WO2023021946A1 - Latex composition for dip molding and dip-molded article - Google Patents

Latex composition for dip molding and dip-molded article Download PDF

Info

Publication number
WO2023021946A1
WO2023021946A1 PCT/JP2022/028816 JP2022028816W WO2023021946A1 WO 2023021946 A1 WO2023021946 A1 WO 2023021946A1 JP 2022028816 W JP2022028816 W JP 2022028816W WO 2023021946 A1 WO2023021946 A1 WO 2023021946A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
latex
polymer
dip
latex composition
Prior art date
Application number
PCT/JP2022/028816
Other languages
French (fr)
Japanese (ja)
Inventor
友哉 谷山
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2023542295A priority Critical patent/JPWO2023021946A1/ja
Publication of WO2023021946A1 publication Critical patent/WO2023021946A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • A41D19/015Protective gloves
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • C08L21/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • C08L9/04Latex

Definitions

  • the present invention relates to a latex composition for dip molding, and more particularly, a latex composition for dip molding that is capable of providing a dip-molded article having excellent chemical permeation resistance and well-balanced wet grip and flexibility. Regarding.
  • protective gloves are required to have excellent mechanical strength and durability, such as abrasion resistance, as well as excellent flexibility.
  • protective gloves are often used in a state where they are wet with chemical solutions such as oil, they are also required to have excellent wet grip properties when the chemical solution is attached and resistance to chemical solution permeation.
  • Patent Document 1 describes 50 to 80% by weight of 1,3-butadiene, 15 to 50% by weight of acrylonitrile, 0 to 10% by weight of an ethylenically unsaturated carboxylic acid monomer, and ethylene copolymerizable therewith.
  • a copolymer latex for dip molding is described which has a surface tension difference of 6 mN/m or more and a methyl ethyl ketone (MEK) insoluble content of 50% or more.
  • MEK methyl ethyl ketone
  • the present invention has been made in view of such circumstances, and a latex composition for dip molding that is capable of providing a dip-molded article having excellent resistance to permeation of chemical solutions and having a good balance between wet grip properties and flexibility.
  • the purpose is to provide goods.
  • Another object of the present invention is to provide a dip-molded article which has excellent chemical liquid permeation resistance and which has a good balance between wet grip properties and flexibility.
  • a dip-forming latex composition containing a polymer latex and an anionic surfactant, wherein the anionic surfactant has one anionic group and an aromatic ring. and a compound (b1) having two or more anionic groups and a benzene ring, or a compound (b2) having one anionic group and no aromatic ring.
  • a molding latex composition is provided.
  • the compound (b1) is preferably a compound having two anionic groups and a benzene ring, more preferably an alkyldiphenylether disulfonate.
  • the compound (b2) is preferably an alkyl sulfate.
  • the compound (a) is a sulfonate or a sulfate ester salt, and at least one of the compound (b1) and the compound (b2) is a sulfonate or Sulfuric acid ester salts are preferred.
  • the content of compound (a) is 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the polymer component contained in the latex composition for dip molding.
  • the total content of the compound (b1) and the content of the compound (b2) is It is preferably 0.1 to 10.0 parts by weight.
  • the weight ratio of the content of compound (a) to the total content of compound (b1) and compound (b2) [weight of compound (a): compound (b1) and The total weight of compound (b2)] is preferably from 5:95 to 95:5.
  • the compound (a) is preferably an alkylbenzenesulfonate.
  • the polymer latex is preferably a nitrile group-containing conjugated diene polymer latex.
  • a dip-molded article using the dip-molding latex composition is provided.
  • the dip molded article of the present invention is preferably a glove.
  • the present invention it is possible to provide a latex composition for dip molding that has excellent chemical liquid permeation resistance and can give a dip molded article that has an excellent balance of wet grip properties and flexibility.
  • a dip-molded article which has excellent resistance to chemical liquid permeation and which has a good balance between wet grip properties and flexibility.
  • the dip-forming latex composition of the present invention is a dip-forming latex composition containing a polymer latex and an anionic surfactant, wherein the anionic surfactant has one anionic group.
  • a compound (a) having an aromatic ring and a compound (b1) having two or more anionic groups and a benzene ring or a compound (b2) having one anionic group and no aromatic ring It is a latex composition for dip molding containing.
  • the dip molding latex composition of the present invention contains a polymer latex.
  • the polymer constituting the polymer latex is not particularly limited, but examples include nitrile rubber (NBR), natural rubber (NR), styrene-butadiene rubber (SBR), synthetic polyisoprene rubber (IR), polybutadiene rubber ( BR), styrene-isoprene copolymer rubber, styrene-isoprene-styrene copolymer rubber and other conjugated diene polymers, polybutyl acrylate, butyl rubber (IIR), and the like.
  • NBR nitrile rubber
  • NR natural rubber
  • SBR styrene-butadiene rubber
  • IR polyisoprene rubber
  • BR polybutadiene rubber
  • styrene-isoprene copolymer rubber styrene-isoprene-styrene copolymer rubber and other conjugated diene polymers
  • IIR butyl rubber
  • NBR nitrile rubber
  • SBR styrene-butadiene rubber
  • IR synthetic polyisoprene rubber
  • polybutyl acrylate are more preferable.
  • Conjugated diene polymers containing nitrile groups such as NBR (hereinafter referred to as "nitrile group-containing conjugated diene polymers” as appropriate) are more preferred.
  • conjugated diene polymers may be conjugated diene polymers containing carboxyl groups (hereinafter referred to as "carboxyl group-containing conjugated diene polymers” as appropriate).
  • the nitrile group-containing conjugated diene-based polymer is not particularly limited. A copolymer obtained by copolymerizing other ethylenically unsaturated acid monomers can be used.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer is not particularly limited, but an ethylenically unsaturated compound having a nitrile group and preferably having 3 to 18 carbon atoms can be used.
  • Such ⁇ , ⁇ -ethylenically unsaturated nitrile monomers include, for example, acrylonitrile, methacrylonitrile, halogen-substituted acrylonitrile, etc. Among these, acrylonitrile is particularly preferred.
  • These ⁇ , ⁇ -ethylenically unsaturated nitrile monomers may be used singly or in combination of two or more.
  • the content ratio of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer units in the nitrile group-containing conjugated diene polymer is, from the viewpoint of the flexibility and solvent resistance of the resulting dip-molded product, relative to the total monomer units. , preferably 10 to 45% by weight, more preferably 15 to 40% by weight, still more preferably 20 to 40% by weight.
  • conjugated diene monomer a conjugated diene monomer having 4 to 6 carbon atoms such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and chloroprene is preferable. , 1,3-butadiene and isoprene are more preferred, and 1,3-butadiene is particularly preferred.
  • conjugated diene monomers may be used singly or in combination of two or more.
  • the content of conjugated diene monomer units in the nitrile group-containing conjugated diene polymer is preferably 40 to 89.9% by weight based on the total monomer units from the viewpoint of the flexibility of the resulting dip molded product. , more preferably 50 to 84% by weight, still more preferably 52 to 78% by weight, and particularly preferably 55 to 75% by weight.
  • the nitrile group-containing conjugated diene polymer can be copolymerized with a monomer forming an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit and a monomer forming a conjugated diene monomer unit. may be copolymerized with other ethylenically unsaturated acid monomers.
  • Such other copolymerizable ethylenically unsaturated acid monomers are not particularly limited, but examples include vinyl aromatic monomers such as styrene, alkylstyrene, and vinylnaphthalene, monomers, monocarboxylic acid ester group-containing ethylenically unsaturated monomers, dicarboxylic acid diester group-containing ethylenically unsaturated monomers, sulfonic acid group-containing ethylenically unsaturated monomers, phosphoric acid group-containing ethylenically unsaturated monomers Among them, the nitrile group-containing conjugated diene polymer can be one containing a carboxyl group, and as a result, the resulting dip-molded article has excellent mechanical properties.
  • vinyl aromatic monomers such as styrene, alkylstyrene, and vinylnaphthalene
  • monomers monocarboxylic acid ester group-containing ethylenically uns
  • a carboxyl group-containing ethylenically unsaturated monomer is preferable from the viewpoint that it can be
  • Polymers constituting the polymer latex include, for example, ⁇ , ⁇ -ethylenically unsaturated nitrile monomer units, conjugated diene monomer units in nitrile group-containing conjugated diene polymers, and carboxyl group-containing ethylenically unsaturated It may be a polymer consisting of only monomers.
  • the carboxyl group-containing ethylenically unsaturated monomer is not particularly limited, but ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid; fumaric acid, maleic acid, itaconic acid, maleic anhydride, anhydride ethylenically unsaturated polycarboxylic acids such as itaconic acid and anhydrides thereof; partially esterified products of ethylenically unsaturated polycarboxylic acids such as methyl maleate and methyl itaconate; and the like.
  • monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid
  • partially esterified products of ethylenically unsaturated polycarboxylic acids such as
  • the content ratio of the unit of the carboxyl group-containing ethylenically unsaturated monomer is the total monomer unit , preferably 0.1 to 15 wt%, more preferably 1 to 10 wt%, still more preferably 2 to 8 wt%.
  • the monocarboxylic acid ester group-containing ethylenically unsaturated monomer is not particularly limited, but acrylic acid esters such as methyl acrylate, ethyl acrylate and n-butyl acrylate; methyl methacrylate, ethyl methacrylate, methacrylic acid; methacrylic acid esters such as n-butyl; crotonic acid esters such as methyl crotonate; and the like. Among them, acrylic acid esters and methacrylic acid esters are preferred, and methyl acrylate and methyl methacrylate are more preferred.
  • dicarboxylic acid diester group-containing ethylenically unsaturated monomer examples include, but are not limited to, maleic acid diesters such as dimethyl maleate; itaconic acid diesters such as methyl itaconate; and the like.
  • the sulfonic acid group-containing ethylenically unsaturated monomer is not particularly limited, but vinylsulfonic acid, methylvinylsulfonic acid, styrenesulfonic acid, (meth)allylsulfonic acid, ethyl (meth)acrylic acid-2-sulfonate. , 2-acrylamido-2-hydroxypropanesulfonic acid and the like.
  • phosphate group-containing ethylenically unsaturated monomer examples include, but are not limited to, propyl (meth)acrylate-3-chloro-2-phosphate, ethyl (meth)acrylate-2-phosphate, 3-allyloxy -2-hydroxypropane phosphate and the like.
  • copolymerizable ethylenically unsaturated acid monomers may be used as alkali metal salts or ammonium salts, and may be used singly or in combination of two or more. good.
  • carboxyl group-containing ethylenically unsaturated monomers are preferred, ethylenically unsaturated monocarboxylic acids are more preferred, and acrylic acid and methacrylic acid are preferred. More preferred, methacrylic acid is particularly preferred.
  • the ratio is preferably 0.1 to 45% by weight with respect to the total monomer units, and more It is preferably 1 to 40% by weight, more preferably 2 to 38% by weight.
  • the polymer latex can be obtained, for example, by emulsion polymerization of a monomer mixture containing the above monomers.
  • auxiliary materials for polymerization such as emulsifiers, polymerization initiators, and molecular weight modifiers can be used.
  • the emulsifier used for emulsion polymerization is not particularly limited, and examples thereof include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants. preferable.
  • anionic surfactant used in emulsion polymerization examples include a compound (a) having one anionic group and an aromatic ring, and a compound (b1) having two or more anionic groups and a benzene ring, which will be described later. ), a compound (b2) having one anionic group and no aromatic ring, and the like.
  • a compound (a) having one anionic group and an aromatic ring and a compound (b1) having two or more anionic groups and a benzene ring, which will be described later.
  • a compound (b2) having one anionic group and no aromatic ring and the like.
  • the amount of emulsifier used in emulsion polymerization is preferably 0.5 to 10 parts by weight, more preferably 1 to 8 parts by weight, based on 100 parts by weight of all the monomers used.
  • radical initiators include, but are not limited to, inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide; t-butyl peroxide, cumene hydroperoxide, p-menthane hydroperoxide, di-t-butyl peroxide, t-butyl cumyl peroxide, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, dibenzoyl peroxide, 3,5,5-trimethylhexanoyl organic peroxides such as peroxides and t-butyl peroxyisobutyrate; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, and methyl
  • polymerization initiators may be used singly or in combination of two or more.
  • the amount of polymerization initiator to be used is preferably 0.01 to 2 parts by weight, more preferably 0.05 to 1.5 parts by weight, per 100 parts by weight of all the monomers used.
  • molecular weight modifiers include, but are not limited to, ⁇ -methylstyrene dimer; mercaptans such as t-dodecylmercaptan, n-dodecylmercaptan and octylmercaptan; halogenated compounds such as carbon tetrachloride, methylene chloride and methylene bromide; hydrocarbons; sulfur-containing compounds such as tetraethylthiuram disulfide, dipentamethylenethiuram disulfide, and diisopropyl xanthogen disulfide; These molecular weight modifiers may be used singly or in combination of two or more.
  • the amount of the molecular weight modifier used varies depending on its type, but is preferably 0.1 to 1.5 parts by weight, more preferably 0.2 to 1.0 parts by weight, based on 100 parts by weight of the total monomers used. Department.
  • Emulsion polymerization is usually carried out in water.
  • the amount of water used is preferably 80 to 500 parts by weight, more preferably 100 to 200 parts by weight, per 100 parts by weight of all the monomers used.
  • secondary polymerization materials other than the above may be used as necessary.
  • auxiliary materials for polymerization include chelating agents, dispersants, pH adjusters, oxygen scavengers, particle size adjusters, and the like, and the types and amounts used are not particularly limited.
  • Methods of adding the monomers include, for example, a method of collectively adding the monomers used in the reaction vessel, a method of continuously or intermittently adding the monomers as the polymerization progresses, and a method of partially adding the monomers. reaction to a specific conversion rate, and then the remaining monomers are added continuously or intermittently for polymerization, and any method may be employed.
  • the composition of the mixture can be constant or varied.
  • each monomer may be added to the reaction vessel after previously mixing various monomers to be used, or may be added to the reaction vessel separately.
  • the polymerization temperature during emulsion polymerization is not particularly limited, but is usually 0 to 95°C, preferably 5 to 70°C.
  • the polymerization time is not particularly limited, but is usually about 5 to 40 hours.
  • unreacted monomers may be removed and the solid content concentration and pH may be adjusted.
  • the glass transition temperature of the polymer constituting the latex of the polymer is preferably 10° C. or less, more preferably ⁇ 55° C. to 5° C., still more preferably, from the viewpoint that the effect of the present invention becomes more remarkable. is -45 to 0°C, particularly preferably -40 to -10°C.
  • a method for adjusting the glass transition temperature of the polymer to the above range is not particularly limited, but includes, for example, a method for adjusting the content ratio of each monomer unit constituting the polymer to the above range.
  • the volume average particle diameter of the polymer particles constituting the polymer latex is preferably 30 to 1000 nm, more preferably 50 to 500 nm, still more preferably 70, from the viewpoint that the effect of the present invention becomes more remarkable. ⁇ 200 nm.
  • the volume-average particle size of the polymer particles constituting the polymer latex can be measured using, for example, a light scattering diffraction particle measuring device.
  • the surface tension of the polymer latex at 25° C. is preferably 20 to 70 mN/m, more preferably 25 to 60 mN/m, still more preferably 30 to 50 mN/m, from the viewpoint that the effect of the present invention becomes more pronounced. is.
  • the difference between the surface tension of the polymer latex at 25°C and the surface tension of the anionic surfactant at 25°C is preferably -10 to 15 mN/m, more than It is preferably -5 to 10 mN/m, more preferably 0 to 8 mN/m.
  • the surface tension of the polymer latex at 25°C and the difference between the surface tension of the polymer latex at 25°C and the surface tension of the anionic surfactant at 25°C are described in Examples. method.
  • the dip molding latex composition of the present invention contains an anionic surfactant in addition to the polymer latex.
  • the anionic surfactants used in the present invention include a compound (a) having one anionic group and an aromatic ring, and a compound (b1) having two or more anionic groups and a benzene ring and/or an anion. and a compound (b2) having one functional group and no aromatic ring.
  • Compound (a) having one anionic group and having an aromatic ring is a compound having only one anionic group and having an aromatic ring is.
  • Examples of the anionic group possessed by the compound (a) include a carboxylic acid group (--COOH), a carboxylic acid group (--COOX), a sulfonic acid group (--SO 3 H), a sulfonic acid group (--SO 3 X), and a sulfate ester.
  • X is an atom or molecule that constitutes a cation.
  • Examples of X include metal atoms such as lithium, sodium, potassium, calcium, magnesium and aluminum, ammonium and the like, with sodium, potassium and ammonium being preferred, and sodium being more preferred.
  • the anionic group possessed by the compound (a) is preferably a sulfonate group or a sulfate ester group, more preferably a sulfonate group, and still more preferably a sodium sulfonate group (--SO 3 Na). That is, compound (a) is preferably a sulfonate or a sulfate, more preferably a sulfonate, and even more preferably a sodium sulfonate.
  • the aromatic ring of the compound (a) is not particularly limited as long as it is a ring having aromaticity, but non-condensed aromatic rings such as benzene ring, condensed aromatic rings such as naphthalene ring, and the like can be mentioned.
  • the compound (a) preferably has a non-condensed aromatic ring, and although the number of non-condensed aromatic rings in the compound (a) is not particularly limited, one is preferred.
  • the non-condensed aromatic ring of the compound (a) is preferably a benzene ring, and although the number of benzene rings in the compound (a) is not particularly limited, one is preferred.
  • the compound (a) preferably has an alkyl group.
  • the alkyl group in compound (a) preferably has 8 to 16 carbon atoms, more preferably 10 to 14 carbon atoms.
  • Examples of the compound (a) include sodium decylbenzenesulfonate, potassium decylbenzenesulfonate, sodium undecylbenzenesulfonate, potassium undecylbenzenesulfonate, sodium dodecylbenzenesulfonate, potassium dodecylbenzenesulfonate, and tridecylbenzenesulfonic acid.
  • Alkylbenzenesulfonates such as sodium, potassium tridecylbenzenesulfonate, sodium tetradecylbenzenesulfonate, and potassium tetradecylbenzenesulfonate can be mentioned.
  • Acid salts are preferred, sodium alkylbenzenesulfonate is preferred, sodium dodecylbenzenesulfonate is preferred.
  • Compound (a) may be used alone or in combination of two or more.
  • the molecular weight of compound (a) is preferably from 100 to 600, more preferably from 200 to 500, even more preferably from 300 to 400, from the viewpoint that the effects of the present invention become more pronounced.
  • the latex composition for dip molding of the present invention comprises, in addition to the compound (a), a compound (b1) having two or more anionic groups and a benzene ring and/or an aromatic ring having one anionic group. It contains the compound (b2) that does not have That is, the latex composition used in the present invention contains at least one of the compound (b1) and the compound (b2) in addition to the compound (a), and in addition to the compound (a), the compound (b1) and compound (b2).
  • the latex composition for dip molding of the present invention more preferably contains at least the compound (b1) in addition to the compound (a) from the viewpoint that the effects of the present invention become more remarkable.
  • the number of anionic groups may be two or more, particularly although not limited, the number is preferably two.
  • Examples of the anionic group possessed by the compound (b1) include a carboxylic acid group (--COOH), a carboxylic acid group (--COOX), a sulfonic acid group (--SO 3 H), a sulfonic acid group (--SO 3 X), and a sulfate ester.
  • X is an atom or molecule that constitutes a cation.
  • Examples of X include metal atoms such as lithium, sodium, potassium, calcium, magnesium and aluminum, ammonium and the like, with sodium, potassium and ammonium being preferred, and sodium being more preferred.
  • the anionic group possessed by the compound (b1) is preferably a sulfonate group or a sulfate ester group, more preferably a sulfonate group, and still more preferably a sodium sulfonate group (--SO 3 Na). That is, compound (b1) is preferably a sulfonate or a sulfate ester salt, more preferably a sulfonate, and even more preferably a sodium sulfonate.
  • the two or more anionic groups possessed by compound (b1) may be the same or different, but are preferably the same.
  • the compound (b1) has a benzene ring.
  • the number of benzene rings in the compound (b1) is not particularly limited, it is preferably two or more, more preferably two.
  • Compound (b1) may have an aromatic ring other than the benzene ring.
  • aromatic rings other than benzene rings include heteroatom-containing non-condensed aromatic rings and condensed aromatic rings such as naphthalene rings.
  • the number of aromatic rings other than the benzene ring in the compound (b1) is preferably 2 or less, more preferably 1 or less, and still more preferably 0. That is, compound (b1) preferably does not have an aromatic ring other than a benzene ring.
  • the compound (b1) preferably has an ether bond, and more preferably has a diphenyl ether structure.
  • the compound (b1) preferably has an alkyl group.
  • the alkyl group in compound (b1) preferably has 8 to 16 carbon atoms, more preferably 10 to 14 carbon atoms.
  • Examples of the compound (b1) include alkyldiphenylether disulfonates such as disodium alkyldiphenyletherdisulfonate, dipotassium alkyldiphenyletherdisulfonate, and diammonium alkyldiphenyletherdisulfonate. Among them, the effect of the present invention becomes more remarkable. From this point of view, disodium alkyldiphenyl ether disulfonate is preferable, disodium alkyldiphenylether disulfonate having an alkyl group having 8 to 16 carbon atoms is more preferable, and disodium alkyldiphenylether disulfonate having an alkyl group having 10 to 14 carbon atoms is preferable. Sodium is more preferred. Compound (b1) may be used alone or in combination of two or more.
  • the molecular weight of compound (b1) is preferably from 100 to 1000, more preferably from 200 to 850, even more preferably from 300 to 750, and particularly preferably from 400 to 650, from the viewpoint that the effects of the present invention become more pronounced.
  • a compound (b2) having one anionic group and no aromatic ring (hereinafter referred to as "compound (b2)" as appropriate) has only one anionic group and an aromatic ring It is a compound that does not have
  • Examples of the anionic group possessed by the compound (b2) include a carboxylic acid group (--COOH), a carboxylic acid group (--COOX), a sulfonic acid group (--SO 3 H), a sulfonic acid group (--SO 3 X), and a sulfate ester.
  • X is an atom or molecule that constitutes a cation.
  • Examples of X include metal atoms such as lithium, sodium, potassium, calcium, magnesium and aluminum, ammonium and the like, with sodium, potassium and ammonium being preferred, and sodium being more preferred.
  • the anionic group possessed by the compound (b2) is preferably a sulfonate group or a sulfate group, more preferably a sulfate group, and even more preferably a sodium sulfate group (--OSO 3 Na). That is, the compound (b2) is preferably a sulfonate or a sulfate, more preferably a sulfate, and even more preferably a sodium sulfate.
  • the compound (b2) preferably has an alkyl group.
  • the number of carbon atoms in the alkyl group in compound (b2) is preferably 8-16, more preferably 10-14.
  • Compound (b2) includes fatty acid salts such as sodium laurate, potassium myristate, sodium palmitate, potassium oleate, sodium linolenate, sodium rosinate; di(2-ethylhexyl)sodium sulfosuccinate, di(2-ethylhexyl) ) Alkyl sulfosuccinates such as potassium sulfosuccinate and sodium dioctyl sulfosuccinate; sodium octyl sulfate, potassium octyl sulfate, sodium decyl sulfate, potassium decyl sulfate, sodium undecyl sulfate, potassium undecyl sulfate, sodium dodecyl sulfate (sodium lauryl sulfate), dodecyl Alkyl sulfate ester salts such as potassium sulfate (potassium lauryl s
  • the molecular weight of compound (b2) is preferably from 100 to 600, more preferably from 200 to 450, even more preferably from 250 to 350, from the viewpoint that the effects of the present invention become more pronounced.
  • the compound (a) is a sulfonate or a sulfate ester salt
  • the compound (b1) or the compound (b2) ) is preferably a sulfonate or a sulfate.
  • the content of the compound (a) in the latex composition for dip molding of the present invention is 100 parts by weight of the polymer component contained in the latex composition for dip molding, from the viewpoint that the effect of the present invention becomes more pronounced.
  • 0.1 to 5.0 parts by weight is preferable, 0.5 to 3.0 parts by weight is more preferable, 0.8 to 2.4 parts by weight is more preferable, 1.0 to 2.0 parts by weight Part is particularly preferred.
  • the effect of the present invention becomes more remarkable as the content of the compound (b1) in the latex composition for dip molding of the present invention.
  • 0 to 5.0 parts by weight is more preferred, and 1.2 to 4.5 parts by weight is particularly preferred.
  • the effect of the present invention becomes more remarkable as the content of the compound (b2) in the latex composition for dip molding of the present invention.
  • 0 to 5.0 parts by weight is more preferred, and 1.2 to 4.5 parts by weight is particularly preferred.
  • the total content of the compound (b1) and the content of the compound (b2) is the latex composition for dip molding from the viewpoint that the effect of the present invention becomes more remarkable.
  • 100 parts by weight of the polymer component contained therein 0.1 to 10.0 parts by weight is preferable, 0.5 to 7.0 parts by weight is more preferable, and 1.0 to 5.0 parts by weight is further 1.2 to 4.5 parts by weight is particularly preferred.
  • the weight ratio of the content of compound (a) to the total content of compound (b1) and compound (b2) is preferably from 5:95 to 95:5, more preferably from 10:90 to 90:10, from the viewpoint that the effect of the present invention becomes more pronounced. , 15:85 to 80:20, and particularly preferably 20:80 to 70:30.
  • the latex composition for dip molding of the present invention preferably contains a latex of the polymer (A) having a glass transition temperature of 10° C. or lower, and a latex of the polymer (A) having a glass transition temperature of 10° C. or lower. In addition, it is more preferable to contain a latex of polymer (B) having a glass transition temperature of more than 10°C.
  • Polymer (A) having a glass transition temperature of 10°C or lower (hereinafter referred to as “polymer (A) latex”) having a glass transition temperature of 10°C or lower ( A) (hereinafter referred to as “polymer (A)” as appropriate) is not particularly limited, but examples include nitrile rubber (NBR), natural rubber (NR), styrene-butadiene rubber (SBR), synthetic poly Examples include conjugated diene polymers such as isoprene rubber (IR), polybutadiene rubber (BR), styrene-isoprene copolymer rubber, styrene-isoprene-styrene copolymer rubber, polybutyl acrylate, butyl rubber (IIR), and the like.
  • NBR nitrile rubber
  • NR natural rubber
  • SBR styrene-butadiene rubber
  • synthetic poly Examples include conjugated diene polymers such as isoprene rubber (IR
  • nitrile rubber NBR
  • SBR styrene-butadiene rubber
  • IR synthetic polyisoprene rubber
  • polybutyl acrylate Preferred are nitrile group-containing conjugated diene polymers. These conjugated diene-based polymers may be carboxyl group-containing conjugated diene-based polymers.
  • the polymer (A) having a glass transition temperature of 10° C. or lower those having a glass transition temperature of 10° C. or lower among those mentioned above as polymers constituting the latex of the polymer used in the present invention are suitable.
  • the polymer (A) having a glass transition temperature of 10° C. or lower those mentioned above as the nitrile group-containing conjugated diene polymer capable of forming the latex of the polymer used in the present invention are suitable.
  • the volume-average particle diameter of the polymer particles constituting the polymer (A) latex is preferably 30 to 1000 nm, more preferably 50 to 500 nm, and even more preferably 70 to 200 nm.
  • the polymer (B) can be finely dispersed more favorably in the polymer (A) in the obtained dip molded article. As a result, the effects of the present invention become more pronounced, and the mechanical properties of the resulting dip-molded article can be enhanced.
  • a polymer (B) (hereinafter referred to as “polymer (B)” as appropriate) is not particularly limited, but examples thereof include acrylic resins, PTFE resins, acrylonitrile-styrene (AS) resins, polyurethanes, vinyl chloride resins, and polystyrene resins. etc., and among these, acrylic resins are preferred. These polymers may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Acrylic resins include, for example, acrylic acid esters, methacrylic acid esters, acrylic acid, homopolymers of methacrylic acid, copolymers of acrylic acid esters and acrylic acid, copolymers of acrylic acid esters and methacrylic acid, methacrylic acid Copolymer of acid ester and acrylic acid, copolymer of methacrylic acid ester and methacrylic acid, copolymer of acrylic acid ester, methacrylic acid ester and acrylic acid, acrylic acid ester, methacrylic acid ester and methacrylic acid and copolymers of acrylic acid ester, methacrylic acid ester, acrylic acid and methacrylic acid.
  • a homopolymer of acrylic acid ester, methacrylic acid ester, acrylic acid, or methacrylic acid and a homopolymer of methacrylic acid ester is used.
  • the homopolymer of acrylic acid ester includes not only homopolymers of the same acrylic acid ester, but also copolymers of two or more acrylic acid esters (for example, ethyl acrylate and butyl acrylate).
  • homopolymers of methacrylic acid esters include not only homopolymers of the same methacrylic acid esters, but also copolymers of two or more methacrylic acid esters.
  • the total content of acrylic acid ester, methacrylic acid ester, acrylic acid, and methacrylic acid units in the acrylic resin is preferably 40 to 100% by weight, more preferably 70%, based on the total monomer units. ⁇ 100% by weight.
  • Acrylic esters used to form acrylic resins include, for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec- Butyl, tert-butyl acrylate, n-pentyl acrylate, sec-pentyl acrylate, isopentyl acrylate, neopentyl acrylate, n-hexyl acrylate, isohexyl acrylate, neohexyl acrylate, sec-hexyl acrylate, and acrylic acid tert-hexyl and the like, among which methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, and n-butyl acrylate are preferred, and methyl acrylate is more preferred.
  • Methacrylate esters used to form acrylic resins include, for example, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec- Butyl, tert-butyl methacrylate, n-pentyl methacrylate, sec-pentyl methacrylate, isopentyl methacrylate, neopentyl methacrylate, n-hexyl methacrylate, isohexyl methacrylate, neohexyl methacrylate, sec-hexyl methacrylate, and methacryl acid tert-hexyl and the like, among which methyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, and n-butyl methacrylate are preferred, and methyl methacrylate
  • the acrylic resin may be obtained by copolymerizing an acrylic acid ester monomer, a methacrylic acid ester monomer, an acrylic acid monomer, or other monomers copolymerizable with a methacrylic acid monomer.
  • copolymerizable monomers include ⁇ -olefin monomers such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and 1-octene; styrene, ⁇ -methylstyrene , aromatic monomers such as vinylpyridine; ⁇ , ⁇ -ethylenically unsaturated polycarboxylic acids such as maleic acid, fumaric acid and itaconic acid; ⁇ , such as monomethyl maleate, monoethyl maleate and monoethyl itaconate, ⁇ -ethylenically unsaturated polycarboxylic acid monoesters; ⁇ , ⁇ -ethylenically unsaturated polycarboxylic acids such as dimethyl maleate, di-n-butyl fumarate, dimethyl itaconate, and di-2-ethylhexyl itaconate Polyvalent esters; vinyl ester monomers such as vinyl acetate and vinyl propionate; ⁇ , ⁇ -
  • the method for producing the acrylic resin latex as the polymer (B) is not particularly limited as long as it is a method capable of polymerizing the above monomers. A method by turbidity polymerization and the like can be mentioned.
  • the polymer (B) is preferably obtained by using a persulfate such as sodium persulfate, potassium persulfate and ammonium persulfate as a polymerization initiator.
  • a persulfate such as sodium persulfate, potassium persulfate and ammonium persulfate
  • the polymer (B) can be made to have a sulfuric acid group at the polymer chain end as a residue of the polymerization initiator, whereby the latex of the polymer (B) can be chemically Better stability can be achieved.
  • the weight average molecular weight (Mw) of the acrylic resin as the polymer (B) is not particularly limited, but is preferably 10,000 to 10,000,000, more preferably 10,000 to 5,000,000. be.
  • the glass transition temperature of the polymer (B) is higher than 10°C, and from the viewpoint that the effects of the present invention become more pronounced, it is preferably 30°C or higher, more preferably 70°C or higher, and even more preferably It is 95° C. or higher, particularly preferably 105° C. or higher.
  • the upper limit of the glass transition temperature of the polymer (B) is not particularly limited, it is preferably 200°C or lower, more preferably 150°C or lower.
  • a method for adjusting the glass transition temperature of the polymer (B) to the above range is not particularly limited, but includes a method of adjusting the content ratio of each monomer unit constituting the polymer.
  • the latex composition for dip molding of the present invention comprises a latex of polymer (A) having a glass transition temperature of 10°C or lower and a latex of polymer (A) having a glass transition temperature of higher than 10°C. It is preferably a latex composition for dip molding obtained by mixing a latex of a certain polymer (B) in a latex state.
  • the particles of the polymer (A) and the polymer (B) can be uniformly finely dispersed. Then, when a dip-molded article is formed by dip molding, the polymer (B) is finely dispersed in the matrix of the polymer (A) in the resulting dip-molded article, and the polymer (B) is co-precipitated. can be done. Therefore, the action of the finely dispersed polymer (B) makes it possible to make the resulting dip-molded article even more excellent in wet grip properties.
  • the volume average particle diameter of the particles of the polymer (B) constituting the latex of the polymer (B) is is preferably smaller than the volume average particle diameter of the particles of the polymer (A) constituting the
  • the volume average particle diameter of the particles of the polymer (B) constituting the latex of the polymer (B) is preferably 1 to 200 nm, more preferably 5 to 160 nm, even more preferably 5 to 120 nm, still more preferably 10 to 100 nm. 100 nm, particularly preferably 20 to 80 nm.
  • the polymer (B) can be finely dispersed more favorably in the polymer (A) in the obtained dip molded article. As a result, the effects of the present invention become more pronounced, and the mechanical properties of the resulting dip-molded article can be enhanced.
  • the amount and the content of the polymer (B) are not particularly limited, but the content of the polymer (A) in 100% by weight of the polymer component contained in the latex composition for dip molding is 75 to 100% by weight. %, more preferably 80 to 99% by weight, even more preferably 85 to 95% by weight.
  • the content of the polymer (B) is preferably 0 to 25% by weight, more preferably 1 to 20% by weight, based on 100% by weight of the polymer component contained in the latex composition for dip molding.
  • the weight ratio of the polymer (A) to the polymer (B) is The ratio is preferably 75:25 to 100:0, more preferably 80:20 to 99:1, still more preferably 85:15 to 95:5, since the effect of the invention becomes more pronounced.
  • the latex composition for dip molding of the present invention preferably further contains a sulfur-based cross-linking agent in addition to the polymer latex and the anionic surfactant described above.
  • the sulfur-based cross-linking agent is not particularly limited, but sulfur such as powdered sulfur, sulfur flowers, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, dibenzothia Sulfur-containing compounds such as dil disulfide, caprolactam disulfide, phosphorus-containing polysulfide, and polymeric polysulfides; sulfur-donating compounds such as tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, and 2-(4′-morpholinodithio)benzothiazole; is mentioned.
  • sulfur-based cross-linking agents may be used singly or in combination of two or more.
  • the content of the sulfur-based cross-linking agent is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 3 parts by weight, with respect to 100 parts by weight of the polymer component contained in the latex composition for dip molding. It is preferably 0.1 to 2 parts by weight.
  • the latex composition for dip molding of the present invention preferably further contains a cross-linking accelerator (vulcanization accelerator) and zinc oxide in addition to the sulfur-based cross-linking agent.
  • a cross-linking accelerator vulcanization accelerator
  • zinc oxide in addition to the sulfur-based cross-linking agent.
  • cross-linking accelerator examples include, but are not limited to, dithiocarbamines such as diethyldithiocarbamate, dibutyldithiocarbamate, di-2-ethylhexyldithiocarbamate, dicyclohexyldithiocarbamate, diphenyldithiocarbamate, and dibenzyldithiocarbamate.
  • dithiocarbamines such as diethyldithiocarbamate, dibutyldithiocarbamate, di-2-ethylhexyldithiocarbamate, dicyclohexyldithiocarbamate, diphenyldithiocarbamate, and dibenzyldithiocarbamate.
  • the content of the cross-linking accelerator is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the polymer component contained in the latex composition for dip molding.
  • the content of zinc oxide is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, with respect to 100 parts by weight of the polymer component contained in the latex composition for dip molding. .
  • the latex composition for dip molding of the present invention may further contain a water-soluble polymer.
  • water-soluble polymers examples include vinyl compounds such as polyvinyl alcohol and polyvinylpyrrolidone; cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose and carboxymethyl cellulose and salts thereof; polycarboxylic acid compounds such as polyacrylic acid and sodium salts thereof. ; polyoxyethylene derivatives such as polyethylene glycol ether; and the like.
  • cellulose derivatives and salts thereof are preferred, and carboxymethylcellulose and sodium salts thereof are more preferred.
  • the content of the water-soluble polymer is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, per 100 parts by weight of the polymer component contained in the latex composition for dip molding.
  • the viscosity of a 4% by weight aqueous solution of the water-soluble polymer is not particularly limited, but is preferably 1 mPa s or more, more preferably 10 mPa s or more, preferably 20,000 mPa s or less, and 10,000 mPa s. The following are more preferred.
  • the viscosity of a 1% by weight aqueous solution of the water-soluble polymer is not particularly limited, but is preferably 1 mPa s or more, more preferably 10 mPa s or more, preferably 20,000 mPa s or less, and 10,000 mPa s. The following are more preferred.
  • the viscosity of the water-soluble polymer aqueous solution can be measured, for example, using a Brookfield viscometer under the conditions of 25° C. and 6 rpm.
  • the water-soluble polymer is not particularly limited as long as it is soluble in water, and the solubility of the water-soluble polymer in water is not particularly limited, but is preferably 1 g or more, more preferably 1 g or more, with respect to 100 g of water at a temperature of 25 ° C. It is 7 g or more, particularly preferably 10 g or more.
  • the upper limit of the water solubility of the water-soluble polymer is not particularly limited, but is usually 1,000,000 g or less.
  • the weight average molecular weight (Mw) of the water-soluble polymer is not particularly limited, but is preferably 100 or more, more preferably 1,000 or more, preferably 5,000,000 or less, and more preferably 3,000,000 or less.
  • the amount of the water-soluble polymer is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, per 100 parts by weight of the polymer component contained in the latex composition for dip molding of the present invention. and more preferably 0.15 to 4.5 parts by weight.
  • the blending amount of the water-soluble polymer is within the above range, the resulting dip-molded article has even better wet grip properties.
  • the latex composition for dip molding of the present invention includes carbon black, silica, calcium carbonate, aluminum silicate, magnesium silicate, calcium silicate, magnesium oxide, zinc (meth)acrylate, magnesium (meth)acrylate and titanium oxide.
  • the amount of the filler compounded is preferably 0.5 to 30 parts by weight, more preferably 1 to 10 parts by weight, based on 100 parts by weight of the polymer component contained in the latex composition for dip molding of the present invention. More preferably 2 to 5 parts by weight. When the blending amount of the filler is within the above range, the resulting dip-molded article has even better wet grip properties.
  • the latex composition for dip molding of the present invention may optionally contain additives other than the above water-soluble salts and fillers, such as anti-aging agents, antioxidants, preservatives, antibacterial agents, wetting agents, Various additives such as dispersants, pigments, dyes, reinforcing agents, and pH adjusters can also be added in predetermined amounts.
  • the volume average particle size of the polymer particles in the latex composition for dip molding of the present invention is preferably 30 to 250 nm, more preferably 30 to 200 nm, still more preferably 50 to 180 nm.
  • the obtained latex composition for dip molding can be made excellent in storage stability, and the obtained The dip molded article can be made more excellent in wet grip properties.
  • the volume average particle size of the polymer particles in the latex composition for dip molding of the present invention can be measured using, for example, a light scattering diffraction particle measuring device.
  • the solid content concentration of the latex composition for dip molding of the present invention is preferably 20 to 65% by weight, more preferably 30 to 60% by weight, still more preferably 35 to 55% by weight.
  • Methods for adjusting the solid content concentration of the latex composition for dip molding of the present invention within the range described above include, for example, a method of adjusting the solid content concentration of each component such as a polymer latex, and a concentration treatment or dilution treatment described later.
  • the pH of the latex composition for dip molding of the present invention is preferably 5-13, more preferably 7-10, still more preferably 7.5-9.
  • a latex composition for dip molding containing polymer latex, compound (a), compound (b1) and/or compound (b2) is obtained. It is not particularly limited as long as it is a manufacturing method that can be used.
  • a method for producing the latex composition for dip molding of the present invention a method of preparing two or more types of polymer latex and mixing them in a latex state is preferable.
  • a method for producing the latex composition for dip molding of the present invention a method of preparing two or more types of polymer latex and mixing them in a latex state will be exemplified below.
  • the latex composition for dip molding of the present invention includes, for example, a latex (A 1 -a) containing a first polymer (A 1 ) having a glass transition temperature of 10° C. or lower and a compound ( a ), and a glass A production method in which a latex (A 2 -b) containing a second polymer (A 2 ) having a transition temperature of 10° C. or less and a compound (b1) and/or a compound (b2) is mixed in a latex state, Obtainable.
  • the abbreviations "polymer (A 1 )", “latex (A 1 -a)", “polymer (A 2 )” and “latex (A 2 -b)” are used as appropriate.
  • the latex composition for dip molding of the present invention As a method for producing the latex composition for dip molding of the present invention, a method of mixing latex (A 1 -a) and latex (A 2 -b) in a latex state is preferable, and the dip of the present invention obtained by this method is preferable.
  • the latex composition for molding can further improve the balance between flexibility and wet grip while realizing excellent chemical liquid permeation resistance of the obtained dip-molded article. The reason for this is not clear, but by mixing the latex (A 1 -a) and the latex (A 2 -b) in the latex state, aggregates of appropriate size are generated, and the resulting dip-molded product It is presumed that this is due to the formation of an appropriate uneven structure on the surface.
  • the composition of polymer (A 1 ) and the composition of polymer (A 2 ) may be the same or different.
  • the polymer (A 1 ) is a nitrile group-containing conjugated diene polymer
  • the polymer (A 2 ) is a nitrile group-containing conjugated diene polymer having the same or different composition as the polymer (A 1 ).
  • it may be a polymer other than the nitrile group-containing conjugated diene polymer (for example, polybutyl acrylate).
  • the polymer (A 2 ) is a nitrile group-containing conjugated diene polymer
  • the polymer (A 1 ) is a nitrile group-containing conjugated diene polymer having the same or different composition as the polymer (A 2 ).
  • it may be a polymer other than the nitrile group-containing conjugated diene polymer (for example, polybutyl acrylate).
  • the difference between the glass transition temperature of the polymer (A 1 ) and the glass transition temperature of the polymer (A 2 ) is preferably 30° C. or less, more preferably 20° C. or less, and 15° C. or less. It is more preferably 10°C or lower, particularly preferably 10°C or lower, and most preferably 5°C or lower.
  • the latex composition for dip molding of the present invention includes, for example, a latex (Aa) containing a polymer (A) having a glass transition temperature of 10° C. or less and a compound (a), and a latex (Aa) having a glass transition temperature of A latex (Bb) containing the polymer (B) having a temperature higher than 10° C. and the compound (b1) and/or the compound (b2) may be obtained by a production method of mixing in a latex state.
  • abbreviations such as “latex (Aa)” and “latex (Bb)” are used as appropriate.
  • the latex composition for dip molding of the present invention is, for example, a latex (Ab ), and a latex (Ba) containing a polymer (B) having a glass transition temperature of more than 10° C. and a compound (a), may be obtained by a production method of mixing in a latex state.
  • a latex (Ab) a latex (Ab )
  • a latex (Ab) latex (Ba) containing a polymer (B) having a glass transition temperature of more than 10° C. and a
  • a latex
  • the abbreviations “latex (Ab)” and “latex (Ba)” are used as appropriate.
  • the compound (a) is contained in the latex containing the polymer and the compound (a) (latex (A 1 -a), latex (Aa), latex (Ba))
  • the method of causing is not particularly limited, for example, a method of obtaining a latex containing a polymer and a compound (a) by performing polymerization in the presence of the compound (a), a method of preparing a latex containing a polymer, A method of adding the compound (a) can be mentioned. Among them, the method of polymerizing in the presence of the compound (a) is preferable.
  • the latex containing the polymer and the compound (a) may further contain the compound (b1) and/or the compound (b2).
  • the method for containing the compound (b1) and/or the compound (b2) is not particularly limited, and for example, the polymer is polymerized in the presence of the compound (b1) and/or the compound (b2). and a method of obtaining a latex containing compound (b1) and/or compound (b2), and a method of adding compound (b1) and/or compound (b2) after preparing a latex containing a polymer.
  • the method of polymerizing in the presence of the compound (b1) and/or the compound (b2) is preferred.
  • a latex containing a polymer and compound (b1) and/or compound (b2) (latex (A 2 -b), latex (Bb), latex (Ab))
  • the method for containing the compound (b1) and/or the compound (b2) is not particularly limited. Examples include a method of obtaining a latex containing (b1) and/or compound (b2), and a method of adding compound (b1) and/or compound (b2) after preparing a latex containing a polymer. Among them, the method of polymerizing in the presence of the compound (b1) and/or the compound (b2) is preferred.
  • the latex containing the polymer and compound (b1) and/or compound (b2) may further contain compound (a).
  • the method of incorporating the compound (a) is not particularly limited, for example, a method of obtaining a latex containing the polymer and the compound (a) by performing polymerization in the presence of the compound (a), A method of adding the compound (a) after preparing a latex containing a polymer can be mentioned. Among them, the method of polymerizing in the presence of the compound (a) is preferable.
  • latexes may be mixed in a latex state by appropriately combining the methods of mixing two types of latexes as described above.
  • latex (A 1 -a), latex (A 2 -b), and latex (Ba) and/or latex (Bb) may be mixed in a latex state.
  • the latex composition for dip molding of the present invention may be obtained through concentration treatment or dilution treatment.
  • the latex composition for dip molding of the present invention is preferably obtained through a concentration treatment.
  • the concentration treatment method is not particularly limited, and examples thereof include vacuum distillation, normal pressure distillation, centrifugation, membrane concentration, and the like. Among these, the concentration method accompanied by heating is preferable, and the vacuum distillation accompanied by heating is more preferable. By adopting a concentration method that involves heating, it is possible to reduce the number of odor-causing bacteria, or to suppress the growth of odor-causing bacteria. can be assumed.
  • the heating temperature is preferably 50°C to 100°C.
  • the pressure is preferably 20 kPa to 90 kPa.
  • the concentration treatment may be applied to a mixture containing some of the components to be compounded in the latex composition for dip molding, or to a mixture containing all of the components to be compounded in the latex composition for dip molding. good too.
  • Each component that is blended as necessary into the composition containing the polymer latex, the compound (a), and the compound (b1) and/or the compound (b2) obtained by the above production method. may be added.
  • the dip-molded article of the present invention is a molded article obtained using the dip-molding latex composition of the present invention described above, and is usually dip-molded using the dip-molding latex composition of the present invention described above. obtained by Since the dip-molded article of the present invention is obtained using the above-described dip-molding latex composition of the present invention, it has excellent resistance to chemical permeation and excellent wet grip and flexibility in a well-balanced manner.
  • the dip-molded article of the present invention contains the two or more polymers, and each polymer in the dip-molded article is usually the same as the content of each polymer in the latex composition for dip molding.
  • the dip-molded product of the present invention is preferably a laminate having a substrate and a polymer layer formed on the substrate using the dip-molding latex composition of the present invention.
  • the laminate may be, for example, a laminate of a substrate obtained by immersing the substrate in the dip molding latex composition of the present invention and a polymer layer composed of the dip molding latex composition. good.
  • the dip molded article of the present invention may be a film molded article made of the latex composition for dip molding, which is obtained by immersing a dip mold in the latex composition for dip molding of the present invention. .
  • the dip-molded article of the present invention is a laminate of a substrate and a polymer layer comprising the latex composition for dip molding of the present invention will be described as an example. It is not limited to this embodiment.
  • the base material is not particularly limited, a fiber base material can be suitably used when the dip molded article of the present invention is used as a protective glove.
  • the fiber base material is not particularly limited, for example, it is possible to use twisted monofilament yarns as fibers and to form a glove shape by weaving the twisted yarns.
  • the average thickness of the fiber base material is preferably 50-3,000 ⁇ m, more preferably 100-2,000 ⁇ m.
  • the dip-molded article of the present invention can be produced, for example, by immersing a substrate in the dip-molding latex composition to form a polymer layer composed of the dip-molding latex composition on the substrate. can be done. In this case, it is preferable to immerse the substrate in the latex composition for dip molding in a state in which the substrate is previously covered with a molding die having a desired shape.
  • the molding die for covering the substrate is not particularly limited, but various materials such as porcelain, glass, metal, and plastic can be used.
  • the shape of the molding die may be a desired shape according to the shape of the final product.
  • various types of glove molds such as a mold having a shape from the wrist to the fingertips are used as the mold for covering the substrate. is preferred.
  • the base material is previously immersed in the coagulant solution so that the coagulant solution adheres to the base material before the base material is immersed in the latex composition for dip molding.
  • the drying temperature at this time is not particularly limited and may be selected according to the solvent used, but is preferably 10 to 80°C, more preferably 15 to 70°C. Although the drying time is not particularly limited, it is preferably 600 to 1 second, more preferably 300 to 5 seconds.
  • the substrate to which the coagulant solution has been adhered is immersed in the latex composition for dip molding while being covered with a molding die having a desired shape, thereby solidifying the latex composition for dip molding.
  • a polymer layer comprising a dip molding latex composition is deposited on the substrate.
  • the drying temperature at this time is not particularly limited, but is preferably 10 to 80°C, more preferably 15 to 80°C. Although the drying time is not particularly limited, it is preferably 120 minutes to 5 seconds, more preferably 60 minutes to 10 seconds.
  • the latex composition for dip molding may be previously aged (also referred to as pre-vulcanization). .
  • the temperature conditions for aging are not particularly limited, but are preferably 20 to 50°C.
  • the time for aging is preferably 4 hours or more and 120 hours or less, more preferably 24 hours, from the viewpoint of preventing separation between the substrate and the polymer layer and improving the mechanical properties of the polymer layer. 72 hours or less.
  • the heating temperature for cross-linking is preferably 60 to 160°C, more preferably 80 to 150°C. By setting the heating temperature within the above range, the time required for the cross-linking reaction can be shortened and the productivity of the dip-molded product can be improved. It is possible to improve the physical properties of the dip-molded product.
  • the heating time for cross-linking may be appropriately selected according to the heating temperature, but is usually 5 to 120 minutes.
  • the polymer layer formed on the base material is immersed in warm water of 20 to 80° C. for about 0.5 to 60 minutes to obtain a heavy weight. It is preferable to remove water-soluble impurities (emulsifiers, water-soluble polymers, coagulants, etc.) from the combined layer.
  • water-soluble impurities emulsifiers, water-soluble polymers, coagulants, etc.
  • drying temperature and drying time at this time are not particularly limited, but may be the same as the drying temperature and drying time in the drying step after immersion in the latex composition for dip molding described above.
  • the dip-molded article is obtained by detaching (or demolding) from the molding die.
  • detaching or demolding
  • the dip molded body Before or after detaching the dip molded body from the molding die, it may be further heat-treated at a temperature of 60 to 120°C for 10 to 120 minutes (post-crosslinking step). After the dip-molded body is removed from the molding die, a surface treatment layer may be formed on the inner and/or outer surfaces of the dip-molded body by chlorination treatment, coating treatment, or the like.
  • a method for foaming a dip-molding latex composition other than the dip-molding latex composition of the present invention and performing dip molding can be considered.
  • the arithmetic mean roughness Ra of the surface of the polymer layer of the dip-molded article to be obtained tends to be too small, which may lead to poor wet grip and poor flexibility.
  • a water-soluble metal salt is attached to the surface of the dip layer. After drying, cross-linking, etc., if necessary, the water-soluble metal salt adhering to the surface is washed away.
  • the maximum height roughness Rz and the arithmetic mean roughness Ra of the surface of the polymer layer of the resulting dip-molded product tend to be too large, resulting in poor flexibility and resistance to chemical permeation. There is a risk of being inferior in quality.
  • a water-soluble metal salt-derived component for example, a metal component
  • these methods require a foaming step, a step of adhering a water-soluble metal salt, and a step of washing off the water-soluble metal salt, which may reduce the production efficiency of the dip molded body.
  • the latex composition for dip molding of the present invention By using the latex composition for dip molding of the present invention, excellent chemical liquid permeation resistance can be obtained without going through a foaming step, a step of adhering a water-soluble metal salt, and a step of washing off the water-soluble metal salt. It is possible to obtain the dip-molded article of the present invention which is excellent in wet grip and flexibility in a well-balanced manner. Therefore, by using the latex composition for dip molding of the present invention, it is possible to perform dip molding with high production efficiency while reducing the water-soluble metal salt-derived component (for example, metal component) on the surface of the dip molded article of the present invention. It is also possible to manufacture bodies.
  • the water-soluble metal salt-derived component for example, metal component
  • the thickness of the polymer layer composed of the latex composition for dip molding of the present invention is preferably 0.05 to 1.0 mm, more preferably 0.06 to 0.8 mm, and still more preferably. is 0.07 to 0.7 mm.
  • the thickness of the laminate containing the base material and the polymer layer is preferably 0.1 to 10 mm, more preferably 0. .4 to 2.0 mm, more preferably 0.5 to 1.1 mm.
  • the 100% tensile stress of the polymer layer composed of the latex composition for dip molding of the present invention in the dip-molded article of the present invention is preferably 1.1 MPa or less, more preferably 0.1 to 0.9 MPa. , more preferably 0.2 to 0.75 MPa, particularly preferably 0.3 to 0.7 MPa.
  • the 100% tensile stress of the polymer layer is within the above range, and the dip has excellent wet grip properties and flexibility in a well-balanced manner, as well as excellent chemical liquid permeation resistance. A molded article can be obtained easily.
  • the 100% tensile stress of the polymer layer may be controlled, for example, by adjusting the type of polymer latex used and the type and amount of surfactant such as an anionic surfactant used.
  • the 100% tensile stress of the polymer layer can be controlled by adjusting the type and ratio of each polymer latex.
  • the 100% tensile stress of the polymer layer composed of the latex composition for dip molding of the present invention in the dip-molded article of the present invention is measured by the following method.
  • the latex of the polymer constituting the latex composition for dip molding, the compound (a), the compound (b1) and/or the compound (b2) are mixed in the same proportions as those in the latex composition for dip molding.
  • Prepare a latex for measurement containing A film molding is obtained by coating the prepared latex for measurement on a glass substrate and drying it.
  • the 100% tensile stress of the obtained film molding is measured, and the obtained value is defined as the 100% tensile stress value of the polymer layer.
  • the latex composition for dip molding is a latex mixture containing a polymer latex, a compound (a), and a compound (b1) and/or a compound (b2). If it is obtained by adding additives such as system cross-linking agents, cross-linking accelerators, zinc oxide, water-soluble polymers, fillers, etc., the latex mixture (latex mixture before adding additives) , used as latex for measurement. Specifically, the 100% tensile stress of the polymer layer is measured by the method described in Examples.
  • the maximum height roughness Rz of the surface of the polymer layer composed of the latex composition for dip molding of the present invention is preferably 135 to 350 ⁇ m, more preferably 155 to 320 ⁇ m, It is more preferably 180-310 ⁇ m, particularly preferably 230-300 ⁇ m, and most preferably 260-295 ⁇ m.
  • the surface arithmetic mean roughness Ra of the polymer layer composed of the latex composition for dip molding of the present invention is preferably 20 to 72 ⁇ m, more preferably 25 to 65 ⁇ m, and further It is preferably 30-60 ⁇ m, particularly preferably 35-55 ⁇ m.
  • the surface of the polymer layer comprising the latex composition for dip molding of the present invention has a load area ratio at 50% height of preferably 20 to 80%, more preferably 30 to 30%. 70%, more preferably 35 to 60%, particularly preferably 40 to 52%.
  • the 50% height is the average height of the maximum height (100% height) and the minimum height (0% height) in the measurement area
  • the load area ratio at 50% height is the measurement It is the projected area ratio of the portion where the height is higher than 50% in the area.
  • the surface roughness of the polymer layer (maximum height roughness Rz, arithmetic mean roughness Ra, load area ratio at 50% height) is the height data of the surface of the polymer layer obtained using a laser microscope. Ask from Maximum height roughness Rz and arithmetic mean roughness Ra are obtained according to JIS B 0601:2013.
  • the load area ratio at 50% height is obtained from the obtained height data, 50% height (average height of maximum height (100% height) and minimum height (0% height)) After calculating , it is obtained by calculating the projected area ratio of the portion whose height is higher than 50% in the measurement area. Specifically, it is determined by the method described in Examples.
  • the dip-molded article of the present invention has excellent resistance to chemical liquid permeation, and is excellent in well-balanced wet grip properties and flexibility. For example, it can be suitably used for gloves, particularly for protective gloves. .
  • the dip-molded product of the present invention is a laminate of a substrate and a polymer layer made of the latex composition for dip molding of the present invention has been exemplified and explained.
  • the present invention is not limited to such an embodiment, and is a film molded article made of a latex composition for dip molding, which is obtained by immersing a dip mold in the latex composition for dip molding. Of course, it is also possible.
  • a glove that is a laminate of a base material and a polymer layer made of a latex composition for dip molding tends to have a large thickness (thickness of the entire laminate of the base material and the polymer layer).
  • grip performance tends to be insufficient.
  • volume-average particle size of the polymer particles constituting the polymer latex was measured using a light scattering diffraction particle measuring device (manufactured by Coulter, trade name "LS-230").
  • ⁇ Surface tension of polymer latex> A surface tension meter (DY-300, manufactured by Kyowa Interface Science Co., Ltd.) was used to measure the surface tension of the polymer latex. Measured values are expressed in units of mN/m. Measurements were performed at 25°C.
  • ⁇ Difference between surface tension of polymer latex and surface tension of anionic surfactant> The surface tension of the polymer latex was measured by the method described above.
  • a 5.0% by weight aqueous solution of the anionic surfactant (compound (a), compound (b1), compound (b2)) used in each production example was prepared, and a surface tensiometer (DY-300, Kyowa interface (manufactured by Kagaku Co., Ltd.) was used to measure the surface tension (the surface tension of the surfactant). Measurements were performed at 25°C.
  • ⁇ Content of surfactant in latex composition for dip molding The content of the surfactant in the latex composition for dip molding was calculated from the amount of surfactant used in each production example, the polymerization conversion rate in each production example, and the compounding ratio in each example.
  • Tensilon universal testing machine (trade name "RTG-1210", manufactured by Orientec) was used to measure the 100% tensile stress of the test piece at a tensile speed of 500 mm / min. 100% tensile stress (100% tensile stress of the polymer layer).
  • the surface roughness of the polymer layer of the protective glove (maximum height roughness Rz, arithmetic mean roughness Ra, load area ratio at 50% height) is measured using a laser microscope (Keyence VK-X100) as follows. conditions were used to obtain height data for the surface of the polymer layer of the protective glove. Then, using analysis software ("surface roughness" measurement function of VK shape analysis application VK-H1XJ manufactured by Keyence Corporation), from the obtained height data, according to JIS B 0601: 2013, the maximum height roughness Rz and arithmetic mean roughness Ra were obtained.
  • the oil permeation amount of protective gloves was measured by the following procedure. (1) A finger-shaped test piece was obtained by cutting out the index finger portion of the protective glove (laminate). (2) Put test oil IRM903 into an aluminum cup. (3) A filter paper (weight: W 1 ) was placed inside the test piece, and the inner surface of the portion of the test piece corresponding to the pad of the finger (the portion with an area of about 2 to 5 cm 2 ) was brought into close contact with the filter paper. .
  • protective glove A A dip molded product (laminate) having a base material and a polymer layer, which was obtained without a step of foaming the polymer layer or a surface treatment step after molding the dip layer. It is.
  • the protective glove A has excellent flexibility, but does not have wet grip properties at all.
  • Protective glove B A dip molded article (laminate) having a base material and a polymer layer, obtained through a surface treatment step after molding the dip layer.
  • the protective glove B has relatively high wet grip properties.
  • ⁇ Production Example 1> (Production of latex of polybutyl acrylate (A-1)) Into a 5 MPa pressure vessel equipped with a stirrer, 100 parts of n-butyl acrylate as an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester monomer and sodium alkyldiphenyl ether disulfonate (sodium dodecyldiphenyl ether disulfonate as a main component) were added as a compound (b1).
  • ⁇ Production Example 2> (Production of latex of carboxyl group-containing nitrile rubber (A-2)) A polymerization reactor was charged with 67.5 parts of 1,3-butadiene as a conjugated diene monomer, 27 parts of acrylonitrile as an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer, and methacryl as an ethylenically unsaturated monocarboxylic acid monomer.
  • a latex of group-containing nitrile rubber (A-2) was obtained.
  • the carboxyl group-containing nitrile rubber (A-2) contained in the obtained carboxyl group-containing nitrile rubber (A-2) latex had a glass transition temperature (Tg) of -24°C.
  • Tg glass transition temperature
  • the monomer composition of A-2) was almost the same as the charging ratio. Measurements were carried out in the same manner as in Production Example 1 using the carboxyl group-containing nitrile rubber (A-2) latex. Table 1 shows the results.
  • ⁇ Production Example 3> (Production of Latex of Carboxyl Group-Containing Nitrile Rubber (A-3) Containing Methyl Methacrylate Units) 1,3-Butadiene was changed to 47.3 parts, acrylonitrile to 18.8 parts, methacrylic acid to 3.9 parts, and, together with these monomers, ⁇ , ⁇ -ethylenically unsaturated A carboxyl group containing a methyl methacrylate unit having a solid content concentration of 40% by weight and a pH of 8 was prepared in the same manner as in Production Example 2, except that 30 parts of methyl methacrylate was charged to the polymerization reactor as a monocarboxylic acid ester monomer.
  • a latex containing nitrile rubber (A-3) was obtained.
  • the glass transition temperature (Tg) of the carboxyl group-containing nitrile rubber (A-3) containing methyl methacrylate units contained in the obtained latex of the carboxyl group-containing nitrile rubber (A-3) containing methyl methacrylate units is The temperature was ⁇ 14° C., and the monomer composition of the carboxyl group-containing nitrile rubber (A-3) containing methyl methacrylate units was substantially the same as the charging ratio. Measurements were performed in the same manner as in Production Example 1 using a latex of carboxyl group-containing nitrile rubber (A-3) containing methyl methacrylate units. Table 1 shows the results.
  • Examples 1 to 8 and Comparative Example 1> Preparation of aqueous dispersion of colloidal sulfur
  • Colloidal sulfur manufactured by Hosoi Chemical Industry Co., Ltd.
  • dispersant manufactured by Kao Corporation, trade name "Demoll N"
  • potassium hydroxide aqueous solution manufactured by Wako Pure Chemical Industries
  • 0015 parts and 1.0 part of water were pulverized and stirred in a ball mill for 48 hours to prepare an aqueous dispersion of colloidal sulfur having a solid concentration of 50% by weight.
  • carboxymethyl cellulose manufactured by Daicel Corporation, trade name "Daicel 2200", weight average molecular weight: 550,000
  • a latex composition for dip molding having a solid concentration of 40% by weight was obtained.
  • the content of the surfactant in the latex composition for dip molding was determined. Table 2 shows the results.
  • a coagulant solution was prepared by dissolving 2.0% by weight of calcium nitrate as a coagulant in methanol.
  • the latex composition for dip molding obtained above was aged (also referred to as prevulcanization) at a temperature of 30° C. for 48 hours.
  • a ceramic glove mold covered with a glove-shaped fiber base material material: nylon, linear density: 300 denier, gauge number: 13 gauge, thickness: 0.8 mm
  • the ceramic glove mold is immersed in the aged dip molding latex composition for 5 seconds, pulled out from the aged dip molding latex composition, and dried at a temperature of 25° C. for 20 minutes.
  • a dip layer was formed on the fiber substrate.
  • the ceramic glove mold with the dip layer formed thereon was subjected to heat treatment at a temperature of 110° C. for 30 minutes to crosslink the polymer in the dip layer, thereby forming a polymer layer.
  • the fiber base material on which the polymer layer was formed was peeled off from the ceramic glove mold to obtain a protective glove (dip molding).
  • the thickness of the polymer layer was 0.15 mm
  • the thickness of the protective glove thickness of the protective glove (thickness of the entire laminate including the substrate and the polymer layer) was 1.0 mm.
  • the surface roughness of the polymer layer (maximum height roughness Rz, arithmetic mean roughness Ra, load area ratio at 50% height), wet grip properties of protective gloves, protective gloves
  • Table 2 shows the results.
  • the foaming step of the latex composition and the surface processing step after forming the dip layer water-soluble metal salt is attached to the surface of the dip layer and dried if necessary).
  • cross-linking, etc., followed by washing away water-soluble metal salts attached to the surface) excellent chemical permeation resistance, excellent wet grip and flexibility in a well-balanced dip molding. I was able to get a body
  • a latex composition for dip molding containing a polymer latex and an anionic surfactant, wherein the anionic surfactant has one anionic group and an aromatic ring. and a compound (b1) having two or more anionic groups and a benzene ring or a compound (b2) having one anionic group and no aromatic ring.
  • the obtained dip-molded articles had excellent resistance to chemical liquid permeation, and were excellent in well-balanced wet grip and flexibility (Examples 1 to 8).

Abstract

Provided is a latex composition which is for dip molding and from which it is possible to provide a dip-molded article that has excellent drug solution permeation resistance and that has an excellent balance between flexibility and wet-grip ability. Provided is a latex composition for dip molding, containing an anionic surfactant and a latex which is a polymer. The anionic surfactant contains: a compound (a) having an aromatic ring and one anionic group; and a compound (b1) having a benzene ring and having at least two anionic groups or a compound (b2) not having an aromatic ring but having one anionic group.

Description

ディップ成形用ラテックス組成物およびディップ成形体Latex composition for dip molding and dip molded product
 本発明は、ディップ成形用ラテックス組成物に関し、さらに詳しくは、優れた耐薬液透過性を備え、ウェットグリップ性および柔軟性にバランス良く優れたディップ成形体を与えることができるディップ成形用ラテックス組成物に関する。 TECHNICAL FIELD The present invention relates to a latex composition for dip molding, and more particularly, a latex composition for dip molding that is capable of providing a dip-molded article having excellent chemical permeation resistance and well-balanced wet grip and flexibility. Regarding.
 従来、工場での製造作業、軽作業、工事作業、農作業等の様々な用途で、繊維製手袋をゴムや樹脂等により被覆することで、耐溶剤性、グリップ性、耐摩耗性等を向上させた保護手袋が用いられている。 Conventionally, in various applications such as manufacturing work in factories, light work, construction work, and agricultural work, fiber gloves are coated with rubber, resin, etc. to improve solvent resistance, grip, abrasion resistance, etc. Protective gloves are used.
 このような保護手袋は、耐摩耗性などの機械的強度や耐久性に優れていることに加え、柔軟性に優れていることが求められている。また、保護手袋は、オイル等の薬液に濡れた状態で用いられることも多いため、薬液付着時のウェットグリップ性や、耐薬液透過性に優れていることも求められている。 Such protective gloves are required to have excellent mechanical strength and durability, such as abrasion resistance, as well as excellent flexibility. In addition, since protective gloves are often used in a state where they are wet with chemical solutions such as oil, they are also required to have excellent wet grip properties when the chemical solution is attached and resistance to chemical solution permeation.
 たとえば、特許文献1には、1,3-ブタジエン50~80重量%、アクリロニトリル15~50重量%、エチレン性不飽和カルボン酸系単量体0~10重量%、およびこれらと共重合可能なエチレン性不飽和単量体0~35重量%からなる単量体を乳化重合して得られる共重合体ラテックスであって、共重合体ラテックスの固形分30重量%におけるPH=9とPH=3の表面張力の差が6mN/m以上あり、かつメチルエチルケトン(MEK)不溶分が50%以上であるディップ成形用共重合体ラテックスが記載されている。 For example, Patent Document 1 describes 50 to 80% by weight of 1,3-butadiene, 15 to 50% by weight of acrylonitrile, 0 to 10% by weight of an ethylenically unsaturated carboxylic acid monomer, and ethylene copolymerizable therewith. A copolymer latex obtained by emulsion polymerization of a monomer consisting of 0 to 35% by weight of a polyunsaturated monomer, wherein PH=9 and PH=3 at a solid content of 30% by weight of the copolymer latex. A copolymer latex for dip molding is described which has a surface tension difference of 6 mN/m or more and a methyl ethyl ketone (MEK) insoluble content of 50% or more.
特開2005-336273号公報JP-A-2005-336273
 特許文献1の技術では、得られるディップ成形体のウェットグリップ性が十分ではなかった。優れた耐薬液透過性を備え、ウェットグリップ性および柔軟性にバランス良く優れたディップ成形体を与えることができるディップ成形用ラテックス組成物が求められた。 With the technique of Patent Document 1, the obtained dip-molded product did not have sufficient wet grip. A latex composition for dip molding has been desired which has excellent resistance to chemical liquid permeation and which can give dip-molded articles having excellent wet grip properties and flexibility in a well-balanced manner.
 本発明は、このような実状に鑑みてなされたものであり、優れた耐薬液透過性を備え、ウェットグリップ性および柔軟性にバランス良く優れたディップ成形体を与えることができるディップ成形用ラテックス組成物を提供することを目的とする。また、本発明は、優れた耐薬液透過性を備え、ウェットグリップ性および柔軟性にバランス良く優れたディップ成形体を提供することも目的とする。 The present invention has been made in view of such circumstances, and a latex composition for dip molding that is capable of providing a dip-molded article having excellent resistance to permeation of chemical solutions and having a good balance between wet grip properties and flexibility. The purpose is to provide goods. Another object of the present invention is to provide a dip-molded article which has excellent chemical liquid permeation resistance and which has a good balance between wet grip properties and flexibility.
 本発明者は、上記課題を解決すべく鋭意研究した結果、特定のアニオン性界面活性剤を組み合わせて使用することにより、上記課題を解決できることを見出し、本発明を完成させるに至った。 As a result of intensive research aimed at solving the above problems, the inventors found that the above problems can be solved by using a combination of specific anionic surfactants, and have completed the present invention.
 すなわち、本発明によれば、重合体のラテックスとアニオン性界面活性剤とを含有するディップ成形用ラテックス組成物であって、前記アニオン性界面活性剤が、アニオン性基を1個有し芳香環を有する化合物(a)と、アニオン性基を2個以上有しベンゼン環を有する化合物(b1)またはアニオン性基を1個有し芳香環を有さない化合物(b2)と、を含有するディップ成形用ラテックス組成物が提供される。 That is, according to the present invention, there is provided a dip-forming latex composition containing a polymer latex and an anionic surfactant, wherein the anionic surfactant has one anionic group and an aromatic ring. and a compound (b1) having two or more anionic groups and a benzene ring, or a compound (b2) having one anionic group and no aromatic ring. A molding latex composition is provided.
 本発明のディップ成形用ラテックス組成物において、前記化合物(b1)が、アニオン性基を2個有しベンゼン環を有する化合物であることが好ましく、アルキルジフェニルエーテルジスルホン酸塩であることがより好ましい。
 本発明のディップ成形用ラテックス組成物において、前記化合物(b2)が、アルキル硫酸エステル塩であることが好ましい。
 本発明のディップ成形用ラテックス組成物において、前記化合物(a)が、スルホン酸塩または硫酸エステル塩であり、かつ、前記化合物(b1)または前記化合物(b2)の少なくとも一方が、スルホン酸塩または硫酸エステル塩であることが好ましい。
 本発明のディップ成形用ラテックス組成物において、化合物(a)の含有量が、ディップ成形用ラテックス組成物中に含まれる重合体成分100重量部に対して、0.1~5.0重量部であることが好ましい。
 本発明のディップ成形用ラテックス組成物において、化合物(b1)の含有量と化合物(b2)の含有量の合計が、ディップ成形用ラテックス組成物中に含まれる重合体成分100重量部に対して、0.1~10.0重量部であることが好ましい。
 本発明のディップ成形用ラテックス組成物において、化合物(a)の含有量と、化合物(b1)および化合物(b2)の合計の含有量の重量比〔化合物(a)の重量:化合物(b1)および化合物(b2)の合計の重量〕が、5:95~95:5であることが好ましい。
 本発明のディップ成形用ラテックス組成物において、前記化合物(a)が、アルキルベンゼンスルホン酸塩であることが好ましい。
 本発明のディップ成形用ラテックス組成物において、前記重合体のラテックスが、ニトリル基含有共役ジエン系重合体のラテックスであることが好ましい。
In the dip molding latex composition of the present invention, the compound (b1) is preferably a compound having two anionic groups and a benzene ring, more preferably an alkyldiphenylether disulfonate.
In the dip molding latex composition of the present invention, the compound (b2) is preferably an alkyl sulfate.
In the latex composition for dip molding of the present invention, the compound (a) is a sulfonate or a sulfate ester salt, and at least one of the compound (b1) and the compound (b2) is a sulfonate or Sulfuric acid ester salts are preferred.
In the latex composition for dip molding of the present invention, the content of compound (a) is 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the polymer component contained in the latex composition for dip molding. Preferably.
In the latex composition for dip molding of the present invention, the total content of the compound (b1) and the content of the compound (b2) is It is preferably 0.1 to 10.0 parts by weight.
In the latex composition for dip molding of the present invention, the weight ratio of the content of compound (a) to the total content of compound (b1) and compound (b2) [weight of compound (a): compound (b1) and The total weight of compound (b2)] is preferably from 5:95 to 95:5.
In the dip molding latex composition of the present invention, the compound (a) is preferably an alkylbenzenesulfonate.
In the dip molding latex composition of the present invention, the polymer latex is preferably a nitrile group-containing conjugated diene polymer latex.
 また、本発明によれば、上記のディップ成形用ラテックス組成物を用いてなるディップ成形体が提供される。
 本発明のディップ成形体は、手袋であることが好ましい。
Further, according to the present invention, there is provided a dip-molded article using the dip-molding latex composition.
The dip molded article of the present invention is preferably a glove.
 本発明によれば、優れた耐薬液透過性を備え、ウェットグリップ性および柔軟性にバランス良く優れたディップ成形体を与えることができるディップ成形用ラテックス組成物を提供することができる。また、本発明によれば、優れた耐薬液透過性を備え、ウェットグリップ性および柔軟性にバランス良く優れたディップ成形体を提供することができる。 According to the present invention, it is possible to provide a latex composition for dip molding that has excellent chemical liquid permeation resistance and can give a dip molded article that has an excellent balance of wet grip properties and flexibility. In addition, according to the present invention, it is possible to provide a dip-molded article which has excellent resistance to chemical liquid permeation and which has a good balance between wet grip properties and flexibility.
 本発明のディップ成形用ラテックス組成物は、重合体のラテックスとアニオン性界面活性剤とを含有するディップ成形用ラテックス組成物であって、前記アニオン性界面活性剤が、アニオン性基を1個有し芳香環を有する化合物(a)と、アニオン性基を2個以上有しベンゼン環を有する化合物(b1)またはアニオン性基を1個有し芳香環を有さない化合物(b2)と、を含有するディップ成形用ラテックス組成物である。 The dip-forming latex composition of the present invention is a dip-forming latex composition containing a polymer latex and an anionic surfactant, wherein the anionic surfactant has one anionic group. A compound (a) having an aromatic ring and a compound (b1) having two or more anionic groups and a benzene ring or a compound (b2) having one anionic group and no aromatic ring It is a latex composition for dip molding containing.
<重合体のラテックス>
 本発明のディップ成形用ラテックス組成物は、重合体のラテックスを含有する。
<Polymer latex>
The dip molding latex composition of the present invention contains a polymer latex.
 重合体のラテックスを構成する重合体としては、特に限定されないが、たとえば、ニトリルゴム(NBR)、天然ゴム(NR)、スチレン-ブタジエンゴム(SBR)、合成ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレン-イソプレン共重合ゴム、スチレン-イソプレン-スチレン共重合ゴム等の共役ジエン系重合体、ポリブチルアクリレート、ブチルゴム(IIR)などが挙げられる。これらのなかでも、本発明の効果がより顕著になるという観点から、合成ゴムが好ましく、ニトリルゴム(NBR)、スチレン-ブタジエンゴム(SBR)、合成ポリイソプレンゴム(IR)、ポリブチルアクリレートがより好ましく、NBRなどのニトリル基を含有する共役ジエン系重合体(以下、適宜、「ニトリル基含有共役ジエン系重合体」とする。)がさらに好ましい。なお、これらの共役ジエン系重合体は、カルボキシル基を含有する共役ジエン系重合体(以下、適宜、「カルボキシル基含有共役ジエン系重合体」とする。)であってもよい。 The polymer constituting the polymer latex is not particularly limited, but examples include nitrile rubber (NBR), natural rubber (NR), styrene-butadiene rubber (SBR), synthetic polyisoprene rubber (IR), polybutadiene rubber ( BR), styrene-isoprene copolymer rubber, styrene-isoprene-styrene copolymer rubber and other conjugated diene polymers, polybutyl acrylate, butyl rubber (IIR), and the like. Among these, synthetic rubber is preferable from the viewpoint that the effect of the present invention becomes more remarkable, and nitrile rubber (NBR), styrene-butadiene rubber (SBR), synthetic polyisoprene rubber (IR), and polybutyl acrylate are more preferable. Conjugated diene polymers containing nitrile groups such as NBR (hereinafter referred to as "nitrile group-containing conjugated diene polymers" as appropriate) are more preferred. These conjugated diene polymers may be conjugated diene polymers containing carboxyl groups (hereinafter referred to as "carboxyl group-containing conjugated diene polymers" as appropriate).
 ニトリル基含有共役ジエン系重合体としては、特に限定されないが、たとえば、α,β-エチレン性不飽和ニトリル単量体、および共役ジエン単量体、ならびに、必要に応じて用いられる共重合可能なその他のエチレン性不飽和酸単量体を共重合したものを用いることができる。 The nitrile group-containing conjugated diene-based polymer is not particularly limited. A copolymer obtained by copolymerizing other ethylenically unsaturated acid monomers can be used.
 α,β-エチレン性不飽和ニトリル単量体としては、特に限定されないが、ニトリル基を有し、炭素数が、好ましくは3~18であるエチレン性不飽和化合物を用いることができる。このようなα,β-エチレン性不飽和ニトリル単量体としては、たとえば、アクリロニトリル、メタクリロニトリル、ハロゲン置換アクリロニトリルなどが挙げられ、これらの中でも、アクリロニトリルが特に好ましい。なお、これらのα,β-エチレン性不飽和ニトリル単量体は、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。 The α,β-ethylenically unsaturated nitrile monomer is not particularly limited, but an ethylenically unsaturated compound having a nitrile group and preferably having 3 to 18 carbon atoms can be used. Such α,β-ethylenically unsaturated nitrile monomers include, for example, acrylonitrile, methacrylonitrile, halogen-substituted acrylonitrile, etc. Among these, acrylonitrile is particularly preferred. These α,β-ethylenically unsaturated nitrile monomers may be used singly or in combination of two or more.
 ニトリル基含有共役ジエン系重合体におけるα,β-エチレン性不飽和ニトリル単量体単位の含有割合は、得られるディップ成形体の柔軟性および耐溶剤性の観点から、全単量体単位に対して、好ましくは10~45重量%であり、より好ましくは15~40重量%であり、さらに好ましくは20~40重量%である。 The content ratio of the α,β-ethylenically unsaturated nitrile monomer units in the nitrile group-containing conjugated diene polymer is, from the viewpoint of the flexibility and solvent resistance of the resulting dip-molded product, relative to the total monomer units. , preferably 10 to 45% by weight, more preferably 15 to 40% by weight, still more preferably 20 to 40% by weight.
 共役ジエン単量体としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、クロロプレンなどの炭素数4~6の共役ジエン単量体が好ましく、1,3-ブタジエンおよびイソプレンがより好ましく、1,3-ブタジエンが特に好ましい。なお、これらの共役ジエン単量体は、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。 As the conjugated diene monomer, a conjugated diene monomer having 4 to 6 carbon atoms such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and chloroprene is preferable. , 1,3-butadiene and isoprene are more preferred, and 1,3-butadiene is particularly preferred. These conjugated diene monomers may be used singly or in combination of two or more.
 ニトリル基含有共役ジエン系重合体における共役ジエン単量体単位の含有割合は、得られるディップ成形体の柔軟性の観点から、全単量体単位に対して、好ましくは40~89.9重量%、より好ましくは50~84重量%であり、さらに好ましくは52~78重量%であり、特に好ましくは55~75重量%である。 The content of conjugated diene monomer units in the nitrile group-containing conjugated diene polymer is preferably 40 to 89.9% by weight based on the total monomer units from the viewpoint of the flexibility of the resulting dip molded product. , more preferably 50 to 84% by weight, still more preferably 52 to 78% by weight, and particularly preferably 55 to 75% by weight.
 また、ニトリル基含有共役ジエン系重合体は、α,β-エチレン性不飽和ニトリル単量体単位を形成する単量体、および共役ジエン単量体単位を形成する単量体と、共重合可能なその他のエチレン性不飽和酸単量体とを共重合したものであってもよい。 Further, the nitrile group-containing conjugated diene polymer can be copolymerized with a monomer forming an α,β-ethylenically unsaturated nitrile monomer unit and a monomer forming a conjugated diene monomer unit. may be copolymerized with other ethylenically unsaturated acid monomers.
 このような共重合可能なその他のエチレン性不飽和酸単量体としては、特に限定されないが、たとえば、スチレン、アルキルスチレン、ビニルナフタレン等のビニル芳香族単量体、カルボキシル基含有エチレン性不飽和単量体、モノカルボン酸エステル基含有エチレン性不飽和単量体、ジカルボン酸ジエステル基含有エチレン性不飽和単量体、スルホン酸基含有エチレン性不飽和単量体、リン酸基含有エチレン性不飽和単量体などが挙げられ、これらの中でも、ニトリル基含有共役ジエン系重合体を、カルボキシル基を含有するものとすることができ、その結果、得られるディップ成形体を、機械的特性に優れたものとすることができるという観点より、カルボキシル基含有エチレン性不飽和単量体が好ましい。重合体のラテックスを構成する重合体は、たとえば、α,β-エチレン性不飽和ニトリル単量体単位、ニトリル基含有共役ジエン系重合体における共役ジエン単量体単位およびカルボキシル基含有エチレン性不飽和単量体のみからなる重合体であってよい。 Such other copolymerizable ethylenically unsaturated acid monomers are not particularly limited, but examples include vinyl aromatic monomers such as styrene, alkylstyrene, and vinylnaphthalene, monomers, monocarboxylic acid ester group-containing ethylenically unsaturated monomers, dicarboxylic acid diester group-containing ethylenically unsaturated monomers, sulfonic acid group-containing ethylenically unsaturated monomers, phosphoric acid group-containing ethylenically unsaturated monomers Among them, the nitrile group-containing conjugated diene polymer can be one containing a carboxyl group, and as a result, the resulting dip-molded article has excellent mechanical properties. A carboxyl group-containing ethylenically unsaturated monomer is preferable from the viewpoint that it can be Polymers constituting the polymer latex include, for example, α,β-ethylenically unsaturated nitrile monomer units, conjugated diene monomer units in nitrile group-containing conjugated diene polymers, and carboxyl group-containing ethylenically unsaturated It may be a polymer consisting of only monomers.
 カルボキシル基含有エチレン性不飽和単量体としては、特に限定されないが、アクリル酸、メタクリル酸、クロトン酸等のエチレン性不飽和モノカルボン酸;フマル酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等のエチレン性不飽和多価カルボン酸およびその無水物;マレイン酸メチル、イタコン酸メチル等のエチレン性不飽和多価カルボン酸の部分エステル化物;などが挙げられる。ニトリル基含有共役ジエン系重合体に、カルボキシル基含有エチレン性不飽和単量体の単位を含有させる場合における、カルボキシル基含有エチレン性不飽和単量体の単位の含有割合は、全単量体単位に対して、好ましくは0.1~15重量%であり、より好ましくは1~10重量%、さらに好ましくは2~8重量%である。 The carboxyl group-containing ethylenically unsaturated monomer is not particularly limited, but ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, crotonic acid; fumaric acid, maleic acid, itaconic acid, maleic anhydride, anhydride ethylenically unsaturated polycarboxylic acids such as itaconic acid and anhydrides thereof; partially esterified products of ethylenically unsaturated polycarboxylic acids such as methyl maleate and methyl itaconate; and the like. In the case where the nitrile group-containing conjugated diene polymer contains the unit of the carboxyl group-containing ethylenically unsaturated monomer, the content ratio of the unit of the carboxyl group-containing ethylenically unsaturated monomer is the total monomer unit , preferably 0.1 to 15 wt%, more preferably 1 to 10 wt%, still more preferably 2 to 8 wt%.
 モノカルボン酸エステル基含有エチレン性不飽和単量体としては、特に限定されないが、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル等のメタクリル酸エステル;クロトン酸メチル等のクロトン酸エステル;などが挙げられる。なかでも、アクリル酸エステル、メタクリル酸エステルが好ましく、アクリル酸メチル、メタクリル酸メチルがより好ましい。 The monocarboxylic acid ester group-containing ethylenically unsaturated monomer is not particularly limited, but acrylic acid esters such as methyl acrylate, ethyl acrylate and n-butyl acrylate; methyl methacrylate, ethyl methacrylate, methacrylic acid; methacrylic acid esters such as n-butyl; crotonic acid esters such as methyl crotonate; and the like. Among them, acrylic acid esters and methacrylic acid esters are preferred, and methyl acrylate and methyl methacrylate are more preferred.
 ジカルボン酸ジエステル基含有エチレン性不飽和単量体としては、特に限定されないが、マレイン酸ジメチル等のマレイン酸ジエステル;イタコン酸メチル等のイタコン酸ジエステル;などが挙げられる。 Examples of the dicarboxylic acid diester group-containing ethylenically unsaturated monomer include, but are not limited to, maleic acid diesters such as dimethyl maleate; itaconic acid diesters such as methyl itaconate; and the like.
 スルホン酸基含有エチレン性不飽和単量体としては、特に限定されないが、ビニルスルホン酸、メチルビニルスルホン酸、スチレンスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-ヒドロキシプロパンスルホン酸などが挙げられる。 The sulfonic acid group-containing ethylenically unsaturated monomer is not particularly limited, but vinylsulfonic acid, methylvinylsulfonic acid, styrenesulfonic acid, (meth)allylsulfonic acid, ethyl (meth)acrylic acid-2-sulfonate. , 2-acrylamido-2-hydroxypropanesulfonic acid and the like.
 リン酸基含有エチレン性不飽和単量体としては、特に限定されないが、(メタ)アクリル酸-3-クロロ-2-リン酸プロピル、(メタ)アクリル酸-2-リン酸エチル、3-アリロキシ-2-ヒドロキシプロパンリン酸などが挙げられる。 Examples of the phosphate group-containing ethylenically unsaturated monomer include, but are not limited to, propyl (meth)acrylate-3-chloro-2-phosphate, ethyl (meth)acrylate-2-phosphate, 3-allyloxy -2-hydroxypropane phosphate and the like.
 これらの共重合可能なその他のエチレン性不飽和酸単量体は、アルカリ金属塩またはアンモニウム塩として用いることもでき、また、1種単独を用いてもよく、2種以上を組み合わせて用いてもよい。上記の共重合可能なその他のエチレン性不飽和酸単量体のなかでも、カルボキシル基含有エチレン性不飽和単量体が好ましく、エチレン性不飽和モノカルボン酸がより好ましく、アクリル酸、メタクリル酸がさらに好ましく、メタクリル酸が特に好ましい。 These other copolymerizable ethylenically unsaturated acid monomers may be used as alkali metal salts or ammonium salts, and may be used singly or in combination of two or more. good. Among other copolymerizable ethylenically unsaturated acid monomers, carboxyl group-containing ethylenically unsaturated monomers are preferred, ethylenically unsaturated monocarboxylic acids are more preferred, and acrylic acid and methacrylic acid are preferred. More preferred, methacrylic acid is particularly preferred.
 ニトリル基含有共役ジエン系重合体に、共重合可能なその他のエチレン性不飽和酸単量体の単位を含有させる場合における、共重合可能なその他のエチレン性不飽和酸単量体の単位の含有割合(2種以上のエチレン性不飽和酸単量体を用いる場合には、その含有割合の合計)は、全単量体単位に対して、好ましくは0.1~45重量%であり、より好ましくは1~40重量%、さらに好ましくは2~38重量%である。 Containing units of other copolymerizable ethylenically unsaturated acid monomers in the case where the nitrile group-containing conjugated diene polymer contains units of other copolymerizable ethylenically unsaturated acid monomers The ratio (when using two or more ethylenically unsaturated acid monomers, the sum of the content ratios) is preferably 0.1 to 45% by weight with respect to the total monomer units, and more It is preferably 1 to 40% by weight, more preferably 2 to 38% by weight.
 重合体のラテックスは、たとえば、上記の単量体を含有してなる単量体混合物を乳化重合することにより得ることができる。乳化重合に際しては、乳化剤、重合開始剤、分子量調整剤等の重合副資材を使用することができる。 The polymer latex can be obtained, for example, by emulsion polymerization of a monomer mixture containing the above monomers. In emulsion polymerization, auxiliary materials for polymerization such as emulsifiers, polymerization initiators, and molecular weight modifiers can be used.
 乳化重合に用いる乳化剤としては、特に限定されないが、たとえば、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、および両性界面活性剤などが挙げられるが、アニオン性界面活性剤が好ましい。 The emulsifier used for emulsion polymerization is not particularly limited, and examples thereof include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants. preferable.
 乳化重合に用いるアニオン性界面活性剤の具体例としては、後述するアニオン性基を1個有し芳香環を有する化合物(a)、アニオン性基を2個以上有しベンゼン環を有する化合物(b1)、アニオン性基を1個有し芳香環を有さない化合物(b2)等が挙げられる。乳化重合に用いる乳化剤として、これらの化合物を用いることにより、これらの化合物を含有する重合体のラテックスを得ることができる。 Specific examples of the anionic surfactant used in emulsion polymerization include a compound (a) having one anionic group and an aromatic ring, and a compound (b1) having two or more anionic groups and a benzene ring, which will be described later. ), a compound (b2) having one anionic group and no aromatic ring, and the like. By using these compounds as an emulsifier for emulsion polymerization, a latex of a polymer containing these compounds can be obtained.
 乳化重合に用いる乳化剤の使用量は、使用する全単量体100重量部に対して、好ましくは0.5~10重量部、より好ましくは1~8重量部である。 The amount of emulsifier used in emulsion polymerization is preferably 0.5 to 10 parts by weight, more preferably 1 to 8 parts by weight, based on 100 parts by weight of all the monomers used.
 重合開始剤としては、特に限定されないが、ラジカル開始剤が好ましい。ラジカル開始剤としては、特に限定されないが、たとえば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;t-ブチルパーオキサイド、クメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、オクタノイルパーオキサイド、ジベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシイソブチレート等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル等のアゾ化合物;などが挙げられ、これらの中でも、無機過酸化物または有機過酸化物が好ましく、無機過酸化物がより好ましく、過硫酸塩が特に好ましい。これらの重合開始剤は、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。
 重合開始剤の使用量は、使用する全単量体100重量部に対して、好ましくは0.01~2重量部、より好ましくは0.05~1.5重量部である。
Although the polymerization initiator is not particularly limited, a radical initiator is preferred. Examples of radical initiators include, but are not limited to, inorganic peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, potassium perphosphate, and hydrogen peroxide; t-butyl peroxide, cumene hydroperoxide, p-menthane hydroperoxide, di-t-butyl peroxide, t-butyl cumyl peroxide, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, dibenzoyl peroxide, 3,5,5-trimethylhexanoyl organic peroxides such as peroxides and t-butyl peroxyisobutyrate; azo compounds such as azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, and methyl azobisisobutyrate; Among these, inorganic peroxides or organic peroxides are preferred, inorganic peroxides are more preferred, and persulfates are particularly preferred. These polymerization initiators may be used singly or in combination of two or more.
The amount of polymerization initiator to be used is preferably 0.01 to 2 parts by weight, more preferably 0.05 to 1.5 parts by weight, per 100 parts by weight of all the monomers used.
 分子量調整剤としては、特に限定されないが、たとえば、α-メチルスチレンダイマー;t-ドデシルメルカプタン、n-ドデシルメルカプタン、オクチルメルカプタン等のメルカプタン類;四塩化炭素、塩化メチレン、臭化メチレン等のハロゲン化炭化水素;テトラエチルチウラムダイサルファイド、ジペンタメチレンチウラムダイサルファイド、ジイソプロピルキサントゲンダイサルファイド等の含硫黄化合物;などが挙げられ、これらの中でも、メルカプタン類が好ましく、t-ドデシルメルカプタンがより好ましい。これらの分子量調整剤は、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。
 分子量調整剤の使用量は、その種類によって異なるが、使用する全単量体100重量部に対して、好ましくは0.1~1.5重量部、より好ましくは0.2~1.0重量部である。
Examples of molecular weight modifiers include, but are not limited to, α-methylstyrene dimer; mercaptans such as t-dodecylmercaptan, n-dodecylmercaptan and octylmercaptan; halogenated compounds such as carbon tetrachloride, methylene chloride and methylene bromide; hydrocarbons; sulfur-containing compounds such as tetraethylthiuram disulfide, dipentamethylenethiuram disulfide, and diisopropyl xanthogen disulfide; These molecular weight modifiers may be used singly or in combination of two or more.
The amount of the molecular weight modifier used varies depending on its type, but is preferably 0.1 to 1.5 parts by weight, more preferably 0.2 to 1.0 parts by weight, based on 100 parts by weight of the total monomers used. Department.
 乳化重合は、通常、水中で行なわれる。水の使用量は、使用する全単量体100重量部に対して、好ましくは80~500重量部、より好ましくは100~200重量部である。  Emulsion polymerization is usually carried out in water. The amount of water used is preferably 80 to 500 parts by weight, more preferably 100 to 200 parts by weight, per 100 parts by weight of all the monomers used.
 乳化重合に際し、必要に応じて、上記以外の重合副資材をさらに用いてもよい。重合副資材としては、キレート剤、分散剤、pH調整剤、脱酸素剤、粒子径調整剤等が挙げられ、これらの種類、使用量とも特に限定されない。 In emulsion polymerization, secondary polymerization materials other than the above may be used as necessary. Examples of auxiliary materials for polymerization include chelating agents, dispersants, pH adjusters, oxygen scavengers, particle size adjusters, and the like, and the types and amounts used are not particularly limited.
 単量体の添加方法としては、たとえば、反応容器に使用する単量体を一括して添加する方法、重合の進行に従って連続的または断続的に添加する方法、単量体の一部を添加して特定の転化率まで反応させ、その後、残りの単量体を連続的または断続的に添加して重合する方法等が挙げられ、いずれの方法を採用してもよい。単量体を混合して連続的または断続的に添加する場合、混合物の組成は、一定としても、あるいは変化させてもよい。
 また、各単量体は、使用する各種単量体を予め混合してから反応容器に添加しても、あるいは別々に反応容器に添加してもよい。
Methods of adding the monomers include, for example, a method of collectively adding the monomers used in the reaction vessel, a method of continuously or intermittently adding the monomers as the polymerization progresses, and a method of partially adding the monomers. reaction to a specific conversion rate, and then the remaining monomers are added continuously or intermittently for polymerization, and any method may be employed. When the monomers are mixed and added continuously or intermittently, the composition of the mixture can be constant or varied.
Further, each monomer may be added to the reaction vessel after previously mixing various monomers to be used, or may be added to the reaction vessel separately.
 乳化重合する際の重合温度は、特に限定されないが、通常、0~95℃であり、好ましくは5~70℃である。重合時間は、特に限定されないが、通常、5~40時間程度である。 The polymerization temperature during emulsion polymerization is not particularly limited, but is usually 0 to 95°C, preferably 5 to 70°C. The polymerization time is not particularly limited, but is usually about 5 to 40 hours.
 重合反応を停止した後、所望により、未反応の単量体を除去し、固形分濃度やpHを調整してもよい。 After stopping the polymerization reaction, if desired, unreacted monomers may be removed and the solid content concentration and pH may be adjusted.
 重合体のラテックスを構成する重合体のガラス転移温度は、本発明の効果がより顕著になるという観点から、好ましくは10℃以下であり、より好ましくは-55℃~5℃であり、さらに好ましくは-45~0℃であり、特に好ましくは-40~-10℃である。重合体のガラス転移温度を上記範囲とする方法としては、特に限定されないが、たとえば、重合体を構成する各単量体の単位の含有割合を上述した範囲とする方法などが挙げられる。 The glass transition temperature of the polymer constituting the latex of the polymer is preferably 10° C. or less, more preferably −55° C. to 5° C., still more preferably, from the viewpoint that the effect of the present invention becomes more remarkable. is -45 to 0°C, particularly preferably -40 to -10°C. A method for adjusting the glass transition temperature of the polymer to the above range is not particularly limited, but includes, for example, a method for adjusting the content ratio of each monomer unit constituting the polymer to the above range.
 また、重合体のラテックスを構成する重合体の粒子の体積平均粒子径は、本発明の効果がより顕著になるという観点から、好ましくは30~1000nm、より好ましくは50~500nm、さらに好ましくは70~200nmである。重合体のラテックスを構成する重合体の粒子の体積平均粒子径は、たとえば、光散乱回折粒子測定装置を用いて測定することができる。 Further, the volume average particle diameter of the polymer particles constituting the polymer latex is preferably 30 to 1000 nm, more preferably 50 to 500 nm, still more preferably 70, from the viewpoint that the effect of the present invention becomes more remarkable. ~200 nm. The volume-average particle size of the polymer particles constituting the polymer latex can be measured using, for example, a light scattering diffraction particle measuring device.
 重合体のラテックスの25℃における表面張力は、本発明の効果がより顕著になるという観点から、好ましくは20~70mN/m、より好ましくは25~60mN/m、さらに好ましくは30~50mN/mである。 The surface tension of the polymer latex at 25° C. is preferably 20 to 70 mN/m, more preferably 25 to 60 mN/m, still more preferably 30 to 50 mN/m, from the viewpoint that the effect of the present invention becomes more pronounced. is.
 重合体のラテックスの25℃における表面張力とアニオン性界面活性剤の25℃における表面張力との差は、本発明の効果がより顕著になるという観点から、好ましくは-10~15mN/m、より好ましくは-5~10mN/m、さらに好ましくは0~8mN/mである。 The difference between the surface tension of the polymer latex at 25°C and the surface tension of the anionic surfactant at 25°C is preferably -10 to 15 mN/m, more than It is preferably -5 to 10 mN/m, more preferably 0 to 8 mN/m.
 重合体のラテックスの25℃における表面張力、および、重合体のラテックスの25℃における表面張力とアニオン性界面活性剤の25℃における表面張力との差は、具体的には、実施例に記載の方法により測定する。 Specifically, the surface tension of the polymer latex at 25°C and the difference between the surface tension of the polymer latex at 25°C and the surface tension of the anionic surfactant at 25°C are described in Examples. method.
<アニオン性界面活性剤>
 本発明のディップ成形用ラテックス組成物は、重合体のラテックスに加えて、アニオン性界面活性剤を含有する。
<Anionic surfactant>
The dip molding latex composition of the present invention contains an anionic surfactant in addition to the polymer latex.
 本発明において用いるアニオン性界面活性剤は、アニオン性基を1個有し芳香環を有する化合物(a)と、アニオン性基を2個以上有しベンゼン環を有する化合物(b1)および/またはアニオン性基を1個有し芳香環を有さない化合物(b2)と、を含有する。 The anionic surfactants used in the present invention include a compound (a) having one anionic group and an aromatic ring, and a compound (b1) having two or more anionic groups and a benzene ring and/or an anion. and a compound (b2) having one functional group and no aromatic ring.
 アニオン性基を1個有し芳香環を有する化合物(a)(以下、適宜、「化合物(a)」とする。)は、アニオン性基を1個のみ有し、かつ、芳香環を有する化合物である。 Compound (a) having one anionic group and having an aromatic ring (hereinafter referred to as "compound (a)" as appropriate) is a compound having only one anionic group and having an aromatic ring is.
 化合物(a)が有するアニオン性基としては、カルボン酸基(-COOH)、カルボン酸塩基(-COOX)、スルホン酸基(-SOH)、スルホン酸塩基(-SOX)、硫酸エステル基(-OSOH)、硫酸エステル塩基(-OSOX)、リン酸基(-OP(=O)(OH))、リン酸塩基(-OP(=O)(OH)(OX)または-OP(=O)(OX))等が挙げられる。なお、式中、Xは、カチオンを構成する原子または分子である。Xとしては、リチウム、ナトリウム、カリウム、カルシウム、マグネシウム、アルミニウム等の金属原子、アンモニウム等が挙げられ、ナトリウム、カリウム、アンモニウムが好ましく、ナトリウムがより好ましい。化合物(a)が有するアニオン性基としては、スルホン酸塩基または硫酸エステル塩基が好ましく、スルホン酸塩基がより好ましく、スルホン酸ナトリウム基(-SONa)がさらに好ましい。すなわち、化合物(a)は、スルホン酸塩または硫酸エステル塩であることが好ましく、スルホン酸塩であることがより好ましく、スルホン酸ナトリウム塩であることがさらに好ましい。 Examples of the anionic group possessed by the compound (a) include a carboxylic acid group (--COOH), a carboxylic acid group (--COOX), a sulfonic acid group (--SO 3 H), a sulfonic acid group (--SO 3 X), and a sulfate ester. group (--OSO 3 H), sulfate ester group (--OSO 3 X), phosphate group (--OP(=O)(OH) 2 ), phosphate group (--OP(=O)(OH)(OX) or -OP(=O)(OX) 2 ) and the like. In the formula, X is an atom or molecule that constitutes a cation. Examples of X include metal atoms such as lithium, sodium, potassium, calcium, magnesium and aluminum, ammonium and the like, with sodium, potassium and ammonium being preferred, and sodium being more preferred. The anionic group possessed by the compound (a) is preferably a sulfonate group or a sulfate ester group, more preferably a sulfonate group, and still more preferably a sodium sulfonate group (--SO 3 Na). That is, compound (a) is preferably a sulfonate or a sulfate, more preferably a sulfonate, and even more preferably a sodium sulfonate.
 化合物(a)が有する芳香環としては、芳香族性を有する環であればよく、特に限定されないが、ベンゼン環等の非縮合芳香環、ナフタレン環等の縮合芳香環等が挙げられる。化合物(a)は、非縮合芳香環を有することが好ましく、化合物(a)における非縮合芳香環の数としては、特に限定されないが、1個が好ましい。化合物(a)が有する非縮合芳香環としては、ベンゼン環が好ましく、化合物(a)におけるベンゼン環の数としては、特に限定されないが、1個が好ましい。 The aromatic ring of the compound (a) is not particularly limited as long as it is a ring having aromaticity, but non-condensed aromatic rings such as benzene ring, condensed aromatic rings such as naphthalene ring, and the like can be mentioned. The compound (a) preferably has a non-condensed aromatic ring, and although the number of non-condensed aromatic rings in the compound (a) is not particularly limited, one is preferred. The non-condensed aromatic ring of the compound (a) is preferably a benzene ring, and although the number of benzene rings in the compound (a) is not particularly limited, one is preferred.
 化合物(a)は、アルキル基を有することが好ましい。化合物(a)がアルキル基を有する場合、化合物(a)におけるアルキル基の炭素数は、8~16であることが好ましく、10~14であることが好ましい。 The compound (a) preferably has an alkyl group. When compound (a) has an alkyl group, the alkyl group in compound (a) preferably has 8 to 16 carbon atoms, more preferably 10 to 14 carbon atoms.
 化合物(a)としては、デシルベンゼンスルホン酸ナトリウム、デシルベンゼンスルホン酸カリウム、ウンデシルベンゼンスルホン酸ナトリウム、ウンデシルベンゼンスルホン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム、トリデシルベンゼンスルホン酸ナトリウム、トリデシルベンゼンスルホン酸カリウム、テトラデシルベンゼンスルホン酸ナトリウム、テトラデシルベンゼンスルホン酸カリウム等のアルキルベンゼンスルホン酸塩が挙げられ、なかでも、本発明の効果がより顕著になるという観点から、アルキルベンゼンスルホン酸塩が好ましく、アルキルベンゼンスルホン酸ナトリウムが好ましく、ドデシルベンゼンスルホン酸ナトリウムが好ましい。化合物(a)は、1種単独で用いてもよく、2種以上を併用してもよい。 Examples of the compound (a) include sodium decylbenzenesulfonate, potassium decylbenzenesulfonate, sodium undecylbenzenesulfonate, potassium undecylbenzenesulfonate, sodium dodecylbenzenesulfonate, potassium dodecylbenzenesulfonate, and tridecylbenzenesulfonic acid. Alkylbenzenesulfonates such as sodium, potassium tridecylbenzenesulfonate, sodium tetradecylbenzenesulfonate, and potassium tetradecylbenzenesulfonate can be mentioned. Acid salts are preferred, sodium alkylbenzenesulfonate is preferred, sodium dodecylbenzenesulfonate is preferred. Compound (a) may be used alone or in combination of two or more.
 化合物(a)の分子量としては、本発明の効果がより顕著になるという観点から、100~600が好ましく、200~500がより好ましく、300~400がさらに好ましい。 The molecular weight of compound (a) is preferably from 100 to 600, more preferably from 200 to 500, even more preferably from 300 to 400, from the viewpoint that the effects of the present invention become more pronounced.
 本発明のディップ成形用ラテックス組成物は、化合物(a)に加えて、アニオン性基を2個以上有しベンゼン環を有する化合物(b1)および/またはアニオン性基を1個有し芳香環を有さない化合物(b2)を含有する。すなわち、本発明で用いるラテックス組成物は、化合物(a)に加えて、化合物(b1)または化合物(b2)のうち少なくとも一方を含むものであり、化合物(a)に加えて、化合物(b1)および化合物(b2)の両方を含んでもよい。本発明のディップ成形用ラテックス組成物は、本発明の効果がより顕著になるという観点から、化合物(a)に加えて、少なくとも化合物(b1)を含むことがより好ましい。 The latex composition for dip molding of the present invention comprises, in addition to the compound (a), a compound (b1) having two or more anionic groups and a benzene ring and/or an aromatic ring having one anionic group. It contains the compound (b2) that does not have That is, the latex composition used in the present invention contains at least one of the compound (b1) and the compound (b2) in addition to the compound (a), and in addition to the compound (a), the compound (b1) and compound (b2). The latex composition for dip molding of the present invention more preferably contains at least the compound (b1) in addition to the compound (a) from the viewpoint that the effects of the present invention become more remarkable.
 アニオン性基を2個以上有しベンゼン環を有する化合物(b1)(以下、適宜、「化合物(b1)」とする。)における、アニオン性基の数は、2個以上であればよく、特に限定されないが、2個であることが好ましい。 In the compound (b1) having two or more anionic groups and a benzene ring (hereinafter referred to as "compound (b1)" as appropriate), the number of anionic groups may be two or more, particularly Although not limited, the number is preferably two.
 化合物(b1)が有するアニオン性基としては、カルボン酸基(-COOH)、カルボン酸塩基(-COOX)、スルホン酸基(-SOH)、スルホン酸塩基(-SOX)、硫酸エステル基(-OSOH)、硫酸エステル塩基(-OSOX)、リン酸基(-OP(=O)(OH))、リン酸塩基(-OP(=O)(OH)(OX)または-OP(=O)(OX))等が挙げられる。なお、式中、Xは、カチオンを構成する原子または分子である。Xとしては、リチウム、ナトリウム、カリウム、カルシウム、マグネシウム、アルミニウム等の金属原子、アンモニウム等が挙げられ、ナトリウム、カリウム、アンモニウムが好ましく、ナトリウムがより好ましい。化合物(b1)が有するアニオン性基としては、スルホン酸塩基または硫酸エステル塩基が好ましく、スルホン酸塩基がより好ましく、スルホン酸ナトリウム基(-SONa)がさらに好ましい。すなわち、化合物(b1)は、スルホン酸塩または硫酸エステル塩であることが好ましく、スルホン酸塩であることがより好ましく、スルホン酸ナトリウム塩であることがさらに好ましい。化合物(b1)が有する2個以上のアニオン性基は、同一であってもよく、異なっていてもよいが、同一であることが好ましい。 Examples of the anionic group possessed by the compound (b1) include a carboxylic acid group (--COOH), a carboxylic acid group (--COOX), a sulfonic acid group (--SO 3 H), a sulfonic acid group (--SO 3 X), and a sulfate ester. group (--OSO 3 H), sulfate ester group (--OSO 3 X), phosphate group (--OP(=O)(OH) 2 ), phosphate group (--OP(=O)(OH)(OX) or -OP(=O)(OX) 2 ) and the like. In the formula, X is an atom or molecule that constitutes a cation. Examples of X include metal atoms such as lithium, sodium, potassium, calcium, magnesium and aluminum, ammonium and the like, with sodium, potassium and ammonium being preferred, and sodium being more preferred. The anionic group possessed by the compound (b1) is preferably a sulfonate group or a sulfate ester group, more preferably a sulfonate group, and still more preferably a sodium sulfonate group (--SO 3 Na). That is, compound (b1) is preferably a sulfonate or a sulfate ester salt, more preferably a sulfonate, and even more preferably a sodium sulfonate. The two or more anionic groups possessed by compound (b1) may be the same or different, but are preferably the same.
 化合物(b1)は、ベンゼン環を有する。化合物(b1)におけるベンゼン環の数としては、特に限定されないが、2個以上が好ましく、2個がより好ましい。化合物(b1)は、ベンゼン環以外の芳香環を有してもよい。ベンゼン環以外の芳香環としては、ヘテロ原子を含有する非縮合芳香環、ナフタレン環等の縮合芳香環等が挙げられる。化合物(b1)における、ベンゼン環以外の芳香環の数としては、2個以下が好ましく、1個以下がより好ましく、0個がさらに好ましい。すなわち、化合物(b1)は、ベンゼン環以外の芳香環を有さないことが好ましい。 The compound (b1) has a benzene ring. Although the number of benzene rings in the compound (b1) is not particularly limited, it is preferably two or more, more preferably two. Compound (b1) may have an aromatic ring other than the benzene ring. Examples of aromatic rings other than benzene rings include heteroatom-containing non-condensed aromatic rings and condensed aromatic rings such as naphthalene rings. The number of aromatic rings other than the benzene ring in the compound (b1) is preferably 2 or less, more preferably 1 or less, and still more preferably 0. That is, compound (b1) preferably does not have an aromatic ring other than a benzene ring.
 化合物(b1)は、エーテル結合を有することが好ましく、ジフェニルエーテル構造を有することがより好ましい。 The compound (b1) preferably has an ether bond, and more preferably has a diphenyl ether structure.
 化合物(b1)は、アルキル基を有することが好ましい。化合物(b1)がアルキル基を有する場合、化合物(b1)におけるアルキル基の炭素数は、8~16であることが好ましく、10~14であることが好ましい。 The compound (b1) preferably has an alkyl group. When compound (b1) has an alkyl group, the alkyl group in compound (b1) preferably has 8 to 16 carbon atoms, more preferably 10 to 14 carbon atoms.
 化合物(b1)としては、アルキルジフェニルエーテルジスルホン酸二ナトリウム、アルキルジフェニルエーテルジスルホン酸二カリウム、アルキルジフェニルエーテルジスルホン酸二アンモニウム等のアルキルジフェニルエーテルジスルホン酸塩が挙げられ、なかでも、本発明の効果がより顕著になるという観点から、アルキルジフェニルエーテルジスルホン酸二ナトリウムが好ましく、アルキル基の炭素数が8~16であるアルキルジフェニルエーテルジスルホン酸二ナトリウムがより好ましく、アルキル基の炭素数が10~14であるアルキルジフェニルエーテルジスルホン酸二ナトリウムがより好ましい。化合物(b1)は、1種単独で用いてもよく、2種以上を併用してもよい。 Examples of the compound (b1) include alkyldiphenylether disulfonates such as disodium alkyldiphenyletherdisulfonate, dipotassium alkyldiphenyletherdisulfonate, and diammonium alkyldiphenyletherdisulfonate. Among them, the effect of the present invention becomes more remarkable. From this point of view, disodium alkyldiphenyl ether disulfonate is preferable, disodium alkyldiphenylether disulfonate having an alkyl group having 8 to 16 carbon atoms is more preferable, and disodium alkyldiphenylether disulfonate having an alkyl group having 10 to 14 carbon atoms is preferable. Sodium is more preferred. Compound (b1) may be used alone or in combination of two or more.
 化合物(b1)の分子量としては、本発明の効果がより顕著になるという観点から、100~1000が好ましく、200~850がより好ましく、300~750がさらに好ましく、400~650が特に好ましい。 The molecular weight of compound (b1) is preferably from 100 to 1000, more preferably from 200 to 850, even more preferably from 300 to 750, and particularly preferably from 400 to 650, from the viewpoint that the effects of the present invention become more pronounced.
 アニオン性基を1個有し芳香環を有さない化合物(b2)(以下、適宜、「化合物(b2)」とする。)は、アニオン性基を1個のみ有し、かつ、芳香環を有さない化合物である。 A compound (b2) having one anionic group and no aromatic ring (hereinafter referred to as "compound (b2)" as appropriate) has only one anionic group and an aromatic ring It is a compound that does not have
 化合物(b2)が有するアニオン性基としては、カルボン酸基(-COOH)、カルボン酸塩基(-COOX)、スルホン酸基(-SOH)、スルホン酸塩基(-SOX)、硫酸エステル基(-OSOH)、硫酸エステル塩基(-OSOX)、リン酸基(-OP(=O)(OH))、リン酸塩基(-OP(=O)(OH)(OX)または-OP(=O)(OX))等が挙げられる。なお、式中、Xは、カチオンを構成する原子または分子である。Xとしては、リチウム、ナトリウム、カリウム、カルシウム、マグネシウム、アルミニウム等の金属原子、アンモニウム等が挙げられ、ナトリウム、カリウム、アンモニウムが好ましく、ナトリウムがより好ましい。化合物(b2)が有するアニオン性基としては、スルホン酸塩基または硫酸エステル塩基が好ましく、硫酸エステル塩基がより好ましく、硫酸エステルナトリウム基(-OSONa)がさらに好ましい。すなわち、化合物(b2)は、スルホン酸塩または硫酸エステル塩であることが好ましく、硫酸エステル塩であることがより好ましく、硫酸エステルナトリウム塩であることがさらに好ましい。 Examples of the anionic group possessed by the compound (b2) include a carboxylic acid group (--COOH), a carboxylic acid group (--COOX), a sulfonic acid group (--SO 3 H), a sulfonic acid group (--SO 3 X), and a sulfate ester. group (--OSO 3 H), sulfate ester group (--OSO 3 X), phosphate group (--OP(=O)(OH) 2 ), phosphate group (--OP(=O)(OH)(OX) or -OP(=O)(OX) 2 ) and the like. In the formula, X is an atom or molecule that constitutes a cation. Examples of X include metal atoms such as lithium, sodium, potassium, calcium, magnesium and aluminum, ammonium and the like, with sodium, potassium and ammonium being preferred, and sodium being more preferred. The anionic group possessed by the compound (b2) is preferably a sulfonate group or a sulfate group, more preferably a sulfate group, and even more preferably a sodium sulfate group (--OSO 3 Na). That is, the compound (b2) is preferably a sulfonate or a sulfate, more preferably a sulfate, and even more preferably a sodium sulfate.
 化合物(b2)は、アルキル基を有することが好ましい。化合物(b2)がアルキル基を有する場合、化合物(b2)におけるアルキル基の炭素数は、8~16であることが好ましく、10~14であることが好ましい。 The compound (b2) preferably has an alkyl group. When compound (b2) has an alkyl group, the number of carbon atoms in the alkyl group in compound (b2) is preferably 8-16, more preferably 10-14.
 化合物(b2)としては、ラウリン酸ナトリウム、ミリスチン酸カリウム、パルミチン酸ナトリウム、オレイン酸カリウム、リノレン酸ナトリウム、ロジン酸ナトリウム等の脂肪酸塩;ジ(2-エチルヘキシル)スルホコハク酸ナトリウム、ジ(2-エチルヘキシル)スルホコハク酸カリウム、ジオクチルスルホコハク酸ナトリウム等のアルキルスルホコハク酸塩;オクチル硫酸ナトリウム、オクチル硫酸カリウム、デシル硫酸ナトリウム、デシル硫酸カリウム、ウンデシル硫酸ナトリウム、ウンデシル硫酸カリウム、ドデシル硫酸ナトリウム(ラウリル硫酸ナトリウム)、ドデシル硫酸カリウム(ラウリル硫酸カリウム)、テトラデシル硫酸ナトリウム、テトラデシル硫酸カリウム、ヘキサデシル硫酸ナトリウム、ヘキサデシル硫酸カリウム等のアルキル硫酸エステル塩;ポリオキシエチレンラウリルエーテル硫酸ナトリウム、ポリオキシエチレンラウリルエーテル硫酸カリウム等のポリオキシエチレンアルキルエーテル硫酸エステル塩;ラウリルリン酸ナトリウム、ラウリルリン酸カリウム等のモノアルキルリン酸塩等が挙げられ、なかでも、本発明の効果がより顕著になるという観点から、アルキル硫酸エステル塩が好ましく、アルキル硫酸ナトリウムが好ましく、ラウリル硫酸ナトリウムがより好ましい。 Compound (b2) includes fatty acid salts such as sodium laurate, potassium myristate, sodium palmitate, potassium oleate, sodium linolenate, sodium rosinate; di(2-ethylhexyl)sodium sulfosuccinate, di(2-ethylhexyl) ) Alkyl sulfosuccinates such as potassium sulfosuccinate and sodium dioctyl sulfosuccinate; sodium octyl sulfate, potassium octyl sulfate, sodium decyl sulfate, potassium decyl sulfate, sodium undecyl sulfate, potassium undecyl sulfate, sodium dodecyl sulfate (sodium lauryl sulfate), dodecyl Alkyl sulfate ester salts such as potassium sulfate (potassium lauryl sulfate), sodium tetradecyl sulfate, potassium tetradecyl sulfate, sodium hexadecyl sulfate, and potassium hexadecyl sulfate; polyoxyethylenes such as sodium polyoxyethylene lauryl ether sulfate and potassium polyoxyethylene lauryl ether sulfate Alkyl ether sulfates; monoalkyl phosphates such as sodium lauryl phosphate and potassium lauryl phosphate; Sodium alkyl sulfates are preferred and sodium lauryl sulfate is more preferred.
 化合物(b2)の分子量としては、本発明の効果がより顕著になるという観点から、100~600が好ましく、200~450がより好ましく、250~350がさらに好ましい。 The molecular weight of compound (b2) is preferably from 100 to 600, more preferably from 200 to 450, even more preferably from 250 to 350, from the viewpoint that the effects of the present invention become more pronounced.
 本発明で用いるアニオン性界面活性剤において、本発明の効果がより顕著になるという観点から、化合物(a)が、スルホン酸塩または硫酸エステル塩であり、かつ、化合物(b1)または化合物(b2)の少なくとも一方が、スルホン酸塩または硫酸エステル塩であることが好ましい。 In the anionic surfactant used in the present invention, from the viewpoint that the effect of the present invention becomes more remarkable, the compound (a) is a sulfonate or a sulfate ester salt, and the compound (b1) or the compound (b2) ) is preferably a sulfonate or a sulfate.
 本発明のディップ成形用ラテックス組成物における、化合物(a)の含有量としては、本発明の効果がより顕著になるという観点から、ディップ成形用ラテックス組成物中に含まれる重合体成分100重量部に対して、0.1~5.0重量部が好ましく、0.5~3.0重量部がより好ましく、0.8~2.4重量部がさらに好ましく、1.0~2.0重量部が特に好ましい。 The content of the compound (a) in the latex composition for dip molding of the present invention is 100 parts by weight of the polymer component contained in the latex composition for dip molding, from the viewpoint that the effect of the present invention becomes more pronounced. For, 0.1 to 5.0 parts by weight is preferable, 0.5 to 3.0 parts by weight is more preferable, 0.8 to 2.4 parts by weight is more preferable, 1.0 to 2.0 parts by weight Part is particularly preferred.
 本発明のディップ成形用ラテックス組成物が、化合物(b1)を含有する場合、本発明のディップ成形用ラテックス組成物における、化合物(b1)の含有量としては、本発明の効果がより顕著になるという観点から、ディップ成形用ラテックス組成物中に含まれる重合体成分100重量部に対して、0.1~10.0重量部が好ましく、0.5~7.0重量部がより好ましく、1.0~5.0重量部がさらに好ましく、1.2~4.5重量部が特に好ましい。 When the latex composition for dip molding of the present invention contains the compound (b1), the effect of the present invention becomes more remarkable as the content of the compound (b1) in the latex composition for dip molding of the present invention. 0.1 to 10.0 parts by weight, more preferably 0.5 to 7.0 parts by weight, based on 100 parts by weight of the polymer component contained in the latex composition for dip molding. 0 to 5.0 parts by weight is more preferred, and 1.2 to 4.5 parts by weight is particularly preferred.
 本発明のディップ成形用ラテックス組成物が、化合物(b2)を含有する場合、本発明のディップ成形用ラテックス組成物における、化合物(b2)の含有量としては、本発明の効果がより顕著になるという観点から、ディップ成形用ラテックス組成物中に含まれる重合体成分100重量部に対して、0.1~10.0重量部が好ましく、0.5~7.0重量部がより好ましく、1.0~5.0重量部がさらに好ましく、1.2~4.5重量部が特に好ましい。 When the latex composition for dip molding of the present invention contains the compound (b2), the effect of the present invention becomes more remarkable as the content of the compound (b2) in the latex composition for dip molding of the present invention. 0.1 to 10.0 parts by weight, more preferably 0.5 to 7.0 parts by weight, based on 100 parts by weight of the polymer component contained in the latex composition for dip molding. 0 to 5.0 parts by weight is more preferred, and 1.2 to 4.5 parts by weight is particularly preferred.
 本発明のディップ成形用ラテックス組成物における、化合物(b1)の含有量と化合物(b2)の含有量の合計としては、本発明の効果がより顕著になるという観点から、ディップ成形用ラテックス組成物中に含まれる重合体成分100重量部に対して、0.1~10.0重量部が好ましく、0.5~7.0重量部がより好ましく、1.0~5.0重量部がさらに好ましく、1.2~4.5重量部が特に好ましい。 In the latex composition for dip molding of the present invention, the total content of the compound (b1) and the content of the compound (b2) is the latex composition for dip molding from the viewpoint that the effect of the present invention becomes more remarkable. With respect to 100 parts by weight of the polymer component contained therein, 0.1 to 10.0 parts by weight is preferable, 0.5 to 7.0 parts by weight is more preferable, and 1.0 to 5.0 parts by weight is further 1.2 to 4.5 parts by weight is particularly preferred.
 本発明のディップ成形用ラテックス組成物における、化合物(a)の含有量と、化合物(b1)および化合物(b2)の合計の含有量の重量比(化合物(a)の重量:化合物(b1)および化合物(b2)の合計の重量)は、本発明の効果がより顕著になるという観点から、5:95~95:5であることが好ましく、10:90~90:10であることがより好ましく、15:85~80:20であることがさらに好ましく、20:80~70:30であることが特に好ましい。 In the latex composition for dip molding of the present invention, the weight ratio of the content of compound (a) to the total content of compound (b1) and compound (b2) (weight of compound (a): compound (b1) and The total weight of compound (b2)) is preferably from 5:95 to 95:5, more preferably from 10:90 to 90:10, from the viewpoint that the effect of the present invention becomes more pronounced. , 15:85 to 80:20, and particularly preferably 20:80 to 70:30.
 本発明のディップ成形用ラテックス組成物は、ガラス転移温度が10℃以下である重合体(A)のラテックスを含有することが好ましく、ガラス転移温度が10℃以下である重合体(A)のラテックスに加えて、ガラス転移温度が10℃超である重合体(B)のラテックスを含有することがより好ましい。 The latex composition for dip molding of the present invention preferably contains a latex of the polymer (A) having a glass transition temperature of 10° C. or lower, and a latex of the polymer (A) having a glass transition temperature of 10° C. or lower. In addition, it is more preferable to contain a latex of polymer (B) having a glass transition temperature of more than 10°C.
 ガラス転移温度が10℃以下である重合体(A)のラテックス(以下、適宜、「重合体(A)のラテックス」とする。)を構成する、ガラス転移温度が10℃以下である重合体(A)(以下、適宜、「重合体(A)」とする。)としては、特に限定されないが、たとえば、ニトリルゴム(NBR)、天然ゴム(NR)、スチレン-ブタジエンゴム(SBR)、合成ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレン-イソプレン共重合ゴム、スチレン-イソプレン-スチレン共重合ゴム等の共役ジエン系重合体、ポリブチルアクリレート、ブチルゴム(IIR)などが挙げられる。これらのなかでも、本発明の効果がより顕著になるという観点から、合成ゴムが好ましく、ニトリルゴム(NBR)、スチレン-ブタジエンゴム(SBR)、合成ポリイソプレンゴム(IR)、ポリブチルアクリレートがより好ましく、ニトリル基含有共役ジエン系重合体がさらに好ましい。なお、これらの共役ジエン系重合体は、カルボキシル基含有共役ジエン系重合体であってもよい。ガラス転移温度が10℃以下である重合体(A)としては、本発明で用いる重合体のラテックスを構成する重合体として上述したもののうち、ガラス転移温度が10℃以下であるものが好適である。また、ガラス転移温度が10℃以下である重合体(A)としては、本発明で用いる重合体のラテックスを構成し得るニトリル基含有共役ジエン系重合体として上述したものが好適である。 Polymer (A) having a glass transition temperature of 10°C or lower (hereinafter referred to as “polymer (A) latex”) having a glass transition temperature of 10°C or lower ( A) (hereinafter referred to as “polymer (A)” as appropriate) is not particularly limited, but examples include nitrile rubber (NBR), natural rubber (NR), styrene-butadiene rubber (SBR), synthetic poly Examples include conjugated diene polymers such as isoprene rubber (IR), polybutadiene rubber (BR), styrene-isoprene copolymer rubber, styrene-isoprene-styrene copolymer rubber, polybutyl acrylate, butyl rubber (IIR), and the like. Among these, synthetic rubber is preferable from the viewpoint that the effect of the present invention becomes more remarkable, and nitrile rubber (NBR), styrene-butadiene rubber (SBR), synthetic polyisoprene rubber (IR), and polybutyl acrylate are more preferable. Preferred are nitrile group-containing conjugated diene polymers. These conjugated diene-based polymers may be carboxyl group-containing conjugated diene-based polymers. As the polymer (A) having a glass transition temperature of 10° C. or lower, those having a glass transition temperature of 10° C. or lower among those mentioned above as polymers constituting the latex of the polymer used in the present invention are suitable. . As the polymer (A) having a glass transition temperature of 10° C. or lower, those mentioned above as the nitrile group-containing conjugated diene polymer capable of forming the latex of the polymer used in the present invention are suitable.
 重合体(A)のラテックスを構成する重合体の粒子の体積平均粒子径は、好ましくは30~1000nm、より好ましくは50~500nm、さらに好ましくは70~200nmである。重合体(A)の粒子の体積平均粒子径を上記範囲とすることにより、得られるディップ成形体中において、重合体(A)中に、重合体(B)をより良好に微分散させることができ、これにより、本発明の効果がより顕著になるとともに、得られるディップ成形体の機械的特性を高めることができる。 The volume-average particle diameter of the polymer particles constituting the polymer (A) latex is preferably 30 to 1000 nm, more preferably 50 to 500 nm, and even more preferably 70 to 200 nm. By setting the volume average particle diameter of the particles of the polymer (A) within the above range, the polymer (B) can be finely dispersed more favorably in the polymer (A) in the obtained dip molded article. As a result, the effects of the present invention become more pronounced, and the mechanical properties of the resulting dip-molded article can be enhanced.
 ガラス転移温度が10℃超である重合体(B)のラテックス(以下、適宜、「重合体(B)のラテックス」とする。)を構成する、ガラス転移温度が10℃超である重合体(B)(以下、適宜、「重合体(B)」とする。)としては、特に限定されないが、たとえば、アクリル樹脂、PTFE樹脂、アクリロニトリル-スチレン(AS)樹脂、ポリウレタン、塩化ビニル樹脂、ポリスチレン樹脂などを挙げることができ、これらのなかでも、アクリル樹脂が好ましい。これらの重合体は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 A polymer ( B) (hereinafter referred to as “polymer (B)” as appropriate) is not particularly limited, but examples thereof include acrylic resins, PTFE resins, acrylonitrile-styrene (AS) resins, polyurethanes, vinyl chloride resins, and polystyrene resins. etc., and among these, acrylic resins are preferred. These polymers may be used individually by 1 type, and may be used in combination of 2 or more type.
 アクリル樹脂は、たとえば、アクリル酸エステル、メタクリル酸エステル、アクリル酸、またはメタクリル酸の単独重合体、アクリル酸エステルとアクリル酸との共重合体、アクリル酸エステルとメタクリル酸との共重合体、メタクリル酸エステルとアクリル酸との共重合体、メタクリル酸エステルとメタクリル酸との共重合体、アクリル酸エステルとメタクリル酸エステルとアクリル酸との共重合体、アクリル酸エステルとメタクリル酸エステルとメタクリル酸との共重合体、および、アクリル酸エステルとメタクリル酸エステルとアクリル酸とメタクリル酸との共重合体が挙げられる。これらのうち、本発明の効果がより顕著になるという観点から、アクリル酸エステル、メタクリル酸エステル、アクリル酸、またはメタクリル酸の単独重合体を用いることが好ましく、メタクリル酸エステルの単独重合体を用いることが好ましい。なお、アクリル酸エステルの単独重合体には、同一のアクリル酸エステルの単独重合体のみならず、2種以上のアクリル酸エステル(たとえば、アクリル酸エチルとアクリル酸ブチル)の共重合体も含まれる。同様に、メタクリル酸エステルの単独重合体には、同一のメタクリル酸エステルの単独重合体のみならず、2種以上のメタクリル酸エステルの共重合体も含まれる。アクリル樹脂における、アクリル酸エステル、メタクリル酸エステル、アクリル酸、およびメタクリル酸の単位の含有割合の合計は、全単量体単位に対して、好ましくは40~100重量%であり、より好ましくは70~100重量%である。 Acrylic resins include, for example, acrylic acid esters, methacrylic acid esters, acrylic acid, homopolymers of methacrylic acid, copolymers of acrylic acid esters and acrylic acid, copolymers of acrylic acid esters and methacrylic acid, methacrylic acid Copolymer of acid ester and acrylic acid, copolymer of methacrylic acid ester and methacrylic acid, copolymer of acrylic acid ester, methacrylic acid ester and acrylic acid, acrylic acid ester, methacrylic acid ester and methacrylic acid and copolymers of acrylic acid ester, methacrylic acid ester, acrylic acid and methacrylic acid. Among these, from the viewpoint that the effect of the present invention becomes more remarkable, it is preferable to use a homopolymer of acrylic acid ester, methacrylic acid ester, acrylic acid, or methacrylic acid, and a homopolymer of methacrylic acid ester is used. is preferred. The homopolymer of acrylic acid ester includes not only homopolymers of the same acrylic acid ester, but also copolymers of two or more acrylic acid esters (for example, ethyl acrylate and butyl acrylate). . Similarly, homopolymers of methacrylic acid esters include not only homopolymers of the same methacrylic acid esters, but also copolymers of two or more methacrylic acid esters. The total content of acrylic acid ester, methacrylic acid ester, acrylic acid, and methacrylic acid units in the acrylic resin is preferably 40 to 100% by weight, more preferably 70%, based on the total monomer units. ~100% by weight.
 アクリル樹脂を形成するために使用されるアクリル酸エステルとしては、たとえば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸n-ペンチル、アクリル酸sec-ペンチル、アクリル酸イソペンチル、アクリル酸ネオペンチル、アクリル酸n-ヘキシル、アクリル酸イソヘキシル、アクリル酸ネオヘキシル、アクリル酸sec-ヘキシル、およびアクリル酸tert-ヘキシル等が挙げられ、なかでも、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、およびアクリル酸n-ブチルが好ましく、アクリル酸メチルがより好ましい。 Acrylic esters used to form acrylic resins include, for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec- Butyl, tert-butyl acrylate, n-pentyl acrylate, sec-pentyl acrylate, isopentyl acrylate, neopentyl acrylate, n-hexyl acrylate, isohexyl acrylate, neohexyl acrylate, sec-hexyl acrylate, and acrylic acid tert-hexyl and the like, among which methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, and n-butyl acrylate are preferred, and methyl acrylate is more preferred.
 アクリル樹脂を形成するために使用されるメタクリル酸エステルとしては、たとえば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸sec-ブチル、メタクリル酸tert-ブチル、メタクリル酸n-ペンチル、メタクリル酸sec-ペンチル、メタクリル酸イソペンチル、メタクリル酸ネオペンチル、メタクリル酸n-ヘキシル、メタクリル酸イソヘキシル、メタクリル酸ネオヘキシル、メタクリル酸sec-ヘキシル、およびメタクリル酸tert-ヘキシル等が挙げられ、なかでも、メタクリル酸メチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、およびメタクリル酸n-ブチルが好ましく、メタクリル酸メチルがより好ましい。アクリル樹脂としては、メタクリル酸メチルの単独重合体(ポリメタクリル酸メチル)が特に好ましい。 Methacrylate esters used to form acrylic resins include, for example, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec- Butyl, tert-butyl methacrylate, n-pentyl methacrylate, sec-pentyl methacrylate, isopentyl methacrylate, neopentyl methacrylate, n-hexyl methacrylate, isohexyl methacrylate, neohexyl methacrylate, sec-hexyl methacrylate, and methacryl acid tert-hexyl and the like, among which methyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, and n-butyl methacrylate are preferred, and methyl methacrylate is more preferred. As the acrylic resin, a homopolymer of methyl methacrylate (polymethyl methacrylate) is particularly preferred.
 また、アクリル樹脂としては、アクリル酸エステル単量体、メタクリル酸エステル単量体、アクリル酸単量体、またはメタクリル酸単量体と共重合可能なその他の単量体を共重合したものであってもよい。 The acrylic resin may be obtained by copolymerizing an acrylic acid ester monomer, a methacrylic acid ester monomer, an acrylic acid monomer, or other monomers copolymerizable with a methacrylic acid monomer. may
 共重合可能なその他の単量体としては、エチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどのα-オレフィン単量体;スチレン、α-メチルスチレン、ビニルピリジンなどの芳香族系単量体;マレイン酸、フマル酸、イタコン酸などのα,β-エチレン性不飽和多価カルボン酸;マレイン酸モノメチル、マレイン酸モノエチル、イタコン酸モノエチルなどのα,β-エチレン性不飽和多価カルボン酸モノエステル;マレイン酸ジメチル、フマル酸ジ-n-ブチル、イタコン酸ジメチル、イタコン酸ジ-2-エチルヘキシルなどのα,β-エチレン性不飽和多価カルボン酸多価エステル;酢酸ビニル、プロピオン酸ビニルなどのビニルエステル単量体;アクリルアミド、メタクリルアミドなどのα,β-エチレン性不飽和モノカルボン酸アミド;N-置換マレイミド類;ビニルメチルエーテル、ビニルエチルエーテル、ビニルセチルエーテルなどのビニルエーテル単量体;塩化ビニリデンなどのビニリデン化合物;などが挙げられる。これらの中でも、芳香族系単量体が好ましく、スチレンがより好ましい。共重合可能なその他の単量体の単位の含有割合は、全単量体単位に対して、好ましくは0~60重量%であり、より好ましくは0~30重量%である。 Other copolymerizable monomers include α-olefin monomers such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and 1-octene; styrene, α-methylstyrene , aromatic monomers such as vinylpyridine; α,β-ethylenically unsaturated polycarboxylic acids such as maleic acid, fumaric acid and itaconic acid; α, such as monomethyl maleate, monoethyl maleate and monoethyl itaconate, β-ethylenically unsaturated polycarboxylic acid monoesters; α,β-ethylenically unsaturated polycarboxylic acids such as dimethyl maleate, di-n-butyl fumarate, dimethyl itaconate, and di-2-ethylhexyl itaconate Polyvalent esters; vinyl ester monomers such as vinyl acetate and vinyl propionate; α,β-ethylenically unsaturated monocarboxylic acid amides such as acrylamide and methacrylamide; N-substituted maleimides; vinyl methyl ether and vinyl ethyl ether , vinyl ether monomers such as vinyl cetyl ether; vinylidene compounds such as vinylidene chloride; and the like. Among these, aromatic monomers are preferred, and styrene is more preferred. The content of other copolymerizable monomer units is preferably 0 to 60% by weight, more preferably 0 to 30% by weight, based on the total monomer units.
 重合体(B)としてのアクリル樹脂のラテックスの製造方法としては、上記単量体を重合可能な方法であればよく、特に限定されないが、ラジカル重合による公知の乳化重合、播種乳化重合、微細懸濁重合による方法などが挙げられる。 The method for producing the acrylic resin latex as the polymer (B) is not particularly limited as long as it is a method capable of polymerizing the above monomers. A method by turbidity polymerization and the like can be mentioned.
 また、重合体(B)は、重合開始剤として、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウムなどの過硫酸塩を用いて得られたものであることが好ましく、重合開始剤として、過硫酸塩を用いることで、重合体(B)を、重合開始剤の残基として、硫酸基を重合体鎖末端に有するものとすることができ、これにより、重合体(B)のラテックスを、化学的安定性により優れたものとすることができる。 Further, the polymer (B) is preferably obtained by using a persulfate such as sodium persulfate, potassium persulfate and ammonium persulfate as a polymerization initiator. By using, the polymer (B) can be made to have a sulfuric acid group at the polymer chain end as a residue of the polymerization initiator, whereby the latex of the polymer (B) can be chemically Better stability can be achieved.
 重合体(B)としてのアクリル樹脂の重量平均分子量(Mw)は、特に限定されないが、好ましくは10,000~10,000,000であり、より好ましくは10,000~5,000,000である。 The weight average molecular weight (Mw) of the acrylic resin as the polymer (B) is not particularly limited, but is preferably 10,000 to 10,000,000, more preferably 10,000 to 5,000,000. be.
 重合体(B)のガラス転移温度は、10℃超であり、本発明の効果がより顕著になるという観点から、好ましくは30℃以上であり、より好ましくは70℃以上であり、さらに好ましくは95℃以上であり、特に好ましくは105℃以上である。また、重合体(B)のガラス転移温度の上限は、特に限定されないが、好ましくは200℃以下であり、より好ましくは150℃以下である。重合体(B)のガラス転移温度を上記範囲とする方法としては、特に限定されないが、重合体を構成する各単量体の単位の含有割合を調整する方法などが挙げられる。 The glass transition temperature of the polymer (B) is higher than 10°C, and from the viewpoint that the effects of the present invention become more pronounced, it is preferably 30°C or higher, more preferably 70°C or higher, and even more preferably It is 95° C. or higher, particularly preferably 105° C. or higher. Although the upper limit of the glass transition temperature of the polymer (B) is not particularly limited, it is preferably 200°C or lower, more preferably 150°C or lower. A method for adjusting the glass transition temperature of the polymer (B) to the above range is not particularly limited, but includes a method of adjusting the content ratio of each monomer unit constituting the polymer.
 本発明のディップ成形用ラテックス組成物は、本発明の効果がより顕著になるという観点から、ガラス転移温度が10℃以下である重合体(A)のラテックスと、ガラス転移温度が10℃超である重合体(B)のラテックスとを、ラテックス状態で混合することにより得られるディップ成形用ラテックス組成物であることが好ましい。 From the viewpoint that the effect of the present invention becomes more remarkable, the latex composition for dip molding of the present invention comprises a latex of polymer (A) having a glass transition temperature of 10°C or lower and a latex of polymer (A) having a glass transition temperature of higher than 10°C. It is preferably a latex composition for dip molding obtained by mixing a latex of a certain polymer (B) in a latex state.
 特に、重合体(A)のラテックスと、重合体(B)のラテックスとを、ラテックス状態で混合することにより、ディップ成形用ラテックス組成物中において、重合体(A)の粒子と、重合体(B)の粒子とを均一に微分散させることができる。そして、ディップ成形によりディップ成形体とした際に、得られるディップ成形体中において、重合体(A)のマトリックス中に、重合体(B)が微分散させた状態で、これらを共析出させることができる。このため、微分散した重合体(B)の作用により、得られるディップ成形体を、より一層ウェットグリップ性に優れたものとすることができる。 In particular, by mixing the latex of the polymer (A) and the latex of the polymer (B) in the latex state, the particles of the polymer (A) and the polymer ( The particles of B) can be uniformly finely dispersed. Then, when a dip-molded article is formed by dip molding, the polymer (B) is finely dispersed in the matrix of the polymer (A) in the resulting dip-molded article, and the polymer (B) is co-precipitated. can be done. Therefore, the action of the finely dispersed polymer (B) makes it possible to make the resulting dip-molded article even more excellent in wet grip properties.
 得られるディップ成形体のウェットグリップ性をより高めることができるという観点より、重合体(B)のラテックスを構成する重合体(B)の粒子の体積平均粒子径は、重合体(A)のラテックスを構成する重合体(A)の粒子の体積平均粒子径よりも、小さいことが好ましい。 From the viewpoint that the obtained dip-molded article can have a higher wet grip property, the volume average particle diameter of the particles of the polymer (B) constituting the latex of the polymer (B) is is preferably smaller than the volume average particle diameter of the particles of the polymer (A) constituting the
 重合体(B)のラテックスを構成する重合体(B)の粒子の体積平均粒子径は、好ましくは1~200nm、より好ましくは5~160nm、さらに好ましくは5~120nm、よりさらに好ましくは10~100nm、特に好ましくは20~80nmである。重合体(B)の粒子の体積平均粒子径を上記範囲とすることにより、得られるディップ成形体中において、重合体(A)中に、重合体(B)をより良好に微分散させることができ、これにより、本発明の効果がより顕著になるとともに、得られるディップ成形体の機械的特性を高めることができる。 The volume average particle diameter of the particles of the polymer (B) constituting the latex of the polymer (B) is preferably 1 to 200 nm, more preferably 5 to 160 nm, even more preferably 5 to 120 nm, still more preferably 10 to 100 nm. 100 nm, particularly preferably 20 to 80 nm. By setting the volume average particle diameter of the particles of the polymer (B) within the above range, the polymer (B) can be finely dispersed more favorably in the polymer (A) in the obtained dip molded article. As a result, the effects of the present invention become more pronounced, and the mechanical properties of the resulting dip-molded article can be enhanced.
 本発明のディップ成形用ラテックス組成物が、重合体(A)のラテックスおよび重合体(B)のラテックスを含有する場合における、本発明のディップ成形用ラテックス組成物中の重合体(A)の含有量および重合体(B)の含有量は、特に限定されないが、ディップ成形用ラテックス組成物中に含まれる重合体成分100重量%中における、重合体(A)の含有量は、75~100重量%であることが好ましく、80~99重量%であることがより好ましく、85~95重量%であることがさらに好ましい。また、ディップ成形用ラテックス組成物中に含まれる重合体成分100重量%に対する、重合体(B)の含有量は、0~25重量%であることが好ましく、1~20重量%であることがより好ましく、5~15重量%であることがさらに好ましい。さらに、本発明のディップ成形用ラテックス組成物中における、重合体(A)と、重合体(B)との重量比率(重合体(A)の重量:重合体(B)の重量)は、本発明の効果がより顕著になることから、好ましくは75:25~100:0、より好ましくは80:20~99:1、さらに好ましくは85:15~95:5である。 Content of the polymer (A) in the latex composition for dip molding of the present invention when the latex composition for dip molding of the present invention contains a latex of the polymer (A) and a latex of the polymer (B) The amount and the content of the polymer (B) are not particularly limited, but the content of the polymer (A) in 100% by weight of the polymer component contained in the latex composition for dip molding is 75 to 100% by weight. %, more preferably 80 to 99% by weight, even more preferably 85 to 95% by weight. The content of the polymer (B) is preferably 0 to 25% by weight, more preferably 1 to 20% by weight, based on 100% by weight of the polymer component contained in the latex composition for dip molding. More preferably, it is even more preferably 5 to 15% by weight. Further, the weight ratio of the polymer (A) to the polymer (B) (weight of the polymer (A):weight of the polymer (B)) in the latex composition for dip molding of the present invention is The ratio is preferably 75:25 to 100:0, more preferably 80:20 to 99:1, still more preferably 85:15 to 95:5, since the effect of the invention becomes more pronounced.
 本発明のディップ成形用ラテックス組成物は、重合体のラテックスと、上記のアニオン性界面活性剤に加えて、硫黄系架橋剤をさらに含有することが好ましい。 The latex composition for dip molding of the present invention preferably further contains a sulfur-based cross-linking agent in addition to the polymer latex and the anionic surfactant described above.
 硫黄系架橋剤としては、特に限定されないが、粉末硫黄、硫黄華、沈降性硫黄、コロイド硫黄、表面処理硫黄、不溶性硫黄などの硫黄;塩化硫黄、二塩化硫黄、モルホリンジスルフィド、アルキルフェノールジスルフィド、ジベンゾチアジルジスルフィド、カプロラクタムジスルフィド、含リンポリスルフィド、高分子多硫化物などの含硫黄化合物;テトラメチルチウラムジスルフィド、ジメチルジチオカルバミン酸セレン、2-(4’-モルホリノジチオ)ベンゾチアゾールなどの硫黄供与性化合物;などが挙げられる。これらの硫黄系架橋剤は、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。 The sulfur-based cross-linking agent is not particularly limited, but sulfur such as powdered sulfur, sulfur flowers, precipitated sulfur, colloidal sulfur, surface-treated sulfur, insoluble sulfur; sulfur chloride, sulfur dichloride, morpholine disulfide, alkylphenol disulfide, dibenzothia Sulfur-containing compounds such as dil disulfide, caprolactam disulfide, phosphorus-containing polysulfide, and polymeric polysulfides; sulfur-donating compounds such as tetramethylthiuram disulfide, selenium dimethyldithiocarbamate, and 2-(4′-morpholinodithio)benzothiazole; is mentioned. These sulfur-based cross-linking agents may be used singly or in combination of two or more.
 硫黄系架橋剤の含有量は、ディップ成形用ラテックス組成物中に含まれる重合体成分100重量部に対し、好ましくは0.01~5重量部、より好ましくは0.05~3重量部、さらに好ましくは0.1~2重量部である。 The content of the sulfur-based cross-linking agent is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 3 parts by weight, with respect to 100 parts by weight of the polymer component contained in the latex composition for dip molding. It is preferably 0.1 to 2 parts by weight.
 また、本発明のディップ成形用ラテックス組成物は、硫黄系架橋剤に加えて、架橋促進剤(加硫促進剤)や、酸化亜鉛をさらに含有することが好ましい。 In addition, the latex composition for dip molding of the present invention preferably further contains a cross-linking accelerator (vulcanization accelerator) and zinc oxide in addition to the sulfur-based cross-linking agent.
 架橋促進剤(加硫促進剤)としては、特に限定されないが、たとえば、ジエチルジチオカルバミン酸、ジブチルジチオカルバミン酸、ジ-2-エチルヘキシルジチオカルバミン酸、ジシクロヘキシルジチオカルバミン酸、ジフェニルジチオカルバミン酸、ジベンジルジチオカルバミン酸などのジチオカルバミン酸類およびそれらの亜鉛塩;2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛、2-メルカプトチアゾリン、ジベンゾチアジル・ジスルフィド、2-(2,4-ジニトロフェニルチオ)ベンゾチアゾール、2-(N,N-ジエチルチオ・カルバモイルチオ)ベンゾチアゾール、2-(2,6-ジメチル-4-モルホリノチオ)ベンゾチアゾール、2-(4′-モルホリノ・ジチオ)ベンゾチアゾール、4-モルホリニル-2-ベンゾチアジル・ジスルフィド、1,3-ビス(2-ベンゾチアジル・メルカプトメチル)ユリアなどが挙げられ、これらの中でも、ジエチルジチオカルバミン酸亜鉛、ジブチルジチオカルバミン酸亜鉛、2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾール亜鉛が好ましい。これらの架橋促進剤は、1種単独用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the cross-linking accelerator (vulcanization accelerator) include, but are not limited to, dithiocarbamines such as diethyldithiocarbamate, dibutyldithiocarbamate, di-2-ethylhexyldithiocarbamate, dicyclohexyldithiocarbamate, diphenyldithiocarbamate, and dibenzyldithiocarbamate. Acids and their zinc salts; 2-mercaptobenzothiazole, 2-mercaptobenzothiazole zinc, 2-mercaptothiazoline, dibenzothiazyl disulfide, 2-(2,4-dinitrophenylthio)benzothiazole, 2-(N, N-diethylthio carbamoylthio)benzothiazole, 2-(2,6-dimethyl-4-morpholinothio)benzothiazole, 2-(4'-morpholino dithio)benzothiazole, 4-morpholinyl-2-benzothiazyl disulfide, 1,3-bis(2-benzothiazyl-mercaptomethyl)urea and the like, among which zinc diethyldithiocarbamate, zinc dibutyldithiocarbamate, 2-mercaptobenzothiazole and zinc 2-mercaptobenzothiazole are preferred. These cross-linking accelerators may be used singly or in combination of two or more.
 架橋促進剤の含有量は、ディップ成形用ラテックス組成物中に含まれる重合体成分100重量部に対し、好ましくは0.1~10重量部、より好ましくは0.5~5重量部である。また、酸化亜鉛の含有量は、ディップ成形用ラテックス組成物中に含まれる重合体成分100重量部に対し、好ましくは0.1~10重量部、より好ましくは0.5~5重量部である。 The content of the cross-linking accelerator is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the polymer component contained in the latex composition for dip molding. The content of zinc oxide is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, with respect to 100 parts by weight of the polymer component contained in the latex composition for dip molding. .
 また、本発明のディップ成形用ラテックス組成物は、水溶性ポリマーをさらに含有していてもよい。 In addition, the latex composition for dip molding of the present invention may further contain a water-soluble polymer.
 水溶性ポリマーとしては、たとえば、ポリビニルアルコール、ポリビニルピロリドン等のビニル系化合物;ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース等のセルロース誘導体およびその塩;ポリアクリル酸等のポリカルボン酸系化合物およびそのナトリウム塩;ポリエチレングリコールエーテル等のポリオキシエチレン誘導体;等が挙げられる。水溶性ポリマーとしては、セルロース誘導体およびその塩が好ましく、カルボキシメチルセルロースおよびそのナトリウム塩がより好ましい。水溶性ポリマーの含有量は、ディップ成形用ラテックス組成物中に含まれる重合体成分100重量部に対し、好ましくは0.01~10重量部、より好ましくは0.1~5重量部である。 Examples of water-soluble polymers include vinyl compounds such as polyvinyl alcohol and polyvinylpyrrolidone; cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose and carboxymethyl cellulose and salts thereof; polycarboxylic acid compounds such as polyacrylic acid and sodium salts thereof. ; polyoxyethylene derivatives such as polyethylene glycol ether; and the like. As the water-soluble polymer, cellulose derivatives and salts thereof are preferred, and carboxymethylcellulose and sodium salts thereof are more preferred. The content of the water-soluble polymer is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, per 100 parts by weight of the polymer component contained in the latex composition for dip molding.
 水溶性ポリマーを、4重量%水溶液とした場合の粘度は、特に限定されないが、1mPa・s以上が好ましく、10mPa・s以上がより好ましく、20,000mPa・s以下が好ましく、10,000mPa・s以下がより好ましい。水溶性ポリマーを、1重量%水溶液とした場合の粘度は、特に限定されないが、1mPa・s以上が好ましく、10mPa・s以上がより好ましく、20,000mPa・s以下が好ましく、10,000mPa・s以下がより好ましい。水溶性ポリマー水溶液の粘度は、たとえば、B型粘度計を用いて、25℃、回転数6rpmの条件で測定することができる。 The viscosity of a 4% by weight aqueous solution of the water-soluble polymer is not particularly limited, but is preferably 1 mPa s or more, more preferably 10 mPa s or more, preferably 20,000 mPa s or less, and 10,000 mPa s. The following are more preferred. The viscosity of a 1% by weight aqueous solution of the water-soluble polymer is not particularly limited, but is preferably 1 mPa s or more, more preferably 10 mPa s or more, preferably 20,000 mPa s or less, and 10,000 mPa s. The following are more preferred. The viscosity of the water-soluble polymer aqueous solution can be measured, for example, using a Brookfield viscometer under the conditions of 25° C. and 6 rpm.
 水溶性ポリマーは、水に可溶であるものであればよく、水溶性ポリマーの水に対する溶解度は、特に限定されないが、温度25℃の水100gに対し、好ましくは1g以上であり、より好ましくは7g以上であり、特に好ましくは10g以上である。水溶性ポリマーの水に対する溶解度の上限は、特に限定されないが、通常、1000000g以下である。 The water-soluble polymer is not particularly limited as long as it is soluble in water, and the solubility of the water-soluble polymer in water is not particularly limited, but is preferably 1 g or more, more preferably 1 g or more, with respect to 100 g of water at a temperature of 25 ° C. It is 7 g or more, particularly preferably 10 g or more. The upper limit of the water solubility of the water-soluble polymer is not particularly limited, but is usually 1,000,000 g or less.
 水溶性ポリマーの重量平均分子量(Mw)は、特に限定されないが、100以上が好ましく、1,000以上がより好ましく、5,000,000以下が好ましく、3,000,000以下がより好ましい。 The weight average molecular weight (Mw) of the water-soluble polymer is not particularly limited, but is preferably 100 or more, more preferably 1,000 or more, preferably 5,000,000 or less, and more preferably 3,000,000 or less.
 水溶性ポリマーの配合量は、本発明のディップ成形用ラテックス組成物中に含まれる重合体成分100重量部に対し、好ましくは0.01~10重量部、より好ましくは0.1~5重量部であり、さらに好ましくは0.15~4.5重量部である。水溶性ポリマーの配合量が上記範囲内であると、得られるディップ成形体がウェットグリップ性により一層優れたものとなる。 The amount of the water-soluble polymer is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, per 100 parts by weight of the polymer component contained in the latex composition for dip molding of the present invention. and more preferably 0.15 to 4.5 parts by weight. When the blending amount of the water-soluble polymer is within the above range, the resulting dip-molded article has even better wet grip properties.
 また、本発明のディップ成形用ラテックス組成物には、カーボンブラック、シリカ、炭酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、珪酸カルシウム、酸化マグネシウム、(メタ)アクリル酸亜鉛、(メタ)アクリル酸マグネシウム、酸化チタンなどの充填剤を添加してもよい。充填剤の配合量は、本発明のディップ成形用ラテックス組成物中に含まれる重合体成分100重量部に対し、好ましくは0.5~30重量部、より好ましくは1~10重量部であり、さらに好ましくは2~5重量部である。充填剤の配合量が上記範囲内であると、得られるディップ成形体がウェットグリップ性により一層優れたものとなる。また、本発明のディップ成形用ラテックス組成物には、必要に応じて、上記水溶性塩や充填剤以外の添加剤、たとえば、老化防止剤、酸化防止剤、防腐剤、抗菌剤、湿潤剤、分散剤、顔料、染料、補強剤、pH調整剤などの各種添加剤を所定量添加することもできる。 Further, the latex composition for dip molding of the present invention includes carbon black, silica, calcium carbonate, aluminum silicate, magnesium silicate, calcium silicate, magnesium oxide, zinc (meth)acrylate, magnesium (meth)acrylate and titanium oxide. You may add fillers, such as. The amount of the filler compounded is preferably 0.5 to 30 parts by weight, more preferably 1 to 10 parts by weight, based on 100 parts by weight of the polymer component contained in the latex composition for dip molding of the present invention. More preferably 2 to 5 parts by weight. When the blending amount of the filler is within the above range, the resulting dip-molded article has even better wet grip properties. The latex composition for dip molding of the present invention may optionally contain additives other than the above water-soluble salts and fillers, such as anti-aging agents, antioxidants, preservatives, antibacterial agents, wetting agents, Various additives such as dispersants, pigments, dyes, reinforcing agents, and pH adjusters can also be added in predetermined amounts.
 本発明のディップ成形用ラテックス組成物における、重合体粒子の体積平均粒子径は、好ましくは30~250nmであり、より好ましくは30~200nmであり、さらに好ましくは50~180nmである。ディップ成形用ラテックス組成物における重合体粒子の体積平均粒子径を上記範囲とすることにより、得られるディップ成形用ラテックス組成物を、貯蔵安定性に優れたものとすることができ、かつ、得られるディップ成形体を、ウェットグリップ性により一層優れたものとすることができる。なお、本発明のディップ成形用ラテックス組成物中の重合体粒子の体積平均粒子径は、たとえば、光散乱回折粒子測定装置を用いて測定することができる。 The volume average particle size of the polymer particles in the latex composition for dip molding of the present invention is preferably 30 to 250 nm, more preferably 30 to 200 nm, still more preferably 50 to 180 nm. By setting the volume-average particle size of the polymer particles in the latex composition for dip molding within the above range, the obtained latex composition for dip molding can be made excellent in storage stability, and the obtained The dip molded article can be made more excellent in wet grip properties. The volume average particle size of the polymer particles in the latex composition for dip molding of the present invention can be measured using, for example, a light scattering diffraction particle measuring device.
 本発明のディップ成形用ラテックス組成物の固形分濃度は、好ましくは20~65重量%であり、より好ましくは30~60重量%、さらに好ましくは35~55重量%である。ディップ成形用ラテックス組成物の固形分濃度を上記範囲にすることにより、ディップ成形用ラテックス組成物の輸送効率を向上させることができ、かつ、ディップ成形用ラテックス組成物の粘度が適度なものとなってディップ成形用ラテックス組成物の取扱性が向上する。 The solid content concentration of the latex composition for dip molding of the present invention is preferably 20 to 65% by weight, more preferably 30 to 60% by weight, still more preferably 35 to 55% by weight. By setting the solid content concentration of the latex composition for dip molding within the above range, the transportation efficiency of the latex composition for dip molding can be improved, and the viscosity of the latex composition for dip molding can be moderate. This improves the handleability of the latex composition for dip molding.
 本発明のディップ成形用ラテックス組成物の固形分濃度を上述した範囲とする方法としては、たとえば、重合体のラテックスなどの各成分の固形分濃度を調整する方法や、後述する濃縮処理または希釈処理により調整する方法が挙げられる。これらの中でも、濃縮処理により調整する方法が、生産性の観点より好ましい。 Methods for adjusting the solid content concentration of the latex composition for dip molding of the present invention within the range described above include, for example, a method of adjusting the solid content concentration of each component such as a polymer latex, and a concentration treatment or dilution treatment described later. A method of adjusting by Among these, the method of adjusting by concentration treatment is preferable from the viewpoint of productivity.
 本発明のディップ成形用ラテックス組成物のpHは、好ましくは5~13であり、より好ましくは7~10、さらに好ましくは7.5~9である。ディップ成形用ラテックス組成物のpHを上記範囲にすることにより、機械的安定性が向上してディップ成形用ラテックス組成物の移送時における粗大凝集物の発生を抑制することができ、かつ、ディップ成形用ラテックス組成物の粘度が適度なものとなってディップ成形用ラテックス組成物の取扱性が向上する。 The pH of the latex composition for dip molding of the present invention is preferably 5-13, more preferably 7-10, still more preferably 7.5-9. By adjusting the pH of the latex composition for dip molding to the above range, the mechanical stability is improved, and the generation of coarse aggregates during transfer of the latex composition for dip molding can be suppressed, and dip molding can be performed. The viscosity of the latex composition for dip molding becomes appropriate, and the handleability of the latex composition for dip molding is improved.
<ディップ成形用ラテックス組成物の製造方法>
 本発明のディップ成形用ラテックス組成物の製造方法としては、重合体のラテックスと、化合物(a)と、化合物(b1)および/または化合物(b2)とを含有するディップ成形用ラテックス組成物が得られる製造方法であればよく、特に限定されない。本発明のディップ成形用ラテックス組成物の製造方法としては、重合体のラテックスを2種以上準備して、ラテックス状態で混合する方法が好ましい。以下に、本発明のディップ成形用ラテックス組成物の製造方法として、重合体のラテックスを2種以上準備して、ラテックス状態で混合する方法を例示する。
<Method for producing latex composition for dip molding>
As a method for producing the latex composition for dip molding of the present invention, a latex composition for dip molding containing polymer latex, compound (a), compound (b1) and/or compound (b2) is obtained. It is not particularly limited as long as it is a manufacturing method that can be used. As a method for producing the latex composition for dip molding of the present invention, a method of preparing two or more types of polymer latex and mixing them in a latex state is preferable. As a method for producing the latex composition for dip molding of the present invention, a method of preparing two or more types of polymer latex and mixing them in a latex state will be exemplified below.
 本発明のディップ成形用ラテックス組成物は、たとえば、ガラス転移温度が10℃以下である第1の重合体(A)と化合物(a)とを含むラテックス(A-a)、ならびに、ガラス転移温度が10℃以下である第2の重合体(A)と化合物(b1)および/または化合物(b2)とを含むラテックス(A-b)を、ラテックス状態で混合する製造方法により、得ることができる。以下、適宜、「重合体(A)」「ラテックス(A-a)」「重合体(A)」「ラテックス(A-b)」という略称を用いる。 The latex composition for dip molding of the present invention includes, for example, a latex (A 1 -a) containing a first polymer (A 1 ) having a glass transition temperature of 10° C. or lower and a compound ( a ), and a glass A production method in which a latex (A 2 -b) containing a second polymer (A 2 ) having a transition temperature of 10° C. or less and a compound (b1) and/or a compound (b2) is mixed in a latex state, Obtainable. Hereinafter, the abbreviations "polymer (A 1 )", "latex (A 1 -a)", "polymer (A 2 )" and "latex (A 2 -b)" are used as appropriate.
 本発明のディップ成形用ラテックス組成物の製造方法としては、ラテックス(A-a)とラテックス(A-b)とをラテックス状態で混合する方法が好ましく、この方法により得られる本発明のディップ成形用ラテックス組成物は、得られるディップ成形体の優れた耐薬液透過性を実現しながら、柔軟性およびウェットグリップ性のバランスをより一層向上させることができるものとなる。その理由は定かではないが、ラテックス(A-a)とラテックス(A-b)とをラテックス状態で混合することにより、適度な大きさの凝集体が発生し、得られるディップ成形体の表面に、適度な凹凸構造が形成されるためであると推測される。 As a method for producing the latex composition for dip molding of the present invention, a method of mixing latex (A 1 -a) and latex (A 2 -b) in a latex state is preferable, and the dip of the present invention obtained by this method is preferable. The latex composition for molding can further improve the balance between flexibility and wet grip while realizing excellent chemical liquid permeation resistance of the obtained dip-molded article. The reason for this is not clear, but by mixing the latex (A 1 -a) and the latex (A 2 -b) in the latex state, aggregates of appropriate size are generated, and the resulting dip-molded product It is presumed that this is due to the formation of an appropriate uneven structure on the surface.
 重合体(A)の組成と、重合体(A)の組成は、同一であっても、異なっていてもよい。たとえば、重合体(A)がニトリル基含有共役ジエン系重合体である場合、重合体(A)は、重合体(A)と同一または異なる組成のニトリル基含有共役ジエン系重合体であってよいし、ニトリル基含有共役ジエン系重合体以外の重合体(たとえば、ポリブチルアクリレート)であってもよい。また、重合体(A)がニトリル基含有共役ジエン系重合体である場合、重合体(A)は、重合体(A)と同一または異なる組成のニトリル基含有共役ジエン系重合体であってよいし、ニトリル基含有共役ジエン系重合体以外の重合体(たとえば、ポリブチルアクリレート)であってもよい。 The composition of polymer (A 1 ) and the composition of polymer (A 2 ) may be the same or different. For example, when the polymer (A 1 ) is a nitrile group-containing conjugated diene polymer, the polymer (A 2 ) is a nitrile group-containing conjugated diene polymer having the same or different composition as the polymer (A 1 ). Alternatively, it may be a polymer other than the nitrile group-containing conjugated diene polymer (for example, polybutyl acrylate). Further, when the polymer (A 2 ) is a nitrile group-containing conjugated diene polymer, the polymer (A 1 ) is a nitrile group-containing conjugated diene polymer having the same or different composition as the polymer (A 2 ). Alternatively, it may be a polymer other than the nitrile group-containing conjugated diene polymer (for example, polybutyl acrylate).
 重合体(A)のガラス転移温度と、重合体(A)のガラス転移温度の差が、30℃以下であることが好ましく、20℃以下であることがより好ましく、15℃以下であることがさらに好ましく、10℃以下であることが特に好ましく、5℃以下であることが最も好ましい。 The difference between the glass transition temperature of the polymer (A 1 ) and the glass transition temperature of the polymer (A 2 ) is preferably 30° C. or less, more preferably 20° C. or less, and 15° C. or less. It is more preferably 10°C or lower, particularly preferably 10°C or lower, and most preferably 5°C or lower.
 また、本発明のディップ成形用ラテックス組成物は、たとえば、ガラス転移温度が10℃以下である重合体(A)と化合物(a)とを含むラテックス(A-a)、ならびに、ガラス転移温度が10℃超である重合体(B)と化合物(b1)および/または化合物(b2)とを含むラテックス(B-b)を、ラテックス状態で混合する製造方法により得てもよい。以下、適宜、「ラテックス(A-a)」「ラテックス(B-b)」という略称を用いる。 Further, the latex composition for dip molding of the present invention includes, for example, a latex (Aa) containing a polymer (A) having a glass transition temperature of 10° C. or less and a compound (a), and a latex (Aa) having a glass transition temperature of A latex (Bb) containing the polymer (B) having a temperature higher than 10° C. and the compound (b1) and/or the compound (b2) may be obtained by a production method of mixing in a latex state. Hereinafter, abbreviations such as "latex (Aa)" and "latex (Bb)" are used as appropriate.
 また、本発明のディップ成形用ラテックス組成物は、たとえば、ガラス転移温度が10℃以下である重合体(A)と、化合物(b1)および/または化合物(b2)とを含むラテックス(A-b)、ならびに、ガラス転移温度が10℃超である重合体(B)と化合物(a)とを含むラテックス(B-a)を、ラテックス状態で混合する製造方法により得てもよい。以下、適宜、「ラテックス(A-b)」「ラテックス(B-a)」という略称を用いる。 Further, the latex composition for dip molding of the present invention is, for example, a latex (Ab ), and a latex (Ba) containing a polymer (B) having a glass transition temperature of more than 10° C. and a compound (a), may be obtained by a production method of mixing in a latex state. Hereinafter, the abbreviations “latex (Ab)” and “latex (Ba)” are used as appropriate.
 上記に例示した各製造方法において、重合体と化合物(a)を含むラテックス(ラテックス(A-a)、ラテックス(A-a)、ラテックス(B-a))に、化合物(a)を含有させる方法は特に限定されず、たとえば、化合物(a)の存在下に重合を行うことで、重合体と化合物(a)とを含むラテックスを得る方法や、重合体を含むラテックスを調製した後に、化合物(a)を添加する方法が挙げられる。なかでも、化合物(a)の存在下に重合を行う方法が好ましい。また、重合体と化合物(a)とを含むラテックスは、さらに化合物(b1)および/または化合物(b2)を含んでもよい。この場合において、化合物(b1)および/または化合物(b2)を含有させる方法は特に限定されず、たとえば、化合物(b1)および/または化合物(b2)の存在下に重合を行うことで、重合体と化合物(b1)および/または化合物(b2)とを含むラテックスを得る方法や、重合体を含むラテックスを調製した後に、化合物(b1)および/または化合物(b2)を添加する方法が挙げられる。なかでも、化合物(b1)および/または化合物(b2)の存在下に重合を行う方法が好ましい。 In each production method exemplified above, the compound (a) is contained in the latex containing the polymer and the compound (a) (latex (A 1 -a), latex (Aa), latex (Ba)) The method of causing is not particularly limited, for example, a method of obtaining a latex containing a polymer and a compound (a) by performing polymerization in the presence of the compound (a), a method of preparing a latex containing a polymer, A method of adding the compound (a) can be mentioned. Among them, the method of polymerizing in the presence of the compound (a) is preferable. Moreover, the latex containing the polymer and the compound (a) may further contain the compound (b1) and/or the compound (b2). In this case, the method for containing the compound (b1) and/or the compound (b2) is not particularly limited, and for example, the polymer is polymerized in the presence of the compound (b1) and/or the compound (b2). and a method of obtaining a latex containing compound (b1) and/or compound (b2), and a method of adding compound (b1) and/or compound (b2) after preparing a latex containing a polymer. Among them, the method of polymerizing in the presence of the compound (b1) and/or the compound (b2) is preferred.
 上記に例示した各製造方法において、重合体と化合物(b1)および/または化合物(b2)とを含むラテックス(ラテックス(A-b)、ラテックス(B-b)、ラテックス(A-b))に、化合物(b1)および/または化合物(b2)を含有させる方法は特に限定されず、たとえば、化合物(b1)および/または化合物(b2)の存在下に重合を行うことで、重合体と化合物(b1)および/または化合物(b2)とを含むラテックスを得る方法や、重合体を含むラテックスを調製した後に、化合物(b1)および/または化合物(b2)を添加する方法が挙げられる。なかでも、化合物(b1)および/または化合物(b2)の存在下に重合を行う方法が好ましい。また、重合体と化合物(b1)および/または化合物(b2)とを含むラテックスは、さらに化合物(a)を含んでもよい。この場合において、化合物(a)を含有させる方法は特に限定されず、たとえば、化合物(a)の存在下に重合を行うことで、重合体と化合物(a)とを含むラテックスを得る方法や、重合体を含むラテックスを調製した後に、化合物(a)を添加する方法が挙げられる。なかでも、化合物(a)の存在下に重合を行う方法が好ましい。 In each production method exemplified above, a latex containing a polymer and compound (b1) and/or compound (b2) (latex (A 2 -b), latex (Bb), latex (Ab)) In, the method for containing the compound (b1) and/or the compound (b2) is not particularly limited. Examples include a method of obtaining a latex containing (b1) and/or compound (b2), and a method of adding compound (b1) and/or compound (b2) after preparing a latex containing a polymer. Among them, the method of polymerizing in the presence of the compound (b1) and/or the compound (b2) is preferred. In addition, the latex containing the polymer and compound (b1) and/or compound (b2) may further contain compound (a). In this case, the method of incorporating the compound (a) is not particularly limited, for example, a method of obtaining a latex containing the polymer and the compound (a) by performing polymerization in the presence of the compound (a), A method of adding the compound (a) after preparing a latex containing a polymer can be mentioned. Among them, the method of polymerizing in the presence of the compound (a) is preferable.
 上記の、2種のラテックスをラテックス状態で混合する方法を適宜組み合わせることにより、3種以上のラテックスをラテックス状態で混合してもよい。たとえば、ラテックス(A-a)と、ラテックス(A-b)と、ラテックス(B-a)および/またはラテックス(B-b)とをラテックス状態で混合してもよい。 Three or more types of latexes may be mixed in a latex state by appropriately combining the methods of mixing two types of latexes as described above. For example, latex (A 1 -a), latex (A 2 -b), and latex (Ba) and/or latex (Bb) may be mixed in a latex state.
 本発明のディップ成形用ラテックス組成物は、濃縮処理または希釈処理を経て得られるものであってよい。本発明のディップ成形用ラテックス組成物は、濃縮処理を経て得られるものであることが好ましい。濃縮処理方法としては、特に限定されないが、たとえば、減圧蒸留、常圧蒸留、遠心分離、膜濃縮等の方法が挙げられる。これらのなかでも、加熱を伴う濃縮方法が好ましく、加熱を伴う減圧蒸留がより好ましい。加熱を伴う濃縮方法を採用することにより、臭気の原因となる菌を減少させる、あるいは、臭気の原因となる菌の増殖を抑制することができ、ディップ成形用ラテックス組成物を低臭気性に優れたものとすることができる。 The latex composition for dip molding of the present invention may be obtained through concentration treatment or dilution treatment. The latex composition for dip molding of the present invention is preferably obtained through a concentration treatment. The concentration treatment method is not particularly limited, and examples thereof include vacuum distillation, normal pressure distillation, centrifugation, membrane concentration, and the like. Among these, the concentration method accompanied by heating is preferable, and the vacuum distillation accompanied by heating is more preferable. By adopting a concentration method that involves heating, it is possible to reduce the number of odor-causing bacteria, or to suppress the growth of odor-causing bacteria. can be assumed.
 加熱を伴う濃縮方法において、加熱温度は50℃~100℃が好ましい。また、減圧蒸留において、圧力は20kPa~90kPaが好ましい。 In the concentration method involving heating, the heating temperature is preferably 50°C to 100°C. Also, in the vacuum distillation, the pressure is preferably 20 kPa to 90 kPa.
 濃縮処理は、ディップ成形用ラテックス組成物に配合する成分の一部を含む混合物に対して施してもよく、または、ディップ成形用ラテックス組成物に配合する成分のすべてを含む混合物に対して施してもよい。 The concentration treatment may be applied to a mixture containing some of the components to be compounded in the latex composition for dip molding, or to a mixture containing all of the components to be compounded in the latex composition for dip molding. good too.
 上記の製造方法により得られる、重合体のラテックスと、化合物(a)と、化合物(b1)および/または化合物(b2)とを含有する組成物に対して、必要に応じて配合される各成分を添加してもよい。 Each component that is blended as necessary into the composition containing the polymer latex, the compound (a), and the compound (b1) and/or the compound (b2) obtained by the above production method. may be added.
<ディップ成形体>
 本発明のディップ成形体は、上述した本発明のディップ成形用ラテックス組成物を用いて得られる成形体であり、通常は、上述した本発明のディップ成形用ラテックス組成物を用いて、ディップ成形することにより得られる。本発明のディップ成形体は、上述した本発明のディップ成形用ラテックス組成物を用いて得られるものであるため、優れた耐薬液透過性を備え、ウェットグリップ性および柔軟性にバランス良く優れる。
<Dip molding>
The dip-molded article of the present invention is a molded article obtained using the dip-molding latex composition of the present invention described above, and is usually dip-molded using the dip-molding latex composition of the present invention described above. obtained by Since the dip-molded article of the present invention is obtained using the above-described dip-molding latex composition of the present invention, it has excellent resistance to chemical permeation and excellent wet grip and flexibility in a well-balanced manner.
 ディップ成形用ラテックス組成物として、2種以上の重合体を含有するものを用いる場合には、本発明のディップ成形体は、当該2種以上の重合体を含有し、ディップ成形体における各重合体の含有比率は、通常、ディップ成形用ラテックス組成物における各重合体の含有比率と同等である。 When a composition containing two or more polymers is used as the dip-molding latex composition, the dip-molded article of the present invention contains the two or more polymers, and each polymer in the dip-molded article is usually the same as the content of each polymer in the latex composition for dip molding.
 本発明のディップ成形体は、基材と、本発明のディップ成形用ラテックス組成物を用いて基材上に形成された重合体層とを有する積層体であることが好ましい。積層体としては、たとえば、本発明のディップ成形用ラテックス組成物に基材を浸漬することで得られる、基材と、ディップ成形用ラテックス組成物からなる重合体層との積層体であってもよい。なお、本発明のディップ成形体は、ディップ成形型を、上述した本発明のディップ成形用ラテックス組成物に浸漬することで得られる、ディップ成形用ラテックス組成物からなる膜成形体であってもよい。以下においては、本発明のディップ成形体が、基材と、本発明のディップ成形用ラテックス組成物からなる重合体層との積層体である場合を例示して説明するが、本発明はこのような態様に限定されるものではない。 The dip-molded product of the present invention is preferably a laminate having a substrate and a polymer layer formed on the substrate using the dip-molding latex composition of the present invention. The laminate may be, for example, a laminate of a substrate obtained by immersing the substrate in the dip molding latex composition of the present invention and a polymer layer composed of the dip molding latex composition. good. The dip molded article of the present invention may be a film molded article made of the latex composition for dip molding, which is obtained by immersing a dip mold in the latex composition for dip molding of the present invention. . Hereinafter, the case where the dip-molded article of the present invention is a laminate of a substrate and a polymer layer comprising the latex composition for dip molding of the present invention will be described as an example. It is not limited to this embodiment.
 基材としては特に限定されないが、本発明のディップ成形体を保護手袋として用いる場合には、繊維基材を好適に用いることができる。繊維基材としては特に限定されないが、たとえば、繊維として単繊維の撚糸を使用し、この撚糸を織ることで手袋形状としたものを用いることができる。繊維基材の平均厚みは、好ましくは50~3,000μm、より好ましくは100~2,000μmである。 Although the base material is not particularly limited, a fiber base material can be suitably used when the dip molded article of the present invention is used as a protective glove. Although the fiber base material is not particularly limited, for example, it is possible to use twisted monofilament yarns as fibers and to form a glove shape by weaving the twisted yarns. The average thickness of the fiber base material is preferably 50-3,000 μm, more preferably 100-2,000 μm.
 本発明のディップ成形体は、たとえば、基材を、ディップ成形用ラテックス組成物に浸漬させることにより、基材上に、ディップ成形用ラテックス組成物からなる重合体層を形成することで製造することができる。この際には、予め基材を所望の形状の成形用型に被せた状態で、基材をディップ成形用ラテックス組成物に浸漬させることが好ましい。 The dip-molded article of the present invention can be produced, for example, by immersing a substrate in the dip-molding latex composition to form a polymer layer composed of the dip-molding latex composition on the substrate. can be done. In this case, it is preferable to immerse the substrate in the latex composition for dip molding in a state in which the substrate is previously covered with a molding die having a desired shape.
 基材を被せる成形用型としては、特に限定されないが、材質は磁器製、ガラス製、金属製、プラスチック製など種々のものを用いることができる。成形用型の形状は、最終製品の形状に合わせて、所望の形状とすればよい。たとえば、本発明のディップ成形体を保護手袋として使用する場合には、基材を被せる成形用型として、手首から指先までの形状を有する成形用型など、各種の手袋用の成形用型を用いることが好ましい。 The molding die for covering the substrate is not particularly limited, but various materials such as porcelain, glass, metal, and plastic can be used. The shape of the molding die may be a desired shape according to the shape of the final product. For example, when the dip molded product of the present invention is used as a protective glove, various types of glove molds such as a mold having a shape from the wrist to the fingertips are used as the mold for covering the substrate. is preferred.
 また、基材をディップ成形用ラテックス組成物に浸漬させる前には、予め基材を凝固剤溶液に浸漬させ、基材に凝固剤溶液を付着させることが好ましい。この際には、予め基材を所望の形状の成形用型に被せた状態で、基材を凝固剤溶液に浸漬させることが好ましい。所望の形状の成形用型としては、上述したものが挙げられる。また、凝固剤溶液を基材に付着させ、基材に凝固剤溶液を付着させた後には、乾燥を行うことで、凝固剤溶液に含まれている溶媒を除去することが好ましい。この際の乾燥温度は、特に限定されず、用いる溶媒に応じて選択すればよいが、好ましくは10~80℃、より好ましくは15~70℃である。また、乾燥時間は、特に限定されないが、好ましくは600~1秒間、より好ましくは300~5秒間である。 In addition, it is preferable that the base material is previously immersed in the coagulant solution so that the coagulant solution adheres to the base material before the base material is immersed in the latex composition for dip molding. In this case, it is preferable to immerse the base material in the coagulant solution in a state in which the base material is previously covered with a molding die having a desired shape. Molds for forming the desired shape include those described above. Further, it is preferable to remove the solvent contained in the coagulant solution by attaching the coagulant solution to the base material and drying after attaching the coagulant solution to the base material. The drying temperature at this time is not particularly limited and may be selected according to the solvent used, but is preferably 10 to 80°C, more preferably 15 to 70°C. Although the drying time is not particularly limited, it is preferably 600 to 1 second, more preferably 300 to 5 seconds.
 次いで、凝固剤溶液を付着させた基材を、所望の形状の成形用型に被せた状態のまま、ディップ成形用ラテックス組成物に浸漬させることで、ディップ成形用ラテックス組成物を凝固させて、基材上に、ディップ成形用ラテックス組成物からなる重合体層を付着させる。 Next, the substrate to which the coagulant solution has been adhered is immersed in the latex composition for dip molding while being covered with a molding die having a desired shape, thereby solidifying the latex composition for dip molding. A polymer layer comprising a dip molding latex composition is deposited on the substrate.
 そして、基材を、ディップ成形用ラテックス組成物に浸漬させた後には、乾燥を行うことが好ましい。この際における乾燥温度は、特に限定されないが、好ましくは10~80℃、より好ましくは15~80℃である。また、乾燥時間は、特に限定されないが、好ましくは120分間~5秒間、より好ましくは60分間~10秒間である。 After the substrate is immersed in the latex composition for dip molding, it is preferable to dry it. The drying temperature at this time is not particularly limited, but is preferably 10 to 80°C, more preferably 15 to 80°C. Although the drying time is not particularly limited, it is preferably 120 minutes to 5 seconds, more preferably 60 minutes to 10 seconds.
 なお、ディップ成形用ラテックス組成物として、硫黄系架橋剤を含有するものを用いる場合には、ディップ成形用ラテックス組成物として、予め熟成(前加硫ともいう。)させたものを用いてもよい。 When a latex composition containing a sulfur-based cross-linking agent is used as the latex composition for dip molding, the latex composition for dip molding may be previously aged (also referred to as pre-vulcanization). .
 熟成させる際の温度条件は、特に限定されないが、好ましくは20~50℃である。また、熟成させる際の時間は、基材と重合体層との剥離を防止する観点、重合体層の機械的特性を向上させる観点から、好ましくは4時間以上120時間以下、より好ましくは24時間以上72時間以下である。 The temperature conditions for aging are not particularly limited, but are preferably 20 to 50°C. The time for aging is preferably 4 hours or more and 120 hours or less, more preferably 24 hours, from the viewpoint of preventing separation between the substrate and the polymer layer and improving the mechanical properties of the polymer layer. 72 hours or less.
 次いで、基材に付着させたディップ成形用ラテックス組成物を加熱することにより、ディップ成形用ラテックス組成物に含まれる重合体成分を架橋させることが好ましい。 Next, it is preferable to crosslink the polymer component contained in the dip-molding latex composition by heating the dip-molding latex composition adhered to the substrate.
 架橋のための加熱温度は、好ましくは60~160℃、より好ましくは80~150℃である。加熱温度を上記範囲にすることにより、架橋反応に要する時間を短くしてディップ成形体の生産性を向上させることができるとともに、過剰な加熱による重合体成分の酸化劣化を抑制して、得られるディップ成形体の物性を向上させることができる。架橋のための加熱時間は、加熱温度に応じて適宜選択すればよいが、通常、5~120分である。 The heating temperature for cross-linking is preferably 60 to 160°C, more preferably 80 to 150°C. By setting the heating temperature within the above range, the time required for the cross-linking reaction can be shortened and the productivity of the dip-molded product can be improved. It is possible to improve the physical properties of the dip-molded product. The heating time for cross-linking may be appropriately selected according to the heating temperature, but is usually 5 to 120 minutes.
 なお、このようにして得られるディップ成形体に対し、必要に応じて、基材上に形成される重合体層を20~80℃の温水に0.5~60分程度浸漬することにより、重合体層から水溶性不純物(乳化剤、水溶性高分子、凝固剤など)を除去しておくことが好ましい。 In the dip-molded product thus obtained, if necessary, the polymer layer formed on the base material is immersed in warm water of 20 to 80° C. for about 0.5 to 60 minutes to obtain a heavy weight. It is preferable to remove water-soluble impurities (emulsifiers, water-soluble polymers, coagulants, etc.) from the combined layer.
 温水に浸漬させた後には、さらに乾燥を行ってもよい。この際における乾燥温度、乾燥時間は、特に限定されないが、上述した、ディップ成形用ラテックス組成物に浸漬させた後の乾燥工程における乾燥温度、乾燥時間と同様とすることができる。 After soaking in hot water, it may be dried further. The drying temperature and drying time at this time are not particularly limited, but may be the same as the drying temperature and drying time in the drying step after immersion in the latex composition for dip molding described above.
 そして、以上のように基材を成形用型に被せた状態で基材上に、重合体層を形成した後、成形用型から脱着(あるいは脱型)することによって、ディップ成形体を得ることができる。脱着方法としては、手で成形用型から剥がしたり、水圧や圧縮空気の圧力により剥がしたりする方法を採用することができる。 Then, after the polymer layer is formed on the substrate in a state where the substrate is covered with the molding die as described above, the dip-molded article is obtained by detaching (or demolding) from the molding die. can be done. As a detachment method, it is possible to adopt a method of manually peeling off from the molding die, or a method of peeling off by water pressure or compressed air pressure.
 ディップ成形体を成形用型から脱着する前、または脱着した後には、さらに60~120℃の温度で、10~120分の加熱処理(後架橋工程)を行ってもよい。また、ディップ成形体を成形用型から脱着した後には、ディップ成形体の内側および/または外側の表面に、塩素化処理やコーティング処理などによる表面処理層を形成してもよい。 Before or after detaching the dip molded body from the molding die, it may be further heat-treated at a temperature of 60 to 120°C for 10 to 120 minutes (post-crosslinking step). After the dip-molded body is removed from the molding die, a surface treatment layer may be formed on the inner and/or outer surfaces of the dip-molded body by chlorination treatment, coating treatment, or the like.
 なお、ディップ成形体を得る方法としては、本発明のディップ成形用ラテックス組成物以外のディップ成形用ラテックス組成物を発泡させて、ディップ成形する方法が考えられる。しかしながら、このような方法では、得られるディップ成形体の重合体層の表面の算術平均粗さRaが小さくなりすぎる傾向があり、ウェットグリップ性に劣ったり、柔軟性に劣ったりするおそれがある。 As a method for obtaining a dip-molded article, a method of foaming a dip-molding latex composition other than the dip-molding latex composition of the present invention and performing dip molding can be considered. However, with such a method, the arithmetic mean roughness Ra of the surface of the polymer layer of the dip-molded article to be obtained tends to be too small, which may lead to poor wet grip and poor flexibility.
 また、ディップ成形体を得る方法としては、本発明のディップ成形用ラテックス組成物以外のディップ成形用ラテックス組成物を用いてディップ層を形成した後、ディップ層の表面に水溶性の金属塩を付着させて、さらに必要に応じて乾燥、架橋等を行った後、表面に付着させた水溶性の金属塩を洗い流す方法も考えられる。しかしながら、このような方法では、得られるディップ成形体の重合体層の表面の最大高さ粗さRzや、算術平均粗さRaが大きくなりすぎる傾向があり、柔軟性に劣ったり、耐薬液透過性に劣ったりするおそれがある。また、ディップ成形体の表面に水溶性の金属塩由来の成分(たとえば、金属成分)が残留するおそれもある。 Further, as a method for obtaining a dip-molded article, after forming a dip layer using a dip-molding latex composition other than the dip-molding latex composition of the present invention, a water-soluble metal salt is attached to the surface of the dip layer. After drying, cross-linking, etc., if necessary, the water-soluble metal salt adhering to the surface is washed away. However, with such a method, the maximum height roughness Rz and the arithmetic mean roughness Ra of the surface of the polymer layer of the resulting dip-molded product tend to be too large, resulting in poor flexibility and resistance to chemical permeation. There is a risk of being inferior in quality. In addition, there is a possibility that a water-soluble metal salt-derived component (for example, a metal component) may remain on the surface of the dip molded body.
 加えて、これらの方法では、発泡工程や、水溶性の金属塩を付着させる工程および水溶性の金属塩を洗い流す工程が必要となるため、ディップ成形体の生産効率が低下するおそれがある。 In addition, these methods require a foaming step, a step of adhering a water-soluble metal salt, and a step of washing off the water-soluble metal salt, which may reduce the production efficiency of the dip molded body.
 本発明のディップ成形用ラテックス組成物を用いることにより、発泡工程や、水溶性の金属塩を付着させる工程および水溶性の金属塩を洗い流す工程を経なくても、優れた耐薬液透過性を備え、ウェットグリップ性および柔軟性にバランス良く優れる本発明のディップ成形体を得ることができる。そのため、本発明のディップ成形用ラテックス組成物を用いることにより、本発明のディップ成形体の表面における水溶性の金属塩由来の成分(たとえば、金属成分)を低減しながら、高い生産効率でディップ成形体を製造することも可能となる。 By using the latex composition for dip molding of the present invention, excellent chemical liquid permeation resistance can be obtained without going through a foaming step, a step of adhering a water-soluble metal salt, and a step of washing off the water-soluble metal salt. It is possible to obtain the dip-molded article of the present invention which is excellent in wet grip and flexibility in a well-balanced manner. Therefore, by using the latex composition for dip molding of the present invention, it is possible to perform dip molding with high production efficiency while reducing the water-soluble metal salt-derived component (for example, metal component) on the surface of the dip molded article of the present invention. It is also possible to manufacture bodies.
 本発明のディップ成形体における、本発明のディップ成形用ラテックス組成物からなる重合体層の膜厚は、好ましくは0.05~1.0mm、より好ましくは0.06~0.8mm、さらに好ましくは0.07~0.7mmである。 In the dip molded product of the present invention, the thickness of the polymer layer composed of the latex composition for dip molding of the present invention is preferably 0.05 to 1.0 mm, more preferably 0.06 to 0.8 mm, and still more preferably. is 0.07 to 0.7 mm.
 さらに、本発明のディップ成形体が、基材と重合体層とを含む場合、基材と重合体層とを含む積層体の厚みは、好ましくは0.1~10mmであり、より好ましくは0.4~2.0mmであり、さらに好ましくは0.5~1.1mmである。 Furthermore, when the dip-molded product of the present invention contains a base material and a polymer layer, the thickness of the laminate containing the base material and the polymer layer is preferably 0.1 to 10 mm, more preferably 0. .4 to 2.0 mm, more preferably 0.5 to 1.1 mm.
 本発明のディップ成形体における、本発明のディップ成形用ラテックス組成物からなる重合体層の100%引張応力は、好ましくは1.1MPa以下であり、より好ましくは0.1~0.9MPaであり、さらに好ましくは0.2~0.75MPaであり、特に好ましくは0.3~0.7MPaである。本発明のディップ成形用ラテックス組成物を用いることにより、重合体層の100%引張応力が上記範囲内であり、ウェットグリップ性および柔軟性にバランス良く優れるとともに、優れた耐薬液透過性を備えるディップ成形体を容易に得ることができる。重合体層の100%引張応力は、たとえば、使用する重合体のラテックスの種類、使用するアニオン性界面活性剤等の界面活性剤の種類や量などを調整することにより、制御すればよい。重合体のラテックスを2種以上使用する場合には、各重合体のラテックスの種類および比率を調整することにより、重合体層の100%引張応力を制御することができる。 The 100% tensile stress of the polymer layer composed of the latex composition for dip molding of the present invention in the dip-molded article of the present invention is preferably 1.1 MPa or less, more preferably 0.1 to 0.9 MPa. , more preferably 0.2 to 0.75 MPa, particularly preferably 0.3 to 0.7 MPa. By using the latex composition for dip molding of the present invention, the 100% tensile stress of the polymer layer is within the above range, and the dip has excellent wet grip properties and flexibility in a well-balanced manner, as well as excellent chemical liquid permeation resistance. A molded article can be obtained easily. The 100% tensile stress of the polymer layer may be controlled, for example, by adjusting the type of polymer latex used and the type and amount of surfactant such as an anionic surfactant used. When two or more polymer latexes are used, the 100% tensile stress of the polymer layer can be controlled by adjusting the type and ratio of each polymer latex.
 本発明のディップ成形体における、本発明のディップ成形用ラテックス組成物からなる重合体層の100%引張応力の測定は、以下の方法により行う。まず、ディップ成形用ラテックス組成物を構成する重合体のラテックスと、化合物(a)と、化合物(b1)および/または化合物(b2)とを、ディップ成形用ラテックス組成物中の含有割合と同じ割合で含む測定用ラテックスを調製する。調製した測定用ラテックスをガラス基材上に塗布し、乾燥させることで、フィルム成形体を得る。得られたフィルム成形体の100%引張応力を測定し、得られた値を、重合体層の100%引張応力の値とする。たとえば、ディップ成形用ラテックス組成物が、重合体のラテックスと、化合物(a)と、化合物(b1)および/または化合物(b2)とを含有するラテックス混合物に対して、必要に応じて用いられる硫黄系架橋剤、架橋促進剤、酸化亜鉛、水溶性ポリマー、充填剤等の添加剤を添加することにより得られるものである場合には、該ラテックス混合物(添加剤を添加する前のラテックス混合物)を、測定用ラテックスとして用いる。重合体層の100%引張応力は、具体的には、実施例に記載の方法により測定する。 The 100% tensile stress of the polymer layer composed of the latex composition for dip molding of the present invention in the dip-molded article of the present invention is measured by the following method. First, the latex of the polymer constituting the latex composition for dip molding, the compound (a), the compound (b1) and/or the compound (b2) are mixed in the same proportions as those in the latex composition for dip molding. Prepare a latex for measurement containing A film molding is obtained by coating the prepared latex for measurement on a glass substrate and drying it. The 100% tensile stress of the obtained film molding is measured, and the obtained value is defined as the 100% tensile stress value of the polymer layer. For example, the latex composition for dip molding is a latex mixture containing a polymer latex, a compound (a), and a compound (b1) and/or a compound (b2). If it is obtained by adding additives such as system cross-linking agents, cross-linking accelerators, zinc oxide, water-soluble polymers, fillers, etc., the latex mixture (latex mixture before adding additives) , used as latex for measurement. Specifically, the 100% tensile stress of the polymer layer is measured by the method described in Examples.
 本発明のディップ成形体における、本発明のディップ成形用ラテックス組成物からなる重合体層の表面の最大高さ粗さRzは、好ましくは135~350μmであり、より好ましくは155~320μmであり、さらに好ましくは180~310μmであり、特に好ましくは230~300μmであり、最も好ましくは260~295μmである。 In the dip-molded product of the present invention, the maximum height roughness Rz of the surface of the polymer layer composed of the latex composition for dip molding of the present invention is preferably 135 to 350 μm, more preferably 155 to 320 μm, It is more preferably 180-310 μm, particularly preferably 230-300 μm, and most preferably 260-295 μm.
 本発明のディップ成形体における、本発明のディップ成形用ラテックス組成物からなる重合体層の表面の算術平均粗さRaは、好ましくは20~72μmであり、より好ましくは25~65μmであり、さらに好ましくは30~60μmであり、特に好ましくは35~55μmである。 In the dip-molded product of the present invention, the surface arithmetic mean roughness Ra of the polymer layer composed of the latex composition for dip molding of the present invention is preferably 20 to 72 μm, more preferably 25 to 65 μm, and further It is preferably 30-60 μm, particularly preferably 35-55 μm.
 本発明のディップ成形体における、本発明のディップ成形用ラテックス組成物からなる重合体層の表面の、50%高さにおける負荷面積率は、好ましくは20~80%であり、より好ましくは30~70%であり、さらに好ましくは35~60%であり、特に好ましくは40~52%である。ここで、50%高さは、測定エリアにおける最大高さ(100%高さ)と最小高さ(0%高さ)の平均の高さであり、50%高さにおける負荷面積率は、測定エリアにおける、高さが50%高さよりも高い部分の投影面積率である。 In the dip molded product of the present invention, the surface of the polymer layer comprising the latex composition for dip molding of the present invention has a load area ratio at 50% height of preferably 20 to 80%, more preferably 30 to 30%. 70%, more preferably 35 to 60%, particularly preferably 40 to 52%. Here, the 50% height is the average height of the maximum height (100% height) and the minimum height (0% height) in the measurement area, and the load area ratio at 50% height is the measurement It is the projected area ratio of the portion where the height is higher than 50% in the area.
 重合体層の表面の粗さ(最大高さ粗さRz、算術平均粗さRa、50%高さにおける負荷面積率)は、レーザ顕微鏡を用いて得られる、重合体層の表面の高さデータから求める。最大高さ粗さRzおよび算術平均粗さRaは、JIS B 0601:2013に従い求める。また、50%高さにおける負荷面積率は、得られた高さデータから、50%高さ(最大高さ(100%高さ)と最小高さ(0%高さ)の平均の高さ)を算出した後、測定エリアにおける、高さが50%高さよりも高い部分の投影面積率を算出することにより求める。具体的には、実施例に記載の方法で求める。 The surface roughness of the polymer layer (maximum height roughness Rz, arithmetic mean roughness Ra, load area ratio at 50% height) is the height data of the surface of the polymer layer obtained using a laser microscope. Ask from Maximum height roughness Rz and arithmetic mean roughness Ra are obtained according to JIS B 0601:2013. In addition, the load area ratio at 50% height is obtained from the obtained height data, 50% height (average height of maximum height (100% height) and minimum height (0% height)) After calculating , it is obtained by calculating the projected area ratio of the portion whose height is higher than 50% in the measurement area. Specifically, it is determined by the method described in Examples.
 本発明のディップ成形体は、優れた耐薬液透過性を備え、ウェットグリップ性および柔軟性にバランス良く優れるものであり、たとえば、手袋用途、特に保護手袋用途に好適に用いることができるものである。なお、上記においては、本発明のディップ成形体が、基材と、本発明のディップ成形用ラテックス組成物からなる重合体層との積層体である場合を例示して説明したが、上述したように、本発明はこのような態様に何ら限定されるものではなく、ディップ成形型を、ディップ成形用ラテックス組成物に浸漬することで得られる、ディップ成形用ラテックス組成物からなる膜成形体とすることも、もちろん可能である。 The dip-molded article of the present invention has excellent resistance to chemical liquid permeation, and is excellent in well-balanced wet grip properties and flexibility. For example, it can be suitably used for gloves, particularly for protective gloves. . In the above description, the case where the dip-molded product of the present invention is a laminate of a substrate and a polymer layer made of the latex composition for dip molding of the present invention has been exemplified and explained. In addition, the present invention is not limited to such an embodiment, and is a film molded article made of a latex composition for dip molding, which is obtained by immersing a dip mold in the latex composition for dip molding. Of course, it is also possible.
 なお、基材を介在させない、重合体層のみからなる手袋は、厚みが薄いため、ウェットグリップ性が問題となることは少ない。一方、基材と、ディップ成形用ラテックス組成物からなる重合体層との積層体である手袋は、手袋の厚み(基材と重合体層との積層体全体の厚み)が厚くなりやすく、ウェットグリップ性が不足しやすいという特有の課題があった。本発明のディップ成形用ラテックス組成物を用いることにより、基材と、本発明のディップ成形用ラテックス組成物からなる重合体層との積層体である手袋を、優れた耐薬液透過性を備え、ウェットグリップ性および柔軟性にバランス良く優れるものとすることができる。 It should be noted that gloves made of only a polymer layer with no intervening base material are thin, so wet grip properties rarely pose a problem. On the other hand, a glove that is a laminate of a base material and a polymer layer made of a latex composition for dip molding tends to have a large thickness (thickness of the entire laminate of the base material and the polymer layer). There was a peculiar problem that grip performance tends to be insufficient. By using the dip-forming latex composition of the present invention, a glove, which is a laminate of a substrate and a polymer layer made of the dip-forming latex composition of the present invention, has excellent chemical liquid permeation resistance, It can be excellent in wet grip and flexibility in a well-balanced manner.
 以下に、実施例および比較例を挙げて、本発明をさらに具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。なお、「部」および「%」は、特に断りのない限り重量基準である。
 各種の測定については、以下の方法に従って行った。
EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited only to these Examples. "Parts" and "%" are by weight unless otherwise specified.
Various measurements were performed according to the following methods.
<固形分濃度>
 アルミ皿(重量:X1)に試料2gを精秤し(重量:X2)、これを105℃の熱風乾燥器内で2時間乾燥させた。次いで、デシケーター内で冷却した後、アルミ皿ごと重量を測定し(重量:X3)、下記の計算式にしたがって、固形分濃度を算出した。
 固形分濃度(重量%)=(X3-X1)×100/X2
<Solid content concentration>
2 g of the sample was accurately weighed (weight: X2) in an aluminum dish (weight: X1) and dried in a hot air dryer at 105°C for 2 hours. Next, after cooling in a desiccator, the weight of each aluminum dish was measured (weight: X3), and the solid content concentration was calculated according to the following formula.
Solid content concentration (% by weight) = (X3-X1) x 100/X2
<体積平均粒子径>
 光散乱回折粒子測定装置(コールター社製、商品名「LS-230」)を用いて、重合体のラテックスを構成する重合体の粒子の体積平均粒子径を測定した。
<Volume average particle size>
The volume-average particle size of the polymer particles constituting the polymer latex was measured using a light scattering diffraction particle measuring device (manufactured by Coulter, trade name "LS-230").
<重合体のラテックスの表面張力>
 表面張力計(DY-300、協和界面化学社製)を使用して、重合体のラテックスの表面張力を測定した。測定値は単位をmN/mとして示した。測定は25℃で実施した。
<Surface tension of polymer latex>
A surface tension meter (DY-300, manufactured by Kyowa Interface Science Co., Ltd.) was used to measure the surface tension of the polymer latex. Measured values are expressed in units of mN/m. Measurements were performed at 25°C.
<重合体のラテックスの表面張力とアニオン性界面活性剤の表面張力との差>
 上記の方法で、重合体のラテックスの表面張力を測定した。また、各製造例で用いたアニオン性界面活性剤(化合物(a)、化合物(b1)、化合物(b2))の5.0重量%水溶液を調製し、表面張力計(DY-300、協和界面化学社製)を使用して、表面張力(界面活性剤の表面張力)を測定した。測定は25℃で実施した。なお、2種以上のアニオン性界面活性剤を用いた場合には、各界面活性剤の使用量の比率に応じて界面活性剤を混合した後、水量を調整して、界面活性剤の濃度の合計が5.0重量%である水溶液を調製した。そして、下式から、重合体のラテックスの表面張力と界面活性剤の表面張力との差を求めた。
   重合体のラテックスの表面張力と界面活性剤の表面張力との差=重合体のラテックスの表面張力-界面活性剤の表面張力
<Difference between surface tension of polymer latex and surface tension of anionic surfactant>
The surface tension of the polymer latex was measured by the method described above. In addition, a 5.0% by weight aqueous solution of the anionic surfactant (compound (a), compound (b1), compound (b2)) used in each production example was prepared, and a surface tensiometer (DY-300, Kyowa interface (manufactured by Kagaku Co., Ltd.) was used to measure the surface tension (the surface tension of the surfactant). Measurements were performed at 25°C. When two or more anionic surfactants are used, after mixing the surfactants according to the ratio of the amount of each surfactant used, the amount of water is adjusted to adjust the concentration of the surfactant. An aqueous solution with a total of 5.0% by weight was prepared. Then, the difference between the surface tension of the latex of the polymer and the surface tension of the surfactant was obtained from the following equation.
Difference between surface tension of polymer latex and surface tension of surfactant = surface tension of polymer latex - surface tension of surfactant
<ディップ成形用ラテックス組成物における界面活性剤の含有量>
 ディップ成形用ラテックス組成物における界面活性剤の含有量は、各製造例で使用した界面活性剤量、各製造例における重合転化率、および各実施例における配合比率から算出した。
<Content of surfactant in latex composition for dip molding>
The content of the surfactant in the latex composition for dip molding was calculated from the amount of surfactant used in each production example, the polymerization conversion rate in each production example, and the compounding ratio in each example.
<フィルム成形体の100%引張応力(重合体層の100%引張応力)>
 各実施例および比較例で得た測定用ラテックスをガラス基材上に塗布し、25℃で120時間乾燥させることで、厚み0.4mmのフィルム成形体を得た。得られたフィルム成形体を、ダンベル(商品名「スーパーダンベル(型式:SDMK-100C)」、ダンベル社製)で打ち抜き、試験片を得た。テンシロン万能試験機(商品名「RTG-1210」、オリエンテック社製)を用いて、引張速度500mm/minの条件で、試験片の100%引張応力を測定し、得られた値をフィルム成形体の100%引張応力(重合体層の100%引張応力)とした。
<100% tensile stress of film molded body (100% tensile stress of polymer layer)>
A glass substrate was coated with the latex for measurement obtained in each of Examples and Comparative Examples, and dried at 25° C. for 120 hours to obtain a film molding having a thickness of 0.4 mm. The obtained film molded body was punched out with a dumbbell (trade name: "Super dumbbell (model: SDMK-100C)", manufactured by Dumbbell Co.) to obtain a test piece. Tensilon universal testing machine (trade name "RTG-1210", manufactured by Orientec) was used to measure the 100% tensile stress of the test piece at a tensile speed of 500 mm / min. 100% tensile stress (100% tensile stress of the polymer layer).
<保護手袋の重合体層の表面の粗さ>
 保護手袋の重合体層の表面の粗さ(最大高さ粗さRz、算術平均粗さRa、50%高さにおける負荷面積率)は、レーザ顕微鏡(株式会社キーエンス製 VK-X100)を下記測定条件で用いて、保護手袋の重合体層の表面の高さデータを得た。そして、解析ソフトウェア((株)キーエンス社製VK形状解析アプリケーションVK-H1XJの「表面粗さ」計測機能)を用いて、得られた高さデータから、JIS B 0601:2013に従い、最大高さ粗さRzおよび算術平均粗さRaを求めた。また、得られた高さデータから、50%高さ(最大高さ(100%高さ)と最小高さ(0%高さ)の平均の高さ)を算出した後、50%高さにおける負荷面積率(高さが50%高さよりも高い部分の投影面積率)を求めた。
<測定条件>
・測定モード:表面形状
・測定品質:高精細
・測定倍率:200倍
・測定エリア面積:1000μm×1000μm
<Surface Roughness of Polymer Layer of Protective Glove>
The surface roughness of the polymer layer of the protective glove (maximum height roughness Rz, arithmetic mean roughness Ra, load area ratio at 50% height) is measured using a laser microscope (Keyence VK-X100) as follows. conditions were used to obtain height data for the surface of the polymer layer of the protective glove. Then, using analysis software ("surface roughness" measurement function of VK shape analysis application VK-H1XJ manufactured by Keyence Corporation), from the obtained height data, according to JIS B 0601: 2013, the maximum height roughness Rz and arithmetic mean roughness Ra were obtained. Also, from the obtained height data, after calculating the 50% height (the average height of the maximum height (100% height) and the minimum height (0% height)), at 50% height A load area ratio (a projected area ratio of a portion whose height is higher than 50% height) was determined.
<Measurement conditions>
・Measurement mode: surface shape ・Measurement quality: high definition ・Measurement magnification: 200 times ・Measurement area: 1000 μm × 1000 μm
<保護手袋のウェットグリップ性>
 重さ0.5kg~15.0kgまでの、0.5kg刻みで重さの異なる金属モールドを用意した。そして、3人の作業者に保護手袋を装着してもらい、乾燥状態の金属モールドを、重さの軽い方から順番に持ち上げてもらい、持ち上げることができた最大重量(W1(kg))を、3人それぞれについて求めた。次に、金属モールドに試験油IRM903を付着させた。そして、3人の作業者に保護手袋を装着してもらい、試験油IRM903を付着させた金属モールドを、重さの軽い方から順番に持ち上げてもらい、持ち上げることができた最大重量(W2(kg))を、3人それぞれについて求めた。そして、下記式によりそれぞれ算出した3人の点数を、算術平均することにより、平均点数を算出して、評価した。点数が高いほど、持ち上げることができた最大重量が大きく、ウェットグリップ性に優れると判断できる。
 (点数)=100×W2(kg)/W1(kg)
<Wet grip of protective gloves>
Metal molds having different weights in increments of 0.5 kg from 0.5 kg to 15.0 kg were prepared. Three workers were asked to wear protective gloves, and the dry metal molds were lifted in order from the lightest weight, and the maximum weight (W1 (kg)) that could be lifted was Asked about each of the three. Next, test oil IRM903 was applied to the metal mold. Three workers were asked to wear protective gloves, and the metal molds to which the test oil IRM903 was applied were lifted in order from the lightest weight, and the maximum weight that could be lifted (W2 (kg )) were obtained for each of the three persons. Then, the average score was calculated and evaluated by arithmetically averaging the scores of the three individuals calculated by the following formula. The higher the score, the larger the maximum weight that could be lifted, and it can be determined that the wet grip is excellent.
(Score) = 100 x W2 (kg)/W1 (kg)
<保護手袋の耐薬液透過性>
 以下の手順により保護手袋のオイル透過量を測定した。
(1)保護手袋(積層体)の人差指部分を切り出し、指の形の試験片を得た。
(2)アルミカップに試験油IRM903を入れた。
(3)試験片の内側にろ紙(重量:W)を入れ、試験片のうち、指の腹に対応する部分(面積約2~5cm程度の部分)の内表面をろ紙と密着させた。
(4)試験油IRM903を入れたアルミカップ内に、ろ紙を入れた試験片を置き、指の腹に対応する部分((3)においてろ紙を密着させた部分)の外表面を、試験油IRM903と接触させた。
(5)24時間静置した後、試験片からろ紙を取り出し、試験後のろ紙の重量(W)を測定した。
(6)試験油IRM903が試験片を透過した量(W-W)を計算した。
(7)保護手袋(積層体)の中指部分、薬指部分および小指部分をそれぞれ切り出し、試験片をさらに3つ得た。得られた試験片について、それぞれ、上記と同様に、試験油IRM903が試験片を透過した量を求めた。
(8)合計4つの試験片についての、試験油IRM903が試験片を透過した量の平均値を求め、保護手袋のオイル透過量とした。
 オイル透過量が少ないほど、耐オイル透過性に優れ、耐薬液透過性に優れると判断できる。
<Chemical Liquid Permeability of Protective Gloves>
The oil permeation amount of protective gloves was measured by the following procedure.
(1) A finger-shaped test piece was obtained by cutting out the index finger portion of the protective glove (laminate).
(2) Put test oil IRM903 into an aluminum cup.
(3) A filter paper (weight: W 1 ) was placed inside the test piece, and the inner surface of the portion of the test piece corresponding to the pad of the finger (the portion with an area of about 2 to 5 cm 2 ) was brought into close contact with the filter paper. .
(4) Place the test piece containing the filter paper in the aluminum cup containing the test oil IRM903, and apply the test oil IRM903 made contact with
(5) After standing still for 24 hours, the filter paper was taken out from the test piece, and the weight (W 2 ) of the filter paper after the test was measured.
(6) The amount (W 2 -W 2 ) of the test oil IRM903 permeated through the test piece was calculated.
(7) Cut out the middle finger, ring finger and little finger of the protective glove (laminate) to obtain three test pieces. For each of the obtained test pieces, the amount of test oil IRM903 permeated through the test piece was determined in the same manner as described above.
(8) The average value of the amount of the test oil IRM903 permeated through the test pieces for a total of four test pieces was determined and used as the oil permeation amount of the protective glove.
It can be judged that the smaller the oil permeation amount, the better the oil permeation resistance and the chemical solution permeation resistance.
<保護手袋の柔軟性>
 保護手袋の柔軟性は、官能試験により評価した。具体的には、対照用サンプルとして、下記の市販の保護手袋A、保護手袋Bを用意し、以下の手順で評価を行った。
  保護手袋A:基材と重合体層とを有するディップ成形体(積層体)であって、重合体層を発泡させる工程や、ディップ層を成形した後の表面加工工程を経ずに得られたものである。保護手袋Aは、柔軟性に非常に優れるものの、ウェットグリップ性を全く備えないものである。
  保護手袋B:基材と重合体層とを有するディップ成形体(積層体)であって、ディップ層を成形した後の表面加工工程を経て得られたものである。保護手袋Bは、ウェットグリップ性が比較的高いものである。
 同一の被験者に、実施例および比較例で得られた保護手袋と、保護手袋Aと、保護手袋Bとを使用させ、実施例および比較例で得られた保護手袋の柔軟性が、保護手袋A、保護手袋Bの柔軟性と比較して優れているか、同等であるか、劣っているかを判断させることで、以下の基準で柔軟性を評価した。
  5 保護手袋Aよりも優れた柔軟性を有する
  4 保護手袋Aと同程度の柔軟性を有する
  3 保護手袋Aの柔軟性と保護手袋Bの柔軟性の中間の柔軟性を有する
  2 保護手袋Bと同程度の柔軟性を有する
  1 保護手袋Bよりも劣る柔軟性を有する
 数値が大きいほど、柔軟性に優れると判断できる。
<Flexibility of protective gloves>
The flexibility of protective gloves was evaluated by sensory tests. Specifically, the following commercially available protective gloves A and B were prepared as control samples and evaluated according to the following procedure.
Protective glove A: A dip molded product (laminate) having a base material and a polymer layer, which was obtained without a step of foaming the polymer layer or a surface treatment step after molding the dip layer. It is. The protective glove A has excellent flexibility, but does not have wet grip properties at all.
Protective glove B: A dip molded article (laminate) having a base material and a polymer layer, obtained through a surface treatment step after molding the dip layer. The protective glove B has relatively high wet grip properties.
The same test subject used the protective gloves obtained in Examples and Comparative Examples, protective gloves A, and protective gloves B, and the flexibility of the protective gloves obtained in Examples and Comparative Examples , the flexibility was evaluated according to the following criteria by determining whether it is superior, equivalent, or inferior to the flexibility of the protective glove B.
5 Better flexibility than protective glove A 4 Same level of flexibility as protective glove A 3 Intermediate flexibility between protective glove A and protective glove B 2 Protective glove B and Equivalent flexibility 1 Possessing flexibility inferior to protective glove B It can be judged that the larger the numerical value, the more excellent the flexibility.
<製造例1>
(ポリブチルアクリレート(A-1)のラテックスの製造)
 攪拌機付き5MPa耐圧容器に、α,β-エチレン性不飽和モノカルボン酸エステル単量体としてn-ブチルアクリレート100部、化合物(b1)としてアルキルジフェニルエーテルジスルホン酸ナトリウム(ドデシルジフェニルエーテルジスルホン酸ナトリウムを主成分とするもの)6.7部、t-ドデシルメルカプタン0.4部、溶媒としてイオン交換水150部、および、重合開始剤として過硫酸カリウム1.33部を投入し、十分に攪拌した後、温度80℃に加温して重合を開始した。モノマー消費量が96.0%になった時点で冷却し、反応を停止した。得られたポリブチルアクリレートを含む水分散体に、5%水酸化ナトリウム水溶液を添加して、pHを7に調整した。その後、加熱減圧蒸留によって未反応単量体の除去を行い、温度30℃以下まで冷却し、ポリブチルアクリレート(A-1)のラテックスを得た。得られたポリブチルアクリレート(A-1)のラテックス中に含まれる、ポリブチルアクリレート(A-1)のガラス転移温度(Tg)は-50℃であった。ポリブチルアクリレート(A-1)のラテックスを用いて、上記の方法に従い、体積平均粒子径、重合体のラテックスにおける界面活性剤の含有量、重合体のラテックスの表面張力、および、重合体のラテックスの表面張力と界面活性剤の表面張力との差の測定を行った。結果を表1に示す。
<Production Example 1>
(Production of latex of polybutyl acrylate (A-1))
Into a 5 MPa pressure vessel equipped with a stirrer, 100 parts of n-butyl acrylate as an α,β-ethylenically unsaturated monocarboxylic acid ester monomer and sodium alkyldiphenyl ether disulfonate (sodium dodecyldiphenyl ether disulfonate as a main component) were added as a compound (b1). 6.7 parts of t-dodecyl mercaptan, 0.4 parts of t-dodecyl mercaptan, 150 parts of ion-exchanged water as a solvent, and 1.33 parts of potassium persulfate as a polymerization initiator were added, and after sufficient stirring, the temperature was 80. Polymerization was initiated by warming to °C. When the monomer consumption reached 96.0%, the reaction was stopped by cooling. A 5% aqueous sodium hydroxide solution was added to the resulting aqueous dispersion containing polybutyl acrylate to adjust the pH to 7. Thereafter, unreacted monomers were removed by distillation under reduced pressure with heating, and the mixture was cooled to a temperature of 30° C. or lower to obtain a latex of polybutyl acrylate (A-1). The glass transition temperature (Tg) of polybutyl acrylate (A-1) contained in the resulting latex of polybutyl acrylate (A-1) was -50°C. Using the polybutyl acrylate (A-1) latex, according to the above method, the volume average particle size, the content of the surfactant in the polymer latex, the surface tension of the polymer latex, and the polymer latex Measurement of the difference between the surface tension of the surfactant and the surface tension of the surfactant was carried out. Table 1 shows the results.
<製造例2>
(カルボキシル基含有ニトリルゴム(A-2)のラテックスの製造)
 重合反応器に、共役ジエン単量体として1,3-ブタジエン67.5部、α,β-エチレン性不飽和ニトリル単量体としてアクリロニトリル27部、エチレン性不飽和モノカルボン酸単量体としてメタクリル酸5.5部、t-ドデシルメルカプタン0.7部、イオン交換水132部、化合物(b1)としてアルキルジフェニルエーテルジスルホン酸ナトリウム6.7部、β-ナフタリンスルホン酸ホルマリン縮合物ナトリウム塩0.5部、過硫酸カリウム0.3部およびエチレンジアミン四酢酸ナトリウム塩0.05部を仕込み、重合温度を30~40℃に保持して重合を行い、重合転化率が94%に達するまで反応させることで、共重合体のラテックスを得た。そして、得られた共重合体のラテックスから未反応単量体を除去した後、共重合体のラテックスのpHおよび固形分濃度を調整することで、固形分濃度40重量%、pH=8のカルボキシル基含有ニトリルゴム(A-2)のラテックスを得た。得られたカルボキシル基含有ニトリルゴム(A-2)のラテックス中に含まれる、カルボキシル基含有ニトリルゴム(A-2)のガラス転移温度(Tg)は-24℃であり、カルボキシル基含有ニトリルゴム(A-2)の単量体組成は、仕込み割合とほぼ同じ割合であった。カルボキシル基含有ニトリルゴム(A-2)のラテックスを用いて、製造例1と同様に測定を行った。結果を表1に示す。
<Production Example 2>
(Production of latex of carboxyl group-containing nitrile rubber (A-2))
A polymerization reactor was charged with 67.5 parts of 1,3-butadiene as a conjugated diene monomer, 27 parts of acrylonitrile as an α,β-ethylenically unsaturated nitrile monomer, and methacryl as an ethylenically unsaturated monocarboxylic acid monomer. 5.5 parts of acid, 0.7 parts of t-dodecyl mercaptan, 132 parts of ion-exchanged water, 6.7 parts of sodium alkyldiphenyl ether disulfonate as compound (b1), 0.5 parts of β-naphthalenesulfonic acid formalin condensate sodium salt , 0.3 parts of potassium persulfate and 0.05 parts of ethylenediaminetetraacetic acid sodium salt are charged, polymerization is carried out at a polymerization temperature of 30 to 40 ° C., and the reaction is performed until the polymerization conversion reaches 94%. A copolymer latex was obtained. Then, after removing unreacted monomers from the resulting copolymer latex, the pH and solid content concentration of the copolymer latex were adjusted to obtain a carboxyl with a solid content concentration of 40% by weight and a pH of 8. A latex of group-containing nitrile rubber (A-2) was obtained. The carboxyl group-containing nitrile rubber (A-2) contained in the obtained carboxyl group-containing nitrile rubber (A-2) latex had a glass transition temperature (Tg) of -24°C. The monomer composition of A-2) was almost the same as the charging ratio. Measurements were carried out in the same manner as in Production Example 1 using the carboxyl group-containing nitrile rubber (A-2) latex. Table 1 shows the results.
<製造例3>
(メタクリル酸メチル単位を含むカルボキシル基含有ニトリルゴム(A-3)のラテックスの製造)
 1,3-ブタジエンを47.3部に、アクリロニトリルを18.8部に、メタクリル酸を3.9部に、それぞれ変更し、さらに、これらの単量体とともに、α,β-エチレン性不飽和モノカルボン酸エステル単量体としてメタクリル酸メチル30部を重合反応器に仕込んだ以外は、製造例2と同様にして、固形分濃度40重量%、pH=8のメタクリル酸メチル単位を含むカルボキシル基含有ニトリルゴム(A-3)のラテックスを得た。得られたメタクリル酸メチル単位を含むカルボキシル基含有ニトリルゴム(A-3)のラテックス中に含まれる、メタクリル酸メチル単位を含むカルボキシル基含有ニトリルゴム(A-3)のガラス転移温度(Tg)は-14℃であり、メタクリル酸メチル単位を含むカルボキシル基含有ニトリルゴム(A-3)の単量体組成は、仕込み割合とほぼ同じ割合であった。メタクリル酸メチル単位を含むカルボキシル基含有ニトリルゴム(A-3)のラテックスを用いて、製造例1と同様に測定を行った。結果を表1に示す。
<Production Example 3>
(Production of Latex of Carboxyl Group-Containing Nitrile Rubber (A-3) Containing Methyl Methacrylate Units)
1,3-Butadiene was changed to 47.3 parts, acrylonitrile to 18.8 parts, methacrylic acid to 3.9 parts, and, together with these monomers, α,β-ethylenically unsaturated A carboxyl group containing a methyl methacrylate unit having a solid content concentration of 40% by weight and a pH of 8 was prepared in the same manner as in Production Example 2, except that 30 parts of methyl methacrylate was charged to the polymerization reactor as a monocarboxylic acid ester monomer. A latex containing nitrile rubber (A-3) was obtained. The glass transition temperature (Tg) of the carboxyl group-containing nitrile rubber (A-3) containing methyl methacrylate units contained in the obtained latex of the carboxyl group-containing nitrile rubber (A-3) containing methyl methacrylate units is The temperature was −14° C., and the monomer composition of the carboxyl group-containing nitrile rubber (A-3) containing methyl methacrylate units was substantially the same as the charging ratio. Measurements were performed in the same manner as in Production Example 1 using a latex of carboxyl group-containing nitrile rubber (A-3) containing methyl methacrylate units. Table 1 shows the results.
<製造例4>
(カルボキシル基含有ニトリルゴム(A-4)のラテックスの製造)
 アルキルジフェニルエーテルジスルホン酸ナトリウム6.7部に代えて、化合物(b1)としてラウリル硫酸ナトリウム6.7部を使用した以外は、製造例2と同様にして、固形分濃度40重量%、pH=8のカルボキシル基含有ニトリルゴム(A-4)のラテックスを得た。得られたカルボキシル基含有ニトリルゴム(A-4)のラテックス中に含まれる、カルボキシル基含有ニトリルゴム(A-4)のガラス転移温度(Tg)は-24℃であり、カルボキシル基含有ニトリルゴム(A-4)の単量体組成は、仕込み割合とほぼ同じ割合であった。カルボキシル基含有ニトリルゴム(A-4)のラテックスを用いて、製造例1と同様に測定を行った。結果を表1に示す。
<Production Example 4>
(Production of latex of carboxyl group-containing nitrile rubber (A-4))
In the same manner as in Production Example 2, except that 6.7 parts of sodium lauryl sulfate was used as the compound (b1) instead of 6.7 parts of sodium alkyldiphenyl ether disulfonate, a solid content concentration of 40% by weight and a pH of 8 was obtained. A latex of carboxyl group-containing nitrile rubber (A-4) was obtained. The carboxyl group-containing nitrile rubber (A-4) contained in the obtained carboxyl group-containing nitrile rubber (A-4) latex had a glass transition temperature (Tg) of -24°C. The monomer composition of A-4) was almost the same as the charging ratio. Measurements were carried out in the same manner as in Production Example 1 using the carboxyl group-containing nitrile rubber (A-4) latex. Table 1 shows the results.
<製造例5>
(カルボキシル基含有ニトリルゴム(A-5)のラテックスの製造)
 アルキルジフェニルエーテルジスルホン酸ナトリウムの使用量を、6.7部から3.0部に変更した以外は、製造例2と同様にして、固形分濃度40重量%、pH=8のカルボキシル基含有ニトリルゴム(A-5)のラテックスを得た。得られたカルボキシル基含有ニトリルゴム(A-5)のラテックス中に含まれる、カルボキシル基含有ニトリルゴム(A-5)のガラス転移温度(Tg)は-24℃であり、カルボキシル基含有ニトリルゴム(A-5)の単量体組成は、仕込み割合とほぼ同じ割合であった。カルボキシル基含有ニトリルゴム(A-5)のラテックスを用いて、製造例1と同様に測定を行った。結果を表1に示す。
<Production Example 5>
(Production of latex of carboxyl group-containing nitrile rubber (A-5))
A carboxyl group-containing nitrile rubber having a solid content concentration of 40% by weight and a pH of 8 ( A-5) latex was obtained. The carboxyl group-containing nitrile rubber (A-5) contained in the obtained carboxyl group-containing nitrile rubber (A-5) latex had a glass transition temperature (Tg) of -24°C. The monomer composition of A-5) was almost the same as the charging ratio. Measurements were carried out in the same manner as in Production Example 1 using a latex of carboxyl group-containing nitrile rubber (A-5). Table 1 shows the results.
<製造例6>
(カルボキシル基含有ニトリルゴム(A-6)のラテックスの製造)
 アルキルジフェニルエーテルジスルホン酸ナトリウム6.7部に代えて、化合物(a)としてドデシルベンゼンスルホン酸ナトリウム3.0部を使用した以外は、製造例2と同様にして、固形分濃度40重量%、pH=8のカルボキシル基含有ニトリルゴム(A-6)のラテックスを得た。得られたカルボキシル基含有ニトリルゴム(A-6)のラテックス中に含まれる、カルボキシル基含有ニトリルゴム(A-6)のガラス転移温度(Tg)は-24℃であり、カルボキシル基含有ニトリルゴム(A-6)の単量体組成は、仕込み割合とほぼ同じ割合であった。カルボキシル基含有ニトリルゴム(A-6)のラテックスを用いて、製造例1と同様に測定を行った。結果を表1に示す。
<Production Example 6>
(Production of latex of carboxyl group-containing nitrile rubber (A-6))
In the same manner as in Production Example 2, except that 3.0 parts of sodium dodecylbenzenesulfonate was used as compound (a) instead of 6.7 parts of sodium alkyldiphenyl ether disulfonate, a solid content concentration of 40% by weight, pH = A latex of carboxyl group-containing nitrile rubber (A-6) No. 8 was obtained. The carboxyl group-containing nitrile rubber (A-6) contained in the obtained carboxyl group-containing nitrile rubber (A-6) latex had a glass transition temperature (Tg) of -24°C. The monomer composition of A-6) was almost the same as the charging ratio. Measurements were performed in the same manner as in Production Example 1 using a latex of carboxyl group-containing nitrile rubber (A-6). Table 1 shows the results.
<製造例7>
(カルボキシル基含有ニトリルゴム(A-7)のラテックスの製造)
 製造例6で得られたカルボキシル基含有ニトリルゴム(A-6)のラテックスに、アルキルジフェニルエーテルジスルホン酸ナトリウムを、カルボキシル基含有ニトリルゴム(A-6)のラテックス中に含まれる、カルボキシル基含有ニトリルゴム(A-6)100部に対して3.0部となるよう添加し、カルボキシル基含有ニトリルゴム(A-7)のラテックスを得た。カルボキシル基含有ニトリルゴム(A-7)のラテックスを用いて、製造例1と同様に測定を行った。結果を表1に示す。
<Production Example 7>
(Production of latex of carboxyl group-containing nitrile rubber (A-7))
A carboxyl group-containing nitrile rubber containing sodium alkyldiphenyl ether disulfonate in the latex of the carboxyl group-containing nitrile rubber (A-6) obtained in Production Example 6. (A-6) was added so as to be 3.0 parts per 100 parts to obtain a latex of carboxyl group-containing nitrile rubber (A-7). Measurements were carried out in the same manner as in Production Example 1 using the carboxyl group-containing nitrile rubber (A-7) latex. Table 1 shows the results.
<製造例8>
 (ポリメタクリル酸メチル樹脂(B)のラテックスの製造)
 重合反応器に、メタクリル酸メチル100部、化合物(b1)としてアルキルジフェニルエーテルジスルホン酸ナトリウム6.7部、t-ドデシルメルカプタン0.4部、イオン交換水200部、過硫酸カリウム0.3部およびエチレンジアミン四酢酸ナトリウム塩0.1部を仕込み、重合温度を30~70℃に保持して重合を行い、重合転化率が95%に達するまで反応させることで、重合体のラテックスを得た。そして、重合体のラテックスのpHおよび固形分濃度を調整することで、固形分濃度30重量%、pH=8.5のポリメタクリル酸メチル樹脂(B)のラテックスを得た。得られたポリメタクリル酸メチル樹脂(B)のラテックス中に含まれる、ポリメタクリル酸メチル樹脂(B)のガラス転移温度(Tg)は120℃であった。ポリメタクリル酸メチル樹脂(B)のラテックスを用いて、製造例1と同様に測定を行った。結果を表1に示す。
<Production Example 8>
(Production of latex of polymethyl methacrylate resin (B))
A polymerization reactor was charged with 100 parts of methyl methacrylate, 6.7 parts of sodium alkyldiphenyl ether disulfonate as the compound (b1), 0.4 parts of t-dodecyl mercaptan, 200 parts of ion-exchanged water, 0.3 parts of potassium persulfate and ethylenediamine. 0.1 part of sodium tetraacetate was charged, polymerization was carried out at a polymerization temperature of 30 to 70° C., and the reaction was allowed to proceed until the polymerization conversion reached 95%, thereby obtaining a polymer latex. Then, by adjusting the pH and solid content concentration of the polymer latex, a latex of polymethyl methacrylate resin (B) having a solid content concentration of 30% by weight and a pH of 8.5 was obtained. The glass transition temperature (Tg) of polymethyl methacrylate resin (B) contained in the obtained latex of polymethyl methacrylate resin (B) was 120°C. Measurement was performed in the same manner as in Production Example 1 using the latex of polymethyl methacrylate resin (B). Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<実施例1~8および比較例1>
(コロイド硫黄の水分散液の調製)
 コロイド硫黄(細井化学工業社製)1.0部、分散剤(花王社製、商品名「デモールN」)0.5部、5重量%水酸化カリウム水溶液(和光純薬工業社製)0.0015部、および水1.0部を、ボールミル中で48時間粉砕攪拌することで、固形分濃度50重量%のコロイド硫黄の水分散液を調製した。
<Examples 1 to 8 and Comparative Example 1>
(Preparation of aqueous dispersion of colloidal sulfur)
Colloidal sulfur (manufactured by Hosoi Chemical Industry Co., Ltd.) 1.0 part, dispersant (manufactured by Kao Corporation, trade name "Demoll N") 0.5 part, 5% by weight potassium hydroxide aqueous solution (manufactured by Wako Pure Chemical Industries) 0.5 parts. 0015 parts and 1.0 part of water were pulverized and stirred in a ball mill for 48 hours to prepare an aqueous dispersion of colloidal sulfur having a solid concentration of 50% by weight.
(ジブチルジチオカルバミン酸亜鉛の水分散液、酸化亜鉛の水分散液、酸化チタンの水分散液の調製)
 コロイド硫黄に代えて、ジブチルジチオカルバミン酸亜鉛(大内新興化学工業社製)、酸化亜鉛(正同化学工業社製)、および酸化チタンをそれぞれ使用した以外は、上記と同様にして、固形分濃度50重量%のジブチルジチオカルバミン酸亜鉛の水分散液、固形分濃度50重量%の酸化亜鉛の水分散液、および固形分濃度50重量%の酸化チタンの水分散液をそれぞれ調製した。
(Preparation of Aqueous Dispersion of Zinc Dibutyldithiocarbamate, Aqueous Dispersion of Zinc Oxide, and Aqueous Dispersion of Titanium Oxide)
Solid content concentration An aqueous dispersion of zinc dibutyldithiocarbamate with a concentration of 50% by weight, an aqueous dispersion of zinc oxide with a solid concentration of 50% by weight, and an aqueous dispersion of titanium oxide with a solids concentration of 50% by weight were prepared.
(ディップ成形用ラテックス組成物の調製)
 各製造例で得られた各重合体のラテックスを、各重合体のラテックス中の重合体成分の比率が表2で示す比率となるように混合し、ラテックス混合物を得た。得られたラテックス混合物の一部を、測定用ラテックスとして用いることで、フィルム成形体の100%引張応力(重合体層の100%引張応力)を測定、評価した。結果を表2に示す。
(Preparation of latex composition for dip molding)
The latex of each polymer obtained in each production example was mixed so that the ratio of the polymer components in the latex of each polymer was the ratio shown in Table 2 to obtain a latex mixture. A part of the obtained latex mixture was used as a latex for measurement, and the 100% tensile stress of the film molded article (100% tensile stress of the polymer layer) was measured and evaluated. Table 2 shows the results.
 得られたラテックス混合物中の重合体成分100部に対して、それぞれ固形分換算で、コロイド硫黄1.0部、ジブチルジチオカルバミン酸亜鉛1.0部、酸化亜鉛1.5部、および酸化チタン3.0部となるように、上記にて調製した各配合剤の水分散液をラテックス混合物に添加した。なお、各配合剤の水分散液を添加する際には、ラテックス混合物を撹拌した状態で、所定の量をゆっくり添加した。そして、各配合剤が均一に混合された後に、水溶性ポリマーとして、カルボキシメチルセルロース(ダイセル社製、商品名「Daicel2200」、重量平均分子量:550,000)を、粘度が3000cpsになるまで添加し、固形分濃度40重量%のディップ成形用ラテックス組成物を得た。得られたディップ成形用ラテックス組成物を用いて、ディップ成形用ラテックス組成物における界面活性剤の含有量を求めた。結果を表2に示す。 1.0 parts of colloidal sulfur, 1.0 parts of zinc dibutyldithiocarbamate, 1.5 parts of zinc oxide, and 3.0 parts of titanium oxide were added to 100 parts of the polymer component in the resulting latex mixture. The aqueous dispersion of each compounding agent prepared above was added to the latex mixture so as to make 0 part. When adding the aqueous dispersion of each compounding agent, a predetermined amount was slowly added while the latex mixture was being stirred. Then, after each compounding agent is uniformly mixed, carboxymethyl cellulose (manufactured by Daicel Corporation, trade name "Daicel 2200", weight average molecular weight: 550,000) is added as a water-soluble polymer until the viscosity reaches 3000 cps, A latex composition for dip molding having a solid concentration of 40% by weight was obtained. Using the obtained latex composition for dip molding, the content of the surfactant in the latex composition for dip molding was determined. Table 2 shows the results.
(凝固剤溶液の調製)
 凝固剤としての硝酸カルシウムを、2.0重量%の割合でメタノールに溶解させることで、凝固剤溶液を調製した。
(Preparation of coagulant solution)
A coagulant solution was prepared by dissolving 2.0% by weight of calcium nitrate as a coagulant in methanol.
(保護手袋の製造)
 まず、上記にて得られたディップ成形用ラテックス組成物を、温度30℃、48時間の条件にて、熟成(前加硫ともいう。)させた。次いで、手袋形状の繊維基材(材質:ナイロン、線密度:300デニール、ゲージ数:13ゲージ、厚み:0.8mm)を被せたセラミックス製手袋型を、上記にて調製した凝固剤溶液に5秒間浸漬し、凝固剤溶液から引き上げた後、温度30℃、1分間の条件で乾燥させた。その後、セラミックス製手袋型を、熟成後のディップ成形用ラテックス組成物に5秒間浸漬し、熟成後のディップ成形用ラテックス組成物から引き上げた後、温度25℃、20分間の条件で乾燥させることで、繊維基材上に、ディップ層を形成した。そして、ディップ層を形成したセラミックス製手袋型を、温度110℃、30分間の条件で熱処理を行い、ディップ層中の重合体に架橋処理を施すことで、重合体層とした。次いで、重合体層が形成された繊維基材をセラミックス製手袋型から剥がすことで、保護手袋(ディップ成形体)を得た。得られた保護手袋における、重合体層の厚みは0.15mmであり、保護手袋の厚み(基材と重合体層とを含む積層体全体の厚み)は1.0mmであった。得られた保護手袋を用いて、重合体層の表面の粗さ(最大高さ粗さRz、算術平均粗さRa、50%高さにおける負荷面積率)、保護手袋のウェットグリップ性、保護手袋の耐薬液透過性および保護手袋の柔軟性の評価を行った。結果を表2に示す。なお、実施例1~8においては、ラテックス組成物の発泡工程や、ディップ層を成形した後の表面加工工程(ディップ層の表面に水溶性の金属塩を付着させて、さらに必要に応じて乾燥、架橋等を行った後、表面に付着させた水溶性の金属塩を洗い流す工程等)を経ずに、優れた耐薬液透過性を備え、ウェットグリップ性および柔軟性にバランス良く優れたディップ成形体を得ることができた。
(Manufacture of Protective Gloves)
First, the latex composition for dip molding obtained above was aged (also referred to as prevulcanization) at a temperature of 30° C. for 48 hours. Next, a ceramic glove mold covered with a glove-shaped fiber base material (material: nylon, linear density: 300 denier, gauge number: 13 gauge, thickness: 0.8 mm) was immersed in the coagulant solution prepared above for 5 minutes. It was immersed for 1 second, pulled out from the coagulant solution, and then dried at a temperature of 30° C. for 1 minute. Thereafter, the ceramic glove mold is immersed in the aged dip molding latex composition for 5 seconds, pulled out from the aged dip molding latex composition, and dried at a temperature of 25° C. for 20 minutes. , a dip layer was formed on the fiber substrate. Then, the ceramic glove mold with the dip layer formed thereon was subjected to heat treatment at a temperature of 110° C. for 30 minutes to crosslink the polymer in the dip layer, thereby forming a polymer layer. Then, the fiber base material on which the polymer layer was formed was peeled off from the ceramic glove mold to obtain a protective glove (dip molding). In the obtained protective glove, the thickness of the polymer layer was 0.15 mm, and the thickness of the protective glove (thickness of the entire laminate including the substrate and the polymer layer) was 1.0 mm. Using the obtained protective gloves, the surface roughness of the polymer layer (maximum height roughness Rz, arithmetic mean roughness Ra, load area ratio at 50% height), wet grip properties of protective gloves, protective gloves We evaluated the chemical permeation resistance of the gloves and the flexibility of the protective gloves. Table 2 shows the results. In Examples 1 to 8, the foaming step of the latex composition and the surface processing step after forming the dip layer (water-soluble metal salt is attached to the surface of the dip layer and dried if necessary). , cross-linking, etc., followed by washing away water-soluble metal salts attached to the surface), excellent chemical permeation resistance, excellent wet grip and flexibility in a well-balanced dip molding. I was able to get a body
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、重合体のラテックスとアニオン性界面活性剤とを含有するディップ成形用ラテックス組成物であって、前記アニオン性界面活性剤が、アニオン性基を1個有し芳香環を有する化合物(a)と、アニオン性基を2個以上有しベンゼン環を有する化合物(b1)またはアニオン性基を1個有し芳香環を有さない化合物(b2)と、を含有するディップ成形用ラテックス組成物によれば、得られるディップ成形体は、優れた耐薬液透過性を備え、ウェットグリップ性および柔軟性にバランス良く優れるものとなった(実施例1~8)。 As shown in Table 2, a latex composition for dip molding containing a polymer latex and an anionic surfactant, wherein the anionic surfactant has one anionic group and an aromatic ring. and a compound (b1) having two or more anionic groups and a benzene ring or a compound (b2) having one anionic group and no aromatic ring. According to the latex composition for rubber, the obtained dip-molded articles had excellent resistance to chemical liquid permeation, and were excellent in well-balanced wet grip and flexibility (Examples 1 to 8).
 一方、前記アニオン性界面活性剤が、アニオン性基を1個有し芳香環を有する化合物(a)のみを含有する場合には、得られるディップ成形体は、ウェットグリップ性に劣るものとなった(比較例1)。 On the other hand, when the anionic surfactant contained only the compound (a) having one anionic group and an aromatic ring, the resulting dip-molded article was inferior in wet grip properties. (Comparative Example 1).

Claims (12)

  1.  重合体のラテックスとアニオン性界面活性剤とを含有するディップ成形用ラテックス組成物であって、
     前記アニオン性界面活性剤が、アニオン性基を1個有し芳香環を有する化合物(a)と、アニオン性基を2個以上有しベンゼン環を有する化合物(b1)またはアニオン性基を1個有し芳香環を有さない化合物(b2)と、を含有するディップ成形用ラテックス組成物。
    A latex composition for dip molding containing a polymer latex and an anionic surfactant,
    The anionic surfactant comprises a compound (a) having one anionic group and an aromatic ring, and a compound (b1) having two or more anionic groups and a benzene ring, or one anionic group. and a compound (b2) having no aromatic ring.
  2.  前記化合物(b1)が、アニオン性基を2個有しベンゼン環を有する化合物である請求項1に記載のディップ成形用ラテックス組成物。 The latex composition for dip molding according to claim 1, wherein the compound (b1) is a compound having two anionic groups and a benzene ring.
  3.  前記化合物(b1)が、アルキルジフェニルエーテルジスルホン酸塩である請求項1または2に記載のディップ成形用ラテックス組成物。 The latex composition for dip molding according to claim 1 or 2, wherein the compound (b1) is an alkyldiphenylether disulfonate.
  4.  前記化合物(b2)が、アルキル硫酸エステル塩である請求項1~3のいずれかに記載のディップ成形用ラテックス組成物。 The latex composition for dip molding according to any one of claims 1 to 3, wherein the compound (b2) is an alkyl sulfate.
  5.  前記化合物(a)が、スルホン酸塩または硫酸エステル塩であり、かつ、前記化合物(b1)または前記化合物(b2)の少なくとも一方が、スルホン酸塩または硫酸エステル塩である請求項1~4のいずれかに記載のディップ成形用ラテックス組成物。 of claims 1 to 4, wherein said compound (a) is a sulfonate or sulfate, and at least one of said compound (b1) or said compound (b2) is a sulfonate or sulfate. A latex composition for dip molding according to any one of the above.
  6.  前記化合物(a)が、アルキルベンゼンスルホン酸塩である請求項1~5のいずれかに記載のディップ成形用ラテックス組成物。 The latex composition for dip molding according to any one of claims 1 to 5, wherein the compound (a) is an alkylbenzene sulfonate.
  7.  化合物(a)の含有量が、ディップ成形用ラテックス組成物中に含まれる重合体成分100重量部に対して、0.1~5.0重量部である請求項1~6のいずれかに記載のディップ成形用ラテックス組成物。 7. The content of the compound (a) is 0.1 to 5.0 parts by weight with respect to 100 parts by weight of the polymer component contained in the latex composition for dip molding. A latex composition for dip molding.
  8.  化合物(b1)の含有量と化合物(b2)の含有量の合計が、ディップ成形用ラテックス組成物中に含まれる重合体成分100重量部に対して、0.1~10.0重量部である請求項1~7のいずれかに記載のディップ成形用ラテックス組成物。 The sum of the content of the compound (b1) and the content of the compound (b2) is 0.1 to 10.0 parts by weight with respect to 100 parts by weight of the polymer component contained in the latex composition for dip molding. The latex composition for dip molding according to any one of claims 1 to 7.
  9.  化合物(a)の含有量と、化合物(b1)および化合物(b2)の合計の含有量の重量比〔化合物(a)の重量:化合物(b1)および化合物(b2)の合計の重量〕が、5:95~95:5である請求項1~8のいずれかに記載のディップ成形用ラテックス組成物。 The weight ratio of the content of compound (a) to the total content of compound (b1) and compound (b2) [weight of compound (a): total weight of compound (b1) and compound (b2)] is The latex composition for dip molding according to any one of claims 1 to 8, wherein the ratio is 5:95 to 95:5.
  10.  前記重合体のラテックスが、ニトリル基含有共役ジエン系重合体のラテックスである請求項1~9のいずれかに記載のディップ成形用ラテックス組成物。 The latex composition for dip molding according to any one of claims 1 to 9, wherein the polymer latex is a nitrile group-containing conjugated diene polymer latex.
  11.  請求項1~10のいずれかに記載のディップ成形用ラテックス組成物を用いてなるディップ成形体。 A dip molded article using the latex composition for dip molding according to any one of claims 1 to 10.
  12.  手袋である請求項11に記載のディップ成形体。 The dip molded article according to claim 11, which is a glove.
PCT/JP2022/028816 2021-08-17 2022-07-26 Latex composition for dip molding and dip-molded article WO2023021946A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023542295A JPWO2023021946A1 (en) 2021-08-17 2022-07-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-132643 2021-08-17
JP2021132643 2021-08-17

Publications (1)

Publication Number Publication Date
WO2023021946A1 true WO2023021946A1 (en) 2023-02-23

Family

ID=85240558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028816 WO2023021946A1 (en) 2021-08-17 2022-07-26 Latex composition for dip molding and dip-molded article

Country Status (2)

Country Link
JP (1) JPWO2023021946A1 (en)
WO (1) WO2023021946A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107706A (en) * 1996-06-26 1998-01-13 Sumika A B S Latex Kk Production of copolymer latex
JP2002241412A (en) * 2000-12-12 2002-08-28 Takeda Chem Ind Ltd Latex for dip forming and dip formed material
JP2004091965A (en) * 2002-08-30 2004-03-25 Nippon A & L Kk Method for producing copolymer latex for paper coating use
JP2004331756A (en) * 2003-05-06 2004-11-25 Kuraray Co Ltd Acrylic polymer powder, acrylic sol, and molding
JP2005187544A (en) * 2003-12-24 2005-07-14 Nippon A & L Kk Copolymer latex for use in dip molding, composition for use in dip molding, and dip-molded product
JP2005336388A (en) * 2004-05-28 2005-12-08 Nippon Zeon Co Ltd Polymer latex composition and water-based coating material
JP2007161925A (en) * 2005-12-15 2007-06-28 Nippon A & L Kk Dip molding copolymer latex, dip molding composition and dip molding
US20110229646A1 (en) * 2008-09-26 2011-09-22 Lg Chem, Ltd. Latex resin composition for rubber gloves without sulfur and vulcanization acceleator and method of manufacturing dip-formed article using the composition
US20120149859A1 (en) * 2009-06-12 2012-06-14 Lg Chem, Ltd Latex for dip molding, composition for dip molding, preparation method of dip molded product, and dip molded product prepared thereby

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH107706A (en) * 1996-06-26 1998-01-13 Sumika A B S Latex Kk Production of copolymer latex
JP2002241412A (en) * 2000-12-12 2002-08-28 Takeda Chem Ind Ltd Latex for dip forming and dip formed material
JP2004091965A (en) * 2002-08-30 2004-03-25 Nippon A & L Kk Method for producing copolymer latex for paper coating use
JP2004331756A (en) * 2003-05-06 2004-11-25 Kuraray Co Ltd Acrylic polymer powder, acrylic sol, and molding
JP2005187544A (en) * 2003-12-24 2005-07-14 Nippon A & L Kk Copolymer latex for use in dip molding, composition for use in dip molding, and dip-molded product
JP2005336388A (en) * 2004-05-28 2005-12-08 Nippon Zeon Co Ltd Polymer latex composition and water-based coating material
JP2007161925A (en) * 2005-12-15 2007-06-28 Nippon A & L Kk Dip molding copolymer latex, dip molding composition and dip molding
US20110229646A1 (en) * 2008-09-26 2011-09-22 Lg Chem, Ltd. Latex resin composition for rubber gloves without sulfur and vulcanization acceleator and method of manufacturing dip-formed article using the composition
US20120149859A1 (en) * 2009-06-12 2012-06-14 Lg Chem, Ltd Latex for dip molding, composition for dip molding, preparation method of dip molded product, and dip molded product prepared thereby

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KHORASSANI M., AFSHAR-TAROMI F., MOHSENI M., POURMAHDIAN S.: "The role of auxiliary monomers and emulsifiers on wet scrub resistance of various latex paints at different pigment volume concentrations", JOURNAL OF APPLIED POLYMER SCIENCE, JOHN WILEY & SONS, INC., US, vol. 113, no. 5, 5 September 2009 (2009-09-05), US , pages 3264 - 3268, XP093036501, ISSN: 0021-8995, DOI: 10.1002/app.30199 *

Also Published As

Publication number Publication date
JPWO2023021946A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
CN107001716B (en) Dip forming latex composition and dip-formed molding
CN108431118B (en) Latex composition
EP1361247B1 (en) Dip moldings, composition for dip molding and method for producing dip moldings
TWI701268B (en) Carboxylic acid-modified nitrile-based copolymer latex composition, preparation method thereof, latex composition for dip-molding comprising the same, and article molded by the same
CN100537648C (en) Composition for dip forming and molding obtained by dip forming
US10501611B2 (en) Dip-formed article
JP2023116582A (en) latex composition
CN113039240B (en) Latex composition for dip molding and dip molded article
JP7234940B2 (en) latex composition
JP7435457B2 (en) Latex composition and membrane molded product
WO2007004459A1 (en) Latex for dip molding, latex composition for dip molding, and dip-molded article
US11976180B2 (en) Xanthogen compound dispersion, conjugated-diene-based polymer latex composition, and film molded body
WO2023021946A1 (en) Latex composition for dip molding and dip-molded article
WO2023021947A1 (en) Laminate
JP7476542B2 (en) Latex composition for dip molding and dip molded article
JP7484720B2 (en) Latex composition for dip molding and dip molded article
WO2021241407A1 (en) Latex composition for dip molding and dip-molded article
JP7463759B2 (en) LAMINATE AND METHOD FOR MANUFACTURING LAMINATE
JP2020164690A (en) Latex composition for dip molding
WO2021166835A1 (en) Latex composition and dip-molded body
WO2023176699A1 (en) Conjugated diene polymer latex and dip molded body
JP2022129739A (en) Latex composition, dip molding and laminate
JPWO2019171981A1 (en) Latex of acid-modified conjugated diene polymer and its production method
JP2022055448A (en) Method for producing dip molded product
CN107709004A (en) Dip-formed molding and protective gloves

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858267

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023542295

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE