WO2023021256A1 - Dispositif pour le depot chimique en phase vapeur - Google Patents

Dispositif pour le depot chimique en phase vapeur Download PDF

Info

Publication number
WO2023021256A1
WO2023021256A1 PCT/FR2022/051574 FR2022051574W WO2023021256A1 WO 2023021256 A1 WO2023021256 A1 WO 2023021256A1 FR 2022051574 W FR2022051574 W FR 2022051574W WO 2023021256 A1 WO2023021256 A1 WO 2023021256A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment zone
diffuser
temperature
particles
channel
Prior art date
Application number
PCT/FR2022/051574
Other languages
English (en)
Inventor
Arnaud DELEHOUZE
Rémi Pierre Robert Bouvier
Manon FERNANDEZ
Original Assignee
Safran Ceramics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Ceramics filed Critical Safran Ceramics
Publication of WO2023021256A1 publication Critical patent/WO2023021256A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/342Boron nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/005Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out at high temperatures, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/442Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using fluidised bed process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45514Mixing in close vicinity to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant

Definitions

  • the present invention relates to the field of composite materials with a ceramic matrix, and more particularly to the field of coatings of the reinforcing particles of such materials and their methods of obtaining.
  • Ceramic matrix composite materials have good thermostructural properties, that is to say high mechanical properties which make them suitable for forming structural parts, and the ability to retain these properties at high temperatures.
  • CMC parts can include a textile reinforcement made up of long and continuous fibers woven along the stress directions of the final composite part.
  • the weaving step is an expensive step and the use of a woven fibrous reinforcement can have limitations in the case of parts with complex geometry or small size. Indeed, the minimum weaving pitch may prove to be too coarse for the production of a small geometric detail.
  • reinforcements consisting of particles of small dimensions, and coated with an interphase are obtained by cutting long fibers which are themselves coated. It is however observed on the one hand that the cut sections are not coated and on the other hand that the cutting step causes damage to the coating which can degrade its properties. It is therefore desirable to have a device making it possible to directly coat particles intended to form the reinforcement of a composite material with a ceramic matrix.
  • a device for chemical vapor deposition in a fluidized bed comprising:
  • a reactor comprising a treatment zone in which the chemical vapor deposition in a fluidized bed is intended to be carried out from at least a first and a second reactive gas and a diffuser under the treatment zone delimiting the reactor ,
  • the device configured to heat at least the treatment zone, the device being characterized in that it comprises a first channel for introducing the first reactive gas and a second channel for introducing the second reactive gas, distinct from the first channel, and opening under the diffuser, and in that the first introduction channel is adapted to be moved relative to the heating system.
  • the inventors have observed that a device as described above makes it possible to better control the conditions under which the mixing of the two reactive gases takes place.
  • the mobility of the first introduction channel with respect to the heating system makes it possible to ensure that the mixing of the first and second reactant gases takes place at an optimum gas mixing temperature.
  • the optimum gas mixing temperature is understood as the range of temperatures at which it is advantageous to carry out the mixing of said reactive gases. For example, this makes it possible to avoid any loss of reactant, due to the formation of undesired products, or to improve the mixing conditions of the reactant gases. It will be noted that it is not excluded that the reactive gases may react with each other once mixed at the optimum mixing temperature, provided that such reactions are beneficial for the subsequent formation of the desired deposit.
  • the optimum mixing temperature may correspond to the reaction temperature at which the chemical vapor deposition in a fluidized bed is intended to be carried out.
  • the reactive gases can be mixed directly with the reaction temperature in the treatment zone, in order to react directly when mixed to form the desired deposit.
  • This optimum temperature is specific to each pair of first and second reactive gases chosen, and depends in particular on the physico-chemical characteristics of the reactive gases.
  • the optimum gas mixing temperature is the temperature range between 400°C and 700°C and preferably the temperature range between 400°C and 600°C.
  • the relative position of the first introduction channel with respect to the heating system can be chosen so that the first channel opens into a zone whose temperature is between 400° C. and 700°C, preferably between 400°C and 600°C.
  • the optimum mixing temperature may be greater than or equal to 400°C, or even greater than or equal to 500°C and less or equal to the reaction temperature, or even less than or equal to 700°C, or even less than or equal to 600°C.
  • the optimum mixing temperature makes it possible to avoid the parasitic reactions which could take place between the reactive gases before the treatment zone.
  • the optimum mixing temperature is chosen to prevent the reactions between the reactants from forming a solid product which would lead to an undesired deposit in the device or undesired solid particles suspended in the gas phase.
  • the device makes it possible to choose the optimum temperature for mixing the reactive gases to prevent them from participating in a reaction other than that for producing the coating. It thus provides access to a maximized particle coverage rate, even on small-sized particles.
  • the diffuser present in the device makes it possible, on the one hand, to maintain the particles to be coated in the treatment zone and, on the other hand, allows better homogenization of the gases passing through it.
  • the second introduction channel opens below the diffuser.
  • the second reactive gas passes through the diffuser before entering the treatment zone. This results in a better homogenization of the latter.
  • the diffuser is capable of being moved relative to the heating system. This makes it possible to adjust the temperature in the treatment zone by moving the diffuser away from the heating system if necessary, or on the contrary by bringing it closer.
  • the first introduction channel is able to pass through the diffuser and to open into the treatment zone.
  • the mixing of the two reactive gases takes place directly in the treatment zone, which makes it possible to ensure that no reaction is possible between the reactive gases upstream of the treatment zone and that the reaction between the reactive gases takes place directly in the treatment zone ensuring better deposition efficiency.
  • upstream and downstream are understood in relation to the flow of reactant gases, the reactant gases flowing from upstream to downstream.
  • a zone will be called upstream if it is located below the treatment zone, and a zone will be called downstream if it is located above the treatment zone.
  • the diffuser is located in a zone whose temperature corresponds to the optimum mixing temperature, lower than the reaction temperature.
  • the first introduction channel can be capable of opening out below the diffuser or else into the diffuser.
  • the temperature in the diffuser, or below the diffuser is a function of its distance from the heating system. It is therefore possible to place the latter so that the optimum temperature is reached in the diffuser or below it.
  • the mixture of the first and the second reactive gas passes through all or part of the diffuser before entering the treatment zone. This results in better homogenization of the mixture before it is introduced into the reactor.
  • the heating system allows the treatment zone to be at reaction temperature.
  • the reactor may further comprise a thermal insulator.
  • thermal insulation can be placed between the diffuser and the treatment area.
  • thermal insulation is porous.
  • the presence of the thermal insulation makes it possible to substantially vary the temperature in the reactor while maintaining the diffuser relatively close to the heating system, thus allowing the reaction enclosure as a whole to be of smaller size.
  • the latter can be movable relative to the heating system following the setting in motion of the diffuser supporting the thermal insulator.
  • the thermal insulation By choosing the nature and position of the thermal insulation, it is possible to obtain a temperature below the thermal insulation lower than the reaction temperature of the first and second reactant gases, but corresponding to the optimum mixing temperature. .
  • the particles have a small dimension, that is to say a number average of their largest dimension of between 150 ⁇ m and 500 ⁇ m.
  • particles of these dimensions are particularly suitable for treatment by fluidized bed deposition because they do not tend to agglomerate together in the form of pellets.
  • the first channel for introducing the first reactive gas opens into the treatment zone.
  • the first introduction channel capable of being moved relative to the heating system can be a movable rod.
  • the device further comprises an additional heating system configured to heat a zone downstream of the treatment zone to a temperature greater than or equal to the temperature of the treatment zone.
  • Such a zone downstream provided with an additional heating system is not essential for obtaining the coating as such, but makes it possible to ensure a complete reaction of the reactive gases, and thus to avoid the formation of soot. downstream of the treatment area.
  • the temperature of such a zone downstream of the treatment zone can be between 1400°C and 1600°C.
  • the additional heating system makes it possible to ensure the decomposition of the reactive gases which have not reacted in the treatment zone, so that their decomposition takes place at a chosen location. It thus makes it possible to avoid the formation of soot which may form in the conduits downstream of the treatment zone in the absence of such an additional heating system.
  • the device further comprises an additional heating system configured to heat a zone upstream of the treatment zone, ie a zone below the diffuser. The additional heating system makes it possible, for example, to precisely adjust the temperature upstream of the diffuser to an optimum temperature.
  • the invention also relates to a process for coating particles by chemical vapor deposition in a fluidized bed, comprising at least:
  • the first channel can open into a zone where the temperature is higher by at least 150° C., or even higher by at least 300° C., than the temperature of the zone in which the second channel opens.
  • the temperature difference makes it possible to prevent the mixing between the first and the second reactive gas from taking place at too cold a temperature, so that the unwanted reactions taking place at these temperatures are avoided.
  • the desired coating is a coating of boron nitride
  • such a temperature difference makes it possible to avoid the formation of adducts.
  • the first channel opens into a zone where the temperature is between 400°C and 700°C, and preferably between 500°C and 600°C. This embodiment is particularly preferred in the case where the first reactive gas is BCh and the second reactive gas is NH 3 , or vice versa.
  • the first channel opens into a zone where the temperature is greater than or equal to 400° C., or even greater than or equal to 500° C. and less than or equal to the reaction temperature, or even less than or equal to 700° C. °C, or even less than or equal to 600°C.
  • the reactive gases are organometallics.
  • the method is carried out in a device as described above.
  • the particles are short fibers having an average length less than or equal to 5 mm.
  • the length of a fiber is understood as the largest dimension of said fiber.
  • by average length is meant the average length in number of all of the plurality of short fibers introduced.
  • the particles to be coated are placed on the diffuser.
  • the particles can be arranged on the thermal insulator.
  • Such a method is particularly advantageous with such particles, because it makes it possible to produce a coating directly on short fibers, and to avoid any step of cutting out a longer fiber already coated.
  • a person skilled in the art will choose the first and the second reactive gases from among the known reactive gases to obtain the desired coating.
  • the first and the second reactive gases are BCl3 and NH3, so as to coat the particles with boron nitride. It is understood that each of the BCI 3 and the NH 3 can be either the first or the second reactive gas. The inventors have in fact observed that it is possible to deposit boron nitride on short fibers without causing adducts upstream of the treatment zone by means of a method as described above and by using these reactive gases.
  • the reaction between the reactive gases is not necessarily a direct reaction between the first and second reactive gases.
  • the reaction between the two reactant gases can be a reaction between one or more products obtained by thermal decomposition of the reactant gases.
  • the first and second reactive gases can be chosen from silicon carbide precursors, in particular methyltrichlorosilane and hydrogen, or else Si 3 N 4 precursors, in particular SiH 4 and NH 3 or Sit Ch and NH 3 .
  • the position where the first channel for introducing the first reactive gas opens may vary during the process.
  • the first channel can be moved towards or away from the heating system during the process.
  • the position of the diffuser, or where appropriate of the thermal insulation may vary during the process.
  • This variation makes it possible to precisely adjust the temperature at which the reaction takes place, by moving the treatment zone, delimited by the diffuser or, where appropriate by the thermal insulation, relative to the first heating system.
  • This variation makes it possible to adjust the nature and the crystallinity of the coating layers obtained, since these parameters depend on the temperature at which the reaction takes place, and therefore on the position of the treatment zone relative to the heating system.
  • a coating composed of a first phase of boron nitride having a first level of crystallinity giving the coating properties of resistance to oxidation For the deposition of this first phase, the diffuser supporting the particles to be coated is placed at a distance from the heating system, so that the particles to be coated are at a first temperature. This deposition is followed by the deposition of a coating composed of a second boron nitride phase having a second crystallinity rate, greater than the first crystallinity rate. The second phase is deposited after bringing the diffuser close to the heating system, so that the particles to be coated are at a second temperature, higher than the first temperature. The second level of crystallinity gives the coating crack deflection properties.
  • the method comprises an additional heating step, carried out in a zone downstream of the treatment zone where the temperature is higher than in the treatment zone.
  • the purpose of such a step is to decompose the reactive gases which have not reacted in the treatment zone.
  • FIG. 1 schematically represents a device according to a first configuration able to implement the invention.
  • FIG. 2 schematically represents a device according to a second configuration able to implement the invention.
  • FIG. 3 schematically represents a device according to a third configuration able to implement the invention.
  • the invention relates to a device 100 for chemical vapor deposition.
  • FIG. 1 illustrates such a device 100.
  • the device 100 comprises a first channel 20 for introducing a first reactive gas 22 which opens, in the illustrated embodiment, into a thermal insulator 30.
  • the thermal insulation rests on a diffuser 31 formed by a porous frit.
  • a porous frit participates in the homogenization of the reactive gases which pass through it.
  • the first channel 20 can pass through the porous frit.
  • the porous frit 31 can be a plate of rhodium platinum.
  • the device also comprises a second channel 10 for introducing a second reactive gas 14.
  • the flows of the first 22 and second 14 reactive gases take place respectively in the first 20 and the second 10 gas introduction channels.
  • first and second gas introduction channels 10, 20 can be connected directly to the sources, not shown, of the reactive gases chosen to carry out the reaction.
  • the separate gas introduction channels 10, 20 allow the mixing of the first and second reactive gases 14, 22 to take place in the insulator 30.
  • the thermal insulator 30 may be a porous thermal insulator having a thermal conductivity at 20° C. of less than or equal to 4.0 W.m′ ⁇ K′ 1 , for example less than or equal to 3.0 Wm 1 . K1 .
  • the thermal insulation may have a thermal conductivity at 20° C. greater than or equal to 0.1 Wm ⁇ 1 . K -1 .
  • the volume porosity rate of thermal insulation 30 is greater than 26%, for example greater than or equal to 32%.
  • the thermal insulation 30 makes it possible to obtain a temperature difference between the treatment zone 40, provided with a heating system 50 and the zone below the thermal insulation.
  • the diffuser 31 delimits the reactor 12 below the treatment zone 40.
  • a thermal insulator 30 is additionally present.
  • device 100 may also include other thermal insulators such as those conventionally usually used outside, around or in the walls of a chemical deposition furnace.
  • the thermal insulation is a granular bed.
  • Such a characteristic advantageously participates in further reducing the effective thermal conductivity of the thermal insulator 30, further stabilizing the temperature of the fluidized bed during the deposition of the coating.
  • porosity values correspond to a “loose” filling state, that is to say not regular, or not compact.
  • a bulk stack of zirconia balls having an average diameter d50 equal to 1 mm can be used to form the thermal insulation 30.
  • the wall of device 100 may be mullite or treated alumina.
  • the reactive gases can be BCh and NH 3 whose decomposition at the temperature of the treatment zone 40 makes it possible to obtain reactive compounds, the reaction of which makes it possible to deposit a coating of BN directly on the particles 80 of carbon or ceramics introduced into the treatment zone 40, for example on the diffuser 31.
  • the flows of the first 22 and of the second reactive gas 14 can be obtained by imposing a pressure difference between the ends of the device 100, by means of members known as such, for example pumps, and not represented on Figure 1.
  • the flows of the first 22 and/or of the second reactive gas 14 can also comprise an inert carrier gas, for example dinitrogen.
  • an inert carrier gas for example dinitrogen.
  • the rate of introduction of the carrier gas into a reactor 12 as shown schematically in FIG. 1 can be between 500 standard cubic centimeters per minute and 4000 standard cubic centimeters per minute, for example between 1000 standard cubic centimeters per minute and 2000 standard cubic centimeters per minute.
  • the first introduction channel 20 is a movable rod, the position of which is adjustable in height.
  • the device thus comprises a movement system which makes it possible to move the first introduction channel 20, and possibly the diffuser 31, relative to the heating system 50.
  • the diffuser 31 is porous and delimits the lower part of the reactor 12, into which particles 80 are introduced.
  • the particles 80 are short fibers.
  • the reactive gases introduced, and the decomposition of which makes it possible to obtain the coating on the particles 80 present in the treatment zone 40 also make it possible to obtain a dispersion of the particles 80 which contributes to obtaining a homogeneous coating.
  • FIG. 2 represents a configuration in which the first channel 20 for introducing a first reactive gas 22 opens into the treatment zone 40 allowing a mixing of the first 22 and the second reactive gas 14 directly in the treatment zone.
  • FIG. 3 represents a configuration in which the first channel 20 for introducing a first reactive gas 22 opens out under the diffuser 31, for example at a short distance 23 from the diffuser 31, for example less than or equal to 2 mm. It is understood that this distance 23 is measured in the direction of gas flow between the upper end of the first introduction channel 20 and the diffuser 31.
  • Such particles can for example be made of ceramic material (oxide or non-oxide), such as alumina, silicon carbide or silicon nitride.
  • the spacer particles can be metallic.
  • the average diameter of the 100 ⁇ m and 500 ⁇ m spacing particles The average diameter of the 100 ⁇ m and 500 ⁇ m spacing particles.
  • the spacer particles are present only to promote the distribution of gases and particles to be coated in the fluidized bed.
  • the content by volume of spacer particles, in the mixture with the particles to be coated can be between 70% and 95%.
  • the treatment zone 40 located above the diffuser 31, can be heated by means of a heating system 50 known per se.
  • the treatment zone 40 is followed, in the direction of gas flow, by a zone located downstream 70, the temperature of which can be further increased by means of a additional heating system 60, also known per se, and distinct from the first heating system 50.
  • a zone 70 makes it possible to ensure, thanks to an even higher temperature than that of the treatment zone 40, a decomposition of unreacted reactive gases in treatment zone 40.
  • the device can be implemented for depositing a ceramic material on the particles 80, for example boron nitride, silicon carbide or silicon nitride.

Abstract

L'invention concerne un dispositif (100) pour le dépôt chimique en phase vapeur en lit fluidisé comprenant : un réacteur comprenant une zone de traitement (40) dans laquelle le dépôt chimique en phase vapeur en lit fluidisé est destiné à être réalisé à partir d'au moins un premier (22) et d'un deuxième (14) gaz réactifs et un diffuseur (31) sous la zone de traitement délimitant le réacteur (12), un système de chauffage configuré pour chauffer au moins la zone de traitement, le dispositif étant caractérisé en ce qu'il comprend un premier canal d'introduction (20) du premier gaz réactif et un deuxième canal d'introduction (10) du deuxième gaz réactif, distinct du premier canal, et débouchant sous le diffuseur, et en ce que le premier canal d'introduction est apte à être déplacé par rapport au système de chauffage (50).

Description

Description
Titre de l'invention : Dispositif pour le dépôt chimique en phase vapeur
Domaine Technique
La présente invention concerne le domaine des matériaux composites à matrice céramique, et plus particulièrement le domaine des revêtements des particules de renfort de tels matériaux et leurs procédés d'obtention.
Technique antérieure
Les matériaux composites à matrice céramique (matériaux CMC) possèdent de bonnes propriétés thermostructurales, c'est-à-dire des propriétés mécaniques élevées qui les rendent aptes à constituer des pièces structurales, et la capacité de conserver ces propriétés à hautes températures. Les pièces CMC peuvent comprendre un renfort textile constitué de fibres longues et continues tissées suivant les directions de sollicitation de la pièce composite finale. L'étape de tissage est une étape coûteuse et l'utilisation d'un renfort fibreux tissé peut présenter des limitations dans le cas des pièces de géométrie complexe ou de petite taille. En effet, le pas minimum de tissage peut s'avérer trop grossier pour la réalisation d'un détail géométrique de faible dimension.
Afin de résoudre ce problème, il a été envisagé d'utiliser un renfort non plus constitué de fibres longues continues mais de particules de plus faibles dimensions dispersées dans la matrice. Cependant, il est bien connu que le fonctionnement d'un matériau CMC, nécessite une gestion spécifique des liaisons interfaciales entre renfort et matrice, afin d'accéder au caractère endommageable du composite final. Cette modulation des interfaces est obtenue, classiquement par interposition d'une interphase entre le renfort et la matrice.
De manière classique, des renforts constitués de particules de faibles dimensions, et revêtus d'une interphase sont obtenus en découpant des fibres longues elles-mêmes revêtues. Il est toutefois observé d'une part que les sections de découpe ne sont pas revêtues et d'autre part que l'étape de découpe occasionne un endommagement du revêtement qui peut dégrader ses propriétés. Il est donc souhaitable de disposer d'un dispositif permettant de revêtir directement des particules destinées à former le renfort d'un matériau composite à matrice céramique.
Exposé de l'invention
A cette fin, les inventeurs proposent un dispositif pour le dépôt chimique en phase vapeur en lit fluidisé comprenant :
- un réacteur comprenant une zone de traitement dans laquelle le dépôt chimique en phase vapeur en lit fluidisé est destiné à être réalisé à partir d'au moins un premier et d'un deuxième gaz réactifs et un diffuseur sous la zone de traitement délimitant le réacteur,
- un système de chauffage configuré pour chauffer au moins la zone de traitement, le dispositif étant caractérisé en ce qu'il comprend un premier canal d'introduction du premier gaz réactif et un deuxième canal d'introduction du deuxième gaz réactif, distinct du premier canal, et débouchant sous le diffuseur, et en ce que le premier canal d'introduction est apte à être déplacé par rapport au système de chauffage.
Les inventeurs ont constaté qu'un dispositif tel que décrit ci-dessus permet de contrôler au mieux les conditions dans lesquelles ont lieu le mélange des deux gaz réactifs. Notamment, la mobilité du premier canal d'introduction par rapport au système de chauffage permet d'assurer que le mélange des premier et deuxième gaz réactifs a lieu à une température optimale de mélange des gaz.
La température optimale de mélange des gaz s'entend comme la plage de températures à laquelle il est avantageux de réaliser le mélange desdits gaz réactifs. Par exemple, cela permet d'éviter toute perte de réactif, à cause de la formation de produits non-souhaités, ou d'améliorer les conditions de mélange des gaz réactifs. On notera qu'il n'est pas exclu que les gaz réactifs puisse réagir entre eux une fois mélangés à la température optimale de mélange, pourvu que de telles réactions soient bénéfiques pour la formation ultérieure du dépôt souhaité.
Dans certains cas, la température optimale de mélange peut correspondre à la température de réaction à laquelle le dépôt chimique en phase vapeur en lit fluidisé est destiné à être réalisé. Ainsi, les gaz réactifs peuvent être mélangés directement à la température de réaction dans la zone de traitement, afin de réagir directement lorsqu'ils sont mélangés pour former le dépôt souhaité.
Cette température optimale est propre à chaque couple de premier et deuxième gaz réactifs choisi, et dépend notamment des caractéristiques physico-chimiques des gaz réactifs.
Par exemple, dans le cas particulier où un revêtement de nitrure de bore (BN) est souhaité, par exemple dans le cas où le premier gaz réactif est le BCI3 et le deuxième gaz réactif est le NH3 (ou vice-versa), la température optimale de mélange des gaz est la plage de températures comprises entre 400°C et 700°C et de préférence la plage de températures comprises entre 400°C et 600°C.
Par exemple, lorsqu'un revêtement de BN est souhaité, la position relative du premier canal d'introduction par rapport au système de chauffage peut être choisie de sorte que le premier canal débouche dans une zone dont la température est comprise entre 400°C et 700°C, de préférence comprise entre 400°C et 600°C.
Cette température permet d'éviter que les deux gaz ne se mélangent dans une zone du réacteur trop froide, car les deux gaz pourraient alors former des sels non souhaités (nommés « adduits ») qui d'une part consomment des réactifs sans générer le dépôt souhaité et d'autre part peuvent également provoquer des phénomènes de bouchage indésirables.
Dans un mode de réalisation où un revêtement de carbure de silicium (SiC) est souhaité, notamment lorsque les premier et deuxième gaz réactifs sont choisis parmi le méthyltrichlorosilane et de l'hydrogène, ou lorsqu'un revêtement de Si3N4 est souhaité, notamment lorsque les premier et deuxième gaz réactifs sont choisis parmi SiH4 et NH3 OU SiH2CI2 et NH3, la température optimale de mélange peut être supérieure ou égale à 400°C, voire supérieure ou égale à 500°C et inférieure ou égale à la température de réaction, voire inférieure ou égale à 700°C, voire inférieure ou égale à 600°C.
Dans ce dernier mode de réalisation, la température optimale de mélange permet d'éviter les réactions parasites qui pourraient avoir lieu entre les gaz réactifs avant la zone de traitement. La température optimale de mélange est choisie pour éviter que les réactions entre les réactifs puissent former un produit solide qui aboutirait à un dépôt non-souhaité dans le dispositif ou des particules solides non-souhaitées en suspension dans la phase gazeuse. Le dispositif permet de choisir la température optimale de mélange des gaz réactifs pour éviter qu'ils participent à une autre réaction que celle de production de revêtement. Il permet ainsi d'accéder à un taux de recouvrement des particules maximisé, même sur des particules de faibles dimensions.
Le diffuseur présent dans le dispositif permet d'une part de maintenir les particules à recouvrir dans la zone de traitement et d'autre part, permet une meilleure homogénéisation des gaz qui le traverse.
Le deuxième canal d'introduction débouche en dessous du diffuseur.
Ainsi, le deuxième gaz réactif passe par le diffuseur avant d'entrer dans la zone de traitement. Il en résulte une meilleure homogénéisation de ce dernier.
Dans un mode de réalisation, le diffuseur est apte à être déplacé par rapport au système de chauffage. Cela permet d'ajuster la température dans la zone de traitement en éloignant si besoin le diffuseur du système de chauffage, ou au contraire en le rapprochant.
Dans un premier mode de réalisation, le premier canal d'introduction est apte à passer au travers du diffuseur et à déboucher dans la zone de traitement.
Dans ce mode de réalisation, le mélange des deux gaz réactifs a lieu directement dans la zone de traitement, ce qui permet d'assurer qu'aucune réaction n'est possible entre les gaz réactifs en amont de la zone de traitement et que la réaction entre les gaz réactifs a lieu directement dans la zone de traitement assurant un meilleur rendement de dépôt.
Dans l'ensemble de la demande, les termes « amont » et « aval » sont entendus en relation avec le flux de gaz réactifs, les gaz réactifs circulant d'amont en aval. Une zone sera dite amont si elle se situe en dessous de la zone de traitement, et une zone sera dite aval si elle se situe au-dessus de la zone de traitement. De manière générale, il n'est toutefois pas nécessaire que le mélange entre les gaz réactifs soit réalisé directement dans la zone de traitement pourvu que les gaz réactifs soient alors mélangés à une température optimale.
Dans un mode de réalisation, le diffuseur se trouve dans une zone dont la température correspond à la température optimale de mélange, inférieure à la température de réaction.
Par exemple, le premier canal d'introduction peut être apte à déboucher en-dessous du diffuseur ou bien dans le diffuseur.
La température dans le diffuseur, ou en dessous du diffuseur, est fonction de son éloignement du système de chauffage. Il est donc possible de placer ce dernier de sorte que la température optimale soit atteinte dans le diffuseur ou en dessous de lui.
Dans de tels modes de réalisation, le mélange du premier et du deuxième gaz réactif passe par tout ou partie du diffuseur avant de rentrer dans la zone de traitement. Il en résulte une meilleure homogénéisation du mélange avant son introduction dans le réacteur.
Le système de chauffage permet à la zone de traitement d'être à la température de réaction.
Dans un mode de réalisation, le réacteur peut comprendre en outre un isolant thermique.
Par exemple, l'isolant thermique peut être placé entre le diffuseur et la zone de traitement. Lorsqu'il est présent, l'isolant thermique est poreux.
La présence de l'isolant thermique permet de faire varier sensiblement la température dans le réacteur tout en maintenant le diffuseur relativement proche du système de chauffage, permettant ainsi à l'enceinte réactionnelle dans son ensemble d'être de plus petite dimension.
Dans un mode de réalisation où un isolant thermique est présent, ce dernier peut être mobile par rapport au système de chauffage suite à la mise en mouvement du diffuseur supportant l'isolant thermique. En choisissant la nature et la position de l'isolant thermique, il est possible d'obtenir une température en dessous de l'isolant thermique inférieure à la température de réaction du premier et du deuxième gaz réactifs, mais correspondant à la température optimale de mélange.
Dans un exemple de réalisation, les particules ont une faible dimension, c'est-à-dire une moyenne en nombre de leur plus grande dimension comprise entre 150 pm et 500 pm.
Il est observé que des particules de ces dimensions sont particulièrement adaptées à un traitement par dépôt en lit fluidisé car elles n'ont pas tendance à s'agglomérer entre elles sous forme de pelotes.
Dans un mode de réalisation, le premier canal d'introduction du premier gaz réactif débouche dans la zone de traitement.
Par exemple, le premier canal d'introduction apte à être déplacé par rapport au système de chauffage peut être une canne mobile.
Dans un mode de réalisation, le dispositif comprend en outre un système de chauffage additionnel configuré pour chauffer une zone en aval de la zone de traitement à une température supérieure ou égale à la température de la zone de traitement.
Une telle zone en aval munie d'un système de chauffage additionnel n'est pas indispensable pour l'obtention du revêtement en tant que tel, mais permet d'assurer une réaction complète des gaz réactifs, et d'ainsi éviter la formation de suies en aval de la zone de traitement.
Par exemple la température d'une telle zone en aval de la zone de traitement peut être comprise entre 1400 °C et 1600°C.
Le système de chauffage additionnel permet d'assurer la décomposition des gaz réactifs n'ayant pas réagi dans la zone de traitement, de sorte que leur décomposition ait lieu à un endroit choisi. Il permet ainsi d'éviter la formation de suies qui peuvent se former dans les conduits en aval de la zone de traitement en l'absence d'un tel système de chauffage additionnel. Dans un mode de réalisation, le dispositif comprend en outre un système de chauffage supplémentaire configuré pour chauffer une zone en amont de la zone de traitement, i.e. une zone en dessous du diffuseur. Le système de chauffage supplémentaire permet par exemple d'ajuster précisément la température en amont du diffuseur à une température optimale.
Selon un autre de ses aspects, l'invention concerne encore un procédé de revêtement de particules par dépôt chimique en phase vapeur en lit fluidisé, comprenant au moins :
- l'introduction de particules dans la zone de traitement d'un réacteur, les particules étant en matériau céramique ou en carbone ;
- l'introduction d'un premier gaz réactif dans un premier canal d'introduction de gaz ;
- l'introduction d'un deuxième gaz réactif dans un deuxième canal d'introduction de gaz distinct du premier canal d'introduction de gaz ;
- le chauffage de la zone de traitement jusqu'à une température permettant la réaction des premier et deuxième gaz réactifs dans la zone de traitement de sorte à revêtir les particules, le premier canal d'introduction débouchant dans une zone où la température est supérieure à celle de la zone où débouche le deuxième canal.
Ceci permet de ne mélanger les deux gaz réactifs qu'à une température optimale choisie, et évite ainsi que le mélange n'ait lieu à une température trop basse. De la sorte, puisque les gaz réactifs ne sont pas mélangés avant d'être chauffés, des réactions non-souhaitées qui pourraient consommer les gaz réactifs sans former de revêtement sont évitées, et le rendement est donc amélioré comparativement aux procédés de l'art antérieur.
Dans un mode de réalisation, le premier canal peut déboucher dans une zone où la température est supérieure d'au moins 150°C, voire supérieure d'au moins 300°C, à la température de la zone dans laquelle débouche le deuxième canal.
La différence de température permet d'éviter que le mélange entre le premier et le deuxième gaz réactif ait lieu à une température trop froide, de sorte que les réactions non-souhaitées ayant lieu à ces températures soient évitées. Par exemple, dans le cas où le revêtement souhaité est un revêtement de nitrure de bore, un tel écart de températures permet d'éviter la formation d'adduits.
Dans un mode de réalisation, le premier canal débouche dans une zone où la température est comprise entre 400°C et 700°C, et de préférence entre 500°C et 600°C. Ce mode de réalisation est particulièrement préféré dans le cas où le premier gaz réactif est du BCh et le deuxième gaz réactif est du NH3, ou vice-versa.
Dans un autre mode de réalisation, le premier canal débouche dans une zone où la température est supérieure ou égale à 400°C, voire supérieure ou égale à 500°C et inférieure ou égale à la température de réaction, voire inférieure ou égale à 700°C, voire inférieure ou égale à 600°C. Ce procédé est particulièrement préféré dans le cas où les gaz réactifs sont des organométalliques.
Dans un mode réalisation, le procédé est réalisé dans un dispositif tel que décrit ci- dessus.
Dans un mode de réalisation, les particules sont des fibres courtes ayant une longueur moyenne inférieure ou égale à 5 mm.
La longueur d'une fibre s'entend comme la plus grande dimension de ladite fibre. De plus, par longueur moyenne, il est entendu la longueur moyenne en nombre de l'ensemble de la pluralité de fibres courtes introduites.
Dans un mode de réalisation, les particules à revêtir sont disposées sur le diffuseur. Dans le cas où un isolant thermique est présent, les particules peuvent être disposées sur l'isolant thermique.
Un tel procédé est particulièrement avantageux avec de telles particules, car il permet de réaliser un revêtement directement sur des fibres courtes, et d'éviter toute étape de découpage d'une fibre plus longue déjà revêtue. L'homme du métier choisira le premier et le deuxième gaz réactifs parmi les gaz réactifs connus pour obtenir le revêtement souhaité.
Dans un mode de réalisation, le premier et le deuxième gaz réactifs sont du BCI3 et du NH3, de sorte à revêtir les particules par du nitrure de bore. Il est entendu que chacun du BCI3 et du NH3 peut être soit le premier soit le deuxième gaz réactif. Les inventeurs ont en effet constaté qu'il est possible de déposer du nitrure de bore sur des fibres courtes sans occasionner d'adduits en amont de la zone de traitement au moyen d'un procédé tel que décrit ci-dessus et en utilisant ces gaz réactifs.
Au sens de l'invention, la réaction entre les gaz réactifs n'est pas nécessairement une réaction directe entre les premier et deuxième gaz réactifs. Dans un mode de réalisation, la réaction entre les deux gaz réactifs peut être une réaction entre un ou plusieurs produits obtenus par décomposition thermique des gaz réactifs.
Dans d'autres modes de réalisation, les premier et deuxième gaz réactifs peuvent être choisis parmi des précurseurs de carbure de silicium notamment du méthyltrichlorosilane et de l'hydrogène, ou encore des précurseurs de Si3N4, notamment SiH4 et NH3 ou Sit Ch et NH3.
Dans un mode de réalisation, la position où débouche le premier canal d'introduction du premier gaz réactif peut varier au cours du procédé. Par exemple, dans un mode de réalisation, le premier canal peut être approché ou éloigné du système de chauffage au cours du procédé.
Cette variation permet, comme exposé ci-dessus, d'ajuster finement la nature et la cristallinité des couches de revêtement obtenues, car ces paramètres dépendent notamment de la température, et donc de la position, à laquelle a lieu le mélange des gaz réactifs.
Dans un autre mode de réalisation, la position du diffuseur, ou le cas échéant de l'isolant thermique, peut varier au cours du procédé.
Cette variation permet d'ajuster précisément la température à laquelle a lieu la réaction, en déplaçant la zone de traitement, délimitée par le diffuseur ou, le cas échéant par l'isolant thermique, par rapport au premier système de chauffage. Cette variation permet d'ajuster la nature et la cristallinité des couches de revêtement obtenues, car ces paramètres dépendent de la température à laquelle a lieu la réaction, et donc de la position de la zone de traitement relativement au système de chauffage.
Par exemple, il peut être choisi de déposer au début du procédé un revêtement composé d'une première phase de nitrure de bore ayant un premier taux de cristallinité conférant au revêtement des propriétés de résistance à l'oxydation. Pour le dépôt de cette première phase, le diffuseur supportant les particules à revêtir est placé à distance du système de chauffage, de sorte que les particules à revêtir soient à une première température. Ce dépôt est suivi du dépôt d'un revêtement composé d'une deuxième phase de nitrure de bore ayant un deuxième taux de cristal linité, supérieur au premier taux de cristallinité. La deuxième phase est déposée après avoir approché le diffuseur du système de chauffage, afin que les particules à revêtir soient à une deuxième température, supérieure à la première température. Le deuxième taux de cristallinité confère au revêtement des propriétés de déviation des fissures.
Dans un mode de réalisation, le procédé comprend une étape de chauffage additionnel, réalisée dans une zone en aval de la zone de traitement où la température est plus élevée que dans la zone de traitement.
Une telle étape a pour but de décomposer les gaz réactifs qui n'ont pas réagis dans la zone de traitement.
Brève description des dessins
[Fig. 1] La figure 1 représente de manière schématique un dispositif selon une première configuration apte à mettre en oeuvre l'invention.
[Fig. 2] La figure 2 représente de manière schématique un dispositif selon une deuxième configuration apte à mettre en oeuvre l'invention.
[Fig. 3] La figure 3 représente de manière schématique un dispositif selon une troisième configuration apte à mettre en oeuvre l'invention.
Description des modes de réalisation
L'invention va à présent être décrite au moyen de modes de réalisation particuliers qui sont détaillés à des fins de compréhension de l'invention mais qui ne doivent pas être interprétés de manière limitative.
Comme décrit ci-dessus, l'invention concerne un dispositif 100 pour le dépôt chimique en phase vapeur.
La figure 1 illustre un tel dispositif 100. Le dispositif 100 comprend un premier canal d'introduction 20 d'un premier gaz réactif 22 qui débouche, dans le mode de réalisation illustré, dans un isolant thermique 30.
Dans le mode de réalisation représenté l'isolant thermique repose sur un diffuseur 31 formé par un fritté poreux. Un tel fritté participe à l'homogénéisation des gaz réactifs qui le traversent. Dans le mode de réalisation proposé sur la figure 1, le premier canal 20 peut passer au travers du fritté poreux.
Par exemple, le fritté poreux 31 peut être une plaque de platine rhodié.
Le dispositif comprend également un deuxième canal d'introduction 10 d'un deuxième gaz réactif 14.
Dans le mode de réalisation représenté, les flux des premier 22 et deuxième 14 gaz réactifs, représentés par des flèches, ont lieu respectivement dans les premier 20 et le deuxième 10 canaux d'introduction des gaz.
Par exemple, les premier et deuxième canaux d'introduction des gaz 10, 20 peuvent être reliés directement aux sources non représentées des gaz réactifs choisis pour réaliser la réaction. Dans l'exemple illustré, les canaux d'introduction des gaz distincts 10, 20 permettent que le mélange des premier et deuxième gaz réactifs 14, 22, ait lieu dans l'isolant 30.
Dans un mode de réalisation, l'isolant thermique 30 peut être un isolant thermique poreux présentant une conductivité thermique à 20°C inférieure ou égale à 4,0 W.m’ ^K’1, par exemple inférieure ou égale à 3,0 W.m 1. K 1. Dans un mode de réalisation, l'isolant thermique peut présenter une conductivité thermique à 20°C supérieure ou égale à 0,1 W.m-1. K-1.
Dans un exemple de réalisation, le taux de porosité volumique de l'isolant thermique 30 est supérieur à 26%, par exemple supérieur ou égal à 32%.
L'isolant thermique 30 permet d'obtenir une différence de température entre la zone de traitement 40, munie d'un système de chauffage 50 et la zone en dessous de l'isolant thermique. Le diffuseur 31 délimite le réacteur 12 en dessous de la zone de traitement 40. Dans le mode de réalisation représenté, un isolant thermique 30 est en outre présent. Cependant, le dispositif 100 peut en outre comprendre d'autres isolants thermiques tels que ceux classiquement habituellement utilisé en dehors, autour ou dans les parois d'un four de dépôt chimique.
Dans un exemple de réalisation, l'isolant thermique est un lit granulaire.
Une telle caractéristique participe avantageusement à réduire davantage encore la conductivité thermique effective de l'isolant thermique 30, stabilisant davantage encore la température du lit fluidisé au cours du dépôt du revêtement. Dans le cas particulier d'un lit granulaire, de telles valeurs de porosité correspondent à un état de remplissage « vrac », c'est-à-dire non régulier, ou non compact.
On peut par exemple utiliser un lit granulaire formé par des grains en vrac ayant un diamètre moyen d50 inférieur ou égal à 10 mm, par exemple compris entre 0,5 pm et 10 mm, et une masse volumique supérieure ou égale à 3 g/cm3, par exemple comprise entre 3,2 g/cm3 et 9 g/cm3. Par exemple, on peut utiliser un empilement en vrac de billes de zircone ayant un diamètre moyen d50 égal à 1 mm pour constituer l'isolant thermique 30.
Dans un mode de réalisation, la paroi du dispositif 100, peut être en mullite ou en alumine traitée.
Dans un mode de réalisation, les gaz réactifs peuvent être du BCh et du NH3 dont la décomposition à la température de la zone de traitement 40 permet d'obtenir des composés réactifs, dont la réaction permet de déposer un revêtement de BN directement sur les particules 80 de carbone ou de céramiques introduites dans la zone de traitement 40, par exemple sur le diffuseur 31.
Par exemple, les flux du premier 22 et du deuxième gaz réactif 14 peuvent être obtenus en imposant une différence de pression entre les extrémités du dispositif 100, au moyen d'organes connus en tant que tels, par exemple des pompes, et non représentés sur la figure 1.
Dans un mode de réalisation, les flux du premier 22 et/ou du deuxième gaz réactif 14 peuvent comprendre en outre un gaz porteur inerte, par exemple du diazote. On peut utiliser des précurseurs gazeux dans les conditions standards, auquel cas ils peuvent être mélangés au gaz porteur avant leur introduction dans le dispositif 100.
Par exemple, le débit d'introduction du gaz porteur dans un réacteur 12 tel que schématisé à la figure 1 peut être compris entre 500 centimètres cubes standards par minute et 4000 centimètres cubes standards par minute, par exemple entre 1000 centimètres cubes standards par minute et 2000 centimètres cubes standards par minute.
Le premier canal d'introduction 20 est une canne mobile, dont la position est ajustable en hauteur. Le dispositif comprend ainsi un système de déplacement qui permet de déplacer le premier canal d'introduction 20, et éventuellement le diffuseur 31, par rapport au système de chauffage 50.
Dans le mode de réalisation représenté, le diffuseur 31 est poreux et délimite la partie basse du réacteur 12, dans laquelle sont introduites des particules 80.
Dans le mode de réalisation représenté, les particules 80 sont des fibres courtes.
Dans le dispositif pour le dépôt chimique en phase vapeur en lit fluidisé, les gaz réactifs introduits, et dont la décomposition permet d'obtenir le revêtement sur les particules 80 présentes dans la zone de traitement 40, permettent également d'obtenir une dispersion des particules 80 ce qui contribue à l'obtention d'un revêtement homogène.
Sur les figures 2 et 3, les éléments portant les mêmes numéros représentent des éléments analogues à ceux de la figure 1.
La figure 2 représente une configuration dans laquelle, le premier canal d'introduction 20 d'un premier gaz réactif 22 débouche dans la zone de traitement 40 permettant un mélange du premier 22 et du deuxième gaz 14 réactif directement dans la zone de traitement.
La figure 3 représente une configuration dans laquelle le premier canal d'introduction 20 d'un premier gaz réactif 22 débouche sous le diffuseur 31, par exemple à une faible distance 23 du diffuseur 31 par exemple inférieure ou égale à 2 mm. Il est entendu que cette distance 23 se mesure dans le sens d'écoulement des gaz entre l'extrémité supérieure du premier canal d'introduction 20 et le diffuseur 31. Dans l'un quelconque des modes de réalisation décrits ci-dessus, il est également possible d'introduire dans la zone de traitement 40, des particules d'espacement, distinctes des particules à recouvrir pour améliorer encore davantage l'homogénéité du revêtement obtenu.
De telles particules peuvent par exemple être en matériau céramique (oxyde ou non- oxyde), tel que l'alumine, le carbure de silicium ou le nitrure de silicium. En variante, les particules d'espacement peuvent être métalliques.
Le diamètre moyen des particules d'espacement 100 pm et 500 pm.
Les particules d'espacement sont présentes uniquement pour favoriser la répartition des gaz et des particules à recouvrir dans le lit fluidisé.
La teneur volumique en particules d'espacement, dans le mélange avec les particules à revêtir, peut être comprise entre 70 % et 95 %.
Lorsque de telles particules d'espacement sont présentes, on obtient des particules revêtues de manière encore plus unitaire et homogène.
La zone de traitement 40, située au-dessus du diffuseur 31, peut être chauffée au moyen d'un système de chauffage 50 connu en soi.
Dans les configurations représentés en figure 1, 2 et 3, la zone de traitement 40 est suivie, dans le sens d'écoulement des gaz, d'une zone située en aval 70, dont la température peut être encore augmentée au moyen d'un système de chauffage additionnel 60, également connu en soi, et distinct du premier système de chauffage 50. Comme décrit plus haut une telle zone 70 permet d'assurer, grâce à une température encore plus élevée que celle de la zone de traitement 40, une décomposition des gaz réactifs qui n'ont pas réagi dans la zone de traitement 40.
Le dispositif peut être mis en oeuvre pour le dépôt d'un matériau céramique sur les particules 80, par exemple de nitrure de bore, carbure de silicium ou nitrure de silicium.

Claims

Revendications
[Revendication 1] Dispositif (100) pour le dépôt chimique en phase vapeur en lit fluidisé comprenant :
- un réacteur comprenant une zone de traitement (40) dans laquelle le dépôt chimique en phase vapeur en lit fluidisé est destiné à être réalisé à partir d'au moins un premier (22) et d'un deuxième (14) gaz réactifs et un diffuseur (31) sous la zone de traitement délimitant le réacteur (12),
- un système de chauffage configuré pour chauffer au moins la zone de traitement, le dispositif étant caractérisé en ce qu'il comprend un premier canal d'introduction (20) du premier gaz réactif et un deuxième canal d'introduction (10) du deuxième gaz réactif, distinct du premier canal, et débouchant sous le diffuseur, et en ce que le premier canal d'introduction est apte à être déplacé par rapport au système de chauffage (50).
[Revendication 2] Dispositif (100) selon la revendication 1, dans lequel le premier (20) canal d'introduction de gaz est apte à passer au travers du diffuseur (31) et à déboucher dans la zone de traitement (40).
[Revendication 3] Dispositif (100) selon la revendication 1, dans lequel le premier canal d'introduction de gaz (10) est apte à déboucher en-dessous du diffuseur (31) ou bien dans le diffuseur.
[Revendication 4] Dispositif (100) selon l'une quelconque des revendications 1 à 3, dans lequel le diffuseur (31) est apte à être déplacé par rapport au système de chauffage (50).
[Revendication 5] Dispositif (100) selon l’une quelconque des revendications 1 à 4, dans lequel le réacteur comprend en outre un isolant thermique, entre le diffuseur (31) et la zone de traitement (40).
[Revendication 6] Dispositif (100) selon l’une quelconque des revendications 1 à 5, comprenant en outre un système de chauffage additionnel (60) configuré pour chauffer une zone (70) en aval de la zone de traitement (40) à une température supérieure ou égale à la température de la zone de traitement.
[Revendication 7] Procédé de revêtement de particules par dépôt chimique en phase vapeur en lit fluidisé, comprenant au moins : - l'introduction de particules (80) dans la zone de traitement (40) d'un réacteur, les particules étant en matériau céramique ou en carbone;
- l'introduction d'un premier gaz réactif (22) dans un premier canal d'introduction de gaz (20);
- l'introduction d'un deuxième gaz réactif (14) dans un deuxième canal d'introduction de gaz (10) distinct du premier canal d'introduction de gaz ;
- le chauffage de la zone de traitement jusqu'à une température permettant la réaction des premier et deuxième gaz réactifs dans la zone de traitement de sorte à revêtir les particules, le premier canal d'introduction débouchant dans une zone où la température est supérieure à celle de la zone où débouche le deuxième canal.
[Revendication 8] Procédé de revêtement selon la revendication 7, dans lequel le procédé est réalisé dans un dispositif (100) selon l'une des revendications 1 à 6.
[Revendication 9] Procédé de revêtement selon la revendication 7 ou 8, dans lequel les particules (80) sont des fibres courtes ayant une longueur moyenne inférieure ou égale à 5 mm.
[Revendication 10] Procédé de revêtement selon l’une quelconque des revendications 7 à 9, dans lequel le premier et le deuxième gaz réactifs (14, 22) sont du BCI3 et du NH3, de sorte à revêtir les particules par du nitrure de bore.
[Revendication 11] Procédé de revêtement selon l'une des revendications 7 à 10, comprenant en outre une étape de chauffage additionnel, réalisée dans une zone (70) en aval de la zone de traitement (40) où la température est plus élevée que dans la zone de traitement.
PCT/FR2022/051574 2021-08-20 2022-08-10 Dispositif pour le depot chimique en phase vapeur WO2023021256A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2108807 2021-08-20
FR2108807A FR3126231B1 (fr) 2021-08-20 2021-08-20 Dispositif pour le dépôt chimique en phase vapeur

Publications (1)

Publication Number Publication Date
WO2023021256A1 true WO2023021256A1 (fr) 2023-02-23

Family

ID=78649392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/051574 WO2023021256A1 (fr) 2021-08-20 2022-08-10 Dispositif pour le depot chimique en phase vapeur

Country Status (2)

Country Link
FR (1) FR3126231B1 (fr)
WO (1) WO2023021256A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259925A (en) * 1978-10-24 1981-04-07 Kernsforschungsanlage Julich GmbH Fluidized bed reactor
US5672382A (en) * 1985-12-24 1997-09-30 Sumitomo Electric Industries, Ltd. Composite powder particle, composite body and method of preparation
EP0832312A2 (fr) * 1995-06-07 1998-04-01 Advanced Silicon Materials, Inc. Procede et appareil de depot de silicium dans un reacteur a lit fluidise
EP0979316A1 (fr) * 1997-04-30 2000-02-16 Sri International Reacteur a lit fluidise permettant de deposer une matiere sur une surface par depot chimique en phase vapeur, et procedes de formation d'un substrat recouvert a l'aide de celui-ci
US7651668B2 (en) * 2004-09-24 2010-01-26 Japan Science And Technology Agency Production method and production device for carbon nano structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4259925A (en) * 1978-10-24 1981-04-07 Kernsforschungsanlage Julich GmbH Fluidized bed reactor
US5672382A (en) * 1985-12-24 1997-09-30 Sumitomo Electric Industries, Ltd. Composite powder particle, composite body and method of preparation
EP0832312A2 (fr) * 1995-06-07 1998-04-01 Advanced Silicon Materials, Inc. Procede et appareil de depot de silicium dans un reacteur a lit fluidise
EP0979316A1 (fr) * 1997-04-30 2000-02-16 Sri International Reacteur a lit fluidise permettant de deposer une matiere sur une surface par depot chimique en phase vapeur, et procedes de formation d'un substrat recouvert a l'aide de celui-ci
US7651668B2 (en) * 2004-09-24 2010-01-26 Japan Science And Technology Agency Production method and production device for carbon nano structure

Also Published As

Publication number Publication date
FR3126231B1 (fr) 2023-11-17
FR3126231A1 (fr) 2023-02-24

Similar Documents

Publication Publication Date Title
EP2038238B1 (fr) Poudres de phase max et procede de fabrication desdites poudres
EP1620577B1 (fr) Commande ou modelisation de procede d'infiltration chimique en phase vapeur pour la densification de substrats poreux par du carbone.
EP1851358B1 (fr) Procede de densification de substrats poreux minces par infiltration chimique en phase vapeur et dispositif de chargement de tels substrats
EP1713959B1 (fr) Procede d obtention de nanotubes de carbone sur des supports
FR2528823A1 (fr) Procede de fabrication d'articles en carbone ou en graphite contenant du carbure de silicium lie par reaction
WO1995016803A1 (fr) Procede de densification de substrats poreux
EP4107306B1 (fr) Procédé de consolidation par infiltration en phase gazeuse
FR2983192A1 (fr) Procede pour revetir une piece d'un revetement de protection contre l'oxydation par une technique de depot chimique en phase vapeur, et revetement et piece
WO2010125149A1 (fr) Procede d'elaboration d'une poudre comprenant du carbone, du silicium et du bore
EP3394002B1 (fr) Procédé de fabrication d'une céramique à partir d'une réaction chimique entre un diciliciure et une phase gazeuse réactive
WO2023021256A1 (fr) Dispositif pour le depot chimique en phase vapeur
EP0749940B1 (fr) Procédé de fabrication de trichites de nitrure d'aluminium
EP1888813A2 (fr) Procede de densification rapide d'un substrat poreux par formation d'un depot solide au sein de la porosite du substrat
EP0668376B1 (fr) Procédé de production de trichites ou whiskers fibreux, longs de carbure de silicium
FR2993555A1 (fr) Installation d'infiltration chimique en phase vapeur a haute capacite de chargement
FR2664389A1 (fr) Articles optiques resistant au rayonnement faits d'un diamant monocristallin a haute purete isotopique.
FR2701256A1 (fr) Procédé d'obtention d'un matériau céramique à base de Sialon par réduction d'un précurseur aluminosilicaté et application à la formation de revêtement céramique sur un substrat réfractaire.
FR3129468A1 (fr) Dispositif de sechage d’ebauches et systeme et ensemble et procede associes
WO2022049336A1 (fr) Procede de revetement de fibres en lit fluidise
FR3128956A1 (fr) Procédé de densification par infiltration chimique en phase vapeur
WO2020201202A1 (fr) Procede de fabrication d'une piece en cmc
FR2930562A1 (fr) Reacteur et procede de depot contre un subtrat d'un materiau issu de la decomposition d'un gaz
WO2023094780A1 (fr) Diffuseur pour diffuser un flux de gaz au sein d'une pile d'ebauches et ensembles associes
FR3112797A1 (fr) Procédé de traitement d’une phase gazeuse résiduelle issue d’une technique CVI
FR2727435A1 (fr) Procede pour produire par cvd reactives une pluralite de refractaires sur une meche de filaments de carbone, installation pour la mise en oeuvre de ce procede et produit obtenu

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22773270

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022773270

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022773270

Country of ref document: EP

Effective date: 20240320