WO2023022503A1 - Method and device for controlling output power of power supply device for wireless charging - Google Patents

Method and device for controlling output power of power supply device for wireless charging Download PDF

Info

Publication number
WO2023022503A1
WO2023022503A1 PCT/KR2022/012268 KR2022012268W WO2023022503A1 WO 2023022503 A1 WO2023022503 A1 WO 2023022503A1 KR 2022012268 W KR2022012268 W KR 2022012268W WO 2023022503 A1 WO2023022503 A1 WO 2023022503A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
power supply
supply device
wireless charging
power
Prior art date
Application number
PCT/KR2022/012268
Other languages
French (fr)
Korean (ko)
Inventor
이영달
서동관
송보윤
이병주
최진섭
Original Assignee
주식회사 와이파워원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 와이파워원 filed Critical 주식회사 와이파워원
Publication of WO2023022503A1 publication Critical patent/WO2023022503A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a wireless charging system, and more particularly, to a method for controlling the output power of a power feeding device for wireless charging that ensures maximum output power by appropriately controlling reception power and transmission efficiency stably using current information of the power feeding device. and devices.
  • the present invention was devised to solve this problem, and uses current information on the feeder side instead of relying on conventional communication feedback to ensure maximum output power by appropriately controlling reception power and transmission efficiency in a stable manner. Its object is to provide a method and apparatus for controlling output power of a power supply device for wireless charging.
  • a method for controlling the output power of a power supply device for wireless charging includes: (a) transmitting the output power according to a preset frequency; (b) sensing an input current to a power supply while performing frequency sweeping for a predetermined period of time; (c) determining the switching frequency of the maximum output point based on the result of sensing the input current in step (b); and (d) operating the power supply at the switching frequency determined in step (c).
  • Step (a) is performed when a vehicle equipped with a power collector stops above the power supply device.
  • step (c) when the input voltage is a constant voltage, the point having the high current value is the maximum output point, so the switching frequency is determined by following the maximum current point through frequency sweeping.
  • Another aspect of the present invention for achieving the above object is a current sensing unit for sensing the input current of the power supply; and a controller configured to sense the input current of the current sensing unit while performing frequency sweeping for a predetermined time, determine a switching frequency of a maximum output point based on a result of sensing the detected input current, and operate the power supply device at the determined frequency. do.
  • the current sensing unit uses a current transformer.
  • the current sensing unit uses a sensing resistor and an amplifier.
  • the current sensing unit uses a Hall sensor.
  • Another aspect of the present invention for achieving this object is an input voltage source unit; an inverter unit receiving direct current type power from the input voltage source unit and converting it into alternating current type power according to a preset frequency; a transmission unit receiving AC voltage from the inverter and generating induced electromotive force in a current collector; a current sensing unit provided between the input voltage source unit and the inverter unit to sense an input current between the input voltage source unit and the inverter unit; A control unit that senses the input current of the current sensing unit while performing frequency sweeping for a predetermined time, determines a switching frequency of a maximum output point based on the detected input current detection result, and operates the inverter unit at the determined frequency.
  • FIG. 1 is a block diagram showing the concept of a wireless charging system according to the present invention.
  • FIG. 2 is an exemplary circuit diagram of a wireless charging system according to an embodiment of the present invention.
  • FIG. 3 shows various forms of the current sensing circuit according to Figure 2;
  • FIG. 4 is a diagram showing an internal control circuit of an output power controller of a wireless charging system according to an embodiment of the present invention.
  • FIG. 5 is a conceptual diagram for tracking a maximum power point using a sensing current at a transmission side performed in the MPPT block according to FIG. 4;
  • FIG. 6 is a view showing the structure of the regulator according to FIG. 2;
  • FIG. 7 is a diagram showing the structure of a transmitting-side resonator according to the present invention.
  • FIG. 8 is a view showing the structure of a receiving-side resonator according to the present invention.
  • FIG. 9 is a flowchart illustrating a method for controlling output power for wireless charging according to the present invention.
  • FIG. 1 is a block diagram showing the concept of a wireless charging system according to the present invention.
  • the wireless charging system 100 of the present invention may include a power supply device, which is a transmission side device configuration for wireless charging, and a power collector, which is a reception side device configuration that wirelessly receives power from the transmission side, on the left side. .
  • the current collector is provided in the electric vehicle.
  • the power supply device for wireless charging includes an input voltage source unit 110 that provides an input voltage, and an inverter unit 130 that converts DC power input from the input voltage source unit 110 into AC power, and a transmission unit 150 electromagnetically coupled to the power collector, and a current transferred from the input voltage source unit 110 to the inverter unit 130, that is, between the input voltage source unit 110 and the inverter unit 130
  • the current sensing unit 120 for sensing the input current of and frequency sweeping of the current sensed by the current sensing unit 120 is performed for a certain period of time to track the maximum output point, and the current value according to the switching frequency of the maximum output point is It includes a control unit 140 that determines the switching frequency of the inverter unit 130 so that the output is output to the receiving side and operates the output at the determined switching frequency.
  • the control unit 140 includes a communication unit 210, a storage unit 220, and a power feeding device control unit 230
  • the power feeding device control unit 141 includes a power supply instructing unit 210 and an output power control unit
  • the power feed device control unit 141 transmits output power according to a preset frequency stored in the storage unit 142. At this time, output power is transmitted according to a preset frequency to the power supply device according to the instructions of the power supply instructing unit 210, and can be performed when a vehicle equipped with the power collector stops above the power feed device.
  • the output power controller 230 of the power supply controller 141 senses the input current of the current sensing unit 120 while frequency sweeping for a predetermined time, and switches the maximum output point based on the detected input current detection result. determine the frequency. Then, the output power is controlled by allowing the inverter unit 130 to operate at the determined frequency.
  • the receiver 160 On the other hand, on the right side of the power supply device, the receiver 160, the rectifier 170 that converts the power supplied in the form of alternating current into direct current, and the regulator unit 180 that supplies a stable output to the battery (not shown) despite various load fluctuations.
  • the rectifier 170 that converts the power supplied in the form of alternating current into direct current
  • the regulator unit 180 that supplies a stable output to the battery (not shown) despite various load fluctuations.
  • FIG. 2 is an exemplary circuit diagram of a wireless charging system according to an embodiment of the present invention
  • FIG. 3 is a diagram showing various types of current sensing circuits according to FIG. 2 .
  • the inverter 130 receiving the power source (V link ) 110 and outputting an AC voltage, and the current sensing the current between the power source (V link ) 110 and the inverter 130
  • the sensing circuit 120 and the transmitting coil 150 of the transmitting unit that receives the AC voltage from the inverter 130 and generates an induced electromotive force in the receiving coil 160 of the receiving unit, and rectifies the induced current to pass the output current to the capacitor.
  • a rectifier circuit 170 for storing and a regulator 180 for converting the voltage according to the capacitor of the rectifier circuit 170 to the voltage according to the battery are connected in parallel with the battery.
  • the current sensing circuit 120 is a sensing circuit required for the frequency sweeping technique for controlling the maximum output power.
  • the current sensing uses a current transformer (CT) as shown in (a) of FIG. 3 or (b) of FIG. ), the sensing resistor and the amplifier may be used for sensing, or the input current may be sensed using a Hall sensor as shown in FIG. 3 (c).
  • CT current transformer
  • the inverter 120 may include a first series circuit and a second series circuit connected in parallel with the power source.
  • the first series circuit may be a circuit in which the first switch S 1 and the second switch S 2 are connected in series.
  • the second series circuit may be a circuit in which the third switch S 3 and the fourth switch S 4 are connected in series.
  • the inverter 120 transmits the voltage difference between the contacts between the first switch (S 1 ) and the second switch (S 2 ) and the contacts between the third switch (S 3 ) and the fourth switch (S 4 ) to the transmitter. It can be supplied as the input voltage of the coil 150.
  • a MOSFET switch may be used as a switch used in the inverter 120 .
  • each switch may be connected in parallel with a diode.
  • the circuit of the transmitting coil 150 of the transmitting unit is connected to the input voltage transmitted by the inverter 130 .
  • the receiving coil 160 of the receiving unit is coupled electromagnetically with the transmitting coil 150 (mutual inductance is defined as M) to induce electromotive force, and a receiving capacitor may be connected in series.
  • the rectifier circuit 170 includes a first rectifier circuit in which a first diode (D 1 ) and a second diode (D 2 ) are connected in series, and a second rectifier circuit in which a third diode (D 3 ) and a fourth diode (D 4 ) are connected in series. circuit, and the first rectifying circuit and the second rectifying circuit may be connected in parallel with each other. In addition, current induced in the receiver may be introduced through a node between the first diode D 1 and the second diode D 2 and a node between the third diode D 3 and the fourth diode D 4 . .
  • the voltage difference between the node between the first diode (D 1 ) and the second diode (D 2 ) and between the third diode (D 3 ) and the fourth diode (D 4 ) is the input voltage to the rectifier circuit 170. may be authorized.
  • the voltage difference between the node between the first diode (D 1 ) and the second diode (D 2 ) and the node between the third diode (D 3 ) and the fourth diode (D 4 ) is the output voltage of the resonant circuit on the transmission side or the transmission side. It can be referred to as the side output voltage.
  • the rectifier circuit 170 may store the current rectified from the first rectifier circuit and/or the second rectifier circuit in a capacitor connected in parallel with the first rectifier circuit and the second rectifier circuit.
  • the circuit of the wireless charging system according to FIG. 2 is not necessarily limited to the configuration according to FIG. 2 .
  • the wireless charging system is shown together with the transmitting side and the receiving side in terms of a circuit diagram.
  • FIG. 4 is a diagram showing an internal control circuit of the output power controller 230 of the wireless charging system according to an embodiment of the present invention.
  • the output power control unit 230 of FIG. 4 first estimates the maximum power point through the transmission-side sensing current i 1 , and compensates the maximum output voltage by switching the frequency of the inverter to correspond to the estimated maximum power point. To this end, the output power control unit 230 converts an operational amplifier (OP AMP) 231 that amplifies the sensed input current (i 1 ) and a continuous waveform output from the operational amplifier 231 into a discontinuous waveform and samples it, Frequency sweeping is performed by the sample/hold block 232 that maintains the sampled result for a certain period of time and the average current information acquired in the sample/hold block 232 by the frequency sweep selection block 144.
  • OP AMP operational amplifier
  • It includes an MPPT block 233 that tracks the maximum output point by performing sweeping, and the inverters connected to the gate driver 236 are connected to the first, second, and It consists of a PFM (Pulse Frequency Modulation) block 235 that changes the frequency of the third and fourth switches.
  • PFM Pulse Frequency Modulation
  • FIG. 5 is a conceptual diagram for tracking the maximum power point using the sensing current of the transmission side performed in the MPPT block according to FIG .
  • the input voltage is a constant voltage
  • the point having a high current value represents the point of maximum output, so the switching frequency of the inverter is controlled by tracking the point of maximum current through frequency sweeping.
  • FIG. 6 is a diagram showing the structure of the regulator according to FIG. 2;
  • the regulator of the present invention may be configured to respond to various load fluctuations and an alignment state between a transmission coil of a transmitter and a reception coil of a receiver.
  • a step-down type, a step-up type, or a step-up/step-down type topology may be variously applied based on the charging profile of the final battery stage.
  • FIG. 7 is a diagram showing the structure of a transmitting-side resonator according to the present invention.
  • the transmitting-side resonator has a single or multi-coil (feeder line) 10, and power transmission by a magnetic field at the lower end of the coil is performed as described in FIG.
  • a ferrite core 11 is provided so as to be concentrated on the side resonator.
  • FIG. 8 is a view showing the structure of a receiving-side resonator according to the present invention, a single or multi-coil (collecting line) 20 is provided, and a ferrite core 21 is provided on top of the coil to facilitate power transmission by a magnetic field. do.
  • the shape of the receiving-side coil 20 includes a circular-type coil structure in addition to a square-type structure.
  • the transmitting/receiving resonator of the present invention has a Q value of 50% or more in a load state and a Q value of 50% or less in a no-load state to facilitate maximum output control.
  • FIG. 9 is a flowchart illustrating a method of controlling output power for wireless charging according to the present invention.
  • the input current to the power supply device is sensed while frequency sweeping is performed for a predetermined time (S110).
  • the input current to the power supply device is a current sensing value between the input voltage source and the inverter as described above, and can be sensed using a CT, a sensing resistor, an amplifier, or a hall sensor.
  • step S110 based on the result of sensing the input current in step S110, the switching frequency of the maximum output point is determined (S120).
  • the output power is controlled by operating the power supply device at the switching frequency determined in step S120 (S130).

Abstract

The present invention relates to a wireless charging system and, more specifically, to a method and a device for controlling the output power of a power supply device for wireless charging, the method and the device ensuring a maximum output power by stably and properly controlling reception power and transmission efficiency by using electric current information about the power supply device.

Description

무선 충전을 위한 급전장치의 출력전력 제어 방법 및 장치Method and apparatus for controlling output power of power supply for wireless charging
본 발명은 무선 충전 시스템에 관한 것으로서, 더욱 상세하게는 급전장치의 전류 정보를 이용하여 안정적으로 수신전력과 전송효율을 적절히 제어함으로 최대출력전력을 보장하는 무선 충전을 위한 급전장치의 출력전력 제어 방법 및 장치에 관한 것이다. The present invention relates to a wireless charging system, and more particularly, to a method for controlling the output power of a power feeding device for wireless charging that ensures maximum output power by appropriately controlling reception power and transmission efficiency stably using current information of the power feeding device. and devices.
일반적으로 무선충전을 활용한 시스템의 경우, 코일 정렬상태와 다양한 부하 변동 상황에도 안정적으로 수신 전력과 전송 효율을 적절히 제어할 필요가 있다. 이를 위해 대부분의 무선충전을 활용한 시스템의 경우, 집전장치 측의 출력측 전압과 전류 정보를 통신을 활용하여 급전장치 측으로 전달하여 최대출력전력 제어를 수행하고 있다. 이러한 방식은 불안정한 통신 방식을 통한 피드백 제어를 수행하고 있기 때문에 경우에 따라 피드백 받는 집전장치 측 데이터의 딥 현상 즉, 소실현상이 발생하게 되어 무선충전 시스템의 출력을 안정적으로 제어할 수 없는 상황이 발생한다. In general, in the case of a system using wireless charging, it is necessary to properly control received power and transmission efficiency in a stable manner even in coil alignment and various load fluctuation situations. To this end, in most systems using wireless charging, maximum output power control is performed by transmitting voltage and current information on the output side of the power collector side to the power supply device side using communication. Since this method performs feedback control through an unstable communication method, in some cases, a dip phenomenon, that is, a loss phenomenon, of data on the collector side receiving feedback occurs, resulting in a situation in which the output of the wireless charging system cannot be stably controlled. do.
또한 집전장치 측 출력정보를 송신측에 전달하기 위해, 실시간의 출력 데이터를 수집해야 하므로, 이를 기구적으로 구성하기 위해 별도의 센싱회로와 주변 회로가 반드시 포함되어야 하는 문제가 있다. In addition, since real-time output data must be collected to transmit output information on the power collector side to the transmitter side, there is a problem in that a separate sensing circuit and peripheral circuits must be included in order to mechanically configure it.
본 발명은 이와 같은 문제점을 해결하기 위하여 창안된 것으로서, 기존의 통신 피드백에 의존하는 방식이 아닌 급전장치 측의 전류 정보를 활용하여 안정적으로 수신전력과 전송효율을 적절히 제어함으로 최대출력전력을 보장하는 무선 충전을 위한 급전장치의 출력전력 제어 방법 및 장치를 제공하는 것을 그 목적으로 한다.The present invention was devised to solve this problem, and uses current information on the feeder side instead of relying on conventional communication feedback to ensure maximum output power by appropriately controlling reception power and transmission efficiency in a stable manner. Its object is to provide a method and apparatus for controlling output power of a power supply device for wireless charging.
이와 같은 목적을 달성하기 위하여 본 발명에 따른 무선 충전을 위한 급전장치의 출력전력을 제어하는 방법으로서, (a) 기 설정된 주파수에 따라 출력전력을 송신하도록 하는 단계; (b) 일정시간 동안 주파수 스위핑을 수행하면서 급전장치로의 입력 전류를 감지하는 단계; (c) 상기 단계 (b)에서의 입력 전류 감지 결과에 기초하여 최대출력지점의 스위칭 주파수를 결정하는 단계; 및 (d) 상기 단계 (c)에서 결정된 스위칭 주파수로 급전장치를 동작시키는 단계를 포함한다. In order to achieve the above object, a method for controlling the output power of a power supply device for wireless charging according to the present invention includes: (a) transmitting the output power according to a preset frequency; (b) sensing an input current to a power supply while performing frequency sweeping for a predetermined period of time; (c) determining the switching frequency of the maximum output point based on the result of sensing the input current in step (b); and (d) operating the power supply at the switching frequency determined in step (c).
상기 단계 (a)는, 집전장치를 구비한 차량이 급전장치 위쪽에 정차한 경우에 수행되는 것이다. Step (a) is performed when a vehicle equipped with a power collector stops above the power supply device.
상기 단계 (c)에서 입력전압이 정전압일 경우 높은 전류값을 가지는 지점이 최대출력지점임으로 주파수 스위핑을 통해 최대전류지점을 추종하여 스위칭 주파수를 결정하는 것이다. In the step (c), when the input voltage is a constant voltage, the point having the high current value is the maximum output point, so the switching frequency is determined by following the maximum current point through frequency sweeping.
이와 같은 목적을 달성하기 위한 본 발명의 다른 측면은 급전장치의 입력 전류를 센싱하는 전류 센싱부; 및 상기 전류 센싱부의 입력 전류를 일정시간 동안 주파수 스위핑을 수행하면서 감지하고, 감지된 입력 전류 감지 결과에 기초하여 최대출력지점의 스위칭 주파수를 결정하며, 결정된 주파수로 상기 급전장치를 동작시키는 제어부를 포함한다. Another aspect of the present invention for achieving the above object is a current sensing unit for sensing the input current of the power supply; and a controller configured to sense the input current of the current sensing unit while performing frequency sweeping for a predetermined time, determine a switching frequency of a maximum output point based on a result of sensing the detected input current, and operate the power supply device at the determined frequency. do.
상기 전류 센싱부는 변류기를 이용하는 것이다. The current sensing unit uses a current transformer.
상기 전류 센싱부는 센싱저항과 증폭기를 이용하는 것이다. The current sensing unit uses a sensing resistor and an amplifier.
상기 전류 센싱부는 홀 센서를 이용하는 것이다. The current sensing unit uses a Hall sensor.
이와 같은 목적을 달성하기 위한 본 발명의 또 다른 측면은 입력 전압 소스부; 상기 입력 전압 소스부로부터 직류 형태의 전력을 입력받아 기 설정된 주파수에 따른 교류 형태의 전력으로 변환하는 인버터부; 상기 인버터로부터 교류 전압을 입력받아 집전장치에 유도 기전력이 생성되도록 하는 송신부; 상기 입력 전압 소스부와 인버터부 사이에 구비되어 상기 입력 전압 소스부와 상기 인버터부 사이의 입력 전류를 센싱하는 전류 센싱부; 상기 전류 센싱부의 입력 전류를 일정시간 동안 주파수 스위핑을 수행하면서 감지하고, 이 감지된 입력 전류 감지 결과에 기초하여 최대출력지점의 스위칭 주파수를 결정하며, 결정된 주파수로 상기 인버터부를 동작시키는 제어부를 포함한다.Another aspect of the present invention for achieving this object is an input voltage source unit; an inverter unit receiving direct current type power from the input voltage source unit and converting it into alternating current type power according to a preset frequency; a transmission unit receiving AC voltage from the inverter and generating induced electromotive force in a current collector; a current sensing unit provided between the input voltage source unit and the inverter unit to sense an input current between the input voltage source unit and the inverter unit; A control unit that senses the input current of the current sensing unit while performing frequency sweeping for a predetermined time, determines a switching frequency of a maximum output point based on the detected input current detection result, and operates the inverter unit at the determined frequency. .
본 발명에 의하면, 불안정한 통신을 통한 피드백 방식이 아닌 급전장치 측의 전류정보를 활용하여 제어의 안정도를 향상시키는 효과가 있다. According to the present invention, there is an effect of improving the stability of control by utilizing current information on the power supply device side instead of a feedback method through unstable communication.
또한 최대출력전력 제어를 위해 별도의 복잡한 추가회로 없이 기존의 급전장치 측의 전류 정보를 활용하여 기구적으로 매우 간단하게 최적의 효율 제어를 수행하는 효과가 있다. In addition, there is an effect of performing optimal efficiency control mechanically very simply by utilizing current information on the side of the existing power supply device without a separate complicated additional circuit for maximum output power control.
도 1은 본 발명에 따른 무선충전 시스템의 개념을 나타낸 블록도.1 is a block diagram showing the concept of a wireless charging system according to the present invention.
도 2는 본 발명의 일 실시예에 따른 무선충전 시스템의 예시 회로도.2 is an exemplary circuit diagram of a wireless charging system according to an embodiment of the present invention.
도 3은 도 2에 따른 전류 센싱 회로의 다양한 형태를 나타낸 도면.Figure 3 shows various forms of the current sensing circuit according to Figure 2;
도 4는 본 발명의 일 실시예에 따른 무선 충전 시스템의 출력전력 제어부의 내부 제어 회로를 나타낸 도면.4 is a diagram showing an internal control circuit of an output power controller of a wireless charging system according to an embodiment of the present invention.
도 5는 도 4에 따른 MPPT 블록에서 이루어지는 송신측 센신전류를 이용한 최대전력지점 추적을 위한 개념도.FIG. 5 is a conceptual diagram for tracking a maximum power point using a sensing current at a transmission side performed in the MPPT block according to FIG. 4;
도 6은 도 2에 따른 레귤레이터의 구조를 나타낸 도면.6 is a view showing the structure of the regulator according to FIG. 2;
도 7은 본 발명에 따른 송신측 공진기 구조를 나타낸 도면.7 is a diagram showing the structure of a transmitting-side resonator according to the present invention;
도 8은 본 발명에 따른 수신측 공진기 구조를 나타낸 도면.8 is a view showing the structure of a receiving-side resonator according to the present invention.
도 9는 본 발명에 따른 무선 충전을 위한 출력전력 제어 방법을 나타낸 순서도.9 is a flowchart illustrating a method for controlling output power for wireless charging according to the present invention.
이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, the terms or words used in this specification and claims should not be construed as being limited to the usual or dictionary meaning, and the inventor appropriately uses the concept of the term in order to explain his/her invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that it can be defined. Therefore, since the embodiments described in this specification and the configurations shown in the drawings are only one of the most preferred embodiments of the present invention and do not represent all of the technical ideas of the present invention, various alternatives may be used at the time of this application. It should be understood that there may be equivalents and variations.
도 1은 본 발명에 따른 무선충전 시스템의 개념을 나타낸 블록도이다. 1 is a block diagram showing the concept of a wireless charging system according to the present invention.
도 1을 참조하면 본 발명의 무선충전 시스템(100)은 좌측에 무선충전을 위한 송신측 장치구성인 급전장치와 송신측으로부터 무선으로 전력을 전송 받는 수신측 장치구성인 집전장치를 포함할 수 있다. 이때 집전장치는 전기차량에 구비된다. 무선충전을 위한 급전장치는 입력 전압을 제공하는 입력 전압 소스부(110)와, 입력 전압 소스부(110)로부터 입력된 직류 형태의 전력을 교류 형태의 전력으로 변환하는 인버터부(130)와, 그리고 집전장치와 전자기적으로 커플링되는 송신부(150)를 포함하며, 입력 전압 소스부(110)에서 인버터부(130)로 전달되는 전류 즉 입력 전압 소스부(110)와 인버터부(130) 사이의 입력 전류를 센싱하는 전류 센싱부(120)와 전류 센싱부(120)에서 센싱된 전류를 일정시간 동안 주파수 스위핑을 수행하여 최대출력지점을 추적하고 이 최대출력지점의 스위칭 주파수에 따른 전류값이 수신측으로 출력되도록 인버터부(130)의 스위칭 주파수를 결정하여 결정된 스위칭 주파수로 출력이 동작되도록 하는 제어부(140)를 포함한다. 여기서 제어부(140)는 통신부(210) 및 저장부(220) 그리고 급전장치 제어부(230)를 포함하며, 급전장치 제어부(141)는 급전 지시부(210)와 출력전력 제어부(230)를 포함한다. Referring to FIG. 1, the wireless charging system 100 of the present invention may include a power supply device, which is a transmission side device configuration for wireless charging, and a power collector, which is a reception side device configuration that wirelessly receives power from the transmission side, on the left side. . At this time, the current collector is provided in the electric vehicle. The power supply device for wireless charging includes an input voltage source unit 110 that provides an input voltage, and an inverter unit 130 that converts DC power input from the input voltage source unit 110 into AC power, and a transmission unit 150 electromagnetically coupled to the power collector, and a current transferred from the input voltage source unit 110 to the inverter unit 130, that is, between the input voltage source unit 110 and the inverter unit 130 The current sensing unit 120 for sensing the input current of and frequency sweeping of the current sensed by the current sensing unit 120 is performed for a certain period of time to track the maximum output point, and the current value according to the switching frequency of the maximum output point is It includes a control unit 140 that determines the switching frequency of the inverter unit 130 so that the output is output to the receiving side and operates the output at the determined switching frequency. Here, the control unit 140 includes a communication unit 210, a storage unit 220, and a power feeding device control unit 230, and the power feeding device control unit 141 includes a power supply instructing unit 210 and an output power control unit 230.
통신부(210)를 통하여 차량이 급전장치로의 진입 및 정차됨을 알 수 있고, 이때 급전장치 제어부(141)는 저장부(142)에 저장된 기 설정된 주파수에 따라서 출력전력이 송신되도록 한다. 이때 급전 지시부(210)의 지시에 의하여 급전장치로 기설정된 주파수에 따라서 출력전력이 송신되며, 집전장치를 구비한 차량이 급전장치 위쪽에 정차한 경우에 수행될 수 있는 것이다. Through the communication unit 210, it can be known that the vehicle enters and stops at the power supply device, and at this time, the power feed device control unit 141 transmits output power according to a preset frequency stored in the storage unit 142. At this time, output power is transmitted according to a preset frequency to the power supply device according to the instructions of the power supply instructing unit 210, and can be performed when a vehicle equipped with the power collector stops above the power feed device.
그리고 급전장치 제어부(141)의 출력 전력 제어부(230)는 전류 센싱부(120)의 입력 전류를 일정시간 동안 주파수 스위핑을 수행하면서 감지하고, 감지된 입력 전류 감지 결과에 기초하여 최대출력지점의 스위칭 주파수를 결정한다. 그리고 결정된 주파수로 인버터부(130)가 동작되도록 하여 출력 전력을 제어한다. Further, the output power controller 230 of the power supply controller 141 senses the input current of the current sensing unit 120 while frequency sweeping for a predetermined time, and switches the maximum output point based on the detected input current detection result. determine the frequency. Then, the output power is controlled by allowing the inverter unit 130 to operate at the determined frequency.
반면 급전장치의 우측으로는 수신부(160)와, 교류형태로 넘어온 전력을 직류로 변환하는 정류부(170) 및 다양한 부하변동에도 안정적인 출력을 배터리(도시되지 않음)에 공급하는 레귤레이터부(180)를 포함한다. On the other hand, on the right side of the power supply device, the receiver 160, the rectifier 170 that converts the power supplied in the form of alternating current into direct current, and the regulator unit 180 that supplies a stable output to the battery (not shown) despite various load fluctuations. include
도 2는 본 발명의 일 실시예에 따른 무선충전 시스템의 예시 회로도이고, 도 3은 도 2에 따른 전류 센싱 회로의 다양한 형태를 나타낸 도면이다. 2 is an exemplary circuit diagram of a wireless charging system according to an embodiment of the present invention, and FIG. 3 is a diagram showing various types of current sensing circuits according to FIG. 2 .
도 2 내지 도 3을 참조하면, 전원(Vlink)(110)을 입력받아 교류 전압을 출력하는 인버터(130), 전원(Vlink)(110)과 인버터(130) 사이의 전류를 센싱하는 전류 센싱 회로(120)와, 인버터(130)로부터 교류 전압을 입력받아 수신부의 수신 코일(160)에 유도 기전력이 생성되도록 하는 송신부의 송신코일(150), 유도 전류를 정류하여 출력된 전류를 커패시터에 저장하는 정류회로(170)와 정류회로(170)의 커패시터에 따른 전압을 배터리에 따른 전압으로 변환하는 레귤레이터(180)가 배터리와 병렬로 연결된다. Referring to FIGS. 2 and 3 , the inverter 130 receiving the power source (V link ) 110 and outputting an AC voltage, and the current sensing the current between the power source (V link ) 110 and the inverter 130 The sensing circuit 120 and the transmitting coil 150 of the transmitting unit that receives the AC voltage from the inverter 130 and generates an induced electromotive force in the receiving coil 160 of the receiving unit, and rectifies the induced current to pass the output current to the capacitor. A rectifier circuit 170 for storing and a regulator 180 for converting the voltage according to the capacitor of the rectifier circuit 170 to the voltage according to the battery are connected in parallel with the battery.
전류 센싱 회로(120)는 최대출력전력 제어를 위한 주파수 스위핑 기법에 필요한 센싱 회로이며, 이때 전류 센싱은 도 3의 (a)와 같이 변류기(Current Transfomer; CT)를 이용하거나, 도 3의 (b)와 같이 센싱 저항과 증폭기를 활용하여 센싱할 수도 있고, 도 3의 (c)와 같이 홀 센서를 이용하여 입력전류를 센싱할 수 있다. The current sensing circuit 120 is a sensing circuit required for the frequency sweeping technique for controlling the maximum output power. At this time, the current sensing uses a current transformer (CT) as shown in (a) of FIG. 3 or (b) of FIG. ), the sensing resistor and the amplifier may be used for sensing, or the input current may be sensed using a Hall sensor as shown in FIG. 3 (c).
인버터(120)는 전원과 병렬로 연결된 제1 직렬 회로 및 제2 직렬 회로를 포함할 수 있다. 이때 제1 직렬 회로는 제1 스위치(S1) 및 제2 스위치(S2)가 직렬 연결된 회로일 수 있다. 그리고 제2 직렬 회로는 제3 스위치(S3) 및 제4 스위치(S4)가 직렬 연결된 회로일 수 있다. 또한 인버터(120)는 제1 스위치(S1) 및 제2 스위치(S2) 사이의 접점과 제3 스위치(S3) 및 제4 스위치(S4) 사이의 접점간의 전압차를 송신부의 송신코일(150)의 입력전압으로 공급할 수 있다. 여기서 인버터(120)에 사용되는 스위치로는 모스펫(MOSFET) 스위치가 사용될 수 있다. 또한 각각의 스위치는 다이오드와 병렬 연결되어 있을 수 있다. 여기서 송신부의 송신 코일(150)의 회로는 인버터(130)에 의해 전달된 입력전압과 연결된다. 수신부의 수신코일(160)은 송신 코일(150)과 전자기적으로 커플링(이때 상호 인덕턴스를 M)으로 정의)되어 기전력이 유도되며 수신 커패시터가 직렬 연결되어 있을 수 있다. The inverter 120 may include a first series circuit and a second series circuit connected in parallel with the power source. In this case, the first series circuit may be a circuit in which the first switch S 1 and the second switch S 2 are connected in series. And, the second series circuit may be a circuit in which the third switch S 3 and the fourth switch S 4 are connected in series. In addition, the inverter 120 transmits the voltage difference between the contacts between the first switch (S 1 ) and the second switch (S 2 ) and the contacts between the third switch (S 3 ) and the fourth switch (S 4 ) to the transmitter. It can be supplied as the input voltage of the coil 150. Here, a MOSFET switch may be used as a switch used in the inverter 120 . Also, each switch may be connected in parallel with a diode. Here, the circuit of the transmitting coil 150 of the transmitting unit is connected to the input voltage transmitted by the inverter 130 . The receiving coil 160 of the receiving unit is coupled electromagnetically with the transmitting coil 150 (mutual inductance is defined as M) to induce electromotive force, and a receiving capacitor may be connected in series.
정류회로(170)는 제1 다이오드(D1) 및 제2 다이오드(D2)가 직렬 연결된 제1 정류회로 및 제3 다이오드(D3) 및 제4 다이오드(D4)가 직렬 연결된 제2 정류 회로를 포함할 수 있고, 제1 정류 회로 및 제2 정류 회로는 서로 병렬 연결될 수 있다. 또한 제1 다이오드(D1)와 제2 다이오드(D2) 사이의 노드 및 제3 다이오드(D3) 및 제4 다이오드(D4) 사이의 노드를 통해 수신부에 유도된 전류가 유입될 수 있다. 또한 제1 다이오드(D1) 및 제2 다이오드(D2) 사이의 노드 및 제3 다이오드(D3) 및 제4 다이오드(D4) 사이의 상호간 전압차가 정류회로(170)에 대한 입력전압으로 인가될 수 있다. 이때 제1 다이오드(D1)와 제2 다이오드(D2) 사이의 노드 및 제3 다이오드(D3) 및 제4 다이오드(D4) 사이의 노드 상호간 전압차는 송신측 공진회로의 출력전압 또는 송신측 출력 전압으로 지칭할 수 있다. 여기서 정류 회로(170)는 제1 정류 회로 및 /또는 제2 정류 회로로부터 정류된 전류를 제1 정류 회로 및 제2 정류회로와 병렬 연결된 커패시터에 저장할 수 있다. 한편 도 2에 따른 무선 충전 시스템의 회로는 반드시 도 2에 따른 구성으로 한정되는 것은 아니다. 또한 무선 충전 시스템은 송신측과 수신측을 회로도 관점에서 함께 도시한 것임을 명시한다. The rectifier circuit 170 includes a first rectifier circuit in which a first diode (D 1 ) and a second diode (D 2 ) are connected in series, and a second rectifier circuit in which a third diode (D 3 ) and a fourth diode (D 4 ) are connected in series. circuit, and the first rectifying circuit and the second rectifying circuit may be connected in parallel with each other. In addition, current induced in the receiver may be introduced through a node between the first diode D 1 and the second diode D 2 and a node between the third diode D 3 and the fourth diode D 4 . . In addition, the voltage difference between the node between the first diode (D 1 ) and the second diode (D 2 ) and between the third diode (D 3 ) and the fourth diode (D 4 ) is the input voltage to the rectifier circuit 170. may be authorized. At this time, the voltage difference between the node between the first diode (D 1 ) and the second diode (D 2 ) and the node between the third diode (D 3 ) and the fourth diode (D 4 ) is the output voltage of the resonant circuit on the transmission side or the transmission side. It can be referred to as the side output voltage. Here, the rectifier circuit 170 may store the current rectified from the first rectifier circuit and/or the second rectifier circuit in a capacitor connected in parallel with the first rectifier circuit and the second rectifier circuit. Meanwhile, the circuit of the wireless charging system according to FIG. 2 is not necessarily limited to the configuration according to FIG. 2 . In addition, it is specified that the wireless charging system is shown together with the transmitting side and the receiving side in terms of a circuit diagram.
도 4는 본 발명의 일 실시예에 따른 무선 충전 시스템의 출력전력 제어부(230)의 내부 제어 회로를 나타낸 도면이다. 4 is a diagram showing an internal control circuit of the output power controller 230 of the wireless charging system according to an embodiment of the present invention.
도 4의 출력전력 제어부(230)는 먼저 송신측 센싱 전류 i1을 통한 최대전력지점을 추정하고, 추정된 최대전력지점에 대응하기 위한 인버터의 주파수를 스위칭하여 최대출력전압을 보상하게 된다. 이를 위하여 출력 전력 제어부(230)는 센싱된 입력 전류(i1)를 증폭하는 연산 증폭기(OP AMP)(231)와, 연산 증폭기(231)로부터 출력되는 연속 파형을 불연속 파형으로 변환하여 표본화하고, 이 표본화된 결과를 일정시간 만큼 유지시키는 샘플/홀드 블록(232)과, 샘플/홀드 블록(232)에서 획득된 평균전류 정보를 주파수 스위핑 선택 블록(144)에 의하여 주파수 스위핑을 수행하고, 이 주파수 스위핑 수행에 의하여 최대출력지점을 추적하는 MPPT 블록(233)를 포함하며, 주파수 스위핑에 의하여 추적된 최대출력지점의 전류값에 따라 게이트 드라이버(236)에 연결되어 있는 인버터의 제1, 제2, 제3, 제4 스위치의 주파수를 바꿔주는 PFM(펄스 주파수 변조) 블록(235)으로 구성된다. The output power control unit 230 of FIG. 4 first estimates the maximum power point through the transmission-side sensing current i 1 , and compensates the maximum output voltage by switching the frequency of the inverter to correspond to the estimated maximum power point. To this end, the output power control unit 230 converts an operational amplifier (OP AMP) 231 that amplifies the sensed input current (i 1 ) and a continuous waveform output from the operational amplifier 231 into a discontinuous waveform and samples it, Frequency sweeping is performed by the sample/hold block 232 that maintains the sampled result for a certain period of time and the average current information acquired in the sample/hold block 232 by the frequency sweep selection block 144. It includes an MPPT block 233 that tracks the maximum output point by performing sweeping, and the inverters connected to the gate driver 236 are connected to the first, second, and It consists of a PFM (Pulse Frequency Modulation) block 235 that changes the frequency of the third and fourth switches.
도 5는 도 4에 따른 MPPT 블록에서 이루어지는 송신측 센싱전류를 이용한 최대전력지점 추적을 위한 개념도로서, 그래프의 가로측은 스위칭 주파수를 나타내며, 세로축은 센싱된 송신측 전류(i1)와 입력전압(Vlink)의 함수인 입력전력을 나타내며, 이를 통해 획득된 평균전류 정보 i1은 최대출력지점추적(Maxximum Power Point Tracking) 블록(144)을 통해 가변하는 스위칭 주파수에 따라 가장 높은 전류값을 추적하게 된다. 이때 입력전압이 정전압임을 가정하면 높은 전류값을 가지는 지점이 최대출력지점을 대변하므로 주파수 스위핑을 통해 최대전류지점을 추종하여 인버터의 스위칭 주파수를 제어한다. 단 전기차량이 급전장치에 정차한 경우뿐만 아니라 주행 중인 경우에도 가능할 수 있다. 5 is a conceptual diagram for tracking the maximum power point using the sensing current of the transmission side performed in the MPPT block according to FIG . represents the input power, which is a function of V link ), and the average current information i 1 obtained through this tracks the highest current value according to the variable switching frequency through the Maximum Power Point Tracking block 144 do. At this time, assuming that the input voltage is a constant voltage, the point having a high current value represents the point of maximum output, so the switching frequency of the inverter is controlled by tracking the point of maximum current through frequency sweeping. However, it may be possible not only when the electric vehicle is stopped at the power supply device but also when it is running.
도 6은 도 2에 따른 레귤레이터의 구조를 나타낸 도면이다. 6 is a diagram showing the structure of the regulator according to FIG. 2;
도 6을 참조하면 본 발명의 레귤레이터는 송신부의 송신 코일과 수신부의 수신코일간의 정렬 상태와 다양한 부하변동에 대응가능하도록 레귤레이터를 구성할 수 있다. 레귤레이터의 토폴로지는 최종 배터리단의 충전프로파일에 입각하여 강압형, 승압형, 또는 승·강압형의 토폴로지가 다양하게 적용될 수 있다. Referring to FIG. 6 , the regulator of the present invention may be configured to respond to various load fluctuations and an alignment state between a transmission coil of a transmitter and a reception coil of a receiver. As the topology of the regulator, a step-down type, a step-up type, or a step-up/step-down type topology may be variously applied based on the charging profile of the final battery stage.
도 7은 본 발명에 따른 송신측 공진기 구조를 나타낸 도면으로 송신측 공진기는 단일 혹은 멀티 코일(급전선로)(10)을 구비하고, 코일의 하단에 자기장에 의한 전력전달이 도 8에서 설명할 수신측 공진기에 집중되도록 페라이트 코어(11)가 구비된다. FIG. 7 is a diagram showing the structure of a transmitting-side resonator according to the present invention. The transmitting-side resonator has a single or multi-coil (feeder line) 10, and power transmission by a magnetic field at the lower end of the coil is performed as described in FIG. A ferrite core 11 is provided so as to be concentrated on the side resonator.
도 8은 본 발명에 따른 수신측 공진기 구조를 나타낸 도면으로 단일 혹은 멀티 코일(집전선로)(20)이 구비되고, 코일의 상부에는 자기장에 의한 전력전달이 용이하도록 페라이트 코어(21)가 구비된다. 수신측 코일(20)의 형상은 스퀘어 타입의 구조 이외에도 서큘러 타입의 코일 구조를 포함한다. 본 발명의 송·수신측 공진기는 최대출력제어가 용이하도록 부하상태에서는 50%이상의 Q값을 가지며, 무부하 상태에서는 50% 이하의 Q값을 가진다. 8 is a view showing the structure of a receiving-side resonator according to the present invention, a single or multi-coil (collecting line) 20 is provided, and a ferrite core 21 is provided on top of the coil to facilitate power transmission by a magnetic field. do. The shape of the receiving-side coil 20 includes a circular-type coil structure in addition to a square-type structure. The transmitting/receiving resonator of the present invention has a Q value of 50% or more in a load state and a Q value of 50% or less in a no-load state to facilitate maximum output control.
도 9는 본 발명에 따른 무선 충전을 위한 출력전력 제어 방법을 나타낸 순서도이다. 9 is a flowchart illustrating a method of controlling output power for wireless charging according to the present invention.
먼저 급전장치로 집전장치를 구비한 차량이 진입한 한 경우, 기 설정된 주파수에 따라 급전장치의 출력전력이 송신되도록 한다(S110).First, when a vehicle equipped with a power collector enters the power supply device, output power of the power feed device is transmitted according to a preset frequency (S110).
그리고 단계 S110의 이루어지는 과정에서 일정시간 동안 주파수 스위핑을 수행하면서 급전장치로의 입력 전류를 감지한다(S110). 여기서 급전장치로의 입력 전류는 앞서 설명한 바와 같이 입력 전압 소스와 인버터 사이의 전류 센싱 값이며 CT를 활용하거나 센싱 저항과 증폭기 또는 홀센서를 이용하여 센싱할 수 있다. In the process of step S110, the input current to the power supply device is sensed while frequency sweeping is performed for a predetermined time (S110). Here, the input current to the power supply device is a current sensing value between the input voltage source and the inverter as described above, and can be sensed using a CT, a sensing resistor, an amplifier, or a hall sensor.
이어서 단계 S110에서의 입력 전류 감지 결과에 기초하여 최대출력지점의 스위칭 주파수를 결정한다(S120).Then, based on the result of sensing the input current in step S110, the switching frequency of the maximum output point is determined (S120).
그리고 단계 S120에서 결정된 스위칭 주파수로 급전장치를 동작시켜 출력전력을 제어한다(S130)Then, the output power is controlled by operating the power supply device at the switching frequency determined in step S120 (S130).
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by the limited embodiments and drawings, the present invention is not limited thereto, and the technical spirit of the present invention and the following by those skilled in the art to which the present invention belongs Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

Claims (8)

  1. 무선 충전을 위한 급전장치의 출력전력을 제어하는 방법으로서, As a method of controlling the output power of a power supply device for wireless charging,
    (a) 기 설정된 주파수에 따라 출력전력을 송신하도록 하는 단계;(a) transmitting output power according to a preset frequency;
    (b) 일정시간 동안 주파수 스위핑을 수행하면서 급전장치로의 입력 전류를 감지하는 단계;(b) sensing an input current to a power supply while performing frequency sweeping for a predetermined period of time;
    (c) 상기 단계 (b)에서의 입력 전류 감지 결과에 기초하여 최대출력지점의 스위칭 주파수를 결정하는 단계; 및(c) determining the switching frequency of the maximum output point based on the result of sensing the input current in step (b); and
    (d) 상기 단계 (c)에서 결정된 스위칭 주파수로 급전장치를 동작시키는 단계를 포함하는 무선 충전을 위한 급전장치의 출력전력 제어 방법.(d) a method for controlling output power of a power supply device for wireless charging comprising the step of operating the power supply device at the switching frequency determined in step (c).
  2. 청구항 1에 있어서,The method of claim 1,
    상기 단계 (a)는, In the step (a),
    집전장치를 구비한 차량이 급전장치 위쪽에 정차한 경우에 수행되는 것Performed when a vehicle equipped with a current collector is stopped above the power supply
    을 특징으로 하는 무선 충전을 위한 급전장치의 출력전력 제어 방법.Method for controlling output power of a power supply device for wireless charging, characterized in that.
  3. 청구항 1에 있어서,The method of claim 1,
    상기 단계 (c)에서 입력전압이 정전압일 경우 높은 전류값을 가지는 지점이 최대출력지점임으로 주파수 스위핑을 통해 최대전류지점을 추종하여 스위칭 주파수를 결정하는 것In the step (c), if the input voltage is a constant voltage, the point with the high current value is the maximum output point, so determining the switching frequency by following the maximum current point through frequency sweeping
    을 특징으로 하는 무선 충전을 위한 급전장치의 출력전력 제어 방법.Method for controlling output power of a power supply device for wireless charging, characterized in that.
  4. 급전장치의 입력 전류를 센싱하는 전류 센싱부; 및Current sensing unit for sensing the input current of the power supply; and
    상기 전류 센싱부의 입력 전류를 일정시간 동안 주파수 스위핑을 수행하면서 감지하고, 감지된 입력 전류 감지 결과에 기초하여 최대출력지점의 스위칭 주파수를 결정하며, 결정된 주파수로 상기 급전장치를 동작시키는 제어부The control unit detects the input current of the current sensing unit while performing frequency sweeping for a predetermined time, determines the switching frequency of the maximum output point based on the detected input current detection result, and operates the power supply device at the determined frequency.
    를 포함하는 무선 충전을 위한 급전장치의 출력전력 제어 장치.Output power control device of a power supply device for wireless charging comprising a.
  5. 청구항 4에 있어서,The method of claim 4,
    상기 전류 센싱부는 변류기를 이용하는 것The current sensing unit uses a current transformer
    을 특징으로 하는 무선 충전을 위한 급전장치의 출력전력 제어 장치.Output power control device of a power supply device for wireless charging, characterized in that.
  6. 청구항 4에 있어서,The method of claim 4,
    상기 전류 센싱부는 센싱저항과 증폭기를 이용하는 것The current sensing unit uses a sensing resistor and an amplifier.
    을 특징으로 하는 무선 충전을 위한 급전장치의 출력전력 제어 장치Output power control device of a power supply device for wireless charging, characterized in that
  7. 청구항 4에 있어서,The method of claim 4,
    상기 전류 센싱부는 홀 센서를 이용하는 것The current sensing unit uses a hall sensor
    을 특징으로 하는 무선 충전을 위한 급전장치의 출력전력 제어 장치.Output power control device of a power supply device for wireless charging, characterized in that.
  8. 입력 전압 소스부;an input voltage source unit;
    상기 입력 전압 소스부로부터 직류 형태의 전력을 입력받아 기 설정된 주파수에 따른 교류 형태의 전력으로 변환하는 인버터부;an inverter unit receiving direct current type power from the input voltage source unit and converting it into alternating current type power according to a preset frequency;
    상기 인버터로부터 교류 전압을 입력받아 집전장치에 유도 기전력이 생성되도록 하는 송신부;a transmission unit receiving AC voltage from the inverter and generating induced electromotive force in a current collector;
    상기 입력 전압 소스부와 인버터부 사이에 구비되어 상기 입력 전압 소스부와 상기 인버터부 사이의 입력 전류를 센싱하는 전류 센싱부;a current sensing unit provided between the input voltage source unit and the inverter unit to sense an input current between the input voltage source unit and the inverter unit;
    상기 전류 센싱부의 입력 전류를 일정시간 동안 주파수 스위핑을 수행하면서 감지하고, 이 감지된 입력 전류 감지 결과에 기초하여 최대출력지점의 스위칭 주파수를 결정하며, 결정된 주파수로 상기 인버터부를 동작시키는 제어부The control unit detects the input current of the current sensing unit while performing frequency sweeping for a predetermined time, determines the switching frequency of the maximum output point based on the detected input current detection result, and operates the inverter unit at the determined frequency.
    를 포함하는 무선 충전을 위한 급전 장치.A power supply device for wireless charging comprising a.
PCT/KR2022/012268 2021-08-17 2022-08-17 Method and device for controlling output power of power supply device for wireless charging WO2023022503A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0107967 2021-08-17
KR1020210107967A KR102650006B1 (en) 2021-08-17 2021-08-17 Method and device for controlling output power of power supply equipment for wireless charging

Publications (1)

Publication Number Publication Date
WO2023022503A1 true WO2023022503A1 (en) 2023-02-23

Family

ID=85239624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012268 WO2023022503A1 (en) 2021-08-17 2022-08-17 Method and device for controlling output power of power supply device for wireless charging

Country Status (2)

Country Link
KR (1) KR102650006B1 (en)
WO (1) WO2023022503A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170050976A (en) * 2015-11-02 2017-05-11 현대자동차주식회사 Method for controlling dc-dc converter and ground assembly and wireless power transfer method using the same
KR20170071861A (en) * 2015-12-16 2017-06-26 재단법인 포항산업과학연구원 Frequency variation/adaptation power amplifier for the purpose of wireless power transfer and Driving Method Thereof
WO2018163170A1 (en) * 2017-03-07 2018-09-13 Powermat Technologies Ltd. System for wireless power charging
KR20190094933A (en) * 2018-02-06 2019-08-14 삼성전자주식회사 Wireless power transmission apparatus and wireless power transmission method thereof
KR101996966B1 (en) * 2017-08-30 2019-10-01 엘지이노텍 주식회사 Wireless Power Transfer System and Operating method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8344552B2 (en) 2008-02-27 2013-01-01 Qualcomm Incorporated Antennas and their coupling characteristics for wireless power transfer via magnetic coupling
JPWO2014196239A1 (en) 2013-06-04 2017-02-23 株式会社Ihi Power feeding device and non-contact power feeding system
JP6904280B2 (en) * 2018-03-06 2021-07-14 オムロン株式会社 Non-contact power supply device
KR102092065B1 (en) * 2019-12-24 2020-03-24 김응석 Electronic wattmeter with tolerance minimization and Automatic Calibration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170050976A (en) * 2015-11-02 2017-05-11 현대자동차주식회사 Method for controlling dc-dc converter and ground assembly and wireless power transfer method using the same
KR20170071861A (en) * 2015-12-16 2017-06-26 재단법인 포항산업과학연구원 Frequency variation/adaptation power amplifier for the purpose of wireless power transfer and Driving Method Thereof
WO2018163170A1 (en) * 2017-03-07 2018-09-13 Powermat Technologies Ltd. System for wireless power charging
KR101996966B1 (en) * 2017-08-30 2019-10-01 엘지이노텍 주식회사 Wireless Power Transfer System and Operating method thereof
KR20190094933A (en) * 2018-02-06 2019-08-14 삼성전자주식회사 Wireless power transmission apparatus and wireless power transmission method thereof

Also Published As

Publication number Publication date
KR102650006B1 (en) 2024-03-25
KR20230026573A (en) 2023-02-27

Similar Documents

Publication Publication Date Title
US10819150B2 (en) Non-contact electric power feeding system, terminal device, non-contact electric power feeding device, and non-contact electric power feeding method
US10097012B2 (en) Power supplying device and wireless power-supplying system
US9006937B2 (en) System and method for enabling ongoing inductive power transmission
KR102051682B1 (en) Apparatus and method for detecting foreign object in wireless power transmitting system
CN101965671B (en) Inductive power supply with duty cycle control
EP2685601B1 (en) Wireless power transfer method, apparatus and system
CN109417309B (en) Electronic device and method of communicating between wireless power receiving and transmitting devices
KR20150048879A (en) System and method for bidirectional wireless power transfer
WO2014010518A1 (en) Power-receiving device and power transfer system
WO2009148277A2 (en) Apparatus for minimizing standby power of switching-mode power supply
KR200415537Y1 (en) Contact-less charger having wire charging part
KR20150056222A (en) Wireless power transmission device which enables to simultaneously charge
CN106560971B (en) Wireless charging circuit, wireless charging device, wireless charging method and wireless charging system
WO2012169729A1 (en) Wireless power transmitter, wireless power receiver and wireless power transmission method
JP2013169081A (en) Charger
KR20190134566A (en) Apparatus and method for detecting foreign object in wireless power transmitting system
KR102563553B1 (en) Efficient wireless power charging apparatus and method thereof
WO2023022503A1 (en) Method and device for controlling output power of power supply device for wireless charging
KR102230682B1 (en) Wireless power transmission device which enables to simultaneously charge
KR102390286B1 (en) Wireless power transmission device which enables to simultaneously charge
CN113489164A (en) Wireless charging method and system without additional communication module
WO2019176375A1 (en) Power transmission device, power reception device, and wireless power feed system
JPH11146569A (en) Noncontact power transmission system
KR20220057493A (en) Wireless power transmission device which enables to simultaneously charge
US20200389051A1 (en) Non-contact power supply apparatus and non-contact power transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE