WO2023021575A1 - Servo motor brake state judgment device and brake state judgment unit - Google Patents

Servo motor brake state judgment device and brake state judgment unit Download PDF

Info

Publication number
WO2023021575A1
WO2023021575A1 PCT/JP2021/030025 JP2021030025W WO2023021575A1 WO 2023021575 A1 WO2023021575 A1 WO 2023021575A1 JP 2021030025 W JP2021030025 W JP 2021030025W WO 2023021575 A1 WO2023021575 A1 WO 2023021575A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
state
acceleration
housing
acceleration sensor
Prior art date
Application number
PCT/JP2021/030025
Other languages
French (fr)
Japanese (ja)
Inventor
慎司 奥村
直人 高野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022514024A priority Critical patent/JP7226649B1/en
Priority to PCT/JP2021/030025 priority patent/WO2023021575A1/en
Publication of WO2023021575A1 publication Critical patent/WO2023021575A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/24Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member
    • F16D55/26Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member without self-tightening action
    • F16D55/28Brakes with only one rotating disc
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D66/00Arrangements for monitoring working conditions, e.g. wear, temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets

Definitions

  • the present disclosure relates to a device for determining the state of an electromagnetic brake.
  • the present disclosure has been made in order to solve the problems described above, and an object thereof is to provide a brake state determination device that performs brake abnormality diagnosis without being restricted by the size or shape of the sensor. It is something to do.
  • a brake state determination device for a servomotor includes a rotational force generation unit that generates a rotational force, a rotational shaft that is rotated by the rotational force generated by the rotational force generation unit, and a rotational shaft that communicates with each other to prevent rotation of the rotational shaft.
  • the brake state determination device for a servomotor of the present disclosure even in a small motor in which it is difficult to install an acceleration sensor inside the housing, there is no restriction on the size or shape of the sensor, and the sensor can be installed as necessary. Since it is detachable, it has the effect of being applicable to a wide range of devices.
  • FIG. 1 is a configuration diagram showing a brake state determination device for a servomotor according to Embodiment 1;
  • FIG. FIG. 4 is a configuration diagram showing another form of the braking state determination device for a servomotor according to Embodiment 1;
  • FIG. 4 is a diagram of a state signal and a brake command signal when the brake according to Embodiment 1 is in a normal state and the brake is released;
  • FIG. 5 is a diagram showing an example in which the magnitude of acceleration is different from that in a normal state due to an abnormality in the brake according to Embodiment 1;
  • FIG. 4 is a diagram of a state signal and a brake command signal when the brake according to Embodiment 1 operates the brake in a normal state;
  • FIG. 5 is a diagram showing an example in which the magnitude of acceleration differs from that in a normal state due to an abnormality in the brake according to Embodiment 1;
  • FIG. 4 is a flowchart showing processing of a state determiner when releasing a brake according to Embodiment 1;
  • 4 is a diagram showing an amplitude threshold value, a maximum magnitude of acceleration, and a sampling period used for state determination according to Embodiment 1.
  • FIG. FIG. 5 is a flowchart showing processing of a state determiner when operating a brake according to Embodiment 1;
  • 4 is a diagram showing an amplitude threshold value, a maximum magnitude of acceleration, and a sampling period used for state determination according to Embodiment 1.
  • FIG. 11 is a diagram showing an example in which the first brake response time is shortened due to brake abnormality according to the second embodiment
  • FIG. 9 is a diagram showing an example in which the first brake response time is lengthened due to a brake abnormality according to Embodiment 2
  • FIG. 10 is a diagram showing an example in which the second brake response time is shortened due to brake abnormality according to the second embodiment
  • FIG. 10 is a diagram showing an example in which the second brake response time is lengthened due to brake abnormality according to the second embodiment
  • FIG. 10 is a flowchart showing processing of a state determiner when releasing a brake according to Embodiment 2
  • FIG. 9 is a diagram showing time thresholds, first brake response times, and sampling intervals used for state determination according to Embodiment 2
  • FIG. 9 is a flowchart showing processing of a state determiner when operating a brake according to Embodiment 2;
  • FIG. 9 is a diagram showing time thresholds, second brake response times, and sampling intervals used for state determination according to Embodiment 2;
  • FIG. 10 is a diagram comparing a state waveform acquired when the brake is released in a normal state and a state waveform acquired when the brake is released in a state where the brake is in an abnormal state according to the third embodiment;
  • FIG. 11 is a flowchart showing processing of a state determiner when releasing a brake according to Embodiment 3;
  • FIG. 10 is a diagram comparing state waveforms acquired when the brake is operated in a normal state and state waveforms acquired when the brake is operated in an abnormal state according to the third embodiment;
  • FIG. 11 is a flowchart showing processing of a state determiner when operating a brake according to Embodiment 3;
  • FIG. 1 is a configuration diagram of a braking state determination device for a servomotor according to Embodiment 1 of the present invention.
  • the brake state determination device for a servomotor includes a rotational force generator 2 that generates a rotational force, a rotational shaft 3 that rotates by the rotational force generated in the rotational force generator 2, and a rotational shaft 3.
  • the rotating shaft 3 is rotated by the rotating force generated by the rotating force generating section 2 .
  • the brake rotor 4 has a friction material 5 and rotates integrally with the rotating shaft 3 by the rotating force generated in the rotating force generating portion 2 .
  • the brake 100 is composed of a brake rotor 4, a coil 7, a field 8, a spring 9 and an armature 10, and brakes the rotation of the rotating shaft 3.
  • a field 8 containing a coil 7 is attached to the brake 100, and a spring 9 having an armature 10 at its tip is attached to the field 8.
  • the housing 111 is provided so as to cover the rotational force generating section 2 and the brake 100 .
  • the acceleration sensor 12 is arranged outside the housing 111 and fixed so as to contact the housing 111 .
  • the method of attaching the acceleration sensor 12 to the housing 111 is, for example, a fixing method using screws or an adhesive, and it is sufficient if the vibration of the housing 111 caused by the brake 100 can be measured.
  • the acceleration sensor 12 detects the acceleration due to the vibration of the housing 111 and outputs the state signal as an electrical signal. be.
  • the state determiner 102 is, for example, a servo amplifier or the like, and may be configured to process signal data acquired by the acceleration sensor 12 on a server to determine the state of the brake 100 .
  • the state determiner 102 includes an input section 112 to which the output of the digital converter 101 and the output of the brake main controller 107 are input, a RAM (Random Access Memory) 103 that temporarily stores the output of the digital converter 101, and a normal state.
  • a read-only memory (ROM) 104 that stores a state signal or a threshold value for judging the state of the brake, and a process for judging the real-time state of the brake by comparing the data stored in the ROM 104 and the data stored in the RAM 103 and an output unit 113 for outputting the determination result.
  • the output from the output unit 113 is input to the indicator 106 that displays brake abnormality.
  • the output of the brake main controller 107 that outputs a brake command signal is input to the input section 112 of the state determiner 102 and the digital/analog converter 108 .
  • the digital/analog converter 108 analog-converts the signal from the brake main controller 107 and then outputs the converted signal to the brake drive circuit 110 .
  • a brake drive circuit 110 supplies power from a brake power source 109 to the coil 7 based on the signal from the digital/analog converter 108 .
  • the brake state determination device is intended for a small motor such as a servomotor that is difficult to install because there is no space for installing the acceleration sensor 12 due to its design. offer. Since it is difficult to install the acceleration sensor 12 inside the brake 100 for the servomotor, the acceleration sensor 12 is installed so as to be in contact with the outside of the housing 111 to determine the state of the brake 100 . Also, even if the motor is larger than the servomotor, it can be similarly applied if there are many design restrictions and it is difficult to install the acceleration sensor 12 inside.
  • the housing is provided so as to cover the rotational force generating section 2 and the brake 100 .
  • 2 shows another form of FIG. 1, in which the motor housing 1 and the brake housing 11 are provided adjacent to each other.
  • the housing 111 may include the motor housing 1 and the brake housing 11 which are adjacent to each other, and the acceleration sensor 12 is provided outside the motor housing 1 or the brake housing 11. and fix it so that it touches the In that case, it is desirable that the rotational force generating unit 2 is arranged in the motor housing 1 and the brake 100 is arranged in the brake housing 11, but is not limited thereto. It is sufficient if the acceleration sensor 12 can detect it.
  • the armature 10 can be displaced in the direction of the friction material 5 installed on the brake rotor 4 by the extension of the spring 9 .
  • the armature 10 collides with the friction material 5, and the armature 10 is no longer displaced in the direction of the friction material 5. Since the spring 9 can also generate an extension force, a pressure contact force that presses the armature 10 against the friction material 5 is generated.
  • a frictional force is generated between the armature 10 and the friction material 5 due to the pressure contact force that presses the armature 10 against the friction material 5 , and a force for braking the brake rotor 4 is generated. Since the brake rotor 4 is fixed to the rotating shaft 3, the rotating shaft 3 can be braked.
  • a magnetic flux is generated between the coil 7 and the armature 10 by applying a voltage to the coil 7 .
  • the generated magnetic flux generates an attractive force that attracts the armature 10 , and this attractive force exceeds the extension force of the spring 9 , thereby displacing the armature 10 toward the field 8 .
  • the armature 10 is pulled away from the friction material 5 and no friction occurs between the armature 10 and the friction material 5, so that the brake 100 is released.
  • the brake drive circuit 110 stops supplying electric power to the coil 7, and the armature 10 is pressed against the friction material 5 to brake the brake. 100 is activated.
  • the brake drive circuit 110 supplies power to the coil 7 to pull the armature 10 away from the friction material 5 to release the brake 100 .
  • FIG. 3 shows the state signal and the brake command signal when the brake 100 is released in a normal state.
  • the brake main controller 107 outputs a signal to open the brake 100 .
  • the brake main controller 107 outputs a signal for operating the brake 100 .
  • the brake command signal is 0, the motor is in a stopped state, so the magnitude of the acceleration is a small value close to 0.
  • FIG. 4(c) shows the brake command signal when the brake 100 is switched from operating (brake command signal: 0) to released (brake command signal: 1).
  • FIG. 4(a) shows an example in which the brake has an abnormality and the magnitude of acceleration is smaller than the magnitude of acceleration in the normal state.
  • FIG. 4(b) shows an example in which the brake has an abnormality and the magnitude of the acceleration is larger than the magnitude of the acceleration in the normal state.
  • FIG. 5 shows the state signal and the brake command signal when the brake 100 operates in a normal state.
  • the brake main controller 107 outputs a signal to open the brake 100 .
  • the brake main controller 107 outputs a signal for operating the brake 100 .
  • the brake command signal switches from 1 to 0, the magnitude of the acceleration is a small value close to 0 because the motor is in a steady state.
  • the extension force of the spring 9 presses the armature 10 against the friction material 5 .
  • the vibration generated at this time propagates to the housing 111, and the state signal appears as an attenuated wave as shown in FIG.
  • FIGS. 6A and 6B the solid line indicates the state signal when the brake 100 is operated when the brake 100 is normal, and the broken line indicates the state signal when the brake 100 is operated when the brake 100 is abnormal.
  • FIG. 6(c) shows the brake command signal when the brake 100 is switched from released (brake command signal: 1) to actuated (brake command signal: 0).
  • FIG. 6A shows an example in which the brake 100 has an abnormality and the magnitude of acceleration is smaller than the magnitude of acceleration in the normal state.
  • FIG. 6B shows an example in which the brake 100 has an abnormality and the magnitude of acceleration is greater than the magnitude of acceleration in the normal state.
  • FIG. 6(a) when the elastic force of the spring 9 is reduced, the displacement acceleration of the armature 10 is reduced.
  • FIG. 6B when there is an abnormality in the joint between the rotating shaft 3 and the brake rotor 4, the brake rotor 4 vibrates more than in the normal state, so the magnitude of the acceleration becomes larger than in the normal state.
  • FIG. 7 is a flow chart showing the processing of the state determiner 102
  • FIG. 8 shows state signals and brake command signals around the time when the brake 100 is released.
  • the solid line indicates the state signal
  • the dotted lines indicate the amplitude thresholds th1 and th2
  • the broken lines indicate the amplitude thresholds th3 and th4, the sampling interval, and the magnitude of the acceleration in the sampling interval. shows the maximum value (maximum amplitude) A2 of .
  • FIG. 8(b) shows the brake command signal.
  • a state determiner 102 determines the state of the brake 100 based on the state signal included in the sampling interval.
  • This sampling interval is set so as to include an interval from the moment the armature 10 operates until the attenuation wave generated by the operation of the armature 10 appears sufficiently.
  • state signals corresponding to the sampling number N 1 are acquired from the time when the brake command signal changes from 0 to 1.
  • the amplitude threshold values th1 to th4 in the present embodiment are the amplitude threshold values of the brake 100 determined in advance within the range in which the brake 100 is operating normally from the maximum amplitude of the acceleration when the brake 100 is operating normally. Refers to the threshold value set for judging the state. If the maximum amplitude A2 of acceleration is smaller than the amplitude threshold value th1 or th2, it is judged to be abnormal. Although the amplitude thresholds th1 and th2 may have different magnitudes, they are assumed to have the same magnitude as an example here. Also, the amplitude threshold values th1 and th2 are preferably set smaller than the maximum amplitude of the acceleration acquired when the brake 100 is released in the normal state.
  • the maximum amplitude A2 of acceleration is greater than the amplitude threshold th3 or th4, it is determined to be abnormal.
  • the amplitude thresholds th3 and th4 may have different magnitudes, they are assumed to have the same magnitude as an example here.
  • the amplitude thresholds th3 and th4 are preferably set to be larger than the maximum amplitude of the acceleration acquired when the brake 100 is released while the brake 100 is in a normal state. For example, it is preferable to set the amplitude thresholds th1 to th4 with the maximum amplitude A2 of acceleration when the brake 100 is in a normal state being 0.6 [m/s2].
  • step S1 the state signal is obtained from the time when the brake command signal changes from 0 to 1 until the sampling number N1 .
  • step S2 the maximum value (maximum amplitude) of the magnitude of acceleration is determined as A2 from the state signal acquired in step S1, and the process proceeds to step S3.
  • A2 is compared with the amplitude threshold values th1 to th4 described above to determine the state of the brake 100.
  • FIG. 9 is a flow chart showing the processing of the state determiner 102 when the brake 100 operates. In (a) of FIG.
  • FIG. 10(b) shows the brake command signal.
  • the state determiner 102 determines the state of the brake 100 based on the state signal included in the sampling interval shown in FIG. 10(a). For example, the sampling interval is the interval from the time when the brake command signal changes from 1 to 0 until the number of samples reaches N4 . value.
  • the amplitude thresholds th5 to th8 in the present embodiment are calculated from the maximum acceleration amplitude when the brake 100 is operating normally. It means a threshold value set for judging a predetermined state of the brake 100 in the operating range. If the maximum amplitude A4 of acceleration is smaller than the amplitude threshold th5 or th6, the state of the brake 100 is determined to be abnormal. Although the amplitude thresholds th5 and th6 may have different magnitudes, they are assumed to have the same magnitude as an example here. Also, the magnitudes of amplitude thresholds th5 and th6 are preferably set smaller than the maximum amplitude of acceleration when brake 100 is operated in a normal state.
  • the state of the brake 100 is determined to be abnormal.
  • the amplitude thresholds th7 and th8 may have different magnitudes, they are assumed to have the same magnitude as an example here.
  • the amplitude threshold values th7 and th8 are preferably set larger than the maximum amplitude of acceleration when the brake 100 operates in a normal state. For example, it is preferable to set the amplitude thresholds th5 to th8 with the maximum amplitude A4 of the acceleration when the brake 100 is in the normal state being 0.6 [m/s2].
  • step S5 the state signal is acquired from the time when the brake command signal changes from 1 to 0 until the number of samples reaches N4 .
  • step S6 the maximum value (maximum amplitude) of acceleration is determined as A4 from the obtained state signal, and the process proceeds to step S7.
  • A4 is compared with the amplitude threshold values th5 to th8 described above to determine the state of the brake 100.
  • step S8 displays an alarm on the display 106, and then terminates the processing of the state determiner 102.
  • the state of the brake 100 can be determined based on the magnitude of acceleration acquired by the acceleration sensor 12 installed in the housing 111. Therefore, even in a small brake where it is difficult to install an acceleration sensor due to its design, the size of the sensor can be reduced. It is applicable to a wide range of devices because it is not restricted by the size or shape and the sensor can be attached and detached as necessary.
  • Embodiment 2 the brake state determination device that determines the state of the brake 100 based on the magnitude of acceleration acquired by the acceleration sensor 12 is shown. A method of determining the state of the brake 100 based on the brake response time up to the point of time will be described. In this embodiment, the configuration itself is the same as that of the first embodiment, and only the operation of the state determiner 102 is different, so the details will be omitted.
  • the time from when the brake command signal from the brake main controller 107 is switched to the brake operating state to when the brake 100 is switched to the released state is the first brake response time (T 2 ), and the brake command signal A second brake response time (T 4 ) is defined as the time from switching to the brake released state until the brake 100 switches to the operating state.
  • the brake 100 is released, the relay circuit of the brake drive circuit 110 is closed after the brake command signal is switched from 0 to 1, and power is supplied to the coil 7 . After that, the force that attracts the armature 10 due to the magnetic flux generated between the coil 7 and the armature 10 exceeds the extension force of the spring 9 . When the armature 10 is separated from the friction material 5, the brake 100 is released. Therefore, as shown in FIG. 11, the brake 100 is released after a certain period of time or more has elapsed since the brake command signal was switched from 0 to 1. Also, the first brake response time T2 changes depending on the state of the brake 100 .
  • the attractive force for separating the armature 10 from the friction material 5 decreases .
  • the attractive force for separating the armature 10 from the friction material 5 decreases .
  • the first brake response time T2 may become longer as shown in FIG.
  • the friction material 5 wears, the moving distance of the armature 10 increases, so the first brake response time T2 may increase.
  • the extension force of the spring 9 relatively increases .
  • the slidability of the armature 10 is lowered, so that the second brake response time T4 may become longer as shown in FIG.
  • state determiner 102 determines the state of the brake 100 based on the state signal included in the sampling interval shown in FIG.
  • the sampling interval is the interval from the time when the brake command signal changes from 0 to 1 until the sampling number N11 .
  • the number of samplings N11 is set to a value that allows sufficient attenuation waves generated by the operation of the armature 10 to be obtained.
  • the first brake response time T2 is the time from the time when sampling is started to the first time when the state signal becomes below or above a certain level, taking into account noise and the like.
  • th11 and th12 are defined as threshold values for determining the first time, and the time from the time when the brake command signal changes from 0 to 1 to the first time when the state signal becomes less than th12 or greater than th11 is defined as the first time. Assume that the brake response time is T2 . Although th11 and th12 may have different sizes, they are assumed to have the same size as an example here.
  • the time thresholds T13 and T14 are states of the brake 100 determined in advance within a range in which the brake 100 is operating normally from the first brake response time T2 in which the brake 100 is operating normally. It is a threshold value set for judging If the first brake response time T2 is smaller than the time threshold T13 or larger than the time threshold T14, it is determined that the brake 100 is abnormal. Therefore, for example, the time thresholds T13 and T14 should be set such that T13 is smaller than the first brake response time T2 and T14 is larger than the first brake response time T2 (T13 ⁇ T2 ⁇ T14). For example, the time thresholds T13 and T14 may be determined assuming that the first brake response time T2 in the brake normal state is 0.5 [s].
  • the state signal is th12 or less or th11 or more in the sampling period. Assuming that the maximum value of the state signal is A 11 and the minimum value is A 12 , it is determined that the brake 100 is abnormal when either of the following equations (9) or (10) is satisfied.
  • step S11 the state signal is obtained from the time when the brake command signal changes from 0 to 1 until the number of samplings reaches N 11 , and the process proceeds to S12.
  • step S12 it is determined whether the formula (9) or (10) is satisfied. If the conditions are satisfied, it is determined that the brake 100 has an abnormality, and after performing an alarm display process in S15, the process ends. If neither formula (9) nor (10) is satisfied in S12, the process proceeds to S13.
  • the first brake response time T2 is determined by the method described above, and then the process proceeds to S14.
  • S14 it is determined whether or not the following formula (11) is satisfied.
  • condition of formula (11) If the condition of formula (11) is not satisfied, it is determined that there is an abnormality in the brake 100, an alarm is displayed on the display 106 in S15, and the process is terminated. If the condition is satisfied in S14, it is determined that the brake 100 is in a normal state, and the process ends.
  • a state determiner 102 determines the state of the brake 100 based on the state signal included in the sampling interval shown in FIG.
  • the sampling interval is the interval from the time when the brake command signal changes from 1 to 0 until the number of samplings reaches N12 .
  • the number of samplings N12 is set to a value that can sufficiently acquire damped waves generated by the operation of the armature 10 .
  • the second brake response time T4 is the time from the time when sampling is started to the first time when the state signal becomes below or above a certain level, taking into account noise and the like.
  • th15 and th16 are defined as threshold values for determining the first time, and the time from the time when the brake command signal changes from 0 to 1 to the first time when the state signal becomes less than or equal to th16 or greater than or equal to th15 is defined as a second time. Assume that the brake response time is T4 . Although th15 and th16 may have different sizes, they are assumed to have the same size as an example here.
  • the time thresholds T17 and T18 determine the state of the brake 100 in a range in which the brake 100 is operating normally from the second brake response time T4 in which the brake 100 is operating normally. It is a threshold value set for judgment. If the second brake response time T4 is less than the time threshold T17 or greater than the time threshold T18, it is determined that the brake 100 is abnormal. Therefore, for example, the time thresholds T17 and T18 should be set such that T17 is smaller than the first brake response time T2 and T18 is larger than the first brake response time T2 (T17 ⁇ T4 ⁇ T18). For example, the thresholds th17 and th18 may be determined by setting T4 to 1.0 [s] in the brake normal state.
  • the state signal is th16 or less or th15 or more in the sampling interval.
  • the maximum value of the state signal be A13 and the minimum value be A14 .
  • step S16 the state signal is obtained from the time when the brake command signal changes from 1 to 0 until the number of samples reaches N12 , and the process moves to step S17.
  • step S17 it is determined whether the formula (12) or formula (13) is satisfied. If the condition is satisfied, it is determined that there is an abnormality in the brake 100, an alarm display process is performed in S20, and then the process ends. If neither formula (12) nor formula (13) is satisfied, the process proceeds to S18.
  • S18 the second brake response time T4 is determined by the method described above, and the process proceeds to S19. In S19, it is determined whether the following formula (14) is satisfied.
  • condition of expression (14) If the condition of expression (14) is not satisfied, it is determined that there is an abnormality in the brake 100, and the processing is terminated after performing alarm display processing in S20. If the condition of formula (14) is satisfied in S19, it is determined that the brake 100 is in a normal state, and the process ends.
  • the brake state determination device of Embodiment 2 it is possible to determine the state of the brake 100 based on the first brake response time T2 or the second brake response time T4 . Therefore, even in a small brake where it is difficult to install an acceleration sensor due to its design, there is no restriction on the size or shape of the sensor, and the sensor can be attached and detached as necessary, so it can be applied to a wide range of devices.
  • Embodiment 3 the state of the brake 100 is determined based on the results of comparison between the learned state waveform, which is time-series data obtained when the brake 100 is in a normal state, and the state waveform obtained from the acceleration sensor 12 in real time.
  • the configuration itself is the same as that of the first embodiment, and only the operation of the state determiner 102 is different, so the details will be omitted.
  • state determiner 102 acquires a state waveform so as to include data from the moment when the armature 10 operates when the brake 100 is in a normal state until the attenuation wave generated by the operation of the armature 10 appears sufficiently, and uses it as a learned state.
  • waveform As an example, state waveforms for N 31 samples are acquired from the time when the brake command signal changes from 0 to 1.
  • FIG. The sampling number N31 is set to a value that sufficiently includes damping waves generated by the operation of the armature 10 . Let the learned state waveform acquired at this time be XOL.
  • XOR the state waveform acquired in real time when the brake 100 is released.
  • N 31 the number of XOR samples
  • XOR i the data at the time when the brake command signal changes from 0 to 1.
  • E1 the error amount representing the difference between the learned state waveform and the real-time state waveform is defined as Equation (15).
  • FIG. 19 shows the state waveform acquired when the brake 100 is released when the brake 100 is normal, and the state waveform acquired when the brake 100 is released when the brake 100 is abnormal is shown by the broken line.
  • the acceleration may decrease or the first brake response time may become longer.
  • the case where the magnitude of the acceleration is small is shown, but there are cases where the magnitude of the acceleration is large.
  • the first brake response time may also be shortened. Therefore, when there is an abnormality in the brake 100, the error amount E1 becomes larger than the error amount E1 in the normal state. When the relationship between the error amount E1 and the preset threshold value th21 does not satisfy the following formula (16), it can be determined that the state of the brake 100 is abnormal.
  • the process of determining the state of brake 100 when brake 100 is released is started.
  • the state determiner 102 acquires state waveforms for N 31 samples, and the process proceeds to S32.
  • the error amount E1 defined by the equation (15) is determined, and the process proceeds to S33.
  • S33 it is determined that there is an abnormality if the equation (16) is not satisfied. If it is determined to be abnormal, the process proceeds to S34, displays an alarm on the display 106, and then terminates the processing of the state determination device 102.
  • FIG. On the other hand, if the formula (16) is satisfied in S33, the brake 100 is determined to be normal, and the processing of the state determiner 102 ends.
  • FIG. The state determiner 102 acquires a state waveform so as to include a section from the moment when the armature 10 operates when the brake 100 is in a normal state until the attenuation wave generated by the operation of the armature 10 sufficiently appears, and sets it as a learned state waveform.
  • state waveforms for N 42 samples are obtained from the time when the brake command signal changes from 1 to 0.
  • the sampling number N42 is set to a value that sufficiently includes damped waves generated by the operation of the armature 10.
  • FIG. Let the learned state waveform at this time be XCL.
  • the i-th learned state waveform data is represented as XCL i .
  • XCR be a state waveform acquired in real time by the acceleration sensor 12 when the brake 100 is operated.
  • the number of XCR samples is N42
  • the i-th data is represented as XCR i .
  • XCR i is data at the time when the brake command signal changes from 1 to 0.
  • the error amount E2 representing the difference between the learned state waveform and the real-time state waveform is defined as the following equation (17).
  • FIG. 21 shows a state waveform obtained when the brake 100 is operated in a normal state with a solid line, and a state waveform obtained when the brake 100 is operated with an abnormality in a broken line.
  • the magnitude of the acceleration may become small, or the second brake response time may become long.
  • an example in which the magnitude of the acceleration decreases is shown as an example, but it may increase in some cases.
  • the response time may also be shortened. Therefore, the difference between the values of the sampling points of the state waveforms obtained when the brake 100 is in a normal state and when it is in an abnormal state becomes large. Therefore, when the relationship between E2 and the preset threshold value th22 does not satisfy the following formula (18), it can be determined that the brake 100 has an abnormality.
  • the state of the brake 100 is determined based on the result of comparing the learned state waveform and the real-time state waveform. Since the sensor is not restricted by the size or shape of the sensor, and the sensor can be attached and detached as necessary, it can be applied to a wide range of devices.

Abstract

A brake state judgment device for servo motors is obtained whereby the state of brakes can be determined by using an acceleration sensor fixed to the outside of a case. The servo motor brake state judgment device comprises a rotation force generation unit (2), a rotational axis (3), a brake (100), a case (111), an acceleration sensor (12), and a state judgment unit (102). The case (111) is provided so as to cover the rotation force generation unit (2) and the brake (100). The acceleration sensor (12) is disposed on the outside of the case (111) and is fixed so as to contact the case (111).

Description

サーボモータのブレーキ状態判定装置およびブレーキ状態判定器Servo motor brake state determination device and brake state determination device
 本開示は、電磁ブレーキの状態を判定する装置に関する。 The present disclosure relates to a device for determining the state of an electromagnetic brake.
 電磁ブレーキの状態判定は、ブレーキプランジャーの動作状況を目視により確認をし、動作時の動作音を聞くことによって異常の有無を確認する。この状態判定は、検査作業者の経験又は勘に頼るところがある。また、検査精度のばらつきが大きい。これらを解決する手段としてブレーキプランジャーに加速度センサを設けるということがある。これによりブレーキの動作をブレーキ内部に設置したセンサが取得した信号データを基にブレーキの状態を判定することができる。また、ブレーキプランジャー動作時の加速度を検出することにより、電磁ブレーキ開放時、および電磁ブレーキ制動時における、電磁ブレーキの診断を行う技術がある。(例えば、特許文献1参照) To determine the state of the electromagnetic brake, visually check the operating status of the brake plunger and check for any abnormalities by listening to the operating sound during operation. This state determination depends on the experience or intuition of the inspection operator. In addition, the variation in inspection accuracy is large. As a means to solve these problems, an acceleration sensor is provided on the brake plunger. As a result, the state of the brake can be determined based on the signal data acquired by the sensor installed inside the brake. There is also a technique for diagnosing the electromagnetic brake when the electromagnetic brake is released and when the electromagnetic brake is applied by detecting the acceleration when the brake plunger operates. (For example, see Patent Document 1)
特開2004-123270JP 2004-123270
 上記した電磁ブレーキの状態診断装置では、サーボモータなどの小さなブレーキにおいては、加速度センサを筐体の内部に設置するスペースがないといった課題があった。  In the electromagnetic brake condition diagnosis device described above, there was a problem that there was no space to install the acceleration sensor inside the housing for small brakes such as servo motors.
 本開示は、上述のような課題を解決するためになされたものであり、センサの大きさ又は形状の制約を受けることなくブレーキの異常診断を行うブレーキの状態判定装置を提供することを目的とするものである。 The present disclosure has been made in order to solve the problems described above, and an object thereof is to provide a brake state determination device that performs brake abnormality diagnosis without being restricted by the size or shape of the sensor. It is something to do.
 本開示に係るサーボモータのブレーキ状態判定装置は、回転力を発生させる回転力発生部と、回転力発生部で発生した回転力により回転する回転軸と、回転軸が連通し回転軸の回転を制動するブレーキと、回転力発生部及びブレーキを覆う筐体と、筐体の外部に配置され前記筐体に接触するように固定された加速度センサと、加速度センサにより取得した加速度とブレーキが正常に動作している状態の加速度との比較をしてブレーキの状態を判定する状態判定器とを備えたものである。 A brake state determination device for a servomotor according to the present disclosure includes a rotational force generation unit that generates a rotational force, a rotational shaft that is rotated by the rotational force generated by the rotational force generation unit, and a rotational shaft that communicates with each other to prevent rotation of the rotational shaft. A brake for braking, a housing that covers the rotational force generating unit and the brake, an acceleration sensor that is arranged outside the housing and is fixed so as to be in contact with the housing, and the acceleration acquired by the acceleration sensor and the brake are normal. and a state determiner for determining the state of the brake by comparing it with the acceleration in the operating state.
 本開示のサーボモータのブレーキ状態判定装置によれば、筐体の内部に加速度センサの設置が困難な小さなモータにおいてもセンサの大きさ又は形状の制約を受けることなく、また必要に応じてセンサの着脱可能であることから、幅広い装置に適用できるという効果を有する。 According to the brake state determination device for a servomotor of the present disclosure, even in a small motor in which it is difficult to install an acceleration sensor inside the housing, there is no restriction on the size or shape of the sensor, and the sensor can be installed as necessary. Since it is detachable, it has the effect of being applicable to a wide range of devices.
実施の形態1に係るサーボモータのブレーキ状態判定装置を示す構成図である。1 is a configuration diagram showing a brake state determination device for a servomotor according to Embodiment 1; FIG. 実施の形態1に係るサーボモータのブレーキ状態判定装置の別形態を示す構成図である。FIG. 4 is a configuration diagram showing another form of the braking state determination device for a servomotor according to Embodiment 1; 実施の形態1に係るブレーキが正常状態においてブレーキを開放するときの状態信号とブレーキ指令信号の図であるFIG. 4 is a diagram of a state signal and a brake command signal when the brake according to Embodiment 1 is in a normal state and the brake is released; 実施の形態1に係るブレーキの異常により加速度の大きさが正常状態と比較して異なる例を示した図である。FIG. 5 is a diagram showing an example in which the magnitude of acceleration is different from that in a normal state due to an abnormality in the brake according to Embodiment 1; 実施の形態1に係るブレーキが正常状態においてブレーキを作動するときの状態信号とブレーキ指令信号の図である。FIG. 4 is a diagram of a state signal and a brake command signal when the brake according to Embodiment 1 operates the brake in a normal state; 実施の形態1に係るブレーキの異常により、加速度の大きさが正常状態と比較して異なる例を示した図である。FIG. 5 is a diagram showing an example in which the magnitude of acceleration differs from that in a normal state due to an abnormality in the brake according to Embodiment 1; 実施の形態1に係るブレーキを開放するときの状態判定器の処理を表すフローチャートの図である。FIG. 4 is a flowchart showing processing of a state determiner when releasing a brake according to Embodiment 1; 実施の形態1に係る状態判定に用いる振幅しきい値、加速度の大きさの最大値、サンプリング区間を示した図である。4 is a diagram showing an amplitude threshold value, a maximum magnitude of acceleration, and a sampling period used for state determination according to Embodiment 1. FIG. 実施の形態1に係るブレーキを作動するときの状態判定器の処理を表すフローチャートの図である。FIG. 5 is a flowchart showing processing of a state determiner when operating a brake according to Embodiment 1; 実施の形態1に係る状態判定に用いる振幅しきい値、加速度の大きさの最大値、サンプリング区間を示した図である。4 is a diagram showing an amplitude threshold value, a maximum magnitude of acceleration, and a sampling period used for state determination according to Embodiment 1. FIG. 実施の形態2に係るブレーキの異常により第1のブレーキ応答時間が短くなった例を示した図である。FIG. 11 is a diagram showing an example in which the first brake response time is shortened due to brake abnormality according to the second embodiment; 実施の形態2に係るブレーキの異常により第1のブレーキ応答時間が長くなった例を示した図である。FIG. 9 is a diagram showing an example in which the first brake response time is lengthened due to a brake abnormality according to Embodiment 2; 実施の形態2に係るブレーキの異常により第2のブレーキ応答時間が短くなった例を示した図である。FIG. 10 is a diagram showing an example in which the second brake response time is shortened due to brake abnormality according to the second embodiment; 実施の形態2に係るブレーキの異常により第2のブレーキ応答時間が長くなった例を示した図である。FIG. 10 is a diagram showing an example in which the second brake response time is lengthened due to brake abnormality according to the second embodiment; 実施の形態2に係るブレーキを解除するときの状態判定器の処理を表すフローチャートの図である。FIG. 10 is a flowchart showing processing of a state determiner when releasing a brake according to Embodiment 2; 実施の形態2に係る状態判定に用いる時間しきい値、第1のブレーキ応答時間、サンプリング区間を示した図である。FIG. 9 is a diagram showing time thresholds, first brake response times, and sampling intervals used for state determination according to Embodiment 2; 実施の形態2に係るブレーキを作動するときの状態判定器の処理を表すフローチャートの図である。FIG. 9 is a flowchart showing processing of a state determiner when operating a brake according to Embodiment 2; 実施の形態2に係る状態判定に用いる時間しきい値、第2のブレーキ応答時間、サンプリング区間を示した図である。FIG. 9 is a diagram showing time thresholds, second brake response times, and sampling intervals used for state determination according to Embodiment 2; 実施の形態3に係るブレーキが正常状態においてブレーキを開放したときに取得した状態波形と、ブレーキに異常がある状態においてブレーキを開放したときに取得した状態波形とを比較した図である。FIG. 10 is a diagram comparing a state waveform acquired when the brake is released in a normal state and a state waveform acquired when the brake is released in a state where the brake is in an abnormal state according to the third embodiment; 実施の形態3に係るブレーキを開放するときの状態判定器の処理を表すフローチャートの図である。FIG. 11 is a flowchart showing processing of a state determiner when releasing a brake according to Embodiment 3; 実施の形態3に係るブレーキが正常状態においてブレーキを作動したときに取得した状態波形と、ブレーキに異常がある状態においてブレーキを作動したときに取得した状態波形とを比較した図である。FIG. 10 is a diagram comparing state waveforms acquired when the brake is operated in a normal state and state waveforms acquired when the brake is operated in an abnormal state according to the third embodiment; 実施の形態3に係るブレーキを作動するときの状態判定器の処理を表すフローチャートの図である。FIG. 11 is a flowchart showing processing of a state determiner when operating a brake according to Embodiment 3;
 以下に、実施の形態を図面に基づいて詳細に説明する。なお、以下に説明する実施の形態は例示である。また、各実施の形態は、適宜組み合わせて実行することができる。 The embodiments will be described in detail below based on the drawings. In addition, the embodiment described below is an example. Also, each embodiment can be executed in combination as appropriate.
実施の形態1.
 図1は本実施の形態1におけるサーボモータのブレーキ状態判定装置の構成図である。図1に示すように、サーボモータのブレーキ状態判定装置は、回転力を発生させる回転力発生部2と、回転力発生部2において発生した回転力により回転をする回転軸3と、回転軸3が連通し回転軸3の回転を制動するブレーキ100と、回転力発生部2とブレーキ100とを覆う筐体111と、筐体111の外部に配置され筐体111に接触するように固定し、ブレーキ100の加速度を検出する加速度センサ12と、加速度センサ12により取得した加速度とブレーキ100が正常に動作している状態の加速度との比較をしてブレーキ100の状態を判定する状態判定器102とを備えている。
Embodiment 1.
FIG. 1 is a configuration diagram of a braking state determination device for a servomotor according to Embodiment 1 of the present invention. As shown in FIG. 1, the brake state determination device for a servomotor includes a rotational force generator 2 that generates a rotational force, a rotational shaft 3 that rotates by the rotational force generated in the rotational force generator 2, and a rotational shaft 3. A brake 100 for braking the rotation of the rotating shaft 3, a housing 111 covering the rotational force generating unit 2 and the brake 100, and a housing 111 arranged outside the housing 111 and fixed so as to be in contact with the housing 111, an acceleration sensor 12 for detecting the acceleration of the brake 100; and a state determiner 102 for determining the state of the brake 100 by comparing the acceleration acquired by the acceleration sensor 12 with the acceleration when the brake 100 is operating normally. It has
 回転軸3は、回転力発生部2において発生した回転力によって回転をする。ブレーキロータ4は、摩擦材5を有していて、回転力発生部2において発生した回転力によって回転軸3と一体となって回転をする。 The rotating shaft 3 is rotated by the rotating force generated by the rotating force generating section 2 . The brake rotor 4 has a friction material 5 and rotates integrally with the rotating shaft 3 by the rotating force generated in the rotating force generating portion 2 .
 ブレーキ100は、ブレーキロータ4、コイル7、フィールド8、スプリング9およびアーマチュア10で構成されていて、回転軸3の回転を制動する。ブレーキ100にはコイル7を内蔵したフィールド8が取り付けられていて、フィールド8上には、先端にアーマチュア10を備えたスプリング9が取り付けられている。 The brake 100 is composed of a brake rotor 4, a coil 7, a field 8, a spring 9 and an armature 10, and brakes the rotation of the rotating shaft 3. A field 8 containing a coil 7 is attached to the brake 100, and a spring 9 having an armature 10 at its tip is attached to the field 8. - 特許庁
 筐体111は、回転力発生部2とブレーキ100を覆うように設けられている。加速度センサ12は、筐体111の外部に配置され筐体111に接触するように固定されている。加速度センサ12の筐体111への取り付け方法は、例えばねじ止め又は接着剤などによる固定方法であり、ブレーキ100による筐体111の振動を測定できればよい。筐体111の振動による加速度を加速度センサ12が検出して電気的な信号として出力した状態信号は、デジタル変換器101に入力されデジタル変換されたのち、状態判定器102の入力部112に入力される。状態判定器102は例えばサーボアンプ等であり、加速度センサ12により取得した信号データをサーバ上において処理をしてブレーキ100の状態判定を行うような構成でもよい。 The housing 111 is provided so as to cover the rotational force generating section 2 and the brake 100 . The acceleration sensor 12 is arranged outside the housing 111 and fixed so as to contact the housing 111 . The method of attaching the acceleration sensor 12 to the housing 111 is, for example, a fixing method using screws or an adhesive, and it is sufficient if the vibration of the housing 111 caused by the brake 100 can be measured. The acceleration sensor 12 detects the acceleration due to the vibration of the housing 111 and outputs the state signal as an electrical signal. be. The state determiner 102 is, for example, a servo amplifier or the like, and may be configured to process signal data acquired by the acceleration sensor 12 on a server to determine the state of the brake 100 .
 状態判定器102は、デジタル変換器101の出力とブレーキ主制御器107の出力が入力される入力部112と、デジタル変換器101の出力を一時記憶するRAM(Random Access Memory)103、正常状態の状態信号又はブレーキの状態を判定するためのしきい値を記憶するROM(Read Only Memory)104、ROM104の記憶データとRAM103に記憶されているデータを比較してブレーキのリアルタイムの状態を判定する処理を行うCPU(Central Processing Unit)105から成る判断部114と、判定結果を出力する出力部113により構成されている。出力部113からの出力は、ブレーキの異常を表示する表示器106に入力される。また、ブレーキを作動あるいは開放する信号であるブレーキ指令信号を出力するブレーキ主制御器107の出力は、状態判定器102の入力部112とデジタル・アナログ変換器108に入力される。デジタル・アナログ変換器108はブレーキ主制御器107の信号をアナログ変換した後、変換した信号をブレーキ駆動回路110に出力する。ブレーキ駆動回路110はデジタル・アナログ変換器108の信号を基に、ブレーキ電源109の電力をコイル7に供給する。 The state determiner 102 includes an input section 112 to which the output of the digital converter 101 and the output of the brake main controller 107 are input, a RAM (Random Access Memory) 103 that temporarily stores the output of the digital converter 101, and a normal state. A read-only memory (ROM) 104 that stores a state signal or a threshold value for judging the state of the brake, and a process for judging the real-time state of the brake by comparing the data stored in the ROM 104 and the data stored in the RAM 103 and an output unit 113 for outputting the determination result. The output from the output unit 113 is input to the indicator 106 that displays brake abnormality. Also, the output of the brake main controller 107 that outputs a brake command signal, which is a signal for operating or releasing the brake, is input to the input section 112 of the state determiner 102 and the digital/analog converter 108 . The digital/analog converter 108 analog-converts the signal from the brake main controller 107 and then outputs the converted signal to the brake drive circuit 110 . A brake drive circuit 110 supplies power from a brake power source 109 to the coil 7 based on the signal from the digital/analog converter 108 .
 なお、本実施の形態におけるブレーキ状態判定装置は、設計上加速度センサ12を設置するだけのスペースがなく、設置が困難であるサーボモータ等の小さなモータを対象とするサーボモータのブレーキ状態判定装置を提供する。サーボモータは、ブレーキ100内部に加速度センサ12を設置することが困難であるため、筐体111の外部に接するように加速度センサ12を設置し、ブレーキ100の状態を判定する。また、サーボモータよりも大きなモータであっても設計上の制約が多く、内部に加速度センサ12を設置することが困難な場合であれば、同様に適用可能である。 It should be noted that the brake state determination device according to the present embodiment is intended for a small motor such as a servomotor that is difficult to install because there is no space for installing the acceleration sensor 12 due to its design. offer. Since it is difficult to install the acceleration sensor 12 inside the brake 100 for the servomotor, the acceleration sensor 12 is installed so as to be in contact with the outside of the housing 111 to determine the state of the brake 100 . Also, even if the motor is larger than the servomotor, it can be similarly applied if there are many design restrictions and it is difficult to install the acceleration sensor 12 inside.
 本実施の形態における加速度センサ12を設置する筐体に関しては、回転力発生部2及びブレーキ100を覆うように筐体を設ける。また図2は図1の別形態を示し、モータ筐体1とブレーキ筐体11とが隣接して各々設けられている例である。図2に示すように筐体111は、モータ筐体1とブレーキ筐体11とが、隣接して各々別に設けられていてもよく、加速度センサ12はモータ筐体1又はブレーキ筐体11の外部に接するように固定をする。その場合は、回転力発生部2がモータ筐体1の中に配置され、ブレーキ100がブレーキ筐体11の中に配置されているのが望ましいがそれに限定されず、ブレーキ100の振動による加速度を加速度センサ12が検出できればよい。 Regarding the housing in which the acceleration sensor 12 in this embodiment is installed, the housing is provided so as to cover the rotational force generating section 2 and the brake 100 . 2 shows another form of FIG. 1, in which the motor housing 1 and the brake housing 11 are provided adjacent to each other. As shown in FIG. 2, the housing 111 may include the motor housing 1 and the brake housing 11 which are adjacent to each other, and the acceleration sensor 12 is provided outside the motor housing 1 or the brake housing 11. and fix it so that it touches the In that case, it is desirable that the rotational force generating unit 2 is arranged in the motor housing 1 and the brake 100 is arranged in the brake housing 11, but is not limited thereto. It is sufficient if the acceleration sensor 12 can detect it.
 ブレーキ100を作動するときの動作について説明する。アーマチュア10はスプリング9の伸長により、ブレーキロータ4に設置されている摩擦材5の方向に変位可能である。スプリング9の伸長によりアーマチュア10が摩擦材5の方向に一定以上変位するとアーマチュア10と摩擦材5は衝突し、アーマチュア10はこれ以上摩擦材5の方向に変位しなくなる。スプリング9はさらに伸長力を発生することが可能であるため、アーマチュア10を摩擦材5に押し付ける圧接力が発生する。アーマチュア10を摩擦材5に押し付ける圧接力により、アーマチュア10と摩擦材5の間に摩擦力が発生し、ブレーキロータ4を制動する力が発生する。ブレーキロータ4は回転軸3に固定されているため回転軸3の制動が可能となる。 The operation when operating the brake 100 will be described. The armature 10 can be displaced in the direction of the friction material 5 installed on the brake rotor 4 by the extension of the spring 9 . When the armature 10 is displaced in the direction of the friction material 5 by a certain amount or more due to the expansion of the spring 9, the armature 10 collides with the friction material 5, and the armature 10 is no longer displaced in the direction of the friction material 5. Since the spring 9 can also generate an extension force, a pressure contact force that presses the armature 10 against the friction material 5 is generated. A frictional force is generated between the armature 10 and the friction material 5 due to the pressure contact force that presses the armature 10 against the friction material 5 , and a force for braking the brake rotor 4 is generated. Since the brake rotor 4 is fixed to the rotating shaft 3, the rotating shaft 3 can be braked.
 ブレーキ100を開放するときの動作について説明する。コイル7に電圧を印加することにより、コイル7とアーマチュア10間に磁束が生じる。発生した磁束によりアーマチュア10を引き付ける引き付け力が発生し、この引き付け力がスプリング9の伸長力を上回ることによりアーマチュア10はフィールド8側に変位する。このとき、アーマチュア10は摩擦材5から引き離されアーマチュア10と摩擦材5の間に摩擦が発生しなくなるためブレーキ100は開放される。 The operation when releasing the brake 100 will be described. A magnetic flux is generated between the coil 7 and the armature 10 by applying a voltage to the coil 7 . The generated magnetic flux generates an attractive force that attracts the armature 10 , and this attractive force exceeds the extension force of the spring 9 , thereby displacing the armature 10 toward the field 8 . At this time, the armature 10 is pulled away from the friction material 5 and no friction occurs between the armature 10 and the friction material 5, so that the brake 100 is released.
 つまり、ブレーキ主制御器107がブレーキ100を作動する信号を出力しているとき、ブレーキ駆動回路110はコイル7への電力の供給を停止し、アーマチュア10が摩擦材5に押し当てられることによりブレーキ100が作動する。一方ブレーキ主制御器107がブレーキ100を開放する信号を出力しているとき、ブレーキ駆動回路110はコイル7に電力を供給し、アーマチュア10を摩擦材5から引き離すことによりブレーキ100を開放する。 That is, when the brake main controller 107 outputs a signal to operate the brake 100, the brake drive circuit 110 stops supplying electric power to the coil 7, and the armature 10 is pressed against the friction material 5 to brake the brake. 100 is activated. On the other hand, when the brake master controller 107 is outputting a signal to release the brake 100 , the brake drive circuit 110 supplies power to the coil 7 to pull the armature 10 away from the friction material 5 to release the brake 100 .
 次に、状態信号とブレーキ指令信号の関係について図3~図6を用いて説明する。
 まず、ブレーキ100が開放されたときの状態信号とブレーキ指令信号の関係について説明する。図3にブレーキ100が正常状態において開放されたときの状態信号とブレーキ指令信号を示す。ここでは、ブレーキ指令信号の出力が1のとき、ブレーキ主制御器107はブレーキ100を開放する信号を出力しているとする。また、ブレーキ指令信号の出力が0のとき、ブレーキ主制御器107はブレーキ100を作動する信号を出力しているとする。ブレーキ指令信号が0のとき、モータは停止状態であるため、加速度の大きさは0に近い小さな値である。次にブレーキ指令信号が1になると、コイル7に電力が供給されコイル7とアーマチュア10の間に磁束が発生し、アーマチュア10はコイル7に引き寄せられる。このとき発生する振動が筐体111に伝搬し、状態信号は図3に示すような減衰波として現れる。
Next, the relationship between the state signal and the brake command signal will be described with reference to FIGS. 3 to 6. FIG.
First, the relationship between the state signal and the brake command signal when the brake 100 is released will be described. FIG. 3 shows the state signal and the brake command signal when the brake 100 is released in a normal state. Here, it is assumed that when the output of the brake command signal is 1, the brake main controller 107 outputs a signal to open the brake 100 . It is also assumed that when the output of the brake command signal is 0, the brake main controller 107 outputs a signal for operating the brake 100 . When the brake command signal is 0, the motor is in a stopped state, so the magnitude of the acceleration is a small value close to 0. Next, when the brake command signal becomes 1, electric power is supplied to the coil 7 and magnetic flux is generated between the coil 7 and the armature 10 , and the armature 10 is attracted to the coil 7 . The vibration generated at this time propagates to the housing 111, and the state signal appears as an attenuated wave as shown in FIG.
 図4の(a)、(b)に正常状態においてブレーキ100を開放したときの状態信号を実線、異常がある状態においてブレーキ100を開放したときの状態信号を破線により示す。また、図4の(c)は、ブレーキ100が作動(ブレーキ指令信号:0)から開放(ブレーキ指令信号:1)に切り替わった時のブレーキ指令信号を示す。図4の(a)はブレーキに異常があり加速度の大きさが正常状態の加速度の大きさより小さくなった例である。また、図4の(b)は、ブレーキに異常があり加速度の大きさが正常状態の加速度の大きさより大きくなった例である。図4の(a)に示すように、ブレーキ内部に異物が混入するとアーマチュア10の摺動性が低下するため、加速度の大きさは小さくなる。また図4の(b)に示すように、スプリング9の弾性力が低下すると、コイル7がアーマチュア10を引き付ける力が相対的に大きくなるため、加速度の大きさは正常状態の時と比べて大きくなる。 In (a) and (b) of FIG. 4, the solid line indicates the state signal when the brake 100 is released in the normal state, and the broken line indicates the state signal when the brake 100 is released in the abnormal state. FIG. 4(c) shows the brake command signal when the brake 100 is switched from operating (brake command signal: 0) to released (brake command signal: 1). FIG. 4(a) shows an example in which the brake has an abnormality and the magnitude of acceleration is smaller than the magnitude of acceleration in the normal state. FIG. 4(b) shows an example in which the brake has an abnormality and the magnitude of the acceleration is larger than the magnitude of the acceleration in the normal state. As shown in FIG. 4(a), when foreign matter enters the brake, the slidability of the armature 10 is reduced, and the magnitude of acceleration is reduced. Further, as shown in FIG. 4B, when the elastic force of the spring 9 decreases, the force with which the coil 7 attracts the armature 10 becomes relatively large. Become.
 次にブレーキ100が作動するときの状態信号とブレーキ指令信号の関係について説明する。図5に、ブレーキ100が正常状態においてブレーキ100が作動するときの状態信号とブレーキ指令信号を示す。ここでは、ブレーキ指令信号の出力が1のとき、ブレーキ主制御器107はブレーキ100を開放する信号を出力しているとする。また、ブレーキ指令信号の出力が0のとき、ブレーキ主制御器107はブレーキ100を作動する信号を出力しているとする。ブレーキ指令信号が1から0に切り替わるとき、モータは定常状態となるため加速度の大きさは0に近い小さな値である。次に、ブレーキ指令信号が0となりコイル7への電力が遮断されると、スプリング9の伸長力によりアーマチュア10は摩擦材5に押し付けられる。このとき発生する振動が筐体111に伝搬し、状態信号は図5に示すような減衰波として現れる。 Next, the relationship between the state signal and the brake command signal when the brake 100 operates will be described. FIG. 5 shows the state signal and the brake command signal when the brake 100 operates in a normal state. Here, it is assumed that when the output of the brake command signal is 1, the brake main controller 107 outputs a signal to open the brake 100 . It is also assumed that when the output of the brake command signal is 0, the brake main controller 107 outputs a signal for operating the brake 100 . When the brake command signal switches from 1 to 0, the magnitude of the acceleration is a small value close to 0 because the motor is in a steady state. Next, when the brake command signal becomes 0 and the electric power to the coil 7 is cut off, the extension force of the spring 9 presses the armature 10 against the friction material 5 . The vibration generated at this time propagates to the housing 111, and the state signal appears as an attenuated wave as shown in FIG.
 図6の(a)、(b)にブレーキ100が正常状態においてブレーキ100を作動させたときの状態信号を実線、ブレーキ100に異常がある状態においてブレーキ100を作動させたときの状態信号を破線により示す。また、図6の(c)は、ブレーキ100が開放(ブレーキ指令信号:1)から作動(ブレーキ指令信号:0)に切り替わった時のブレーキ指令信号を示す。図6の(a)は、ブレーキ100に異常があり加速度の大きさが正常状態の加速度の大きさより小さくなった例である。また、図6の(b)は、ブレーキ100に異常があり加速度の大きさが正常状態の加速度の大きさより大きくなった例である。図6の(a)に示すように、スプリング9の弾性力が低下するとアーマチュア10が変位する加速度が低下するため、加速度の大きさが正常状態より小さくなる。また図6の(b)に示すように、回転軸3とブレーキロータ4の接合に異常がある場合、ブレーキロータ4が正常状態より大きく振動するため、加速度の大きさが正常状態より大きくなる。 In FIGS. 6A and 6B, the solid line indicates the state signal when the brake 100 is operated when the brake 100 is normal, and the broken line indicates the state signal when the brake 100 is operated when the brake 100 is abnormal. indicated by FIG. 6(c) shows the brake command signal when the brake 100 is switched from released (brake command signal: 1) to actuated (brake command signal: 0). FIG. 6A shows an example in which the brake 100 has an abnormality and the magnitude of acceleration is smaller than the magnitude of acceleration in the normal state. FIG. 6B shows an example in which the brake 100 has an abnormality and the magnitude of acceleration is greater than the magnitude of acceleration in the normal state. As shown in FIG. 6(a), when the elastic force of the spring 9 is reduced, the displacement acceleration of the armature 10 is reduced. Further, as shown in FIG. 6B, when there is an abnormality in the joint between the rotating shaft 3 and the brake rotor 4, the brake rotor 4 vibrates more than in the normal state, so the magnitude of the acceleration becomes larger than in the normal state.
 次に状態判定器102の動作について図7~図10を用いて説明する。
 まず、ブレーキ100が開放されるときの状態判定器102の処理について図7、8を用いて説明する。図7は状態判定器102の処理を表すフローチャートであり、図8はブレーキ100が解除される時刻周辺の状態信号とブレーキ指令信号を示す。また、図8の(a)に実線を用いて状態信号、点線を用いて振幅しきい値th1、th2、破線を用いて振幅しきい値th3、th4、サンプリング区間およびサンプリング区間における加速度の大きさの最大値(最大振幅)Aを示す。図8の(b)にはブレーキ指令信号を示す。状態判定器102はサンプリング区間に含まれる状態信号を基にブレーキ100の状態を判定する。このサンプリング区間は、アーマチュア10が動作する瞬間からアーマチュア10の動作によって発生する減衰波が十分現れるまでの区間が含まれるように設定する。ここでは、例としてブレーキ指令信号が0から1に変化した時刻からサンプリング数N個分の状態信号を取得する。その際、サンプリング数Nはアーマチュア10の動作によって発生する減衰波が十分に含まれるような値とする。
Next, operation of the state determiner 102 will be described with reference to FIGS. 7 to 10. FIG.
First, the processing of the state determiner 102 when the brake 100 is released will be described with reference to FIGS. FIG. 7 is a flow chart showing the processing of the state determiner 102, and FIG. 8 shows state signals and brake command signals around the time when the brake 100 is released. In FIG. 8A, the solid line indicates the state signal, the dotted lines indicate the amplitude thresholds th1 and th2, the broken lines indicate the amplitude thresholds th3 and th4, the sampling interval, and the magnitude of the acceleration in the sampling interval. shows the maximum value (maximum amplitude) A2 of . FIG. 8(b) shows the brake command signal. A state determiner 102 determines the state of the brake 100 based on the state signal included in the sampling interval. This sampling interval is set so as to include an interval from the moment the armature 10 operates until the attenuation wave generated by the operation of the armature 10 appears sufficiently. Here, as an example, state signals corresponding to the sampling number N 1 are acquired from the time when the brake command signal changes from 0 to 1. FIG. At that time, the sampling number N1 is set to a value that sufficiently includes the damped waves generated by the operation of the armature 10 .
 本実施の形態における振幅しきい値th1~th4とは、ブレーキ100が正常に動作している状態の加速度の最大振幅から、ブレーキ100が正常に動作をしている範囲において予め決定したブレーキ100の状態を判定するために設定をしたしきい値のことをいう。加速度の最大振幅Aが振幅しきい値th1又はth2より小さい場合に異常と判定する。振幅しきい値th1とth2は異なる大きさとしてもよいが、ここでは例として同じ大きさとした。また振幅しきい値th1とth2の大きさは、ブレーキ100が正常状態においてブレーキ100を開放したときに取得した加速度の最大振幅より小さく設定するとよい。同様に、加速度の最大振幅Aが振幅しきい値th3又はth4より大きい場合に異常と判定する。振幅しきい値th3とth4は異なる大きさとしてもよいが、ここでは例として同じ大きさとした。また振幅しきい値th3とth4の大きさは、ブレーキ100が正常状態においてブレーキ100を開放したときに取得した加速度の最大振幅より大きく設定するとよい。例えば、ブレーキ100が正常状態の時の加速度の最大振幅Aを0.6[m/s2]として振幅しきい値th1~th4を設定するとよい。 The amplitude threshold values th1 to th4 in the present embodiment are the amplitude threshold values of the brake 100 determined in advance within the range in which the brake 100 is operating normally from the maximum amplitude of the acceleration when the brake 100 is operating normally. Refers to the threshold value set for judging the state. If the maximum amplitude A2 of acceleration is smaller than the amplitude threshold value th1 or th2, it is judged to be abnormal. Although the amplitude thresholds th1 and th2 may have different magnitudes, they are assumed to have the same magnitude as an example here. Also, the amplitude threshold values th1 and th2 are preferably set smaller than the maximum amplitude of the acceleration acquired when the brake 100 is released in the normal state. Similarly, when the maximum amplitude A2 of acceleration is greater than the amplitude threshold th3 or th4, it is determined to be abnormal. Although the amplitude thresholds th3 and th4 may have different magnitudes, they are assumed to have the same magnitude as an example here. Also, the amplitude thresholds th3 and th4 are preferably set to be larger than the maximum amplitude of the acceleration acquired when the brake 100 is released while the brake 100 is in a normal state. For example, it is preferable to set the amplitude thresholds th1 to th4 with the maximum amplitude A2 of acceleration when the brake 100 is in a normal state being 0.6 [m/s2].
 次に状態判定器102の処理について図7のフローチャートを用いて説明する。ブレーキ指令信号が0から1に変化したとき、処理が開始する。ステップS1では、上述したようにブレーキ指令信号が0から1に変化した時刻からサンプリング数N個分となるまで状態信号を取得する。次にステップS2では、S1において取得した状態信号から加速度の大きさの最大値(最大振幅)をAと決定し、ステップS3に進む。S3ではAと上述した振幅しきい値th1~th4とを比較しブレーキ100の状態を判定する。 Next, the processing of the state determiner 102 will be described using the flowchart of FIG. Processing begins when the brake command signal changes from 0 to 1. In step S1, as described above, the state signal is obtained from the time when the brake command signal changes from 0 to 1 until the sampling number N1 . Next, in step S2, the maximum value (maximum amplitude) of the magnitude of acceleration is determined as A2 from the state signal acquired in step S1, and the process proceeds to step S3. At S3, A2 is compared with the amplitude threshold values th1 to th4 described above to determine the state of the brake 100. FIG.
(数1)
 th1<A2      式(1)
(Number 1)
th1<A 2 Formula (1)
(数2)
 |th2|<A   式(2)
(Number 2)
|th2|<A 2 Formula (2)
(数3)
 th3>A2      式(3)
(Number 3)
th3>A 2 formula (3)
(数4)
 |th4|>A   式(4)
(Number 4)
|th4|>A 2 Formula (4)
 上式(1)~(4)すべてを満たすとき、ブレーキ100の状態を正常と判定し状態判定器102の動作を終了する。それ以外の場合は、ブレーキ100の状態を異常と判定しステップS4においてブレーキ100の状態に異常があることを警告するアラーム表示の処理を行った後、状態判定器102の動作を終了する。
 ブレーキ100が作動するときの状態判定器102の処理について図9、10を用いて説明する。図9はブレーキ100が作動するときの状態判定器102の処理を表すフローチャートである。図10の(a)に実線を用いて状態信号、点線を用いてしきい値th5、th6、破線を用いてしきい値th7、th8、サンプリング区間およびサンプリング区間において加速度の大きさの最大値(最大振幅)Aを示す。図10の(b)にはブレーキ指令信号を示す。状態判定器102は図10の(a)内に示されるサンプリング区間に含まれる状態信号を基にブレーキ100の状態を判定する。サンプリング区間は例として、ブレーキ指令信号が1から0に変化した時刻からサンプリング数N個分となるまでの区間とし、サンプリング数Nはアーマチュア10の動作によって発生する減衰波を十分に取得可能な値とする。
When all of the above expressions (1) to (4) are satisfied, it is determined that the state of the brake 100 is normal, and the operation of the state determiner 102 is terminated. In other cases, the state of the brake 100 is determined to be abnormal, and in step S4 an alarm is displayed to warn that the state of the brake 100 is abnormal.
The processing of the state determiner 102 when the brake 100 operates will be described with reference to FIGS. 9 and 10. FIG. FIG. 9 is a flow chart showing the processing of the state determiner 102 when the brake 100 operates. In (a) of FIG. 10, the solid line indicates the state signal, the dotted line indicates threshold values th5 and th6, the broken line indicates threshold values th7 and th8, the sampling interval, and the maximum value of the magnitude of acceleration in the sampling interval ( maximum amplitude) A4 . FIG. 10(b) shows the brake command signal. The state determiner 102 determines the state of the brake 100 based on the state signal included in the sampling interval shown in FIG. 10(a). For example, the sampling interval is the interval from the time when the brake command signal changes from 1 to 0 until the number of samples reaches N4 . value.
 上述したブレーキ100が開放されたときと同様に、本実施の形態における振幅しきい値th5~th8とは、ブレーキ100が正常に動作している状態の加速度の最大振幅から、ブレーキ100が正常に動作をしている範囲において予め決定したブレーキ100の状態を判定するために設定をしたしきい値のことをいう。加速度の最大振幅Aが振幅しきい値th5又はth6より小さい場合、ブレーキ100の状態を異常と判定する。振幅しきい値th5とth6は異なる大きさとしてもよいが、ここでは例として同じ大きさとした。また振幅しきい値th5とth6の大きさは、ブレーキ100が正常状態においてブレーキ100を作動したときの加速度の最大振幅より小さく設定するとよい。同様に、加速度の最大振幅Aが振幅しきい値th7又はth8より大きい場合、ブレーキ100の状態を異常と判定する。振幅しきい値th7とth8は異なる大きさとしてもよいが、ここでは例として同じ大きさとした。また振幅しきい値th7とth8の大きさは、ブレーキ100が正常状態においてブレーキ100が作動したときの加速度の最大振幅より大きく設定するとよい。例えば、ブレーキ100が正常状態の時の加速度の最大振幅Aを0.6[m/s2]として、振幅しきい値th5~th8を設定するとよい。 Similar to when the brake 100 is released as described above, the amplitude thresholds th5 to th8 in the present embodiment are calculated from the maximum acceleration amplitude when the brake 100 is operating normally. It means a threshold value set for judging a predetermined state of the brake 100 in the operating range. If the maximum amplitude A4 of acceleration is smaller than the amplitude threshold th5 or th6, the state of the brake 100 is determined to be abnormal. Although the amplitude thresholds th5 and th6 may have different magnitudes, they are assumed to have the same magnitude as an example here. Also, the magnitudes of amplitude thresholds th5 and th6 are preferably set smaller than the maximum amplitude of acceleration when brake 100 is operated in a normal state. Similarly, when the maximum acceleration amplitude A4 is greater than the amplitude threshold th7 or th8, the state of the brake 100 is determined to be abnormal. Although the amplitude thresholds th7 and th8 may have different magnitudes, they are assumed to have the same magnitude as an example here. Also, the amplitude threshold values th7 and th8 are preferably set larger than the maximum amplitude of acceleration when the brake 100 operates in a normal state. For example, it is preferable to set the amplitude thresholds th5 to th8 with the maximum amplitude A4 of the acceleration when the brake 100 is in the normal state being 0.6 [m/s2].
 次に上述した処理についてフローチャート図9を用いて説明する。図9の処理はブレーキ指令信号が1から0に変化したとき開始する。まず、ステップS5においては上述したようにブレーキ指令信号が1から0に変化した時刻からサンプリング数N個分となるまで状態信号を取得する。次にステップS6に移動し、取得した状態信号から加速度の大きさの最大値(最大振幅)をAと決定し、ステップS7に移動する。S7においてはAと上述した振幅しきい値th5~th8を比較しブレーキ100の状態を判定する。 Next, the processing described above will be described with reference to the flow chart of FIG. The processing of FIG. 9 starts when the brake command signal changes from 1 to 0. First, in step S5, as described above, the state signal is acquired from the time when the brake command signal changes from 1 to 0 until the number of samples reaches N4 . Next, in step S6, the maximum value (maximum amplitude) of acceleration is determined as A4 from the obtained state signal, and the process proceeds to step S7. At S7, A4 is compared with the amplitude threshold values th5 to th8 described above to determine the state of the brake 100. FIG.
(数5)
 th5<A4      式(5)
(Number 5)
th5<A 4 Formula (5)
(数6)
 |th6|<A   式(6)
(Number 6)
|th6|<A 4 formula (6)
(数7)
 th7>A4      式(7)
(Number 7)
th7>A 4 formula (7)
(数8)
 |th8|>A   式(8)
(Number 8)
|th8|>A Formula 4 (8)
 上式(5)~(8)のすべてを満たすとき、ブレーキ100の状態を正常と判定し状態判定器102の動作を終了する。それ以外の場合、ステップS8に移動し表示器106によりアラーム表示を行った後状態判定器102の処理を終了する。 When all of the above expressions (5) to (8) are satisfied, the state of the brake 100 is determined to be normal, and the operation of the state determiner 102 ends. Otherwise, the process moves to step S8, displays an alarm on the display 106, and then terminates the processing of the state determiner 102. FIG.
 以上より、筐体111に設置した加速度センサ12により取得した加速度の大きさに基づいてブレーキ100の状態を判定することができるため、設計上加速度センサの設置が困難な小さなブレーキにおいてもセンサの大きさ又は形状の制約を受けることなく、また必要に応じてセンサの着脱可能であることから、幅広い装置に適用できる。 As described above, the state of the brake 100 can be determined based on the magnitude of acceleration acquired by the acceleration sensor 12 installed in the housing 111. Therefore, even in a small brake where it is difficult to install an acceleration sensor due to its design, the size of the sensor can be reduced. It is applicable to a wide range of devices because it is not restricted by the size or shape and the sensor can be attached and detached as necessary.
実施の形態2.
 実施の形態1では加速度センサ12により取得した加速度の大きさに基づいてブレーキ100の状態を判定するブレーキ状態判定装置を示したが、実施の形態2ではブレーキ指令信号が作動から開放あるいは開放から作動するまでのブレーキ応答時間に基づいたブレーキ100の状態を判定する方法を説明する。なお本実施の形態において、構成自体は実施の形態1と同様であり、状態判定器102の動作のみが異なるため詳細は省略をする。
Embodiment 2.
In the first embodiment, the brake state determination device that determines the state of the brake 100 based on the magnitude of acceleration acquired by the acceleration sensor 12 is shown. A method of determining the state of the brake 100 based on the brake response time up to the point of time will be described. In this embodiment, the configuration itself is the same as that of the first embodiment, and only the operation of the state determiner 102 is different, so the details will be omitted.
 状態信号とブレーキ指令信号の関係について説明する。本実施の形態では、ブレーキ主制御器107からのブレーキ指令信号が、ブレーキ作動状態に切り替わってからブレーキ100が開放状態に切り替わるまでの時間を第1のブレーキ応答時間(T)、ブレーキ指令信号がブレーキ開放状態に切り替わってからブレーキ100が作動状態に切り替わるまでの時間を第2のブレーキ応答時間(T)とする。 A relationship between the state signal and the brake command signal will be described. In this embodiment, the time from when the brake command signal from the brake main controller 107 is switched to the brake operating state to when the brake 100 is switched to the released state is the first brake response time (T 2 ), and the brake command signal A second brake response time (T 4 ) is defined as the time from switching to the brake released state until the brake 100 switches to the operating state.
 まずブレーキ100が開放されるときについて説明する。ブレーキ100が開放される際には、ブレーキ指令信号が0から1に切り替わった後ブレーキ駆動回路110のリレー回路が閉じてコイル7に電力が供給される。その後、コイル7とアーマチュア10の間に発生する磁束によりアーマチュア10を引き付ける力がスプリング9の伸長力を上回る。そして、アーマチュア10が摩擦材5から離間することによりブレーキ100が開放される。そのため、図11に示すように、ブレーキ指令信号が0から1に切り替わってから一定以上の時間が経過した後ブレーキ100は開放される。また、第1のブレーキ応答時間Tはブレーキ100の状態によって変化する。例えば、スプリング9の塑性変形によりスプリング9の弾性力が低下するとアーマチュア10を摩擦材5から離間するための引き付け力が小さくなるため、図11に示すように、第1のブレーキ応答時間Tは短くなることがある。一方、ブレーキ100内部に異物が混入するとアーマチュア10の摺動性が低下するため、図12に示すように、第1のブレーキ応答時間Tは長くなる場合がある。また、摩擦材5が磨耗するとアーマチュア10の移動距離が長くなるため第1のブレーキ応答時間Tが長くなることがある。 First, the case when the brake 100 is released will be described. When the brake 100 is released, the relay circuit of the brake drive circuit 110 is closed after the brake command signal is switched from 0 to 1, and power is supplied to the coil 7 . After that, the force that attracts the armature 10 due to the magnetic flux generated between the coil 7 and the armature 10 exceeds the extension force of the spring 9 . When the armature 10 is separated from the friction material 5, the brake 100 is released. Therefore, as shown in FIG. 11, the brake 100 is released after a certain period of time or more has elapsed since the brake command signal was switched from 0 to 1. Also, the first brake response time T2 changes depending on the state of the brake 100 . For example, when the elastic force of the spring 9 decreases due to plastic deformation of the spring 9, the attractive force for separating the armature 10 from the friction material 5 decreases . may be shorter. On the other hand, when foreign matter enters the brake 100, the slidability of the armature 10 is lowered, so the first brake response time T2 may become longer as shown in FIG. Further, when the friction material 5 wears, the moving distance of the armature 10 increases, so the first brake response time T2 may increase.
 次にブレーキ100が作動するときについて説明する。ブレーキ指令信号が0になるとブレーキ駆動回路110のリレー回路が開きコイル7への電力の供給は遮断される。その後コイル7とアーマチュア10間の磁束が小さくなりコイル7がアーマチュア10を引き付ける力がスプリング9より小さくなるとアーマチュア10は摩擦材5方向に変位し、ブレーキ100が作動する。そのため、図5に示すように、ブレーキ指令信号が1から0になってから一定以上の時間が経過した後ブレーキ100が作動する。また、この第2のブレーキ応答時間Tはブレーキ100の状態によって変化する。例えば、コイル7の異常によりコイル7とアーマチュア10との間に発生する磁束が小さくなると相対的にスプリング9の伸長力が大きくなるため、図13に示すように、第2のブレーキ応答時間Tは短くなる場合がある。一方、ブレーキ100内部に異物が混入した場合アーマチュア10の摺動性が低下するため図14に示すように第2のブレーキ応答時間Tが長くなる場合がある。 Next, the operation of brake 100 will be described. When the brake command signal becomes 0, the relay circuit of the brake drive circuit 110 is opened and the power supply to the coil 7 is cut off. After that, when the magnetic flux between the coil 7 and the armature 10 becomes smaller and the force with which the coil 7 attracts the armature 10 becomes smaller than that of the spring 9, the armature 10 is displaced in the direction of the friction material 5, and the brake 100 is operated. Therefore, as shown in FIG. 5, the brake 100 operates after a certain period of time or more has elapsed since the brake command signal changed from 1 to 0. Also, this second brake response time T4 varies depending on the state of the brake 100. FIG. For example, when the magnetic flux generated between the coil 7 and the armature 10 decreases due to an abnormality in the coil 7, the extension force of the spring 9 relatively increases . may be shorter. On the other hand, when foreign matter enters the inside of the brake 100, the slidability of the armature 10 is lowered, so that the second brake response time T4 may become longer as shown in FIG.
 本実施の形態における状態判定器102の動作について説明する。
 まずブレーキ100を開放するときの第1のブレーキ応答時間Tに基づいてブレーキ100の状態を判定する状態判定器102の動作について図15、16を用いて説明する。状態判定器102は図16に示すサンプリング区間に含まれる状態信号を基にブレーキ100の状態を判定する。サンプリング区間は例として、ブレーキ指令信号が0から1に変化した時刻からサンプリング数N11個分となるまでの区間とする。サンプリング数N11はアーマチュア10の動作によって発生する減衰波を十分に取得可能な値とする。
The operation of state determiner 102 in this embodiment will be described.
First, the operation of the state determiner 102 for determining the state of the brake 100 based on the first brake response time T2 when the brake 100 is released will be described with reference to FIGS. A state determiner 102 determines the state of the brake 100 based on the state signal included in the sampling interval shown in FIG. For example, the sampling interval is the interval from the time when the brake command signal changes from 0 to 1 until the sampling number N11 . The number of samplings N11 is set to a value that allows sufficient attenuation waves generated by the operation of the armature 10 to be obtained.
 第1のブレーキ応答時間Tは、サンプリングを開始した時刻からノイズなどを考慮して、状態信号が一定以下又は一定以上となる最初の時刻までの時間とする。最初の時刻を決定するためのしきい値としてth11、th12を定め、ブレーキ指令信号が0から1に変化した時刻から状態信号がth12以下又はth11以上となる最初の時刻までの時間を第1のブレーキ応答時間Tとする。th11とth12は異なる大きさとしてもよいが、ここでは例として同じ大きさとする。 The first brake response time T2 is the time from the time when sampling is started to the first time when the state signal becomes below or above a certain level, taking into account noise and the like. th11 and th12 are defined as threshold values for determining the first time, and the time from the time when the brake command signal changes from 0 to 1 to the first time when the state signal becomes less than th12 or greater than th11 is defined as the first time. Assume that the brake response time is T2 . Although th11 and th12 may have different sizes, they are assumed to have the same size as an example here.
 時間しきい値T13、T14とは、ブレーキ100が正常に動作している状態の第1のブレーキ応答時間Tから、正常にブレーキ100が動作している範囲において予め決定した、ブレーキ100の状態を判定するために設定したしきい値のことである。第1のブレーキ応答時間Tが時間しきい値T13より小さい場合、又は時間しきい値T14より大きい場合にブレーキ100が異常と判定する。そのため、例えば時間しきい値T13、T14は、T13が第1のブレーキ応答時間Tより小さく、T14が第1のブレーキ応答時間Tより大きく(T13<T<T14)設定するとよい。例えば、ブレーキ正常状態における第1のブレーキ応答時間Tは0.5[s]として、時間しきい値T13、T14を定めるとよい。また、ブレーキ100の状態によってはサンプリング区間に状態信号がth12以下、又はth11以上となるデータが存在しない場合がある。状態信号の最大値をA11とし、最小値をA12とすると、下記式(9)又は(10)どちらかを満たす場合、ブレーキ100に異常があると判定する。 The time thresholds T13 and T14 are states of the brake 100 determined in advance within a range in which the brake 100 is operating normally from the first brake response time T2 in which the brake 100 is operating normally. It is a threshold value set for judging If the first brake response time T2 is smaller than the time threshold T13 or larger than the time threshold T14, it is determined that the brake 100 is abnormal. Therefore, for example, the time thresholds T13 and T14 should be set such that T13 is smaller than the first brake response time T2 and T14 is larger than the first brake response time T2 (T13< T2 <T14). For example, the time thresholds T13 and T14 may be determined assuming that the first brake response time T2 in the brake normal state is 0.5 [s]. Further, depending on the state of the brake 100, there may be no data in which the state signal is th12 or less or th11 or more in the sampling period. Assuming that the maximum value of the state signal is A 11 and the minimum value is A 12 , it is determined that the brake 100 is abnormal when either of the following equations (9) or (10) is satisfied.
(数9)
 th11>A11  式(9)
(Number 9)
th11>A Formula 11 (9)
(数10)
 th12<A12  式(10)
(Number 10)
th12<A 12 Formula (10)
 上記の処理を図15のフローチャートを用いて説明する。ブレーキ指令信号が0から1に変化したとき図15に示す処理が開始する。ステップS11では、上述したように、ブレーキ指令信号が0から1に変化した時刻からサンプリング数N11個分となるまで状態信号を取得しS12に移動する。S12においては数式(9)又は(10)を満たしているか判定する。満たす場合、ブレーキ100に異常があると判定されS15においてアラーム表示の処理を行った後、処理を終了する。S12において数式(9)又は(10)のどちらも満たさない場合S13に進む。 The above processing will be described with reference to the flowchart of FIG. When the brake command signal changes from 0 to 1, the processing shown in FIG. 15 starts. In step S11, as described above, the state signal is obtained from the time when the brake command signal changes from 0 to 1 until the number of samplings reaches N 11 , and the process proceeds to S12. In S12, it is determined whether the formula (9) or (10) is satisfied. If the conditions are satisfied, it is determined that the brake 100 has an abnormality, and after performing an alarm display process in S15, the process ends. If neither formula (9) nor (10) is satisfied in S12, the process proceeds to S13.
 S13においては上述した方法により第1のブレーキ応答時間Tを決定した後S14に進む。S14においては下記式(11)を満たすか否かを判定する。 In S13, the first brake response time T2 is determined by the method described above, and then the process proceeds to S14. In S14, it is determined whether or not the following formula (11) is satisfied.
(数11)
 T13<T<T14  式(11)
(Number 11)
T13< T2 <T14 Formula (11)
 式(11)の条件を満たさない場合ブレーキ100に異常があると判定し、S15において表示器106にてアラーム表示を行った後処理を終了する。S14において条件を満たした場合、ブレーキ100は正常な状態であると判定し処理を終了する。 If the condition of formula (11) is not satisfied, it is determined that there is an abnormality in the brake 100, an alarm is displayed on the display 106 in S15, and the process is terminated. If the condition is satisfied in S14, it is determined that the brake 100 is in a normal state, and the process ends.
 次に、ブレーキ100を作動するときの第2のブレーキ応答時間Tに基づいてブレーキ100の状態を判定する状態判定器102の動作を説明する。状態判定器102は図16に示すサンプリング区間に含まれる状態信号を基にブレーキ100の状態を判定する。例としてサンプリング区間は、ブレーキ指令信号が1から0に変化した時刻からサンプリング数N12個分となるまでの区間とする。サンプリング数N12はアーマチュア10の動作によって発生する減衰波を十分に取得可能な値とする。 Next, the operation of the state determiner 102 that determines the state of the brake 100 based on the second brake response time T4 when the brake 100 is operated will be described. A state determiner 102 determines the state of the brake 100 based on the state signal included in the sampling interval shown in FIG. For example, the sampling interval is the interval from the time when the brake command signal changes from 1 to 0 until the number of samplings reaches N12 . The number of samplings N12 is set to a value that can sufficiently acquire damped waves generated by the operation of the armature 10 .
 第2のブレーキ応答時間Tは、サンプリングを開始した時刻からノイズなどを考慮して、状態信号が一定以下又は一定以上となる最初の時刻までの時間とする。最初の時刻を決定するためのしきい値としてth15、th16を定め、ブレーキ指令信号が0から1に変化した時刻から状態信号がth16以下又はth15以上となる最初の時刻までの時間を第2のブレーキ応答時間Tとする。th15とth16は異なる大きさとしてもよいが、ここでは例として同じ大きさとする。 The second brake response time T4 is the time from the time when sampling is started to the first time when the state signal becomes below or above a certain level, taking into account noise and the like. th15 and th16 are defined as threshold values for determining the first time, and the time from the time when the brake command signal changes from 0 to 1 to the first time when the state signal becomes less than or equal to th16 or greater than or equal to th15 is defined as a second time. Assume that the brake response time is T4 . Although th15 and th16 may have different sizes, they are assumed to have the same size as an example here.
 時間しきい値T17、T18は、ブレーキ100が正常に動作している状態の第2のブレーキ応答時間Tから、正常にブレーキ100が動作している範囲において予め決定した、ブレーキ100の状態を判定するために設定したしきい値のことである。第2のブレーキ応答時間Tが時間しきい値T17より小さい場合、又は時間しきい値T18より大きい場合にブレーキ100が異常と判定する。そのため、例えば時間しきい値T17、T18は、T17が第1のブレーキ応答時間Tより小さく、T18が第1のブレーキ応答時間Tより大きく(T17<T<T18)設定するとよい。例えば、ブレーキ正常状態におけるTは1.0[s]としてしきい値th17、18を定めるとよい。また、ブレーキ100の状態によってはサンプリング区間に状態信号がth16以下、又はth15以上となるデータが存在しない場合がある。状態信号の最大値をA13とし、最小値をA14とする。このとき、下記式(12)又は式(13)を満たす場合ブレーキ100に異常があると判定する。 The time thresholds T17 and T18 determine the state of the brake 100 in a range in which the brake 100 is operating normally from the second brake response time T4 in which the brake 100 is operating normally. It is a threshold value set for judgment. If the second brake response time T4 is less than the time threshold T17 or greater than the time threshold T18, it is determined that the brake 100 is abnormal. Therefore, for example, the time thresholds T17 and T18 should be set such that T17 is smaller than the first brake response time T2 and T18 is larger than the first brake response time T2 (T17< T4 <T18). For example, the thresholds th17 and th18 may be determined by setting T4 to 1.0 [s] in the brake normal state. Further, depending on the state of the brake 100, there may be no data in which the state signal is th16 or less or th15 or more in the sampling interval. Let the maximum value of the state signal be A13 and the minimum value be A14 . At this time, if the following formula (12) or formula (13) is satisfied, it is determined that the brake 100 is abnormal.
(数12)
 th15>A13  式(12)
(Number 12)
th15>A Formula 13 (12)
(数13)
 th16<A14  式(13)
(Number 13)
th16<A Formula 14 (13)
 ブレーキ指令信号が1から0に変化したときブレーキ100を開放するときの状態を判定する処理が開始する。図16中のステップS16においては、上述したように、ブレーキ指令信号が1から0に変化した時刻からサンプリング数がN12個となるまで状態信号を取得し、ステップS17に移動する。S17においては式(12)又は式(13)を満たすか判定する。条件を満たす場合、ブレーキ100に異常があると判定し、S20によりアラーム表示の処理を行った後、処理を終了する。式(12)又は式(13)どちらも満たさない場合S18に進む。S18においては上述した方法により第2のブレーキ応答時間Tを決定し、S19に進む。S19においては下記式(14)を満たすか判定する。 When the brake command signal changes from 1 to 0, the process of determining the state when the brake 100 is released starts. In step S16 in FIG. 16, as described above, the state signal is obtained from the time when the brake command signal changes from 1 to 0 until the number of samples reaches N12 , and the process moves to step S17. In S17, it is determined whether the formula (12) or formula (13) is satisfied. If the condition is satisfied, it is determined that there is an abnormality in the brake 100, an alarm display process is performed in S20, and then the process ends. If neither formula (12) nor formula (13) is satisfied, the process proceeds to S18. In S18, the second brake response time T4 is determined by the method described above, and the process proceeds to S19. In S19, it is determined whether the following formula (14) is satisfied.
(数14)
 T17<T<T18  式(14)
(number 14)
T17< T4 <T18 Formula (14)
 式(14)の条件を満たさない場合ブレーキ100に異常があると判定し、S20においてアラーム表示の処理を行った後処理を終了する。S19において式(14)の条件を満たした場合、ブレーキ100は正常な状態であると判定し処理を終了する。 If the condition of expression (14) is not satisfied, it is determined that there is an abnormality in the brake 100, and the processing is terminated after performing alarm display processing in S20. If the condition of formula (14) is satisfied in S19, it is determined that the brake 100 is in a normal state, and the process ends.
 以上のように、実施の形態2のブレーキ状態判定装置においては、第1のブレーキ応答時間T又は第2のブレーキ応答時間Tを基にブレーキ100の状態を判定することが可能であることから、設計上加速度センサの設置が困難な小さなブレーキにおいてもセンサの大きさ又は形状の制約を受けることなく、また必要に応じてセンサの着脱可能であることから、幅広い装置に適用できる。 As described above, in the brake state determination device of Embodiment 2, it is possible to determine the state of the brake 100 based on the first brake response time T2 or the second brake response time T4 . Therefore, even in a small brake where it is difficult to install an acceleration sensor due to its design, there is no restriction on the size or shape of the sensor, and the sensor can be attached and detached as necessary, so it can be applied to a wide range of devices.
実施の形態3.
 実施の形態3では、ブレーキ100が正常状態において取得した時系列データである学習済み状態波形と、リアルタイムに加速度センサ12から取得した状態波形とを比較した結果に基づいてブレーキ100の状態を判定する方法について説明をする。なお本実施の形態において、構成自体は実施の形態1と同様であり、状態判定器102の動作のみが異なるため詳細は省略をする。
Embodiment 3.
In the third embodiment, the state of the brake 100 is determined based on the results of comparison between the learned state waveform, which is time-series data obtained when the brake 100 is in a normal state, and the state waveform obtained from the acceleration sensor 12 in real time. Explain how. In this embodiment, the configuration itself is the same as that of the first embodiment, and only the operation of the state determiner 102 is different, so the details will be omitted.
 本実施の形態における状態判定器102の動作について説明する。
 まずブレーキ100を開放するときの状態判定器102の処理について図19、20を用いて説明する。状態判定器102は、ブレーキ100が正常状態においてアーマチュア10が動作する瞬間からアーマチュア10の動作によって発生する減衰波が十分に現れるまでのデータが含まれるよう状態波形を取得し、これを学習済み状態波形とする。ここでは、例としてブレーキ指令信号が0から1に変化した時刻からサンプリング数N31個分の状態波形を取得する。サンプリング数N31はアーマチュア10の動作によって発生する減衰波が十分に含まれるような値とする。この時取得した学習済み状態波形をXOLとする。
The operation of state determiner 102 in this embodiment will be described.
First, the processing of the state determiner 102 when the brake 100 is released will be described with reference to FIGS. 19 and 20. FIG. The state determiner 102 acquires a state waveform so as to include data from the moment when the armature 10 operates when the brake 100 is in a normal state until the attenuation wave generated by the operation of the armature 10 appears sufficiently, and uses it as a learned state. Waveform. Here, as an example, state waveforms for N 31 samples are acquired from the time when the brake command signal changes from 0 to 1. FIG. The sampling number N31 is set to a value that sufficiently includes damping waves generated by the operation of the armature 10 . Let the learned state waveform acquired at this time be XOL.
 また、ブレーキ100を開放するときのリアルタイムに取得した状態波形をXORとする。同様に、XORのサンプリング数をN31個とし、i番目のデータをXORと表すとき、XORはブレーキ指令信号が0から1に変化した時刻のデータとする。このとき、学習済み状態波形とリアルタイム状態波形の差を表す誤差量E1を式(15)と定義する。 Also, let XOR be the state waveform acquired in real time when the brake 100 is released. Similarly, when the number of XOR samples is N 31 and the i-th data is expressed as XOR i , XOR i is the data at the time when the brake command signal changes from 0 to 1. At this time, the error amount E1 representing the difference between the learned state waveform and the real-time state waveform is defined as Equation (15).
(数15)

Figure JPOXMLDOC01-appb-I000001
           式(15)
(Number 15)

Figure JPOXMLDOC01-appb-I000001
Formula (15)
 ここでは例として、各点のXOLとXORの差の二乗和を誤差量としたが、例えば各点のXOLとXORの差の絶対値の和を誤差量としてもよい。図19にブレーキ100が正常状態においてブレーキ100を開放したときに取得した状態波形を実線、ブレーキ100に異常がある状態でブレーキ100を開放したときに取得した状態波形を破線により示す。図19に示すように、ブレーキ100に異常がある状態においてブレーキ100を開放すると加速度の大きさが小さくなる、あるいは第1のブレーキ応答時間が長くなることがある。ここでは例として、加速度の大きさが小さくなる場合を示したが、加速度の大きさが大きくなる場合もある。また同じく第1のブレーキ応答時間は短くなる場合もある。したがって、ブレーキ100に異常がある場合に誤差量E1は、正常状態の誤差量E1より大きくなる。誤差量E1とあらかじめ設定したしきい値th21の関係が下記式(16)を満たさないときブレーキ100の状態に異常があると判定できる。 Here, as an example, the sum of the squares of the differences between the XOL and XOR at each point is used as the error amount, but for example, the sum of the absolute values of the differences between the XOL and XOR at each point may be used as the error amount. FIG. 19 shows the state waveform acquired when the brake 100 is released when the brake 100 is normal, and the state waveform acquired when the brake 100 is released when the brake 100 is abnormal is shown by the broken line. As shown in FIG. 19, when the brake 100 is released when there is an abnormality in the brake 100, the acceleration may decrease or the first brake response time may become longer. Here, as an example, the case where the magnitude of the acceleration is small is shown, but there are cases where the magnitude of the acceleration is large. Similarly, the first brake response time may also be shortened. Therefore, when there is an abnormality in the brake 100, the error amount E1 becomes larger than the error amount E1 in the normal state. When the relationship between the error amount E1 and the preset threshold value th21 does not satisfy the following formula (16), it can be determined that the state of the brake 100 is abnormal.
(数16)
 E1<th21   式(16)
(Number 16)
E1<th21 Formula (16)
 以上の処理をフローチャート図20により説明する。ブレーキ指令信号が0から1に変化したとき、ブレーキ100が開放されるときのブレーキ100の状態を判定する処理が開始される。S31においては状態判定器102がサンプリング数N31個分の状態波形を取得してS32に進む。S32においては式(15)と定義した誤差量E1を決定しS33に進む。S33においては、式(16)を満たさない場合異常と判定する。異常と判定した場合S34に進み表示器106にてアラーム表示を行った後、状態判定器102の処理を終了する。一方S33において式(16)を満たす場合、ブレーキ100は正常と判定され、状態判定器102の処理を終了する。 The above processing will be described with reference to the flow chart of FIG. When the brake command signal changes from 0 to 1, the process of determining the state of brake 100 when brake 100 is released is started. In S31, the state determiner 102 acquires state waveforms for N 31 samples, and the process proceeds to S32. In S32, the error amount E1 defined by the equation (15) is determined, and the process proceeds to S33. In S33, it is determined that there is an abnormality if the equation (16) is not satisfied. If it is determined to be abnormal, the process proceeds to S34, displays an alarm on the display 106, and then terminates the processing of the state determination device 102. FIG. On the other hand, if the formula (16) is satisfied in S33, the brake 100 is determined to be normal, and the processing of the state determiner 102 ends.
 次にブレーキ100を作動するときの状態判定器102の処理について図21、22を用いて説明する。状態判定器102はブレーキ100が正常状態においてアーマチュア10が動作する瞬間からアーマチュア10の動作によって発生する減衰波が十分に現れるまでの区間が含まれるように状態波形を取得し学習済み状態波形とする。ここでは、例としてブレーキ指令信号が1から0に変化した時刻からサンプリング数N42個分の状態波形を取得する。サンプリング数N42はアーマチュア10の動作によって発生する減衰波が十分に含まれるような値とする。このときの学習済み状態波形をXCLとする。i番目の学習済み状態波形のデータをXCLと表す。また、ブレーキ100を作動するときの加速度センサ12によりリアルタイムに取得した状態波形をXCRとする。同様に、XCRのサンプリング数をN42個とし、i番目のデータをXCRと表す。XCRは、ブレーキ指令信号が1から0に変化した時刻のデータとする。このとき、学習済み状態波形とリアルタイム状態波形との差を表す誤差量E2を下記式(17)と定義する。 Next, processing of the state determiner 102 when the brake 100 is operated will be described with reference to FIGS. 21 and 22. FIG. The state determiner 102 acquires a state waveform so as to include a section from the moment when the armature 10 operates when the brake 100 is in a normal state until the attenuation wave generated by the operation of the armature 10 sufficiently appears, and sets it as a learned state waveform. . Here, as an example, state waveforms for N 42 samples are obtained from the time when the brake command signal changes from 1 to 0. FIG. The sampling number N42 is set to a value that sufficiently includes damped waves generated by the operation of the armature 10. FIG. Let the learned state waveform at this time be XCL. The i-th learned state waveform data is represented as XCL i . Also, let XCR be a state waveform acquired in real time by the acceleration sensor 12 when the brake 100 is operated. Similarly, the number of XCR samples is N42 , and the i-th data is represented as XCR i . XCR i is data at the time when the brake command signal changes from 1 to 0. At this time, the error amount E2 representing the difference between the learned state waveform and the real-time state waveform is defined as the following equation (17).
(数17)

Figure JPOXMLDOC01-appb-I000002
             式(17)
(number 17)

Figure JPOXMLDOC01-appb-I000002
Equation (17)
 ここでは例として、各点のXCLとXCRの差の二乗和を誤差量としたが、例えば各点のXCLとXCRの差の絶対値の和を誤差量としてもよい。図21にブレーキ100が正常状態においてブレーキ100を作動したときに取得した状態波形を実線、ブレーキ100に異常がある状態においてブレーキ100を作動したときに取得した状態波形を破線により示す。図21に示すように、ブレーキ100に異常がある状態においてブレーキ100を作動させたとき、加速度の大きさが小さくなる、あるいは第2のブレーキ応答時間が長くなることがある。ここでは例として加速度の大きさが小さくなる例を示したが大きくなる場合もある。また同様に、応答時間が短くなる場合もある。そのため、ブレーキ100が正常な状態と異常な状態において取得した状態波形の各サンプリング点の値の差が大きくなる。したがって、E2とあらかじめ設定したしきい値th22の関係が下記式(18)を満たさない場合、ブレーキ100に異常があると判定できる。 Here, as an example, the sum of the squares of the differences between XCL and XCR at each point is used as the error amount, but for example, the sum of the absolute values of the differences between XCL and XCR at each point may be used as the error amount. FIG. 21 shows a state waveform obtained when the brake 100 is operated in a normal state with a solid line, and a state waveform obtained when the brake 100 is operated with an abnormality in a broken line. As shown in FIG. 21, when the brake 100 is operated in a state where the brake 100 is abnormal, the magnitude of the acceleration may become small, or the second brake response time may become long. Here, an example in which the magnitude of the acceleration decreases is shown as an example, but it may increase in some cases. Similarly, the response time may also be shortened. Therefore, the difference between the values of the sampling points of the state waveforms obtained when the brake 100 is in a normal state and when it is in an abnormal state becomes large. Therefore, when the relationship between E2 and the preset threshold value th22 does not satisfy the following formula (18), it can be determined that the brake 100 has an abnormality.
(数18)
 E2<th22   式(18)
(Number 18)
E2<th22 Equation (18)
 上記の処理についてフローチャート図22を用いて説明する。ブレーキ指令信号が1から0に変化したとき処理が開始される。S35においてはサンプリング数N42個分の状態波形を取得してS36に進む。S36においては数式(17)で定義した誤差量E2を決定し、S37に進む。S37においては、式(18)を満たさない場合、S38に進み表示器106にアラーム表示を行った後状態判定器102の処理を終了する。一方S37において式(18)を満たす場合、ブレーキ100は正常な状態と判定し状態判定器102の処理を終了する。このように、学習済み状態波形とリアルタイム状態波形を比較した結果に基づいてブレーキ100の状態を判定することが可能である。 The above processing will be described with reference to the flow chart of FIG. Processing is started when the brake command signal changes from 1 to 0. In S35, state waveforms corresponding to N 42 samples are acquired, and the process proceeds to S36. In S36, the error amount E2 defined by Equation (17) is determined, and the process proceeds to S37. In S37, if the expression (18) is not satisfied, the process proceeds to S38, displays an alarm on the display 106, and then terminates the processing of the state determiner 102. FIG. On the other hand, if the formula (18) is satisfied in S37, the brake 100 is determined to be in a normal state, and the processing of the state determiner 102 ends. Thus, it is possible to determine the state of the brake 100 based on the result of comparing the learned state waveform and the real-time state waveform.
 以上のように実施の形態3においては、学習済み状態波形と、リアルタイム状態波形とを比較した結果に基づいてブレーキ100の状態を判定することにより、設計上加速度センサの設置が困難な小さなブレーキにおいてもセンサの大きさ又は形状の制約を受けることなく、また必要に応じてセンサの着脱可能であることから、幅広い装置に適用できる。 As described above, in the third embodiment, the state of the brake 100 is determined based on the result of comparing the learned state waveform and the real-time state waveform. Since the sensor is not restricted by the size or shape of the sensor, and the sensor can be attached and detached as necessary, it can be applied to a wide range of devices.
1 モータ筐体、2 回転力発生部、3 回転軸、4 ブレーキロータ、5 摩擦材、7 コイル、8 フィールド、9 スプリング、10 アーマチュア、11 ブレーキ筐体、12 加速度センサ、100 ブレーキ、101 デジタル変換器、102 状態判定器、103 RAM、104 ROM、105 CPU、106 表示器、107 ブレーキ主制御器、108 デジタル・アナログ変換器、109 ブレーキ電源、110 ブレーキ駆動回路、111 筐体、112 入力部、113 出力部、114 判断部 1 Motor housing, 2 Rotational force generator, 3 Rotating shaft, 4 Brake rotor, 5 Friction material, 7 Coil, 8 Field, 9 Spring, 10 Armature, 11 Brake housing, 12 Acceleration sensor, 100 Brake, 101 Digital conversion device, 102 state determiner, 103 RAM, 104 ROM, 105 CPU, 106 display, 107 brake main controller, 108 digital/analog converter, 109 brake power supply, 110 brake drive circuit, 111 housing, 112 input section, 113 output unit, 114 determination unit

Claims (12)

  1.  回転力を発生させる回転力発生部と、
     前記回転力発生部において発生した回転力により回転する回転軸と、
     前記回転軸が連通し前記回転軸の回転を制動するブレーキと、
     前記回転力発生部及び前記ブレーキを覆う筐体と、
     前記筐体の外部に配置され前記筐体に接触するように固定された加速度センサと、
     前記加速度センサにより取得した加速度と前記ブレーキが正常に動作している状態の加速度との比較をして前記ブレーキの状態を判定する状態判定器と、
     を有するサーボモータのブレーキ状態判定装置。
    a rotational force generator that generates a rotational force;
    a rotating shaft rotated by the rotating force generated in the rotating force generating unit;
    a brake that communicates with the rotating shaft and brakes the rotation of the rotating shaft;
    a housing that covers the rotational force generating unit and the brake;
    an acceleration sensor arranged outside the housing and fixed so as to be in contact with the housing;
    a state determiner that determines the state of the brake by comparing the acceleration acquired by the acceleration sensor with the acceleration in the state in which the brake is operating normally;
    A braking state determination device for a servo motor having
  2.  前記筐体は、前記回転力発生部を覆うモータ筐体と前記ブレーキを覆うブレーキ筐体とからなり、前記モータ筐体と前記ブレーキ筐体とが隣接していることを特徴とする請求項1に記載のサーボモータのブレーキ状態判定装置。 2. The housing includes a motor housing that covers the rotational force generating section and a brake housing that covers the brake, and the motor housing and the brake housing are adjacent to each other. 3. A brake state determination device for a servomotor according to claim 1.
  3.  前記状態判定器は、前記加速度センサにより取得した加速度の最大振幅を用いて前記ブレーキの状態判定を行うことを特徴とする請求項1又は2に記載のサーボモータのブレーキ状態判定装置。 The brake state determination device for a servo motor according to claim 1 or 2, wherein the state determiner determines the state of the brake using the maximum amplitude of acceleration acquired by the acceleration sensor.
  4.  前記状態判定器は、正常に前記ブレーキが動作をしている範囲で予め決定した振幅しきい値と前記加速度センサで取得した前記加速度の前記最大振幅とを比較し前記ブレーキの状態を判定することを特徴とする請求項3に記載のサーボモータのブレーキ状態判定装置。 The state determiner compares a predetermined amplitude threshold within a range in which the brake operates normally with the maximum amplitude of the acceleration acquired by the acceleration sensor to determine the state of the brake. 4. The brake state determination device for a servomotor according to claim 3.
  5.  前記振幅しきい値は、正常に前記ブレーキが動作している範囲内での2値であり、前記加速度センサで取得した前記加速度が前記2値の間にある場合前記ブレーキが正常であると判定することを特徴とする請求項4に記載のサーボモータのブレーキ状態判定装置。 The amplitude threshold is a binary value within a range in which the brake operates normally, and it is determined that the brake is normal when the acceleration acquired by the acceleration sensor is between the two values. 5. The brake state determination device for a servomotor according to claim 4, wherein:
  6. 前記状態判定器は、前記加速度センサにより取得した前記加速度から求めたブレーキ応答時間を用いて前記ブレーキの状態を判定し、前記ブレーキ応答時間は、前記ブレーキが開放状態から作動状態に切り替わるまでの時間又は前記ブレーキが作動状態から開放状態に切り替わるまでの時間であることを特徴とする請求項1又は2に記載のサーボモータのブレーキ状態判定装置。 The state determiner determines the state of the brake using the brake response time obtained from the acceleration acquired by the acceleration sensor, and the brake response time is the time required for the brake to switch from an open state to an operating state. 3. A servomotor brake state determination device according to claim 1 or 2, characterized in that it is a time until said brake is switched from an operating state to an open state.
  7.  前記状態判定器は、前記ブレーキが正常に動作している状態の前記ブレーキ応答時間と、正常に前記ブレーキが動作している範囲で予め決定した時間しきい値とを比較して前記ブレーキの状態を判定することを特徴とする請求項6に記載のサーボモータのブレーキ状態判定装置。 The state determiner compares the brake response time in a state in which the brake is operating normally with a predetermined time threshold within a range in which the brake is operating normally, and determines the state of the brake. 7. The brake state determination device for a servomotor according to claim 6, wherein the determination is made as follows.
  8.  前記時間しきい値は、正常に前記ブレーキが動作している範囲内での2値であり、前記ブレーキ応答時間が前記2値の間にある場合前記ブレーキが正常であると判定することを特徴とする請求項7に記載のサーボモータのブレーキ状態判定装置。 The time threshold is a binary value within a range in which the brake operates normally, and it is determined that the brake is normal when the brake response time is between the two values. 8. The brake state determination device for a servomotor according to claim 7.
  9.  回転力を発生させる回転力発生部と、
     前記回転力発生部で発生した回転力により回転する回転軸と、
     前記回転軸の回転を制動するブレーキと、
     前記回転軸が連通した前記回転力発生部及び前記ブレーキを覆う筐体と、
     前記筐体の外部に固定された加速度センサと、
     前記ブレーキが正常状態と判定された学習済み状態波形と前記加速度センサにより取得した波形とを比較して前記ブレーキの状態を判定する状態判定器と、
     を有するサーボモータのブレーキ状態判定装置。
    a rotational force generator that generates a rotational force;
    a rotating shaft rotated by the rotating force generated by the rotating force generating unit;
    a brake that brakes the rotation of the rotating shaft;
    a housing that covers the rotational force generating unit and the brake, with which the rotating shaft communicates;
    an acceleration sensor fixed to the outside of the housing;
    a state determiner that determines the state of the brake by comparing a learned state waveform, in which the brake is determined to be in a normal state, with a waveform acquired by the acceleration sensor;
    A braking state determination device for a servo motor having
  10.  前記筐体は、前記回転力発生部を覆うモータ筐体と前記ブレーキを覆うブレーキ筐体とからなり、前記モータ筐体と前記ブレーキ筐体とが隣接していることを特徴とする請求項9に記載のサーボモータのブレーキ状態判定装置。 9. The housing comprises a motor housing covering the rotational force generating section and a brake housing covering the brake, wherein the motor housing and the brake housing are adjacent to each other. 3. A brake state determination device for a servomotor according to claim 1.
  11.  回転力発生部およびブレーキを覆う筐体の外部に固定された加速度センサで取得した加速度を入力する入力部と、
     前記入力部に入力された前記加速度と前記ブレーキが正常に動作している状態の加速度の最大振幅から正常に動作している範囲で予め決定したしきい値とを比較し前記ブレーキの状態を判定する判断部と、
     前記判断部の判定結果を出力する出力部と、
     を有するサーボモータのブレーキ状態判定器。
    an input unit for inputting acceleration obtained by an acceleration sensor fixed to the outside of the housing covering the rotational force generating unit and the brake;
    The brake state is determined by comparing the acceleration input to the input unit with a predetermined threshold within a range of normal operation from the maximum amplitude of the acceleration when the brake is operating normally. a judgment unit to
    an output unit that outputs the determination result of the determination unit;
    A brake state determiner for a servo motor having
  12.  回転力発生部又はブレーキを覆う筐体の外部に固定された加速度センサで取得した加速度を入力する入力部と、
     前記入力部に入力された前記加速度と前記加速度より求めた前記ブレーキが開放状態から作動状態あるいは作動状態から開放状態に切り替わるまでのブレーキ応答時間から正常に前記ブレーキが動作している範囲で予め決定したしきい値とを比較し前記ブレーキの状態を判定する判断部と、
     前記判断部の判定結果を出力する出力部と、
     を有するサーボモータのブレーキ状態判定器。
    an input unit for inputting acceleration acquired by an acceleration sensor fixed to the outside of a housing that covers the rotational force generating unit or the brake;
    Predetermined in a range in which the brake is operating normally from the acceleration input to the input unit and the brake response time until the brake is switched from the released state to the operating state or from the operating state to the released state obtained from the acceleration a determination unit for determining the state of the brake by comparing with the threshold value obtained;
    an output unit that outputs the determination result of the determination unit;
    A brake state determiner for a servo motor having
PCT/JP2021/030025 2021-08-17 2021-08-17 Servo motor brake state judgment device and brake state judgment unit WO2023021575A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022514024A JP7226649B1 (en) 2021-08-17 2021-08-17 Servo motor brake state determination device and brake state determination device
PCT/JP2021/030025 WO2023021575A1 (en) 2021-08-17 2021-08-17 Servo motor brake state judgment device and brake state judgment unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/030025 WO2023021575A1 (en) 2021-08-17 2021-08-17 Servo motor brake state judgment device and brake state judgment unit

Publications (1)

Publication Number Publication Date
WO2023021575A1 true WO2023021575A1 (en) 2023-02-23

Family

ID=85240166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030025 WO2023021575A1 (en) 2021-08-17 2021-08-17 Servo motor brake state judgment device and brake state judgment unit

Country Status (2)

Country Link
JP (1) JP7226649B1 (en)
WO (1) WO2023021575A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672673A (en) * 1992-08-26 1994-03-15 Toshiba Corp Electromagnetic brake device for elevator
JP2009185874A (en) * 2008-02-05 2009-08-20 Sinfonia Technology Co Ltd Electromagnetic connection device
JP2013112501A (en) * 2011-11-30 2013-06-10 Toshiba Elevator Co Ltd Brake for elevator and elevator
US20170234920A1 (en) * 2016-02-16 2017-08-17 Woodward, Inc. Detection of Valve Open Time for Solenoid Operated Fuel Injectors
US20200132149A1 (en) * 2017-09-29 2020-04-30 Rockwell Automation Technologies, Inc. Motor brake system
JP2020147424A (en) * 2019-03-15 2020-09-17 株式会社日立ビルシステム Operating state diagnosis system of elevator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672673A (en) * 1992-08-26 1994-03-15 Toshiba Corp Electromagnetic brake device for elevator
JP2009185874A (en) * 2008-02-05 2009-08-20 Sinfonia Technology Co Ltd Electromagnetic connection device
JP2013112501A (en) * 2011-11-30 2013-06-10 Toshiba Elevator Co Ltd Brake for elevator and elevator
US20170234920A1 (en) * 2016-02-16 2017-08-17 Woodward, Inc. Detection of Valve Open Time for Solenoid Operated Fuel Injectors
US20200132149A1 (en) * 2017-09-29 2020-04-30 Rockwell Automation Technologies, Inc. Motor brake system
JP2020147424A (en) * 2019-03-15 2020-09-17 株式会社日立ビルシステム Operating state diagnosis system of elevator

Also Published As

Publication number Publication date
JP7226649B1 (en) 2023-02-21
JPWO2023021575A1 (en) 2023-02-23

Similar Documents

Publication Publication Date Title
US9513709B2 (en) Haptic feedback generation based on resonant frequency
MX2007007286A (en) Speaker diagnostics based upon driving-point impedance.
KR20200081213A (en) Haptic signal conversion system
JP4645899B2 (en) Pinch detection device
CN109343506B (en) Magnetic suspension bearing controller detection method, system and application
JP2007198923A (en) Testing device
WO2023021575A1 (en) Servo motor brake state judgment device and brake state judgment unit
JPH0260541B2 (en)
US11422629B2 (en) Systems and methods for intelligent waveform interruption
WO2004070924A3 (en) Non-redundant safety monitoring for an electric drive mechanism (with a sensor)
JP3759881B2 (en) Process diagnosis monitoring system
CN108702114B (en) Device and method for detecting revolution of EPB motor without sensor
WO2020080032A1 (en) Information processing device
US11193978B2 (en) Power conversion device, rotating machine system using same, and diagnosis method for same
KR20190032267A (en) Device and method for generating a haptic moment at an actuator
EP3135953A1 (en) Active vibration damping device and design method
JPS62282272A (en) Diagnostic circuit of cross coil type meter
JP2020022260A (en) Machine abnormality prediction device
JPWO2021192187A5 (en)
US20230106184A1 (en) Abnormality determination system, abnormality determination apparatus, and abnormality determination method
EP3725613A1 (en) Vehicle control method and vehicle control device
KR970039463A (en) Automobile collision prevention device and control method
WO2023021596A1 (en) Noise control method and noise control device
JP2000351550A (en) Magnet brake abnormality diagnosis device for elevator
KR940004127A (en) Motor control device and its method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022514024

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE