市楷德精密机械有限公司 一种半导体清洗设备的智能控制方法及系统

Also Published As

Publication number Publication date
CN113663622A (zh) 2021-11-19
CN113663622B (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2023024639A1 (zh) 超声空化参数调整方法和超声空化装置
US20220354467A1 (en) Methods and apparatus for configuring an ultrasound system with imaging parameter values
CN1762307A (zh) 超声波诊断装置和超声波诊断方法
JPH11290318A (ja) 超音波診断装置
US20210369241A1 (en) Imaging system and method with live examination completeness monitor
CN1768709A (zh) 超声波多普勒测量装置及其控制方法
CN110325119A (zh) 卵巢卵泡计数和大小确定
JP2007313294A (ja) 超音波診断装置、及び超音波診断装置の制御プログラム
JP2007152111A (ja) スペクトルドプラ利得を自動調整するための方法及び装置
JP4831539B2 (ja) C面ボリューム複合イメージングのための方法及び装置
US11782146B2 (en) Automatic time gain compensation (TGC) in ultrasound imaging
JP6733445B2 (ja) 超音波診断装置、超音波画像生成方法及びプログラム
JP4831538B2 (ja) 多数の強調画像を提示する方法
US20230119063A1 (en) Methods and Systems for Evaluating Echo Data Contemporaneous with an Electrodiagnostic Study
WO2020086815A1 (en) Methods and apparatuses for ultrasound imaging using different image formats
CN111714157A (zh) 一种多普勒超声血流自动识别方法及装置
US10716545B2 (en) Ultrasound system for imaging and protecting ophthalmic or other sensitive tissues
CN113509209A (zh) 一种眼科超声成像方法及装置
CN108354629A (zh) 超音波成像方法
WO2021061971A1 (en) Methods and apparatus for configuring an ultrasound system with imaging parameter values
KR101097578B1 (ko) 3차원 컬러 도플러 영상 제공 방법 및 그를 위한 초음파 시스템
CN108230250A (zh) 超声图像对比度优化系统及方法
US20170000463A1 (en) Ultrasonic diagnostic apparatus
JP2018086075A (ja) 超音波画像処理装置
JP2005245503A (ja) 超音波診断装置、画像表示装置及び画像表示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22859986

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022859986

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022859986

Country of ref document: EP

Effective date: 20240325