WO2023024195A1 - 一种先导型电子式卸荷阀及配装有该卸荷阀的压缩机系统 - Google Patents

一种先导型电子式卸荷阀及配装有该卸荷阀的压缩机系统 Download PDF

Info

Publication number
WO2023024195A1
WO2023024195A1 PCT/CN2021/118814 CN2021118814W WO2023024195A1 WO 2023024195 A1 WO2023024195 A1 WO 2023024195A1 CN 2021118814 W CN2021118814 W CN 2021118814W WO 2023024195 A1 WO2023024195 A1 WO 2023024195A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
pilot
unloading
valve
bridge rectifier
Prior art date
Application number
PCT/CN2021/118814
Other languages
English (en)
French (fr)
Inventor
陈威龙
阮勤江
陈君立
耿爱农
Original Assignee
浙江鸿友压缩机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江鸿友压缩机制造有限公司 filed Critical 浙江鸿友压缩机制造有限公司
Publication of WO2023024195A1 publication Critical patent/WO2023024195A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/104Adaptations or arrangements of distribution members the members being parallel flexible strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • F04B39/1073Adaptations or arrangements of distribution members the members being reed valves
    • F04B39/1086Adaptations or arrangements of distribution members the members being reed valves flat annular reed valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0672One-way valve the valve member being a diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0675Electromagnet aspects, e.g. electric supply therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/36Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
    • F16K31/40Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor
    • F16K31/402Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a diaphragm

Definitions

  • the invention belongs to the technical field of electronic control of fluid machinery, and relates to an electronic unloading valve which can manage the pressure condition of the fluid mechanical working medium and further affect the operation reliability of the fluid mechanical device.
  • the electronic unloading valve with sequential logic control can improve the working reliability of fluid mechanical devices and systems and reduce the production and operation and maintenance costs, and the compressor device and its system equipped with the electronic unloading valve.
  • a typical scenario is an air compressor system.
  • the high-pressure air output by the compressor often needs to be stored in an air tank in advance, and then distributed to other lower devices or lower tools through the air tank.
  • the air compressor should stop running to stop the gas delivery to the gas tank; and when the pressure of the gas tank drops due to the use of gas by the lower device, the air compressor should restart. To refill the gas tank.
  • Such repeated and continuous cycle work, or the operation of the compressor is intermittent and intermittent.
  • the start and stop of a fluid device system like an air compressor is often repetitive or even frequent.
  • a check valve is generally installed at the inlet of the gas tank (the check valve only allows the gas working medium in the compressor exhaust pipe to enter the gas tank)
  • the gas in the gas tank is not allowed to return to the exhaust pipe), and at the same time, an exhaust check valve is set at the output end of the compressor (the one-way valve only allows the compressor to discharge the gas working medium into the exhaust pipe and not allow it to enter the exhaust pipe.
  • the gas returns to the compressor), in other words, even in the pipeline from the compressor to the gas tank, it will retain a higher pressure gas working medium even when the compressor stops supplying gas.
  • the compressor needs to be compressed
  • the machine can quickly unload and create a low back pressure environment when the compressor is started, and it is also necessary to keep the above-mentioned pipelines in a low back pressure state temporarily during the initial period of compressor startup, so that enough time can be set aside for the
  • the speed of the compressor climbs to a higher rated speed, so the large rotational inertia formed by the rotating parts such as the motor rotor, the compressor crankshaft and the balance weight that has reached a high speed state can help the motor to overcome the difficulty of starting, and the above-mentioned
  • the method to temporarily maintain a low back pressure state in the pipeline during the initial period of compressor start-up is unloading hold.
  • the traditional unloading maintenance method is to open a small hole that is normally open and communicated with the outside atmosphere on the pipeline between the compressor and the gas storage tank, so that when the compressor stops running, the high-pressure gas working medium in the pipeline will be released. It leaks into the outside atmosphere to achieve low back pressure. At the same time, when the compressor starts up again, the normally open hole can also delay the pressure rise in the exhaust pipe, so as to obtain unloading maintenance.
  • Solenoid valves are almost all strong current-induced normally closed unloading valves, that is, when the unloading valve is energized, its solenoid valve first relatively delays closing the unloading hole to achieve the purpose of unloading. Its solenoid valve relies on the large current on its coil to generate a pull-in action to block the unloading hole and keep the closed state until the main motor stops.
  • the "electronic pressure switch with delayed closing electromagnetic unloading valve” disclosed in CN201921209318.5 belongs to this kind of strong current-induced normally closed unloading valve, or the electromagnetic unloading valve of the electronic switch needs to be operated when the compressor is running. During the period, there is a large current, so it is an unloading valve for a strong current and long standby machine.
  • the present invention proposes a pilot-operated electronic unloading valve, the purpose of which is to: effectively improve the working reliability of the electronic unloading valve; The service life of the electronic unloading valve; effectively reduce the production and maintenance costs of the electronic unloading valve; further, effectively improve the reliability of the compressor and its system equipped with the electronic unloading valve and reduce its operation and maintenance costs .
  • a pilot-operated electronic unloading valve which includes a solenoid valve, the solenoid valve includes a valve core, a pull-in coil and a return spring, characterized in that: the unloading valve
  • the loading valve also includes a loading pipeline, a separation membrane, a main unloading pipeline, a pilot transition hole, a pilot pressure relief hole and a seal; the separation membrane is elastic, and one side of the separation membrane faces the main unloading pipeline and the loading pipeline , and depends on whether it touches and blocks the port of the main unloading pipeline to determine whether the main unloading pipeline is connected to the receiving pipeline.
  • the unloading valve is discharged through the main unloading pipeline; the other side of the separation membrane participates in the construction of the pilot cavity, and the pressure in the pilot cavity participates in determining whether the separation membrane touches and blocks the main unloading pipeline; the pilot transition hole normally will pilot
  • the chamber communicates with the receiving pipe, the port at one end of the pilot pressure relief hole communicates with the pilot cavity, and the port at the other end faces the seal, and the seal controls the on-off state of the pilot pressure relief hole , when the pilot pressure relief hole is in an open state, part of the receiving pipeline back pressure working medium that enters the pilot chamber through the pilot transition hole can be discharged from the pilot pressure relief hole; the return spring produces elastic force and this elastic force always tries to drive
  • the seal is to block the pilot pressure relief hole, the electromagnetic valve can generate electromagnetic force with its pull-in coil and valve core, and this electromagnetic force always tries to overcome the elastic force generated by the return spring to make the seal generate an active force. The trend or action of unsealing the pilot pressure relief hole.
  • the above-mentioned return spring applies a force to the sealing member through a lever member.
  • At least part of the structure or structure or accessories of the above-mentioned lever is made of magnetically attractable materials, and the electromagnetic force generated by the solenoid valve is achieved through this lever to overcome the elastic force of the return spring.
  • pilot pressure relief hole is set on the unloading valve body, and the pilot transition hole is set on the separation film or/and the unloading valve body.
  • the above-mentioned seal is film-shaped and has elasticity, and a secondary unloading channel is opened on the unloading valve body or its accessories.
  • the pilot pressure relief hole and the auxiliary unloading channel are sealed and separated, and the back pressure working medium discharged from the pilot pressure relief hole is discharged out of the unloading valve through the auxiliary unloading channel.
  • the above-mentioned electromagnetic valve is connected in parallel with an electrification indicating element formed by connecting a fifth resistor and a light-emitting diode in series.
  • the control sequence of the electromagnetic valve of the above unloading valve is: following the gain and loss of power of the target unloading control object device, the sign of the current passing through the electromagnetic valve is: 1 from the same moment when the target unloading control object device is energized, it flows through the solenoid valve
  • the current of the solenoid valve will transiently become a strong current i;
  • 2 The solenoid valve maintains the electrified state within the set time length ⁇ t from a certain electrification moment and keeps a strong current i passing through;
  • 3 The solenoid valve starts to accumulate from the moment of electrification At the moment when the hour hand of the timing points to the trailing edge of the duration ⁇ t period, the current passing through the solenoid valve instantly drops from a strong current i to a weak current io; 4 from when the solenoid valve drops to a weak current io until the target unloading control object device is de-energized During shutdown, the current flowing through the solenoid valve is always maintained at
  • the above-mentioned pilot electronic unloading valve is equipped with a delay circuit that can control the moment when the solenoid valve is energized and can delay disconnection.
  • the delay circuit includes a bridge rectifier, a triode, a one-way thyristor, A capacitor, a first resistor, a second resistor, a third resistor and a fourth resistor, wherein the first pole of the triode is connected to the positive pole of the bridge rectifier or the first pole of the triode is passed through a zero resistor Then connect to the positive pole of the bridge rectifier, the second pole of the triode is connected to the negative pole of the bridge rectifier or the second pole of the triode is connected to the negative pole of the bridge rectifier after passing through a zero resistance, the third pole of the triode It is connected to one end of the fourth resistor; the other end of the fourth resistor has a common node with one end of the first resistor and one end of the second resistor, and at the same time, this end of the fourth resistor is
  • One end of the capacitor, the other end of the second resistor, and one end of the third resistor have a common node, and the control electrode of the one-way thyristor is connected to the common node of the capacitor, the second resistor, and the third resistor Or the control pole of the unidirectional thyristor is connected to the common node of the capacitor, the second resistor, and the third resistor through a zero resistor; the other end of the capacitor has a common connection with the other end of the third resistor.
  • the common node is connected to the negative pole of the bridge rectifier or the common node is connected to the negative pole of the bridge rectifier after a zero resistor;
  • the cathode of the one-way thyristor is connected to the bridge rectifier Negative connection, or the cathode of the one-way thyristor is connected to the negative pole of the bridge rectifier after passing through a zero resistor, or the cathode of the one-way thyristor is connected to the negative pole of the bridge rectifier after passing through a diode connect.
  • the above pilot-operated electronic unloading valve is equipped with a delay circuit that can control the moment when the solenoid valve is energized and can delay disconnection.
  • the delay circuit includes a bridge rectifier, a field effect tube, and a one-way controllable Silicon, a capacitor, a first resistor, a second resistor, a third resistor and a fourth resistor, wherein the first pole of the field effect transistor is connected to the positive pole of the bridge rectifier or the first pole of the field effect transistor Connect to the positive pole of the bridge rectifier after going through a zero resistance, connect the second pole of the field effect tube to the negative pole of the bridge rectifier or connect the second pole of the field effect tube to the bridge rectifier after passing through a zero resistance
  • the negative pole of the field effect transistor is connected with the third pole of the field effect transistor and one end of the fourth resistor; the other end of the fourth resistor has a common node with one end of the first resistor and one end of the second resistor, and the fourth resistor The end is also
  • a compressor system equipped with a pilot-operated electronic unloading valve including a compressor pump head, an air storage tank, an exhaust pipe and a check valve, one end of the exhaust pipe is connected to the compressor pump head, The other end of the exhaust pipe is connected to the check valve, which is connected to the gas storage tank. It is characterized in that: a branch pipe is arranged on the exhaust pipe, and the pilot type electronic unloading valve The receiving pipe of the pipe is connected with the branch pipe.
  • the above-mentioned pilot-operated electronic unloading valve is in an external form relative to the compressor system, and at the same time, the loading pipe of the unloading valve is connected with the branch pipe of the exhaust pipe of the compressor system using a quick-plug and quick-draw pipe joint type for connection.
  • the aforementioned pilot-operated electronic unloading valve is set to satisfy ⁇ t ⁇ 60 seconds during which the solenoid valve has a strong current i passing through.
  • the present invention has the outstanding advantages that: by adopting the pilot electromagnetic action unloading method, the electronic components in the electronic unloading valve can be controlled by the external form of non-contact high-pressure gas The pressure relief and the duration of pressure relief can effectively improve the working reliability of the electronic unloading valve; at the same time, the use of this pilot electromagnetic action unloading method can also make the entire electronic unloading valve a plug-in quick-plug installation
  • the independent device on the one hand, can be installed conveniently and flexibly without high requirements on the installation position, so it can reduce the production cost and the operation and maintenance cost of later use;
  • the high reliability and long life of the electronic unloading valve are mainly due to the fact that the solenoid valve, the core component of the unloading valve, only needs to provide a small pilot force to control whether the pressure is released, so the actuating force of the solenoid valve does not need If it is too large, it means that the main component coil can be made with fewer turns and thinner wire diameter, so not only the cost can be
  • the present invention is also equipped with the pilot type electronic unloading valve on the compressor system, which can effectively guarantee the high working reliability of the compressor system and reduce the cost.
  • Fig. 1 is an axonometric appearance schematic diagram of an embodiment of a pilot-operated electronic unloading valve of the present invention
  • Fig. 2 is an exploded schematic diagram of the assembly parts of the embodiment of the pilot-operated electronic unloading valve shown in Fig. 1;
  • Fig. 3 is a schematic diagram of the principles of the embodiment of the pilot-operated electronic unloading valve shown in Fig. 1 and Fig. 2 when it is in the stop unloading state;
  • Fig. 4 is a schematic diagram of the principles of the embodiment of the pilot-operated electronic unloading valve shown in Fig. 1 and Fig. 2 when it is in an unloading state;
  • Fig. 5 is a schematic diagram of the control sequence of the pilot type electronic unloading valve of the present invention.
  • Fig. 6 is a schematic diagram of a circuit and wiring layout embodiment of the pilot type electronic unloading valve of the present invention.
  • FIG. 7 is a schematic diagram of another circuit and wiring layout embodiment of the pilot electronic unloading valve of the present invention.
  • Fig. 8 is a schematic layout diagram of an embodiment of a compressor system configured with a pilot-operated electronic unloading valve according to the present invention.
  • a pilot-operated electronic unloading valve includes a solenoid valve L, which includes a valve core 1a, a pull-in coil 1b and a return spring 1c (as shown in Figures 2 to 4).
  • the characteristic of the invention is that the unloading valve also includes a loading pipeline 2, a separation membrane 3, a main unloading pipeline 4, a pilot transition hole 5, a pilot pressure relief hole 6 and a seal 7 (see Fig. 2 to Fig. 4);
  • the loading pipeline 2 can be connected and communicated with the target unloading control object, that is, the device or system that needs to perform unloading operation.
  • the main unloading pipeline 4 mentioned here is a pipeline that can communicate with the outside world, that is, the back pressure working fluid of the target unloading control object device or system can be connected through the connection during the unloading operation.
  • the unloading valve is discharged from the main unloading pipeline 4 and enters the outside world (the outside world refers to an environment with a lower pressure than the back pressure of the target control object device or system, such as the atmosphere or other containers and pipelines.
  • said separation membrane 3 possesses elasticity, and this elasticity refers to that it can produce a certain adaptive deformation when it is stressed, and one side of separation membrane 3 faces the main unloading pipeline 4 and the receiving pipeline 2, and the separation membrane 3
  • the diaphragm 3 depends on whether it touches and blocks the port of the main unloading pipe 4, that is, the nozzle, to determine whether the main unloading pipe 4 communicates with the receiving pipe 2.
  • Figure 3 shows that the diaphragm 3 blocks the main discharge pipe.
  • the situation of the 4 ports of the unloading pipeline, as shown in Figure 4, is the situation in which the separation membrane 3 opens the 4 ports of the main unloading pipeline.
  • the separation membrane 3 uses its body to directly block (as shown in Figure 3) and to use other intermediate parts to indirectly block (not shown in the figure); when the main unloading pipeline 4 communicates with the receiving pipeline 2 At this time (as shown in Figure 4), the relatively high-pressure backpressure working medium in the receiving pipeline 2 can be discharged from the unloading valve through the main unloading pipeline 4 and enter the outside world. At this time, the unloading valve is performing the unloading operation process. On the contrary, when the main unloading pipeline 4 is blocked by the separation membrane 3 and fails to communicate with the receiving pipeline 2 (as shown in Figure 3), the back pressure working medium in the receiving pipeline 2 cannot pass through the The main unloading pipeline 4 discharges the unloading valve.
  • the unloading valve is normally closed after the unloading operation is completed to prevent the loss of working fluid in the target pressure relief control object; the other side of the separation membrane 3 participates in the structure Pilot cavity 8, and the pressure in the pilot cavity 8 participates in determining whether the separation membrane 3 touches and blocks the port of the main unloading pipeline 4; it should be noted that the pilot cavity 8 can be composed of multiple parts, such as Figure 3
  • the pilot chamber 8 shown in Figure 4 is composed of the unloading valve body 9 and the separation membrane 3, wherein the unloading valve body 9 can be an independent and complete part, or it can be assembled from multiple parts.
  • the structure can have many forms, and Figure 1 shows one of its appearance forms; the pilot transition hole 5 normally communicates the pilot chamber 8 with the receiving pipeline 2, in other words, the working fluid pressure in the pilot chamber 8 The working fluid pressure, that is, the back pressure of the receiving pipeline 2 is or is almost equal, and the receiving pipeline 2 can continuously supplement the working fluid to the pilot cavity 8 by means of the pilot transition hole 5; the pilot pressure relief The port or orifice at one end of the hole 6 communicates with the pilot cavity 8 and the port or orifice at the other end faces the sealing member 7, and the on-off state
  • Figure 3 shows that the seal 7 uses its body to directly seal the pilot pressure relief hole 6
  • the situation of the orifice; the back-moving spring 1c of the present invention can produce elastic force, and this elastic force can be pressure (not shown in the figure) also can be pulling force (as shown in Fig. 2 to Fig.
  • the form of tension is relatively stable, but whether it is in the form of pressure or in the form of tension, the elastic force produced by the return spring 1c in the present invention always tries to drive the sealing member 7 to lean against and block the port of the pilot pressure relief hole 6 ;
  • the electromagnetic valve L of the present invention can generate electromagnetic force after its pull-in coil 1b and valve core 1a are energized, and this electromagnetic force always attempts to overcome the elastic force produced by the return spring 1c to make the seal 7 appear There is a tendency or actual action to open or unseal the pilot pressure relief hole 6; the working principle of the unloading valve of the present invention is explained below: 1When the electromagnetic force generated by the solenoid valve L is in a dominant position compared with the elastic force generated by the return spring 1c ⁇ The pressure received by the sealing member 7 from the return spring 1c is overcome ⁇ the sealing member 7 breaks away from the orifice of the pilot pressure relief hole 6 and opens the pilot pressure relief hole 6 ⁇ the working medium in the pilot chamber 8 is
  • Figure 3 shows the situation where the unloading valve stops pressure relief.
  • the return spring 1c in the present invention can affect the behavior of blocking the pilot pressure relief hole 6 by directly abutting against the sealing ring 7 (not shown in the figure), and can also be used by other third parties.
  • the middle piece indirectly abuts against the seal 7 to affect its behavior of blocking the pilot pressure relief hole 6 (as shown in Figure 3 and Figure 4); in addition, the solenoid valve L can directly affect the seal ring 7 ( At this time, the sealing ring 7 is made of a material that can be magnetically attracted or an accessory that can be magnetically attracted is added to the sealing ring 7, not shown in the figure), especially the solenoid valve L can also be released by other third-party middleware.
  • the discharge of the working medium through the main unloading pipeline 4 in the present invention is the main channel for pressure relief, and most of the back pressure working medium is discharged from the unloading valve from here, which is the main responsible for unloading, and through the pilot
  • the working medium discharged from the pressure relief hole 6 is a pressure relief secondary channel, which only discharges a very small part of the working medium.
  • the task of the pilot pressure relief hole 6 is to pry open the main pressure relief channel of the main unloading pipeline 4, which has the effect of four or two.
  • the spool 1a of the solenoid valve L in the present invention has multiple actuation strategies, and it can be a moving part or a fixed part. Among them, the spool 1a is the most simple as the fixed part, as shown in Figure 3 and shown in Figure 4.
  • the return spring 1c of the present invention applies a force to the sealing member 7 through a lever member 11 (see Figures 2 to 4).
  • lever member 11 There are two benefits of setting the lever member 11. Arranged on the outside of the solenoid valve L, this is beneficial to simplify the design and layout of the solenoid valve L, and can reduce the volume of the unloading valve; another advantage is that the return spring 1c is applied to the lever 11 and then to the seal 7.
  • the force to block the pilot pressure relief hole 6 against the seal 7 can be arranged more flexibly, either in the form of tension (as shown in Figures 2 to 4 ), or in the form of pressure (not shown in the figure), especially in the form of tension, and it is well known that the application of tension is more stable than that of thrust.
  • the structure of the lever member 11 in the present invention can have various forms, such as rod shape or plate shape and so on.
  • At least part of the structure or structure or attachment of the lever member 11 is made of a magnetically attractable material, so that the solenoid valve L
  • the electromagnetic force generated by it can be used to act on the lever member 11 and further influence and overcome the elastic force of the return spring 1c by means of the lever member 11 .
  • pilot pressure relief hole 6 of the present invention can be provided on the unloading valve body 9 (as shown in Figure 3 and Figure 4), and the pilot pressure relief hole 6 can also adopt the structure and layout of the conduit form ( Figure 3 and Figure 4). not shown in); the pilot transition hole 5 according to the present invention can be set on the separation membrane 3 (as shown in Figure 2 to Figure 4) or/and set on the unloading valve body 9 (not shown in the figure) , In addition, the pilot transition hole 5 can also be connected to the pilot cavity 8 (not shown in the figure) in the form of a conduit structure.
  • the sealing member 7 of the present invention can be a film-like structure (that is, flat or shell-shaped), and the sealing member 7 has a certain degree of elasticity, and an auxiliary unloading valve is provided on the unloading valve body 9.
  • the passage 12, the sealing member 7 can seal and isolate the valve core 1a, the pull-in coil 1b, the return spring 1c, the lever member 11 of the solenoid valve L, the pilot pressure relief hole 6 and the auxiliary unloading passage 12.
  • the back pressure working medium discharged from the pressure relief hole 6 is discharged out of the unloading valve after passing through the auxiliary unloading channel 12 (as shown in Figure 3 and Figure 4).
  • Core components such as the coil 1b, the return spring 1c and the lever 11 are no longer affected by the pressure-released working fluid, thereby effectively improving the reliability of the solenoid valve L.
  • the pilot-operated electronic unloading valve of the present invention can adopt the following strategy to control the operating state of the solenoid valve L, that is, the unloading valve control sequence: see Figure 5, following the operating state of the target control object, the pilot-operated electronic unloading valve is also related to The target control object device enters the power-off state or the power-on state synchronously, that is, when the target control object device starts to operate from the power supply, the pilot electronic unloading valve is also synchronously powered on at the moment, and the target control object device loses power and stops running.
  • the instantaneous pilot electronic unloading valve is also synchronously de-energized instantaneously;
  • the symbolic feature of the target control object device being powered on and running and power-off shutdown is: when it is powered on at a certain moment, the voltage of the target control object device at this moment is at In the high voltage (V) state, if the power is lost at a certain moment, the voltage of the target control object device is in the zero voltage (0) state at this moment;
  • the solenoid valve L in the electronic unloading valve, its control sequence, that is, the sign of the current passing through the solenoid valve L has the following characteristics: 1 At the same moment when the target unloading control object device is powered on, the current flowing through the solenoid valve will be Transiently becomes a strong current i; 2The solenoid valve maintains the energized state within the set duration ⁇ t period from a certain energized moment and keeps a strong current i passing through; At the moment when pointing to the trailing edge of the duration ⁇ t period, the
  • the solenoid valve L when the solenoid valve L passes a strong current i, it can generate an electromagnetic force superior to the elastic force of the return spring 1c to drive the sealing member 7 to unseal the pilot pressure relief hole 6; when the solenoid valve L passes a weak current io Or when it is zero current (0), it can not produce the electromagnetic force enough to overwhelm the elastic force of back-moving spring 1c so that the seal 7 blocks the pilot pressure relief hole 6 again under the action of the elastic force of back-moving spring 1c.
  • the weak current io mentioned in the present invention means that the current is so weak (including the situation that it is zero), so that it makes the electromagnetic force generated by the solenoid valve L very weak or even zero and cannot be overcome. The elastic force exerted on the lever member 11 generated by the return spring 1c.
  • the pilot-operated electronic unloading valve of the present invention in order to make it realize the effective unloading management of the unloading control target device, so that it can be continuously intermittently working in the process of repeated shutdown ⁇ start ⁇ stop ⁇ start A smooth start can be achieved when restarting the machine, and a delay circuit 13 (see Fig. 6 and Fig. 7 ) that can control the solenoid valve L to be energized for an instant and to delay disconnection is specially configured.
  • the configuration of the delay circuit 13 can ensure the realization of electromagnetic
  • the control sequence of valve L the specific meaning of "instantaneous power-on and delayed disconnection” mentioned here is: once the solenoid valve L is energized (corresponding to the moment when the target unloading control object device is energized and started), the moment when it is automatically energized Immediately, a strong current i passes through the solenoid valve L, and this strong current i can make the solenoid valve L generate enough electromagnetic force to overwhelm the elastic force of the return spring 1c so that the seal 7 is separated from the pilot pressure relief hole 6, thus facilitating a series of follow-up Unloading action, when the accumulative timing reaches the moment of ⁇ t seconds from the moment of power gain (the length of this period ⁇ t is controlled by the design parameters of the delay circuit 13), the cumulative effect of the delay circuit 13 will instantly cut off the strong current i passing through the solenoid valve L And make it a residual weak current io (where io ⁇ i) or even zero current, this period
  • the delay circuit includes a bridge rectifier D, a triode Q, a one-way thyristor SCR , a capacitor C, a first resistor R1, a second resistor R2, a third resistor R3 and a fourth resistor R4, wherein the first pole Q1 of the triode Q is connected to the positive pole (+) of the bridge rectifier D ( As shown in Figure 6) or the first pole Q1 of the triode Q is connected to the positive pole (+) of the bridge rectifier D after passing through a zero resistance (not shown in the figure), the second pole Q2 of the triode Q is connected to the bridge The negative pole (-) of the bridge rectifier D is connected (as shown in Figure 6) or the second pole Q2 of the triode Q is connected to the negative pole (-) of the bridge rectifier D after passing through a zero resistor (not shown in the figure output), the third pole Q3 of the trio
  • the so-called “common node” means that they are directly connected together, or they are connected together through wires, or they pass through other resistances of the third party (other resistances of this third party can also be called zero resistance) and then connected together, in short, the “common node” can be directly connected or indirectly connected, such as "one end of the capacitor C, the other end of the second resistor R2, and one end of the third resistor R3" "The three have a common node” includes both the situation that they are directly connected and have a common node, and the situation that one of them or all of them are connected after passing through a zero resistance.
  • the first pole Q1", “the second pole Q2” and “the third pole Q3" of the triode Q mentioned in the present invention their definitions are related to the specific type of the triode Q: 1.
  • the triode Q is an "NPN type triode” " (Fig. 6 shows the case where the transistor Q is an "NPN transistor")
  • the first electrode Q1 is designated as the collector
  • the second electrode Q2 is the emitter
  • the third electrode Q3 is the base
  • the transistor Q When it is a "PNP transistor” (not shown in the figure), the first pole Q1 is designated as the emitter, the second pole Q2 is the collector, and the third pole Q3 is the base.
  • the "zero resistance” in the present invention generally refers to other resistances that are third-party properties, that is, the resistance can be connected to the delay circuit 13 as required, and its value can be Make trade-offs according to the needs of specific situations.
  • this delay circuit includes a bridge rectifier D, a field effect transistor IGBT, a unidirectional Silicon-controlled SCR, a capacitor C, a first resistor R1, a second resistor R2, a third resistor R3 and a fourth resistor R4, wherein the first pole A1 of the field effect transistor IGBT is connected to the positive pole of the bridge rectifier D ( +) (as shown in Figure 7) or the first pole A1 of the field effect transistor IGBT is connected to the positive pole (+) of the bridge rectifier D after passing through a zero resistance (not shown in the figure), the field effect
  • the second pole A2 of the tube IGBT is connected to the negative pole (-) of the bridge rectifier D (as shown in Figure 7) or the second pole A2 of the field effect tube IGBT is connected to the bridge rectifier D through a zero resistor
  • the negative pole (-) is connected (not shown in the figure),
  • the anode A of the silicon-controlled SCR is connected (not shown in the figure); the other end of the first resistor R1 is connected to the positive pole (+) of the bridge rectifier D (as shown in Figure 7) or the end of the first resistor R1 is connected via a
  • the zero resistor is then connected to the positive pole (+) of the bridge rectifier D (not shown in the figure); one end of the capacitor C, the other end of the second resistor R2, and one end of the third resistor R3 have a common node
  • the gate G of the one-way thyristor SCR is connected to the common node of the capacitor C, the second resistor R2, and the third resistor R3 (as shown in FIG.
  • the gate G of the one-way thyristor SCR is connected via a zero
  • the other end of the capacitor C and the other end of the third resistor R3 have a common junction point, and the common node is connected to the negative pole (-) of the bridge rectifier D (as shown in Figure 7) or the common node is connected to the negative pole (-) of the bridge rectifier D after passing through a zero resistance ( Figure 7 not shown in); the cathode K of the one-way thyristor SCR is connected to the negative pole (-) of the bridge rectifier D (as shown in Figure 7), or the cathode K of the one-way thyristor SCR is connected via a zero
  • the resistor is then connected to the negative pole (-) of the bridge rectifier D (not shown in the figure), or the cathode K of the one-way thyristor SCR is connected to the negative pole (-) of the bridge rectifier D after passing through a diode (not shown in the figure).
  • the "No. 1 pole A1", “No. 2 pole A2” and “No. 3 pole A3" of the field effect transistor IGBT mentioned in the present invention are related to the specific type of the field effect transistor IGBT: 1 Field effect tube IGBT When it is a "PNP type effect transistor IGBT" ( Figure 7 shows the situation where the effect transistor IGBT is a "PNP type transistor"), the first pole A1 is designated as the drain, the second pole A2 is the source, and the third pole A3 2 When the field effect transistor IGBT is an "NPN transistor" (not shown in the figure), the first pole A1 is designated as the source, the second pole A2 is the drain, and the third pole A3 is the gate.
  • the "zero resistance" in the present invention generally refers to other resistances that it is a third-party property, that is, the resistance can be connected to the delay circuit 13 as required, and its value can be adjusted according to the actual situation. Make trade-offs as circumstances require.
  • the pilot-operated electronic unloading valve of the present invention After the pilot-operated electronic unloading valve of the present invention is equipped with the delay circuit 13, it can control the solenoid valve L to be turned on and off at a time when it is energized, that is, the control sequence of the unloading valve can be realized.
  • the so-called pull-in means that the solenoid valve L passes through a strong current i and generates an electromagnetic force sufficient to overcome the elastic force of the return spring 1c
  • the so-called delayed disconnection means that the accumulated pull-in time reaches the set value.
  • the current in the solenoid valve L becomes a weak current io. In the case of weak current or zero current (zero current is the state of shutdown and power loss), the solenoid valve L cannot generate enough electromagnetic force to overcome the elastic force of the return spring 1c .
  • the unloading valve In the first stage of power release stage, when the unloading target object controlled by the unloading valve starts to start (the voltage of the target object device reaches V volts instantly from 0 volts at this time, see Figure 6), at the same time, the unloading valve Also instantaneously get electricity at the same time ⁇ at this time, the positive end of the capacitor C in the delay circuit 13 is in the period of low charge after the last round of power loss (the positive electrode of the capacitor C is connected to the control electrode G of the one-way thyristor SCR) ⁇
  • the control pole G of the one-way thyristor SCR is in a low voltage state so it is not turned on ⁇ the voltage on the delay circuit 13 is distributed by the first resistor R1, the second resistor R2 and the third resistor R3 ⁇ then the fourth resistor R4 Obtain the voltage on the second resistor R2 and the third resistor R3 (at this time, the two resistors are in series and they share the voltage between the positive and
  • the concave deformation of the pilot cavity 8 causes the receiving pipe 2 to communicate with the main unloading pipe 4, so that the back pressure working medium in the receiving pipe 2 is discharged to the outside of the unloading valve through the main unloading pipe 4 and makes the receiving pipe 2 The internal back pressure drops.
  • the specific flow path of the main current of the strong current i is: power supply AC/DC ⁇ solenoid valve L ⁇ bridge rectifier D AC pole ( ⁇ ) ⁇ bridge rectifier D positive pole (+) ⁇ the first pole of transistor Q Q1 ⁇ second pole of triode Q Q2 ⁇ bridge rectifier D negative pole (-) ⁇ bridge rectifier D AC pole ( ⁇ ) ⁇ power supply AC/DC, notice that the above process starts from the moment the unloading valve is powered to the solenoid valve L
  • the flow of strong current i is completed instantaneously, which is reflected in the control sequence diagram as the momentary leading edge of the unloading target device being powered on (that is, the peak leading edge of the operating voltage V) and the unloading valve solenoid valve being energized by the strong current i
  • the instantaneous leading edge that is, the peak leading edge of the strong current i flowing through the solenoid valve
  • the second stage is the pressure relief and constant stage. At this time, the unloading target object has started to activate its device voltage and maintain it at V volts.
  • the solenoid valve L has obtained a strong current from the moment i when it is powered on. It has been ⁇ t seconds since then.
  • the unloading valve has been performing unloading operation ⁇ at this stage, the capacitor C in the delay circuit 13 has been being charged, and the voltage value of its positive terminal has been increasing, but it still has not reached the threshold for triggering the one-way thyristor SCR ⁇
  • the one-way thyristor SCR is still in the non-conducting cut-off state ⁇ the voltage on the delay circuit 13 is still dominated by the first resistor R1, the second resistor R2 and the third resistor R3 ⁇ the fourth resistor R4 is still kept high Voltage state ⁇ transistor Q remains in the conduction state ⁇ then the strong current i flowing through the solenoid valve L is still maintained ⁇ the unloading valve unloading work is still going on ⁇ the back pressure in the receiving pipeline 2 continues to drop or is maintained at a lower pressure level, At this stage, the main current path of the strong current i is the same as that of the previous first stage;
  • the third stage is the delay disconnection stage. At this time, the unloading target object has been started and has entered the normal operation stage. The device voltage is maintained at V volts. The unloading valve unloading task has been completed and it is necessary to enter and close each pressure relief channel. In order to prevent the pressure-holding stage of unnecessary leakage loss of working fluid, the feature of this stage is an instant, and its mark is the ⁇ t second from the moment when the unloading valve is powered on.
  • the capacitor in the delay circuit 13 C is finally charged and reaches the threshold value of its positive terminal voltage triggering the one-way thyristor SCR ⁇ then the one-way thyristor SCR is turned on instantly ⁇ the second resistor R2 and the third resistor R3 are almost short-circuited instantly ⁇ the fourth resistor R4
  • the voltage is pulled down instantly ⁇ the triode Q changes from the conduction state to the cut-off state in an instant ⁇ then the path of the main current flowing through the solenoid valve L becomes: power supply AC/DC ⁇ solenoid valve L ⁇ bridge rectifier D AC pole ( ⁇ ) ⁇ bridge rectifier D positive pole (+) ⁇ first resistor R1 ⁇ one-way thyristor SCR anode A ⁇ one-way thyristor SCR its cathode K ⁇ bridge rectifier D negative pole (-) ⁇ bridge rectifier D AC pole ( ⁇ ) ⁇ power supply AC/DC.
  • the resistance value of the first resistor R1 is relatively large, so the current flowing through the solenoid valve L instantly becomes a small weak current io.
  • This weak current io is also called residual current, and its value is much smaller than the strong current i , that is, io ⁇ i; reflected in the control timing diagram (see Figure 6), that is, the moment of the second ⁇ t is the peak trailing edge of the strong current i, and the current flowing through the solenoid valve L instantly drops from the strong current i to the weak current io and maintain until the unloading valve is completely de-energized (corresponding to the shutdown of the unloading target device).
  • the electromagnetic valve L changes to a weak current io to pass through, it cannot generate dominant electromagnetic force to overcome the elastic force of the return spring 1c, so under the dominance of the elastic force of the return spring 1c, the sealing member 7 is pressed against and blocked by the lever member 11 again Stop the opening of the pilot pressure relief hole 6, then the pressure in the pilot chamber 8 rises, and then the separation membrane 3 starts to block the port of the main unloading pipeline 4, and at this time, the receiving pipeline 2 and the main unloading pipeline 4 are no longer connected , so the back pressure working medium in the receiving pipeline 2 is no longer discharged to the outside through the unloading valve; obviously, the duration ⁇ t seconds is mainly determined by the parameters of the capacitor C and the third resistor R3, or by this The parameters of the two dominate the time constant of the charge and discharge of the capacitor C, and the delay period for closing the unloading valve unloading action after a delay of ⁇ t seconds is set according to the specific requirements of different unloading target objects Or designed; In addition, it should be pointed out that
  • the fourth stage is the power-off standby stage.
  • the unloading target object is in the shutdown state of stopping operation.
  • the voltage of the unloading target object device drops to zero volts, and the unloading valve also enters at this time.
  • the state of complete power loss is reflected in the control timing diagram (see Figure 6) that the current flowing through the solenoid valve L is zero current.
  • a compressor system equipped with a pilot-operated electronic unloading valve including a compressor pump head 14, an air storage tank 15, an exhaust pipe 16 and a check valve 17, one end of the exhaust pipe 16 is connected to the compressor
  • the pump head 14 is connected, the other end of the exhaust pipe 16 is connected with the check valve 17, and the check valve 17 is connected with the gas storage tank 15 (as shown in Figure 8).
  • a branch pipe 18 is arranged on the air pipe 16, and the loading pipe 2 of the pilot electronic unloading valve is connected with the branch pipe 18.
  • the present invention is equipped with a compressor system equipped with a pilot-operated electronic unloading valve.
  • the pilot-operated electronic unloading valve is an external form relative to the compressor system.
  • the branch pipe 18 of the air pipe 16 is connected by a quick-plug and quick-draw pipe joint type, which indicates that the unloading valve can be flexibly arranged and positioned, and can be quickly installed.
  • the present invention is equipped with a compressor system equipped with a pilot electronic unloading valve, and the pilot electronic unloading valve is set to satisfy ⁇ t ⁇ 60 seconds when the electromagnetic valve L has a strong current i passing through.
  • the present invention adopts the pilot electromagnetic action unloading method, so that the electronic components in the electronic unloading valve can adopt the external form of non-contact high-pressure gas to control whether it performs pressure relief and the duration of pressure relief, so that it can effectively Improve the working reliability of the electronic unloading valve; at the same time, the use of this pilot electromagnetic action unloading method can also make the entire electronic unloading valve an independent device of plug-in quick-plug installation. On the one hand, it can be conveniently and flexibly installed.
  • this pilot electromagnetic action unloading method can also realize the high reliability and long-term reliability of the electronic unloading valve from the working principle.
  • the service life is mainly due to the fact that the solenoid valve L, the core component of the unloading valve, only needs to provide a small pilot force to control the pressure relief or not, so the actuating force of the solenoid valve L does not need to be too large, which means that its main body
  • the component coil can be made with fewer turns and thinner wire diameter, so not only the cost can be reduced but also the working reliability can be improved; more importantly, the use of this pilot electromagnetic action unloading method can also realize weak current
  • a normally closed unloading valve that is, it only needs to maintain a small weak current or even no current through it during work, and can use a weak elastic return spring 1c to generate a long-term blocking force to maintain
  • the main unloading pipeline 4 is normally closed, which will inevitably have a positive impact on improving the life and working reliability of the electronic components of the unloading valve.
  • the present invention is also equipped with the pilot type electronic unloading valve on the compressor system, which can effectively guarantee the high working reliability of the compressor system and reduce

Abstract

一种先导型电子式卸荷阀,属于流体机械电子控制技术领域,包括电磁阀(L),电磁阀(L)包含一个阀芯(1a)、一个吸合线圈(1b)和一根复位弹簧(1c),该卸荷阀还包括接载管道(2)、分隔膜(3)、主卸荷管道(4)、先导过渡孔(5)、先导泄压孔(6)和密封件(7)。该卸荷阀采用主要电子元器件为非接触高压气体的布局形式,有效提高了工作可靠性;采用外挂快插装配总体设计形式,有效达成快捷灵活安装并降低了生产成本及后期运维成本;采用先进的先导型卸荷方式,从原理上实现了卸荷阀的高工作可靠性与长运行寿命。只需通以弱电流甚至无需电流而仅借助弱弹力复位弹簧(1c),就可达成主卸荷管道(4)长期常闭亦即实现卸荷阀弱电流致常闭值机,籍此可采用低载荷设计原则处置机械零部件与电子元器件,故能提高卸荷阀的工作可靠性。在压缩机系统上配装此电子式卸荷阀,有效保障了压缩机系统的工作可靠性并能降低其生产成本。

Description

一种先导型电子式卸荷阀及配装有该卸荷阀的压缩机系统 技术领域:
本发明属于流体机械电子控制技术领域,涉及一种可管理流体机械工质压力状况并进而对流体机械装置运行可靠性产生影响的电子式卸荷阀,具体地说涉及一种包含有压力逻辑控制与时序逻辑控制的可达成提高流体机械装置及系统工作可靠性并能降低其生产与运维成本的电子式卸荷阀、以及配置有该电子式卸荷阀的压缩机装置及其系统。
背景技术:
在流体机械装置及其控制技术领域,比如空压机、真空泵、液压泵、液压马达、水泵等流体机械装置与系统,它们往往都需要配装一些可以对其输出或者输入的流体工质进行压力管理与调控的装置或者元器件。特别是对于那些存在有间歇性工作运行停顿需求的装置与系统,为了能够让它们顺利地实现软启动以避免对电网及装置造成强冲击,需要在再启动时让这些装置的起步载荷处在一个相对较小的数值范围内,此时往往需要对它们的下位机或者下位管路系统等进行适当的卸荷操作,也就是把输出高压流体工质的那些上位装置的工作背压降下来。一个典型的场景是空压机系统,在该系统当中,压缩机输出的高压空气往往需要预先储存在一个气罐之内,再经由这个气罐输配给其它各个下位装置或者下位工具,一旦气罐达到了预设的压力数值时则空压机就应该暂停运转以停止向气罐输气;而当因下位装置用气等原因导致气罐压力下降时,则空压机就应当重新启动运行以对气罐进行补气。如此反反复复不断循环工作,又或者说压缩机的运转是断续的和间歇性的。很显然,类似空压机这样一类流体装置系统,其启停是经常性的反复性的乃至频繁性的。通常来讲,为了避免 气罐内的高压气体倒灌回压缩机内,一般都会在气罐的入口端设置一个逆止阀(该逆止阀只准压缩机排气管的气体工质进入气罐而不许气罐内的气体返回排气管),并同时在压缩机的输出端设置一个排气单向阀(该单向阀只准压缩机排出气体工质进入排气管内而不许排气管内的气体返回压缩机),换句话说从压缩机到气罐的这一段管路内即使是在压缩机停止供气期间它也会保存有较高压力的气体工质,这些高压的气体工质事实上构成了压缩机的所谓背压。毫无疑问,压缩机的每一次启动都需要克服上述背压才能进行,而压缩机在高背压工况下进行启动将会导致三个弊端:1)首先是压缩机的启动负载比较高,以至于它对电网产生有较大的冲击,同时它还需要消耗掉较多的电能,也因此这种运行工况对安全运行及节能降耗均不利;2)其次是高背压的启动环境对压缩机的负面影响极大,其后果是对压缩机的活塞、曲轴乃至轴承等都会产生很大的冲击,以至于这些压缩机的核心零部件工作寿命较短工作可靠性变差;3)还有就是在一些小型空压机系统场合,高背压的工况往往很容易会造成压缩机无法顺利启动,结果导致无法向气罐进行及时补气,从而影响整个系统的正常工作。上述情形表明,在压缩机再启动运行时,既有需要且有必要对压缩机至气罐这一段管路内的高压状态进行卸荷降载,以便保障压缩机及其与之相关的装置及系统的安全可靠性,同时也为压缩机的顺利启动创造出有利条件,这就是对空压机系统实施背压卸荷的由来。
对空压机系统而言,对其背压实施再启动卸荷有着特别重要的意义,它的原理和出发点是:在压缩机启动的最初的很短时间内,由于压缩机至气罐的管路容积很小,以至于前次卸荷所创造出的低背压环境很快会因管路被迅速充满而不复存在,也就是说压缩机立马又再次进入高背压模式,注意到此时压缩机 的转速因机械惯性还未达到标定转速而尚处在较低速的运行工况,于是处于爬坡状态的电机极易被憋死从而造成压缩机启动失败,这种情况下需要压缩机在启动开机时能迅速卸荷并创造出低背压环境,而且还需要在压缩机启动的最初时段内让上述管路仍然暂时保持低背压状态,如此则可留出足够的时间来让压缩机的转速爬升至较高的标定转速,于是则可借助已达高速状态的电机转子、压缩机曲轴以及平衡块等转动件所形成的大转动惯性来帮助电机度过启动难关,而获得上述让压缩机启动最初时段让管路内仍暂时保持低背压状态的方法就是卸荷保持。传统卸荷保持的方法是在压缩机至储气罐之间的管路上开设一个常开的并与外界大气相通的小孔,这样当压缩机暂停运转时管路内的高压气体工质就被泄漏到外界大气当中而籍此实现低背压,同时,在压缩机再次启动时该常通的小孔还能够延缓排气管内压力的上升速度,以此获得卸荷保持。但是,这样做法的弊端是显而易见的,因为它会导致压缩机系统一直处在泄漏状态而不节能;于是人们又想到了采用电磁阀来控制上述泄漏孔,让它在需要卸荷时让其打开而在不需要卸荷时则让它关闭同时在需要卸荷保持时让它延时关闭,这就是电磁延时阀的由来,电磁延时阀也统称为电子式卸荷阀。
现有电子式卸荷阀几乎都是紧固在或者内置在相应目标装置与系统上的,尤其是它们所采用的用以管控目标管道与外界进行卸载与否之卸荷孔其通断状况的电磁阀几乎都是强电流致常闭型卸荷阀,亦即该卸荷阀在得电时其电磁阀首先相对延迟关闭卸荷孔以达到卸荷的目的,当短暂时段的卸荷完毕后其电磁阀依靠通过其线圈上的较大电流产生吸合动作以封堵卸荷孔并将该闭合状况一直保持到主电机停机为止。比如CN201921209318.5所公开的“带延时关闭电磁卸荷阀的电子压力开关”就属于这种强电流致常闭型卸荷阀,或者说该电子开 关的电磁卸荷阀需要在压缩机运行期间均通有大电流,故为强电流长待值机类卸荷阀。
现有技术中的上述强电流长待值机类的强电流致常闭型电子式卸荷阀虽然较之传统简单粗暴型的机械式卸荷手段有明显进步,但同时它们依然有不足之处,归结起来主要有以下几点:1)紧固类或者内置型卸荷阀存在生产及运维使用成本较高的弊病,原因之一在于它们的位置通常不能随便变更,并且对安装部位的制造要求以及对卸荷阀的安装操作要求均比较高,致使生产成本较高;原因之二在于紧固型特别是内置型卸荷阀其使用运维成本比较高,因为它更换十分不便并且难以通用,故其维护维修成本较高。2)强电流致常闭型卸荷阀使得其生产成本变高,一方面是由于这种类型的卸荷阀依靠电磁力来克服弹簧的复位力以保持卸荷孔得以常闭,由此必须将线圈的匝数做多或/和将线圈的线径做大,无疑必将导致成本上升,另一方面是由于这种类型的电磁阀必须与高压气体保持紧密接触状态,也因此为了防止发生泄漏,该电磁阀必须设置有专门的要求很高的防泄漏密封元器件,结果必然导致成本提高;3)强电流致常闭型卸荷阀还容易导致卸荷阀的工作可靠性变差,盖因在工作期间它必须保持有较大的电流长期间地通过电磁阀的线圈以产生封堵力来保持卸荷孔常闭,该强大的电流较长时间地通过卸荷阀,必然会对其电子元器件的寿命产生负面影响,一方面容易导致相关电子元器件老化而致使卸荷阀工作可靠性变差,另一方面大的电流通过也极易造成电子卸荷阀各个组成零部件容易诱发故障而使工作可靠性变差。综上,当下的强电流致常闭型电子式卸荷阀还有进一步改进提升的空间。
发明内容:
针对现有强电流致常闭型电子式卸荷阀存在的不足,本发明提出一种先导型电子式卸荷阀,其目的在于:有效提高电子式卸荷阀的工作可靠性;有效提高电子式卸荷阀的使用寿命;有效降低电子式卸荷阀的生产及维修成本;进一步,有效提高配装有该电子式卸荷阀的压缩机及其系统的工作可靠性并降低其运维成本。
本发明目的是这样予以实现的:一种先导型电子式卸荷阀,它包括有电磁阀,该电磁阀包含有一个阀芯、一个吸合线圈和一根复位弹簧,其特征在于:该卸荷阀还包括有接载管道、分隔膜、主卸荷管道、先导过渡孔、先导泄压孔和密封件;所述的分隔膜具有弹性,分隔膜的一面朝向主卸荷管道与接载管道、并依赖其是否触抵封堵主卸荷管道的端口来决定主卸荷管道与接载管道是否发生连通,当主卸荷管道与接载管道发生连通时接载管道内的背压工质可经由该主卸荷管道排出卸荷阀;分隔膜的另一面参与构造先导腔,先导腔内的压力则参与决定分隔膜是否触抵封堵主卸荷管道;所述的先导过渡孔常态将先导腔与接载管道连通,所述的先导泄压孔其一端的端口与先导腔连通、其另一端的端口朝向所述密封件,并且由这个密封件来控制该先导泄压孔的通断状态,当先导泄压孔呈开通状态时部分经由先导过渡孔进入先导腔的接载管道背压工质可从该先导泄压孔排出;所述的复位弹簧产生有弹力并且该弹力总是企图驱使所述密封件去抵靠封堵先导泄压孔,所述的电磁阀其吸合线圈与阀芯可以产生电磁力并且这个电磁力总是企图去克服复位弹簧产生的弹力而让密封件产生有解封先导泄压孔的趋势或者动作。
进一步,上述的复位弹簧通过一个杠杆件去施加作用力给予密封件。
进一步,上述的杠杆件它至少有部分结构或者构造或者附件采用为可磁性 吸合材料制作,所述的电磁阀其产生的电磁力乃通过这个杠杆件去达成克服复位弹簧的弹力。
进一步,上述的先导泄压孔开设在卸荷阀本体上,所述的先导过渡孔开设在分隔膜或/和卸荷阀本体上。
进一步,上述的密封件呈薄膜状并具有弹性,在卸荷阀本体或者其附件上开设有副卸荷通道,该密封件将电磁阀的阀芯、吸合线圈、复位弹簧、杠杆件与所述的先导泄压孔及副卸荷通道密封隔断,从先导泄压孔排出的背压工质经由该副卸荷通道再排出卸荷阀。
进一步,上述的电磁阀上并联有一个由第五电阻与发光二极管串接而成的得电指示元件。
上述卸荷阀的电磁阀的控制时序是:跟随目标卸荷控制对象装置的得失电状态,通过电磁阀的电流标志为:①自目标卸荷控制对象装置得电的同一时刻,流经电磁阀的电流将瞬变为强电流i;②电磁阀自某得电瞬间起在设定时长Δt时段内均维持得电状态且一直保有强电流i通过;③在电磁阀从得电瞬间起开始累计计时的时针指向时长Δt时段后沿的那一刻,电磁阀内通过的电流瞬间从强电流i降为弱电流io;④电磁阀自降为弱电流io时起至目标卸荷控制对象装置失电停机,期间流经电磁阀的电流一直维持为弱电流io;⑤电磁阀从目标卸荷控制对象装置失电停机的那一瞬间时刻起流经电磁阀的电流变为零,并且这种状态伴随目标卸荷控制对象装置的整个关机停机期间。
上述先导型电子式卸荷阀配置有一个可控制电磁阀通电瞬间吸合并能延时断开的延时电路,该延时电路包括有一个桥式整流器、一个三极管、一个单向可控硅、一个电容、一个第一电阻、一个第二电阻、一个第三电阻和一个第四 电阻,其中三极管的第一极与桥式整流器的正极相连接或者该三极管的第一极经由一个零号电阻后再与桥式整流器的正极连接、三极管的第二极与桥式整流器的负极相连接或者该三极管的第二极经由一个零号电阻之后再与桥式整流器的负极相连接、三极管的第三极与第四电阻的一端相连接;第四电阻的另一端与第一电阻的一端、第二电阻的一端有共同结点,同时第四电阻的该端还与单向可控硅的阳极连接或者该端经由一个零号电阻后再与单向可控硅的阳极连接;第一电阻的另一端与桥式整流器的正极连接或者第一电阻的该端经由一个零号电阻之后再与桥式整流器的正极连接;电容的一端、第二电阻的另一端、第三电阻的一端三者有共同结点,单向可控硅的控制极与电容、第二电阻、第三电阻的共同结点连接或者该单向可控硅的控制极经由一个零号电阻后再与所述的电容、第二电阻、第三电阻的共同结点进行连接;电容的另一端与第三电阻的另一端有共同结点,并且该共同结点与所述的桥式整流器的负极连接或者该共同结点经由一个零号电阻之后再与桥式整流器的负极连接;单向可控硅的阴极与桥式整流器的负极连接、或者该单向可控硅的阴极在经由一个零号电阻之后再与桥式整流器的负极连接、再或者该单向可控硅的阴极在经由一个二极管之后再与桥式整流器的负极连接。
上述先导型电子式卸荷阀配置有一个可控制电磁阀通电瞬间吸合并能延时断开的延时电路,该延时电路包括有一个桥式整流器、一个场效应管、一个单向可控硅、一个电容、一个第一电阻、一个第二电阻、一个第三电阻和一个第四电阻,其中场效应管的一号极与桥式整流器的正极相连接或者该场效应管的一号极经由一个零号电阻后再与桥式整流器的正极连接、场效应管的二号极与桥式整流器的负极相连接或者该场效应管的二号极经由一个零号电阻之后再与 桥式整流器的负极相连接、场效应管的三号极与第四电阻的一端相连接;第四电阻的另一端与第一电阻的一端、第二电阻的一端有共同结点,同时第四电阻的该端还与单向可控硅的阳极连接或者该端经由一个零号电阻后再与单向可控硅的阳极连接;第一电阻的另一端与桥式整流器的正极连接或者第一电阻的该端经由一个零号电阻之后再与桥式整流器的正极连接;电容的一端、第二电阻的另一端、第三电阻的一端三者有共同结点,单向可控硅的控制极与电容、第二电阻、第三电阻的共同结点连接或者该单向可控硅的控制极经由一个零号电阻后再与所述电容、第二电阻、第三电阻的共同结点进行连接;电容的另一端与第三电阻的另一端有共同结点,并且该共同结点与桥式整流器的负极连接或者该共同结点经由一个零号电阻之后再与桥式整流器的负极连接;单向可控硅的阴极与桥式整流器的负极连接、或者该单向可控硅的阴极在经由一个零号电阻之后再与桥式整流器的负极连接、再或者该单向可控硅的阴极在经由一个二极管之后再与桥式整流器的负极连接。
一种配装有先导型电子式卸荷阀的压缩机系统,包括压缩机泵头、储气罐、排气管和逆止阀,所述排气管的一端与压缩机泵头相连接、排气管的另一端与逆止阀相连接,逆止阀与储气罐相连接,其特征在于:在所述排气管上设置有一个分支管,所述的先导型电子式卸荷阀的接载管道与该分支管连接。
上述的先导型电子式卸荷阀相对于压缩机系统为外挂形式,同时卸荷阀的接载管道与压缩机系统排气管的分支管采用快插快拔管接头型式进行连接。
上述的先导型电子式卸荷阀设定其电磁阀有强电流i通过的时段满足Δt≤60秒。
本发明相比现有技术具有的突出优点是:通过采用先导型电磁作用卸荷方 式,使得该电子式卸荷阀中的电子元器件能够采用非接触高压气体的外置形式来控制其是否进行泄压以及泄压的时长,从而可以有效提高电子卸荷阀的工作可靠性;同时,采用这种先导型电磁作用卸荷方式还能够使得整个电子卸荷阀做成为一种外挂式快插安装的独立装置,一方面可以方便灵活地进行安装且对安装部位要求不高,故能降低生产成本和后期使用的运维成本;另外,采用这种先导型电磁作用卸荷方式还能够从工作原理上实现电子卸荷阀的高可靠和长寿命,主要得益于卸荷阀中的核心部件电磁阀仅需提供很小的先导作用力即可调控泄压与否,故电磁阀的作动力无须太大,也就意味着其主体构件线圈可以做得较少匝数和较细线径,所以不仅成本可以下降而且可以提高工作可靠性;还有,更为重要的是采用这种先导型电磁作用卸荷方式还可以实现弱电流致常闭型卸荷阀,即它采用在工作期间仅需保持很小的弱电流甚至无需电流通过即可借助一根较弱弹力的复位弹簧就能达成长期间地产生封堵力来保持主卸荷管道常闭,如此对提高卸荷阀的电子元器件的寿命及工作可靠性必然会产生积极的正面影响。进一步,本发明还在压缩机系统上配装有该先导型电子式卸荷阀,可以实现有效保障压缩机系统获得高的工作可靠性并降低成本。
附图说明:
图1是本发明一种先导型电子式卸荷阀一个实施例的轴测外观示意图;
图2是图1所示先导型电子式卸荷阀实施例零部件的装配爆炸示意图;
图3是图1及图2所示先导型电子式卸荷阀实施例处在停止卸荷状态时的原理示意图;
图4是图1及图2所示先导型电子式卸荷阀实施例处在进行卸荷状态时的原理示意图;
图5是本发明先导型电子式卸荷阀控制时序示意图;
图6是本发明先导型电子式卸荷阀一个电路与接线布局实施例的示意图;
图7是本发明先导型电子式卸荷阀另一个电路与接线布局实施例的示意图;
图8是本发明配置有先导型电子式卸荷阀的一个压缩机系统实施例的布局示意图。
具体实施方式:
下面以具体实施例对本实用新型作进一步描述,参见图1-8:
一种先导型电子式卸荷阀,包括有电磁阀L,该电磁阀L包含有一个阀芯1a、一个吸合线圈1b和一根复位弹簧1c(如图2至图4所示),本发明特色在于:该卸荷阀还包括有接载管道2、分隔膜3、主卸荷管道4、先导过渡孔5、先导泄压孔6和密封件7(参见图2至图4);在这里,接载管道2可以与目标卸荷控制对象也就是需要进行卸荷操作的装置或者系统进行连接并连通,换言之目标卸荷控制对象装置或者系统的背压工质可以接入本发明的卸荷阀;另外,这里所说的主卸荷管道4乃是一个可以与外界连通的管路,亦即在进行卸荷操作时可以将目标卸荷控制对象装置或者系统的背压工质经由接载管道2后再从该主卸荷管道4排出卸荷阀并进入外界(这个外界是指比目标控制对象装置或系统之背压还要具更低压力的环境比如大气或者其它容器、管路或者装置);所述的分隔膜3具备有弹性,这个弹性是指它受力时可以产生一定的适应性变形,分隔膜3的一面朝向主卸荷管道4和接载管道2,并且该分隔膜3依赖其是否触抵封堵主卸荷管道4的端口也就是管口来决定主卸荷管道4与接载管道2是否发生连通,其中图3所示为分隔膜3抵触封堵住主卸荷管道4端口的情形、图4所示则为分隔膜3打开主卸荷管道4端口的情形,需要指出的是,本发明的分隔膜3抵触封堵住主卸荷管道4端口乃包括分隔膜3用其本体去直接封堵(如图3所示)和借助其它中间件去间接封堵(图中未示出)这两种情形;当主卸 荷管道4与接载管道2发生连通时(如图4所示)接载管道2内的较高压力的背压工质可经由主卸荷管道4排出卸荷阀而进入到外界,此时正是卸荷阀进行卸荷操作进程的工况,反之当主卸荷管道4被分隔膜3封堵住端口而未能与接载管道2发生连通时(如图3所示)则接载管道2内的背压工质不能经由该主卸荷管道4排出卸荷阀,此时是卸荷阀已完成卸荷操作后进行常闭恒持以防止目标泄压控制对象发生工质流失的阶段;分隔膜3的另外则一面参与构造先导腔8,并且该先导腔8内的压力参与决定分隔膜3是否触抵封堵住主卸荷管道4的端口;需要说明的是,先导腔8可以由多个零件一起构成,比如图3和图4所示的先导腔8就是由卸荷阀本体9和分隔膜3一起共同构成,其中卸荷阀本体9既可以是一个独立完整的零件、也可以是由多块零件组装而成,图2至图4所示的卸荷阀本体9它就包含有筒体9a、封盖9b和底托9c等若干零件,卸荷阀本体9它的主要功用是将卸荷阀的各个核心零部件比如阀芯1a、吸合线圈1b、复位弹簧1c和线路板10等固定安装并封装起来,而将卸荷阀本体9做成几个部件有利于卸荷阀的装配生产以及调试;需要指出的是,卸荷阀本体9的结构可以有多种形式,图1给出的是它的其中一种外观形式;所述的先导过渡孔5常态地将先导腔8与接载管道2连通,换言之先导腔8内的工质压力与接载管道2的工质压力也就是背压是或者几乎是相等的,并且接载管道2可以不断地借助于先导过渡孔5来向先导腔8进行工质补充;所述的先导泄压孔6其一端的端口或者孔口与先导腔8连通其另一端的端口或者孔口则朝向所述密封件7,并且由这个密封件7来决定该先导泄压孔6的通断状态,也就是说先导泄压孔6是被堵住还是被打开乃由密封件7是否封堵其孔口所决定,当先导泄压孔6呈开通状态时,部分经由先导过渡孔5进入先导腔8的来自接载管道2之背压工 质可以从该先导泄压孔6排出卸荷阀;需要指出的是,从先导泄压孔6排出的工质是不能返回先导腔8之内更不能返回到接载管道2之内的,这也就意味着密封件7还起到了单向阀的功能作用,需要强调的是,本发明所说“先导泄压孔6被密封件7堵住其孔口”的情形乃包括密封件7用其本体去直接封堵和借助其它中间件去间接封堵这两种状况,其中图3所示为密封件7采用其本体去直接封堵先导泄压孔6孔口的状况;本发明所述的复位弹簧1c能够产生有弹力,这个弹力可以是压力(图中未示出)也可以是拉力(如图2至图4所示即属于这种情形),其中以拉力形式较为稳定,但无论是采用压力形式还是采用拉力形式,本发明中复位弹簧1c所产生的这个弹力它总是企图驱使密封件7去抵靠而封堵先导泄压孔6的端口;本发明所述的电磁阀L其吸合线圈1b与阀芯1a在通电后可以产生出电磁力,并且这个电磁力总是企图去克服复位弹簧1c所产生的弹力而去让密封件7呈现有打开或者启封先导泄压孔6的趋势或者实质动作;下面说明一下本发明卸荷阀的工作原理:①当电磁阀L产生的电磁力较之复位弹簧1c产生的弹力处于占据优势地位时→密封件7所受到的来自复位弹簧1c的压力被克服→密封件7脱离先导泄压孔6孔口而打开先导泄压孔6→先导腔8内的工质被排出(此即所谓的先导排放)→先导腔8内的压力下降(此即所谓的先导泄压)→接载管道2内高背压工质产生的作用于所在分隔膜3面上的压力大于先导腔8内工质作用于分隔膜3所在面亦即另一面的压力→分隔膜3产生向先导腔8一侧内凹的变形→接载管道2与主卸荷管道4被连通→接载管道2内的背压工质经由主卸荷管道4排出到卸荷阀外→接载管道2内的背压开始下降→直至完成泄压任务,图4展示的正是卸荷阀进行泄压工作的情形;②当电磁阀L产生的电磁力较之复位弹簧1c产生的弹力处于劣势地位时、又或者电磁 阀L因失电而不产生电磁力时→密封件7在复位弹簧1c产生的弹力主导下被贴靠在先导泄压孔6的孔口上→先导腔8内的工质被困在该腔内→接载管道2持续经先导过渡孔5向先导腔8内进行补充工质→先导腔8内的压力上升→先导腔8内工质作用于分隔膜3上的压力开始优势过接载管道2内背压工质作用于分隔膜3上的压力(注意分隔膜3在先导腔8内侧的受力面积大于接载管道2作用于分隔膜3的受力面积)、同时还存在有分隔膜3自身的弹性恢复力→分隔膜3产生恢复原形→主卸荷管道4被封堵→接载管道2与主卸荷管道4被隔断→接载管道2内的背压工质停止经由主卸荷管道4排出卸荷阀→接载管道2内的背压开始提高并被恒持→目标控制对象正常工作,图3展示的是卸荷阀停止泄压的情形。需要说明的是,本发明中的复位弹簧1c可以通过直接抵靠密封环7来对其封堵先导泄压孔6的行为产生影响(图中未示出),此外还可以通过其它第三方的中间件去间接抵靠密封件7来对其封堵先导泄压孔6的行为产生影响(如图3和图4所示);另外,电磁阀L既可以直接对密封环7产生作用影响(此时密封环7为可磁性吸合材料制作或在密封环7上加持有可磁性吸合的附件,图中未示出)、特别地电磁阀L还可以借道其它第三方中间件来克服复位弹簧1c的弹力从而达成间接影响密封件7封堵先导泄压孔6的行为(如图3和图4所示)。需要指出的是,本发明经由主卸荷管道4排出工质是泄压主渠道,大部分的背压工质是从这里排出卸荷阀的,它是卸荷的主要担当者,而经由先导泄压孔6排出工质是泄压次渠道,它仅排出极少一部分工质,先导泄压孔6的任务是撬动打开主卸荷管道4这个泄压主渠道,具有四两拨千斤的功效。另外需要指出的是,本发明中电磁阀L的阀芯1a有多种作动策略,它可以是运动件也可以是不动件,其中以阀芯1a作为不动件最为简单,如图3和图4所示。
进一步,本发明所述的复位弹簧1c通过一个杠杆件11去施加作用力来给予密封件7(参见图2至图4),设置杠杠件11的好处有两个,一个好处是复位弹簧1c可以布置在电磁阀L的外侧,这样有利于简化电磁阀L的设计与布置,并能缩小卸荷阀的体积;另一个好处是复位弹簧1c施加给杠杆件11并进而施加给密封件7的用以抵靠密封件7去堵塞先导泄压孔6的作用力可以更加灵活地布置,既可以采用为拉力的作用形式(如图2至图4所示)、还可以采用为压力的作用形式(图中未示出),特别地为呈拉力形式,众所周知拉力施加比推力施加更具稳定性。需要说明的是,本发明中的杠杠件11其结构可以有多种形式,比如杆状或者板状等等。
进一步,为了让电磁阀L能够有效操控复位弹簧1c对密封件7行为的影响,所述的杠杆件11其至少有部分结构或者构造或者附件为可磁性吸合材料所制成,这样电磁阀L就可以用其产生的电磁力去作用杠杆件11并进而借助这个杠杠件11去影响和克服复位弹簧1c的弹力。
进一步,本发明所述的先导泄压孔6它可以开设在卸荷阀本体9上(如图3和图4所示),此外先导泄压孔6还可以采用导管形式的结构与布局(图中未示出);本发明所述的先导过渡孔5可以开设在分隔膜3上(如图2至图4所示)或/和开设在卸荷阀本体9上(图中未示出),此外先导过渡孔5还可以采用为导管结构形式接入先导腔8(图中未示出)。
进一步,本发明所述的密封件7可以是薄膜状结构(也就是扁平状或者壳状),并且该密封件7它具备有一定的弹性,另外在卸荷阀本体9上开设有副卸荷通道12,所述密封件7可以将电磁阀L的阀芯1a、吸合线圈1b、复位弹簧1c、杠杆件11与先导泄压孔6及副卸荷通道12予以密封隔断,这时从先导泄压 孔6排出的背压工质在经由该副卸荷通道12后再排出卸荷阀(如图3和图4所示),如此布局的好处是电磁阀L的阀芯1a、吸合线圈1b、复位弹簧1c和杠杆件11等核心元器件可以不再受泄压出来的工质所影响,籍此可以有效提高电磁阀L的工作可靠性。
本发明先导型电子式卸荷阀可采用下列策略去控制电磁阀L的运行状态即卸荷阀控制时序:参见图5,跟随目标控制对象的运行工作状态,先导型电子式卸荷阀亦与目标控制对象装置同步进入失电状态或者得电状态,亦即当目标控制对象装置由得电开始运行的瞬间先导型电子式卸荷阀也同步瞬间得电、目标控制对象装置失电停止运行的瞬间先导型电子式卸荷阀也同步瞬间失电;目标控制对象装置得电开机运行与失电停机关机的标志特征是:在某一时刻得电则这一时刻目标控制对象装置的电压为处在高电压(V)状态,在某一时刻失电则这一时刻目标控制对象装置的电压处在零电压(0)状态;与目标控制对象装置得电和失电相呼应,本发明先导型电子式卸荷阀中的电磁阀L,其控制时序也就是电流通过该电磁阀L的标志有如下一些特征:①自目标卸荷控制对象装置得电的同一时刻,流经电磁阀的电流将瞬变为强电流i;②电磁阀自某得电瞬间起在设定时长Δt时段内均维持得电状态且一直保有强电流i通过;③在电磁阀从得电瞬间起开始累计计时的时针指向时长Δt时段后沿的那一刻,电磁阀内通过的电流瞬间从强电流i降为弱电流io;④电磁阀自降为弱电流io时起至目标卸荷控制对象装置失电停机,期间流经电磁阀的电流一直维持为弱电流io;⑤电磁阀从目标卸荷控制对象装置失电停机的那一瞬间时刻起流经电磁阀的电流变为零,并且这种状态伴随目标卸荷控制对象装置的整个关机停机期间。需要说明的是,当电磁阀L有强电流i通过时它能够产生出优势过复位弹簧1c弹力的 电磁力从而驱使密封件7解封先导泄压孔6,当电磁阀L为弱电流io通过或者为零电流时亦即为(0)时则它不能产生出足以压倒复位弹簧1c弹力的电磁力从而在复位弹簧1c弹力的作用下密封件7再次封堵住先导泄压孔6。特别需要指出的是,本发明中所说的弱电流io是指该电流较弱小(也包含它为零的情形),以至于它使得电磁阀L产生的电磁力很弱小甚至为零而无法克服复位弹簧1c产生的所施加在杠杆件11上的弹力。
本发明所述的先导型电子式卸荷阀,为了让它实现对卸荷控制目标对象装置进行有效的卸载管理,以便让其在反复停机→开机→停机→开机不断持续的间歇性工作过程中能够在再开机时达成启动顺利,专门配置有可以控制电磁阀L通电瞬间吸合并延时断开的延时电路13(参见图6和图7),换言之配置该延时电路13能够确保实现电磁阀L的控制时序;这里所说的“通电瞬间吸合并延时断开”的具体含义是:一旦电磁阀L得电时(呼应目标卸荷控制对象装置通电开机启动瞬间)则自得电的瞬间起即有强电流i通过电磁阀L,此强电流i能够让电磁阀L产生足够大的电磁力去压倒复位弹簧1c的弹力从而让密封件7脱离先导泄压孔6于是促成后续一系列的卸荷动作,自得电瞬间开始累积计时达到Δt秒瞬间时(此时段长度Δt由延时电路13的设计参数所控制)延时电路13发生的累积效应将瞬间截断通过电磁阀L的强电流i并使之变为残余弱电流io(其中io<<i)甚至为零电流,这个时段Δt就是卸荷时段,它是目标卸荷控制对象装置之背压工质经由卸荷阀实质排出到外界的卸载过程;本发明中的电磁阀L它可以与延时电路13直接进行串联连接(图中未示出),也可以先将电磁阀L并联上一个由第五电阻R5与发光二极管LED串接而成的得电指示元件之后再与延时电路13进行串联连接(如图6和图7所示),配置得电指示元件有 利于观测和监控先导型电子式卸荷阀的工作运行状态。
本发明先导型电子式卸荷阀它的一个延时电路13的具体实施例是:参见图6,该延时电路它包括有一个桥式整流器D、一个三极管Q、一个单向可控硅SCR、一个电容C、一个第一电阻R1、一个第二电阻R2、一个第三电阻R3和一个第四电阻R4,其中三极管Q的第一极Q1与桥式整流器D的正极(+)相连接(如图6所示)或者该三极管Q的第一极Q1经由一个零号电阻后再与桥式整流器D的正极(+)连接(图中未示出)、三极管Q的第二极Q2与桥式整流器D的负极(-)相连接(如图6所示)或者该三极管Q的第二极Q2经由一个零号电阻之后再与桥式整流器D的负极(-)相连接(图中未示出)、三极管Q的第三极Q3与第四电阻R4的一端相连接;第四电阻R4的另一端与第一电阻R1的一端、第二电阻R2的一端有共同结点,同时第四电阻R4的该端还与单向可控硅SCR的阳极A连接(如图6所示)或者该端经由一个零号电阻后再与单向可控硅SCR的阳极A连接(图中未示出);第一电阻R1的另一端与桥式整流器D的正极(+)连接(如图6所示)或者第一电阻R1的该端经由一个零号电阻之后再与桥式整流器D的正极(+)连接(图中未示出);电容C的一端、第二电阻R2的另一端、第三电阻R3的一端三者有共同结点,单向可控硅SCR的控制极G与电容C、第二电阻R2、第三电阻R3的共同结点连接(如图6所示)或者该单向可控硅SCR的控制极G经由一个零号电阻后再与所述的电容C、第二电阻R2、第三电阻R3的共同结点进行连接(图中未示出);电容C的另一端与第三电阻R3的另一端有共同结点,并且该共同结点与桥式整流器D的负极(-)连接(如图6所示)或者该共同结点经由一个零号电阻之后再与桥式整流器D的负极(-)连接(图中未示出);单向可控硅SCR的阴极K与桥式整流器D的负极(-)连 接(如图6所示)、或者该单向可控硅SCR的阴极K在经由一个零号电阻后再与桥式整流器D的负极(-)连接(图中未示出)、再或者单向可控硅SCR的阴极K在经由一个二极管之后再与桥式整流器D的负极(-)连接(图中未示出)。在这里,所谓的“共同结点”乃是指它们为直接连接在一起、或者它们通过导线连接在一起、再或者它们经由第三方的其它电阻(这个第三方的其它电阻又可以被称之为零号电阻)后再连接在一起,总之“共同结点”可以是直接连接又可以是间接连接,比如上面所述“电容C的一端、第二电阻R2的另一端、第三电阻R3的一端三者有共同结点”既包括它们直接连接而有共同节点的情形又包括它们中的某一个或者全部经由某零号电阻后再连接的情形。本发明所说的三极管Q的“第一极Q1”、“第二极Q2”和“第三极Q3”,它们的定义乃与三极管Q的具体型式有关:①当三极管Q为“NPN型三极管”时(图6所示为三极管Q为“NPN型三极管”的情形),乃指定第一极Q1为集电极、第二极Q2为发射极、第三极Q3为基极;②当三极管Q为“PNP型三极管”时(图中未示出),乃指定第一极Q1为发射极、第二极Q2为集电极、第三极Q3为基极。在这里,特别需要指出的是,本发明中所说的“零号电阻”乃是泛指它为第三方性质的其它电阻,即该电阻可以根据需要接入延时电路13当中,其数值可以根据具体情形需要而进行取舍。
本发明先导型电子式卸荷阀它的另一个延时电路13的具体实施例是:参见图7,该延时电路它包括有一个桥式整流器D、一个场效应管IGBT、一个单向可控硅SCR、一个电容C、一个第一电阻R1、一个第二电阻R2、一个第三电阻R3和一个第四电阻R4,其中场效应管IGBT的一号极A1与桥式整流器D的正极(+)相连接(如图7所示)或者该场效应管IGBT的一号极A1经由一个零 号电阻后再与桥式整流器D的正极(+)连接(图中未示出)、场效应管IGBT的二号极A2与桥式整流器D的负极(-)相连接(如图7所示)或者该场效应管IGBT的二号极A2经由一个零号电阻之后再与桥式整流器D的负极(-)相连接(图中未示出)、场效应管IGBT的三号极A3与第四电阻R4的一端相连接;第四电阻R4的另一端与第一电阻R1的一端、第二电阻R2的一端有共同结点,同时第四电阻R4的该端还与单向可控硅SCR的阳极A连接(如图7所示)或者该端经由一个零号电阻后再与单向可控硅SCR的阳极A连接(图中未示出);第一电阻R1的另一端与桥式整流器D的正极(+)连接(如图7所示)或者第一电阻R1的该端经由一个零号电阻之后再与桥式整流器D的正极(+)连接(图中未示出);电容C的一端、第二电阻R2的另一端、第三电阻R3的一端三者有共同结点,单向可控硅SCR的控制极G与电容C、第二电阻R2、第三电阻R3的共同结点连接(如图7所示)或者该单向可控硅SCR的控制极G经由一个零号电阻后再与所述的电容C、第二电阻R2、第三电阻R3的共同结点进行连接(图中未示出);电容C的另一端与第三电阻R3的另一端有共同结点,并且该共同结点与桥式整流器D的负极(-)连接(如图7所示)或者该共同结点经由一个零号电阻之后再与桥式整流器D的负极(-)连接(图中未示出);单向可控硅SCR的阴极K与桥式整流器D的负极(-)连接(如图7所示)、或者该单向可控硅SCR的阴极K在经由一个零号电阻后再与桥式整流器D的负极(-)连接(图中未示出)、再或者单向可控硅SCR的阴极K在经由一个二极管之后再与桥式整流器D的负极(-)连接(图中未示出)。在这里,所谓的“共同结点”其定义与前述实施例中的含义相同。本发明所说的场效应管IGBT的“一号极A1”、“二号极A2”和“三号极A3”,它们的定义乃与场效应管IGBT的具体 型式有关:①当场效应管IGBT为“PNP型效应管IGBT”时(图7所示为效应管IGBT为“PNP型三极管”的情形),乃指定一号极A1为漏极、二号极A2为源极、三号极A3为栅极;②当场效应管IGBT为“NPN型三极管”时(图中未示出),乃指定一号极A1为源极、二号极A2为漏极、三号极A3为栅极。如前面实施例所述,本发明中所说的“零号电阻”乃是泛指它为第三方性质的其它电阻,即该电阻可以根据需要接入延时电路13当中,其数值可以根据具体情形需要而进行取舍。
本发明先导型电子式卸荷阀配置了延时电路13之后,就可以控制电磁阀L通电瞬间吸合并且延时断开,亦即可以实现卸荷阀的控制时序。在这里,所谓的吸合是指电磁阀L有强电流i通过并产生出足以能够克服复位弹簧1c弹力的电磁力,而所谓的延时断开乃是指在吸合时间累积达到所设定的阈值Δt秒之后电磁阀L中的电流变为弱电流io,在弱电流或零电流的情形下(零电流即停机失电状态)电磁阀L都无法产生足以克服复位弹簧1c弹力的电磁力。
下面具体结合图6所给延时电路13实施例来阐述一下本发明卸荷阀延时电路13的工作原理(其它实施例中延时电路13的工作原理与此相仿,因此不再赘述):参见图5和图6,首先为了便于表述且符合传统同时又不至于引起误会,本发明对某些零部件和特定功能源的标识进行特别标注说明:①关于电源,电源用AC/DC来表示,其中在控制时序图中0表示装置(即卸荷目标对象装置)处在零电压也就是断电或者失电状况、电源中的V表示其为正常工作电压也就是表示装置处于得电运行状况;②关于电磁阀L,在控制时序图中(0)表示表示流过卸荷阀的电流为零亦即电磁阀L处在失电状态、i表示为流经电磁阀L的强电流(本文中标示为强电流i)、io表示为流经电磁阀L的弱电流或者残余电 流(本文中标示为弱电流io)。参照上述约定,图6所示电磁阀L及其延时电路13的工作原理及过程是这个样子的:
①第一阶段得电泄载阶段,当卸荷阀控制的卸荷目标对象启动开机的瞬间(此时目标对象装置的电压从0伏瞬间达到V伏,参见图6)的同时,卸荷阀也瞬间同时得电→此时延时电路13中电容C的正极端正处于上一轮失电后的低电荷时期(该电容C正极与单向可控硅SCR的控制极G存在连接关系)→单向可控硅SCR的控制极G处在低电压状态因此不导通→延时电路13上的电压由第一电阻R1、第二电阻R2和第三电阻R3进行分配→于是第四电阻R4获得第二电阻R2与第三电阻R3(此时这两个电阻呈串联态势并且它们与第一电阻R1一道共享桥式整流器D正负极间的电压)上的电压而呈高电压状态→三极管Q的第三极Q3(该极为基极)获得高电压而致三极管Q导通→于是流经电磁阀L的强电流i得以产生→卸荷阀开始卸荷动作并进行卸载工作(参照图4):电磁阀L的吸合线圈1b和阀芯1a开始吸合杠杆件11并克服复位弹簧1c的弹力而使密封件7脱离让开先导泄压孔6孔口、再接着是分隔膜3产生向先导腔8内凹变形而致使接载管道2与主卸荷管道4连通、于是接载管道2内的背压工质经由主卸荷管道4排出到卸荷阀外并使得接载管道2内的背压下降。在这里其中具体强电流i其主体电流的流经路程是:电源AC/DC→电磁阀L→桥式整流器D交流极(~)→桥式整流器D正极(+)→三极管Q的第一极Q1→三极管Q的第二极Q2→桥式整流器D负极(-)→桥式整流器D交流极(~)→电源AC/DC,注意到上述过程从卸荷阀得电瞬间起到电磁阀L有强电流i流过是瞬时完成的,反映在控制时序图上就是卸荷目标对象装置开机得电的瞬间前沿(即运行电压V的峰值前沿)与卸荷阀电磁阀得电通过强电流i的瞬间前沿(即流 经电磁阀强电流i的峰值前沿)几乎是同时刻发生的;
②第二阶段泄压恒持阶段,此时卸荷目标对象已开始启动其装置电压维持在V伏,电磁阀L自得电瞬间获得强电流i时刻开始至今已达时长Δt秒,在这Δt秒时期内卸荷阀一直在进行卸荷运行→此阶段延时电路13中的电容C一直在获得充电其正极端的电压值一直在升高但仍然没有达到触发单向可控硅SCR的阈值→单向可控硅SCR仍然处在不导通的截止状态→延时电路13上的电压依然由第一电阻R1、第二电阻R2和第三电阻R3进行主导分配→第四电阻R4依然保持高电压状态→三极管Q保持导通状态→于是流经电磁阀L的强电流i依然维持→卸荷阀卸荷工作依旧进行→接载管道2内的背压继续下降或者维持在较低压力水平,在这一阶段强电流i的主体电流流经路程与前面第一阶段相同;
③第三阶段延时断开阶段,此时卸荷目标对象已启动完毕并进入到正常运转工作阶段其装置电压维持在V伏,卸荷阀卸载任务已完成并需要进入到关闭各泄压通道以防止不必要的工质泄漏损失的保压阶段,这个阶段的特征是一个瞬间时刻,其标志是卸荷阀自得电瞬间始的第Δt秒,在这一时刻,延时电路13中的电容C终于充电达到其正极端电压值触发单向可控硅SCR的阈值→于是单向可控硅SCR瞬间被导通→第二电阻R2和第三电阻R3瞬间被近乎短路→第四电阻R4的电压瞬间被拉低→三极管Q瞬间从导通状态变为截止状态→于是流经电磁阀L的主体电流的流经路程变为:电源AC/DC→电磁阀L→桥式整流器D交流极(~)→桥式整流器D正极(+)→第一电阻R1→单向可控硅SCR的阳极A→单向可控硅SCR它的阴极K→桥式整流器D负极(-)→桥式整流器D交流极(~)→电源AC/DC。注意到第一电阻R1的阻值较大,因此此时流经电磁阀L的电流瞬间变为较小的弱电流io,这个弱电流io也叫残余电流,它的 数值远远小于强电流i,即io<<i;反映在控制时序图上(参见图6)就是第Δt秒时刻就是强电流i的峰值后沿,此时流经电磁阀L的电流瞬间从强电流i降为弱电流io并维持到卸荷阀完全失电(呼应卸荷目标对象装置停机)。当电磁阀L变为弱电流io通过时,它无法产生占据优势的电磁力去克服复位弹簧1c的弹力,于是在复位弹簧1c弹力的主导下密封件7再次被杠杆件11压靠并封堵住先导泄压孔6孔口、接着先导腔8内的压力上升、再接着分隔膜3又开始堵住主卸荷管道4的端口、这时接载管道2与主卸荷管道4不再连通、于是接载管道2内的背压工质经不再经由卸荷阀排出到外界;很显然,那个时长Δt秒是主要由电容C和第三电阻R3的参数所决定的,或者说由这两者的参数主导了电容C的充放电的时间常数,而这个延时了Δt秒才关闭卸荷阀卸荷动作的延时时段乃是根据不同卸荷目标对象的具体要求来进行设定的或者设计的;另外需要指出的是,单向可控硅SCR的一个特性是一旦其被导通之后,除非断电否则该导通状态将一直保持下去而无论此时该单向可控硅SCR的控制极G是处在何种状态,亦即单向可控硅SCR被导通之后即使其控制极G是处在低电位时它也仍将保持原来的导通状态;
④第四阶段失电待机阶段,此时卸荷目标对象处在停止运行的停机状态,当其属于关机停电的状态时,卸荷目标对象装置电压降为零伏,此时卸荷阀也进入完全失电的状态,反映在控制时序图(参见图6)上就是流经电磁阀L的电流为零电流。需要说明的是,一旦卸荷阀失电,则自失电的那一刻起电容C正极(+)上的电荷将会经由第三电阻R3而向桥式整流器D的负极(-)流失,此时电容C正极(+)的电压也因此下降,从而为下一轮电磁阀L通电瞬间吸合并延时断开做好准备。
一种配装有先导型电子式卸荷阀的压缩机系统,包括压缩机泵头14、储气罐15、排气管16和逆止阀17,所述排气管16的一端与压缩机泵头14相连接、排气管16的另一端与逆止阀17相连接,逆止阀17与储气罐15相连接(如图8所示),本发明的特色于:在所述排气管16上设置有一个分支管18,所述的先导型电子式卸荷阀的接载管道2与该分支管18连接。进一步,本发明配装有先导型电子式卸荷阀的压缩机系统,其先导型电子式卸荷阀相对于压缩机系统为外挂形式,同时卸荷阀的接载管道2与压缩机系统排气管16的分支管18采用快插快拔管接头型式进行连接,这标志着卸荷阀可以灵活布局与就位,并且可以实现快捷安装。再进一步,本发明配装有先导型电子式卸荷阀的压缩机系统,其先导型电子式卸荷阀设定其电磁阀L有强电流i通过的时段满足Δt≤60秒。
本发明通过采用先导型电磁作用卸荷方式,使得该电子式卸荷阀中的电子元器件能够采用非接触高压气体的外置形式来控制其是否进行泄压以及泄压的时长,从而可以有效提高电子卸荷阀的工作可靠性;同时,采用这种先导型电磁作用卸荷方式还能够使得整个电子卸荷阀做成为一种外挂式快插安装的独立装置,一方面可以方便灵活地进行安装且对安装部位要求不高,故能降低生产成本和后期使用的运维成本;另外,采用这种先导型电磁作用卸荷方式还能够从工作原理上实现电子卸荷阀的高可靠和长寿命,主要得益于卸荷阀中的核心部件电磁阀L仅需提供很小的先导作用力即可调控泄压与否,故电磁阀L的作动力无须太大,也就意味着其主体构件线圈可以做得较少匝数和较细线径,所以不仅成本可以下降而且可以提高工作可靠性;还有,更为重要的是采用这种先导型电磁作用卸荷方式还可以实现弱电流致常闭型卸荷阀,即它采用在工作期间仅需保持很小的弱电流甚至无需电流通过即可借助一根较弱弹力的复位弹 簧1c就能达成长期间地产生封堵力来保持主卸荷管道4常闭,如此对提高卸荷阀的电子元器件的寿命及工作可靠性必然会产生积极的正面影响。进一步,本发明还在压缩机系统上配装有该先导型电子式卸荷阀,可以实现有效保障压缩机系统获得高的工作可靠性并降低成本。
上述实施例仅为本实用新型的较佳实施例之一,并非以此限制本实用新型的实施范围,故:凡依本实用新型的形状、结构、原理所做的等效变化,均应涵盖于本实用新型的保护范围之内。

Claims (12)

  1. 一种先导型电子式卸荷阀,它包括有电磁阀,该电磁阀包含有一个阀芯、一个吸合线圈和一根复位弹簧,其特征在于:该卸荷阀还包括有接载管道、分隔膜、主卸荷管道、先导过渡孔、先导泄压孔和密封件;所述的分隔膜具有弹性,分隔膜的一面朝向主卸荷管道与接载管道、并依赖其是否触抵封堵主卸荷管道的端口来决定主卸荷管道与接载管道是否发生连通,当主卸荷管道与接载管道发生连通时接载管道内的背压工质可经由该主卸荷管道排出卸荷阀;分隔膜的另一面参与构造先导腔,先导腔内的压力则参与决定分隔膜是否触抵封堵主卸荷管道;所述的先导过渡孔常态将先导腔与接载管道连通,所述的先导泄压孔其一端的端口与先导腔连通、其另一端的端口朝向所述密封件,并且由这个密封件来控制该先导泄压孔的通断状态,当先导泄压孔呈开通状态时部分经由先导过渡孔进入先导腔的接载管道背压工质可从该先导泄压孔排出;所述的复位弹簧产生有弹力并且该弹力总是企图驱使所述密封件去抵靠封堵先导泄压孔,所述的电磁阀其吸合线圈与阀芯可以产生电磁力并且这个电磁力总是企图去克服复位弹簧产生的弹力而让密封件产生有解封先导泄压孔的趋势或者动作。
  2. 根据权利要求1所述的一种先导型电子式卸荷阀,其特征在于:所述的复位弹簧通过一个杠杆件去施加作用力给予密封件。
  3. 根据权利要求2所述的一种先导型电子式卸荷阀,其特征在于:所述的杠杆件它至少有部分结构或者构造或者附件采用为可磁性吸合材料制作,所述的电磁阀其产生的电磁力乃通过这个杠杆件去达成克服复位弹簧的弹力。
  4. 根据权利要求3所述的一种先导型电子式卸荷阀,其特征在于:所述的先导泄压孔开设在卸荷阀本体上,所述的先导过渡孔开设在分隔膜或/和卸荷阀 本体上。
  5. 根据权利要求4所述的一种先导型电子式卸荷阀,其特征在于:所述的密封件呈薄膜状并具有弹性,在卸荷阀本体或其附件上开设有副卸荷通道,该密封件将电磁阀的阀芯、吸合线圈、复位弹簧、杠杆件与所述的先导泄压孔及副卸荷通道密封隔断,从先导泄压孔排出的背压工质经由该副卸荷通道再排出卸荷阀。
  6. 根据权利要求5所述的一种先导型电子式卸荷阀,其特征在于:所述的电磁阀上并联有一个由第五电阻与发光二极管串接而成的得电指示元件。
  7. 根据权利要求1至6任意一项所述的先导型电子式卸荷阀,其特征在于:所述卸荷阀它的电磁阀的控制时序是,跟随目标卸荷控制对象装置的得失电状态,通过电磁阀的电流标志为:①自目标卸荷控制对象装置得电的同一时刻,流经电磁阀的电流将瞬变为强电流i;②电磁阀自某得电瞬间起在设定时长Δt时段内均维持得电状态且一直保有强电流i通过;③在电磁阀从得电瞬间起开始累计计时的时针指向时长Δt时段后沿的那一刻,电磁阀内通过的电流瞬间从强电流i降为弱电流io;④电磁阀自降为弱电流io时起至目标卸荷控制对象装置失电停机,期间流经电磁阀的电流一直维持为弱电流io;⑤电磁阀从目标卸荷控制对象装置失电停机的那一瞬间时刻起流经电磁阀的电流变为零,并且这种状态伴随目标卸荷控制对象装置的整个关机停机期间。
  8. 根据权利要求7所述的先导型电子式卸荷阀,其特征在于:所述先导型电子式卸荷阀配置有一个可以控制电磁阀通电瞬间吸合并能延时断开的延时电路,该延时电路包括有一个桥式整流器、一个三极管、一个单向可控硅、一个电容、一个第一电阻、一个第二电阻、一个第三电阻和一个第四电阻,其中三 极管的第一极与桥式整流器的正极相连接或者该三极管的第一极经由一个零号电阻后再与桥式整流器的正极连接、三极管的第二极与桥式整流器的负极相连接或者该三极管的第二极经由一个零号电阻之后再与桥式整流器的负极相连接、三极管的第三极与第四电阻的一端相连接;第四电阻的另一端与第一电阻的一端、第二电阻的一端有共同结点,同时第四电阻的该端还与单向可控硅的阳极连接或者该端经由一个零号电阻后再与单向可控硅的阳极连接;第一电阻的另一端与桥式整流器的正极连接或者第一电阻的该端经由一个零号电阻之后再与桥式整流器的正极连接;电容的一端、第二电阻的另一端、第三电阻的一端三者有共同结点,单向可控硅的控制极与电容、第二电阻、第三电阻的共同结点连接或者该单向可控硅的控制极经由一个零号电阻后再与所述的电容、第二电阻、第三电阻的共同结点进行连接;电容的另一端与第三电阻的另一端有共同结点,并且该共同结点与桥式整流器的负极连接或者该共同结点经由一个零号电阻之后再与桥式整流器的负极连接;单向可控硅的阴极与桥式整流器的负极连接、或者该单向可控硅的阴极在经由一个零号电阻之后再与桥式整流器的负极连接、再或者该单向可控硅的阴极在经由一个二极管之后再与桥式整流器的负极连接。
  9. 根据权利要求7所述的先导型电子式卸荷阀,其特征在于:所述先导型电子式卸荷阀配置有一个可控制电磁阀通电瞬间吸合并能延时断开的延时电路,该延时电路包括有一个桥式整流器、一个场效应管、一个单向可控硅、一个电容、一个第一电阻、一个第二电阻、一个第三电阻和一个第四电阻,其中场效应管的一号极与桥式整流器的正极相连接或者该场效应管的一号极经由一个零号电阻后再与桥式整流器的正极连接、场效应管的二号极与桥式整流器的 负极相连接或者该场效应管的二号极经由一个零号电阻之后再与桥式整流器的负极相连接、场效应管的三号极与第四电阻的一端相连接;第四电阻的另一端与第一电阻的一端、第二电阻的一端有共同结点,同时第四电阻的该端还与单向可控硅的阳极连接或者该端经由一个零号电阻后再与单向可控硅的阳极连接;第一电阻的另一端与桥式整流器的正极连接或者第一电阻的该端经由一个零号电阻之后再与桥式整流器的正极连接;电容的一端、第二电阻的另一端、第三电阻的一端三者有共同结点,单向可控硅的控制极与电容、第二电阻、第三电阻的共同结点连接或者该单向可控硅的控制极经由一个零号电阻后再与所述电容、第二电阻、第三电阻的共同结点进行连接;电容的另一端与第三电阻的另一端有共同结点,并且该共同结点与桥式整流器的负极连接或者该共同结点经由一个零号电阻之后再与桥式整流器的负极连接;单向可控硅的阴极与桥式整流器的负极连接、或者该单向可控硅的阴极在经由一个零号电阻之后再与桥式整流器的负极连接、再或者该单向可控硅的阴极在经由一个二极管之后再与桥式整流器的负极连接。
  10. 一种配装有先导型电子式卸荷阀的压缩机系统,包括压缩机泵头、储气罐、排气管和逆止阀,所述排气管的一端与压缩机泵头相连接、排气管的另一端与逆止阀相连接,逆止阀与储气罐相连接,其特征在于:在所述排气管上设置有一个分支管,所述的先导型电子式卸荷阀的接载管道与该分支管连接。
  11. 根据权利要求10所述的配装有先导型电子式卸荷阀的压缩机系统,其特征在于:所述的先导型电子式卸荷阀相对于压缩机系统为外挂形式,同时卸荷阀的接载管道与压缩机系统排气管的分支管采用快插快拔管接头型式进行连接。
  12. 根据权利要求10或11所述的配装有先导型电子式卸荷阀的压缩机系统,其特征在于:所述的先导型电子式卸荷阀设定其电磁阀有强电流i通过的时段满足Δt≤60秒。
PCT/CN2021/118814 2021-08-21 2021-09-16 一种先导型电子式卸荷阀及配装有该卸荷阀的压缩机系统 WO2023024195A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110964114.8A CN113623421A (zh) 2021-08-21 2021-08-21 一种先导型电子式卸荷阀及配装有该卸荷阀的压缩机系统
CN202110964114.8 2021-08-21

Publications (1)

Publication Number Publication Date
WO2023024195A1 true WO2023024195A1 (zh) 2023-03-02

Family

ID=78387030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118814 WO2023024195A1 (zh) 2021-08-21 2021-09-16 一种先导型电子式卸荷阀及配装有该卸荷阀的压缩机系统

Country Status (2)

Country Link
CN (1) CN113623421A (zh)
WO (1) WO2023024195A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0051517A1 (fr) * 1980-11-04 1982-05-12 Societe Electromecanique Du Nivernais Selni Electrovanne
US4418886A (en) * 1981-03-07 1983-12-06 Walter Holzer Electro-magnetic valves particularly for household appliances
US5954311A (en) * 1996-07-19 1999-09-21 Nu-Valve Pty Ltd Low power pilot valve actuated by transverse or perpendicular action
US20100155636A1 (en) * 2008-12-24 2010-06-24 Robertshaw Controls Company Pilot Operated Water Valve
JP2012031905A (ja) * 2010-07-29 2012-02-16 Ckd Corp パイロット式電磁弁
CN106641398A (zh) * 2016-12-30 2017-05-10 西安航天动力研究所 一种大口径先导卸荷式电磁阀
CN107559474A (zh) * 2017-10-12 2018-01-09 浙江鸿友压缩机制造有限公司 可电子设定与电动实现的调压阀及配有该调压阀的压缩机
CN110296233A (zh) * 2019-07-29 2019-10-01 浙江鸿友压缩机制造有限公司 基于伯努利原理的机电式延时阀及配有该延时阀的空压机
CN110332103A (zh) * 2019-07-29 2019-10-15 浙江鸿友压缩机制造有限公司 带延时关闭电磁卸荷阀的电子压力开关
CN111442129A (zh) * 2020-03-31 2020-07-24 余姚市三力信电磁阀有限公司 一种耐腐蚀的新型电磁阀
CN215720979U (zh) * 2021-08-21 2022-02-01 浙江鸿友压缩机制造有限公司 一种先导型电子式卸荷阀及配装有该卸荷阀的压缩机系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0051517A1 (fr) * 1980-11-04 1982-05-12 Societe Electromecanique Du Nivernais Selni Electrovanne
US4418886A (en) * 1981-03-07 1983-12-06 Walter Holzer Electro-magnetic valves particularly for household appliances
US5954311A (en) * 1996-07-19 1999-09-21 Nu-Valve Pty Ltd Low power pilot valve actuated by transverse or perpendicular action
US20100155636A1 (en) * 2008-12-24 2010-06-24 Robertshaw Controls Company Pilot Operated Water Valve
JP2012031905A (ja) * 2010-07-29 2012-02-16 Ckd Corp パイロット式電磁弁
CN106641398A (zh) * 2016-12-30 2017-05-10 西安航天动力研究所 一种大口径先导卸荷式电磁阀
CN107559474A (zh) * 2017-10-12 2018-01-09 浙江鸿友压缩机制造有限公司 可电子设定与电动实现的调压阀及配有该调压阀的压缩机
CN110296233A (zh) * 2019-07-29 2019-10-01 浙江鸿友压缩机制造有限公司 基于伯努利原理的机电式延时阀及配有该延时阀的空压机
CN110332103A (zh) * 2019-07-29 2019-10-15 浙江鸿友压缩机制造有限公司 带延时关闭电磁卸荷阀的电子压力开关
CN111442129A (zh) * 2020-03-31 2020-07-24 余姚市三力信电磁阀有限公司 一种耐腐蚀的新型电磁阀
CN215720979U (zh) * 2021-08-21 2022-02-01 浙江鸿友压缩机制造有限公司 一种先导型电子式卸荷阀及配装有该卸荷阀的压缩机系统

Also Published As

Publication number Publication date
CN113623421A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2021017858A1 (zh) 带延时关闭电磁卸荷阀的电子压力开关
US5735461A (en) High-pressure cleaner with bypass valve for the pump
WO2021017857A1 (zh) 基于伯努利原理的机电式延时阀及配有该延时阀的空压机
CN215720979U (zh) 一种先导型电子式卸荷阀及配装有该卸荷阀的压缩机系统
WO2023024195A1 (zh) 一种先导型电子式卸荷阀及配装有该卸荷阀的压缩机系统
CN210371119U (zh) 带延时关闭电磁卸荷阀的电子压力开关
CN104564628A (zh) 基于弹片启闭的空气压缩机停机及起动卸载装置
US5190443A (en) Hydropneumatic constant pressure device
CN201779019U (zh) 大排量螺杆空压机进气流量调节阀
CN210423816U (zh) 基于伯努利原理的机电式延时阀及配有该延时阀的空压机
CN218954163U (zh) 免隔离薄膜延时动作电磁卸荷装置及配置该装置的空压机
CN106763934B (zh) 双驱动快速关闭的升降式逆止和截止组合阀
CN204402812U (zh) 基于弹片启闭的空气压缩机停机及起动卸载装置
CN102720872A (zh) 一种多功能燃气安全保护装置
CN2704953Y (zh) 水泵多功能保护器
CN2594961Y (zh) 止回溢流阀压力开关
CN207145201U (zh) 一种房车水泵保护器
CN204511840U (zh) 基于滚珠启闭的空气压缩机停机及起动卸载装置
CN220204782U (zh) 一种安全型阀门
CN111219173B (zh) 采油树控制装置及采油树
CN214944698U (zh) 一种抽蓄机组水泵断电调速器快关系统
CN2597777Y (zh) 家用燃气泄漏报警安全阀
CN1426079A (zh) 止回溢流阀压力开关
CN110566711B (zh) 燃气热水器断电后自动关闭的水阀及具有该水阀的热水器
CN212207995U (zh) 一种节能微型电磁阀控制电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954716

Country of ref document: EP

Kind code of ref document: A1