WO2023024261A1 - 一种三维无线磁性机器人及控制方法 - Google Patents

一种三维无线磁性机器人及控制方法 Download PDF

Info

Publication number
WO2023024261A1
WO2023024261A1 PCT/CN2021/128182 CN2021128182W WO2023024261A1 WO 2023024261 A1 WO2023024261 A1 WO 2023024261A1 CN 2021128182 W CN2021128182 W CN 2021128182W WO 2023024261 A1 WO2023024261 A1 WO 2023024261A1
Authority
WO
WIPO (PCT)
Prior art keywords
gripper
magnetic
robot
magnetic powder
head
Prior art date
Application number
PCT/CN2021/128182
Other languages
English (en)
French (fr)
Inventor
韩冬
曹青
卢方
刘毅
张亚坤
龚国芳
杨华勇
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2023024261A1 publication Critical patent/WO2023024261A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors

Definitions

  • the invention relates to a magnetic robot, in particular to a three-dimensional wireless magnetic robot and a control method.
  • micro-medical robot technology is undoubtedly the choice with the most application potential. Steering and navigating in all directions to remove blood clots and deliver drugs in a targeted manner.
  • Common is a two-dimensional microgripper based on magnetic hydrogels that can be manipulated wirelessly using magnetic fields.
  • the device can move freely in liquids driven by a DC magnetic field and perform grasping motions by an AC magnetic field.
  • it is also a popular practice in recent years to prepare micro-robots by combining magnetic particles and special materials that are sensitive to temperature and pH (pH).
  • the robot can achieve simple translation on a straight path by an external magnetic field, and the grasping motion can be triggered by solution pH changes or temperature changes.
  • micro-robots used for thrombus removal do not have the function of drug delivery, or the micro-robots used for drug delivery do not have the function of thrombus removal, and the combination of the two cannot be achieved, which brings great benefits to the follow-up wound treatment of blood vessel thrombus removal. Great inconvenience is caused, and operation efficiency and safety are reduced.
  • the three-dimensional wireless magnetic robot adopted in the present invention can just solve the above-mentioned difficult problems.
  • the present invention is a three-dimensional octopus-shaped micro-robot, which consists of a movable magnet as a rigid head and four gripping magnets as a flexible gripper.
  • the grippers are staggered to form a larger shearing force when grasping, so as to solve the problems of unreliable grasping and low efficiency of thrombus removal.
  • a closed space will be formed, and the drug will be wrapped inside the gripper, so as to realize the combination of thrombus removal and drug delivery.
  • the microrobot is a flexible structure, it can reduce the risk of blood vessel rupture and sudden closure.
  • the present invention can realize accurate, complex, fast and independent movement or manipulation (including translation in straight path or curved path, Rotation and Grasp), which can be used as a minimally invasive tool to efficiently remove blood clots from cerebral blood vessels.
  • the present invention provides the following technical solutions:
  • a three-dimensional wireless magnetic robot :
  • the present invention includes a rigid head and a flexible gripper.
  • the top of the rigid head is fixed with a flexible gripper; the outer surface and inside of the rigid head are fixedly distributed with first magnetic powder, and one end surface of the rigid head is provided with a concave hole as a mounting hole.
  • the flexible gripper includes two outer grippers, two inner grippers and a flexible base.
  • the flexible base is embedded in the installation hole, and the outer gripper and inner gripper
  • the main body is in the shape of a sheet, and the roots of the outer gripper and the inner gripper are fixed on the end surface of the flexible base.
  • the two inner grippers are arranged at symmetrical intervals, and there are gaps between the two sides of the two inner grippers to form two gaps.
  • the two outer grippers are located outside the two inner grippers, and they are arranged to cover the two gaps between the two inner grippers.
  • the outer grippers and the inner grippers overlap each other, and the two outer grippers and Drugs are placed in the relatively closed space surrounded by the two inner grippers; the outer edges of the heads of the outer gripper and the inner gripper overlap and cover each other.
  • the heads of the outer gripper and the inner gripper are both Flexibly bend towards the center, and the outer gripper and the inner gripper also overlap and cover each other at the bend toward the center, so that the heads of the outer gripper and the inner gripper form a seal to wrap the drug, so that the flexible gripper forms a closed state;
  • the outer The outer surface and inside of the gripper and the inner gripper are fixedly distributed with the second magnetic powder, so that the outer gripper cooperates with the inner gripper to realize a fully closed structure, and the inside of the flexible gripper is wrapped with therapeutic drugs.
  • the main bodies of the outer gripper and the inner gripper are in the shape of a circular arc-shaped sheet, and the roots of the two inner grippers are symmetrically arranged on both sides of the flexible base along the circumferential interval and have the same center of circle.
  • the two outer grippers The claws are symmetrically arranged on both sides of the flexible base around the outer periphery of the two inner grippers and have the same center of circle, and the two outer grippers cover two gaps between the two inner grippers.
  • the rigid head is mainly made of rigid polymer and first magnetic powder
  • the flexible grip is mainly made of soft polymer and second magnetic powder, so the rigid head has rigidity, and the flexible grip has flexibility.
  • the first magnetic powder and the second magnetic powder are magnetizable NdFeB NdFeB particles, and the magnetizable NdFeB NdFeB particles have relatively large remanence, which can form a relatively large shearing force to remove thrombus.
  • the first magnetic powder is evenly distributed on the outer surface and inside of the rigid head
  • the second magnetic powder is evenly distributed on the outer surface and inner part of the outer gripper head
  • the second magnetic powder is evenly distributed on the outer surface and inner part of the outer gripper body.
  • the head of the inner gripper is provided with a fan-shaped cutout
  • the second magnetic powder is evenly distributed on the outer surface and inside of the fan-shaped cutout at the head of the inner gripper
  • the second magnetic powder is not fan-shaped in the inner gripper.
  • uniformly distributed on the outer surface and inside of the head of the notch part and the second magnetic powder is evenly distributed on the outer surface and inside of the body of the inner gripper;
  • the uniform distribution density of the first magnetic powder on the rigid head is higher than the uniform distribution density of the second magnetic powder at the fan-shaped cutout of the inner gripper head, and the uniform distribution density of the second magnetic powder at the fan-shaped cutout of the inner gripper head is higher than that of the second magnetic powder.
  • the density of the uniform distribution of the second magnetic powder on the head of the inner grip claw except for the fan-shaped cut part is high, and the uniform distribution density of the second magnetic powder on the head of the inner grip claw except for the fan-shaped cut part is the same as that of the second magnetic powder on the head of the outer grip claw.
  • the uniform distribution density of the second magnetic powder on the head of the inner grip claw except the fan-shaped cut part is larger than the uniform distribution density of the second magnetic powder inner grip claw body, and the uniform distribution density of the second magnetic powder inner grip claw body is the same as
  • the density of the second magnetic powder evenly distributed on the body of the outer gripper is the same, so the rigid head has strong magnetic properties, the fan-shaped cutout on the head of the inner gripper has stronger magnetic properties, and the flexible gripper has weaker magnetic properties except for the fan-shaped cutout. Magnetic properties, the body of the flexible grip has weak magnetic properties.
  • the first magnetic powder and the second magnetic powder are pre-magnetized and magnetized when the robot is in an unfolded state, and the magnetization directions of all the first magnetic powders on the surface and inside of the rigid head are set along the tangential direction on the surface of the rigid head where they are located. And the tangent direction is toward the head of the flexible gripper; the magnetization directions of all the second magnetic powders are set along the tangent direction at the surface and inside of the flexible gripper where they are located, and the tangent direction is toward the head of the flexible gripper.
  • the control method of the robot includes the following steps: putting the drug sealed package into the space surrounded by the outer gripper and the inner gripper of the robot in normal operation; transporting the robot to the fluid environment, in the specific implementation , the fluid environment can be a human heart vessel, but not limited thereto; a magnetic field is applied in the fluid environment, and the magnetic field is magnetically matched with the first magnetic powder of the rigid head in the robot and the second magnetic powder of the flexible gripper in the robot, and then the robot is controlled In the movement in the fluid environment, the robot delivers the drug in a fully packaged state.
  • the external magnetic field By changing the external magnetic field, the movement, rotation and opening of the flexible gripper of the robot are realized, so as to achieve the effect of drug delivery, approaching the thrombus in the blood vessel and removing the thrombus;
  • the robot rotates, apply a uniform weak magnetic field along the forward direction of the robot, and the field strength of the uniform weak magnetic field remains unchanged along the forward direction of the robot;
  • the rigid head rotates;
  • the restoring force of the flexible grip is set as a critical value.
  • the restoring force of the flexible grip refers to the elastic force that the heads of the outer grip and the inner grip remain in a flexible bending state toward the center, and the flexible grip
  • the magnetic force of the uniform weak magnetic field on the second magnetic powder is less than the critical value, because the magnetic force applied to the second magnetic powder of the flexible grip by the uniform weak magnetic field is less than the restoring force of the flexible grip, so that the flexible grip is closed and maintained; by The robot rotates along the forward direction of the robot under the action of a uniform weak magnetic field;
  • a linear gradient magnetic field is applied along the forward direction of the robot, and the field strength of the linear gradient magnetic field increases gradually along the forward direction of the robot; the forward direction of the robot is aligned with the magnetization direction of the first magnetic powder and the second magnetic powder, so that the control The rigid head does not rotate; the restoring force of the flexible gripper is set as the critical value, and the magnetic force of the linear gradient magnetic field on the second magnetic powder everywhere in the flexible gripper is less than the critical value, because the linear gradient magnetic field is applied to the second magnetic particle of the flexible gripper.
  • the magnetic force on it is smaller than the restoring force of the flexible gripper, so that the flexible gripper is in a closed state and maintained; thus, the robot moves in a straight line along the forward direction of the robot under the action of the linear gradient magnetic field;
  • Both the uniform strong magnetic field and the uniform weak magnetic field are realized by Helmholtz coils, the magnetic force generated by the uniform strong magnetic field is higher than the magnetic force generated by the uniform weak magnetic field, and the linear gradient magnetic field is realized by Maxwell coils.
  • All the second magnetic powders on the outer surface and inside of the flexible gripper are subjected to the magnetic force exerted by a uniform strong magnetic field, and the magnetic force of the uniform strong magnetic field is greater than a critical value, so that the magnetization directions of all the second magnetic powders are consistent and uniform.
  • the tendency of the magnetic field directions of the strong magnetic field to align makes the head of the flexible gripper unfold.
  • the outer surfaces of the rigid head and the flexible gripper are covered with bioprinted hydrogel skin. Since NdFeB NdFeB magnetic particles are toxic to biological tissues, the covered skin can make the interaction between robots and humans safer. Meanwhile, the hydrogel skin can effectively reduce surface friction due to its high water content.
  • the invention can efficiently and accurately realize the integration of thrombus removal and drug treatment of human blood vessels, reduces the risk of blood vessel rupture and sudden closure, and improves operation efficiency and safety.
  • Fig. 1 is the overall view of the magnetic robot designed by the present invention
  • Fig. 2 is the schematic diagram of the work of the magnetic robot designed by the present invention inside the human blood vessel;
  • Fig. 3 is the specific sub-feature schematic diagram of the magnetic robot designed by the present invention.
  • Fig. 4 is the exploded view of the sub-feature of the flexible gripper of the magnetic robot designed by the present invention (magnetic powder concealment) and the partially enlarged perspective view of the gripper head;
  • Fig. 5 is the deformation diagram of the magnetic robot designed by the present invention under the action of a magnetic field
  • Fig. 6 is the working principle diagram of the magnetic robot designed by the present invention.
  • FIG. 1 it includes a rigid head 1 and a flexible gripper 2, the top of the rigid head 1 is fixed with a flexible gripper 2; the outer surface and interior of the rigid head 1 are fixedly distributed with first magnetic powder 11 , the rigid head 1 is mainly made of rigid polymer and first magnetic powder 11, so the rigid head 1 has rigidity, and one end surface of the rigid head 1 is provided with a concave hole as the installation hole 12, and the installation hole 12 is embedded with a flexible gripper 2;
  • the flexible gripper 2 is in the shape of a bullet as a whole.
  • the flexible gripper 2 includes two outer grippers 22, two inner grippers 23 and a flexible base 24.
  • the flexible base 24 is embedded in the installation hole 12.
  • the outer gripper 22 and the inner gripper The main body of the claw 23 is in the shape of a circular arc-shaped sheet.
  • the bottoms of the two inner grippers 23 are symmetrically arranged on both sides of the flexible base 24 along the circumferential interval and have the same center of circle.
  • the two outer grippers 22 are symmetrically arranged on both sides.
  • the two sides of the flexible base 24 around the outer periphery of the first inner gripper 23 have the same center of circle, the two outer grippers 22 cover the two gaps between the two inner grippers 23, and the outer grippers 22 and the inner grippers 23 are fixed at the root On the end face of the flexible base 24, the two inner grippers 23 are arranged symmetrically and at intervals.
  • the two outer grippers 22 are located in the two inner grippers.
  • the outside of the gripper 23 is arranged to cover the two gaps between the two inner grippers 23, the outer gripper 22 and the inner gripper 23 overlap each other, and the two outer grippers 22 and the two inner grippers Place the medicine in the relatively closed space surrounded by 23;
  • the outer gripper 22 and the inner gripper 23 overlap and cover each other between the outer edges of the sheet, and in the natural state, the heads of the outer gripper 22 and the inner gripper 23
  • Both flexibly bend towards the center, and the outer gripper 22 and the inner gripper 23 also overlap and cover each other at the bend toward the center, so that the heads of the outer gripper 22 and the inner gripper 23 form a seal to wrap the medicine, so that the flexible gripper 2 forms a closed state;
  • the outer surface and inside of the outer gripper 22 and the inner gripper 23 are fixedly distributed with the second magnetic powder 21, the flexible gripper 2 is mainly made of soft polymer and the
  • the first magnetic powder 11 and the second magnetic powder 21 are magnetizable NdFeB NdFeB particles.
  • the magnetizable NdFeB NdFeB particles have relatively large residual magnetism, and the flexible gripper 2 can form a relatively large shearing force under the action of an external magnetic field to remove thrombus;
  • the first magnetic powder 11 is evenly distributed on the outer surface and inside of the rigid head 1
  • the second magnetic powder 21 is evenly distributed on the outer surface and inside of the head of the outer gripper 22, and the second magnetic powder 21 is on the outer surface of the outer gripper 22 body.
  • the head of the inner gripper 23 is provided with a fan-shaped cutout 25, the second magnetic powder 21 is evenly distributed on the outer surface and inside of the fan-shaped cutout 25 at the head of the inner gripper 23, the second The second magnetic powder is evenly distributed on the outer surface and inside of the head of the inner grip claw 23 except for the fan-shaped cutout 25, and the second magnetic powder is evenly distributed on the outer surface and inner portion of the inner grip claw 23 body; the first magnetic powder 11 is on the rigid head. 1.
  • the uniformly distributed density is higher than the uniformly distributed density of the second magnetic powder 21 at the fan-shaped cutout 25 at the head of the inner gripper 23, and the uniformly distributed density of the second magnetic powder 21 at the fan-shaped cutout 25 at the head of the inner gripper 23 is higher than that of the first
  • the evenly distributed density of the head portion of the second magnetic powder inner gripper 23 except for the fan-shaped cutout 25 is large, and the uniform distribution density of the second magnetic powder inner gripper 23 except for the fan-shaped cutout 25 is the same as that of the second magnetic powder 21 in the outer gripper 22
  • the evenly distributed density of the head is the same, and the evenly distributed density of the head of the second magnetic powder inner grip 23 except the fan-shaped cutout 25 is larger than the density of the second magnetic powder inner grip 23 body evenly distributed, and the second magnetic powder is inside the grip 23.
  • the uniformly distributed density of the body of the gripper 23 is the same as the density of the second magnetic powder 21 evenly distributed on the body of the outer gripper 22, so the rigid head 1 has strong magnetic properties, and the fan-shaped cutout 25 at the head of the inner gripper 23 has stronger magnetic properties.
  • the flexible gripper 2 has a weaker magnetic property except for the head at the fan-shaped cutout 25, and the body of the flexible gripper 2 has a weaker magnetic property;
  • the magnetization direction of the first magnetic powder 11 on the surface of all the rigid heads 1 and inside is set along the tangential direction on the surface of the rigid head 1 where it is located, and the tangential direction is toward the head of the flexible gripper 2;
  • the magnetization direction of the second magnetic powder 21 is set along the tangent direction on the surface and inside of the flexible gripper 2 where it is located, and the tangent direction is toward the head of the flexible gripper 2;
  • the outer surfaces of the rigid head 1 and the flexible gripper 2 are covered with Bioprinted hydrogel skin, since NdFeB NdFeB magnetic particles are toxic to biological tissues, the covered skin can make the interaction between robots and humans safer, and at the same time, the hydrogel skin can effectively Reduce surface friction.
  • FIG. 2 it is a schematic diagram of the magnetic robot designed for the present invention working inside the blood vessel of the human body.
  • the method includes the following steps: putting the medicine sealed package into the robot's outer gripper 22 and inner gripper in normal operation. In the space surrounded by the gripper 23; the robot is transported into the fluid environment.
  • the fluid environment can be human heart blood vessels, but not limited thereto; a magnetic field is applied in the fluid environment, and the rigidity of the robot through the magnetic field and the robot
  • the first magnetic powder 11 of the head 1 and the second magnetic powder 21 of the flexible gripper 2 perform magnetic cooperation, thereby controlling the movement of the robot in the fluid environment, and the robot delivers medicine in a fully wrapped state; changing the external magnetic field in the fluid environment near the thrombus to Realize the movement and rotation of the robot, the outer gripper 22 and the inner gripper 23 are deployed to release the drug, and the fan-shaped cutout 25 on the head of the deployed inner gripper 23 contacts the thrombus through a magnetic field; the fluid environment at the thrombus is transformed The magnetic field, the outer gripper 22 and the inner gripper 23 are closed, and the thrombus is removed through the shearing motion of the fan-shaped incision 25; the magnetic field is changed to realize the repeated opening action of the flexible gripper 2 until the thrombus is caught by the head of the inner gripper
  • B1 and B2 are the magnetic induction intensity of the rigid head and the flexible gripper respectively
  • the direction of B1 is the magnetization direction of the first magnetic powder 11
  • the direction of B2 is the magnetization direction of the first magnetic powder 11.
  • the direction is the magnetization direction of the second magnetic powder 21.
  • the magnetic force of the uniform strong magnetic field is greater than the critical value, so that all The magnetization direction of the second magnetic powder 21 has a tendency to be aligned with the magnetic field direction of the uniform strong magnetic field and expands to move, so that the head of the flexible gripper 2 is in an expanded state.
  • FIG. 6 it is the working principle diagram of the magnetic robot designed by the present invention.
  • a uniform weak magnetic field along the advancing direction of the robot is applied, and the field strength of the uniform weak magnetic field remains constant along the advancing direction of the robot;
  • the forward direction is not aligned with the magnetization direction of the first magnetic powder 11 and the second magnetic powder 21 so that the rigid head 1 is controlled to rotate;
  • the restoring force of the flexible gripper 2 is set as a critical value, and the restoring force of the flexible gripper 2 refers to the external grip
  • the head of the claw 23 in the claw 22 maintains an elastic force in a flexible bending state towards the center, and the magnetic force of the second magnetic powder 21 of the flexible grip 2 is less than the critical value of the uniform weak magnetic field.
  • the magnetic force on the second magnetic powder 21 is smaller than the restoring force of the flexible gripper 2, so that the flexible gripper 2 is closed and maintained; thus the robot rotates along the forward direction of the robot under the action of a uniform weak magnetic field.
  • the invention can solve the problems of unreliable grasping and low efficiency of thrombus removal, and at the same time, it will form a closed space, wrap the medicine inside the gripper, and realize the combination of thrombus removal and drug delivery; in addition, because the micro robot is a flexible structure , can reduce the risk of blood vessel rupture and sudden closure, improve the efficiency and safety of surgery, and the invention can realize accurate, complex, fast and independent movement or manipulation only by using an external uniform and linear gradient magnetic field, so that the robot can be used as A minimally invasive tool that efficiently removes blood clots from blood vessels in the brain.
  • the robot enters the human heart blood vessel with thrombus, and applies a linear gradient magnetic field along the forward direction of the robot.
  • the flexible gripper 2 remains closed, and the direction of the linear gradient magnetic field is the same as the magnetization direction of the robot.
  • a uniform weak magnetic field is applied externally.
  • the uniform weak magnetic field is in the same direction as the linear gradient magnetic field.
  • the uniform weak magnetic field is removed, and the robot continues Move in a straight line towards the direction of the linear gradient magnetic field; if you only need to do rotational movement, you only need to remove the linear gradient magnetic field first, and at the same time apply a uniform weak magnetic field towards the target direction, so that the robot only rotates until it faces the target direction.
  • the direction of the uniform strong magnetic field is consistent with the linear gradient magnetic field.
  • the fan-shaped incision 25 is close to the thrombus, and the magnetic force is changed by changing the magnetic field strength of the uniform strong magnetic field, so that the flexible gripper 2 is continuously opened, and the fan-shaped incision 25 forms a shear force to cut the thrombus until the thrombus is completely removed;
  • a uniform strong magnetic field with a magnetic force greater than the critical value is applied externally.
  • the uniform strong magnetic field is in the same direction as the linear gradient magnetic field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种三维无线磁性机器人及控制方法,机器人包括:刚性头(1)顶部固定有柔性握爪(2),刚性头(1)外表面和内部分布有第一磁粉(11),外握爪(22)和内握爪(23)根部固定在柔性底座(24)的端面上,外握爪(22)和内握爪(23)之间相互重叠,由两个外握爪(22)和两个内握爪(23)围成的空间内放置药物;在自然状态下,外握爪(22)和内握爪(23)的头部均向中心柔性弯曲,使得在外握爪(22)和内握爪(23)的头部形成封闭而包裹住药物,从而柔性握爪(2)形成闭合状态;外握爪(22)和内握爪(23)的外表面和内部均分布有第二磁粉(21)。控制方法可以实现药物密闭输送,并且采用柔性结构,提高了安全性;该方法仅利用外部磁场就能实现机器人准确、复杂、快速且独立的移动或操控,可作为一种高效、精准的作业工具。

Description

一种三维无线磁性机器人及控制方法 技术领域
本发明涉及一种磁性机器人,具体涉及一种三维无线磁性机器人及控制方法。
背景技术
根据世界卫生组织的报告,全世界每年大约有1500万人患中风。其中500万人因此而亡,另外500万人则永久性残疾。85%的病例表明,导致中风的主要原因是血管的阻塞阻断了大脑的血液供应。研究人员发现,血栓溶解药物对存在于大脑较大动脉中的血栓来说是无效的,对于这种情况,机械血栓切除术是现有常见的治疗方法,即用机械的方法将血栓从一个导向导管中拉出。
随着新的能量供给方式、驱动控制方式以及微电子等领域的发展,体内微型医疗机器人技术无疑是最具应用潜力的选择,这种微型机器人可远程控制、实时跟踪,能在外部场的作用下全方位转向与航行,以清除血栓、定向输送药物等。常见的是一种基于磁性水凝胶的二维微型抓手,可以使用磁场对其进行无线操作。该设备在直流磁场的驱动下可以在液体中自由移动,并通过交流磁场执行抓握运动。此外,结合磁性颗粒和对温度、pH值(酸碱度)敏感的特殊材料来制备微型机器人也是近几年较为流行的做法。该机器人可以通过外部磁场来实现直线路径上的简单平移,并且可以通过溶液pH变化或温度变化来触发抓握运动。
现有的机械血栓切除术虽然切除效果良好,但其存在着血管破裂和突然关闭的风险。对于双爪式的二维平面结构磁性微型机器人,存在着抓取不牢靠、血栓清除效率低的问题。同时,结合磁性颗粒和特殊材料来制备的微型机器人虽然同时满足了移动和抓握运动的要求,但仍然存在着下述的一些问题:
1)缺少精确而复杂的移动,例如直径为0.5mm的复杂圆形曲线路径。
2)上述其他刺激响应需要特殊的环境特性,例如特定的PH值或温度值。
3)触发抓握力的反应非常缓慢,通常需要几分钟或更长时间。
此外,目前已有的用于血栓清除的微型机器人大多没有药物输送功能,或是用于药物输送的微型机器人没有血栓清除功能,无法做到两者结合,给清除血管血栓的后续伤口治疗带来了极大的不便,且降低了手术效率和安全性。
发明内容
本发明采用的三维无线磁性机器人恰恰能解决上述难题。不同于上述二维双爪式微型机器人,本发明为三维章鱼形结构微型机器人,该结构由可移动的磁铁作为刚性头,四个抓握的磁铁作为柔性握爪组成。握爪进行抓握时相互交错,形成较大的剪切力,以解决抓取不牢靠、血栓清除效率低的问题。同时也会形成密闭空间,将药物包裹在握爪内部,实现血栓清除和药物输送两者功能相结合。此外,因微型机器人为柔性结构,可减小血管破裂和突然关闭的风险。
针对需磁场和其它刺激响应微型机器人所带来的问题,本发明仅利用外部均匀和线性渐变磁场就能实现准确、复杂、快速且独立的移动或操控(包括在直线路径或弯曲路径中平移、旋转和抓握),它可作为一种可高效地从大脑血管中清除血栓的微创工具。
为实现上述目的,本发明提供如下技术方案:
一、一种三维无线磁性机器人:
本发明包括刚性头和柔性握爪,刚性头顶部固定有柔性握爪;所述的刚性头外表面和内部固定分布有第一磁粉,刚性头一端面开设有凹孔作为安装孔,安装孔内嵌装有柔性握爪;柔性握爪整体呈子弹头形状,柔性握爪包括两个外握爪、两个内握爪和柔性底座,柔性底座嵌装在安装孔,外握爪和内握爪主体呈片状,外握爪和内握爪根部固定在柔性底座的端面上,两个内握爪相对称间隔布置,两个内握爪的两侧之间均留有间隙而形成两个间隙,两个外握爪位于两个内握爪外侧,且布置覆盖于两个内握爪之间的两个间隙处,外握爪和内握爪之间相互重叠,由两个外握爪和两个内握爪围成的相对封闭的空间内放置药物;外握爪和内握爪头部的外边缘之间相互重叠覆盖,在自然状态下,外握爪和内握爪的头部均向中心柔性弯曲,且外握爪和内握爪在向中心弯曲处也相互重叠覆盖,使得在外握爪和内握爪的头部形成封闭而包裹住药物,从而柔性握爪形成闭合状态;外握爪和内握爪的外表面和内部均固定分布有第二磁粉,从而外握爪与内握爪相配合实现全封闭结构,柔性握爪的内部包裹治疗药物。
所述的外握爪和内握爪主体呈截面为圆弧形的片状,两个内握爪的根部沿周向间隔对称地布置在柔性底座的两侧且具有同一圆心,两个外握爪对称布置在两个内握爪外周围的柔性底座的两侧且具有同一圆心,两个外握爪覆盖两个内握爪之间的两个间隙。
所述的刚性头主要由刚性聚合物和第一磁粉制成,所述的柔性握爪主要由软性聚合物和第二磁粉制成,故刚性头具有刚性,柔性握爪具有柔韧性。
所述的第一磁粉和第二磁粉为可磁化钕铁硼NdFeB微粒,可磁化钕铁硼NdFeB微粒剩磁较大,可形成较大的剪切力以清除血栓。
所述的第一磁粉在刚性头的外表面和内部上均匀分布,所述的第二磁粉在外握爪头部的外表面和内部上均匀分布,第二磁粉在外握爪体部的外表面和内部上均匀分布,所述的内握爪的头部开设有扇形切口,第二磁粉在内握爪头部的扇形切口处的外表面和内部上均匀分布,第二磁粉在内握爪除扇形切口部分的头部的外表面和内部上均匀分布,第二磁粉在内握爪体部的外表面和内部上均匀分布;
第一磁粉在刚性头上均匀分布的密度比第二磁粉在内握爪头部的扇形切口处均匀分布的密度大,第二磁粉在内握爪头部的扇形切口处均匀分布的密度比第二磁粉在内握爪除扇形切口部分的头部均匀分布的密度大,第二磁粉在内握爪除扇形切口部分的头部均匀分布的密度与第二磁粉在外握爪头部均匀分布的密度相同,第二磁粉在内握爪除扇形切口部分的头部均匀分布的密度比第二磁粉在内握爪体部均匀分布的密度大,第二磁粉在内握爪体部均匀分布的密度与第二磁粉在外握爪体部均匀分布的密度相同,故刚性头具有强磁性能,内握爪头部的扇形切口处具有较强磁性能,柔性握爪除扇形切口处的头部具有较弱磁性能,柔性握爪的体部具有弱磁性能。
所述的第一磁粉和第二磁粉预先在机器人呈展开状态时进行充磁磁化,所有所述刚性头表面和内部的第一磁粉的磁化方向均沿自身所在刚性头表面处的切线方向设置,且切线方向朝向柔性握爪头部;所有所述第二磁粉的磁化方向均沿自身所在柔性握爪表面和内部处的切线方向设置,且切线方向朝向柔性握爪头部。
二、一种三维无线磁性机器人的控制方法:
在实际工作过程中,机器人的控制方法包括以下步骤:将药物密封包裹放入正常运作的机器人的由外握爪和内握爪围成的空间中;将机器人输送至流体环境中,具体实施中,所述的流体环境可以为人体心脏血管,但不限于此;在流体环境中施加磁场,通过磁场与机器人中刚性头的第一磁粉、柔性握爪的第二磁粉进行磁性配合,进而控制机器人在流体环境中的运动,机器人以全包裹状态输送药物,通过改变外部磁场来实现机器人的移动、转动以及柔性握爪的开握,达到药物输送、接近血管中的血栓和清除血栓的效果;
当机器人进行旋转运动时,施加一个沿机器人前进方向的均匀弱磁场,均匀弱磁场的场强沿机器人前进方向保持不变;机器人前进方向与第一磁粉、第二磁粉的磁化方向不对齐使得控制刚性头旋转;设置柔性握爪的恢复力作为临 界值,所述的柔性握爪的恢复力是指外握爪和内握爪的头部保持向中心柔性弯曲状态的弹性力,柔性握爪的第二磁粉所受均匀弱磁场的磁力均小于临界值,由于均匀弱磁场施加到柔性握爪的第二磁粉上的磁力小于柔性握爪的恢复力,使得柔性握爪呈闭合状态且保持;由此机器人在受均匀弱磁场的作用下沿着机器人前进方向作旋转运动;
当机器人进行直线运动时,施加一个沿机器人前进方向的线性渐变磁场,线性渐变磁场的场强沿机器人前进方向逐渐增大;机器人前进方向与第一磁粉、第二磁粉的磁化方向对齐,使得控制刚性头不旋转;设置柔性握爪的恢复力作为临界值,柔性握爪各处的第二磁粉所受线性渐变磁场的磁力均小于临界值,由于线性渐变磁场施加到柔性握爪的第二磁粉上的磁力小于柔性握爪的恢复力,使得柔性握爪呈闭合状态且保持;由此机器人在受线性渐变磁场的作用下沿着机器人前进方向作平移直线移动;
当机器人进行展开运动时,施加一个沿机器人前进方向的均匀强磁场,均匀强磁场的场强沿机器人前进方向保持不变;机器人前进方向与第一磁粉、第二磁粉的磁化方向对齐使得控制刚性头不旋转;设置柔性握爪的恢复力作为临界值,柔性握爪的第二磁粉所受均匀强磁场的磁力均大于临界值,由于均匀强磁场施加到柔性握爪的第二磁粉上的磁力大于柔性握爪的恢复力,使得柔性握爪头部呈展开状态且保持;由此机器人在受均匀强磁场的作用下展开而释放其中包裹的药物。
所述的均匀强磁场和均匀弱磁场均通过亥姆霍兹线圈Helmholtz coil实现,均匀强磁场产生的磁力高于均匀弱磁场产生的磁力,所述的线性渐变磁场通过麦克斯韦线圈Maxwell coil实现。
所述的柔性握爪外表面和内部上的所有的第二磁粉受到均匀强磁场施加的磁力作用,所述的均匀强磁场的磁力大于临界值,使得所有的第二磁粉的磁化方向有与均匀强磁场的磁场方向对齐的趋势,使得柔性握爪的头部呈展开状态。
所述的刚性头和柔性握爪的外表面均覆有生物打印水凝胶皮肤,由于钕铁硼NdFeB磁性颗粒对生物组织有毒,覆盖的皮肤可以使机器人与人之间的交互更为安全,同时,该水凝胶皮肤由于其高含水量可有效地降低表面摩擦。
与现有技术相比,本发明的有益效果是:
本发明能高效、精准地实现人体血管的血栓清除和药物治疗一体化,并减小了血管破裂和突然关闭的风险,提高了手术效率和安全性。
附图说明
图1为本发明设计的磁性机器人总体图;
图2为本发明设计的磁性机器人在人体血管内部的工作示意图;
图3为本发明设计的磁性机器人的具体子特征示意图;
图4为本发明设计的磁性机器人的柔性握爪的子特征爆炸图(磁粉隐藏)及握爪头部的局部放大透视图;
图5为本发明设计的磁性机器人在磁场作用下的变形图;
图6为本发明设计的磁性机器人工作原理图;
图中:1、刚性头,11、第一磁粉,12、安装孔,2、柔性握爪,21、第二磁粉,22、外握爪,23、内握爪,24、柔性底座,25、扇形切口。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
如图1、图3和图4所示,包括刚性头1和柔性握爪2,刚性头1顶部固定有柔性握爪2;所述的刚性头1外表面和内部固定分布有第一磁粉11,刚性头1主要由刚性聚合物和第一磁粉11制成,故刚性头1具有刚性,刚性头1一端面开设有凹孔作为安装孔12,安装孔12内嵌装有柔性握爪2;柔性握爪2整体呈子弹头形状,柔性握爪2包括两个外握爪22、两个内握爪23和柔性底座24,柔性底座24嵌装在安装孔12,外握爪22和内握爪23主体呈截面为圆弧形的片状,两个内握爪23的底部沿周向间隔对称地布置在柔性底座24的两侧且具有同一圆心,两个外握爪22对称布置在两个内握爪23外周围的柔性底座24的两侧且具有同一圆心,两个外握爪22覆盖两个内握爪23之间的两个间隙,外握爪22和内握爪23根部固定在柔性底座24的端面上,两个内握爪23相对称间隔布置,两个内握爪23的两侧之间均留有间隙而形成两个间隙,两个外握爪22位于两个内握爪23外侧,且布置覆盖于两个内握爪23之间的两个间隙处,外握爪22和内握爪23之间相互重叠,由两个外握爪22和两个内握爪23围成的相对封闭的空间内放置药物;外握爪22和内握爪23在片状的外边缘之间相互重叠覆盖,在自然状态下,外握爪22和内握爪23的头部均向中心柔性弯曲,且外握爪22和内握爪23在向中心弯曲处也相互重叠覆盖,使得在外握爪22和内握爪23的头部形成封闭而包裹住药物,从而柔性握爪2形成闭合状态;外握爪22和内握爪23的外表面和内部均固定分布有第二磁粉21,柔性握爪2主要由软性聚合物和第二磁粉21制成,柔性握爪2具有柔韧性;从而外握爪22与内握爪23相配合实现全封闭结构,柔性握爪2的内部包裹治疗药物;
第一磁粉11和第二磁粉21为可磁化钕铁硼NdFeB微粒,可磁化钕铁硼NdFeB微粒剩磁较大,在外磁场作用下柔性握爪2可形成较大的剪切力以清除血栓;第一磁粉11在刚性头1的外表面和内部上均匀分布,所述的第二磁粉21在外握爪22头部的外表面和内部上均匀分布,第二磁粉21在外握爪22体部的外表面和内部上均匀分布,所述的内握爪23的头部开设有扇形切口25,第二磁粉21在内握爪23头部的扇形切口25处的外表面和内部上均匀分布,第二磁粉在内握爪23除扇形切口25部分的头部的外表面和内部上均匀分布,第二磁粉在内握爪23体部的外表面和内部上均匀分布;第一磁粉11在刚性头1均匀分布的密度比第二磁粉21在内握爪23头部的扇形切口25处均匀分布的密度大,第二磁粉21在内握爪23头部的扇形切口25处均匀分布的密度比第二磁粉在内握爪23除扇形切口25部分的头部均匀分布的密度大,第二磁粉在内握爪23除扇形切口25部分的头部均匀分布的密度与第二磁粉21在外握爪22头部均匀分布的密度相同,第二磁粉在内握爪23除扇形切口25部分的头部均匀分布的密度比第二磁粉在内握爪23体部均匀分布的密度大,第二磁粉在内握爪23体部均匀分布的密度与第二磁粉21在外握爪22体部均匀分布的密度相同,故刚性头1具有强磁性能,内握爪23头部的扇形切口25处具有较强磁性能,柔性握爪2除扇形切口25处的头部具有较弱磁性能,柔性握爪2的体部具有弱磁性能;所述的第一磁粉11和第二磁粉21预先在机器人呈展开状态时进行充磁磁化,所有所述刚性头1表面和内部的第一磁粉11的磁化方向均沿自身所在刚性头1表面处的切线方向设置,且切线方向朝向柔性握爪2头部;所有所述第二磁粉21的磁化方向均沿自身所在柔性握爪2表面和内部处的切线方向设置,且切线方向朝向柔性握爪2头部;刚性头1和柔性握爪2的外表面均覆有生物打印水凝胶皮肤,由于钕铁硼NdFeB磁性颗粒对生物组织有毒,覆盖的皮肤可以使机器人与人之间的交互更为安全,同时,该水凝胶皮肤由于其高含水量可有效地降低表面摩擦。
如图2所示,为本发明设计的磁性机器人在人体血管内部的工作示意图,在实际工作过程中,方法包括以下步骤:将药物密封包裹放入正常运作的机器人的由外握爪22和内握爪23围成的空间中;将机器人输送至流体环境中,具体实施中,所述的流体环境可以为人体心脏血管,但不限于此;在流体环境中施加磁场,通过磁场与机器人中刚性头1的第一磁粉11、柔性握爪2的第二磁粉21进行磁性配合,进而控制机器人在流体环境中的运动,机器人以全包裹状态输送药物;在血栓附近的流体环境中改变外部磁场来实现机器人的移动、转动,外握爪22和内握爪23展开,释放药物,并通过磁场使展开后的内握爪23 头部的扇形切口25与血栓接触;在血栓处的流体环境中变换磁场,外握爪22和内握爪23闭合,通过扇形切口25的剪切运动切除血栓;变换磁场以实现多次重复的柔性握爪2的开握动作,直至血栓被内握爪23头部的扇形切口25完全清除。
如图5所示,为本发明设计的磁性机器人在磁场作用下的变形图,B1和B2分别为刚性头和柔性握爪的磁感应强度,B1的方向为第一磁粉11的磁化方向,B2的方向为第二磁粉21的磁化方向,当柔性握爪2外表面和内部上的所有的第二磁粉21受到均匀强磁场施加的磁力作用,所述的均匀强磁场的磁力大于临界值,使得所有的第二磁粉21的磁化方向有与均匀强磁场的磁场方向对齐的趋势并展开运动,使得柔性握爪2的头部呈展开状态。
如图6所示,为本发明设计的磁性机器人工作原理图,当机器人进行旋转运动时,施加一个沿机器人前进方向的均匀弱磁场,均匀弱磁场的场强沿机器人前进方向保持不变;机器人前进方向与第一磁粉11、第二磁粉21的磁化方向不对齐使得控制刚性头1旋转;设置柔性握爪2的恢复力作为临界值,所述的柔性握爪2的恢复力是指外握爪22内握爪23的头部保持向中心柔性弯曲状态的弹性力,柔性握爪2的第二磁粉21所受均匀弱磁场的磁力均小于临界值,由于均匀弱磁场施加到柔性握爪2的第二磁粉21上的磁力小于柔性握爪2的恢复力,使得柔性握爪2呈闭合状态且保持;由此机器人在受均匀弱磁场的作用下沿着机器人前进方向作旋转运动。
当机器人进行直线运动时,施加一个沿机器人前进方向的线性渐变磁场,线性渐变磁场的场强沿机器人前进方向逐渐增大;机器人前进方向与第一磁粉11、第二磁粉21的磁化方向对齐,使得控制刚性头1不旋转;设置柔性握爪2的恢复力作为临界值,柔性握爪2各处的第二磁粉21所受线性渐变磁场的磁力均小于临界值,由于线性渐变磁场施加到柔性握爪2的第二磁粉21上的磁力小于柔性握爪2的恢复力,使得柔性握爪2呈闭合状态且保持;由此机器人在受线性渐变磁场的作用下沿着机器人前进方向作平移直线移动。
当机器人进行展开运动时,施加一个沿机器人前进方向的均匀强磁场,均匀强磁场的场强沿机器人前进方向保持不变;机器人前进方向与第一磁粉11、第二磁粉21的磁化方向对齐使得控制刚性头1不旋转;设置柔性握爪2的恢复力作为临界值,柔性握爪2的第二磁粉21所受均匀强磁场的磁力均大于临界值,由于均匀强磁场施加到柔性握爪2的第二磁粉21上的磁力大于柔性握爪2的恢复力,使得柔性握爪2头部呈展开状态且保持;由此机器人在受均匀强磁场的作用下展开而释放其中包裹的药物;均匀强磁场和均匀弱磁场均通过亥姆霍兹 线圈Helmholtz coil实现,均匀强磁场产生的磁力高于均匀弱磁场产生的磁力,线性渐变磁场通过麦克斯韦线圈Maxwell coil实现。
本发明可以解决抓取不牢靠、血栓清除效率低的问题,同时也会形成密闭空间,将药物包裹在握爪内部,实现血栓清除和药物输送两者功能相结合;此外,因微型机器人为柔性结构,可减小血管破裂和突然关闭的风险,提高了手术效率和安全性,并且本发明仅利用外部均匀和线性渐变磁场就能实现准确、复杂、快速且独立的移动或操控,使得机器人可作为一种可高效地从大脑血管中清除血栓的微创工具。
具体实施例:
机器人进入存在血栓的人体心脏血管中,施加一个沿机器人前进方向的线性渐变磁场,柔性握爪2保持闭合状态,线性渐变磁场方向与机器人磁化方向相同,机器人朝着磁场方向作平移直线移动,当机器人遇到血管拐弯处,外部施加一个均匀弱磁场,均匀弱磁场与线性渐变磁场方向一致,通过同时改变两个磁场的方向使得机器人做旋转前进运动直至通过拐弯处,撤去均匀弱磁场,机器人继续朝着线性渐变磁场方向作平移直线移动;若只需做旋转运动,只需先撤去线性渐变磁场,同时施加一个朝向目标方向的均匀弱磁场,使得机器人仅做旋转运动直至朝向目标方向,此时撤去均匀弱磁场,同时施加朝向目标方向的线性渐变磁场,机器人朝着磁场方向作平移直线移动;这个过程中,柔性握爪2受到的磁力始终小于其恢复力,故始终保持闭合状态;当机器人靠近血栓时,外部施加一个磁力大于临界值的均匀强磁场,均匀强磁场与线性渐变磁场方向一致,此时,柔性握爪2受到的磁力大于其恢复力,柔性握爪2张开,释放治疗药物,扇形切口25靠近血栓,通过改变均匀强磁场的磁场强度的大小改变磁力,使得柔性握爪2不断张握,扇形切口25形成剪切力剪切血栓,直至血栓被完全切除;
当血栓处于血管拐弯处,机器人靠近血栓,外部施加一个磁力大于临界值的均匀强磁场,均匀强磁场与线性渐变磁场方向一致,通过同时改变两个磁场的方向使得机器人做旋转前进运动,此时,机器人的柔性握爪2不断张握,释放治疗药物,并旋转前进,扇形切口25形成剪切力剪切血栓,直至血栓被完全切除。

Claims (10)

  1. 一种三维无线磁性机器人,其特征在于:包括刚性头(1)和柔性握爪(2),刚性头(1)顶部固定有柔性握爪(2);所述的刚性头(1)外表面和内部均固定分布有第一磁粉(11),刚性头(1)一端面开设有凹孔作为安装孔(12),安装孔(12)内嵌装有柔性握爪(2);柔性握爪(2)整体呈子弹头形状,柔性握爪(2)包括两个外握爪(22)、两个内握爪(23)和柔性底座(24),柔性底座(24)嵌装在安装孔(12),外握爪(22)和内握爪(23)主体呈片状,外握爪(22)和内握爪(23)根部固定在柔性底座(24)的端面上,两个内握爪(23)相对称间隔布置,两个内握爪(23)的两侧之间均留有间隙而形成两个间隙,两个外握爪(22)位于两个内握爪(23)外侧,且布置覆盖于两个内握爪(23)之间的两个间隙处,外握爪(22)和内握爪(23)之间相互重叠,由两个外握爪(22)和两个内握爪(23)围成的空间内放置药物;在自然状态下,外握爪(22)和内握爪(23)的头部均向中心柔性弯曲,使得在外握爪(22)和内握爪(23)的头部形成封闭而包裹住药物,从而柔性握爪(2)形成闭合状态;外握爪(22)和内握爪(23)的外表面和内部均固定分布有第二磁粉(21)。
  2. 根据权利要求1所述的一种三维无线磁性机器人,其特征在于:所述的外握爪(22)和内握爪(23)主体呈截面为圆弧形的片状,两个内握爪(23)的根部沿周向间隔对称地布置在柔性底座(24)的两侧且具有同一圆心,两个外握爪(22)对称布置在两个内握爪(23)外周围的柔性底座(24)的两侧且具有同一圆心,两个外握爪(22)覆盖两个内握爪(23)之间的两个间隙。
  3. 根据权利要求1所述的一种三维无线磁性机器人,其特征在于:所述的刚性头(1)主要由刚性聚合物和第一磁粉(11)制成,所述的柔性握爪(2)主要由软性聚合物和第二磁粉(21)制成。
  4. 根据权利要求1所述的一种三维无线磁性机器人,其特征在于:
    所述的第一磁粉(11)和第二磁粉(21)为可磁化钕铁硼NdFeB微粒。
  5. 根据权利要求1所述的一种三维无线磁性机器人,其特征在于:
    所述的第一磁粉(11)在刚性头(1)的外表面和内部上均匀分布,所述的第二磁粉(21)在外握爪(22)头部的外表面和内部上均匀分布,第二磁粉(21)在外握爪(22)体部的外表面和内部上均匀分布,所述的内握爪(23)的头部开设有扇形切口(25),第二磁粉(21)在内握爪(23)头部的扇形切口(25) 处的外表面和内部上均匀分布,第二磁粉在内握爪(23)除扇形切口(25)部分的头部的外表面和内部上均匀分布,第二磁粉在内握爪(23)体部的外表面和内部上均匀分布;
    第一磁粉(11)在刚性头(1)上均匀分布的密度比第二磁粉(21)在内握爪(23)头部的扇形切口(25)处均匀分布的密度大,第二磁粉(21)在内握爪(23)头部的扇形切口(25)处均匀分布的密度比第二磁粉在内握爪(23)除扇形切口(25)部分的头部均匀分布的密度大,第二磁粉在内握爪(23)除扇形切口(25)部分的头部均匀分布的密度与第二磁粉(21)在外握爪(22)头部均匀分布的密度相同,第二磁粉在内握爪(23)除扇形切口(25)部分的头部均匀分布的密度比第二磁粉在内握爪(23)体部均匀分布的密度大,第二磁粉在内握爪(23)体部均匀分布的密度与第二磁粉(21)在外握爪(22)体部均匀分布的密度相同。
  6. 根据权利要求5所述的一种三维无线磁性机器人,其特征在于:
    所述的第一磁粉(11)和第二磁粉(21)预先在机器人呈展开状态时进行充磁磁化,所有所述刚性头(1)表面和内部的第一磁粉(11)的磁化方向均沿自身所在刚性头(1)表面处的切线方向设置,且切线方向朝向柔性握爪(2)头部;所有所述第二磁粉(21)的磁化方向均沿自身所在柔性握爪(2)表面和内部处的切线方向设置,且切线方向朝向柔性握爪(2)头部。
  7. 应用于权利要求1-6所述的一种三维无线磁性机器人的控制方法,其特征在于:
    在实际工作过程中,方法包括以下步骤:
    步骤1):将药物密封包裹放入正常运作的机器人的由外握爪(22)和内握爪(23)围成的空间中;
    步骤2):将机器人输送至流体环境中;
    步骤3):在流体环境中施加磁场,通过磁场与机器人中刚性头(1)的第一磁粉(11)、柔性握爪(2)的第二磁粉(21)进行磁性配合,进而控制机器人在流体环境中的运动。
  8. 根据权利要求7所述的一种控制方法,其特征在于:
    所述的步骤3)中:
    当机器人进行旋转运动时,施加一个沿机器人前进方向的均匀弱磁场,均匀弱磁场的场强沿机器人前进方向保持不变;机器人前进方向与第一磁粉(11)、第二磁粉(21)的磁化方向不对齐使得控制刚性头(1)旋转;设置柔性握爪(2)的恢复力作为临界值,柔性握爪(2)的第二磁粉(21)所受均匀弱磁场的磁力 均小于临界值,使得柔性握爪(2)呈闭合状态且保持;由此机器人在受均匀弱磁场的作用下沿着机器人前进方向作旋转运动;
    当机器人进行直线运动时,施加一个沿机器人前进方向的线性渐变磁场,线性渐变磁场的场强沿机器人前进方向逐渐增大;机器人前进方向与第一磁粉(11)、第二磁粉(21)的磁化方向对齐,使得控制刚性头(1)不旋转;设置柔性握爪(2)的恢复力作为临界值,柔性握爪(2)各处的第二磁粉(21)所受线性渐变磁场的磁力均小于临界值,使得柔性握爪(2)呈闭合状态且保持;由此机器人在受线性渐变磁场的作用下沿着机器人前进方向作平移直线移动;
  9. 根据权利要求8所述的一种控制方法,其特征在于:
    所述的均匀强磁场和均匀弱磁场均通过亥姆霍兹线圈Helmholtz coil实现,所述的线性渐变磁场通过麦克斯韦线圈Maxwell coil实现。
  10. 根据权利要求8所述的一种控制方法,其特征在于:
    所述的柔性握爪(2)外表面和内部上的所有的第二磁粉(21)受到均匀强磁场施加的磁力作用,所述的均匀强磁场的磁力大于临界值,使得所有的第二磁粉(21)的磁化方向有与均匀强磁场的磁场方向对齐的趋势,使得柔性握爪(2)的头部呈展开状态。
PCT/CN2021/128182 2021-08-25 2021-11-02 一种三维无线磁性机器人及控制方法 WO2023024261A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110979564 2021-08-25
CN202110979564.4 2021-08-25

Publications (1)

Publication Number Publication Date
WO2023024261A1 true WO2023024261A1 (zh) 2023-03-02

Family

ID=85322414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128182 WO2023024261A1 (zh) 2021-08-25 2021-11-02 一种三维无线磁性机器人及控制方法

Country Status (1)

Country Link
WO (1) WO2023024261A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100292728A1 (en) * 2009-05-14 2010-11-18 Peter Metzger Jaw-type grab for a surgical instrument
CN110179537A (zh) * 2019-04-28 2019-08-30 华中科技大学 一种具备磁力控制的多爪主动适形消融针
CN210551331U (zh) * 2019-07-16 2020-05-19 华中科技大学 一种基于惯性实现的磁性软体机械手
CN111687870A (zh) * 2020-06-17 2020-09-22 西南交通大学 一种大范围调控摩擦力的刚柔结合抓取器
CN112438777A (zh) * 2019-08-28 2021-03-05 尤东侠 一种治疗血管栓塞的微创取栓装置
CN212859509U (zh) * 2020-06-12 2021-04-02 北京软体机器人科技有限公司 一种被动包覆式自适应柔性夹具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100292728A1 (en) * 2009-05-14 2010-11-18 Peter Metzger Jaw-type grab for a surgical instrument
CN110179537A (zh) * 2019-04-28 2019-08-30 华中科技大学 一种具备磁力控制的多爪主动适形消融针
CN210551331U (zh) * 2019-07-16 2020-05-19 华中科技大学 一种基于惯性实现的磁性软体机械手
CN112438777A (zh) * 2019-08-28 2021-03-05 尤东侠 一种治疗血管栓塞的微创取栓装置
CN212859509U (zh) * 2020-06-12 2021-04-02 北京软体机器人科技有限公司 一种被动包覆式自适应柔性夹具
CN111687870A (zh) * 2020-06-17 2020-09-22 西南交通大学 一种大范围调控摩擦力的刚柔结合抓取器

Similar Documents

Publication Publication Date Title
US11707562B2 (en) Fistula formation devices and methods therefor
Eshaghi et al. Design, manufacturing and applications of small-scale magnetic soft robots
Yang et al. Deltamag: An electromagnetic manipulation system with parallel mobile coils
EP1797823B1 (en) Medical instrument for manipulating, in particular retracting tissue or an organ
Zheng et al. An overview of magnetic micro-robot systems for biomedical applications
WO2011146698A2 (en) Medical devices, apparatuses, systems, and methods
WO2023024261A1 (zh) 一种三维无线磁性机器人及控制方法
KR102239108B1 (ko) 마이크로 로봇의 구동 전자기장 매핑 기반 혈관조영 방법 및 이를 이용한 장치
CN113712669B (zh) 一种三维无线磁性机器人及控制方法
Xu et al. A Survey of Recent Developments in Magnetic Microrobots for Micro-/Nano-Manipulation
Lu et al. Dynamic trajectory planning for robotic knot tying
US10959751B2 (en) Piezoelectric thrombus removal
Xiang et al. A theoretical investigation of the ability of magnetic miniature robots to exert forces and torques for biomedical functionalities
肖晶晶 et al. Advances and key techniques of ophthalmic microsurgical robots
Kobiela et al. Magnetic instrumentation and other applications of magnets in NOTES
Qiu et al. Magnetic micro-/nanopropellers for biomedicine
Fuertes et al. Microdevices: tools for medical applications
Nelson Microrobotics in medicine
Choi et al. Electromagnetic Actuated Micro-and Nanorobots
EP4054695A1 (en) A system and miniature devices for delivering a therapeutic component to a treatment site in a patient
Okamoto et al. Development of multi-DOF brain retract manipulator with safety method
Xiao et al. Trajectory planning of knot-tying manipulation in surgery
Mair et al. Going Hands-free: MagnetoSuture™ for Untethered Guided Needle Penetration of Human Tissue Ex Vivo. Robotics 2021, 10, 129
Avaneesh et al. Actuation, Control and Localization of Untethered Magnetic Robots
CN115958614A (zh) 一种多功能气泡式微型机器人及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21954781

Country of ref document: EP

Kind code of ref document: A1