WO2023022300A1 - Disc-type turbine steam power plant - Google Patents

Disc-type turbine steam power plant Download PDF

Info

Publication number
WO2023022300A1
WO2023022300A1 PCT/KR2021/016904 KR2021016904W WO2023022300A1 WO 2023022300 A1 WO2023022300 A1 WO 2023022300A1 KR 2021016904 W KR2021016904 W KR 2021016904W WO 2023022300 A1 WO2023022300 A1 WO 2023022300A1
Authority
WO
WIPO (PCT)
Prior art keywords
disk
fluid
steam
type turbine
power plant
Prior art date
Application number
PCT/KR2021/016904
Other languages
French (fr)
Korean (ko)
Inventor
유성훈
Original Assignee
유성훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유성훈 filed Critical 유성훈
Publication of WO2023022300A1 publication Critical patent/WO2023022300A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/34Non-positive-displacement machines or engines, e.g. steam turbines characterised by non-bladed rotor, e.g. with drilled holes
    • F01D1/36Non-positive-displacement machines or engines, e.g. steam turbines characterised by non-bladed rotor, e.g. with drilled holes using fluid friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/02Non-positive-displacement machines or engines, e.g. steam turbines with stationary working-fluid guiding means and bladed or like rotor, e.g. multi-bladed impulse steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/12Self-contained steam boilers, i.e. comprising as a unit the steam boiler, the combustion apparatus, the fuel storage, accessory machines and equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/34Adaptations of boilers for promoting water circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • Disclosed herein relates to a disk-type steam power plant, and more particularly, to a disk-type turbine steam power plant that generates power by rotating a plurality of stacked disks with the viscous force of a fluid.
  • a steam power plant such as a thermal power plant or a nuclear power plant is operated while repeating a steam power cycle process. That is, a heat source such as a boiler or a nuclear reactor generates steam, and the generated high-temperature, high-pressure steam collides with turbine blades. The steam colliding with the blades rotates the turbine, and the high-temperature and high-pressure steam colliding with the turbine becomes water-containing steam, which is cooled by the condenser and becomes liquid water again. In this way, the steam power cycle can be operated while repeating one cycle.
  • the condenser may form low-pressure steam by liquefying the steam passing through the turbine.
  • the low-pressure steam passing through the turbine corresponds to a lower pressure than the incoming steam entering the turbine.
  • the pressure difference between the low-pressure steam passing through the turbine and the relatively high-pressure inlet steam increases the speed of the inlet steam and increases the rotational speed of the turbine blades, thereby increasing power generation efficiency.
  • the inlet steam rapidly adiabatically expands and the temperature drops and can be liquefied.
  • the vapor expands more adiabatically and becomes more liquefied, and the blade may be destroyed due to the occurrence of cavitation.
  • the condenser can condense water vapor so that liquefaction does not occur at the rear surface of the turbine blade. Therefore, it is difficult to increase power generation efficiency under the constraint of preventing the occurrence of a cavitation phenomenon in a general prime mover generating power while steam collides with the blades of a turbine.
  • the condenser must be included as an essential component to complete the steam power cycle and suppress cavitation. That is, a steam power plant operating in a steam power cycle must exchange heat with a low-temperature heat sink as well as a high-temperature heat source. In the case of a steam power plant, heat exchange is performed between a boiler corresponding to a heat source and a condenser corresponding to a hot needle. During this heat exchange process, the fluid used in the steam power plant undergoes a phase change from a liquid to a vapor and then returns to its initial liquid state, repeating the process.
  • a disc-type turbine installed on the inside of which is provided with a disc driven by the viscous force of the steam, and a pump installed in the circulation pipe and circulating the liquid fluid from the disc-type turbine to the boiler.
  • a type turbine steam power plant is presented as an example.
  • the disk-type turbine has an inner space for accommodating the disk, an inlet through which steam from the boiler is introduced, and a casing in which a confluence outlet through which the liquid fluid is joined and discharged to the outside is formed on the center portion, and A rotatable rotary shaft passing through the center of the casing, a plurality of stacked disks having a through hole through which the rotary shaft passes, and a fluid flow port through which the liquid fluid passes is formed adjacent to the through hole, and the rotary shaft It may include a spacer that penetrates and is interposed between the stacked disks to maintain the stacked disks at regular intervals.
  • side cutting parts may be formed on both sides of an end surface of the rotating shaft.
  • the fluid flow ports may be formed at regular intervals around the through hole.
  • it may include a bending prevention portion that penetrates the rotational shaft and is closely coupled to the plurality of stacked disks at both ends of the rotational shaft.
  • the disk-shaped steam power plant according to the disclosed contents can increase power generation efficiency by rotating a plurality of stacked disks with the viscous force of steam by using a disk-shaped turbine.
  • FIG. 1 is a schematic diagram of a disk-type turbine steam power plant according to one embodiment of the present disclosure
  • Figure 2 is an exploded perspective view showing a disk-type turbine according to an embodiment of the disclosure.
  • FIG. 3 is an enlarged view of a cross section of a rotating shaft according to an embodiment of the present disclosure
  • FIG. 4 is a side view of a disk-shaped turbine according to one embodiment of the present disclosure.
  • FIG. 5 is a perspective view of a spacer according to one embodiment of the disclosed subject matter
  • Figure 6 is a coupling state diagram of a spacer according to an embodiment of the disclosure.
  • Figure 7 is a perspective view of a bending prevention unit according to an embodiment of the disclosed subject matter.
  • Figure 8 is a combined state diagram of the bending prevention unit according to an embodiment of the disclosure.
  • a disk-type turbine steam power plant 1 includes a circulation pipe 100, a boiler 200, a disk-type turbine 300, and a pump 400.
  • the circulation pipe 100 allows the fluid used in the disk-type turbine steam power plant 1 to circulate.
  • the fluid passes through a boiler 200, a disc-type turbine 300, and a pump 400 to be described later in the circulation pipe 100, and repeats the process of phase change into liquid or steam.
  • Fluid from the boiler 200 becomes steam and flows to the disk-type turbine 300, and liquid fluid from the disk-type turbine 300 flows to the boiler 200.
  • the flow of this fluid is made in the circulation pipe 100.
  • the fluid may change in temperature and pressure during the completion of the steam power cycle. While the fluid circulates, the temperature or pressure of the fluid changes, and the circulation pipe 100 continuously receives pressure from the fluid.
  • the circulation pipe 100 is preferably made of a material that can withstand high pressure or a material that is corrosion resistant to the fluid used.
  • the boiler 200 may be installed in the circulation pipe 100 to heat the fluid and change the phase to steam.
  • the boiler 200 requires a fuel source to change the phase of a fluid into steam, and diesel or natural gas is generally used.
  • a fluid of 100 to 200° C. which corresponds to a relatively low temperature in the power plant, may be used. Therefore, the boiler 200 can rotate the disk-type turbine 300 even when wood, lignite, briquettes, pellets, combustible waste, and the like are used as a fuel source.
  • the disk-shaped turbine 300 may be rotated by the viscous force of steam.
  • the disk-type turbine 300 rotates according to the boundary layer effect caused by the inflowing steam. Since the fluid has a viscous property and flows, the velocity of the fluid becomes zero at the contact surface of the object in contact with the fluid. As the fluid moves away from the object, the velocity of the fluid gradually increases, forming a velocity gradient and maintaining a constant velocity.
  • the region where the velocity gradient occurs due to the viscous effect of the fluid is called the boundary layer. That is, the boundary layer refers to a layer of fluid near the surface of an object on which the viscous effect of the fluid affects.
  • the viscous effect of the fluid in the boundary layer can generate a frictional force between the fluid and the surface of the object in contact, and this frictional force is called viscous frictional force.
  • This viscous frictional force may act as a traction force that pulls the disk-shaped turbine 300 to rotate, thereby rotating the disk-shaped turbine 300 .
  • the pump 400 may circulate the liquid fluid from the disk-type turbine 300 to the boiler 200.
  • the pump 400 applies pressure to the liquid fluid to allow the fluid to flow within the circulation pipe 100 .
  • the disk-shaped turbine 300 may include a casing 310, a rotational shaft 320, a plurality of stacked disks 330, and a spacer 340.
  • the casing 310 may have an inner space 312 accommodating the disk 330 .
  • the casing 310 may have an inlet 314 through which steam from the boiler 200 is introduced, and a confluence outlet 316 through which liquid fluid is joined and discharged to the outside may be formed on the central portion.
  • Vapor introduced into the inner space 312 through the inlet 314 of the casing 310 spirals inward toward the center of the plurality of stacked disks 330, and may be phase-changed into a liquid fluid.
  • the phase-changed liquid fluid may pass through the confluence outlet 316 and flow into the pump 400 through the circulation pipe 100 .
  • the rotating shaft 320 may pass through the center of the casing 310 and rotate as the stacked disks 330 are driven to rotate.
  • the rotating shaft 320 may be connected to a generator (not shown) generating a change in the electromagnetic field, and supply mechanical energy required to change the electromagnetic field.
  • side cutting portions may be formed on both sides of the cross section of the rotating shaft 320 .
  • the plurality of stacked disks 330 have a through hole 332 through which the rotating shaft 320 passes, and a fluid flow hole 334 through which steam passes is adjacent to the through hole 332 . can be formed.
  • the plurality of stacked disks 330 may be stacked while maintaining a predetermined interval between the disks 330 .
  • a predetermined interval between the plurality of stacked disks 330 can maximize power generation efficiency by the aforementioned boundary layer effect.
  • the steam is subjected to centripetal force by the rotation of the plurality of stacked disks 330 and may flow toward the center of the plurality of stacked disks 330 while forming a spiral inward.
  • the disk 330 may have a disk shape maintaining a constant thickness as a whole, but may have a convex shape with a thick central portion.
  • the rotational speed of the disk 330 may increase as the thickness of the disc 330 decreases.
  • the disk 330 is preferably made of a material having tensile strength and corrosion resistance.
  • the through hole 332 allows the rotating shaft 320 to pass through the disk 330, and may be formed in a shape corresponding to the cross-sectional shape of the rotating shaft 320 on the center of the plurality of stacked disks 330.
  • the steam introduced into the turbine becomes a phase-changed liquid fluid
  • the fluid flow port 334 serves as a passage through which the liquid fluid is discharged to the outside of the plurality of stacked disks 330 .
  • the latent heat and sensible heat possessed by the steam are used to rotate the plurality of stacked disks 330, and the steam becomes a liquid fluid and is collected at the center of the plurality of stacked disks 330.
  • This liquid fluid may be discharged to the outside of the plurality of stacked disks 330 through the fluid flow port 334 .
  • the fluid flow ports 334 may be formed at regular intervals around the through hole 332 . It is preferable that two or more fluid flow ports 334 are formed for smooth discharge of the liquid fluid.
  • the spacer 340 may be interposed between the plurality of stacked disks 330 .
  • the spacer 340 may maintain the stacked disks 330 at regular intervals.
  • the spacer 340 may be inserted through the rotation shaft 320 at the center of the disk 330 . That is, the spacer 340 is interposed between the stacked disks 330 by the rotating shaft 320, thereby maintaining the stacked disks 330 at regular intervals.
  • the spacer 340 may be formed of a spacer body 341 and a plurality of spacer arms 342 .
  • the central part of the spacer body 341 is penetrated by the rotating shaft 320, and parts of the spacer body 341 and the spacer arm 342 are cut so that steam from the fluid flow port 334 of the disk 330 can pass through. It can be.
  • the spacer 340 may be manufactured in a shape that does not obstruct the flow of liquid fluid passing through the fluid flow port 334 .
  • the bending prevention unit 350 may pass through the rotation shaft 320 and be tightly coupled to the plurality of stacked disks 330 at both ends of the rotation shaft 350 .
  • the bending prevention unit 350 may be a flat plate that passes through the rotating shaft 320 and is tightly coupled to the disk 330 .
  • the bending prevention unit 350 may tightly couple the disks 330 and the spacer 340 by pressing the plurality of disks 330 and the spacer 340 into close contact.
  • the bending prevention unit 350 may prevent the disk 330 and the spacer 340 from bending by maintaining a tight coupling state between the disk 330 and the spacer 340 .
  • Liquid fluid is introduced into the boiler 200, and the introduced liquid fluid may receive heat from the boiler 200 and change its phase into steam.
  • Steam is introduced into the inlet 314 of the casing 310 of the disk-type turbine 300 while flowing along the circulation pipe 100, and spirals inward toward the center of the plurality of stacked disks 330 by the boundary layer effect. , and can flow. Steam flowing while forming a spiral can rotate the plurality of stacked disks 330 at high speed. Most of the energy possessed by the steam is converted into rotational motion energy of the plurality of stacked discs 330, and the steam is phase-changed to become a liquid fluid.
  • the liquid fluid is collected in the center of the plurality of stacked disks 330 and may pass through the fluid flow port 334 .
  • the liquid fluid passing through the fluid flow hole 334 may be discharged to the outside of the disk-type turbine 300 through the confluence outlet 316 of the casing 310 .
  • the discharged liquid fluid may be circulated back to the boiler 200 by the pump 400 . This operation process can be repeated forming one steam power cycle.
  • the disk-type turbine steam prime power station 1 has a disk-type turbine 300 configured to rotate a plurality of stacked disks 330 with the viscous force of steam, thereby increasing power generation efficiency. .
  • power generation efficiency can be increased by rotating a plurality of stacked disks with the viscous force of steam using a disk-shaped turbine.

Abstract

The content disclosed in the present description relates to a disc-type steam power plant and, more specifically, to a disc-type turbine steam power plant for generating electricity by rotating a plurality of stacked disks by a viscous force of a fluid. An embodiment of the disclosed content suggests a disk-type turbine steam power plant for generating electricity by a viscous force of a fluid, the disk-type turbine steam power plant comprising: a circulation pipe through which a fluid flows; a boiler installed at the circulation pipe and heating the fluid to phase-change the fluid into steam; a disk-type turbine installed at the circulation pipe and having a disk provided therein, the disk being rotationally driven by a viscous force of the steam; and a pump installed at the circulation pipe and circulating a liquid fluid coming out of the disk-type turbine to the boiler.

Description

디스크형 터빈 증기 원동소Disc Turbine Steam Power Plant
본 명세서에 개시된 내용은 디스크형 증기 원동소에 관한 것으로, 보다 상세하게는 복수개의 적층된 디스크를 유체의 점성력으로 회전시켜 발전하는 디스크형 터빈 증기 원동소에 관한 것이다.Disclosed herein relates to a disk-type steam power plant, and more particularly, to a disk-type turbine steam power plant that generates power by rotating a plurality of stacked disks with the viscous force of a fluid.
본 명세서에 달리 표시되지 않는 한, 이 식별항목에 설명되는 내용들은 이 출원의 청구항들에 대한 종래기술이 아니며, 이 식별항목에 기재된다고 하여 종래기술이라고 인정되는 것은 아니다.Unless otherwise indicated herein, material described in this section is not prior art to the claims in this application, and it is not admitted that material described in this section is prior art.
일반적으로, 화력발전소나 원자력발전소 등의 증기 원동소는 증기 동력 사이클 과정을 반복하며 운전된다. 즉 보일러나 원자로인 열원이 증기를 발생시키고, 발생된 고온 고압의 증기는 터빈의 블레이드와 충돌한다. 블레이드와 충돌한 증기는 터빈을 회전시키며, 터빈에 충돌한 고온 고압의 증기는 수분을 포함한 증기가 되고, 응축기에 의하여 냉각되어 다시 액체 상태의 급수가 된다. 이처럼 증기 동력 사이클은 하나의 사이클이 반복되면서 운전될 수 있다.In general, a steam power plant such as a thermal power plant or a nuclear power plant is operated while repeating a steam power cycle process. That is, a heat source such as a boiler or a nuclear reactor generates steam, and the generated high-temperature, high-pressure steam collides with turbine blades. The steam colliding with the blades rotates the turbine, and the high-temperature and high-pressure steam colliding with the turbine becomes water-containing steam, which is cooled by the condenser and becomes liquid water again. In this way, the steam power cycle can be operated while repeating one cycle.
또한, 응축기는 터빈을 통과한 증기를 액화시켜 저압의 증기를 형성할 수 있다. 터빈을 통과한 저압의 증기는 터빈으로 유입되는 유입 증기보다 저압에 해당한다. 터빈을 통과한 저압의 증기와 상대적으로 고압인 유입 증기 간의 압력차는 유입 증기의 속도를 증가시키고, 터빈의 블레이드의 회전속도를 높임으로써 발전 효율을 높일 수 있다. 하지만 저압이 형성됨으로써 유입 증기는 급격하게 단열팽창하고 온도가 하강하며 액화될수 있다. 특히 블레이드의 후면의 저압 영역에서 증기는 더욱 단열팽창되며 액화되는 정도가 심해지고, 캐비테이션(cavitation) 현상이 발생하여 블레이드가 파괴될 수 있다. 따라서, 응축기는 터빈의 블레이드 후면에서 액화현상이 발생되지 않도록 수증기를 응축시킬 수 있다. 따라서 증기가 터빈의 블레이드에 충돌하면서 발전되는 일반적인 원동소는, 캐비테이션 현상의 발생 방지라는 제약하에 발전 효율을 높이기에는 어려움이 있다.In addition, the condenser may form low-pressure steam by liquefying the steam passing through the turbine. The low-pressure steam passing through the turbine corresponds to a lower pressure than the incoming steam entering the turbine. The pressure difference between the low-pressure steam passing through the turbine and the relatively high-pressure inlet steam increases the speed of the inlet steam and increases the rotational speed of the turbine blades, thereby increasing power generation efficiency. However, as the low pressure is created, the inlet steam rapidly adiabatically expands and the temperature drops and can be liquefied. In particular, in the low-pressure region on the rear side of the blade, the vapor expands more adiabatically and becomes more liquefied, and the blade may be destroyed due to the occurrence of cavitation. Therefore, the condenser can condense water vapor so that liquefaction does not occur at the rear surface of the turbine blade. Therefore, it is difficult to increase power generation efficiency under the constraint of preventing the occurrence of a cavitation phenomenon in a general prime mover generating power while steam collides with the blades of a turbine.
이처럼 증기 동력 사이클이 완성과 캐비테이션 발생억제를 위해서는 응축기가 필수적인 구성으로 포함되어야 한다. 즉, 증기 동력 사이클로 작동하는 증기 원동소는 고온의 열원(heat source)뿐만 아니라 저온의 열침(heat sink)과도 열교환을 하여야 하는 것이다. 증기 원동소의 경우 열원에 해당하는 보일러와 열침에 해당하는 응축기에서 열교환이 이루어진다. 이러한 열교환 과정 동안 증기 원동소에서 사용되는 유체는, 액체에서 증기로 상변화하고 다시 처음의 액체 상태로 되돌아가는 과정을 반복하게 된다.In this way, the condenser must be included as an essential component to complete the steam power cycle and suppress cavitation. That is, a steam power plant operating in a steam power cycle must exchange heat with a low-temperature heat sink as well as a high-temperature heat source. In the case of a steam power plant, heat exchange is performed between a boiler corresponding to a heat source and a condenser corresponding to a hot needle. During this heat exchange process, the fluid used in the steam power plant undergoes a phase change from a liquid to a vapor and then returns to its initial liquid state, repeating the process.
일반적인 증기 원동소의 경우 터빈으로 유입되는 고온 고압의 증기가 보유하는 과열증기 영역의 일부 에너지만이 터빈을 회전시키는 데 사용됨으로써, 발전 효율이 40~60% 정도가 된다. 이에 따라 증기 원동소의 발전 효율을 높이기 위해서, 고온 고압의 증기가 보유하는 에너지 대부분이 터빈을 회전시킬 수 있는 기술개발에 관하여 많은 연구가 이루어지고 있다. In the case of a typical steam power plant, only a portion of the energy in the superheated steam region possessed by the high-temperature and high-pressure steam flowing into the turbine is used to rotate the turbine, resulting in a power generation efficiency of about 40 to 60%. Accordingly, in order to increase the power generation efficiency of a steam power plant, a lot of research is being conducted on technology development that can rotate a turbine with most of the energy possessed by high-temperature and high-pressure steam.
디스크형 터빈을 구성으로 하여 증기가 보유하는 에너지의 대부분이 터빈을 회전시키는데 사용되게 함으로써, 응축기를 구성으로 하지 않더라도 발전이 가능하고 발전효율을 극대화할 수 있는 디스크형 터빈 증기 원동소를 제공하고자 한다.It is intended to provide a disk-type turbine steam prime power plant that can generate power even without a condenser and maximize power generation efficiency by using a disk-type turbine so that most of the energy held by steam is used to rotate the turbine. .
또한, 상술한 바와 같은 기술적 과제들로 한정되지 않으며, 이하의 설명으로부터 또 다른 기술적 과제가 도출될 수도 있음은 자명하다.In addition, it is not limited to the technical problems as described above, and it is obvious that other technical problems may be derived from the following description.
개시된 내용은 유체의 점성력을 이용하여 발전하는 디스크형 터빈 증기 원동소에 있어서, 상기 유체가 흐르는 순환배관과, 상기 순환배관에 설치되고 상기 유체를 가열하여 증기로 상변화시키는 보일러와, 상기 순환배관에 설치되고, 내부에는 상기 증기의 점성력에 의하여 회전구동되는 디스크가 구비되는 디스크형 터빈과, 상기 순환배관에 설치되고, 상기 디스크형 터빈에서 나오는 액상 유체를 상기 보일러로 순환시키는 펌프를 포함하는 디스크형 터빈 증기 원동소를 일 실시예로 제시한다. Disclosed is a disk-type turbine steam power plant generating power using viscous force of fluid, a circulation pipe through which the fluid flows, a boiler installed in the circulation pipe and heating the fluid to change the phase to steam, and the circulation pipe A disc-type turbine installed on the inside of which is provided with a disc driven by the viscous force of the steam, and a pump installed in the circulation pipe and circulating the liquid fluid from the disc-type turbine to the boiler. A type turbine steam power plant is presented as an example.
한편, 상기 디스크형 터빈은, 상기 디스크를 수용하는 내부공간을 가지고, 상기 보일러에서 나오는 증기가 유입되는 유입구가 형성되며, 중심부상에는 상기 액상 유체가 합류하여 외부로 배출되는 합류 배출구가 형성되는 케이싱과, 상기 케이싱의 중심부를 관통하는 회전가능한 회전축과, 상기 회전축이 관통하는 관통공이 형성되고, 상기 액상 유체가 통과하는 유체 흐름구가 상기 관통공에 인접하게 형성되는 복수개의 적층된 디스크와, 상기 회전축에 관통되고 상기 적층된 디스크 사이에 개재되어 상기 적층된 디스크를 일정간격으로 유지시키는 스페이서를 포함할 수 있다.On the other hand, the disk-type turbine has an inner space for accommodating the disk, an inlet through which steam from the boiler is introduced, and a casing in which a confluence outlet through which the liquid fluid is joined and discharged to the outside is formed on the center portion, and A rotatable rotary shaft passing through the center of the casing, a plurality of stacked disks having a through hole through which the rotary shaft passes, and a fluid flow port through which the liquid fluid passes is formed adjacent to the through hole, and the rotary shaft It may include a spacer that penetrates and is interposed between the stacked disks to maintain the stacked disks at regular intervals.
한편, 상기 회전축의 단면의 양측에 사이드커팅부가 형성될 수 있다.Meanwhile, side cutting parts may be formed on both sides of an end surface of the rotating shaft.
한편, 상기 유체 흐름구는, 상기 관통공을 중심으로 일정간격을 두고 형성될 수 있다.Meanwhile, the fluid flow ports may be formed at regular intervals around the through hole.
한편, 상기 회전축에 관통되고, 상기 회전축의 양단에서 상기 복수개의 적층된 디스크에 밀착결합되는 휨방지부를 포함할 수 있다.On the other hand, it may include a bending prevention portion that penetrates the rotational shaft and is closely coupled to the plurality of stacked disks at both ends of the rotational shaft.
개시된 내용에 따른 디스크형 증기 원동소는, 디스크형 터빈을 구성으로 하여 증기의 점성력으로 복수개의 적층된 디스크를 회전시킴으로써 발전 효율을 높일 수 있다.The disk-shaped steam power plant according to the disclosed contents can increase power generation efficiency by rotating a plurality of stacked disks with the viscous force of steam by using a disk-shaped turbine.
도 1은 개시된 내용의 일 실시예에 따른 디스크형 터빈 증기 원동소의 개략도.1 is a schematic diagram of a disk-type turbine steam power plant according to one embodiment of the present disclosure;
도 2는 개시된 내용의 일 실시예에 따른 디스크형 터빈을 나타낸 분해 사시도. Figure 2 is an exploded perspective view showing a disk-type turbine according to an embodiment of the disclosure.
도 3은 개시된 내용의 일 실시예에 따른 회전축의 단면의 확대도.3 is an enlarged view of a cross section of a rotating shaft according to an embodiment of the present disclosure;
도 4는 개시된 내용의 일 실시예에 따른 디스크형 터빈의 측면도.4 is a side view of a disk-shaped turbine according to one embodiment of the present disclosure;
도 5는 개시된 내용의 일 실시예에 따른 스페이서의 사시도.5 is a perspective view of a spacer according to one embodiment of the disclosed subject matter;
도 6은 개시된 내용의 일 실시예에 따른 스페이서의 결합상태도.Figure 6 is a coupling state diagram of a spacer according to an embodiment of the disclosure.
도 7은 개시된 내용의 일 실시예에 따른 휨방지부의 사시도. Figure 7 is a perspective view of a bending prevention unit according to an embodiment of the disclosed subject matter.
도 8은 개시된 내용의 일 실시예에 따른 휨방지부의 결합상태도.Figure 8 is a combined state diagram of the bending prevention unit according to an embodiment of the disclosure.
* 부호의 설명* Description of code
1: 디스크형 터빈 증기 원동소1: Disc-type turbine steam power plant
100: 순환배관100: circulation piping
200: 보일러200: boiler
300: 디스크형 터빈300: disk-type turbine
310: 케이싱310: casing
312: 내부공간312: inner space
314: 유입구314: inlet
316: 합류 배출구316 confluence outlet
320: 회전축320: axis of rotation
330: 디스크330: disk
332: 관통공332: through hole
334: 유체 흐름구334: fluid flow port
340: 스페이서340: spacer
341: 스페이서바디341: spacer body
342: 스페이서암342: spacer arm
350: 휨방지부350: bending prevention unit
400: 펌프400: pump
이하, 첨부된 도면을 참조하여 바람직한 실시예의 구성 및 작용효과에 대하여 살펴본다. 참고로, 이하 도면에서 각 구성요소는 편의 및 명확성을 위하여 생략되거나 개략적으로 도시되었으며, 각 구성요소의 크기는 실제 크기를 반영하는 것은 아니다. 또한, 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭하며 개별 도면에서 동일 구성에 대한 도면 부호는 생략하기로 한다. Hereinafter, with reference to the accompanying drawings, look at the configuration and operational effects of the preferred embodiment. For reference, in the following drawings, each component is omitted or schematically illustrated for convenience and clarity, and the size of each component does not reflect the actual size. In addition, like reference numerals refer to like components throughout the specification, and reference numerals for like components in individual drawings will be omitted.
도 1을 참조하면, 개시된 내용의 일 실시예에 따른 디스크형 터빈 증기 원동소(1)는 순환배관(100), 보일러(200), 디스크형 터빈(300), 펌프(400)를 포함한다.Referring to FIG. 1 , a disk-type turbine steam power plant 1 according to an embodiment of the present disclosure includes a circulation pipe 100, a boiler 200, a disk-type turbine 300, and a pump 400.
순환배관(100)은 디스크형 터빈 증기 원동소(1)에서 사용되는 유체가 순환될 수 있게 한다. 유체는 증기 동력 사이클 동안 순환배관(100) 안에서 후술할 보일러(200), 디스크형 터빈(300), 펌프(400)를 거치며 액체 또는 증기로 상변화되는 과정을 반복하게 된다. 보일러(200)에서 나온 유체는 증기가 되어 디스크형 터빈(300)으로, 디스크형 터빈(300)에서 나온 액상 유체는 보일러(200)로 유동될 수 있다. 이러한 유체의 유동은 순환배관(100) 안에서 이루어진다. 유체는 증기 동력 사이클이 완성되는 동안, 온도와 압력이 변할 수 있다. 유체가 순환하는 동안 유체의 온도나 압력이 변하게 되고, 순환배관(100)은 유체로부터 지속적으로 압력을 받게 된다. 특히, 유체가 고압일 경우에 순환배관(100)의 파손으로 유체가 순환배관(100) 외부로 유출될 수 있다. 따라서 순환배관(100)은 고압에도 견딜 수 있는 재료나 사용되는 유체에 대하여 내식성이 있는 재료로 제작되는 것이 바람직하다. The circulation pipe 100 allows the fluid used in the disk-type turbine steam power plant 1 to circulate. During the steam power cycle, the fluid passes through a boiler 200, a disc-type turbine 300, and a pump 400 to be described later in the circulation pipe 100, and repeats the process of phase change into liquid or steam. Fluid from the boiler 200 becomes steam and flows to the disk-type turbine 300, and liquid fluid from the disk-type turbine 300 flows to the boiler 200. The flow of this fluid is made in the circulation pipe 100. The fluid may change in temperature and pressure during the completion of the steam power cycle. While the fluid circulates, the temperature or pressure of the fluid changes, and the circulation pipe 100 continuously receives pressure from the fluid. In particular, when the fluid has a high pressure, the fluid may flow out of the circulation pipe 100 due to damage to the circulation pipe 100 . Therefore, the circulation pipe 100 is preferably made of a material that can withstand high pressure or a material that is corrosion resistant to the fluid used.
보일러(200)는 순환배관(100)에 설치되어 유체를 가열하여 증기로 상변화시킬 수 있다. 보일러(200)는 유체를 증기로 상변화시키기 위하여 연료원이 필요한데, 일반적으로 경유나 천연가스 등이 사용되고 있다. 개시된 내용의 디스크형 터빈 증기 원동소(1)는, 원동소에 있어서 비교적 저온에 해당되는 100~200℃의 유체가 사용될 수 있다. 따라서 보일러(200)는 나무, 갈탄, 연탄, 펠렛, 가연성 쓰레기 등을 연료원으로 하더라도 디스크형 터빈(300)을 회전시킬 수 있다. The boiler 200 may be installed in the circulation pipe 100 to heat the fluid and change the phase to steam. The boiler 200 requires a fuel source to change the phase of a fluid into steam, and diesel or natural gas is generally used. In the disc-type turbine steam power plant 1 of the disclosure, a fluid of 100 to 200° C., which corresponds to a relatively low temperature in the power plant, may be used. Therefore, the boiler 200 can rotate the disk-type turbine 300 even when wood, lignite, briquettes, pellets, combustible waste, and the like are used as a fuel source.
디스크형 터빈(300)은 증기의 점성력에 의하여 회전될 수 있다. 디스크형 터빈(300)은 유입되는 증기에 의한 경계층 효과(boundary layer effect)에 따라 회전하게 된다. 유체는 점성의 성질을 가지고 유동하므로, 유체와 접하는 물체의 접촉면에서는 유체의 속도가 0이 된다. 물체와 멀어질수록 유체의 속도는 점차적으로 증가하여 속도 구배를 이루며 일정 속도를 유지하게 된다. 이러한 유체의 점성 효과로 인하여 속도구배가 발생하는 영역을 경계층이라고 한다. 즉, 경계층은 유체의 점성 효과가 미치는 물체 표면 부근의 유체의 층을 말한다. 경계층에서의 유체의 점성 효과는 유체와 접하는 물체 표면 사이에 마찰력을 발생시킬 수 있고, 이러한 마찰력을 점성 마찰력이라고 한다. 이러한 점성 마찰력은 디스크형 터빈(300)이 회전되게 견인하는 견인력으로 작용하여 디스크형 터빈(300)을 회전시킬 수 있다. The disk-shaped turbine 300 may be rotated by the viscous force of steam. The disk-type turbine 300 rotates according to the boundary layer effect caused by the inflowing steam. Since the fluid has a viscous property and flows, the velocity of the fluid becomes zero at the contact surface of the object in contact with the fluid. As the fluid moves away from the object, the velocity of the fluid gradually increases, forming a velocity gradient and maintaining a constant velocity. The region where the velocity gradient occurs due to the viscous effect of the fluid is called the boundary layer. That is, the boundary layer refers to a layer of fluid near the surface of an object on which the viscous effect of the fluid affects. The viscous effect of the fluid in the boundary layer can generate a frictional force between the fluid and the surface of the object in contact, and this frictional force is called viscous frictional force. This viscous frictional force may act as a traction force that pulls the disk-shaped turbine 300 to rotate, thereby rotating the disk-shaped turbine 300 .
펌프(400)는 디스크형 터빈(300)에서 나오는 액상 유체를 보일러(200)로 순환되게 할 수 있다. 펌프(400)는 액상 유체에 압력을 가하여 유체가 순환배관(100) 내에서 유동할 수 있게 한다. The pump 400 may circulate the liquid fluid from the disk-type turbine 300 to the boiler 200. The pump 400 applies pressure to the liquid fluid to allow the fluid to flow within the circulation pipe 100 .
이상에서 개시된 내용의 일 실시예에 해당되는 디스크형 터빈 증기 원동소(1)를 구성하는 순환배관(100), 보일러(200) 및 펌프(400)를 설명하였으나, 이러한 구성은 증기 원동소에 있어서 일반적으로 사용되고 공지된 종래기술에 해당하므로 더욱 상세한 설명은 생략하기로 한다. The circulation pipe 100, the boiler 200, and the pump 400 constituting the disk-type turbine steam power plant 1 corresponding to an embodiment of the above disclosure have been described, but these configurations are Since it corresponds to the generally used and known prior art, a detailed description thereof will be omitted.
도 2를 참조하면, 디스크형 터빈(300)은 케이싱(310), 회전축(320), 복수개의 적층된 디스크(330), 스페이서(340)를 포함할 수 있다. Referring to FIG. 2 , the disk-shaped turbine 300 may include a casing 310, a rotational shaft 320, a plurality of stacked disks 330, and a spacer 340.
케이싱(310)은 디스크(330)를 수용하는 내부공간(312)을 가질 수 있다. 또한, 케이싱(310)은 보일러(200)에서 나오는 증기가 유입되는 유입구(314)가 형성되며, 중심부상에는 액상 유체가 합류하여 외부로 배출되는 합류 배출구(316)가 형성될 수 있다. 케이싱(310)의 유입구(314)를 통하여 내부공간(312)으로 유입되는 증기는 복수개의 적층된 디스크(330)의 중심부를 향해 내측으로 나선을 이루며 유동되고, 액상 유체로 상변화될 수 있다. 상변화된 액상 유체는 합류 배출구(316)를 통과하여 순환배관(100)을 통하여 펌프(400)로 유입될 수 있다.The casing 310 may have an inner space 312 accommodating the disk 330 . In addition, the casing 310 may have an inlet 314 through which steam from the boiler 200 is introduced, and a confluence outlet 316 through which liquid fluid is joined and discharged to the outside may be formed on the central portion. Vapor introduced into the inner space 312 through the inlet 314 of the casing 310 spirals inward toward the center of the plurality of stacked disks 330, and may be phase-changed into a liquid fluid. The phase-changed liquid fluid may pass through the confluence outlet 316 and flow into the pump 400 through the circulation pipe 100 .
회전축(320)은 케이싱(310)의 중심부를 관통하고, 적층된 디스크(330)가 회전구동됨에 따라 회전할 수 있다. 회전축(320)은 전자기장 변화를 일으키는 제너레이터(도면 미도시)에 연결되고, 전자기장 변화를 일으키는데 필요한 역학적 에너지를 공급할 수 있다. 도 3을 참조하면, 회전축(320)은 단면의 양측에 사이드커팅부가 형성될 수 있다. 단면이 원형의 형상인 회전축(320)을 사용하여 복수개의 적층된 디스크(330)와 결합고정하는 경우에 정밀한 키를 형성하는 등의 결합고정 작업이 필요하다. 그러나 회전축(320)의 단면의 양측에 사이드커팅부가 형성되는 경우에도 용접 등의 결합고정 작업이 필요하나, 원형이 아닌 회전축(320)의 단면 형상 자체의 특징에 의하여 회전축(320)에 대하여 미끄러짐이 발생하지 않을 수 있다. 따라서, 비교적 정밀하지 않은 키 등의 결합고정 작업으로도 회전축(320)과 복수개의 적층된 디스크(330) 간의 결합고정력이 증대되는 효과를 얻을 수 있다. The rotating shaft 320 may pass through the center of the casing 310 and rotate as the stacked disks 330 are driven to rotate. The rotating shaft 320 may be connected to a generator (not shown) generating a change in the electromagnetic field, and supply mechanical energy required to change the electromagnetic field. Referring to FIG. 3 , side cutting portions may be formed on both sides of the cross section of the rotating shaft 320 . When coupling and fixing with a plurality of stacked disks 330 using the rotating shaft 320 having a circular cross section, a coupling and fixing operation such as forming a precise key is required. However, even when the side cutting parts are formed on both sides of the cross section of the rotating shaft 320, a joint fixing operation such as welding is required, but slippage with respect to the rotating shaft 320 is difficult due to the characteristics of the cross-sectional shape of the rotating shaft 320 itself, which is not circular. may not occur. Therefore, it is possible to obtain an effect of increasing the coupling and fixing force between the rotary shaft 320 and the plurality of stacked disks 330 even with relatively inaccurate coupling and fixing operations such as keys.
다시 도 2를 참조하면, 복수개의 적층된 디스크(330)는 회전축(320)이 관통하는 관통공(332)이 형성되고, 증기가 통과하는 유체 흐름구(334)가 관통공(332)에 인접하게 형성될 수 있다. 복수개의 적층된 디스크(330)는, 디스크(330) 상호간에 일정간격을 유지하며 적층될 수 있다. 복수개의 적층된 디스크(330) 간의 일정간격은 전술한 경계층 효과에 의한 발전효율을 최대화할 수 있다. 증기는 복수개의 적층된 디스크(330)의 회전에 의하여 구심력을 받게 되고, 복수개의 적층된 디스크(330)의 중심부를 향해 내측으로 나선을 이루며 유동될 수 있다. 디스크(330)는 전체적으로 일정한 두께가 유지되는 원반형일 수 있으나, 중심부의 두께가 두꺼운 볼록한 형상일 수 있다. 또한 디스크(330)는 두께가 얇을수록 회전속도가 향상될 수 있다. 다만, 디스크(330)의 회전에 따라 가중되는 부하를 고려할 때, 디스크(330)는 인장강도와 내식성이 있는 재질로 제작되는 것이 바람직하다. Referring back to FIG. 2 , the plurality of stacked disks 330 have a through hole 332 through which the rotating shaft 320 passes, and a fluid flow hole 334 through which steam passes is adjacent to the through hole 332 . can be formed. The plurality of stacked disks 330 may be stacked while maintaining a predetermined interval between the disks 330 . A predetermined interval between the plurality of stacked disks 330 can maximize power generation efficiency by the aforementioned boundary layer effect. The steam is subjected to centripetal force by the rotation of the plurality of stacked disks 330 and may flow toward the center of the plurality of stacked disks 330 while forming a spiral inward. The disk 330 may have a disk shape maintaining a constant thickness as a whole, but may have a convex shape with a thick central portion. In addition, the rotational speed of the disk 330 may increase as the thickness of the disc 330 decreases. However, considering the load that is added according to the rotation of the disk 330, the disk 330 is preferably made of a material having tensile strength and corrosion resistance.
관통공(332)은 회전축(320)이 디스크(330)를 관통할 수 있게 하는 것으로, 복수개의 적층된 디스크(330)의 중심부상에 회전축(320)의 단면 형상에 대응되는 형상으로 형성될 수 있다. 터빈으로 유입되는 증기는 상변화된 액상 유체가 되는데, 유체 흐름구(334)는 이러한 액상 유체를 복수개의 적층된 디스크(330)의 외부로 배출시키는 통로 역할을 한다. 더욱 상세하게 설명하면, 증기가 보유하고 있던 잠열 및 현열은 복수개의 적층된 디스크(330)의 회전에 사용되고, 증기는 액상 유체가 되어 복수개의 적층된 디스크(330)의 중심부에 모이게 된다. 이러한 액상 유체는 유체 흐름구(334)를 통하여 복수개의 적층된 디스크(330) 외부로 배출될 수 있다. 유체 흐름구(334)는 관통공(332)을 중심으로 일정간격을 두고 형성될 수 있다. 유체 흐름구(334)는 액상 유체의 원활한 배출을 위하여 2개 이상이 형성되는 것이 바람직하다.The through hole 332 allows the rotating shaft 320 to pass through the disk 330, and may be formed in a shape corresponding to the cross-sectional shape of the rotating shaft 320 on the center of the plurality of stacked disks 330. there is. The steam introduced into the turbine becomes a phase-changed liquid fluid, and the fluid flow port 334 serves as a passage through which the liquid fluid is discharged to the outside of the plurality of stacked disks 330 . More specifically, the latent heat and sensible heat possessed by the steam are used to rotate the plurality of stacked disks 330, and the steam becomes a liquid fluid and is collected at the center of the plurality of stacked disks 330. This liquid fluid may be discharged to the outside of the plurality of stacked disks 330 through the fluid flow port 334 . The fluid flow ports 334 may be formed at regular intervals around the through hole 332 . It is preferable that two or more fluid flow ports 334 are formed for smooth discharge of the liquid fluid.
도 4를 참조하면, 스페이서(340)는 복수개의 적층된 디스크(330) 사이에 개재될 수 있다. 스페이서(340)는 적층된 디스크(330)를 일정간격으로 유지시킬 수 있다. 디스크(330)의 휨 등에 의한 변형을 방지하고 복수개의 적층된 디스크(330) 간 일정간격의 유지를 위해서, 스페이서(340)는 복수개의 적층된 디스크(330) 사이마다 1개씩 개재되는 것이 바람직하다. 스페이서(340)는 디스크(330)의 중앙부에서 회전축(320)에 관통되어 개재될 수 있다. 즉 스페이서(340)는 회전축(320)에 의하여 적층된 디스크(330) 사이에 개재됨으로써, 적층된 디스크(330)를 일정간격으로 유지시킬 수 있다. Referring to FIG. 4 , the spacer 340 may be interposed between the plurality of stacked disks 330 . The spacer 340 may maintain the stacked disks 330 at regular intervals. In order to prevent deformation due to bending of the disk 330 and to maintain a certain interval between the plurality of stacked disks 330, it is preferable that one spacer 340 is interposed between the plurality of stacked disks 330 one by one. . The spacer 340 may be inserted through the rotation shaft 320 at the center of the disk 330 . That is, the spacer 340 is interposed between the stacked disks 330 by the rotating shaft 320, thereby maintaining the stacked disks 330 at regular intervals.
도 5 및 도 6을 참조하면, 스페이서(340)는 스페이서바디(341)와 복수개의 스페이서암(342)으로 형성될 수 있다. 스페이서바디(341)의 중심부는 회전축(320)이 관통되고, 스페이서바디(341) 및 스페이서암(342)의 일부는 디스크(330)의 유체 흐름구(334)에서 나오는 증기가 통과될 수 있도록 절삭될 수 있다. 스페이서(340)는 유체 흐름구(334)를 통과하는 액상 유체의 흐름을 방해하지 않는 형상으로 제작될 수 있다. Referring to FIGS. 5 and 6 , the spacer 340 may be formed of a spacer body 341 and a plurality of spacer arms 342 . The central part of the spacer body 341 is penetrated by the rotating shaft 320, and parts of the spacer body 341 and the spacer arm 342 are cut so that steam from the fluid flow port 334 of the disk 330 can pass through. It can be. The spacer 340 may be manufactured in a shape that does not obstruct the flow of liquid fluid passing through the fluid flow port 334 .
도 7 및 도 8을 참조하면, 휨방지부는(350)은 회전축(320)에 관통되고, 회전축(350)의 양단에서 복수개의 적층된 디스크(330)에 밀착결합될 수 있다. 휨방지부(350)는 회전축(320)에 관통되고 디스크(330)에 밀착결합되는 평판일 수 있다. 휨방지부(350)는 복수개의 디스크(330)와 스페이서(340)를 밀착되게 가압함으로써, 디스크(330)와 스페이서(340)를 밀착결합시킬 수 있다. 또한, 휨방지부(350)는 디스크(330)와 스페이서(340) 간 밀착결합 상태를 유지시킴으로써, 디스크(330)와 스페이서(340)의 휨을 방지할 수 있다. Referring to FIGS. 7 and 8 , the bending prevention unit 350 may pass through the rotation shaft 320 and be tightly coupled to the plurality of stacked disks 330 at both ends of the rotation shaft 350 . The bending prevention unit 350 may be a flat plate that passes through the rotating shaft 320 and is tightly coupled to the disk 330 . The bending prevention unit 350 may tightly couple the disks 330 and the spacer 340 by pressing the plurality of disks 330 and the spacer 340 into close contact. In addition, the bending prevention unit 350 may prevent the disk 330 and the spacer 340 from bending by maintaining a tight coupling state between the disk 330 and the spacer 340 .
이하에서는 상기와 같은 개시된 내용의 일 실시예에 따른 디스크형 터빈 증기 원동소(1)의 작동과정을 설명한다.Hereinafter, the operation process of the disk-type turbine steam prime power station 1 according to an embodiment of the above disclosure will be described.
보일러(200)에 액상 유체가 유입되고, 유입된 액상 유체는 보일러(200)에서 열전달 받아 증기로 상변화할 수 있다. 증기는 순환배관(100)을 따라 유동되면서 디스크형 터빈(300)의 케이싱(310)의 유입구(314)로 유입되고, 경계층 효과에 의하여 복수개의 적층된 디스크(330)의 중심부를 향해 내측으로 나선을 이루며 유동될 수 있다. 나선을 이루면서 유동되는 증기는 복수개의 적층된 디스크(330)를 고속으로 회전시킬 수 있다. 증기가 보유한 에너지의 대부분은 복수개의 적층된 디스크(330)의 회전운동 에너지로 변환되고, 증기는 상변화되어 액상 유체가 될 수 있다. 액상 유체는 복수개의 적층된 디스크(330)의 중심부로 모이게 되고, 유체 흐름구(334)를 통과할 수 있다. 유체 흐름구(334)를 통과한 액상 유체는 케이싱(310)의 합류 배출구(316)를 통하여 디스크형 터빈(300)의 외부로 배출될 수 있다. 배출된 액상 유체는 펌프(400)에 의하여 다시 보일러(200)로 순환될 수 있다. 이러한 작동과정은 하나의 증기 동력 사이클을 이루면서 반복될 수 있다.Liquid fluid is introduced into the boiler 200, and the introduced liquid fluid may receive heat from the boiler 200 and change its phase into steam. Steam is introduced into the inlet 314 of the casing 310 of the disk-type turbine 300 while flowing along the circulation pipe 100, and spirals inward toward the center of the plurality of stacked disks 330 by the boundary layer effect. , and can flow. Steam flowing while forming a spiral can rotate the plurality of stacked disks 330 at high speed. Most of the energy possessed by the steam is converted into rotational motion energy of the plurality of stacked discs 330, and the steam is phase-changed to become a liquid fluid. The liquid fluid is collected in the center of the plurality of stacked disks 330 and may pass through the fluid flow port 334 . The liquid fluid passing through the fluid flow hole 334 may be discharged to the outside of the disk-type turbine 300 through the confluence outlet 316 of the casing 310 . The discharged liquid fluid may be circulated back to the boiler 200 by the pump 400 . This operation process can be repeated forming one steam power cycle.
전술한 본 발명의 개시된 내용에 따른 디스크형 터빈 증기 원동소(1)는 디스크형 터빈(300)을 구성으로 하여 증기의 점성력으로 복수개의 적층된 디스크(330)를 회전시킴으로써 발전 효율을 높일 수 있다.The disk-type turbine steam prime power station 1 according to the disclosed contents of the present invention has a disk-type turbine 300 configured to rotate a plurality of stacked disks 330 with the viscous force of steam, thereby increasing power generation efficiency. .
이상 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명하였지만, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Although the preferred embodiments of the present invention have been described with reference to the accompanying drawings, the embodiments described in this specification and the configurations shown in the drawings are only the most preferred embodiments of the present invention and represent all the technical ideas of the present invention. Since it is not, it should be understood that there may be various equivalents and modifications that can replace them at the time of this application. Therefore, the embodiments described above should be understood as illustrative and not restrictive in all respects, and the scope of the present invention is indicated by the claims to be described later rather than the detailed description, and the meaning and scope of the claims and their All changes or modified forms derived from equivalent concepts should be construed as being included in the scope of the present invention.
개시된 발명은, 디스크형 터빈을 구성으로 하여 증기의 점성력으로 복수개의 적층된 디스크를 회전시킴으로써 발전 효율을 높일 수 있다.According to the disclosed invention, power generation efficiency can be increased by rotating a plurality of stacked disks with the viscous force of steam using a disk-shaped turbine.

Claims (5)

  1. 유체의 점성력을 이용하여 발전하는 디스크형 터빈 증기 원동소에 있어서,In a disk-type turbine steam power plant that generates power using the viscous force of a fluid,
    상기 유체가 흐르는 순환배관;a circulation pipe through which the fluid flows;
    상기 순환배관에 설치되고 상기 유체를 가열하여 증기로 상변화시키는 보일러;a boiler installed in the circulation pipe and heating the fluid to change its phase into steam;
    상기 순환배관에 설치되고, 내부에는 상기 증기의 점성력에 의하여 회전구동되는 디스크가 구비되는 디스크형 터빈; 및a disk-type turbine installed in the circulation pipe and provided with a disk driven to rotate by the viscous force of the steam; and
    상기 순환배관에 설치되고, 상기 디스크형 터빈에서 나오는 액상 유체를 상기 보일러로 순환시키는 펌프;를 포함하는 디스크형 터빈 증기 원동소. A disk-type turbine steam power plant including a pump installed in the circulation pipe and circulating the liquid fluid from the disk-type turbine to the boiler.
  2. 제1항에 있어서,According to claim 1,
    상기 디스크형 터빈은, The disk-shaped turbine,
    상기 디스크를 수용하는 내부공간을 가지고, 상기 보일러에서 나오는 증기가 유입되는 유입구가 형성되며, 중심부상에는 상기 액상 유체가 합류하여 외부로 배출되는 합류 배출구가 형성되는 케이싱; a casing having an inner space accommodating the disk, an inlet through which steam from the boiler flows in, and a junction outlet through which the liquid fluid joins and discharges to the outside is formed on the center portion;
    상기 케이싱의 중심부를 관통하는 회전가능한 회전축;a rotatable shaft penetrating the center of the casing;
    상기 회전축이 관통하는 관통공이 형성되고, 상기 액상 유체가 통과하는 유체 흐름구가 상기 관통공에 인접하게 형성되는 복수개의 적층된 디스크; 및a plurality of stacked disks having a through hole through which the rotating shaft passes, and a fluid flow port through which the liquid fluid passes is formed adjacent to the through hole; and
    상기 회전축에 관통되고, 상기 적층된 디스크 사이에 개재되어 상기 적층된 디스크를 일정간격으로 유지시키는 스페이서;를 포함하는 디스크형 터빈 증기 .A disk-type turbine steam comprising a spacer passing through the rotating shaft and being interposed between the stacked disks to maintain the stacked disks at regular intervals.
  3. 제2항에 있어서, According to claim 2,
    상기 회전축의 단면의 양측에 사이드커팅부가 형성되는 디스크형 터빈 증기 원동소.A disk-type turbine steam power plant in which side cutting parts are formed on both sides of the cross section of the rotating shaft.
  4. 제2항에 있어서, According to claim 2,
    상기 유체 흐름구는, 상기 관통공을 중심으로 일정간격을 두고 형성되는 디스크형 터빈 증기 원동소.The fluid flow ports are formed at regular intervals around the through hole.
  5. 제2항에 있어서,According to claim 2,
    상기 회전축에 관통되고, 상기 회전축의 양단에서 상기 복수개의 적층된 디스크에 밀착결합되는 휨방지부를 포함하는 디스크형 터빈 증기 원동소. A disk-type turbine steam power plant including a bending prevention unit that penetrates the rotation shaft and is tightly coupled to the plurality of stacked disks at both ends of the rotation shaft.
PCT/KR2021/016904 2021-08-20 2021-11-17 Disc-type turbine steam power plant WO2023022300A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0110400 2021-08-20
KR1020210110400A KR20230027999A (en) 2021-08-20 2021-08-20 disk turbine steam power plant

Publications (1)

Publication Number Publication Date
WO2023022300A1 true WO2023022300A1 (en) 2023-02-23

Family

ID=85239574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016904 WO2023022300A1 (en) 2021-08-20 2021-11-17 Disc-type turbine steam power plant

Country Status (2)

Country Link
KR (1) KR20230027999A (en)
WO (1) WO2023022300A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174166A (en) * 2000-12-07 2002-06-21 Takeo Saito Viscous impulse composite type solar pulse turbine
JP2008057363A (en) * 2006-08-30 2008-03-13 Matsushita Electric Ind Co Ltd Steam turbine
JP2008088957A (en) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd Steam turbine
US20110038707A1 (en) * 2007-05-16 2011-02-17 Blackstone Ralf W Bladeless fluid propulsion pump
KR20180098215A (en) * 2015-06-10 2018-09-03 그린 프로그 터빈즈 (유케이) 리미티드 Boundary layer turbo machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130061781A (en) 2011-12-02 2013-06-12 강기선 Steam turbine generator
KR101331012B1 (en) 2011-12-28 2013-11-19 한밭대학교 산학협력단 Steam power generation system using centrifugal compressor and method for steam power generation using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174166A (en) * 2000-12-07 2002-06-21 Takeo Saito Viscous impulse composite type solar pulse turbine
JP2008057363A (en) * 2006-08-30 2008-03-13 Matsushita Electric Ind Co Ltd Steam turbine
JP2008088957A (en) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd Steam turbine
US20110038707A1 (en) * 2007-05-16 2011-02-17 Blackstone Ralf W Bladeless fluid propulsion pump
KR20180098215A (en) * 2015-06-10 2018-09-03 그린 프로그 터빈즈 (유케이) 리미티드 Boundary layer turbo machine

Also Published As

Publication number Publication date
KR20230027999A (en) 2023-02-28

Similar Documents

Publication Publication Date Title
Guo et al. A systematic review of supercritical carbon dioxide (S-CO2) power cycle for energy industries: Technologies, key issues, and potential prospects
Ahn et al. Study of various Brayton cycle designs for small modular sodium-cooled fast reactor
Hu et al. Thermodynamic and exergy analysis of 2 MW S-CO2 Brayton cycle under full/partial load operating conditions
WO2008108596A1 (en) Method for generating high temperature using cavitation and apparatus thereof
WO2023022300A1 (en) Disc-type turbine steam power plant
KR20110107932A (en) Heating disk system
Stepanek et al. Comprehensive comparison of various working media and corresponding power cycle layouts for the helium-cooled DEMO reactor
Laskowski et al. Optimization of the cooling water mass flow rate under variable load of a power unit
CN107829790A (en) A kind of supercritical heated formula longitudinal direction three-level Rankine cycle electricity generation system
NO165849B (en) DWP.
JP2006316649A (en) External combustion engine
Kumar et al. Analysis of a 115MW, 3-Shaft, Helium Brayton Cycle Using Nuclear Heat Source
Yamaguchi Variety of steam turbines in Svartsengi and Reykjanes geothermal power plants
SE441294B (en) ROTATION TYPE ANG GENERATOR
Rahbar Development and optimization of small-scale radial inflow turbine for waste heat recovery with organic rankine cycle
CN113990535B (en) Integrated molten salt reactor heat exchanger and passive waste heat discharging system thereof
Bang et al. Secondary system modeling and primary system coupled simulation using MARS-KS
RU84616U1 (en) VEHICLE NUCLEAR POWER PLANT
KR102198070B1 (en) Heat exchange system and offshore structure having the same
Maekawa et al. Development of H series gas turbine
Koshkin et al. 54 The atomic power plant VG-400: scheme and construction features
Anderson A vapor turbine geothermal power plant
Zhao et al. Optimized helium-Brayton power conversion for fusion energy systems
CN116517647A (en) Supercritical carbon dioxide circulation power generation system based on adjustable turbine
CN115218482A (en) Rotary heating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE