WO2023021898A1 - Communication path selection method and local edge network communication system - Google Patents

Communication path selection method and local edge network communication system Download PDF

Info

Publication number
WO2023021898A1
WO2023021898A1 PCT/JP2022/027764 JP2022027764W WO2023021898A1 WO 2023021898 A1 WO2023021898 A1 WO 2023021898A1 JP 2022027764 W JP2022027764 W JP 2022027764W WO 2023021898 A1 WO2023021898 A1 WO 2023021898A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
data
base station
selection method
time
Prior art date
Application number
PCT/JP2022/027764
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 山内
博司 宮田
和民 有本
憲昭 吉川
博英 三上
耕太郎 新庄
隆之 鈴木
Original Assignee
株式会社テクノアクセルネットワークス
株式会社サイバー創研
株式会社高速屋
Dendritik Design株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テクノアクセルネットワークス, 株式会社サイバー創研, 株式会社高速屋, Dendritik Design株式会社 filed Critical 株式会社テクノアクセルネットワークス
Publication of WO2023021898A1 publication Critical patent/WO2023021898A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a communication path selection method and a communication system for local edge networks.
  • automated driving support for example, static map data for car navigation systems that have been collected, edited, and distributed once every several months to several years by vehicles dedicated to data collection, can be used for advanced safe driving.
  • Data called a dynamic map is used, which superimposes continuously changing information such as surrounding vehicles, pedestrian and signal information, accident information, and traffic control information necessary for support and automatic driving.
  • a search method using an answer accumulation device has been proposed as a method of efficiently searching database resources distributed over a network and efficiently searching for necessary data without imposing a heavy load on the network or database ( See JP-A-2000-235583).
  • a search process is performed on a database located in a narrow area, and the answer data accumulated in the answer accumulation device, that is, the number of effective information is counted by the answer counter.
  • a wider range is searched from the search device via the communication device.
  • the present invention has been made based on the above circumstances, and provides a communication route selection method and a communication system for a local edge network that can reduce communication congestion and share information with other mobile units in a short time. for the purpose.
  • a communication route selection method is a communication route selection method for communication between two mobile units in a network including a base station and a plurality of mobile units that are mutually connected via a common wireless interface.
  • the first communication speed estimation data between the transmitting mobile, which is the data transmitting side of the two mobiles, and the base station; and the receiving mobile, which is the data receiving side of the two mobiles.
  • a communication system for a local edge network is a communication system for a local edge network including a base station and a plurality of mobiles, and is a communication path for communication between two mobiles in the network.
  • the communication route selection method of the present invention is used.
  • the communication route selection method and local edge network communication system of the present invention can reduce communication congestion and share information with other mobile units in a short time.
  • FIG. 1 is a flow diagram showing a communication route selection method according to one embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram showing a communication system for a local edge network using the communication route selection method of FIG.
  • FIG. 3 is an image diagram showing map data corresponding to a road network.
  • 4 is a schematic data diagram showing an example of a local master table in the local edge network communication system of FIG. 2.
  • FIG. 5 is a schematic diagram for explaining a communication heat map.
  • FIG. 6 shows an example of a communication heat map centered on base stations.
  • FIG. 7 shows an example of a communication heat map centered on receiving mobiles.
  • a communication route selection method is a communication route selection method for communication between two mobile units in a network including a base station and a plurality of mobile units that are mutually connected via a common wireless interface.
  • the first communication speed estimation data between the transmitting mobile, which is the data transmitting side of the two mobiles, and the base station; and the receiving mobile, which is the data receiving side of the two mobiles.
  • this communication route selection method speed estimation data between mobile units and between a mobile unit and a base station is obtained according to the constantly changing position of the mobile unit, and a communication route is selected in consideration of the amount of transmission data. Therefore, it is possible to reduce the time required for data communication.
  • direct communication between mobile units is used to reduce communication congestion that tends to concentrate on base stations, so that the communication speed of the entire network can be improved.
  • a first communication time predicted when the first communication route is selected and a second communication time predicted when the second communication route is selected are calculated; If the communication time is equal to or shorter than the predetermined allowable time, the second communication route should be selected.
  • the base station and the plurality of mobile bodies each have a database, the mobile body has a sensor, and the sensor information acquired by the sensor is arranged in the mobile body having the sensor.
  • a database has a local master table stored as registration data of the database, the database includes information specifying a database in which the registration data exists in the network to which the database belongs, and the local master table stores the registration data. It is preferable to include data attributes, data size and acquisition time.
  • the allowable time should be determined based on the attributes of the registered data.
  • the valid time of the data differs depending on the attribute of the registration data. Therefore, by determining the permissible time based on the attribute of the registration data, more efficient communication can be performed.
  • Either one or both of the effective life and redundancy of the above registration data should be defined.
  • the amount of data in the local master table relating to this registration data also increases.
  • the effective life of the registration data it becomes possible to delete the registration data that has exceeded the effective life.
  • the degree of redundancy for such registered data the amount of data in the overlapping portion can be reduced. Therefore, by determining one or both of the effective life and redundancy of the registration data, it is possible to prevent the data volume of the local master table and the entire database from becoming bloated.
  • a communication system for a local edge network is a communication system for a local edge network including a base station and a plurality of mobiles, and is a communication path for communication between two mobiles in the network.
  • the communication route selection method of the present invention is used.
  • the local edge network communication system uses the communication route selection method of the present invention, it can share information with other mobile units in a short period of time.
  • the communication route selection method shown in FIG. 1 is a communication route selection method for communication between two mobile units in a network including a base station and a plurality of mobile units that are mutually connected by a common wireless interface. It includes a target determination step S1, a communication speed acquisition step S2, a transmission data amount acquisition step S3, a communication route selection step S4, a communication stop determination step S5, and a communication processing step S6.
  • the communication route selection method is used in the local edge network communication system 1 shown in FIG. That is, the local edge network communication system 1 is a local edge network communication system including a base station 10 and a plurality of mobile units 20, and a communication route selection method for communication between two mobile units 20 in the network. , the communication route selection method of the present invention is used.
  • the base station 10 and multiple mobile units 20 are connected via a wireless interface.
  • a wireless interface 5G, local 5G, 4G, DSRC (Dedicated Short Range Communications), LPWA (Low Power Wide Area), WiFi, IEEE802.11 series, ITS (Intelligent Transport System) communication interface, etc. can be used. can.
  • the base station 10 and the plurality of mobile units 20 are connected to each other via a common wireless interface. That is, the base station 10 and the plurality of mobile units 20 can communicate directly between any two parties.
  • the base station 10 is a base station that supervises and controls the geographical range in which wireless communication of the local edge network communication system 1 can be performed. Specifically, the base station 10 performs data management processing and distribution control processing for a plurality of mobile units 20, for example.
  • the base station 10 When the geographical range is wide, the base station 10 includes a main base station that supervises and controls the entire geographical range, and a base station 10 that belongs to the lower layer of the main base station and subdivides the geographical range supervised by the main base station. It may also have a local base station that integrates and supervises.
  • a plurality of mobile units 20 are devices that move within a data sharing area (geographical range in which wireless communication can be performed) managed by the local edge network communication system 1 .
  • a plurality of moving bodies 20 may include vehicles, drones, mobile robots, portable devices, bicycles, and the like. Among them, the moving body 20 may include a vehicle.
  • the local edge network communication system 1 can be particularly suitably used for a system including vehicles, for example, a V2X communication system used for automatic driving or MaaS business.
  • V2X is an abbreviation for "Vehicle to X”, and is a generic term for technology that connects and mutually cooperates between a vehicle and something (other vehicles, pedestrians, infrastructure, networks, etc.). This V2X is essential, for example, for autonomous driving of vehicles.
  • the local edge network communication system 1 has a vehicle as an essential component of the mobile object 20 .
  • the base station 10 and multiple mobile units 20 each have a database 30 . Further, the moving body 20 has a sensor 20a. Furthermore, the base station 10 may have sensors.
  • a "sensor” is an element or device that detects a phenomenon in the real world and converts the detected phenomenon into a signal that can be processed by a computer.
  • the sensor information acquired by the sensor 20a is stored as registered data in the database 30 arranged in the mobile body 20 having this sensor 20a.
  • the above information includes arbitrary natural phenomena such as weather and temperature, phenomena caused by man-made objects such as traffic congestion, human vital information such as heart rate, respiratory rate, and blood pressure, approach of people to vehicles, and traffic on the road. Any information that can be detected by a sensor, such as falling object information, time, moving speed, and position, can be used.
  • the database 30 has a data table 40 that stores registration data and a local master table 50 that contains information specifying the database 30 in the network to which the database 30 belongs.
  • the data table 40 In addition to storing registration data acquired by the sensor 20a, the data table 40 also stores registration data required by this moving body 20 and acquired from other moving bodies 20. On the other hand, registration data that has never been required by this mobile unit 20 is not registered. Therefore, looking at the data table 40 of one mobile unit 20, only part of the registration data existing in the local edge network communication system 1 is registered. Focusing on one piece of registration data, for example, registration data a, there may exist a data table 40 in which registration data a is registered and a data table 40 in which registration data a is not registered.
  • the local master table 50 includes attributes, data sizes, and acquisition times of registered data.
  • a specific example of the local master table 50 will be described by taking as an example a case where the object of sensor information is "falling object".
  • the object of sensor information is "falling object".
  • labeling road link, see FIG. 3
  • the moving object 20 is traveling between a0 and a1 (road link a01).
  • sensor information other than falling objects can also be realized with a similar configuration.
  • either one or both of the effective life and redundancy of the above registration data is defined.
  • FIG. 6 is an example of the local master table 50 corresponding to this road link a01.
  • the record R1 on the first line records information on the moving body 20 existing on the road link a01. That is, in record R1, the vehicle No. whose existence was confirmed at a01. , time and position are recorded. If there is a second moving object 20 on the road link a01, for example, as shown in FIG. 6, record R2 should be added to add information about this second moving object.
  • the record R1 of the road link a01 is deleted, and instead the record of this moving body 20 is added to the road link a02. Added.
  • the current positions of the plurality of mobile units 20 existing in the local edge network communication system 1 can be estimated by referring to these records. can.
  • This record may be updated, for example, at regular time intervals, or when the moving body 20 moves to another road link. It should be noted that it is not essential to include the information for acquiring the current positions of a plurality of moving bodies 20 in the local master table 50, and for example, the information may be managed by other methods such as centralized management by aggregating the information in the base station 10. .
  • Record R3 on the second line shows information on a fallen object found on road link a01. Since the information of the falling object is stored as registered data in the database 30, for example, as an image or moving image in the database 30 arranged in the moving body 20 that acquired the information of the falling object, it is associated with this information. stored as The "attribute" of the record R3 represents the attribute of the registered data, which is "falling object" in this case.
  • the vehicle No. of the other moving body 20 is linked with the previous record R3. and the acquisition time should be added as a new record R4.
  • the sensor information acquired by the other moving body 20 is replaced with the registration data of the previous record R3.
  • the sensor information acquired by the other moving body 20 may be replaced with the latest information.
  • the object is moving or if the relative position of the other moving body 20 and the object is different, there is a high probability that they are the same (also simply referred to as “similar”), although they do not match perfectly. is sometimes judged to be In such a case, the registered data linked with the previous record R3 is registered in the data table 40 of the other moving body 20 and registered as a record R5 including data size, acquisition time, and the like. That is, in the local master table 50 of FIG. 6, two stages of "identical” and “similar” are defined and managed as the duplication degree. By determining the degree of duplication for registered data in this way, the amount of data in the duplicated portion can be reduced.
  • another mobile unit 20 may register the registration data obtained from this mobile unit 20.
  • a record R6 indicating that the registration data of the registered record R3 has been transmitted to another mobile unit 20 is provided, and the transmitting vehicle No. and the time should be recorded.
  • the records R3 to R5 on the second line are configured as described above, it is possible to specify the database 30 in the network in which the registration data exists. Further, by constructing the database 30 in this way, it is possible to acquire the data necessary in the communication path selection step S4 with a relatively small amount of data. Communication speed can be further improved.
  • the updated information is aggregated in the local master table 50 of the base station 10, and the aggregated updated local master table is created.
  • the local master table 50 only the updated difference may be transmitted, or the entire local master table 50 may be transmitted.
  • the effective life of registered data it is preferable to delete registered data whose elapsed time from the acquisition time exceeds the effective life at the timing of updating the local master table 50 or at a predetermined timing.
  • the amount of data in the local master table 50 related to the registration data also increases.
  • the effective life is determined based on the attribute of the registration data. For example, the aforementioned "falling object" is highly likely to be removed after a predetermined period of time has elapsed.
  • a "pedestrian” has a high possibility of moving by itself, and the effectiveness of information decreases in a shorter period of time than a "falling object” (effective life is short).
  • a "parked vehicle” may remain in place for a longer period of time, so the useful life is set longer.
  • Which object is which can be associated with the attribute of the registration data, so by determining the effective life based on the attribute of the registration data, an appropriate effective life can be set.
  • the receiving mobile unit 21 determines the mobile unit 20 (transmitting mobile unit 22) to receive the registration data a.
  • the receiving mobile 21 can identify which mobile 20 has the registration data a. If there are a plurality of moving bodies 20 having registration data a, one of the moving bodies 20 is selected.
  • the method of selecting this mobile unit 20 is not particularly limited, but since the position of each mobile unit 20 can be identified by referring to its own local master table 50, for example, the mobile unit 20 closest to the receiving mobile unit 21 is selected. be able to.
  • communication targets can be determined by referring only to the local master table 50 of itself, that is, communication via the network is not performed, so the total amount of data communicated over the entire network can be reduced.
  • the receiving mobile unit 21 may determine the reliability of the registration data from the degree of duplication of the local master table 50, and determine the priority of the registration data to be obtained and whether or not to obtain the registration data according to the reliability. By judging the reliability of the registration data in this way, for example, it is possible to avoid receiving unnecessary registration data, so that the total amount of data communicated over the entire network can be reduced.
  • ⁇ Communication speed acquisition process> In the communication speed acquisition step S2, the first communication speed estimation data between the transmitting mobile unit 22 of the two mobile units 20 that transmits data and the base station 10, and the data of the two mobile units 20 are obtained. Second communication speed estimation data between the receiving mobile unit 21 on the receiving side and the base station 10 and third communication speed estimation data between the transmitting mobile unit 22 and the receiving mobile unit 21 are obtained.
  • a communication route via the base station 10 When transmitting and receiving data from the transmitting mobile unit 22 to the receiving mobile unit 21, there are two possible communication routes: a communication route via the base station 10 and a direct communication route. It is necessary to obtain the first communication speed estimation data, the second communication speed estimation data, and the third communication speed estimation data as information necessary for determining this communication path.
  • the first communication speed estimation data and the second communication speed estimation data regarding communication with the base station 10 can be obtained using a communication heat map centered on the base station 10.
  • the communication heat map is a map (see FIG. 6) obtained by dividing the geographic range managed by the base station 10 shown in FIG.
  • the size of one area is appropriately determined to a size that can be regarded as a constant communication speed, but can be, for example, 20 m or more and 100 m or less. Also, although the size of each area can be changed according to the communication speed, the size of each area can simply be the same. Also, in the example of FIG. 5, each region is partitioned into a square shape, but other partitioning methods may be employed. As other partitioning methods, for example, a method of partitioning concentrically around the base station 10, or a method of combining straight lines radially extending from the base station 10 and concentric circles can be adopted.
  • FIG. 6 is an example of a communication heat map centered on the base station 10.
  • a heat map can be generated from, for example, the output of the base station 10, the antenna sensitivity of a plurality of mobile bodies 20, the simulation from three-dimensional geographical information such as buildings, etc., and the actual measurement values observed at a plurality of mobile bodies 20. can be calculated by complementing or combining them.
  • the communication heat map may be updated at regular time intervals.
  • the first communication speed estimation data is 7 Mbps from the position of the transmitting mobile 22, and the second communication speed estimation data is 9 Mbps from the position of the receiving mobile 21.
  • the third communication speed estimation data can be obtained from a communication heat map centered on the transmitting mobile unit 22, for example.
  • FIG. 7 is an example of a communication heat map centered on the transmitting mobile unit 22.
  • the communication heat map can adopt a division method different from that of the communication heat map centered on the base station 10, it is preferable that the division method be the same. Moreover, it is preferable that the size of each region is the same. By using the same division method and size in this way, it is easy to achieve consistency between the communication heat maps.
  • the third communication speed estimation data from the position of the receiving mobile unit 21 is 6 Mbps.
  • the receiving mobile unit 21 can know the amount of registration data a to be received.
  • the transmission data amount is assumed to be 1 MB.
  • ⁇ Communication route selection process> In the communication path selection step S4, based on the first to third communication speed estimation data and the transmission data amount obtained in the communication speed obtaining step S2 and the transmission data amount obtaining step S3, data is received from the transmitting mobile unit 22. As the communication route to the mobile unit 21, either one of the first communication route passing through the base station 10 and the second communication route not passing through the base station 10 is selected.
  • a first communication time predicted when the first communication path is selected and a second communication time predicted when the second communication path is selected are calculated.
  • the third communication time is calculated as 1 MB/6 Mbps ⁇ 8 ⁇ 1.33 s.
  • the second communication time is less than or equal to the predetermined allowable time, the second communication path is selected regardless of the communication time, thereby further reducing communication congestion that tends to concentrate on the base station 10.
  • the overall communication speed can be further improved.
  • the allowable time is determined based on the attributes of the registration data.
  • the valid time of the data differs depending on the attribute of the registration data. Therefore, by determining the permissible time based on the attribute of the registration data, more efficient communication can be performed.
  • the permissible time may be predetermined as a fixed value according to the attribute, but for example, as in the case of the falling object described above, it is determined by a mathematical formula such as the arrival time to the falling object - 2 seconds. good too.
  • ⁇ Communication stop determination process> In the communication stop determination step S5, when the first communication time and the second communication time exceed the allowable time, it is determined to stop the transmission of the transmission data. That is, when both the first communication time and the second communication time exceed the allowable time, the transmission of the transmission data is stopped.
  • the allowable time will be exceeded.
  • the transmitted data may become unnecessary data even if received.
  • the registered data a is transferred from the transmitting mobile unit 22 to the receiving mobile unit 21 through the communication route selected in the communication route selection step S4, except when it is determined in the communication stop determination step S5 that data transmission is stopped. Send.
  • the receiving mobile unit 21 makes a communication request to the transmitting mobile unit 22 and, in some cases, the base station 10, performs a predetermined communication procedure, and receives new registration data a.
  • the received registration data a is registered in the data table 40 of the receiving mobile unit 21 .
  • the local master table 50 is updated by adding that information (information corresponding to record R5 in FIG. 4). The updated local master table 50 is then shared by the base station 10 and multiple mobile units 20 .
  • this communication route selection method speed estimation data between the moving bodies 20 and between the moving bodies 20 and the base station 10 are acquired according to the positions of the moving bodies 20 that change from moment to moment. Since the communication path is selected, the time required for data communication can be reduced. In addition, in this communication route selection method, by using direct communication between the mobile units 20, it is possible to reduce communication congestion that tends to concentrate on the base station 10, so that the communication speed of the entire network can be improved. .
  • the local edge network communication system 1 uses the communication route selection method of the present invention, it can share information with other mobile units 20 in a short period of time.
  • the communication route selection method includes the communication stop determination process, but the communication stop determination process is not an essential process and can be omitted.
  • data is always transmitted according to the communication route selected in the communication route selection step.
  • the local master table is not an essential configuration. You can take a configuration that
  • the communication route selection method includes the communication target determination process, but the communication determination process is not an essential process and can be omitted. In this case, if there are a plurality of mobile units that store the required registration data, the communication route selection method can be applied to each mobile unit, and the fastest communication route can be selected. .
  • the number of receiving mobile units to which one transmitting mobile unit transmits is not limited to one in the present invention. That is, one transmitting mobile may transmit to multiple receiving mobiles at the same time.
  • the communication route may be determined for each receiving mobile unit, or a representative receiving mobile unit (for example, the receiving mobile unit that is farthest from the transmitting mobile unit) may be determined and a common communication route may be determined.
  • a common communication route is defined, if the first communication path is selected, communication from the transmitting mobile unit to the base station can be made common, so the total amount of data communicated over the entire network can be reduced. The overall communication speed can be further improved.
  • the communication route selection method and local edge network communication system of the present invention can reduce communication congestion and share information with other mobile units in a short time.

Abstract

The present invention provides a method for selecting a communication path for communication performed between two mobile bodies in a network including a base station and a plurality of mobile bodies, the method comprising: a communication speed acquiring step for acquiring first communication speed estimate data between a transmitting mobile body which is one of the two mobile bodies that is on the data-transmitting side and the base station, second communication speed estimate data between a receiving mobile body which is one of the two mobile bodies that is on the data-receiving side and the base station, and third communication speed estimate data between the transmitting mobile body and the receiving mobile body; a transmission data amount acquiring step for acquiring a transmission data amount of transmission data transmitted by the transmitting mobile body; and a communication path selecting step for selecting, on the basis of the first communication speed estimate data through the third communication speed estimate data and the transmission data amount acquired in the communication speed acquiring step and the transmission data amount acquiring step, one of a first communication path that passes through the base station and a second communication path that does not pass through the base station, as a communication path from the transmitting mobile body to the receiving mobile body.

Description

通信経路選択方法及びローカルエッジネットワーク用通信システムCommunication path selection method and communication system for local edge network
 本発明は、通信経路選択方法及びローカルエッジネットワーク用通信システムに関する。 The present invention relates to a communication path selection method and a communication system for local edge networks.
 近年、車両の安全運転や自動運転支援が実用化されつつあり、また自動運転の開発も進んでいる。これらのシステムでは、例えばシステムに必要な高精度地図情報はクラウドから通信基地局を経由して車両に配信されるため、車載コンピュータと通信とを複合させた通信システムとして実現される。 In recent years, safe driving of vehicles and automated driving support have been put into practical use, and the development of automated driving is also progressing. In these systems, for example, high-precision map information required for the system is distributed from the cloud to the vehicle via a communication base station, so the system is realized as a communication system that combines an in-vehicle computer and communication.
 車両の安全運転、自動運転支援あるいは自動運転では、例えばデータ収集専用車両で数か月から数年に一度の頻度で収集し編集及び配信されていたカーナビ用の静的地図データに、高度安全運転支援や自動運転に必要な周辺車両、歩行者及び信号の情報、事故情報、交通規制情報などの逐次変化する情報を重ね合わせたダイナミックマップと呼ばれるデータが使用される。 In terms of safe driving, automated driving support, or automated driving, for example, static map data for car navigation systems that have been collected, edited, and distributed once every several months to several years by vehicles dedicated to data collection, can be used for advanced safe driving. Data called a dynamic map is used, which superimposes continuously changing information such as surrounding vehicles, pedestrian and signal information, accident information, and traffic control information necessary for support and automatic driving.
 このようにして得られたダイナミックデータでは、逐次変化する情報が多いため、短時間で他の移動体と情報を共有する必要性が生じ易い。他の移動体と情報を共有する場合、共有すべき情報とその情報を有している他の移動体とを効率よく検索し、情報を取得する必要がある。 In the dynamic data obtained in this way, there is a lot of information that changes sequentially, so it is easy to need to share information with other moving objects in a short period of time. When sharing information with other mobiles, it is necessary to efficiently search for the information to be shared and other mobiles having the information, and acquire the information.
 例えばネットワークに分散されたデータベース資源を効率よく検索し、ネットワークやデータベースに大きな負荷をかけることなく、必要なデータを効率よく検索する方法として、回答集積装置を利用した検索方法が提案されている(特開2000-235583号公報参照)。上記検索方法では、まず、狭いエリアに位置するデータベースに対して検索処理を行い、回答カウンタによって回答集積装置に蓄積される回答データ、すなわち有効な情報数を計数する。そして、この狭いエリアから所定数の回答データが得られないと判断した場合は、検索装置から通信装置を介してより広い範囲の検索を行う。 For example, a search method using an answer accumulation device has been proposed as a method of efficiently searching database resources distributed over a network and efficiently searching for necessary data without imposing a heavy load on the network or database ( See JP-A-2000-235583). In the above search method, first, a search process is performed on a database located in a narrow area, and the answer data accumulated in the answer accumulation device, that is, the number of effective information is counted by the answer counter. When it is determined that a predetermined number of response data cannot be obtained from this narrow area, a wider range is searched from the search device via the communication device.
特開2000-235583号公報JP-A-2000-235583
 上記従来の回答集積装置を利用した検索方法では、狭いエリアに検索対象データが存在しない場合、より広いエリアの検索をして情報を取得することになり、ネットワークを介した検索を必要とする。ネットワークを介した検索が多くなると、ネットワーク負荷が増大し、通信混雑が生じ易くなり、検索及び情報取得に要する時間が飛躍的に大きくなる。このため、上記従来の方法では、安定して効率的に検索及び情報取得ができるとは言えない。 In the search method using the above-mentioned conventional response accumulation device, if the search target data does not exist in a narrow area, the information will be obtained by searching in a wider area, requiring a search via the network. As the number of searches through the network increases, the network load increases, communication congestion tends to occur, and the time required for searches and information acquisition increases dramatically. For this reason, it cannot be said that the above-described conventional method can stably and efficiently perform search and information acquisition.
 本発明は、以上のような事情に基づいてなされたものであり、通信混雑を低減し短時間で他の移動体と情報を共有可能な通信経路選択方法及びローカルエッジネットワーク用通信システムを提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made based on the above circumstances, and provides a communication route selection method and a communication system for a local edge network that can reduce communication congestion and share information with other mobile units in a short time. for the purpose.
 本発明の一態様に係る通信経路選択方法は、互いに共通のワイヤレスインタフェースで接続されている基地局及び複数の移動体を含むネットワーク内の2つの移動体間で行う通信の通信経路選択方法であって、上記2つの移動体のうちデータを送信する側の送信移動体と上記基地局との間の第1通信速度推定データ、上記2つの移動体のうちデータを受信する側の受信移動体と上記基地局との間の第2通信速度推定データ、及び上記送信移動体と上記受信移動体との間の第3通信速度推定データを取得する通信速度取得工程と、上記送信移動体が送信する送信データの送信データ量を取得する送信データ量取得工程と、上記通信速度取得工程及び上記送信データ量取得工程で取得した第1通信速度推定データ乃至第3通信速度推定データ及び上記送信データ量に基づいて、上記送信移動体から上記受信移動体への通信経路として、上記基地局を経由する第1通信経路及び上記基地局を経由しない第2通信経路のいずれか一方を選択する通信経路選択工程とを備える。 A communication route selection method according to one aspect of the present invention is a communication route selection method for communication between two mobile units in a network including a base station and a plurality of mobile units that are mutually connected via a common wireless interface. the first communication speed estimation data between the transmitting mobile, which is the data transmitting side of the two mobiles, and the base station; and the receiving mobile, which is the data receiving side of the two mobiles. a communication speed obtaining step of obtaining second communication speed estimation data with the base station and third communication speed estimation data between the transmitting mobile unit and the receiving mobile unit; a transmission data amount obtaining step of obtaining the transmission data amount of the transmission data; a communication route selection step of selecting either a first communication route passing through the base station or a second communication route not passing through the base station as a communication route from the transmitting mobile unit to the receiving mobile unit based on the and
 本発明の別の一態様に係るローカルエッジネットワーク用通信システムは、基地局及び複数の移動体を備えるローカルエッジネットワーク用通信システムであって、ネットワーク内の2つの移動体間で行う通信の通信経路選択方法として、本発明の通信経路選択方法を用いる。 A communication system for a local edge network according to another aspect of the present invention is a communication system for a local edge network including a base station and a plurality of mobiles, and is a communication path for communication between two mobiles in the network. As a selection method, the communication route selection method of the present invention is used.
 本発明の通信経路選択方法及びローカルエッジネットワーク用通信システムは、通信混雑を低減し短時間で他の移動体と情報を共有可能である。 The communication route selection method and local edge network communication system of the present invention can reduce communication congestion and share information with other mobile units in a short time.
図1は、本発明の一実施形態に係る通信経路選択方法を示すフロー図である。FIG. 1 is a flow diagram showing a communication route selection method according to one embodiment of the present invention. 図2は、図1の通信経路選択方法を用いたローカルエッジネットワーク用通信システムを示す模式的構成図である。FIG. 2 is a schematic configuration diagram showing a communication system for a local edge network using the communication route selection method of FIG. 図3は、道路網に対応したマップデータを示すイメージ図である。FIG. 3 is an image diagram showing map data corresponding to a road network. 図4は、図2のローカルエッジネットワーク用通信システムにおけるローカルマスタテーブルの例を示す模式的データ図である。4 is a schematic data diagram showing an example of a local master table in the local edge network communication system of FIG. 2. FIG. 図5は、通信ヒートマップを説明するための模式図である。FIG. 5 is a schematic diagram for explaining a communication heat map. 図6は、基地局を中心とした通信ヒートマップの一例を示す。FIG. 6 shows an example of a communication heat map centered on base stations. 図7は、受信移動体を中心とした通信ヒートマップの一例を示す。FIG. 7 shows an example of a communication heat map centered on receiving mobiles.
[本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
[Description of the embodiment of the present invention]
First, embodiments of the present invention will be listed and described.
 本発明の一態様に係る通信経路選択方法は、互いに共通のワイヤレスインタフェースで接続されている基地局及び複数の移動体を含むネットワーク内の2つの移動体間で行う通信の通信経路選択方法であって、上記2つの移動体のうちデータを送信する側の送信移動体と上記基地局との間の第1通信速度推定データ、上記2つの移動体のうちデータを受信する側の受信移動体と上記基地局との間の第2通信速度推定データ、及び上記送信移動体と上記受信移動体との間の第3通信速度推定データを取得する通信速度取得工程と、上記送信移動体が送信する送信データの送信データ量を取得する送信データ量取得工程と、上記通信速度取得工程及び上記送信データ量取得工程で取得した第1通信速度推定データ乃至第3通信速度推定データ及び上記送信データ量に基づいて、上記送信移動体から上記受信移動体への通信経路として、上記基地局を経由する第1通信経路及び上記基地局を経由しない第2通信経路のいずれか一方を選択する通信経路選択工程とを備える。 A communication route selection method according to one aspect of the present invention is a communication route selection method for communication between two mobile units in a network including a base station and a plurality of mobile units that are mutually connected via a common wireless interface. the first communication speed estimation data between the transmitting mobile, which is the data transmitting side of the two mobiles, and the base station; and the receiving mobile, which is the data receiving side of the two mobiles. a communication speed obtaining step of obtaining second communication speed estimation data with the base station and third communication speed estimation data between the transmitting mobile unit and the receiving mobile unit; a transmission data amount obtaining step of obtaining the transmission data amount of the transmission data; a communication route selection step of selecting either a first communication route passing through the base station or a second communication route not passing through the base station as a communication route from the transmitting mobile unit to the receiving mobile unit based on the and
 当該通信経路選択方法では、時々刻々変化する移動体の位置に応じて移動体間及び移動体と基地局との間の速度推定データを取得し、さらに送信データ量を考慮して通信経路を選択するので、データの通信に要する時間の低減を図ることができる。また、当該通信経路選択方法では、移動体―移動体間の直接通信を用いることで、基地局に集中し易い通信混雑を低減できるので、ネットワーク全体の通信速度を向上させることができる。 In this communication route selection method, speed estimation data between mobile units and between a mobile unit and a base station is obtained according to the constantly changing position of the mobile unit, and a communication route is selected in consideration of the amount of transmission data. Therefore, it is possible to reduce the time required for data communication. In addition, in the communication path selection method, direct communication between mobile units is used to reduce communication congestion that tends to concentrate on base stations, so that the communication speed of the entire network can be improved.
 上記通信経路選択工程で、上記第1通信経路を選択した際に予測される第1通信時間、及び上記第2通信経路を選択した際に予測される第2通信時間を算出し、上記第2通信時間が、あらかじめ定められた許容時間以下である場合、第2通信経路を選択するとよい。このように第2通信時間があらかじめ定められた許容時間以下である場合に第2通信経路を選択することで、基地局に集中し易い通信混雑をさらに低減できるので、ネットワーク全体の通信速度をさらに向上させることができる。 In the communication route selection step, a first communication time predicted when the first communication route is selected and a second communication time predicted when the second communication route is selected are calculated; If the communication time is equal to or shorter than the predetermined allowable time, the second communication route should be selected. By selecting the second communication path when the second communication time is equal to or less than the predetermined allowable time, it is possible to further reduce communication congestion that tends to concentrate on the base station, thereby further increasing the communication speed of the entire network. can be improved.
 上記第1通信時間及び上記第2通信時間が上記許容時間を超える場合、上記送信データの送信の中止を判定する通信中止判定工程をさらに備えるとよい。通信時間が許容時間を超えると、その送信データは受信しても不要なデータとなる場合がある。このような送信データに対して上記通信中止判定工程により通信中止を判定し通信を取りやめることで、ネットワーク全体で通信される総データ量を削減し、ネットワーク全体の通信速度をさらに向上させることができる。 It is preferable to further include a communication stop determination step of determining to stop transmission of the transmission data when the first communication time and the second communication time exceed the allowable time. If the communication time exceeds the allowable time, even if the transmission data is received, it may become unnecessary data. By determining to suspend communication with respect to such transmission data through the communication suspension determination step and suspending communication, the total amount of data communicated over the entire network can be reduced, and the communication speed of the entire network can be further improved. .
 上記基地局及び上記複数の移動体が、それぞれデータベースを有し、上記移動体が、センサを有しており、上記センサが取得するセンサ情報が、このセンサを有する移動体に配置されている上記データベースに、上記データベースの登録データとして格納され、上記データベースが、自身が属するネットワーク内の上記登録データが存在するデータベースを特定する情報を含むローカルマスタテーブルを有し、上記ローカルマスタテーブルが、上記登録データの属性、データサイズ及び取得時刻を含むとよい。このようにデータベースを構成することで、比較的小容量データで、上記通信経路選択工程で必要なデータを取得できるので、ネットワーク全体で通信される総データ量を削減し、ネットワーク全体の通信速度をさらに向上させることができる。 The base station and the plurality of mobile bodies each have a database, the mobile body has a sensor, and the sensor information acquired by the sensor is arranged in the mobile body having the sensor. A database has a local master table stored as registration data of the database, the database includes information specifying a database in which the registration data exists in the network to which the database belongs, and the local master table stores the registration data. It is preferable to include data attributes, data size and acquisition time. By constructing the database in this way, it is possible to acquire the data necessary for the communication path selection process with a relatively small amount of data, thereby reducing the total amount of data communicated over the entire network and increasing the communication speed of the entire network. It can be improved further.
 上記登録データの属性に基づいて、上記許容時間が定められているとよい。登録データの属性によって、データが有効な時間は異なる。このため、上記許容時間を上記登録データの属性に基づいて定めることで、さらに効率的な通信を行うことができる。 The allowable time should be determined based on the attributes of the registered data. The valid time of the data differs depending on the attribute of the registration data. Therefore, by determining the permissible time based on the attribute of the registration data, more efficient communication can be performed.
 上記登録データの有効寿命及び重複度のいずれか一方又は両方が定められているとよい。上記登録データが増えるに従ってこの登録データに関するローカルマスタテーブルのデータ量も増大する。上記登録データの有効寿命を定めることで、上記有効寿命を超えた登録データを削除することが可能となる。また、複数の移動体が同じ情報ソースに対してセンサ情報を取得し登録データとなる場合がある。このような登録データに対して重複度を定めることで、重複部分のデータ量を圧縮できる。従って、上記登録データの有効寿命及び重複度のいずれか一方又は両方を定めることで、ローカルマスタテーブルひいてはデータベース全体のデータ量が肥大化してしまうことを抑止できる。 Either one or both of the effective life and redundancy of the above registration data should be defined. As the registration data increases, the amount of data in the local master table relating to this registration data also increases. By defining the effective life of the registration data, it becomes possible to delete the registration data that has exceeded the effective life. In addition, there are cases where a plurality of moving bodies obtains sensor information from the same information source and becomes registered data. By determining the degree of redundancy for such registered data, the amount of data in the overlapping portion can be reduced. Therefore, by determining one or both of the effective life and redundancy of the registration data, it is possible to prevent the data volume of the local master table and the entire database from becoming bloated.
 本発明の別の一態様に係るローカルエッジネットワーク用通信システムは、基地局及び複数の移動体を備えるローカルエッジネットワーク用通信システムであって、ネットワーク内の2つの移動体間で行う通信の通信経路選択方法として、本発明の通信経路選択方法を用いる。 A communication system for a local edge network according to another aspect of the present invention is a communication system for a local edge network including a base station and a plurality of mobiles, and is a communication path for communication between two mobiles in the network. As a selection method, the communication route selection method of the present invention is used.
 当該ローカルエッジネットワーク用通信システムは、本発明の通信経路選択方法を用いるので、短時間で他の移動体と情報を共有可能である。 Since the local edge network communication system uses the communication route selection method of the present invention, it can share information with other mobile units in a short period of time.
[本発明の実施形態の詳細]
 以下、本発明の実施形態に係る通信経路選択方法及びローカルエッジネットワーク用通信システムについて、適宜図面を参照しつつ説明する。
[Details of the embodiment of the present invention]
Hereinafter, a communication path selection method and a communication system for a local edge network according to embodiments of the present invention will be described with appropriate reference to the drawings.
 図1に示す通信経路選択方法は、互いに共通のワイヤレスインタフェースで接続されている基地局及び複数の移動体を含むネットワーク内の2つの移動体間で行う通信の通信経路選択方法であって、通信対象決定工程S1と、通信速度取得工程S2と、送信データ量取得工程S3と、通信経路選択工程S4と、通信中止判定工程S5と、通信処理工程S6とを備える。 The communication route selection method shown in FIG. 1 is a communication route selection method for communication between two mobile units in a network including a base station and a plurality of mobile units that are mutually connected by a common wireless interface. It includes a target determination step S1, a communication speed acquisition step S2, a transmission data amount acquisition step S3, a communication route selection step S4, a communication stop determination step S5, and a communication processing step S6.
〔ローカルエッジネットワーク用通信システム〕
 当該通信経路選択方法は、図2に示すローカルエッジネットワーク用通信システム1で用いられる。すなわち、当該ローカルエッジネットワーク用通信システム1は、基地局10及び複数の移動体20を備えるローカルエッジネットワーク用通信システムであって、ネットワーク内の2つの移動体20間で行う通信の通信経路選択方法として、本発明の通信経路選択方法を用いる。
[Communication system for local edge network]
The communication route selection method is used in the local edge network communication system 1 shown in FIG. That is, the local edge network communication system 1 is a local edge network communication system including a base station 10 and a plurality of mobile units 20, and a communication route selection method for communication between two mobile units 20 in the network. , the communication route selection method of the present invention is used.
 基地局10及び複数の移動体20は、ワイヤレスインタフェースで接続されている。上記ワイヤレスインタフェースとしては、5G、ローカル5G、4G、DSRC(Dedicated Short Range Communications)、LPWA(Low Power Wide Area)、WiFi、IEEE802.11系列、ITS(Intelligent Transport System)通信のインタフェース等を用いることができる。 The base station 10 and multiple mobile units 20 are connected via a wireless interface. As the wireless interface, 5G, local 5G, 4G, DSRC (Dedicated Short Range Communications), LPWA (Low Power Wide Area), WiFi, IEEE802.11 series, ITS (Intelligent Transport System) communication interface, etc. can be used. can.
 また、基地局10及び複数の移動体20は、互いに共通のワイヤレスインタフェースで接続されている。つまり、基地局10及び複数の移動体20は、任意の2者間で直接通信を行うことができる。 Also, the base station 10 and the plurality of mobile units 20 are connected to each other via a common wireless interface. That is, the base station 10 and the plurality of mobile units 20 can communicate directly between any two parties.
<基地局>
 基地局10は、当該ローカルエッジネットワーク用通信システム1のワイヤレス通信が行える地理的範囲を統括し、制御する基地局である。具体的には、基地局10は、例えば複数の移動体20のデータ管理処理と配信制御処理とを行う。
<Base station>
The base station 10 is a base station that supervises and controls the geographical range in which wireless communication of the local edge network communication system 1 can be performed. Specifically, the base station 10 performs data management processing and distribution control processing for a plurality of mobile units 20, for example.
 上記地理的範囲が広い場合、基地局10は、上記地理的範囲全体を統括及び制御する主基地局と、上記主基地局の下層に属し、上記主基地局が統括する上記地理的範囲を細分化して統括するローカル基地局とを有してもよい。 When the geographical range is wide, the base station 10 includes a main base station that supervises and controls the entire geographical range, and a base station 10 that belongs to the lower layer of the main base station and subdivides the geographical range supervised by the main base station. It may also have a local base station that integrates and supervises.
<移動体>
 複数の移動体20は、当該ローカルエッジネットワーク用通信システム1が管理するデータ共有エリア(ワイヤレス通信が行える地理的範囲)を移動する機器である。
<Moving body>
A plurality of mobile units 20 are devices that move within a data sharing area (geographical range in which wireless communication can be performed) managed by the local edge network communication system 1 .
 複数の移動体20には、車両、ドローン、移動型ロボット、携帯機、自転車等が含まれ得る。このうち、移動体20が、車両を含むとよい。当該ローカルエッジネットワーク用通信システム1は、車両を含むシステム、例えば自動運転やMaaSビジネスに用いられるV2X通信システムに特に好適に用いることができる。「V2X」とは、Vehicle to Xの略称であり、車両と何か(他の車両や歩行者、インフラ、ネットワークなど)との接続や相互連携を総称する技術である。このV2Xは、例えば車両の自動運転に不可欠である。以下、移動体20が、車両を含むことを前提に説明するが、当該ローカルエッジネットワーク用通信システム1が移動体20として車両を必須の構成要素とすることを意味するものではない。 A plurality of moving bodies 20 may include vehicles, drones, mobile robots, portable devices, bicycles, and the like. Among them, the moving body 20 may include a vehicle. The local edge network communication system 1 can be particularly suitably used for a system including vehicles, for example, a V2X communication system used for automatic driving or MaaS business. "V2X" is an abbreviation for "Vehicle to X", and is a generic term for technology that connects and mutually cooperates between a vehicle and something (other vehicles, pedestrians, infrastructure, networks, etc.). This V2X is essential, for example, for autonomous driving of vehicles. Although the following description is based on the premise that the mobile object 20 includes a vehicle, this does not mean that the local edge network communication system 1 has a vehicle as an essential component of the mobile object 20 .
<データベース>
 基地局10及び複数の移動体20は、それぞれデータベース30を有する。また、移動体20は、センサ20aを有している。さらに、基地局10がセンサを有していてもよい。なお、「センサ」とは、実世界での現象を検知して、その検知された現象を、コンピュータが処理可能な信号に置き換える素子又は装置のことをいう。
<Database>
The base station 10 and multiple mobile units 20 each have a database 30 . Further, the moving body 20 has a sensor 20a. Furthermore, the base station 10 may have sensors. A "sensor" is an element or device that detects a phenomenon in the real world and converts the detected phenomenon into a signal that can be processed by a computer.
 センサ20aが取得するセンサ情報は、このセンサ20aを有する移動体20に配置されているデータベース30に、データベース30の登録データとして格納される。上記情報としては、天候、気温といった任意の自然現象や、交通渋滞等の人工物で生ずる現象、心拍数、呼吸数、血圧等の人間のバイタル情報、車両への人物の接近、道路上への落下物の情報、時刻、移動速度、位置などのセンサで検知できる任意のものを挙げることができる。 The sensor information acquired by the sensor 20a is stored as registered data in the database 30 arranged in the mobile body 20 having this sensor 20a. The above information includes arbitrary natural phenomena such as weather and temperature, phenomena caused by man-made objects such as traffic congestion, human vital information such as heart rate, respiratory rate, and blood pressure, approach of people to vehicles, and traffic on the road. Any information that can be detected by a sensor, such as falling object information, time, moving speed, and position, can be used.
 データベース30は、登録データを格納するデータテーブル40と、自身が属するネットワーク内の上記登録データが存在するデータベース30を特定する情報を含むローカルマスタテーブル50を有する。 The database 30 has a data table 40 that stores registration data and a local master table 50 that contains information specifying the database 30 in the network to which the database 30 belongs.
 データテーブル40には、センサ20aが取得した登録データが格納されるほか、この移動体20が必要とし、他の移動体20から取得した登録データも登録される。一方、この移動体20がこれまで一度も必要としていない登録データは、登録されていない。従って、1つの移動体20のデータテーブル40をみると、当該ローカルエッジネットワーク用通信システム1に存在する登録データの一部のみが登録されている。1つの登録データ、例えば登録データaに注目すると、登録データaが登録されているデータテーブル40と登録されていないデータテーブル40が存在し得る。 In addition to storing registration data acquired by the sensor 20a, the data table 40 also stores registration data required by this moving body 20 and acquired from other moving bodies 20. On the other hand, registration data that has never been required by this mobile unit 20 is not registered. Therefore, looking at the data table 40 of one mobile unit 20, only part of the registration data existing in the local edge network communication system 1 is registered. Focusing on one piece of registration data, for example, registration data a, there may exist a data table 40 in which registration data a is registered and a data table 40 in which registration data a is not registered.
 ローカルマスタテーブル50は、登録データの属性、データサイズ及び取得時刻を含む。ローカルマスタテーブル50の具体例を、センサ情報の対象が「落下物」である場合を例にとり、説明する。「落下物」の情報は、データに道路とリンクするラベリング(道路リンク、図3参照)を行い、道路リンクごとに情報の更新を行うとよい。例えば図3では、移動体20(ラベルV1)は、a0とa1との間(道路リンクa01)を走行中である。なお、落下物以外のセンサ情報についても同様の構成で実現できる。 The local master table 50 includes attributes, data sizes, and acquisition times of registered data. A specific example of the local master table 50 will be described by taking as an example a case where the object of sensor information is "falling object". For information on "falling objects", it is preferable to perform labeling (road link, see FIG. 3) that links the data to the road, and update the information for each road link. For example, in FIG. 3, the moving object 20 (label V1) is traveling between a0 and a1 (road link a01). Note that sensor information other than falling objects can also be realized with a similar configuration.
 また、上記登録データの有効寿命及び重複度のいずれか一方又は両方が定められているとよい。上記登録データの有効寿命及び重複度のいずれか一方又は両方を定めることで、ローカルマスタテーブルひいてはデータベース全体のデータ量が肥大化してしまうことを抑止できる。 Also, it is preferable that either one or both of the effective life and redundancy of the above registration data is defined. By defining either one or both of the effective life and redundancy of the registration data, it is possible to prevent the data volume of the local master table and the database as a whole from becoming bloated.
 図6は、この道路リンクa01に対応するローカルマスタテーブル50の例である。図6のローカルマスタテーブル50で、1行目のレコードR1は、道路リンクa01に存在する移動体20の情報を記録している。すなわちレコードR1には、a01に存在が確認された車両No.と時刻及び位置とが記録されている。道路リンクa01に2台目の移動体20が存在している場合は、例えば図6に示すように、レコードR2を追加してこの2台目の情報を追加すればよい。一方、例えば時刻が経過してレコードR1に記録された移動体20が道路リンクa02に移動した場合は、道路リンクa01のレコードR1は抹消され、代わりに道路リンクa02にこの移動体20のレコードが追加される。 FIG. 6 is an example of the local master table 50 corresponding to this road link a01. In the local master table 50 of FIG. 6, the record R1 on the first line records information on the moving body 20 existing on the road link a01. That is, in record R1, the vehicle No. whose existence was confirmed at a01. , time and position are recorded. If there is a second moving object 20 on the road link a01, for example, as shown in FIG. 6, record R2 should be added to add information about this second moving object. On the other hand, for example, when the moving body 20 recorded in the record R1 moves to the road link a02 after the passage of time, the record R1 of the road link a01 is deleted, and instead the record of this moving body 20 is added to the road link a02. Added.
 1行目のレコードR1、R2は上述のように構成されているので、このレコードを参照すれば、当該ローカルエッジネットワーク用通信システム1に存在する複数の移動体20の現在位置を推定することができる。このレコードの更新は、例えば一定時間間隔ごとに行ってもよいし、移動体20が他の道路リンクに移動したタイミングで行ってもよい。なお、複数の移動体20の現在位置を取得する情報をローカルマスタテーブル50に含めることは必須ではなく、例えば基地局10に情報を集約して一元管理するなど他の方法で管理してもよい。 Since the records R1 and R2 in the first row are configured as described above, the current positions of the plurality of mobile units 20 existing in the local edge network communication system 1 can be estimated by referring to these records. can. This record may be updated, for example, at regular time intervals, or when the moving body 20 moves to another road link. It should be noted that it is not essential to include the information for acquiring the current positions of a plurality of moving bodies 20 in the local master table 50, and for example, the information may be managed by other methods such as centralized management by aggregating the information in the base station 10. .
 2行目のレコードR3は、道路リンクa01で発見された落下物の情報を示している。この落下物の情報は、上記落下物の情報を取得した移動体20に配置されているデータベース30に、例えば画像あるいは動画としてデータベース30の登録データとして格納されるから、これらの情報と紐づけられて格納されている。レコードR3の「属性」は、登録データの属性を表し、この場合は「落下物」である。 Record R3 on the second line shows information on a fallen object found on road link a01. Since the information of the falling object is stored as registered data in the database 30, for example, as an image or moving image in the database 30 arranged in the moving body 20 that acquired the information of the falling object, it is associated with this information. stored as The "attribute" of the record R3 represents the attribute of the registered data, which is "falling object" in this case.
 道路リンクa01を他の移動体20が通過し、同じ落下物を発見する場合が想定される。このような場合、上記登録データの重複度を定めるとよい。具体的には、同じ落下物であると判断されれば、先のレコードR3と紐づけて、他の移動体20の車両No.及び取得時刻を新たなレコードR4として追加するとよい。この場合、他の移動体20が取得したセンサ情報は先のレコードR3の登録データで置き換えられる。あるいは逆に他の移動体20が取得したセンサ情報を最新の情報として置き換えてもよい。一方、対象物が移動していたり、他の移動体20と対象物との相対位置等が異なっていたりすると、完全には一致しないものの同一である蓋然性が高い(単に「類似する」ともいう)と判断される場合もある。このような場合には、先のレコードR3と紐づけるものの登録データは、この他の移動体20のデータテーブル40に登録され、データサイズや取得時刻等を含むレコードR5として登録される。つまり、図6のローカルマスタテーブル50では、重複度としては、「同一」及び「類似」の2段階が定められた管理されている。このように登録データに対して重複度を定めることで、重複部分のデータ量を圧縮できる。 It is assumed that another moving object 20 passes through the road link a01 and finds the same fallen object. In such a case, it is preferable to determine the degree of duplication of the registration data. Specifically, if it is determined that the falling object is the same, the vehicle No. of the other moving body 20 is linked with the previous record R3. and the acquisition time should be added as a new record R4. In this case, the sensor information acquired by the other moving body 20 is replaced with the registration data of the previous record R3. Alternatively, conversely, the sensor information acquired by the other moving body 20 may be replaced with the latest information. On the other hand, if the object is moving or if the relative position of the other moving body 20 and the object is different, there is a high probability that they are the same (also simply referred to as “similar”), although they do not match perfectly. is sometimes judged to be In such a case, the registered data linked with the previous record R3 is registered in the data table 40 of the other moving body 20 and registered as a record R5 including data size, acquisition time, and the like. That is, in the local master table 50 of FIG. 6, two stages of "identical" and "similar" are defined and managed as the duplication degree. By determining the degree of duplication for registered data in this way, the amount of data in the duplicated portion can be reduced.
 また、当該ローカルエッジネットワーク用通信システム1では、他の移動体20がこの移動体20から取得した登録データを登録する場合がある。このような場合は、登録されたレコードR3の登録データが他の移動体20へ送信されたことを示すレコードR6を設け、その送信車両No.及び時刻を記録するとよい。 In addition, in the local edge network communication system 1, another mobile unit 20 may register the registration data obtained from this mobile unit 20. In such a case, a record R6 indicating that the registration data of the registered record R3 has been transmitted to another mobile unit 20 is provided, and the transmitting vehicle No. and the time should be recorded.
 2行目のレコードR3~R5は上述のように構成されているので、ネットワーク内の上記登録データが存在するデータベース30を特定することができる。また、このようにデータベース30を構成することで、比較的小容量データで、通信経路選択工程S4で必要なデータを取得できるので、ネットワーク全体で通信される総データ量を削減し、ネットワーク全体の通信速度をさらに向上させることができる。 Since the records R3 to R5 on the second line are configured as described above, it is possible to specify the database 30 in the network in which the registration data exists. Further, by constructing the database 30 in this way, it is possible to acquire the data necessary in the communication path selection step S4 with a relatively small amount of data. Communication speed can be further improved.
 ローカルマスタテーブル50がいずれかのデータベース30で更新されるごとに、あるいは一定時間間隔ごとに、更新された情報を基地局10のローカルマスタテーブル50に集約し、集約された更新済みのローカルマスタテーブル50を基地局10から各移動体20のローカルマスタテーブル50に配信することで、各ローカルマスタテーブル50の整合性と最新化を図るとよい。また、ローカルマスタテーブル50を配信する際は、更新された差分のみを送信してもよいし、ローカルマスタテーブル50全体を送信してもよい。 Each time the local master table 50 is updated in one of the databases 30 or at regular time intervals, the updated information is aggregated in the local master table 50 of the base station 10, and the aggregated updated local master table is created. . When distributing the local master table 50, only the updated difference may be transmitted, or the entire local master table 50 may be transmitted.
 登録データの有効寿命が定められている場合、ローカルマスタテーブル50を更新するタイミング又は所定のタイミングで、取得時刻からの経過時間が有効寿命を超えている登録データを削除するとよい。上記登録データが増えるに従ってこの登録データに関するローカルマスタテーブル50のデータ量も増大するが、上記登録データの有効寿命を定めることで、上記有効寿命を超えた登録データを削除することが可能となる。上記有効寿命は、上記登録データの属性に基づいて定められていることが好ましい。例えば上述した「落下物」であれば、所定時間経過後には撤去されている可能性が高い。これに対し、例えば「歩行者」であれば、自ら移動する可能性が高く、「落下物」よりも短期間で情報の有効性は低下する(有効寿命が短い)。一方、「駐車車両」であれば、より長期間その場に存在し続ける可能性があり、有効寿命は長く設定される。対象物がいずれであるかは、登録データの属性で紐付け可能であるので、上記有効寿命を上記登録データの属性に基づいて定めることで、適切な有効寿命を設定することができる。 When the effective life of registered data is determined, it is preferable to delete registered data whose elapsed time from the acquisition time exceeds the effective life at the timing of updating the local master table 50 or at a predetermined timing. As the registration data increases, the amount of data in the local master table 50 related to the registration data also increases. However, by setting the effective life of the registration data, it becomes possible to delete the registration data that has exceeded the effective life. It is preferable that the effective life is determined based on the attribute of the registration data. For example, the aforementioned "falling object" is highly likely to be removed after a predetermined period of time has elapsed. On the other hand, for example, a "pedestrian" has a high possibility of moving by itself, and the effectiveness of information decreases in a shorter period of time than a "falling object" (effective life is short). On the other hand, a "parked vehicle" may remain in place for a longer period of time, so the useful life is set longer. Which object is which can be associated with the attribute of the registration data, so by determining the effective life based on the attribute of the registration data, an appropriate effective life can be set.
〔通信経路選択方法〕
 当該通信経路選択方法の各工程について説明する。具体例として図2に示す当該ローカルエッジネットワーク用通信システム1で、登録データaが登録されていない移動体20(受信移動体21)が登録データaを必要としている場合を想定する。
[Communication route selection method]
Each step of the communication route selection method will be described. As a specific example, in the local edge network communication system 1 shown in FIG. 2, it is assumed that a mobile unit 20 (receiving mobile unit 21) in which the registration data a is not registered needs the registration data a.
<通信対象決定工程>
 通信対象決定工程S1では、受信移動体21が登録データaの提供を受けるべき移動体20(送信移動体22)を決定する。
<Communication target determination process>
In the communication target determination step S1, the receiving mobile unit 21 determines the mobile unit 20 (transmitting mobile unit 22) to receive the registration data a.
 受信移動体21は、自己のローカルマスタテーブル50を参照すれば、いずれの移動体20が登録データaを有しているか特定することができる。登録データaを有している移動体20が複数存在する場合は、そのうちの1つの移動体20を選択する。この移動体20の選択方法は、特に限定されないが、自己のローカルマスタテーブル50を参照すれば、各移動体20の位置が特定できるので、例えば受信移動体21から最も近い移動体20を選択することができる。この手法によれば、通信対象の決定を自己のローカルマスタテーブル50のみを参照して行える、すなわちネットワーク経由の通信を行わないので、ネットワーク全体で通信される総データ量を削減できる。 By referring to its own local master table 50, the receiving mobile 21 can identify which mobile 20 has the registration data a. If there are a plurality of moving bodies 20 having registration data a, one of the moving bodies 20 is selected. The method of selecting this mobile unit 20 is not particularly limited, but since the position of each mobile unit 20 can be identified by referring to its own local master table 50, for example, the mobile unit 20 closest to the receiving mobile unit 21 is selected. be able to. According to this technique, communication targets can be determined by referring only to the local master table 50 of itself, that is, communication via the network is not performed, so the total amount of data communicated over the entire network can be reduced.
 このとき、図6に示すローカルマスタテーブル50のように登録データの重複度を定められている場合、例えば同一又は類似のデータ数が多いほど信頼度の高いデータであると判断することができる。従って、受信移動体21は、ローカルマスタテーブル50の重複度から登録データの信頼度を判定し、その信頼度に応じて取得する登録データの優先度や取得の可否等を判断してもよい。このように登録データの信頼度を判断することで、例えば不要な登録データを受信することを回避できるので、ネットワーク全体で通信される総データ量を削減できる。 At this time, if the degree of duplication of registered data is defined as in the local master table 50 shown in FIG. 6, for example, the greater the number of identical or similar data, the more reliable the data can be determined. Therefore, the receiving mobile unit 21 may determine the reliability of the registration data from the degree of duplication of the local master table 50, and determine the priority of the registration data to be obtained and whether or not to obtain the registration data according to the reliability. By judging the reliability of the registration data in this way, for example, it is possible to avoid receiving unnecessary registration data, so that the total amount of data communicated over the entire network can be reduced.
<通信速度取得工程>
 通信速度取得工程S2では、上記2つの移動体20のうちデータを送信する側の送信移動体22と基地局10との間の第1通信速度推定データ、上記2つの移動体20のうちデータを受信する側の受信移動体21と基地局10との間の第2通信速度推定データ、及び送信移動体22と受信移動体21との間の第3通信速度推定データを取得する。
<Communication speed acquisition process>
In the communication speed acquisition step S2, the first communication speed estimation data between the transmitting mobile unit 22 of the two mobile units 20 that transmits data and the base station 10, and the data of the two mobile units 20 are obtained. Second communication speed estimation data between the receiving mobile unit 21 on the receiving side and the base station 10 and third communication speed estimation data between the transmitting mobile unit 22 and the receiving mobile unit 21 are obtained.
 送信移動体22から受信移動体21へデータを送受信する場合、基地局10を経由して通信する経路と、直接通信する経路との2つの通信経路が考えられる。この通信経路を決定するために必要な情報として、上記第1通信速度推定データ、上記第2通信速度推定データ及び上記第3通信速度推定データを取得する必要がある。 When transmitting and receiving data from the transmitting mobile unit 22 to the receiving mobile unit 21, there are two possible communication routes: a communication route via the base station 10 and a direct communication route. It is necessary to obtain the first communication speed estimation data, the second communication speed estimation data, and the third communication speed estimation data as information necessary for determining this communication path.
 基地局10との通信に関する上記第1通信速度推定データ及び上記第2通信速度推定データは、基地局10を中心とした通信ヒートマップを使って求めることができる。通信ヒートマップは、図5に示す基地局10が統括する地理的範囲を方形状に区切って、方形状に区切った各領域についてその通信速度を推定したマップ(図6参照)である。 The first communication speed estimation data and the second communication speed estimation data regarding communication with the base station 10 can be obtained using a communication heat map centered on the base station 10. The communication heat map is a map (see FIG. 6) obtained by dividing the geographic range managed by the base station 10 shown in FIG.
 上記通信ヒートマップにおいて、1つの領域の大きさは通信速度が一定とみなせる大きさに適宜決定されるが、例えば20m以上100m以下とできる。また、通信速度に応じて各領域の大きさを変更することもできるが、単純には各領域の大きさは同一とできる。また、図5の例では各領域が方形状となるように区切られているが、他の区切り方を採用してもよい。他の区切り方として、例えば基地局10を中心とした同心円状に区切る方法や、基地局10から放射線状に延びる直線と同心円との組み合わせる方法を採用することもできる。 In the above communication heat map, the size of one area is appropriately determined to a size that can be regarded as a constant communication speed, but can be, for example, 20 m or more and 100 m or less. Also, although the size of each area can be changed according to the communication speed, the size of each area can simply be the same. Also, in the example of FIG. 5, each region is partitioned into a square shape, but other partitioning methods may be employed. As other partitioning methods, for example, a method of partitioning concentrically around the base station 10, or a method of combining straight lines radially extending from the base station 10 and concentric circles can be adopted.
 図6は、基地局10を中心とした通信ヒートマップの一例である。このようなヒートマップは、例えば基地局10の出力、複数の移動体20のアンテナ感度及び建築物等の3次元の地理的情報等からのシミュレーション、複数の移動体20で観測される実測値からの補完、あるいはそれらの併用で算出することができる。特に実測値を用いる場合は、一定時間間隔で通信ヒートマップを更新してもよい。 FIG. 6 is an example of a communication heat map centered on the base station 10. FIG. Such a heat map can be generated from, for example, the output of the base station 10, the antenna sensitivity of a plurality of mobile bodies 20, the simulation from three-dimensional geographical information such as buildings, etc., and the actual measurement values observed at a plurality of mobile bodies 20. can be calculated by complementing or combining them. In particular, when using actual measurements, the communication heat map may be updated at regular time intervals.
 例えば図6の通信ヒートマップでは、送信移動体22の位置から上記第1通信速度推定データは7Mbpsであり、受信移動体21の位置から上記第2通信速度推定データは9Mbpsである。 For example, in the communication heat map of FIG. 6, the first communication speed estimation data is 7 Mbps from the position of the transmitting mobile 22, and the second communication speed estimation data is 9 Mbps from the position of the receiving mobile 21.
 同様に上記第3通信速度推定データは、例えば送信移動体22を中心とした通信ヒートマップから求めることができる。図7は、送信移動体22を中心とした通信ヒートマップの例である。上記通信ヒートマップは、基地局10を中心とした通信ヒートマップとは異なる区切り方を採用することもできるが、同じ区切り方がなされていることが好ましい。また、1つの領域の大きさも同じとすることが好ましい。このように区切り方や大きさを同じものとすることで、通信ヒートマップ間の整合性がとり易い。 Similarly, the third communication speed estimation data can be obtained from a communication heat map centered on the transmitting mobile unit 22, for example. FIG. 7 is an example of a communication heat map centered on the transmitting mobile unit 22. In FIG. Although the communication heat map can adopt a division method different from that of the communication heat map centered on the base station 10, it is preferable that the division method be the same. Moreover, it is preferable that the size of each region is the same. By using the same division method and size in this way, it is easy to achieve consistency between the communication heat maps.
 例えば図7の通信ヒートマップでは、受信移動体21の位置から上記第3通信速度推定データは、6Mbpsである。 For example, in the communication heat map of FIG. 7, the third communication speed estimation data from the position of the receiving mobile unit 21 is 6 Mbps.
<送信データ量取得工程>
 送信データ量取得工程S3では、送信移動体22が送信する送信データの送信データ量を取得する。
<Transmission data amount acquisition process>
In the transmission data amount acquisition step S3, the transmission data amount of the transmission data transmitted by the transmitting mobile unit 22 is acquired.
 受信移動体21は、自己のローカルマスタテーブル50を参照すれば、受信すべき登録データaのデータ量が分かる。ここでは例えば上記送信データ量を1MBとする。 By referring to its own local master table 50, the receiving mobile unit 21 can know the amount of registration data a to be received. Here, for example, the transmission data amount is assumed to be 1 MB.
<通信経路選択工程>
 通信経路選択工程S4では、通信速度取得工程S2及び送信データ量取得工程S3で取得した第1通信速度推定データ乃至第3通信速度推定データ及び上記送信データ量に基づいて、送信移動体22から受信移動体21への通信経路として、基地局10を経由する第1通信経路及び基地局10を経由しない第2通信経路のいずれか一方を選択する。
<Communication route selection process>
In the communication path selection step S4, based on the first to third communication speed estimation data and the transmission data amount obtained in the communication speed obtaining step S2 and the transmission data amount obtaining step S3, data is received from the transmitting mobile unit 22. As the communication route to the mobile unit 21, either one of the first communication route passing through the base station 10 and the second communication route not passing through the base station 10 is selected.
 通信経路選択工程S4では、上記第1通信経路を選択した際に予測される第1通信時間、及び上記第2通信経路を選択した際に予測される第2通信時間を算出する。 In the communication path selection step S4, a first communication time predicted when the first communication path is selected and a second communication time predicted when the second communication path is selected are calculated.
 上記第1通信時間は、送信移動体22から基地局10へのデータ送信時間(=上記送信データ量/上記第1通信速度推定データ×8)と、基地局10から受信移動体21へのデータ送信時間(=上記送信データ量/上記第2通信速度推定データ×8)と、基地局10でのデータ処理時間との和で算出される。上述の場合で、基地局10でのデータ処理時間を50msとすると、上記第1通信時間=1MB/7Mbps×8+1MB/9Mbps×8+0.05s(50ms)≒2.08sと算出される。 The first communication time is the data transmission time from the transmitting mobile unit 22 to the base station 10 (=the transmission data amount/the first communication speed estimation data×8) and the data transmission time from the base station 10 to the receiving mobile unit 21. It is calculated as the sum of the transmission time (=the amount of transmission data/the second communication speed estimation data×8) and the data processing time at the base station 10 . Assuming that the data processing time at the base station 10 is 50 ms in the above case, the first communication time is calculated as follows: 1 MB/7 Mbps×8+1 MB/9 Mbps×8+0.05 s (50 ms)≈2.08 s.
 一方、上記第3通信時間は、送信移動体22から受信移動体21へのデータ送信時間(=上記送信データ量/上記第3通信速度推定データ×8)で算出される。上述の場合で、上記第3通信時間=1MB/6Mbps×8≒1.33sと算出される。 On the other hand, the third communication time is calculated by the data transmission time from the transmitting mobile unit 22 to the receiving mobile unit 21 (=the transmission data amount/the third communication speed estimation data×8). In the above case, the third communication time is calculated as 1 MB/6 Mbps×8≈1.33 s.
 単純に通信時間が短い通信経路を選択するという方法もあるが、上記第2通信時間が、あらかじめ定められた許容時間以下である場合、上記第2通信経路を選択するとよい。例えば登録データの属性が「落下物」の場合、一般にその落下物の位置に向かっている移動体20がその登録データaを必要とするので、受信移動体21となる。落下物の位置はローカルマスタテーブル50から取得可能であるから、受信移動体21が落下物まで到達する時間が算出可能である。仮にその時間が10秒である場合、受信移動体21が落下物の位置に到達する直前(例えば到達する2秒前の8秒後)までに登録データaを受信完了すれば、この登録データaは有効に利用できると考えられる。つまり上記許容時間は8秒である。第2通信時間があらかじめ定められた許容時間以下である場合には、通信時間にかかわらず敢えて第2通信経路を選択することで、基地局10に集中し易い通信混雑をさらに低減できるので、ネットワーク全体の通信速度をさらに向上させることができる。 There is also a method of simply selecting a communication route with a short communication time, but if the second communication time is less than or equal to a predetermined allowable time, the second communication route should be selected. For example, if the attribute of the registration data is "falling object", the moving body 20 heading for the position of the falling object generally needs the registration data "a" and thus becomes the receiving moving body 21. FIG. Since the position of the falling object can be obtained from the local master table 50, it is possible to calculate the time required for the receiving moving body 21 to reach the falling object. Assuming that the time is 10 seconds, if the reception of the registration data a is completed just before the receiving moving body 21 reaches the position of the falling object (for example, 8 seconds after 2 seconds before the arrival), this registration data a can be effectively used. That is, the allowable time is 8 seconds. If the second communication time is less than or equal to the predetermined allowable time, the second communication path is selected regardless of the communication time, thereby further reducing communication congestion that tends to concentrate on the base station 10. The overall communication speed can be further improved.
 上記登録データの属性に基づいて、上記許容時間が定められていることが好ましい。登録データの属性によって、データが有効な時間は異なる。このため、上記許容時間を上記登録データの属性に基づいて定めることで、さらに効率的な通信を行うことができる。なお、上記許容時間は、属性に応じて固定値としてあらかじめ定められていてもよいが、例えば上述の落下物の場合のように、落下物への到達時間-2秒といった数式で定められていてもよい。 It is preferable that the allowable time is determined based on the attributes of the registration data. The valid time of the data differs depending on the attribute of the registration data. Therefore, by determining the permissible time based on the attribute of the registration data, more efficient communication can be performed. The permissible time may be predetermined as a fixed value according to the attribute, but for example, as in the case of the falling object described above, it is determined by a mathematical formula such as the arrival time to the falling object - 2 seconds. good too.
<通信中止判定工程>
 通信中止判定工程S5では、上記第1通信時間及び上記第2通信時間が上記許容時間を超える場合、上記送信データの送信の中止を判定する。つまり、上記第1通信時間及び上記第2通信時間が共に上記許容時間を超える場合、上記送信データの送信が中止される。
<Communication stop determination process>
In the communication stop determination step S5, when the first communication time and the second communication time exceed the allowable time, it is determined to stop the transmission of the transmission data. That is, when both the first communication time and the second communication time exceed the allowable time, the transmission of the transmission data is stopped.
 第1通信経路及び第2通信経路のいずれの通信経路を選択しても、上記許容時間を超えてしまうという場合が想定される。このように通信時間が許容時間を超えると、その送信データは受信しても不要なデータとなる場合がある。このような送信データに対して通信中止判定工程S5により通信中止を判定し通信を取りやめることで、ネットワーク全体で通信される総データ量を削減し、ネットワーク全体の通信速度をさらに向上させることができる。 It is conceivable that no matter which one of the first communication route and the second communication route is selected, the allowable time will be exceeded. When the communication time exceeds the allowable time in this manner, the transmitted data may become unnecessary data even if received. By determining to stop communication with respect to such transmission data in the communication stop determination step S5 and stopping the communication, the total amount of data communicated over the entire network can be reduced, and the communication speed of the entire network can be further improved. .
<通信処理工程>
 通信処理工程S6では、通信中止判定工程S5で、データの送信中止判定がなされた場合を除き、通信経路選択工程S4で選択した通信経路によって送信移動体22から受信移動体21へ登録データaを送信する。
<Communication processing process>
In the communication processing step S6, the registered data a is transferred from the transmitting mobile unit 22 to the receiving mobile unit 21 through the communication route selected in the communication route selection step S4, except when it is determined in the communication stop determination step S5 that data transmission is stopped. Send.
 具体的には、受信移動体21は、送信移動体22と、場合によっては基地局10とに通信要請と行い、所定の通信手順を踏んで、新しい登録データaを受信する。受信した登録データaは、受信移動体21のデータテーブル40に登録される。また、新たに登録データaを有する移動体20が増えることになるので、ローカルマスタテーブル50にその情報(図4のレコードR5に相当する情報)を追加し、更新する。そして更新されたローカルマスタテーブル50は、基地局10及び複数の移動体20で共有される。 Specifically, the receiving mobile unit 21 makes a communication request to the transmitting mobile unit 22 and, in some cases, the base station 10, performs a predetermined communication procedure, and receives new registration data a. The received registration data a is registered in the data table 40 of the receiving mobile unit 21 . Also, since the number of mobile units 20 having new registration data a increases, the local master table 50 is updated by adding that information (information corresponding to record R5 in FIG. 4). The updated local master table 50 is then shared by the base station 10 and multiple mobile units 20 .
〔利点〕
 当該通信経路選択方法では、時々刻々変化する移動体20の位置に応じて移動体20間及び移動体20と基地局10との間の速度推定データを取得し、さらに送信データ量を考慮して通信経路を選択するので、データの通信に要する時間の低減を図ることができる。また、当該通信経路選択方法では、移動体20―移動体20間の直接通信を用いることで、基地局10に集中し易い通信混雑を低減できるので、ネットワーク全体の通信速度を向上させることができる。
〔advantage〕
In this communication route selection method, speed estimation data between the moving bodies 20 and between the moving bodies 20 and the base station 10 are acquired according to the positions of the moving bodies 20 that change from moment to moment. Since the communication path is selected, the time required for data communication can be reduced. In addition, in this communication route selection method, by using direct communication between the mobile units 20, it is possible to reduce communication congestion that tends to concentrate on the base station 10, so that the communication speed of the entire network can be improved. .
 当該ローカルエッジネットワーク用通信システム1は、本発明の通信経路選択方法を用いるので、短時間で他の移動体20と情報を共有可能である。 Since the local edge network communication system 1 uses the communication route selection method of the present invention, it can share information with other mobile units 20 in a short period of time.
[その他の実施形態]
 上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other embodiments]
The above embodiments do not limit the configuration of the present invention. Therefore, in the above embodiment, the components of each part of the above embodiment can be omitted, replaced, or added based on the description of the present specification and common general technical knowledge, and all of them are interpreted as belonging to the scope of the present invention. should.
 上記実施形態では、通信経路選択方法が通信中止判定工程を備える場合を説明したが、通信中止判定工程は必須の工程ではなく省略可能である。通信中止判定工程を備えない通信経路選択方法では、通信経路選択工程で選択された通信経路に従って、常にデータの送信が行われる。 In the above embodiment, the case where the communication route selection method includes the communication stop determination process has been described, but the communication stop determination process is not an essential process and can be omitted. In a communication route selection method that does not include a communication stop determination step, data is always transmitted according to the communication route selected in the communication route selection step.
 上記実施形態では、データベースがローカルマスタテーブルを有する場合を説明したが、ローカルマスタテーブルは必須の構成ではなく、例えばすべての情報を基地局に集約し、基地局へアクセスして必要な情報を入手する構成をとってもよい。 In the above embodiment, the case where the database has a local master table was explained, but the local master table is not an essential configuration. You can take a configuration that
 上記実施形態では、通信経路選択方法が通信対象決定工程を備える場合を説明したが、通信決定工程は必須の工程ではなく、省略できる。この場合、必要とされる登録データが格納されている移動体が複数あると、例えば各移動体に対して当該通信経路選択方法を行い、例えば最速な通信経路を選択する構成とすることができる。 In the above embodiment, the case where the communication route selection method includes the communication target determination process has been described, but the communication determination process is not an essential process and can be omitted. In this case, if there are a plurality of mobile units that store the required registration data, the communication route selection method can be applied to each mobile unit, and the fastest communication route can be selected. .
 なお、本発明において1つの送信移動体が送信する受信移動体の数は1に限定されるものではない。つまり、1つの送信移動体が同時に複数の受信移動体に送信を行ってもよい。この場合、通信経路は各受信移動体ごとに決定してもよいし、代表する(例えば送信移動体からみて最も遠方にある)受信移動体を定めて共通の通信経路を定めてもよい。通信経路を各移動体ごとに決定する場合は、受信移動体ごとに最適の経路選択が可能となる。一方、共通の通信経路を定める場合は第1通信経路が選択されると、上記送信移動体から基地局までの通信を共通とできるので、ネットワーク全体で通信される総データ量を削減し、ネットワーク全体の通信速度をさらに向上させることができる。 It should be noted that the number of receiving mobile units to which one transmitting mobile unit transmits is not limited to one in the present invention. That is, one transmitting mobile may transmit to multiple receiving mobiles at the same time. In this case, the communication route may be determined for each receiving mobile unit, or a representative receiving mobile unit (for example, the receiving mobile unit that is farthest from the transmitting mobile unit) may be determined and a common communication route may be determined. When the communication route is determined for each mobile unit, it is possible to select the optimum route for each receiving mobile unit. On the other hand, when a common communication path is defined, if the first communication path is selected, communication from the transmitting mobile unit to the base station can be made common, so the total amount of data communicated over the entire network can be reduced. The overall communication speed can be further improved.
 以上説明したように、本発明の通信経路選択方法及びローカルエッジネットワーク用通信システムは、通信混雑を低減し短時間で他の移動体と情報を共有可能である。 As described above, the communication route selection method and local edge network communication system of the present invention can reduce communication congestion and share information with other mobile units in a short time.
1 ローカルエッジネットワーク用通信システム
10 基地局
20 移動体
20a センサ
21 受信移動体
22 送信移動体
30 データベース
40 データテーブル
50 ローカルマスタテーブル
R1、R2、R3、R4、R5、R6 レコード
1 Local Edge Network Communication System 10 Base Station 20 Mobile 20a Sensor 21 Receiving Mobile 22 Sending Mobile 30 Database 40 Data Table 50 Local Master Tables R1, R2, R3, R4, R5, R6 Records

Claims (7)

  1.  互いに共通のワイヤレスインタフェースで接続されている基地局及び複数の移動体を含むネットワーク内の2つの移動体間で行う通信の通信経路選択方法であって、
     上記2つの移動体のうちデータを送信する側の送信移動体と上記基地局との間の第1通信速度推定データ、上記2つの移動体のうちデータを受信する側の受信移動体と上記基地局との間の第2通信速度推定データ、及び上記送信移動体と上記受信移動体との間の第3通信速度推定データを取得する通信速度取得工程と、
     上記送信移動体が送信する送信データの送信データ量を取得する送信データ量取得工程と、
     上記通信速度取得工程及び上記送信データ量取得工程で取得した第1通信速度推定データ乃至第3通信速度推定データ及び上記送信データ量に基づいて、上記送信移動体から上記受信移動体への通信経路として、上記基地局を経由する第1通信経路及び上記基地局を経由しない第2通信経路のいずれか一方を選択する通信経路選択工程と
     を備える通信経路選択方法。
    A communication route selection method for communication between two mobiles in a network including a base station and a plurality of mobiles connected to each other via a common wireless interface,
    First communication speed estimation data between a transmitting mobile unit that transmits data out of the two mobile units and the base station, and a receiving mobile unit that receives data out of the two mobile units and the base station a communication speed obtaining step of obtaining second communication speed estimation data with a station and third communication speed estimation data between the transmitting mobile unit and the receiving mobile unit;
    a transmission data amount acquisition step of acquiring a transmission data amount of transmission data transmitted by the transmission mobile;
    A communication route from the transmitting mobile unit to the receiving mobile unit based on the first to third communication speed estimation data and the transmission data amount obtained in the communication speed obtaining step and the transmission data amount obtaining step. and a communication route selection step of selecting either one of a first communication route passing through the base station and a second communication route not passing through the base station.
  2.  上記通信経路選択工程で、上記第1通信経路を選択した際に予測される第1通信時間、及び上記第2通信経路を選択した際に予測される第2通信時間を算出し、
     上記第2通信時間が、あらかじめ定められた許容時間以下である場合、第2通信経路を選択する請求項1に記載の通信経路選択方法。
    calculating, in the communication path selection step, a first communication time predicted when the first communication path is selected and a second communication time predicted when the second communication path is selected;
    2. The communication route selection method according to claim 1, wherein the second communication route is selected when the second communication time is less than or equal to a predetermined allowable time.
  3.  上記第1通信時間及び上記第2通信時間が上記許容時間を超える場合、上記送信データの送信の中止を判定する通信中止判定工程をさらに備える請求項2に記載の通信経路選択方法。 3. The communication route selection method according to claim 2, further comprising a communication stop determination step of determining to stop transmission of the transmission data when the first communication time and the second communication time exceed the allowable time.
  4.  上記基地局及び上記複数の移動体が、それぞれデータベースを有し、
     上記移動体が、センサを有しており、
     上記センサが取得するセンサ情報が、このセンサを有する移動体に配置されている上記データベースに、上記データベースの登録データとして格納され、
     上記データベースが、自身が属するネットワーク内の上記登録データが存在するデータベースを特定する情報を含むローカルマスタテーブルを有し、
     上記ローカルマスタテーブルが、上記登録データの属性、データサイズ及び取得時刻を含む請求項2又は請求項3に記載の通信経路選択方法。
    the base station and the plurality of mobiles each have a database;
    The moving body has a sensor,
    The sensor information acquired by the sensor is stored as registered data in the database in the database arranged in the moving body having the sensor,
    The database has a local master table containing information identifying the database in the network to which the database belongs, where the registration data resides;
    4. The communication route selection method according to claim 2, wherein said local master table contains attributes, data size and acquisition time of said registered data.
  5.  上記登録データの属性に基づいて、上記許容時間が定められている請求項4に記載の通信経路選択方法。 The communication route selection method according to claim 4, wherein the allowable time is determined based on the attribute of the registration data.
  6.  上記登録データの有効寿命及び重複度のいずれか一方又は両方が定められている請求項4又は請求項5に記載の通信経路選択方法。  The communication route selection method according to claim 4 or claim 5, wherein either one or both of the valid life and redundancy of the registration data are defined.
  7.  基地局及び複数の移動体を備えるローカルエッジネットワーク用通信システムであって、
     ネットワーク内の2つの移動体間で行う通信の通信経路選択方法として、請求項1から請求項6のいずれか1項に記載の通信経路選択方法を用いるローカルエッジネットワーク用通信システム。
    A communication system for a local edge network comprising a base station and a plurality of mobiles,
    A communication system for a local edge network using the communication route selection method according to any one of claims 1 to 6 as a communication route selection method for communication between two mobile units in the network.
PCT/JP2022/027764 2021-08-18 2022-07-14 Communication path selection method and local edge network communication system WO2023021898A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-133547 2021-08-18
JP2021133547A JP2023028073A (en) 2021-08-18 2021-08-18 Communication path selection method and local edge network communication system

Publications (1)

Publication Number Publication Date
WO2023021898A1 true WO2023021898A1 (en) 2023-02-23

Family

ID=85240585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027764 WO2023021898A1 (en) 2021-08-18 2022-07-14 Communication path selection method and local edge network communication system

Country Status (2)

Country Link
JP (1) JP2023028073A (en)
WO (1) WO2023021898A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041366A1 (en) * 2008-10-06 2010-04-15 日本電気株式会社 Radio communication device, radio communication system, radio communication device control method, and recording medium
JP2014525208A (en) * 2011-07-25 2014-09-25 クゥアルコム・インコーポレイテッド Direct link configuration through extended service set
JP2016025463A (en) * 2014-07-18 2016-02-08 トヨタ自動車株式会社 Communication method in radio communication system, radio communication system, radio connection provision device, and radio communication device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041366A1 (en) * 2008-10-06 2010-04-15 日本電気株式会社 Radio communication device, radio communication system, radio communication device control method, and recording medium
JP2014525208A (en) * 2011-07-25 2014-09-25 クゥアルコム・インコーポレイテッド Direct link configuration through extended service set
JP2016025463A (en) * 2014-07-18 2016-02-08 トヨタ自動車株式会社 Communication method in radio communication system, radio communication system, radio connection provision device, and radio communication device

Also Published As

Publication number Publication date
JP2023028073A (en) 2023-03-03

Similar Documents

Publication Publication Date Title
CN110546695B (en) Method, apparatus and computer program product for integrated management of signal phase and timing for traffic lights
CN109000668B (en) Real-time intelligent navigation method based on Internet of vehicles
US9070290B2 (en) Apparatus and system for monitoring and managing traffic flow
WO2019085846A1 (en) Planning method for express lane and unit
Hilmani et al. Automated real-time intelligent traffic control system for smart cities using wireless sensor networks
US10567923B2 (en) Computation service for mobile nodes in a roadway environment
US7469827B2 (en) Vehicle information systems and methods
CN100561540C (en) A kind of method for processing traffic road condition information based on vehicle mounted wireless sensor network
CN103383811B (en) Intelligent transportation solution based on GID
CN108322512A (en) Method and system for handling local data and cloud data in vehicle and for by the Cloud Server of cloud data transmission to vehicle
US20150111599A1 (en) Communication device, transmission interval control device, method for transmitting location information, method for controlling transmission interval of location information, and recording medium
CN101729167A (en) Method for processing traffic road condition information
JP6927088B2 (en) Driving data collection system, driving data collection center, and in-vehicle terminal
KR102228388B1 (en) Vehicle control apparatus and method for sharing location information
CN103198690A (en) Traffic information transmitting method, vehicle-mounted information terminal, road side unit and data center
Garip et al. Scalable reactive vehicle-to-vehicle congestion avoidance mechanism
CN103674045A (en) Communication-based navigation system searching route by sensing traffic volume change
WO2001055993A1 (en) Apparatus and method for monitoring road traffic
JP2013053999A (en) Navigation system, navigation device, information processor, and route search method
Jing et al. An efficient scheme for tag information update in RFID systems on roads
Li et al. A new paradigm for urban surveillance with vehicular sensor networks
WO2023021898A1 (en) Communication path selection method and local edge network communication system
Cao et al. ETCS: An efficient traffic congestion scheduling scheme combined with edge computing
JP2002092784A (en) Traffic flow detecting method, mobile station device and traffic flow detecting station device
US20200302357A1 (en) System and method for providing a mobility network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22858221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE