WO2023024034A1 - 电化学阻抗谱的检测装置和电池管理系统 - Google Patents
电化学阻抗谱的检测装置和电池管理系统 Download PDFInfo
- Publication number
- WO2023024034A1 WO2023024034A1 PCT/CN2021/114820 CN2021114820W WO2023024034A1 WO 2023024034 A1 WO2023024034 A1 WO 2023024034A1 CN 2021114820 W CN2021114820 W CN 2021114820W WO 2023024034 A1 WO2023024034 A1 WO 2023024034A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- excitation
- detection device
- resistor
- electrochemical impedance
- Prior art date
Links
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 title claims abstract description 102
- 238000012360 testing method Methods 0.000 title abstract description 7
- 238000001514 detection method Methods 0.000 claims abstract description 182
- 230000005284 excitation Effects 0.000 claims abstract description 160
- 238000012544 monitoring process Methods 0.000 claims abstract description 78
- 238000005070 sampling Methods 0.000 claims description 31
- 238000001453 impedance spectrum Methods 0.000 claims description 21
- 238000012545 processing Methods 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 6
- 230000036541 health Effects 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 17
- 230000004044 response Effects 0.000 description 10
- 238000007726 management method Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005316 response function Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/389—Measuring internal impedance, internal conductance or related variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/026—Dielectric impedance spectroscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R27/00—Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
- G01R27/02—Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
Definitions
- the present application relates to the field of battery technology, in particular to a detection device of electrochemical impedance spectroscopy and a battery management system.
- the battery management system (Battery Management System, BMS) of the existing new energy vehicles or energy storage systems monitors the state of the battery mainly by monitoring physical parameters such as battery voltage, temperature and current, and then calculates the battery status based on these parameters.
- State of charge SOC
- SOH aging degree or state of health
- DCR Direct Current Resistance
- SOC is calculated from the ampere-hour integral of current, supplemented with state-specific voltage corrections.
- this method requires a complete charge and discharge cycle to learn to determine the maximum battery capacity; voltage correction usually needs to be determined at the terminal voltage of the battery, and the terminal voltage is related to the current, temperature and DC impedance at that time.
- the algorithm is complex and the accuracy cannot be improved.
- Electrochemical impedance spectroscopy is a response of an electrochemical system to external excitation. It can be used to analyze the internal resistance, electric double layer capacitance and Faraday impedance of the battery. According to relevant research analysis, the impedance spectra displayed by batteries under different state parameters are inconsistent. Therefore, the state detection of the battery can be performed based on the EIS detection.
- the embodiment of the present application provides an electrochemical impedance spectroscopy detection device and a battery management system, which can reduce the cost and volume of EIS detection, so that it can be widely used in BMS.
- a detection device for electrochemical impedance spectroscopy including a waveform generator integrated in a battery monitoring chip; an excitation resistor, a detection resistor and a MOS switch, one end of the excitation resistor and the detection resistor One of the ends of the excitation resistor is connected to the positive pole of the battery, the other end of the excitation resistor is connected to the negative pole of the battery, and the other end of the excitation resistor is connected to the other end of the detection resistor.
- the source of the MOS switch is connected, and the other end of the excitation resistor and the other end of the detection resistor are connected to the drain of the MOS switch; wherein, the waveform generator is used to generate a pulse waveform, and the gate of the MOS switch The pole is used to receive the pulse waveform, the excitation resistor is used to make the battery generate an excitation current when the gate of the MOS switch receives the pulse waveform, the detection resistor is used to convert the excitation current into an excitation voltage, and the excitation The voltage is used to calculate the electrochemical impedance of the battery, and the electrochemical impedance of the battery at different frequencies is used to form the electrochemical impedance spectrum of the battery.
- the excitation current is injected through the waveform generator in the battery monitoring chip, and the EIS detection device is cleverly integrated into the chip architecture, which can reduce the cost and volume of EIS detection, making it widely used in BMS and easier to apply Status detection during battery usage.
- the detection device further includes: an analog-to-digital converter, configured to sample the excitation voltage corresponding to the battery.
- the purpose of quantifying the electrochemical impedance of the battery can be achieved.
- each of the plurality of analog-to-digital converters is used to sample corresponding The excitation voltage corresponding to the battery, wherein the plurality of analog-to-digital converters correspond to the plurality of batteries one by one.
- the excitation voltages corresponding to multiple batteries can be obtained simultaneously, and the electrochemical impedance spectra of multiple batteries can be further obtained, thereby improving detection efficiency.
- the analog-to-digital converter is configured to sample a plurality of the excitation voltages that correspond one-to-one to the plurality of batteries.
- the multiple excitation voltages are channel-switched to the analog-to-digital converter through a multiplexer for sampling.
- Using a common analog-to-digital converter and sampling the excitation voltages corresponding to multiple batteries in time intervals through a multiplexer to obtain electrochemical impedance spectra of the multiple batteries can simplify the circuit structure and further reduce the cost of EIS detection.
- the analog-to-digital converter multiplexes the analog-to-digital converter in the battery monitoring chip.
- Multiplexing the analog-to-digital converter in the battery monitoring chip can further reduce the cost and volume of EIS detection.
- the excitation voltage and the actual voltage of the battery during use are divided by a multiplexer in the battery monitoring chip.
- the channel is switched to the analog-to-digital converter for sampling.
- the MOS switch is integrated in the battery monitoring chip.
- Integrating the MOS switch in the battery monitoring chip facilitates the diagnosis of the MOS switch.
- the MOS switch is disposed outside the battery monitoring chip.
- the MOS switch is arranged outside the battery monitoring chip, so that the MOS switch can be designed flexibly, and it is beneficial to adjust the excitation current generated by the battery.
- the battery is a battery pack formed by connecting multiple battery cells in series;
- the gate receives the pulse waveform, the battery pack generates an excitation current;
- the detection resistor is used to convert the excitation current into an excitation voltage, and the excitation voltage is used to calculate the electrochemical impedance of the battery pack, and the battery pack at different frequencies
- the electrochemical impedance of the pack was used to form an electrochemical impedance spectrum for the battery pack.
- EIS detection is not necessarily required for each battery cell.
- Using a single EIS detection channel to measure the electrochemical impedance of a battery pack composed of multiple battery cells can reduce the number of pins of the battery monitoring chip. number.
- the electrochemical impedance spectrum is obtained through calculation by a data processing unit in the battery monitoring chip.
- the excitation voltage after passing through the analog-to-digital converter is filtered by the data filtering unit in the battery monitoring chip.
- Providing filtering to the digital signal converted by the analog-to-digital converter can increase the stability of the sampled value.
- the excitation resistor and the detection resistor are also used to perform discharge equalization on the battery when the MOS switch is turned on.
- the electrochemical impedance spectroscopy of the battery is used to obtain the state parameters of the battery, and the state parameters include at least one of the following Types: state of charge SOC, state of health SOH and DC resistance DCR.
- the detection of battery status parameters through EIS has high sensitivity and good real-time performance.
- early identification and early warning can be achieved to achieve more accurate and timely thermal runaway warning.
- the second aspect provides a battery management system, including the detection device of electrochemical impedance spectroscopy and the battery monitoring chip in the first aspect and any possible implementation manner of the first aspect, and the waveform generator in the detection device is integrated
- the detection device is used to output the excitation voltage
- the battery monitoring chip is used to calculate the electrochemical impedance of the battery according to the excitation voltage
- the electrochemical impedance of the battery at different frequencies is used to form the Electrochemical impedance spectroscopy of the battery.
- the MOS switch is integrated in the battery monitoring chip.
- the MOS switch is arranged outside the battery monitoring chip.
- Fig. 1 is a schematic block diagram of an electrochemical impedance spectroscopy detection device disclosed in an embodiment of the present application.
- FIG. 2 is a schematic block diagram of a detection device for a single cell-single EIS detection channel disclosed in an embodiment of the present application.
- Fig. 3 is another schematic block diagram of a single cell-single EIS detection channel detection device disclosed in an embodiment of the present application.
- Fig. 4 is another schematic block diagram of the single cell-single EIS detection channel detection device disclosed in the embodiment of the present application.
- Fig. 5 is a schematic block diagram of a multi-cell-multiple EIS detection channel detection device disclosed in an embodiment of the present application.
- Fig. 6 is another schematic block diagram of a multi-cell-multiple EIS detection channel detection device disclosed in an embodiment of the present application.
- Fig. 7 is another schematic block diagram of the multi-cell-multiple EIS detection channel detection device disclosed in the embodiment of the present application.
- Fig. 8 is a schematic block diagram of a multi-cell-single EIS detection channel detection device disclosed in an embodiment of the present application.
- Fig. 9 is a schematic block diagram of a battery management system disclosed in an embodiment of the present application.
- Electrochemical impedance spectroscopy refers to applying a disturbance electrical signal to an electrochemical system, then observing the response of the system, and using the response signal to analyze the electrochemical properties of the system.
- the difference is that the disturbance electrical signal applied by EIS to the electrochemical system is not DC potential or current, but a small amplitude AC sinusoidal potential wave with different frequencies, and the measured response signal is not DC current or the change of potential over time. Rather, it is the ratio of the AC potential to the current, usually referred to as the impedance of the system, as a function of the sinusoidal frequency ⁇ , or as the phase angle of the impedance as a function of frequency.
- a disturbance signal X is input to the electrochemical system M, it will output a response signal Y.
- EIS technology is to measure different frequency
- and the phase angle of the impedance at different frequencies are obtained These quantities are then plotted into various forms of curves to obtain electrochemical impedance spectroscopy.
- the electrochemical system is regarded as an equivalent circuit, which is composed of basic components such as resistance R, capacitance C and inductance L in series or in parallel.
- EIS electronic Industrial Standardization
- the composition of the equivalent circuit and the value of each component can be determined, and the electrochemical meaning of these components can be used to analyze the structure of the electrochemical system and the properties of the polarization process.
- the internal resistance of the battery including the internal resistance of the electrolyte and electrodes
- the electric double layer capacitance and the Faradaic impedance including the charge transfer resistance and Warburg impedance
- the state detection of the battery can be carried out by EIS detection.
- the current EIS detection of the battery is mainly to directly input different frequency excitations to the battery through an external direct current-direct current (DC-DC) device, and then collect the corresponding response to calculate the electrochemical impedance spectrum of the battery.
- DC-DC direct current-direct current
- the existing technology can also perform EIS detection on the battery, due to the need to introduce additional DC-DC equipment, the EIS detection device is high in cost, large in size, and complex in scheme. It is mainly used in workstations for battery research and analysis. It is not applied to state detection during battery use.
- the embodiment of the present application provides a new detection device for electrochemical impedance spectroscopy.
- the injection of the excitation current is realized through the waveform generator in the battery monitoring chip, and the
- the EIS detection device is integrated into the chip architecture, thereby reducing the cost and volume of EIS detection, making it widely used in BMS, and more easily applied to state detection during battery use.
- the batteries in the embodiments of the present application may be lithium-ion batteries, lithium metal batteries, lead-acid batteries, nickel-batteries, nickel-metal hydride batteries, lithium-sulfur batteries, lithium-air batteries, or sodium-ion batteries, etc., which are not limited here. .
- the battery in this embodiment of the application can be a battery cell, or a battery module or battery pack including multiple battery cells, or it can also be called a battery pack, which is not limited here .
- batteries can be used in power devices such as automobiles and ships. For example, it can be used in power vehicles to supply power to the motors of power vehicles as a power source for electric vehicles. The battery can also supply power to other electrical devices in the electric vehicle, such as the air conditioner in the car, the car player, etc.
- FIG. 1 shows a schematic block diagram of an electrochemical impedance spectroscopy detection device 100 according to an embodiment of the present application.
- the detection device 100 includes: a waveform generator 110, which is integrated in the battery monitoring chip 200; an excitation resistor 120, a detection resistor 130 and a MOS switch 140, wherein one end of the excitation resistor 120 One end of the detection resistor 130 is connected to the positive pole of the battery 300, the other end of the excitation resistor 120 and one end of the detection resistor 130 is connected to the negative pole of the battery 300, and the other end of the excitation resistor 120 is connected to the detection resistor 130 One of the other terminals of the excitation resistor 120 is connected to the source of the MOS switch 140 , the other terminal of the excitation resistor 120 is connected to the drain of the MOS switch 140 and the other of the other terminals of the detection resistor 130 .
- the MOS switch 140 is an abbreviation of Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET), and the waveform generator 110 is used to generate a pulse waveform, that is, Pulse-Width Modulation (Pulse-Width Modulation, PWM) waveform, also known as a square wave.
- the gate of the MOS switch 140 is used to receive the pulse waveform generated by the waveform generator 110 .
- the excitation resistor 120 is used to make the battery 300 generate an excitation current when the gate of the MOS switch 140 receives the pulse waveform generated by the waveform generator 110 .
- the detection resistor 130 is used to convert the excitation current generated by the battery 300 into an excitation voltage, and the excitation voltage is used to calculate the electrochemical impedance of the battery 300 .
- the waveform generator 110 can generate pulse waveforms with different frequencies.
- the pulse waveforms at different frequencies correspond to different electrochemical impedances of the battery 300 .
- Different electrochemical impedances can form an electrochemical impedance spectrum of the battery 300 .
- the waveform generator 110 can generate a pulse waveform within the frequency range of 100mHz to 5kHz to drive the MOS switch 140 to be turned on, and then the battery 300 will respond differently according to the change of the frequency.
- the current response can be known, so that the electrochemical impedance of the battery 300 can be calculated.
- the electrochemical impedance spectrum can be drawn, which can also be called the impedance spectrum curve.
- there will be some interference so multiple detections can be performed to optimize the impedance spectrum curve.
- EIS detection is the response of the electrochemical system to external excitations of different frequencies.
- the excitations can be constant voltage or constant current. Since the impedance of the lithium-ion battery is low, it is better to choose a constant current excitation in the embodiment of the present application.
- the constant current excitation method applies a current excitation of known frequency to the battery through the excitation resistor, so that the battery generates an excitation current, and then measures the voltage generated on the detection resistor.
- the battery monitoring chip can also be called a battery monitoring chip, a battery sampling chip, a voltage acquisition chip, a battery monitoring chip, a battery monitoring chip or a battery sampling chip, etc.
- the battery monitoring chip is usually used to collect the actual voltage of the battery during use for BMS to make various judgments.
- the EIS detection device 100 in the embodiment of the present application may be applied in a battery management system BMS, and the battery management system may include a battery monitoring chip 200 .
- the electrochemical impedance spectroscopy of the battery 300 is used to obtain state parameters of the battery 300, and the state parameters include at least one of SOC, SOH, and DCR.
- the state parameters include at least one of SOC, SOH, and DCR.
- parameters such as internal resistance and internal temperature of the battery 300 can also be evaluated through the electrochemical impedance spectroscopy of the battery 300 .
- the battery model can be established by comparing the obtained electrochemical impedance spectrum with the impedance spectrum curve obtained in the testing stage.
- the battery model can be the equivalent circuit described above. According to the battery model, the The above-mentioned relevant parameters of the battery 300 can be inferred.
- the above-mentioned relevant parameters of the battery 300 may be obtained directly through an algorithm based on the obtained electrochemical impedance spectrum. It should be understood that the embodiment of the present application does not limit how to obtain the relevant parameters of the battery based on the electrochemical impedance spectroscopy.
- the detection of battery status parameters through EIS has high sensitivity and good real-time performance.
- early identification and early warning can be achieved to achieve more accurate and timely thermal runaway warning.
- the waveform generator in the electrochemical impedance spectroscopy detection device provided in the embodiment of the present application is integrated in the battery monitoring chip, optionally, the waveform generator can also be implemented in other ways, for example, it can be implemented in the BMS
- the processor in the chip runs the code to realize the generation of the pulse waveform. As long as the waveform generator is implemented using existing chips in the BMS without using additional equipment, it is within the scope of protection of the technical solutions of this application.
- the detection device 100 may further include: an analog-to-digital converter, configured to sample an excitation voltage corresponding to the battery 300 .
- Analog to Digital Converter refers to a circuit that converts analog signals into digital signals. More specifically, an ADC can convert a time-continuous, amplitude-continuous analog signal into a time-discrete, amplitude-discrete digital signal.
- the excitation voltage corresponding to the battery 300 can be sampled by sampling the voltage across the detection resistor 130 .
- the ADC can use single-ended input, which can also be called single-ended sampling, that is, the ADC has only one input terminal, and the common ground is used as the return terminal of the circuit. This input method is simple and easy to implement.
- ADC can also use differential input, which can also be called differential sampling, that is, ADC has two input terminals. Since these two input terminals are usually distributed together, the interference they receive is similar. Input common mode interference, in the input ADC time will be subtracted, thereby reducing interference.
- An EIS detection channel may include an excitation resistor, a detection resistor, and a MOS switch, wherein the connection manner of an excitation resistor, a detection resistor, and a MOS switch may refer to the description in FIG. 1 .
- a battery can be regarded as a single battery cell.
- One battery cell corresponds to one EIS detection channel. If EIS detection needs to be performed on each of the multiple battery cells, the multiple battery cells need to correspond to multiple EIS detection channels one by one.
- a battery in another embodiment of the present application, can be considered as multiple battery cells.
- it may be a battery pack formed by connecting multiple battery cells in series.
- an EIS detection channel can be used to implement EIS detection on the battery pack.
- the excitation resistor in the one EIS detection channel is used to make the battery pack generate an excitation current when the gate of the MOS switch in the one EIS detection channel receives the pulse waveform
- the detection resistor in the one EIS detection channel It is used to convert the excitation current generated by the battery pack into an excitation voltage, and the obtained excitation voltage is used to calculate the electrochemical impedance of the battery pack, and the electrochemical impedance of the battery pack at different frequencies is used to form the electrochemical impedance of the battery pack. Impedance spectrum.
- the multiple battery cells respectively pass through multiple EIS detection channels, and obtain multiple excitation voltages through ADC sampling.
- the detection device 100 includes an ADC, and the ADC is used to sample a plurality of excitation voltages corresponding to a plurality of batteries one-to-one. Further, the detection device 100 may further include a multiplexer, and the one ADC samples the multiple excitation voltages in different channels through the multiplexer.
- the detection device 100 may further include a plurality of ADCs, that is, one ADC corresponds to one EIS detection channel, and each ADC in the plurality of ADCs is used to sample the excitation voltage of a corresponding battery in the plurality of batteries.
- each battery cell in a part of the battery cells needs to be tested by EIS, that is, each battery cell in the part of the battery cells corresponds to One EIS detection channel; the other part of the battery cell is used as a battery pack for EIS detection, that is, the battery pack corresponds to an EIS detection channel.
- the ADC in the detection device 100 may multiplex the ADC in the battery monitoring chip.
- the ADC in the battery monitoring chip is usually used to collect the actual voltage of the battery during use. That is to say, the ADC used to collect the excitation voltage of the battery can be multiplexed with the ADC used to collect the actual voltage of the battery during use.
- the ADC in the battery monitoring chip samples the excitation voltage and the actual voltage of the battery during use through a multiplexer.
- the ADC in the detection device 100 may not multiplex the ADC in the battery monitoring chip, but be integrated in the battery monitoring chip. That is to say, both the ADC for collecting the excitation voltage and the ADC for collecting the actual voltage of the battery during use are integrated in the battery monitoring chip and are independent of each other.
- the battery monitoring chip may only include one ADC, and the ADC needs to collect both the multiple excitation voltages and the multiple actual voltages. And the one ADC collects the multiple excitation voltages and the multiple actual voltages through the multiplexer in the battery monitoring chip.
- the battery monitoring chip includes a plurality of ADCs, wherein the plurality of ADCs are divided into two parts, and each ADC in a part of the ADCs is used to collect a corresponding excitation voltage among the plurality of excitation voltages. Each ADC in the other part of ADCs is used to acquire a corresponding actual voltage among the plurality of actual voltages. That is, the plurality of ADCs corresponds to each of the plurality of excitation voltages and the plurality of actual voltages.
- the multiplexer may not be required.
- the battery monitoring chip includes two ADCs, one ADC is used to collect the multiple excitation voltages, and the other ADC is used to collect the multiple actual voltages.
- the battery monitoring chip may include two multiplexers, one multiplexer is used to switch multiple excitation voltage channels to the corresponding ADC for sampling, and the other multiplexer is used to channel multiple The actual voltage is switched by channel to the corresponding ADC for sampling.
- the battery monitoring chip includes a plurality of ADCs, wherein each ADC of the plurality of ADCs collects one excitation voltage among the plurality of excitation voltages and one actual voltage among the plurality of actual voltages.
- the battery monitoring chip may include a plurality of multiplexers, and each ADC in the plurality of ADCs collects a corresponding excitation voltage or a corresponding actual voltage through a corresponding multiplexer.
- the battery monitoring chip includes multiple ADCs, which can be divided into at least three types of combinations in the following five categories: ADCs that only collect one excitation voltage, ADCs that only collect one actual voltage, and ADCs that collect multiple excitation voltages , an ADC that collects multiple actual voltages, and an ADC that collects both the excitation voltage and the actual voltage.
- the ADC used to collect the excitation voltage may not be integrated in the battery monitoring chip, but a separate ADC chip may be used.
- the MOS switch 140 in the detection device 100 can be integrated into a battery monitoring chip, and this solution is beneficial to the diagnosis of the MOS switch.
- the MOS switch 140 in the detection device 100 can also be arranged outside the battery monitoring chip.
- the MOS switch is flexible and is beneficial to adjust the excitation current generated by the battery.
- the excitation voltage sampled by the ADC may be converted into an electrochemical impedance spectrum by a data processing unit in the battery monitoring chip.
- the excitation voltage sampled by the ADC can also be filtered by the data filtering unit in the battery monitoring chip, so as to increase the stability of the sampled value and improve the detection reliability of the detection device 100 .
- the excitation resistor 120 and the detection resistor 130 can also discharge and balance the battery 300 when the MOS switch 140 is turned on. At this time, the gate of the MOS switch 140 receives a constant level. The level of this constant level may depend on the type of MOS switch 140 .
- each of the above modules may not reuse each functional module in the battery monitoring chip, for example, the data processing unit may be implemented by a processor in the BMS.
- the electrochemical impedance spectroscopy detection device of the embodiment of the present application will be described in detail below in conjunction with FIGS. 2 to 8.
- the detection device adds an EIS detection function on the basis of the existing battery monitoring chip. For specific functions, please refer to the battery monitoring chips currently on the market.
- the waveform generator 410 is used to generate a pulse waveform, and then drive the MOS switch 440 so that the MOS switch is turned on at a specified frequency.
- the waveform generator 410 can be integrated in the battery monitoring chip 500 .
- the excitation resistor 420 is used to make the battery 600 generate an excitation current when the MOS switch 440 is turned on. According to the excitation current actually required, the resistance value of the corresponding excitation resistor can be selected.
- the detection resistor 430 is used to detect the excitation current. Specifically, the excitation current can be converted into an excitation voltage through the detection resistor 430, and then sampled by the ADC 505. It should be noted that two sampling lines S_P and S_N can be provided at both ends of the detection resistor 430 to implement differential sampling, thereby improving the anti-interference ability. However, S_N is an unnecessary line.
- the MOS switch 440 is used to control the generation of the excitation current, the excitation current is generated when it is turned on, and the excitation current is stopped when it is turned off.
- the gate of the MOS switch 440 can receive the pulse waveform generated by the waveform generator 410, and the MOS switch 440 is turned on and off under the control of the pulse waveform.
- the MOS switch 440 can be integrated in the battery monitoring chip 500 , as shown in FIG. 2 ; the MOS switch 440 can be set outside the battery monitoring chip 500 , as shown in FIGS. 3 to 8 .
- the ADC 505 is used to collect the input voltage of the cell voltage input channel, that is, the actual voltage of the battery 600 during use; the ADC 505 is also used to collect the voltage across the detection resistor 430, that is, the excitation voltage. Specifically, the ADC 505 converts the input analog voltage signal into a digital signal.
- the multiplexer 510 switches the input voltage (including the excitation voltage and/or the actual voltage) to the ADC 505 for sampling.
- the data filtering unit 515 is used to provide filtering for the digital signal converted by the ADC 505, so as to increase the stability of sampling, thereby improving the reliability of detection.
- the data processing unit 520 is configured to process the excitation voltage and the actual voltage converted by the ADC 505, and convert the collected excitation voltage into an electrochemical impedance spectrum.
- the data processing unit 520 can execute the instructions sent by the communication unit 535 to control the battery monitoring chip 500 to work.
- the data storage unit 525 is used for storing the collected voltage data.
- the power supply unit 530 is used to convert the changing cell voltage into a stable voltage for powering other internal modules, for example, to provide a reference power supply for the ADC 505, or to provide power supply for the communication unit 535.
- the communication unit 535 is a sending interface and a receiving interface of the battery monitoring chip 500 , and is used for receiving instructions sent from the outside or sending internal data of the battery monitoring chip 500 to the outside.
- the temperature protection unit 540 is used to detect the temperature of the battery monitoring chip 500. When the temperature is higher than a certain threshold, the MOS switch 440 is prohibited from being turned on, so as to reduce the power consumption of the chip, avoid over-temperature ablation of the chip or cause unstable operation of other modules.
- a general-purpose input/output (GPIO) control unit 545 is used to control the GPIO interface of the battery monitoring chip and expand the functions of the chip.
- the GPIO can be multiplexed as a serial peripheral interface (Serial Peripheral Interface, SPI), an inter-integrated circuit (Inter-Integrated Circuit, IIC) bus or an analog signal sampling interface.
- SPI Serial Peripheral Interface
- IIC Inter-Integrated Circuit
- Vss can be understood as the power ground of the battery monitoring chip.
- one end of the excitation resistor is connected to the positive pole of the battery, and one end of the detection resistor is connected to the negative pole of the battery. It should be noted that this connection relationship is only an example, and obviously, their positions can be exchanged. That is, one end of the excitation resistor is connected to the negative pole of the battery, and one end of the detection resistor is connected to the positive pole of the battery. Similarly, the connection relationship between the excitation resistor and the detection resistor and the MOS switch can also be exchanged, which is not limited in this embodiment of the present application.
- FIG. 2 shows a schematic block diagram of a single cell-single EIS detection channel detection device.
- the detection device includes an EIS detection channel 400 and a waveform generator 410
- the EIS detection channel 400 includes an excitation resistor 420 , a detection resistor 430 and a MOS switch 440 for performing EIS detection on the battery 600 .
- the battery 600 may be a single battery cell, and the MOS switch 440 is integrated in the battery monitoring chip 500 .
- the gate of the MOS switch 440 receives the pulse waveform generated by the waveform generator 410; the excitation resistor 420 causes the battery cell 600 to generate an excitation current when the gate of the MOS switch 440 receives the pulse waveform; the detection resistor 430 generates the excitation current converted into an excitation voltage; the excitation voltage is collected by the ADC 505, and the collected excitation voltage is processed by the data processing unit 520 to obtain the electrochemical impedance of the battery 600.
- a plurality of electrochemical impedances of the battery 600 obtained at a plurality of frequencies may form an electrochemical impedance spectrum of the battery 600 .
- the ADC 505 is also used to acquire the actual voltage.
- the excitation voltage and the actual voltage are switched by multiplexer 510 to ADC 505 for sampling.
- FIG. 3 shows another schematic block diagram of a single cell-single EIS detection channel detection device.
- the MOS switch 440 is disposed outside the battery monitoring chip 500 .
- the functions of other modules can refer to the description in FIG. 2 .
- FIG. 4 shows another schematic block diagram of a single cell-single EIS detection channel detection device.
- the ADC used to collect the excitation voltage is set independently from the ADC used to collect the actual voltage, that is, the ADC 505 includes ADC 505a and ADC 505b, since both the excitation voltage and the actual voltage are sampled by the corresponding ADC, there is no need for Set up the multiplexer.
- the functions of other modules refer to the description in FIG. 2 .
- Fig. 5 shows a schematic block diagram of a multi-cell-multiple EIS detection channel detection device.
- the detection device includes a plurality of EIS detection channels (400_1, 400_2, ... , 400_n) and a waveform generator 410, which are used to detect multiple battery cells (600_1, 600_2, ... , 600_n ) for EIS detection.
- Each EIS detection channel consists of an excitation resistor, a sense resistor and a MOS switch.
- EIS detection channel 400_1 includes excitation resistor 420_1, detection resistor 430_1 and MOS switch 440_1
- EIS detection channel 400_2 includes excitation resistor 420_2, detection resistor 430_2 and MOS switch 440_2, ...
- EIS detection channel 400_n includes excitation resistor 420_n, detection resistor 430_n and MOS switch 440_n.
- each battery cell 600_1, 600_2, . . . , 600_n
- each battery cell 600_1, 600_2, . . . , 600_n
- each battery cell 600_1, 600_2, . . . , 600_n
- each battery cell 600_1, 600_2, . . . , 600_n
- each battery cell 600_1, 600_2, . . . , 600_n
- the ADC 505 not only samples the excitation voltage of multiple battery cells (600_1, 600_2, ..., 600_n), but also samples the actual voltage of multiple battery cells (600_1, 600_2, ..., 600_n) For sampling, the multiple excitation voltages and the multiple actual voltages are channel-switched to the ADC 505 through the multiplexer 510 for sampling.
- the functions of other modules can refer to the description in FIG. 2 .
- Fig. 6 shows another schematic block diagram of a multi-cell-multiple EIS detection channel detection device.
- the ADC 505 includes a plurality of ADCs, the plurality of ADCs are divided into two types, ADC 505a and ADC 505b, one type of ADC is used to collect the excitation voltage, the other type of ADC is used to collect the actual voltage, and each The class ADC includes as many ADCs as there are corresponding voltages to be acquired.
- ADC 505a_1, ADC 505a_2,..., ADC 505a_n-1, ADC 505a_n are used to collect n excitation voltages
- ADC 505b_1, ADC 505b_2,..., ADC 505b_n-1, ADC 505b_n are used to collect n actual voltages, Since the number of voltages to be acquired is the same as the number of ADCs, there is no need for multiplexers.
- the functions of other modules refer to the description in FIG. 2 .
- Fig. 7 shows another schematic block diagram of the detection device of multi-cell-multiple EIS detection channels.
- the ADC 505 includes two ADCs, ADC 505a and ADC 505b, one ADC is used to collect multiple excitation voltages, and the other ADC is used to collect multiple actual voltages.
- the multiplexer 510 includes two multiplexers, a multiplexer 510a and a multiplexer 510b, and a multiplexer is used to switch multiple excitation voltage channels to corresponding
- the ADC is used for sampling, and another multiplexer is used to switch multiple actual voltage sub-channels to the corresponding ADC for sampling.
- FIG. 2 For the functions of other modules, refer to the description in FIG. 2 .
- Fig. 8 shows a schematic block diagram of a multi-cell-single EIS detection channel detection device.
- the one EIS detection channel 400 is used to perform EIS detection on a battery pack composed of multiple battery cells ( 600_1 , 600_2 , . . . , 600_n) to obtain the corresponding excitation voltage of the battery pack.
- the ADC 505 is not only used to collect the actual voltage of each battery cell in multiple battery cells (600_1, 600_2, ..., 600_n), but also used to collect the corresponding excitation voltage of the battery pack.
- the multiplexer 510 is used to channel-switch the actual voltages of the plurality of battery cells and the excitation voltage of the battery pack to the ADC 505 for sampling.
- (n+1) ADCs can also be set, wherein the n ADCs are respectively used to collect n actual voltages, and one ADC is used to collect the voltage corresponding to the battery pack. an excitation voltage.
- n ADCs are respectively used to collect n actual voltages
- one ADC is used to collect the voltage corresponding to the battery pack. an excitation voltage.
- each of the embodiments shown in FIG. 3 to FIG. 8 can integrate the MOS switch 440 into the battery monitoring chip 500 as shown in FIG. 2 .
- the embodiment of the present application also provides a battery management system 900, which includes an electrochemical impedance spectroscopy detection device 910 and a battery monitoring chip 920, wherein the detection device 910 can be the above-mentioned
- the electrochemical impedance spectroscopy detection device described in this embodiment wherein the waveform generator in the detection device 910 is integrated in the battery monitoring chip 920, the detection device 910 is used to output the excitation voltage, and the battery monitoring chip 920 is used for According to the excitation voltage output by the detection device 910, the electrochemical impedance of the battery is calculated, and the electrochemical impedance obtained at different frequencies is used to form the electrochemical impedance spectrum of the battery.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Secondary Cells (AREA)
Abstract
本申请实施例提供一种电化学阻抗谱的检测装置和电池管理系统,包括:波形发生器,该波形发生器集成在该电池监测芯片中;激励电阻、检测电阻和MOS开关;其中,该波形发生器用于产生脉冲波形;该MOS开关的栅极用于接收该脉冲波形;该激励电阻用于在该MOS开关的栅极接收到该脉冲波形时,使得该电池产生激励电流;该检测电阻用于将该激励电流转化为激励电压,该激励电压用于计算该电池的电化学阻抗,不同频率下的该电池的该电化学阻抗用于形成该电池的电化学阻抗谱。本申请实施例的电化学阻抗谱的检测装置,可以降低EIS检测的成本和体积,使得其能够在BMS中广泛应用。
Description
本申请涉及电池技术领域,特别是涉及一种电化学阻抗谱的检测装置和电池管理系统。
现有的新能源汽车或者储能系统的电池管理系统(Battery Management System,BMS),对电池的状态监控主要是通过对电池电压、温度和电流等物理参数进行监控,然后再基于该参数计算电池的荷电状态(State of Charge,SOC)、老化程度或健康状态(State of Health,SOH)或者直流阻抗(Directive Current Resistance,DCR)等状态参数。例如,SOC根据电流的安时积分进行计算,并辅以特定状态的电压修正。但是该方法需要完整的充放电周期,以学习确定最大的电池容量;电压修正通常都需要在电池的端电压确定,而该端电压又和当时的电流、温度和直流阻抗等因素相关,因此导致算法复杂,精度也无法提高。
电化学阻抗谱(Electrochemical impedance spectroscopy,EIS)是电化学系统对外部激励的一种响应。可以用来分析电池的内阻、双电层电容和法拉第阻抗等。根据相关研究分析,电池在不同状态参数下所表现出来的阻抗谱是不一致的。因此,可以基于EIS检测进行电池的状态检测。
虽然现有技术也能够对电池进行EIS检测,但存在成本高、体积大、方案复杂的问题,通常都用于工作站以对电池进行研究分析,不利于应用于电池使用过程中的状态检测。
发明内容
本申请实施例提供了一种电化学阻抗谱的检测装置和电池管理系统,可以降低EIS检测的成本和体积,使得其能够在BMS中广泛应用。
第一方面,提供了一种电化学阻抗谱的检测装置,包括波形发生器,该波形发生器集成在电池监测芯片中;激励电阻、检测电阻和MOS开关,该激励电阻的一端和该检测电阻的一端中的一个与电池的正极相连,该激励电阻的一端和该检测电阻的一端中的另一个与该电池的负极相连,该激励电阻的另一端和该检测电阻的另一端中的一个与该MOS开关的源极相连,该激励电阻的另一端和该检测电阻的另一端中的另一个与该MOS开关的漏极相连;其中,该波形发生器用于产生脉冲波形,该MOS开关的栅极用于接收该脉冲波形,该激励电阻用于在该MOS开关的栅极接收到该脉冲波形时,使得该电池产生激励电流,该检测电阻用于将该激励电流转化为激励电压,该激励电压用于计算该电池的电化学阻抗,不同频率下的该电池的电化学阻抗用于形成该电池的电化学阻抗谱。
通过电池监测芯片中的波形发生器实现激励电流的注入,巧妙地将EIS检测装置集成到芯片架构中,从而可以降低EIS检测的成本和体积,使得其能够在BMS中广泛应用,并且更容易应用在电池使用过程中的状态检测。
结合第一方面,在第一方面的第一种可能的实现方式中,该检测装置还包括:模数转换器,用于采样与该电池对应的该激励电压。
通过采用模数转化器将模拟信号转换成处理器能够处理的数字信号,从而能够实现量化电池的电化学阻抗的目的。
结合上述第一方面的一些实现方式,在第一方面的第二种可能的实现方式中,多个该模数转换器中的每个该模数转换器分别用于采样多个该电池中相应电池对应的该激励电压,其中,多个该模数转换器与多个该电池一一对应。
采用多个模数转换器,可以同时得到多个电池对应的激励电压,并且进一步得到多个电池的电化学阻抗谱,从而可以提高检测效率。
结合上述第一方面的一些实现方式,在第一方面的第三种可能的实现方式中,该模数转换器用于采样与多个该电池一一对应的多个该激励电压。
结合上述第一方面的一些实现方式,在第一方面的第四种可能的实现方式中,该多个激励电压通过多路复用器分通道切换给该模数转换器进行采样。
采用公共模数转换器,并且通过多路复用器分时段采样多个电池对应的激励电压,以得到该多个电池的电化学阻抗谱,可以简化电路结构,进一步地降低EIS检测的成本。
结合上述第一方面的一些实现方式,在第一方面的第五种可能的实现方式中,该模数转换器复用该电池监测芯片中的模数转换器。
复用电池监测芯片中的模数转化器,可以进一步降低EIS检测的成本和体积。
结合上述第一方面的一些实现方式,在第一方面的第六种可能的实现方式中,该激励电压和该电池在使用过程中的实际电压通过该电池监测芯片中的多路复用器分通道切换给该模数转换器进行采样。
同样地,采用公共模数转换器,并且通过多路复用器分时段采样电池对应的激励电压和电池在使用过程中的实际电压,可以简化电路结构,进一步地降低EIS检测的成本。
结合上述第一方面的一些实现方式,在第一方面的第七种可能的实现方式中,该MOS开关集成在该电池监测芯片中。
将MOS开关集成在电池监测芯片中,有利于该MOS开关的诊断。
结合上述第一方面的一些实现方式,在第一方面的第八种可能的实现方式中,该MOS开关设置于该电池监测芯片的外部。
将MOS开关设置于电池监测芯片的外部,可以灵活设计MOS开关,并且有利于调整电池所产生的激励电流。
结合上述第一方面的一些实现方式,在第一方面的第九种可能的实现方式中,该电池是由多个电芯单体串联形成的电池组;该激励电阻用于在该MOS开关的栅极接收该脉冲波形时,使得该电池组产生激励电流;该检测电阻用于将该激励电流转化为激励电压,该激励电压用于计算 该电池组的电化学阻抗,不同频率下的该电池组的电化学阻抗用于形成该电池组的电化学阻抗谱。
在实际应用中,并不一定每个电芯单体都需要进行EIS检测,采用单EIS检测通道测量多个电芯单体组成的电池组的电化学阻抗,可以降低电池监测芯片的引脚个数。
结合上述第一方面的一些实现方式,在第一方面的第十种可能的实现方式中,该电化学阻抗谱是通过该电池监测芯片中的数据处理单元计算获取的。
结合上述第一方面的一些实现方式,在第一方面的第十一种可能的实现方式中,经过模数转换器之后的该激励电压由该电池监测芯片中的数据滤波单元提供滤波。
对由模数转换器转换之后的数字信号提供滤波,可以增加采样值的稳定性。
结合上述第一方面的一些实现方式,在第一方面的第十二种可能的实现方式中,该激励电阻和该检测电阻还用于在该MOS开关导通时对该电池进行放电均衡。
结合上述第一方面的一些实现方式,在第一方面的第十三种可能的实现方式中,该电池的电化学阻抗谱用于获取该电池的状态参数,该状态参数包括以下中的至少一种:荷电状态SOC、健康状态SOH以及直流阻抗DCR。
通过EIS检测电池状态参数的灵敏度高,实时性好,在电池内部出现微量的物质变化,还没表征到电池的电压和温度时,提前识别预警,做到更准确,更及时的热失控预警。
第二方面,提供了一种电池管理系统,包括第一方面以及第一方面任一种可能的实现方式中的电化学阻抗谱的检测装置和电池监测芯片,该检测装置中的波形发生器集成在该电池监测芯片中,该检测装置用于输出该激励电压,该电池监测芯片用于根据该激励电压,计算该电池的电化学阻抗,不同频率下的该电池的电化学阻抗用于形成该电池的电化学阻抗谱。
结合第二方面,在第二方面的第一种可能的实现方式中,该MOS开关集成在该电池监测芯片中。
结合上述第二方面的一些实现方式,在第二方面的第二种可能的实现方式中,该MOS开关设置于电池监测芯片的外部。
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例公开的电化学阻抗谱的检测装置的示意性框图。
图2是本申请实施例公开的单电芯-单EIS检测通道的检测装置的一示意性框图。
图3是本申请实施例公开的单电芯-单EIS检测通道的检测装置的另一示意性框图。
图4是本申请实施例公开的单电芯-单EIS检测通道的检测装置的再一示意性框图。
图5是本申请实施例公开的多电芯-多EIS检测通道的检测装置的一示意性框图。
图6是本申请实施例公开的多电芯-多EIS检测通道的检测装置的另一示意性框图。
图7是本申请实施例公开的多电芯-多EIS检测通道的检测装置的再一示意性框图。
图8是本申请实施例公开的多电芯-单EIS检测通道的检测装置的示意性框图。
图9是本申请实施例公开的电池管理系统的示意性框图。
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
电化学阻抗谱是指给电化学系统施加一个扰动电信号,然后来观测系统的响应,利用响应信号分析系统的电化学性质。所不同的是,EIS给电化学系统施加的扰动电信号不是直流电势或电流,而是一个频率不同的小振幅的交流正弦电势波,测量的响应信号也不是直流电流或电势随时间的变化,而是交流电势与电流的比值,通常称之为系统的阻抗,随正弦波频率ω的变化,或者是阻抗的相位角随频率的变化。
例如,给电化学系统M输入一个扰动信号X,它就会输出一个响应信号Y。用来描述扰动与响应之间关系的函数,称为传输函数G(ω)。即:G(ω)=Y/X。如果X为角频率为ω的正弦波电流信号,则Y即为角频率也为ω的正弦电势信号,此时,传输函数G(ω)也是频率的函数,称为频响函数,这个频响函数就称之为系统M的阻抗(impedance),用Z表示。EIS技术就是测定不同频率
的扰动信号X和响应信号Y的比值,得到 不同频率下阻抗的实部Z’、虚部Z”、模值|Z|和相位角
然后将这些量绘制成各种形式的曲线,就得到电化学阻抗谱。
将电化学系统看作是一个等效电路,这个等效电路是由电阻R、电容C和电感L等基本元件按串联或者并联等方式组合而成。通过EIS,可以测定等效电路的构成以及各元件值的大小,利用这些元件的电化学含义,来分析电化学系统的结构和极化过程的性质等。例如,可以分析电池的内阻(包括电解液和电极的内阻),双电层电容和法拉第阻抗(包括电荷转移电阻和Warburg阻抗)。
根据相关研究分析,电池在不同的SOC、SOH和DCR下,表现出来的电化学阻抗谱是不一致的。因此,可以通过EIS检测进行电池的状态检测。
当前对于电池的EIS检测,主要是通过外部直流转直流(Direct current-Direct current,DC-DC)设备直接对电池输入不同频率的激励,然后采集对应的响应,从而计算电池的电化学阻抗谱。虽然现有技术也能够对电池进行EIS检测,但由于需要引入额外的DC-DC设备,因此,该EIS检测装置成本高、体积大、方案复杂,主要应用于工作站,用于电池的研究分析,并没有应用于电池使用过程中的状态检测。
有鉴于此,本申请实施例提供了一种新的电化学阻抗谱的检测装置,通过电池监测芯片中的波形发生器实现激励电流的注入,巧妙地将
EIS检测装置集成到芯片架构中,从而可以降低EIS检测的成本和体积,使得其能够在BMS中广泛应用,并且更容易应用在电池使用过程中的状态检测。
应理解,本申请实施例中的电池可以为锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在此不做限定。从规模而言,本申请实施例中的电池可以为电芯单体,也可以是包括多个电芯单体的电池模组或电池包,或者也可以称为电池组,在此不做限定。从应用场景而言,电池可应用于汽车、轮船等动力装置内。比如,可以应用于动力汽车内,为动力汽车的电机供电,作为 电动汽车的动力源。电池还可为电动汽车中的其他用电器件供电,比如为车内空调、车载播放器等供电。
图1示出了本申请实施例的电化学阻抗谱的检测装置100的示意性框图。
如图1所示,该检测装置100包括:波形发生器110,该波形发生器110集成在电池监测芯片200中;激励电阻120、检测电阻130和MOS开关140,其中,该激励电阻120的一端和检测电阻130的一端中的一个与电池300的正极相连,该激励电阻120的一端和检测电阻130的一端中的另一个与电池300的负极相连,该激励电阻120的另一端与检测电阻130的另一端中的一个与MOS开关140的源极相连,该激励电阻120的另一端与检测电阻130的另一端中的另一个与MOS开关140的漏极相连。
其中,MOS开关140是金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)的缩写,波形发生器110用于产生脉冲波形,即脉宽调制(Pulse-Width Modulation,PWM)波形,也可以称为方波。该MOS开关140的栅极用于接收波形发生器110产生的脉冲波形。该激励电阻120用于在MOS开关140的栅极接收到波形发生器110产生的脉冲波形时,使得电池300产生激励电流。检测电阻130用于将电池300产生的激励电流转化为激励电压,该激励电压用于计算电池300的电化学阻抗。
波形发生器110可以产生不同频率的脉冲波形,不同频率下的脉冲波形对应于电池300的不同电化学阻抗,不同电化学阻抗可以形成电池300的电化学阻抗谱。
具体地,波形发生器110可以产生频率范围100mHz~5kHz内的脉冲波形,去驱动MOS开关140导通,然后根据频率的变化,电池300会有不同的响应,通过采集检测电阻130上的电压,就可知电流响应,从而可以计算电池300的电化学阻抗,当完成一轮100mHz~5kHz的频率变化后,就可以描绘出电化学阻抗谱,也可以称为阻抗谱曲线。当然,在实 际应用中,会存在一定干扰,因此,可以进行多次检测以优化该阻抗谱曲线。
EIS检测是电化学系统对外部不同频率激励的响应,通常,该激励可以是恒电压,也可以是恒电流。由于锂离子电池的阻抗较低,因此,在本申请实施例中,选择恒电流激励更好。恒电流激励方式通过激励电阻向电池施加已知频率的电流激励,使得电池产生激励电流,然后测量在检测电阻上产生的电压。
电池监测芯片,也可以称为电池监控芯片、电池采样芯片、电压采集芯片、电芯监测芯片、电芯监控芯片或者电芯采样芯片等。电池监测芯片通常用于采集电池在使用过程中的实际电压,以供BMS作各种判断。
可选地,本申请实施例中的EIS的检测装置100可以应用于电池管理系统BMS中,该电池管理系统可以包括电池监测芯片200。
因此,在本申请实施例中,通过将EIS检测装置中的波形发生器集成在电池监测芯片中,并采用电阻和MOS开关等简单的电子元件将激励施加到电池,而不需要额外的设备向电池注入激励,从而简化了EIS检测方案,降低了EIS检测成本,使得EIS检测能够在BMS中广泛应用。
可选地,在本申请实施例中,电池300的电化学阻抗谱用于获取电池300的状态参数,该状态参数包括SOC、SOH以及DCR中的至少一种。可选地,通过电池300的电化学阻抗谱还可以评估电池300的内阻、内部温度等参数。
在一种实施例中,可以将得到电化学阻抗谱与测试阶段得到的阻抗谱曲线比对,就可以建立电池模型,该电池模型可以是上文描述的等效电路,根据该电池模型,就可以推断电池300的上述相关参数。
在另一种实施例中,可以基于得到的电化学阻抗谱直接通过算法,得到电池300的上述相关参数。应理解,本申请实施例对如何基于电化学阻抗谱得到电池的相关参数不作限定。
通过EIS检测电池状态参数的灵敏度高,实时性好,在电池内部出现微量的物质变化,还没表征到电池的电压和温度时,提前识别预警,做到更准确,更及时的热失控预警。
需要说明的是,虽然本申请实施例提供的电化学阻抗谱的检测装置中的波形发生器集成在电池监测芯片,可选地,该波形发生器还可以通过其他方式实现,例如,可以在BMS中的处理器运行代码,从而实现脉冲波形的产生。只要该波形发生器是采用BMS中的现有芯片实现的,而不采用额外的设备,就都在本申请技术方案所保护的范围内。
可选地,在本申请实施例中,该检测装置100还可以包括:模数转化器,用于采样与电池300对应的激励电压。
模数转换器(Analog to Digital Converter,ADC)是指将模拟信号转换成数字信号的电路。更具体地,ADC可以将时间连续、幅值也连续的模拟信号转换为时间离散、幅值也离散的数字信号。在本申请实施例中,可以通过采样检测电阻130两端的电压,以实现采样与电池300对应的激励电压。
需要注意的是,ADC可以采用单端输入,也可以称为单端采样,即ADC只有一个输入端,使用公共地作为电路的返回端,这种输入方式简单容易实现。ADC也可以采用差分输入,也可以称为差分采样,即ADC有两个输入端,由于通常这两个输入端分布在一起,所以他们受到的干扰是差不多的,输入共模干扰,在输入ADC时会被减掉,从而降低了干扰。
以下为了描述方便,将引入一个新的术语,即EIS检测通道。一个EIS检测通道可以包括一个激励电阻、一个检测电阻以及一个MOS开关,其中,一个激励电阻、一个检测电阻以及一个MOS开关的连接方式可以参见图1的描述。
可选地,在本申请一实施例中,一个电池可以认为是一个电芯单体。一个电芯单体对应一个EIS检测通道。若需要对多个电芯单体中的每个电芯单体进行EIS检测,则需要该多个电芯单体一一对应于多个EIS检测通道。
可选地,在本申请另一实施例中,一个电池可以认为是多个电芯单体。例如,可以是由多个电芯单体串联形成的电池组。在实际应用中,并不是每个电芯单体都需要进行EIS检测,因此,可以应用一个EIS检测通道实现对电池组进行EIS检测。也就是说,该一个EIS检测通道中的激励电阻用于在该一个EIS检测通道中的MOS开关的栅极接收脉冲波形时,使得电池组产生激励电流,并且该一个EIS检测通道中的检测电阻用于将电池组产生的激励电流转化为激励电压,该得到的激励电压用于计算该电池组的电化学阻抗,不同频率下的该电池组的电化学阻抗用于形成该电池组的电化学阻抗谱。
在需要对多个电芯单体中的每个电芯单体进行EIS检测的情况下,该多个电芯单体分别通过多个EIS检测通道,并经由ADC采样得到多个激励电压。
可选地,该检测装置100包括一个ADC,则该一个ADC用于采样与多个电池一一对应的多个激励电压。进一步地,该检测装置100还可以包括多路复用器,该一个ADC通过该多路复用器分通道采样该多个激励电压。
可选地,该检测装置100还可以包括多个ADC,即一个ADC对应一个EIS检测通道,那么该多个ADC中的每个ADC用于采样多个电池中对应电池的激励电压。
应理解,多个电芯单体可以分成两部分,一部分电芯单体中的每个电芯单体都需要进行EIS检测,即该一部分电芯单体中的每个电芯单体都对应一个EIS检测通道;另一部分电芯单体则作为一个电池组进行EIS检测,即该电池组对应一个EIS检测通道。
可选地,在本申请实施例中,该检测装置100中的ADC可以复用电池监测芯片中的ADC。电池监测芯片中的ADC通常用于采集电池在使用过程中的实际电压。也就是说,用于采集电池的激励电压的ADC可以复用用于采集电池在使用过程中的实际电压的ADC。类似地,该电池监测芯片中的ADC通过多路复用器分通道采样激励电压和电池在使用过程中的实际电压。
可选地,在本申请实施例中,该检测装置100中的ADC可以不复用电池监测芯片中的ADC,而是集成在电池监测芯片中。也就是说,用于采集激励电压的ADC与用于采集电池在使用过程中的实际电压的ADC均集成在电池监测芯片中,并且互相独立。
综上所述,若存在多个激励电压和多个实际电压,可以通过以下几种方式实现:
其一,电池监测芯片可以只包括一个ADC,该一个ADC既要采集该多个激励电压,又要采集该多个实际电压。并且该一个ADC通过电池监测芯片中的多路复用器分通道采集该多个激励电压和该多个实际电压。
其二,电池监测芯片包括多个ADC,其中,该多个ADC分成两部分,一部分ADC中的每个ADC用于采集该多个激励电压中的相应激励电压。另一部分ADC中的每个ADC用于采集该多个实际电压中的相应实际电压。也就是说,该多个ADC与该多个激励电压和该多个实际电压中的每个电压一一对应。在此实现方式中,可以不需要多路复用器。
其三,电池监测芯片包括两个ADC,一个ADC用于采集该多个激励电压,另一个ADC用于采集该多个实际电压。同样地,该电池监测芯片可以包括两个多路复用器,一个多路复用器用于将多个激励电压分通道切换给相应的ADC进行采样,另一个多路复用器用于将多个实际电压分通道切换给相应的ADC进行采样。
其四,电池监测芯片包括多个ADC,其中,该多个ADC中的每个ADC采集该多个激励电压中的一个激励电压和该多个实际电压中的一个实际电压。同样地,该电池监测芯片可以包括多个多路复用器,该多个ADC中的每个ADC通过相应的多路复用器采集相应的激励电压或相应的实际电压。
其五,电池监测芯片包括多个ADC,该多个ADC可以分成以下五类中的至少三类组合:只采集一个激励电压的ADC、只采集一个实际电压的ADC、采集多个激励电压的ADC、采集多个实际电压的ADC以及既采集激励电压,又采集实际电压的ADC。
应理解,用于采集激励电压的ADC也可以不集成在电池监测芯片中,而是采用单独的ADC芯片。
在一种实施例中,检测装置100中的MOS开关140可以集成的电池监测芯片中,该方案有利于MOS开关的诊断。
在另一种实施例中,检测装置100中的MOS开关140还可以设置于电池监测芯片的外部,该方案中MOS开关灵活,并且有利于调整电池所产生的激励电流。
可选地,在本申请实施例中,由ADC采样得到的激励电压可以通过电池监测芯片中的数据处理单元转化为电化学阻抗谱。
可选地,在本申请实施例中,由ADC采样到的激励电压还可以由电池监测芯片中的数据滤波单元提供滤波,从而可以增加采样值的稳定性,提高检测装置100的检测可靠性。
可选地,在本申请实施例中,该激励电阻120和检测电阻130还可以在MOS开关140导通时对电池300进行放电均衡。此时,该MOS开关140的栅极接收的是恒定电平。该恒定电平的高低可以取决于MOS开关140的类型。
需要说明的是,上述各个模块也可以不复用电池监测芯片中的各个功能模块,例如,数据处理单元可以采用BMS中的处理器实现。
下面将结合图2至图8详细描述本申请实施例的电化学阻抗谱的检测装置,该检测装置是在现有的电池监测芯片的基础上增加了EIS检测功能,关于该电池监测芯片的其他功能具体可以参考现在市场上的电池监测芯片。
为了便于描述,下面先就本申请实施例中涉及的各个模块进行一一介绍。
波形发生器410,用于生成脉冲波形,然后驱动MOS开关440,使得MOS开关按照指定的频率导通。该波形发生器410可以集成在电池监测芯片500中。
激励电阻420,用于在MOS开关440导通的情况下,使得电池600产生激励电流。根据实际需要的激励电流,可以选择对应的激励电阻的阻值。
检测电阻430,用于检测激励电流。具体地,可以将激励电流通过检测电阻430转化为激励电压,然后通过ADC 505进行采样。需要注意的是,检测电阻430的两端可以具备两条采样线S_P和S_N,实现差分采样,从而可以提高抗扰能力。但是,S_N为非必要线。
MOS开关440,用于控制激励电流的产生,导通则产生激励电流,关闭则停止产生激励电流。具体地,该MOS开关440的栅极可以接收波形发生器410产生的脉冲波形,该MOS开关440在该脉冲波形的控制下导通和关闭。该MOS开关440可以集成在电池监测芯片500中,如图2所示;该MOS开关440可以设置在电池监测芯片500的外部,如图3至图8所示。
ADC 505,用于采集电芯电压输入通道的输入电压,也即电池600在使用过程中的实际电压;该ADC 505还用于采集检测电阻430两端的电压,即激励电压。具体地,该ADC 505将输入的模拟电压信号,转换成数字信号。
多路复用器510,将输入电压(包括激励电压和/或实际电压)分通道切换给ADC 505进行采样。
数据滤波单元515,用于为ADC 505转化后的数字信号提供滤波,增加采样的稳定性,从而提高检测的可靠性。
数据处理单元520,用于处理ADC 505转化后的激励电压和实际电压,并且将采集到的激励电压转化为电化学阻抗谱。该数据处理单元520可以执行通信单元535传递过来的指令,控制该电池监测芯片500工作。
数据存储单元525,用于存储采集到的电压数据。
供电单元530,用于将变化的电芯电压转换为稳定的电压,用于内部其他模块供电,例如,为ADC 505提供参考电源,或者为通信单元535提供供电电源。
通信单元535,为电池监测芯片500的发送接口和接收接口,用于接收外部发送的指令或者将电池监测芯片500的内部数据发送给外部。
温度保护单元540,用于检测电池监测芯片500的温度,当温度高于一定阈值时,禁止导通MOS开关440,减少芯片功耗,避免芯片过温烧蚀或者导致其他模块工作不稳定。
通用输入/输出(General-purpose input/output,GPIO)控制单元545,用于控制电池监测芯片的GPIO接口,扩展芯片的功能。该GPIO可以复用为串行外设接口(Serial Peripheral Interface,SPI)、内部集成电路(Inter-Integrated Circuit,IIC)总线或者模拟信号采样接口。
另外,Vss可以理解为电池监测芯片的电源地。
从图1至图8中可以看出,该激励电阻的一端与电池的正极相连,而检测电阻的一端与电池的负极相连。需要说明的是,这种连接关系仅仅为一种举例说明,很明显,其可以相互调换位置。即激励电阻的一端与电池的负极相连,检测电阻的一端与电池的正极相连。同样地,激励电阻和检测电阻与MOS开关的连接关系也可以调换,本申请实施例对此不够成限定。
图2示出了单电芯-单EIS检测通道的检测装置的一示意性框图。如图2所示,该检测装置包括一个EIS检测通道400和波形发生器410,该EIS检测通道400包括激励电阻420、检测电阻430和MOS开关440,用于对电池600进行EIS检测。检测电阻430的两端具有两根采样线S_P和S_N。其中,该电池600可以是一个电芯单体,该MOS开关440集成在电池监测芯片500中。
具体地,MOS开关440的栅极接收波形发生器410产生的脉冲波形;激励电阻420在MOS开关440的栅极接收到脉冲波形时,使得电池单体600产生激励电流;检测电阻430将激励电流转换成激励电压;由ADC 505采集该激励电压,并由数据处理单元520处理采集到的激励电压,得到电池600的电化学阻抗。在多个频率下获得的电池600的多个电化学阻抗可以形成电池600的电化学阻抗谱。
如图2所示,该ADC 505还用来采集实际电压。电池600的两端也有两根采样线VC0和VC1。激励电压和实际电压通过多路复用器510分通道切换给ADC 505进行采样。
图3示出了单电芯-单EIS检测通道的检测装置的另一示意性框图。与图2相比,MOS开关440设置于电池监测芯片500的外部。其他模块的功能均可参见图2的描述。
图4示出了单电芯-单EIS检测通道的检测装置的再一示意性框图。与图3相比,用于采集激励电压的ADC与用于采集实际电压的ADC独立设置,即ADC 505包括ADC 505a和ADC 505b,由于激励电压和实际电压均由对应的ADC进行采样,因此无需设置多路复用器。其他模块的功能可参见图2的描述。
图5示出了多电芯-多EIS检测通道的检测装置的一示意性框图。与图3相比,该检测装置包括多个EIS检测通道(400_1,400_2,……,400_n)和波形发生器410,用于对多个电芯单体(600_1,600_2,…..,600_n)进行EIS检测。每个EIS检测通道都包括一个激励电阻、一个检测电阻和一个MOS开关。例如,EIS检测通道400_1包括激励电阻420_1,检测电阻430_1和MOS开关440_1,EIS检测通道400_2包括激励电阻420_2,检测电阻430_2和MOS开关440_2,……,EIS检测通道400_n包括激励电阻420_n,检测电阻430_n和MOS开关440_n。每个EIS检测通道(400_1,400_2,……,400_n)中的检测电阻(430_1,430_2,……,430_n)的两端均具有采样线(S_P1,S_P2,……,S_Pn)和采样线(S_N1,S_N2,……,S_Nn)。同样地,每个电芯单体(600_1,600_2,…..,600_n)的两端均具有采样线(VC0,VC1,……,VCn-1,VCn)。该ADC 505不仅对多个电芯单体(600_1,600_2,…..,600_n)的激励电压进行采样,还对多个电芯单体(600_1,600_2,…..,600_n)的实际电压进行采样,该多个激励电压和该多个实际电压通过多路复用器510分通道切换给ADC 505进行采样。其他模块的功能均可参见图2的描述。
图6示出了多电芯-多EIS检测通道的检测装置的另一示意性框图。与图5相比,ADC 505包括多个ADC,该多个ADC分为两类,ADC 505a和ADC 505b,一类ADC用于采集激励电压,另一类ADC用于采集实际电压,并且每一类ADC包括ADC的数量与待采集的相应电压的数量相同。例如,ADC 505a_1,ADC 505a_2,……,ADC 505a_n-1,ADC 505a_n用于采集n个激励电压,ADC 505b_1,ADC 505b_2,……,ADC 505b_n-1,ADC 505b_n用于采集n个实际电压,由于待采集的电压数量与ADC的数量相同,因此无需设置多路复用器。其他模块的功能可参见图2的描述。
图7示出了多电芯-多EIS检测通道的检测装置的再一示意性框图。与图5相比,该ADC 505包括两个ADC,ADC 505a和ADC 505b,一个ADC用于采集多个激励电压,另一个ADC用于采集多个实际电压。类似的,该多路复用器510包括两个多路复用器,多路复用器510a和多路复用器510b,一个多路复用器用于将多个激励电压分通道切换给相应的ADC进行采样,另一个多路复用器用于将多个实际电压分通道切换给相应的ADC进行采样。其他模块的功能可参见图2的描述。
图8示出了多电芯-单EIS检测通道的检测装置的示意性框图。与图5相比,该一个EIS检测通道400用于对多个电芯单体(600_1,600_2,…..,600_n)组成的电池组进行EIS检测,获得该电池组对应的激励电压。ADC 505不仅用于采集多个电芯单体(600_1,600_2,…..,600_n)中每个电芯单体的实际电压,还用于采集该电池组对应的激励电压。多路复用器510用于将该多个电芯单体的实际电压以及电池组的激励电压分通道切换给ADC 505进行采样。需要说明的是,在图8所示的实施例中,也可以设置(n+1)个ADC,其中,n个ADC分别用于采集n个实际电压,1个ADC用于采集电池组对应的一个激励电压。其他模块的功能可参见图2的描述。
需要说明的是,图3至图8中的每一个实施例均可以如图2所示,将MOS开关440集成在电池监测芯片500中。
如图9所示,本申请实施例还提供了一种电池管理系统900,该电池管理系统900包括电化学阻抗谱的检测装置910和电池监测芯片920,其中,该检测装置910可以为上述各种实施例描述的电化学阻抗谱的检测装置,其中,该检测装置910中的波形发生器集成在该电池监测芯片920中,该检测装置910用于输出激励电压,该电池监测芯片920用于根据检测装置910输出的激励电压,计算电池的电化学阻抗,不同频率下获得的电化学阻抗用于形成该电池的电化学阻抗谱。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
Claims (17)
- 一种电化学阻抗谱的检测装置,其特征在于,包括:波形发生器,所述波形发生器集成在电池监测芯片中;激励电阻、检测电阻和MOS开关,所述激励电阻的一端和所述检测电阻的一端中的一个与电池的正极相连,所述激励电阻的一端和所述检测电阻的一端中的另一个与所述电池的负极相连,所述激励电阻的另一端和所述检测电阻的另一端中的一个与所述MOS开关的源极相连,所述激励电阻的另一端和所述检测电阻的另一端中的另一个与所述MOS开关的漏极相连;其中,所述波形发生器用于产生脉冲波形,所述MOS开关的栅极用于接收所述脉冲波形,所述激励电阻用于在所述MOS开关的栅极接收到所述脉冲波形时,使得所述电池产生激励电流,所述检测电阻用于将所述激励电流转化为激励电压,所述激励电压用于计算所述电池的电化学阻抗,不同频率下的所述电池的电化学阻抗用于形成所述电池的电化学阻抗谱。
- 根据权利要求1所述的检测装置,其特征在于,所述检测装置还包括:模数转换器,用于采样与所述电池对应的所述激励电压。
- 根据权利要求2所述的检测装置,其特征在于,多个所述模数转换器中的每个所述模数转换器分别用于采样多个所述电池中相应电池对应的所述激励电压,其中,多个所述模数转换器与多个所述电池一一对应。
- 根据权利要求2所述的检测装置,其特征在于,所述模数转换器用于采样与多个所述电池一一对应的多个所述激励电压。
- 根据权利要求4所述的检测装置,其特征在于,所述多个激励电压通过多路复用器分通道切换给所述模数转换器进行采样。
- 根据权利要求2至5中任一项所述的检测装置,其特征在于,所述模数转换器复用所述电池监测芯片中的模数转换器。
- 根据权利要求6所述的检测装置,其特征在于,所述激励电压和所述电池在使用过程中的实际电压通过所述电池监测芯片中的多路复用器分 通道切换给所述模数转换器进行采样。
- 根据权利要求1至7中任一项所述的检测装置,其特征在于,所述MOS开关集成在所述电池监测芯片中。
- 根据权利要求1至8中任一项所述的检测装置,其特征在于,所述MOS开关设置于所述电池监测芯片的外部。
- 根据权利要求1至9中任一项所述的检测装置,其特征在于,所述电池是由多个电芯单体串联形成的电池组;所述激励电阻用于在所述MOS开关的栅极接收所述脉冲波形时,使得所述电池组产生激励电流;所述检测电阻用于将所述激励电流转化为激励电压,所述激励电压用于计算所述电池组的电化学阻抗,不同频率下的所述电池组的电化学阻抗用于形成所述电池组的电化学阻抗谱。
- 根据权利要求1至10中任一项所述的检测装置,其特征在于,所述电化学阻抗谱是通过所述电池监测芯片中的数据处理单元计算获取的。
- 根据权利要求1至11中任一项所述的检测装置,其特征在于,经过模数转换器之后的所述激励电压由所述电池监测芯片中的数据滤波单元提供滤波。
- 根据权利要求1至12中任一项所述的检测装置,其特征在于,所述激励电阻和所述检测电阻还用于在所述MOS开关导通时对所述电池进行放电均衡。
- 根据权利要求1至13中任一项所述的检测装置,其特征在于,所述电池的电化学阻抗谱用于获取所述电池的状态参数,所述状态参数包括以下中的至少一种:荷电状态SOC、健康状态SOH以及直流阻抗DCR。
- 一种电池管理系统,其特征在于,包括如权利要求1至14中任一项所述的电化学阻抗谱的检测装置和电池监测芯片,所述检测装置中的波形发生器集成在所述电池监测芯片中,所述检测装置用于输出所述激励电压,所述电池监测芯片用于根据所述激励电压,计算所述电池的电化学阻抗,不同频率下的所述电池的电化学阻抗用于形成所述电池的电化学阻抗谱。
- 根据权利要求15所述的电池管理系统,其特征在于,所述MOS开关集成在所述电池监测芯片中。
- 根据权利要求15所述的电池管理系统,其特征在于,所述MOS开关设置于电池监测芯片的外部。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES21819710T ES2981466T3 (es) | 2021-08-26 | 2021-08-26 | Aparato de prueba de espectroscopía de impedancia electroquímica y sistema de gestión de batería |
CN202180100156.5A CN117651875A (zh) | 2021-08-26 | 2021-08-26 | 电化学阻抗谱的检测装置和电池管理系统 |
EP21819710.1A EP4166952B1 (en) | 2021-08-26 | 2021-08-26 | Electrochemical impedance spectroscopy testing apparatus, and battery management system |
HUE21819710A HUE066301T2 (hu) | 2021-08-26 | 2021-08-26 | Elektrokémiai impedancia spektroszkópia vizsgáló berendezés és akkumulátor-felügyeleti rendszer |
PCT/CN2021/114820 WO2023024034A1 (zh) | 2021-08-26 | 2021-08-26 | 电化学阻抗谱的检测装置和电池管理系统 |
US17/562,079 US11650261B2 (en) | 2021-08-26 | 2021-12-27 | Detection apparatus of electrochemical impedance spectroscopy and battery management system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/114820 WO2023024034A1 (zh) | 2021-08-26 | 2021-08-26 | 电化学阻抗谱的检测装置和电池管理系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/562,079 Continuation US11650261B2 (en) | 2021-08-26 | 2021-12-27 | Detection apparatus of electrochemical impedance spectroscopy and battery management system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023024034A1 true WO2023024034A1 (zh) | 2023-03-02 |
Family
ID=85286640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/114820 WO2023024034A1 (zh) | 2021-08-26 | 2021-08-26 | 电化学阻抗谱的检测装置和电池管理系统 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11650261B2 (zh) |
EP (1) | EP4166952B1 (zh) |
CN (1) | CN117651875A (zh) |
ES (1) | ES2981466T3 (zh) |
HU (1) | HUE066301T2 (zh) |
WO (1) | WO2023024034A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118362911A (zh) * | 2024-04-19 | 2024-07-19 | 江苏麦格聚能科技有限公司 | 一种电化学阻抗谱结合主动均衡的检测系统及方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117136312A (zh) * | 2021-09-28 | 2023-11-28 | 宁德时代新能源科技股份有限公司 | 一种电池采样芯片及电池管理系统 |
WO2024216444A1 (zh) * | 2023-04-17 | 2024-10-24 | 宁德时代未来能源(上海)研究院有限公司 | 电化学阻抗谱的测量方法、系统、装置和可读存储介质 |
CN118483602B (zh) * | 2024-07-16 | 2024-10-08 | 山东艾诺智能仪器有限公司 | 一种锂离子电池在线eis精确测量系统及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110270559A1 (en) * | 2010-05-03 | 2011-11-03 | Battelle Energy Alliance, Llc | In-situ real-time energy storage device impedance identification |
CN204789762U (zh) * | 2015-06-29 | 2015-11-18 | 国电南京自动化股份有限公司 | 一种实用的单体蓄电池内阻测量回路 |
CN108663631A (zh) * | 2018-05-16 | 2018-10-16 | 哈尔滨工业大学 | 一种锂离子电池组电化学阻抗谱在线测量装置 |
CN109459465A (zh) * | 2018-12-12 | 2019-03-12 | 浙江大学 | 一种基于电流脉冲注入的快速电化学阻抗谱测量方法 |
CN110940926A (zh) * | 2019-12-20 | 2020-03-31 | 西安交通大学 | 一种电动汽车动力电池阻抗谱在线测试系统 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003073089A1 (en) * | 2002-02-25 | 2003-09-04 | Zyomyx, Inc. | Method and device for performing impedance spectroscopy |
US10775440B2 (en) * | 2016-08-28 | 2020-09-15 | The Board Of Trustees Of The University Of Alabama | Methods, apparatuses, and systems for measuring impedance spectrum, power spectrum, or spectral density using frequency component analysis of power converter voltage and current ripples |
US11125707B1 (en) * | 2020-08-18 | 2021-09-21 | Element Energy, Inc. | Methods and systems for in-situ impedance spectroscopy analysis of battery cells in multi-cell battery packs |
-
2021
- 2021-08-26 ES ES21819710T patent/ES2981466T3/es active Active
- 2021-08-26 EP EP21819710.1A patent/EP4166952B1/en active Active
- 2021-08-26 HU HUE21819710A patent/HUE066301T2/hu unknown
- 2021-08-26 WO PCT/CN2021/114820 patent/WO2023024034A1/zh active Application Filing
- 2021-08-26 CN CN202180100156.5A patent/CN117651875A/zh active Pending
- 2021-12-27 US US17/562,079 patent/US11650261B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110270559A1 (en) * | 2010-05-03 | 2011-11-03 | Battelle Energy Alliance, Llc | In-situ real-time energy storage device impedance identification |
CN204789762U (zh) * | 2015-06-29 | 2015-11-18 | 国电南京自动化股份有限公司 | 一种实用的单体蓄电池内阻测量回路 |
CN108663631A (zh) * | 2018-05-16 | 2018-10-16 | 哈尔滨工业大学 | 一种锂离子电池组电化学阻抗谱在线测量装置 |
CN109459465A (zh) * | 2018-12-12 | 2019-03-12 | 浙江大学 | 一种基于电流脉冲注入的快速电化学阻抗谱测量方法 |
CN110940926A (zh) * | 2019-12-20 | 2020-03-31 | 西安交通大学 | 一种电动汽车动力电池阻抗谱在线测试系统 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4166952A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118362911A (zh) * | 2024-04-19 | 2024-07-19 | 江苏麦格聚能科技有限公司 | 一种电化学阻抗谱结合主动均衡的检测系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
HUE066301T2 (hu) | 2024-07-28 |
CN117651875A (zh) | 2024-03-05 |
EP4166952A4 (en) | 2023-04-19 |
EP4166952A1 (en) | 2023-04-19 |
US20230064240A1 (en) | 2023-03-02 |
US11650261B2 (en) | 2023-05-16 |
EP4166952C0 (en) | 2024-03-20 |
EP4166952B1 (en) | 2024-03-20 |
ES2981466T3 (es) | 2024-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023024034A1 (zh) | 电化学阻抗谱的检测装置和电池管理系统 | |
EP2530480B1 (en) | Battery impedance detection system, apparatus and method | |
US7554294B2 (en) | Battery health monitor | |
CN203705621U (zh) | 电池组剩余电量的计量电路 | |
CN101828123A (zh) | 用于测量多个串联的蓄电池中的电池电压的方法和装置 | |
Howey et al. | Impedance measurement for advanced battery management systems | |
CN109633240B (zh) | 动力电池包电压检测方法及装置 | |
CN112557933B (zh) | 一种计算电池健康状态的方法和装置 | |
CN202204918U (zh) | 一种基于温度补偿的soc精度提高装置 | |
CN110632520A (zh) | 一种动力电池soc的估算装置及其估算方法 | |
CN107064804B (zh) | 一种兼具高低端电流检测的bms数据采集系统 | |
CN105738833A (zh) | 一种诊断汽车电池健康状况的方法及诊断仪 | |
CN209730842U (zh) | 一种精细化动态可重构电池监控管理系统 | |
CN117825995A (zh) | 基于电化学阻抗谱的电池性能检测系统及方法 | |
Pop et al. | State-of-the-art of battery state-of-charge determination | |
CN117054910A (zh) | 电化学阻抗谱测量方法、激励信号生成方法及装置 | |
CN117368771A (zh) | 一种电池内阻测试方法及系统 | |
CN103823118A (zh) | 一种均衡过程中的单体电池内阻测量装置及方法 | |
CN117054895A (zh) | 电池监测设备及方法 | |
CN116148697A (zh) | 一种用于电池组的电池内阻检测方法、装置及存储介质 | |
Hossain et al. | Battery Impedance Measurement Using Electrochemical Impedance Spectroscopy Board | |
US11104242B2 (en) | Bus bar resistance identification via AC signal injection and battery control therefrom | |
CN211505818U (zh) | 一种电池电压差分采样装置及电池保护、均衡、化成装置 | |
JP2024501600A (ja) | バッテリの充電状態および健全状態を推定する方法およびシステム | |
Mischie et al. | A new and improved model of a lead acid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021819710 Country of ref document: EP Effective date: 20211215 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180100156.5 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |