WO2023020863A1 - Procédé d'assemblage d'un corps de stator pour machine électrique à flux axial - Google Patents

Procédé d'assemblage d'un corps de stator pour machine électrique à flux axial Download PDF

Info

Publication number
WO2023020863A1
WO2023020863A1 PCT/EP2022/072091 EP2022072091W WO2023020863A1 WO 2023020863 A1 WO2023020863 A1 WO 2023020863A1 EP 2022072091 W EP2022072091 W EP 2022072091W WO 2023020863 A1 WO2023020863 A1 WO 2023020863A1
Authority
WO
WIPO (PCT)
Prior art keywords
relief
plate
groove
tooth
longitudinal axis
Prior art date
Application number
PCT/EP2022/072091
Other languages
English (en)
Inventor
Ferdinand FRABOLOT
Jere Kolehmainen
Original Assignee
Renault S.A.S.
Whylot
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S., Whylot filed Critical Renault S.A.S.
Publication of WO2023020863A1 publication Critical patent/WO2023020863A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/182Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to stators axially facing the rotor, i.e. with axial or conical air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Definitions

  • the present invention generally relates to electrical machines.
  • the invention finds a particularly advantageous application in electric motors for electric or hybrid motor vehicles.
  • a conventional stator body of an axial flux electric machine comprises a plate in the overall shape of a disk and teeth distributed circumferentially on an upper face of the plate (that facing the side of the rotor of the electric machine).
  • coils of conductive wire are arranged around the teeth. Under the effect of electric currents, the coils generate magnetic fields allowing the stator to set the rotor in motion.
  • One way to simplify the winding of the conductive wire around the teeth is to make the plate and the teeth separately, then to wind the conductive wire around each tooth and finally to fix the teeth to the plate.
  • each tooth is fixed to the plate by gluing or by means of additional fixing parts such as screws.
  • each tooth may have a relief designed to fit into another relief of partly complementary shape and located on the tray.
  • Document WO2017/121941 thus discloses a stator body whose plate has a plurality of radial grooves and in which each tooth has a rib adapted to fit into one of the radial grooves. A slight fitting clearance is provided so that the ribs can fit into the grooves. To perfect the fixing of the teeth on the plate, the ribs are for example welded to the grooves.
  • the adhesives used are generally thermosetting adhesives which require the stator to be heated to a very high temperature in an oven, which represents a certain cost in terms of both material and energy.
  • the glue is also complex to inject and its distribution is difficult to control. Welding is a complex and expensive step that requires skilled labor and specific equipment. Furthermore, not all metals are weldable. Welding can also cause movement and deformation of welded parts.
  • the present invention proposes a method for assembling a stator body for an axial flux electrical machine, the stator body comprising a disc-shaped plate centered on a longitudinal axis and teeth distributed on an upper face of the plate around the longitudinal axis, the plate comprising at least one groove, and at least one of the said teeth comprising a projecting relief, the said method comprising a step of inserting relief in the groove, and a step of mechanical deformation of the relief so as to immobilize the relief in the groove.
  • the tooth is fixed to the plate without additional fixing part or glue or welding.
  • the tooth is firmly fixed to the plate, the deformed relief fills the space of the groove, which guarantees the absence of backlash and ensures high rigidity of the stator body.
  • the method of assembling the stator body of the invention is simple and easy to automate. Not using any additional fixing piece, the assembly method does not pose, for example, any problem of tolerance and hyperstatism.
  • Other advantageous and non-limiting characteristics of the method according to the invention, taken individually or according to all technically possible combinations, are the following:
  • the deformation of the relief is carried out during the insertion step by forcing the relief into place in the groove or after the insertion step from a lower face of the plate opposite the upper face;
  • the relief and the groove extend in a radial direction perpendicular to the longitudinal axis, and the insertion of the relief in the groove is carried out by sliding in the radial direction;
  • the top has a central opening, the groove extending over the entire thickness of the top and at a distance from the central opening;
  • the plate comprises: a substantially planar main portion perpendicular to the longitudinal axis; and a peripheral portion bordering the main portion on its outer peripheral edge, on the side of the lower face of the plate, over a non-zero height, the groove extending over the main portion, over only part of the height of the peripheral portion , so that it opens towards the outside of the plate, and the insertion step is carried out by causing the relief to slide through the outside of the plate in the groove;
  • the method comprises, before the insertion step, a step of manufacturing the plate comprising the following sub-steps providing a flat disc; slot punching; stamping of the flat disc so as to form the tray;
  • - part of the relief has a shape corresponding, in negative, to a shape of the groove so as to hold the tooth in relation to the plate along the longitudinal axis;
  • the relief and the groove form a dovetail type assembly in which the relief constitutes a tenon and in which the groove constitutes a mortise;
  • the method comprises, before the insertion step, a step of manufacturing the tooth and the relief, during which the tooth and the relief are made in one piece by a stack of metal sheets, the relief being formed by only part of said sheets;
  • the method comprises, before the insertion step, a step of manufacturing the tooth and the relief, during which the tooth and the relief are made in one piece by a stack of flat metal sheets, in which the relief of a first sheet is inclined in a first direction of the plane of this first sheet, and in which the relief of a second sheet, adjacent to the first sheet, is inclined in a second direction of the plane of this second sheet, inclined or opposite to the first direction.
  • Figure 1 is a schematic perspective view of a stator body according to the invention
  • Figure 2 is a schematic exploded perspective view of a sector of a stator body before its assembly according to a first embodiment of the invention
  • Figure 3 is a schematic perspective view of the sector of Figure 2 during assembly
  • Figure 4 is a schematic perspective view of the sector of Figure 2 during assembly, at a time later than that of Figure 3;
  • Figure 5 is a schematic perspective view of the sector of Figure 2 at the end of the assembly
  • Figure 6 is a schematic sectional view of part of a relief before assembly
  • Figure 7 is a schematic sectional view of the part of the relief of Figure 6 at the end of the assembly
  • Figure 8 is a schematic sectional view of part of a relief variant before assembly
  • Figure 9 is a schematic sectional view of the part of the relief of Figure 8 at the end of the assembly.
  • Figure 10 is a schematic sectional view of part of another relief variant before assembly
  • Figure 11 is a schematic sectional view of the part of the relief of Figure 10 at the end of the assembly
  • Figure 12 is a block diagram of a sequence of steps for carrying out the assembly method according to the invention.
  • FIG 1 there is shown a stator body 1 according to the invention.
  • This stator body 1 is intended to be assembled in an axial flux electric machine, in this case a motor for propelling an electric vehicle.
  • an electric machine comprises at least one rotor and at least one stator. In practice, it more generally comprises a rotor situated between two stators.
  • the rotor generally comprises a ring-shaped body which houses a plurality of magnetic pole elements having the same function as permanent magnets.
  • Magnetic pole elements consist of magnetic blocks arranged side by side to together form a kind of ring in the rotor.
  • These elements with magnetic poles preferably consist of small assembled permanent magnets.
  • the elements with magnetic poles may alternatively comprise elongated magnets (possibly thin, for example laminated) and/or glued magnets (formed of magnetic powder mixed in an adhesive).
  • the stators On their sides, the stators have the shape of flattened rings and are fitted, on their faces facing the rotor, with teeth around which windings of electrically conductive wires are wound. When these windings are supplied with electric current, they make it possible to generate a magnetic field so as to make the rotor turn.
  • the stators are generally identical.
  • stator body 1 comprises:
  • the plate 100 essentially has the shape of a disk centered on a longitudinal axis A1. However, it presents a circular central opening 105. Thus, the plate 100 here more specifically has the shape of a flattened ring whose thickness is less than the diameter.
  • the plate 100 also has a periphery 106 which here corresponds to its outer periphery, that is to say here to the portion of the plate 100 remote from the longitudinal axis A1.
  • the plate 100 includes an upper face 101 (facing the rotor).
  • the upper face 101 is generally perpendicular to the longitudinal axis A1.
  • the plate 100 further comprises a lower face 102 opposite and parallel to the upper face 101.
  • the thickness of the plate 100 that is to say its dimension along the longitudinal axis A1 between the upper face 101 and the lower face 102, is for example between 1 mm and 30 mm.
  • the diameter of the plate 100 is preferably between 10 cm and 50 cm.
  • the plate comprises a plurality of grooves 110.
  • each groove 110 extends over the entire thickness of the plate 100.
  • each groove s further extends at a distance from the central opening 105. This means here that the grooves 110 do not open onto the central opening 105.
  • the groove 110 thus has a central end edge 111 located at a non-zero distance from the central opening 105.
  • each groove 110 extends in a radial direction A2, perpendicular to the longitudinal axis A1.
  • Each groove 110 extends in its own radial direction A2, distinct from the radial direction A2 of the other grooves 110.
  • Each groove 110 therefore here forms a U-shaped notch opening out towards the periphery 106 of the plate 100.
  • Each groove 110 also passes through this last from the top face 101 to the bottom face 102.
  • the teeth 200 are regularly distributed on the upper face 101 of the plate 100 around the longitudinal axis A1.
  • the upper face 101 and the lower face 102 are opposite in (or according to) the longitudinal axis A1. This therefore means that the lower face 102 is opposite the teeth 200 with respect to the upper face 101 .
  • Each tooth 200 generally has the shape of a right prism, of trapezoidal section in a plane orthogonal to the longitudinal axis A1.
  • Each tooth 200 here has a plane of radial symmetry.
  • each tooth 200 comprises a lower part, called base 201, extending opposite the plate 100 and an upper part 202 rising from the base 201 along the longitudinal axis A1.
  • the upper part 202 is thinner than the base 201 because it is designed to carry a winding of conductive wire.
  • the top of the upper part 202 of each tooth 200 has a meadow of side edges, on either side of the upper part 202, extending from the central opening 105 to the periphery 106
  • the side edges of each tooth 200 extend opposite the side edges of the adjacent teeth to improve the circulation of the magnetic flux.
  • each tooth 200 is in contact, on each side, with the base 201 of each of the two adjacent teeth 200.
  • the bases 201 of the adjacent teeth 200 are here in contact over extended surfaces, here over all of the lateral sides of the bases 201. These extended surfaces are here flat, along a plane containing the longitudinal axis A1. These extended contacts provide high mechanical rigidity to the stator body 1. Indeed, once all the teeth 200 are installed on the plate 100, they form a tight assembly which contributes to their blocking. In addition, this contact between the bases gives the stator body 1 a high magnetic conductivity.
  • each tooth 200 For its assembly on the plate 100, each tooth 200 comprises a relief 210.
  • the relief 210 is here located at the level of the base 201 .
  • the relief 210 more specifically projects from a lower face 220 of the tooth 200, which here extends parallel to the upper face 101 of the plate 100.
  • Each relief 210 is designed to fit with one of the grooves 110 of the plate 100.
  • a relief 210 and the groove 110 in which it fits are subsequently qualified as "associated”. To cooperate with the grooves 110, it is therefore provided that the reliefs 210 also extend essentially radially.
  • Each relief 210 thus forms an elongated rib extending in a radial direction A2.
  • each tooth 200 With the exception of the relief 210, the underside 220 of each tooth 200 is flat. The contact surface between the teeth 200 and the plate 100 is therefore flat. As for the contact between the teeth 200, this planar and extended contact between the teeth 200 and the plate 100 ensures high mechanical rigidity as well as high magnetic conductivity to the body 1 of the stator.
  • each relief 210 allows, in cooperation with its associated groove 110, to maintain the tooth 200 relative to the plate 100, in particular along the longitudinal axis A1.
  • a part of each relief 210 has a shape corresponding, in negative, to the shape of its groove 110 associated, so as to block a translational movement of the tooth 200 along the longitudinal axis A1.
  • the relief 210 has a section, in an orthoradial plane perpendicular to the radial direction A2, T-shaped in which each branch is extends in contact with the lower face 102 of the plate 100.
  • the plate 100 is then interposed between the base 201 of the tooth 200 and the branches of the relief 210, which makes it possible to immobilize the tooth 200 along the longitudinal axis A1.
  • the method according to the invention comprises the following main steps:
  • step e4 of mechanical deformation of the relief so as to immobilize each relief 210 in its associated groove 110.
  • the method here also comprises the following steps:
  • Figures 2 to 4 illustrate step e3 of insertion for an angular sector, that is to say for one of the teeth 200.
  • Figure 2 shows the angular sector of tooth 200 prior to insertion. Tooth 200 is then not yet in contact with plate 100.
  • Figure 3 illustrates the angular sector of Figure 2 during insertion.
  • the tooth 200 is then in contact with the plate 100 by its lower face 220.
  • the base 201 of the tooth 200 slides on the upper face 102 of the plate 100 and, at the same time, the relief 210 is introduced. in groove 110.
  • the insertion of the relief 210 in the groove 110 is carried out by a rectilinear translation movement in the radial direction A2 in which the groove 110 extends and towards the longitudinal axis A1, c that is to say in the direction of the central opening 105.
  • This single rectilinear translation movement makes it possible to perform the entire step e3 of inserting the relief 210 of the tooth 200 and therefore the entire positioning of the tooth 200 with respect to the plate 100.
  • the insertion step e3 thus requires a minimum number of movements of the tooth 200, which makes the implementation of the method simple.
  • the insertion step e3 ends when the relief 210 comes into abutment against the central end edge 111 of the groove 110 or, in other embodiments, if the reliefs 210 of adjacent teeth 200 come into contact.
  • tooth 200 is in an assembled position with respect to plate 100. This assembled position, which corresponds to the position of tooth 200 when the stator is in operation, is illustrated in FIG. 4.
  • the interlocking of the relief 210 and the groove 110 leaves the tooth 200 a single degree of freedom relative to the plate 100 corresponding to a rectilinear translation movement in the radial direction A2 opposite of the longitudinal axis A1.
  • the step e4 of mechanical deformation of the relief 210 here makes it possible to eliminate this single degree of freedom of the tooth 200 and thus to fix the latter solidly to the plate 100.
  • the objective of the mechanical deformation of the relief 210 is to maintain the relief 210 nested in the groove 100, that is to say to immobilize the relief 210 in the groove 110.
  • the immobilization of the relief 210 in the groove 110 causes in return the immobilization of the tooth 200 with respect to the tray 100.
  • the mechanical deformation here causes a change in shape of the relief 210 which either encloses it in the groove 110, or allows the plate 100 to be gripped between the base 201 and the relief 210 at the level of the groove 110.
  • “mechanical deformation” means that the relief 210 undergoes a change in shape distinct from a simple dilatation.
  • a mechanical deformation means for example that at least one dimension of the relief varies by at least 10% during the mechanical deformation.
  • the mechanical deformation undergone by the relief 210 is here a plastic deformation, in the sense that it is irreversible as opposed to a reversible elastic deformation. This makes it possible to ensure high rigidity of the fixing of the tooth 200 on the plate 100 without any other means of additional fixing.
  • step e4 of mechanical deformation is carried out after the complete insertion of the relief 210 in the groove 110.
  • the step e4 of mechanical deformation begins after the relief 210 has reached the abutment of the edge central end 111 of the groove 110, as shown in Figure 4.
  • the groove 110 extends over the entire thickness of the plate 100 facilitates the deformation of the relief 210 since the deformation can be operated from the lower face 102 of the plate 100, where the available space is large.
  • the deformation is carried out by means of a tool moved in the radial direction A2, preferably towards the periphery of the plate 100, and coming to put pressure on the relief 210.
  • step e4 of deformation of this first embodiment is for example illustrated in FIGS. 5 and 7.
  • FIGS. was deformed during this step.
  • FIG. 5 more specifically represents the relief 210 of FIG. 4 after deformation.
  • FIG. 6 represents only part of an example of relief 210, seen in an orthoradial direction A3, before deformation.
  • the periphery 106 of the plate 100 is located on the left and the central opening 105 on the right.
  • the relief 210 is here deformed towards the periphery 106 of the plate 100.
  • the end 211 of the relief 210 is inclined by approximately 45 degrees with respect to to its original shape before deformation. This results in particular in a reduction in its height, along the longitudinal axis A1, of around 30%.
  • the stator body 1 is placed in a protective casing which comes into contact with the lower face 102 of the plate 100 and the deformed end 211 of the relief 210.
  • the protective casing then helps to maintain the relief 210 in its deformed configuration and therefore the maintenance of the tooth 200.
  • the relief could be deformed in the orthoradial direction.
  • the relief is preferably longer, along the longitudinal axis, than for a radial deformation.
  • the relief may extend from a recess in the base of the tooth to present a longer neck before widening. This allows a tangential movement of the tooth and therefore a better contact between the teeth. This extra length also facilitates orthoradial deformation.
  • the relief could be deformed in another direction.
  • the tooth 200 and the relief 210 are formed in one piece, during step e2 of manufacturing the teeth, by a stack of metal sheets 230 as represented by example in Figures 5, 6 and 8.
  • the tooth 200 and the relief 210 are more specifically formed by flat sheets 230, here extending orthoradially, the thickness of which is for example between 0.2 mm and 0.5 mm.
  • the sheets 230 are for example made of electrical steel, grain oriented or not.
  • the platter 100 can itself be made of aluminum, an aluminum alloy, for example silumin, or another non-magnetic material (a magnetic platter can alternatively be used in certain embodiments).
  • the relief 210, or its end 211 is less dense than the tooth 200 itself, the relief 210, or its end 211, is here formed by only part of the plates 230 forming the tooth 200.
  • the end 211 of the relief 210 can be formed only by half of the plates 230 forming the tooth 200 and the relief 210.
  • the end 211 is formed, alternately, by one sheet 230 out of two of the stack.
  • each plate 230 contributing to form the end 211 is adjacent to two plates 230 not contributing to forming the end 211, and vice versa.
  • the relief 210 can also for example be formed by two sheets out of three or one sheet out of three of the stack, numerous combinations being possible.
  • the groove 110 has straight edges, that is to say parallel to the longitudinal axis A1.
  • the longitudinal maintenance of the tooth 200 is ensured by the fact that the end 211 of the relief 210 opens onto the lower face 102 of the plate 100 and has a flared shape beyond the plate 100, for example here a T-shape such that shown in figure 5.
  • the groove could have inclined edges which are not parallel to the longitudinal axis A1. Still as a variant, the edges of the groove could have shoulders. The relief could then not lead to the lower face but all the same maintain the tooth by means of a form suitable for shoulders.
  • the relief 210 is preferably less wide than the groove 110.
  • the width of the groove 110 corresponds to its dimension in the direction orthoradial A3.
  • the width of the relief 210 corresponds to its dimension in the orthoradial direction A3 in the thickness of the plate 100.
  • step e4 of deformation of relief 210 is performed during step e3 of insertion.
  • the deformation is not performed later but during insertion.
  • the relief 210 is deformed by forcing it into the groove 110. Consequently, the insertion step e3 is more difficult to perform because the mechanical stresses are greater.
  • the assembly process is simplified because the insertion and deformation steps are carried out at the same time.
  • the relief 210 For the relief 210 to be deformed during insertion, provision is made here for the relief 210 to have a width greater than that of the groove 110, at least over part of the thickness of the plate 100.
  • the sides 212 of the relief 210 are then deformed towards the periphery of the plate 100, which ensures effective support.
  • the flanks 212 correspond to the lateral parts of the relief 210 which are in contact with the edges of the groove 110. They extend in the direction of extension of the relief 210, that is to say here in the radial direction A2.
  • the flanks 212 of the relief 210, deformed during insertion, are represented by hatching in FIG. 9.
  • the height of the relief 210 along the longitudinal axis A1 is less than the thickness of the plate 100.
  • the relief 210 does not open onto the lower face 102 of the plate. 100.
  • the retention of the tooth 200 along the longitudinal axis A1 is ensured by a dovetail-type connection between the relief 210 and the groove 110.
  • the relief 210 more precisely constitutes a tenon and the groove 110 a mortise.
  • Such a relief 210 for a dovetail-type connection is for example illustrated in Figures 8 and 9.
  • the relief 210 here is flared in the direction of the lower face 102. This means here that the relief 210 gradually widens from the upper face 101 to the lower face.
  • the relief 210 thus has edges inclined with respect to the longitudinal axis A1.
  • the edges of the groove 110 (not shown) are inclined in a complementary manner to ensure contact with the flanks 212.
  • the edges of the grooves 110 which are in contact with the flanks are here flat and inclined towards the lower face 102 of the plate 100 in in the sense that they have a normal direction oriented towards the lower face 102 of the plate 100.
  • flanks 212 are less dense than the tooth 200, an alternation is provided, with one sheet out of two carrying a left flank 212 and one sheet out of two carrying a flank 212 right.
  • a first part of the relief 210 which is associated with a first plate 231
  • a second part of the relief 210 which is associated with a second adjacent plate 232 to the first sheet 231 is inclined in a second direction D2 of the plane of this second sheet 232.
  • the second direction D2 is inclined with respect to the first direction D1 or opposite to the first direction D1.
  • the two directions D1 and D2 are not collinear and have the same direction.
  • the two directions D1 and D2 are opposite, although they are both orthoradial.
  • the first part of the relief 210 and the second part of the relief 210 have identical shapes and opposite orientations, that is to say mirror shapes.
  • the two directions D1 and D2 can also for example each be oriented at 45 degrees from the lower face 102 of the plate 100.
  • each flank 212 is therefore formed, alternately, by one sheet 230 out of two of the stack of sheets 230 forming the tooth 200. This facilitates the deformation of the flanks during the insertion of the relief 210 in the groove 110. As in the first embodiment, this alternation can vary.
  • Figure 8 illustrates the relief 210 before its insertion into the groove 110.
  • the first and the second part of the relief 210 are, like the sheets 230 which form them, flat.
  • FIG. 9 illustrates the relief 210 after its insertion into the groove 110, and therefore here after the deformation.
  • the relief 210 is deformed here in particular so that its dimension in the orthoradial direction A3 decreases.
  • the width of each flank 212 in the orthoradial direction A3 decreases by approximately 20%.
  • the first and the second part of the relief 210 are deformed in a curved manner towards the periphery of the plate 100, that is to say opposite to the direction of insertion. The deformation towards the periphery of the plate 100 effectively blocks the last degree of freedom of the tooth 200 in the radial direction A2.
  • the relief 210 may undergo a first mechanical deformation during insertion into the groove 110 and a second mechanical deformation after complete insertion into the groove 110.
  • Such a relief 210 designed to be deformed during and after insertion into the groove 110 is for example illustrated in Figures 10 and 11.
  • This relief 210 comprises both flanks 212 designed to be deformed during the insertion of the relief 210 into the groove 110 (not shown) and an end 211, here T-shaped, designed to be deformed, at the using a specific tool from the underside 102, after the complete insertion of the relief 210 into the groove 110.
  • the relief 210 is formed alternately by one plate 230 out of two of the stack of plates 230 forming the tooth 200.
  • the relief could be formed by all the sheets of the stack with certain parts of the relief oriented in a first direction and the others in a second direction.
  • Figure 10 illustrates the relief 210 before its insertion into the groove 110. Before insertion, the plates 230 forming the relief 210 are flat.
  • FIG. 11 illustrates the relief 210 after deformation.
  • the flanks 212 are arranged to be in contact with the edges of the groove 110, which here has straight edges. They are therefore located, once the relief 210 has been inserted into the groove 110, in the thickness of the plate 100.
  • the width of the flanks 212 dimension in the orthoradial direction A3, after deformation (FIG. 11) is less than the initial width of the sides 212 before deformation (FIG. 10).
  • the sides 212 initially flat, are deformed until they are curved in the direction of the periphery 106 of the plate 100.
  • the edges of the groove 110 being straight, the sides 212 therefore participate mainly in blocking the relief 210 in the radial direction A2.
  • the flanks would contribute more to the longitudinal retention.
  • the end 211 is arranged to rest, on either side of the width of the groove 110 in the orthoradial direction A3, on the lower face 102.
  • the longitudinal retention of the tooth 200 is thus mainly ensured by the end 211 .
  • the end 211 is deformed towards the periphery of the plate 100 in a manner analogous to the example illustrated in FIGS. 6 and 7.
  • the deformed end 211 therefore participates both radial support and longitudinal support.
  • the tray could have a star shape, each branch of which would be separated from the two neighboring branches by the grooves.
  • the plate 100 preferably has a specific shape which allows both radial insertion of the relief 210 and which at the same time gives it high rigidity. Indeed, although opening onto the periphery of the plate 100, the grooves 100 do not split the plate 100 into a plurality of branches.
  • the plate 100 comprises:
  • peripheral portion 130 located at the periphery 106 of the plate 100.
  • the main portion 120 is a central portion forming the major part of the plate 100.
  • the main portion is here delimited by the upper face 101 and the lower face 102, the central opening 105 and an outer peripheral edge 121.
  • the peripheral portion 130 borders the main portion 120 on its outer peripheral edge 121. It forms a rim part of which is inclined rearwardly so as to form a cylindrical or tapered tube (open downwards). Another part of this rim is angled outwards so as to form a flat collar which borders the lower end of the tube.
  • the peripheral portion 130 extends over a non-zero height along the longitudinal axis A1.
  • the peripheral portion 130 extends for example over a height between 2 and 4 times the height of the main portion 120.
  • the groove 110 extending over the main portion 120 and over only part of the height of the peripheral portion 130.
  • the groove 110 extends in effect only over the part tubular of the peripheral portion 130 but not on its flat flange.
  • the groove 110 opens towards the periphery 106 of the plate 100 without however forming in this plate a notch open outwards.
  • the shape of the peripheral portion 130 thus ensures high rigidity of the plate 100, while allowing the insertion step to be carried out by causing the relief 210 to slide, here in the radial direction A2, from the outside of the plate. 100 in groove 110.
  • step e1 for manufacturing the plate 100 here comprises the following sub-steps:
  • the annular disc here is therefore a flat disc whose overall shape is close to that of the plate 100.
  • the annular disc initially has a single central recess corresponding to the central opening of the plate 100.
  • the advantage of this method of manufacturing the plate 100 here is to make the grooves 110 by punching, which is moreover on a flat part (the annular disc), rather than having to machine the grooves 110 on a complex part s extending in several directions such as the peripheral portion 130 of the plate 100.
  • the stamping then makes it possible to shape the peripheral portion 130.
  • the part of the annular disc remaining flat then forms the main portion 120 of the plate 100.
  • Stamping is carried out after punching. It consists here in deforming the periphery of the disc to form the peripheral portion 130. It is expected that each groove 110 extends over a portion of the disc which is deformed by the stamping. Thus, after stamping, each groove 110 extends over part of the height of the peripheral portion 130.
  • the plate 100 is made of a non-magnetic material.
  • the plate 100 is for example made of stainless steel or aluminum.
  • the tray could be manufactured by molding and/or by machining.
  • the fixing of the relief 210 in the groove 110 can be completed by gluing or by welding.
  • the glue can be placed on the relief and/or on the groove 110 before the insertion step e3.
  • the glue can also be applied after the insertion step e3, before or after the deformation step e4.
  • the glue used here is a thermosetting glue.
  • the weld is preferably made after step e4 of deformation. The glue and the weld make it possible to fill in the gaps between the plate 100 and the teeth 200 and thus to improve the thermal conductivity.
  • the deformation step e4 allows a better fixing of the tooth 200 on the plate 100 than simple gluing or simple welding.
  • a coil of conductive wires (not shown) is here wound around each tooth 200 before it is installed.
  • the coils can be installed after the insertion of the teeth but their winding is then more complex.
  • the step of deforming the reliefs of the teeth could be carried out otherwise, for example by hooping, by bending or even by heating to make the relief more ductile,

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

L'invention concerne un procédé d'assemblage d'un corps de stator pour machine électrique à flux axial, le corps de stator comprenant un plateau en forme de disque centré sur un axe longitudinal et des dents réparties sur une face supérieure du plateau autour de l'axe longitudinal, le plateau comprenant au moins une rainure, et au moins une desdites dents comprenant un relief en saillie, ledit procédé comprenant une étape d'insertion (e3) du relief dans la rainure. Selon l'invention le procédé comprend une étape de déformation (e4) mécanique du relief de manière à immobiliser le relief dans la rainure.

Description

TITRE DE L’INVENTION : PROCÉDÉ D’ASSEMBLAGE D’UN CORPS DE STATOR POUR MACHINE ELECTRIQUE A FLUX AXIAL
DOMAINE TECHNIQUE DE L'INVENTION
[0001] La présente invention concerne de manière générale les machines électriques.
[0002] Elle concerne plus particulièrement un procédé d’assemblage d’un corps de stator pour machine électrique à flux axial.
[0003] L’invention trouve une application particulièrement avantageuse dans les moteurs électriques pour véhicules automobiles électriques ou hybrides.
ETAT DE LA TECHNIQUE
[0004] Un corps de stator conventionnel de machine électrique à flux axial comprend un plateau en forme globale de disque et des dents réparties de façon circonférentielle sur une face supérieure du plateau (celle tournée du côté du rotor de la machine électrique). Pour réaliser un stator à partir de ce corps, des bobines de fil conducteur sont agencées autour des dents. Sous l’effet de courants électriques, les bobines génèrent des champs magnétiques permettant au stator de mettre le rotor en mouvement.
[0005] Une façon de simplifier le bobinage du fil conducteur autour des dents est de réaliser séparément le plateau et les dents, puis d’enrouler le fil conducteur autour de chaque dent et enfin de fixer les dents au plateau.
[0006] Classiquement, les dents sont fixées au plateau par collage ou au moyen de pièces de fixation additionnelles telles que des vis. Pour améliorer la fixation des dents au plateau, chaque dent peut présenter un relief conçu pour s’emboiter dans un autre relief de forme en partie complémentaire et situé sur le plateau.
[0007] On connaît ainsi du document WO2017/121941 un corps de stator dont le plateau présente une pluralité de rainures radiales et dans lequel chaque dent présente une nervure adaptée pour s’emboiter dans une des rainures radiales. Un léger jeu de montage est prévu pour que les nervures puissent s’emboiter dans les rainures. Pour parfaire la fixation des dents sur le plateau, les nervures sont par exemples soudées aux rainures.
[0008] Ces différentes solutions de fixation des dents présentent chacune des inconvénients. Avoir recours à des pièces de fixation additionnelles complexifie la conception du stator à la fois sur le plan théorique et pratique. De plus, le stator obtenu présente alors peu de tolérances ce qui rend son assemblage difficile.
[0009] Les colles utilisées sont généralement des colles thermodurcissables qui nécessitent de chauffer le stator à très haute température dans un four, ce qui représente un coût certain tant matériel qu’énergétique. La colle est également complexe à injecter et sa répartition est difficile à contrôler. La soudure est quant à elle une étape complexe et coûteuse qui nécessite une main d’œuvre qualifiée et un matériel spécifique. Par ailleurs, tous les métaux ne sont pas soudables. La soudure peut aussi entrainer des déplacements et déformations des pièces soudées.
[0010] Enfin, les pièces de fixation additionnelles, la colle ou la soudure occupent tous une place non négligeable au sein du stator, ce qui limite ses performances puisque cette place pourrait être utilisée pour les éléments actifs du stator telles que les bobines. Cela rajoute également un maillon supplémentaire dans la chaîne de côtes et complexifie donc la conception du stator.
PRESENTATION DE L'INVENTION
[0011] Afin de remédier aux inconvénients précités de l’état de la technique, la présente invention propose un procédé d’assemblage d’un corps de stator pour machine électrique à flux axial, le corps de stator comprenant un plateau en forme de disque centré sur un axe longitudinal et des dents réparties sur une face supérieure du plateau autour de l’axe longitudinal, le plateau comprenant au moins une rainure, et au moins une desdites dents comprenant un relief en saillie, ledit procédé comprenant une étape d’insertion du relief dans la rainure, et une étape de déformation mécanique du relief de manière à immobiliser le relief dans la rainure.
[0012] Ainsi, grâce à l’invention, la dent est fixée au plateau sans pièce de fixation additionnelle ni colle, ni soudure. De plus, la dent est fixée au plateau de façon robuste, le relief déformé rempli l’espace de la rainure ce qui garantit l’absence de jeu et assure une rigidité élevée du corps du stator.
[0013] Le procédé d’assemblage du corps de stator de l’invention est simple et facile à automatiser. N’utilisant pas de pièce de fixation additionnelle, le procédé d’assemblage ne pose par exemple pas de problème de tolérance et d’hyperstatisme. [0014] D’autres caractéristiques avantageuses et non limitatives du procédé conforme à l’invention, prises individuellement ou selon toutes les combinaisons techniquement possibles, sont les suivantes :
- la déformation du relief est réalisée lors de l’étape d’insertion par une mise en place en force du relief dans la rainure ou postérieurement à l’étape d’insertion depuis une face inférieure du plateau opposée à la face supérieure ;
- le relief et la rainure s’étendent selon une direction radiale perpendiculaire à l’axe longitudinal, et l’insertion du relief dans la rainure est réalisée par coulissement selon la direction radiale ;
- le plateau présente une ouverture centrale, la rainure s’étendant sur toute l’épaisseur du plateau et à distance de l’ouverture centrale ;
- le plateau comprend : une portion principale sensiblement plane et perpendiculaire à l’axe longitudinal ; et une portion périphérique bordant la portion principale sur son bord périphérique extérieur, du côté de la face inférieure du plateau, sur une hauteur non nulle, la rainure s’étendant sur la portion principale, sur une partie seulement de la hauteur de la portion périphérique, de sorte qu’elle débouche vers l’extérieur du plateau, et l’étape d’insertion est réalisée en faisant coulisser le relief par l’extérieur du plateau dans la rainure ;
- le procédé comprend, avant l’étape d’insertion, une étape de fabrication du plateau comprenant les sous-étapes suivantes fourniture d’un disque plan ; poinçonnage des rainures ; emboutissage du disque plan de façon à former le plateau ;
- une partie du relief présente une forme correspondant, en négatif, à une forme de la rainure de manière à maintenir la dent par rapport au plateau selon l’axe longitudinal ;
- le relief et la rainure forment un assemblage de type queue-d’aronde dans lequel le relief constitue un tenon et dans lequel la rainure constitue une mortaise ;
- le procédé comprend, avant l’étape d’insertion, une étape de fabrication de la dent et du relief, au cours de laquelle la dent et le relief sont réalisés d’un seul tenant par un empilement de tôles métalliques, le relief étant formé par une partie seulement desdites tôles ;
- le procédé comprend, avant l’étape d’insertion, une étape de fabrication de la dent et du relief, au cours de laquelle la dent et le relief sont réalisés d’un seul tenant par un empilement de tôles métalliques planes, dans lequel le relief d’une première tôle est incliné dans une première direction du plan de cette première tôle, et dans lequel le relief d’une seconde tôle, adjacente à la première tôle, est incliné dans une seconde direction du plan de cette seconde tôle, inclinée ou opposée à la première direction.
[0015] Bien entendu, les différentes caractéristiques, variantes et formes de réalisation de l'invention peuvent être associées les unes avec les autres selon diverses combinaisons dans la mesure où elles ne sont pas incompatibles ou exclusives les unes des autres.
DESCRIPTION DETAILLEE DE L'INVENTION
[0016] La description qui va suivre en regard des dessins annexés, donnés à titre d’exemples non limitatifs, fera bien comprendre en quoi consiste l’invention et comment elle peut être réalisée.
[0017] Sur les dessins annexés :
[0018] Figure 1 est une vue schématique en perspective d’un corps de stator selon l’invention ;
[0019] Figure 2 est une vue schématique en perspective éclatée d’un secteur d’un corps de stator avant son assemblage selon un premier mode de réalisation de l’invention ;
[0020] Figure 3 est une vue schématique en perspective du secteur de la figure 2 en cours d’assemblage ;
[0021] Figure 4 est une vue schématique en perspective du secteur de la figure 2 en cours d’assemblage, à un moment ultérieur à celui de la figure 3 ;
[0022] Figure 5 est une vue schématique en perspective du secteur de la figure 2 à la fin de l’assemblage ;
[0023] Figure 6 est une vue schématique en coupe d’une partie d’un relief avant assemblage ;
[0024] Figure 7 est une vue schématique en coupe de la partie du relief de la figure 6 à la fin de l’assemblage ;
[0025] Figure 8 est une vue schématique en coupe d’une partie d’une variante de relief avant assemblage ;
[0026] Figure 9 est une vue schématique en coupe de la partie du relief de la figure 8 à la fin de l’assemblage ;
[0027] Figure 10 est une vue schématique en coupe d’une partie d’une autre variante de relief avant assemblage ; [0028] Figure 11 est une vue schématique en coupe de la partie du relief de la figure 10 à la fin de l’assemblage ;
[0029] Figure 12 est un schéma bloc d’une séquence d’étapes permettant de réaliser le procédé d’assemblage selon l’invention.
[0030] Sur la figure 1 , on a représenté un corps 1 de stator selon l’invention.
[0031] Ce corps 1 de stator est prévu pour être assemblé dans une machine électrique à flux axial, en l’espèce un moteur permettant de propulser un véhicule électrique. Une telle machine électrique comporte au moins un rotor et au moins un stator. En pratique, elle comporte plus généralement un rotor situé entre deux stators.
[0032] Le rotor comprend généralement un corps de forme annulaire qui loge une pluralité d’éléments à pôles magnétiques ayant la même fonction que des aimants permanents. Des éléments à pôles magnétiques sont constitués de blocs magnétiques disposés côte-à-côte afin de former ensemble une sorte d'anneau dans le rotor. Ces éléments à pôles magnétiques sont préférentiellement constitués de petits aimants permanents assemblés. Toutefois, les éléments à pôles magnétiques peuvent comprendre en variante des aimants allongés (éventuellement fins, par exemple laminés) et/ou des aimants collés (formés de poudre magnétique mélangée dans une colle).
[0033] De leurs côtés, les stators présentent des formes d’anneaux aplatis et sont équipés, sur leurs faces orientées vers le rotor, de dents autours desquelles sont enroulées des bobinages de fils électriquement conducteurs. Lorsque ces bobinages sont alimentés en courant électrique, ils permettent de générer un champ magnétique de manière à faire tourner le rotor. Les stators sont généralement identiques.
[0034] Ici, comme le montre la figure 1 , le corps 1 de stator comprend :
- un plateau 100 ; et
- une pluralité de dents 200.
[0035] Sur les figures 2 à 5, pour simplifier, on a représenté seulement un secteur angulaire du corps 1 de stator. Ici, tous les secteurs angulaires formant le corps 1 de stator sont identiques et chaque secteur angulaire ne comprend qu’une des dents 200.
[0036] Comme le montre la figure 1 , le plateau 100 présente essentiellement une forme de disque centré sur un axe longitudinal A1. Il présente toutefois une ouverture centrale circulaire 105. Ainsi, le plateau 100 présente ici plus spécifiquement une forme d’anneau aplati dont l’épaisseur est inférieure au diamètre. Le plateau 100 présente aussi une périphérie 106 qui correspond ici à son pourtour extérieur, c’est-à-dire ici à la portion du plateau 100 éloignée de l’axe longitudinal A1 .
[0037] Le plateau 100 comprend une face supérieure 101 (tournée vers le rotor). La face supérieure 101 est globalement perpendiculaire à l’axe longitudinal A1. Le plateau 100 comprend en outre une face inférieure 102 opposée et parallèle à la face supérieure 101. L’épaisseur du plateau 100, c’est-à-dire sa dimension selon l’axe longitudinal A1 entre la face supérieure 101 et la face inférieure 102, est par exemple comprise entre 1 mm et 30 mm. Le diamètre du plateau 100 est préférentiellement compris entre 10 cm et 50 cm.
[0038] Comme le montre la figure 1 , le plateau comprend une pluralité de rainures 110. Ici, comme cela apparait bien sur la figure 2, chaque rainure 110 s’étend sur toute l’épaisseur du plateau 100. Ici, chaque rainure s’étend en outre à distance de l’ouverture centrale 105. Cela signifie ici que les rainures 110 ne débouchent pas sur l’ouverture centrale 105. La rainure 110 présente ainsi un bord d’extrémité central 111 situé à une distance non nulle de l’ouverture centrale 105.
[0039] Ici, comme le montre la figure 1 , chaque rainure 110 s’étend selon une direction radiale A2, perpendiculaire à l’axe longitudinal A1. Chaque rainure 110 s’étend selon sa propre direction radiale A2, distincte de la direction radiale A2 des autres rainures 110. Chaque rainure 110 forme donc ici une encoche en U débouchant vers la périphérie 106 du plateau 100. Chaque rainure 110 traverse en outre ce dernier de la face supérieure 101 à la face inférieure 102.
[0040] Les dents 200 sont régulièrement réparties sur la face supérieure 101 du plateau 100 autour de l’axe longitudinal A1.
[0041] La face supérieure 101 et la face inférieure 102 sont opposées dans (ou selon) l’axe longitudinal A1. Cela signifie donc que la face inférieure 102 est opposée aux dents 200 par rapport à la face supérieure 101 .
[0042] Chaque dent 200 présente globalement une forme de prisme droit, de section trapézoïdale dans un plan orthogonal à l’axe longitudinal A1 . Chaque dent 200 présente ici plan de symétrie radiale.
[0043] Comme illustré sur la figure 2, chaque dent 200 comprend une partie basse, appelée base 201 , s’étendant en regard du plateau 100 et une partie haute 202 s’élevant à partir de la base 201 selon l’axe longitudinal A1. La partie haute 202 est plus fine que la base 201 car elle est conçue pour porter un bobinage de fil conducteur. Comme le montre la figure 1 , le sommet de la partie haute 202 de chaque dent 200 présente une praire de rebords latéraux, de part et d’autre de la partie haute 202, s’étendant de l’ouverture centrale 105 à la périphérie 106. Les rebords latéraux de chaque dent 200 s’étendent en regard des rebords latéraux des dents adjacentes pour améliorer la circulation du flux magnétique.
[0044] Comme représenté en figure 1 , la base 201 de chaque dent 200 est au contact, de chaque côté, avec la base 201 de chacune des deux dents 200 adjacentes. Les bases 201 des dents 200 adjacentes sont ici en contact sur des surfaces étendues, ici sur l’intégralité des côtés latéraux des bases 201. Ces surfaces étendues sont ici planes, selon un plan contenant l’axe longitudinal A1. Ces contacts étendus assurent une rigidité mécanique élevée au corps de stator 1. En effet, une fois toutes les dents 200 installées sur le plateau 100, elles forment un assemblage serré et qui participe à leur blocage. De plus, ce contact entre les bases confère au corps 1 de stator une conductivité magnétique élevée.
[0045] Pour son assemblage sur le plateau 100, chaque dent 200 comprend un relief 210. Le relief 210 est ici situé au niveau de la base 201 . Le relief 210 fait plus spécifiquement saillie à partir d’une face inférieure 220 de la dent 200, qui s’étend ici parallèlement à la face supérieure 101 du plateau 100.
[0046] Chaque relief 210 est conçu pour s’emboiter avec une des rainures 110 du plateau 100. Un relief 210 et la rainure 110 dans laquelle il s’emboite sont par la suite qualifiés d’« associés ». Pour coopérer avec les rainures 110, il est donc prévu que les reliefs 210 s’étendent également essentiellement radialement. Chaque relief 210 forme ainsi une nervure longiligne s’étendant selon une direction radiale A2.
[0047] A l’exception du relief 210, la face inférieure 220 de chaque dent 200 est plane. La surface de contact entre les dents 200 et le plateau 100 est donc plane. Comme pour le contact entre les dents 200, ce contact plan et étendu entre les dents 200 et le plateau 100 assure une rigidité mécanique élevée ainsi qu’une conductivité magnétique élevée au corps 1 de stator.
[0048] Comme cela est décrit en détail par la suite, chaque relief 210 permet, en coopération avec sa rainure 110 associée, de maintenir la dent 200 par rapport au plateau 100, notamment selon l’axe longitudinal A1 . Pour cela, une partie de chaque relief 210 présente une forme correspondant, en négatif, à la forme de sa rainure 110 associée, de manière à bloquer un mouvement de translation de la dent 200 selon l’axe longitudinal A1.
[0049] Un exemple d’une telle complémentarité de forme est illustré en figure 4. Dans cet exemple, le relief 210 présente une section, dans un plan orthoradial perpendiculaire à la direction radiale A2, en forme de T dans laquelle chaque branche s’étend au contact de la face inférieure 102 du plateau 100. Le plateau 100 est alors interposé entre la base 201 de la dent 200 et les branches du relief 210, ce qui permet d’immobiliser la dent 200 selon l’axe longitudinal A1 .
[0050] On peut maintenant décrire le procédé d’assemblage du corps 1 de stator qui est illustré en figure 12 et qui fait plus précisément l’objet de la présente invention. Certaines caractéristiques structurelles du corps 1 de stator seront spécifiées au cours de la description du procédé.
[0051] Le procédé selon l’invention comprend les étapes principales suivantes :
- une étape e3 d’insertion de chaque relief 210 dans sa rainure 110 associée ; et,
- une étape e4 de déformation mécanique du relief de manière à immobiliser chaque relief 210 dans sa rainure 110 associée.
[0052] Comme représenté en figure 12, le procédé comprend ici également les étapes suivantes :
- une étape e1 de fabrication du plateau 100 ; et,
- une étape e2 de fabrication des dents 200.
[0053] Les figures 2 à 4 illustrent l’étape e3 d’insertion pour un secteur angulaire, c’est-à-dire pour une des dents 200. On fait ci-après référence à la dent 200 comprenant le relief 210 qui est conçu pour s’emboiter dans la rainure 110. La figure 2 représente le secteur angulaire de la dent 200 avant l’insertion. La dent 200 n’est alors pas encore en contact avec le plateau 100.
[0054] La figure 3 illustre le secteur angulaire de la figure 2 au cours de l’insertion. La dent 200 est alors au contact du plateau 100 par sa face inférieure 220. Lors de l’insertion, la base 201 de la dent 200 coulisse sur la face supérieure 102 du plateau 100 et, dans le même temps, le relief 210 est introduit dans la rainure 110.
[0055] Comme le montre la figure 3, l’insertion du relief 210 dans la rainure 110 est réalisée par un mouvement de translation rectiligne dans la direction radiale A2 selon laquelle s’étend la rainure 110 et vers l’axe longitudinal A1 , c’est-à-dire en direction de l’ouverture centrale 105. Cet unique mouvement de translation rectiligne permet de réaliser l’intégralité de l’étape e3 d’insertion du relief 210 de la dent 200 et donc l’intégralité du positionnement de la dent 200 par rapport au plateau 100. L’étape e3 d’insertion requière ainsi un nombre minimum de mouvement de la dent 200, ce qui rend la mise en œuvre du procédé simple.
[0056] Ici, l’étape e3 d’insertion se termine lorsque le relief 210 arrive en butée du bord d’extrémité central 111 de la rainure 110 ou, dans d’autres modes de réalisation, si les reliefs 210 de dents 200 adjacentes entrent en contact. Une fois en butée, la dent 200 se trouve dans une position assemblée par rapport au plateau 100. Cette position assemblée, qui correspond à la position de la dent 200 lorsque le stator est fonctionnement, est illustrée à la figure 4.
[0057] Dans la position assemblée, l’emboitement du relief 210 et de la rainure 110 laisse à la dent 200 un unique degré de liberté par rapport au plateau 100 correspondant à un mouvement de translation rectiligne selon la direction radiale A2 à l’opposé de l’axe longitudinal A1 .
[0058] L’étape e4 de déformation mécanique du relief 210 permet ici de supprimer cet unique degré de liberté de la dent 200 et ainsi de fixer cette dernière solidairement au plateau 100. L’objectif de la déformation mécanique du relief 210 est de maintenir le relief 210 imbriqué dans la rainure 100, c’est-à-dire d’immobiliser le relief 210 dans la rainure 110. L’immobilisation du relief 210 dans la rainure 110 entraine en retour l’immobilisation de la dent 200 par rapport au plateau 100.
[0059] La déformation mécanique entraine ici un changement de forme du relief 210 qui soit l’enserre dans la rainure 110, soit permet de prendre le plateau 100 en étau entre la base 201 et le relief 210 au niveau de la rainure 110. Ici, « déformation mécanique » signifie que le relief 210 subit un changement de forme distinct d’une simple homothétie. Ici, une déformation mécanique signifie par exemple qu’au moins une dimension du relief varie d’au moins 10% au cours de la déformation mécanique.
[0060] La déformation mécanique que subit le relief 210 est ici une déformation plastique, en ce sens qu’elle est irréversible par opposition à une déformation élastique réversible. Cela permet d’assurer une rigidité élevée de la fixation de la dent 200 sur le plateau 100 sans autre moyen de fixation supplémentaire.
[0061] Dans un premier mode de réalisation du procédé selon l’invention, représenté aux figures 2 à 7, l’étape e4 de déformation mécanique est réalisée après l’insertion complète du relief 210 dans la rainure 110. Ainsi, l’étape e4 de déformation mécanique débute après que le relief 210 est arrivé en butée du bord d’extrémité central 111 de la rainure 110, comme représenté à la figure 4.
[0062] Le fait que la rainure 110 s’étende sur toute l’épaisseur du plateau 100 facilite la déformation du relief 210 puisque la déformation peut être opérée depuis la face inférieure 102 du plateau 100, là où l’espace disponible est important. Ici, la déformation est réalisée au moyen d’un outil déplacé selon la direction radiale A2, de préférence vers la périphérie du plateau 100, et venant faire pression sur le relief 210.
[0063] Le résultat de l’étape e4 de déformation de ce premier mode de réalisation est par exemple illustré sur les figures 5 et 7. Sur les figures 5 et 7, on a représenté par des hachures une extrémité 211 du relief 210 qui a été déformée lors de cette étape. La figure 5 représente plus spécifiquement le relief 210 de la figure 4 après déformation.
[0064] La figure 6 représente une partie seulement d’un exemple de relief 210, vue selon une direction orthoradiale A3, avant déformation. Sur les figures 6 et 7, la périphérie 106 du plateau 100 est située à gauche et l’ouverture centrale 105 à droite. Comme le montre bien la figure 7, le relief 210 est ici déformé vers la périphérie 106 du plateau 100. Dans l’exemple représenté en figure 7, après déformation, l’extrémité 211 du relief 210 est inclinée d’environs 45 degrés par rapport à sa forme initiale avant déformation. Cela se traduit notamment par une diminution de sa hauteur, selon l’axe longitudinal A1 , d’environ 30%.
[0065] La déformation vers la périphérie du plateau 100 permet de bloquer efficacement le dernier degré de liberté de la dent 200 selon la direction radiale A2. De préférence, une fois assemblé, le corps 1 de stator est placé dans un carter de protection qui vient en contact de la face inférieure 102 du plateau 100 et de l’extrémité 211 déformée du relief 210. Le carter de protection aide alors à maintenir le relief 210 dans sa configuration déformée et par conséquent au maintien de la dent 200.
[0066] En variante, le relief pourrait être déformé dans la direction orthoradiale. Dans une telle variante, de relief est de préférence plus long, selon l’axe longitudinal, que pour une déformation radiale. Par exemple, le relief peut s’étendre à partir d’un renfoncement prévu dans la base de la dent de façon à présenter un cou plus long avant de s’élargir. Cela permet un mouvement tangentiel de la dent et par conséquent un meilleur contact des dents entre elles. Cette longueur supplémentaire facilite en outre la déformation orthoradiale. Encore en variante, le relief pourrait être déformé dans une autre direction.
[0067] Pour faciliter la déformation, il est prévu que l’intégralité du relief 210, ou uniquement l’extrémité 211 du relief 210, soit moins dense que la dent 200.
[0068] Ici, quel que soit le mode de réalisation, la dent 200 et le relief 210 sont formés d’un seul tenant, lors de l’étape e2 de fabrication des dents, par un empilement de tôles 230 métalliques telles que représentées par exemple sur les figures 5, 6 et 8. La dent 200 et le relief 210 sont plus spécifiquement formés par des tôles 230 planes, s’étendant ici orthoradialement, dont l’épaisseur est par exemple comprise entre 0,2 mm et 0,5 mm. Les tôles 230 sont par exemple réalisées an acier électrique, à grains orientés ou non. Le plateau 100 peut quant à lui être réalisé en aluminium, en alliage d’aluminium, par exemple en silumin, ou en un autre matériau amagnétique (un plateau magnétique pouvant en variante être utilisé dans certains modes de réalisation).
[0069] De façon remarquable, afin que le relief 210, ou son extrémité 211 , soit moins dense que la dent 200 elle-même, le relief 210, ou sont extrémité 211 , est ici formé par une partie seulement des tôles 230 formant la dent 200.
[0070] Par exemple, comme illustré sur les figures 6 et 7, l’extrémité 211 du relief 210 peut être formée uniquement par la moitié des tôles 230 formant la dent 200 et le relief 210. Dans l’exemple représenté, l’extrémité 211 est formée, en alternance, par une tôle 230 sur deux de l’empilement. En d’autres termes, chaque tôle 230 contribuant à former l’extrémité 211 est adjacente à deux tôles 230 ne contribuant pas à former l’extrémité 211 , et vice versa.
[0071] Le relief 210, ou son extrémité, peut aussi par exemple être formé par deux tôles sur trois ou une tôle sur trois de l’empilement, de nombreuses combinaisons étant possibles.
[0072] Dans l’exemple illustré sur les figures 2 à 5, la rainure 110 présente des bords droits, c’est-à-dire parallèles à l’axe longitudinal A1. Le maintien longitudinal de la dent 200 est assuré par le fait que l’extrémité 211 du relief 210 débouche sur la face inférieure 102 du plateau 100 et présente une forme évasée au-delà du plateau 100, par exemple ici une forme en T telle que représentée sur la figure 5.
[0073] En variante, la rainure pourrait présenter des bords inclinés qui ne sont pas parallèles à l’axe longitudinal A1. Encore en variante, les bords de la rainure pourraient présenter des épaulements. Le relief pourrait alors ne pas déboucher sur la face inférieure mais tout de même maintenir la dent au moyen d’une forme adaptée aux épaulements.
[0074] Dans ce premier mode de réalisation, pour faciliter l’insertion du relief 210 dans la rainure 110, le relief 210 est de préférence moins large que la rainure 110. Ici, la largeur la rainure 110 correspond à sa dimension dans la direction orthoradiale A3. La largeur du relief 210 correspond à sa dimension dans la direction orthoradiale A3 dans l’épaisseur du plateau 100.
[0075] Dans un deuxième mode de réalisation, l’étape e4 de déformation du relief 210 est réalisée lors de l’étape e3 d’insertion. Ainsi, à la différence du premier mode de réalisation, la déformation n’est pas réalisée postérieurement mais pendant l’insertion.
[0076] Dans ce deuxième mode de réalisation, le relief 210 est déformé en l’introduisant en force dans la rainure 110. Par conséquent, l’étape e3 d’insertion est plus difficile à réaliser car les contraintes mécaniques sont plus importantes. Toutefois, le procédé d’assemblage est simplifié car les étapes d’insertion et de déformation sont réalisées en même temps. En outre, dans ce mode de réalisation, il n’est pas forcé que la rainure s’étende sur toute l’épaisseur du plateau et débouche sur la face inférieure de ce dernier.
[0077] Pour que le relief 210 soit déformé lors de l’insertion, il est ici prévu que le relief 210 présente une largeur supérieure à celle de la rainure 110, au moins sur une partie de l’épaisseur du plateau 100. Lors de l’insertion radiale du relief 210 dans la rainure 110, des flancs 212 du relief 210 sont alors déformés vers la périphérie du plateau 100, ce qui assure un maintien efficace. Les flancs 212 correspondent aux parties latérales du relief 210 qui sont en contact avec les bords de la rainure 110. Ils s’étendent dans la direction d’extension du relief 210, c’est-à- dire ici selon la direction radiale A2. Les flancs 212 du relief 210, déformés lors de l’insertion, sont représenté par des hachures sur la figure 9.
[0078] Dans ce deuxième mode de réalisation, la hauteur du relief 210 selon l’axe longitudinal A1 est inférieure à l’épaisseur du plateau 100. En d’autres termes, le relief 210 ne débouche pas sur la face inférieure 102 du plateau 100. Ici, le maintien de la dent 200 selon l’axe longitudinal A1 est assuré par une liaison de type queue- d’aronde entre le relief 210 et la rainure 110. Le relief 210 constitue plus précisément un tenon et la rainure 110 une mortaise.
[0079] Un tel relief 210 pour une liaison de type queue-d’aronde est par exemple illustré en figure 8 et 9. Le relief 210 est ici évasé en direction de la face inférieure 102. Cela signifie ici que le relief 210 s’élargie progressivement de la face supérieure 101 à la face inférieure. Le relief 210 présente ainsi des bords inclinés par rapport à l’axe longitudinal A1. Les bords de la rainure 110 (non représentée) sont inclinés de façon complémentaire pour assurer le contact avec les flancs 212. Les bords de la rainures 110 qui sont au contact des flancs sont ici plan et incliné vers la face inférieure 102 du plateau 100 en ce sens qu’ils présentent une direction normale orientée vers la face inférieure 102 du plateau 100.
[0080] Dans ce deuxième mode de réalisation, il est prévu que les flancs 212 du relief 210 soient moins denses que la dent 200 dans le but de faciliter leur déformation.
[0081] Ici, pour que les flancs 212 soient moins denses que la dent 200, il est prévu une alternance, avec une tôle sur deux portant un flanc 212 gauche et une tôle sur deux portant un flanc 212 droit. Ainsi, une première partie du relief 210, qui est associée à une première tôle 231 , est inclinée dans une première direction D1 du plan de cette première tôle 231 , et une seconde partie du relief 210, qui est associée à une seconde tôle 232 adjacente à la première tôle 231 , est inclinée dans une seconde direction D2 du plan de cette seconde tôle 232. La seconde direction D2 est inclinée par rapport à la première direction D1 ou opposée à la première direction D1. En d’autres termes, les deux directions D1 et D2 ne sont pas colinéaires et de même sens.
[0082] A titre d’exemple, sur les figures 8 et 9, les deux directions D1 et D2 sont opposées, bien qu’orthoradiales toutes les deux. La première partie du relief 210 et la seconde partie du relief 210 présentent des formes identiques et d’orientations opposées, c’est-à-dire des formes en miroir. Les deux directions D1 et D2 peuvent aussi par exemple être orientées chacune à 45 degrés de la face inférieure 102 du plateau 100.
[0083] Comme le montrent les figures 8 et 9, chaque flanc 212 est donc formé, en alternance, par une tôle 230 sur deux de l’empilement de tôles 230 formant la dent 200. Cela facilite la déformation des flancs lors de l’insertion du relief 210 dans la rainure 110. Comme dans le premier mode de réalisation, cette alternance peut varier.
[0084] La figure 8 illustre le relief 210 avant son insertion dans la rainure 110. Avant l’insertion, la première et la deuxième partie du relief 210 sont, comme les tôles 230 qui les forment, planes. La figure 9 illustre le relief 210 après son insertion dans la rainure 110, et donc ici après la déformation. Lors de l’insertion, le relief 210 est ici déformé notamment de sorte que sa dimension dans la direction orthoradiale A3 diminue. Ici, chaque la largeur de chaque flanc 212 dans la direction orthoradiale A3 diminue d’environ 20%. Lors de l’insertion, la première et la deuxième partie du relief 210 sont déformées de manière incurvée vers la périphérie du plateau 100, c’est-à-dire à l’opposé de la direction d’insertion. La déformation vers la périphérie du plateau 100 permet de bloquer efficacement le dernier degré de liberté de la dent 200 selon la direction radiale A2.
[0085] Les deux modes de réalisation décrits ci-dessus, ainsi que leurs variantes, sont tout à fait combinables. Ainsi, le relief 210 peut subir une première déformation mécanique lors de l’insertion dans la rainure 110 et deuxième déformation mécanique après l’insertion complète dans la rainure 110.
[0086] Un tel relief 210 conçu pour être déformé pendant et après l’insertion dans la rainure 110 est par exemple illustré en figure 10 et 11 . Ce relief 210 comprend à la fois des flancs 212 conçus pour être déformés au cours de l’insertion du relief 210 dans la rainure 110 (non représenté) et une extrémité 211 , ici en forme de T, conçue pour être déformée, à l’aide d’un outil spécifique depuis la face inférieure 102, après l’insertion complète du relief 210 dans la rainure 110.
[0087] Ici, comme dans le premier mode de réalisation, le relief 210 est formé, en alternance, par une tôle 230 sur deux de l’empilement de tôles 230 formant la dent 200. En variante, comme dans le deuxième mode de réalisation, le relief pourrait être formé par toutes les tôles de l’empilement avec certaines parties du relief orientées dans une première direction et les autres dans une seconde direction.
[0088] La figure 10 illustre le relief 210 avant son insertion dans la rainure 110. Avant l’insertion, les tôles 230 formant le relief 210 sont planes. La figure 11 illustre le relief 210 après déformation.
[0089] Les flancs 212 sont disposés pour être au contact des bords de la rainure 110, qui présente ici des bords droits. Ils sont donc situés, une fois le relief 210 inséré dans la rainure 110, dans l’épaisseur du plateau 100. La largeur des flancs 212, dimension selon la direction orthoradiale A3, après déformation (figure 11 ) est inférieure à la largeur initiale des flancs 212 avant déformation (figure 10). Au cours de l’insertion du relief 210 dans la rainure 110, les flancs 212, initialement plans, sont déformés jusqu’à être incurvés en direction de la périphérie 106 du plateau 100. [0090] Dans cet exemple, les bords de la rainure 110 étant droits, les flancs 212 participent donc principalement au blocage du relief 210 dans la direction radiale A2. En variante, avec un assemblage de type queue-aronde, c’est-à-dire notamment avec des bords de rainure inclinées par rapport à l’axe longitudinal, les flancs participeraient davantage au maintien longitudinal.
[0091] L’extrémité 211 est quant à elle disposée pour s’appuyer, de part et d’autre de la largeur de la rainure 110 selon la direction orthoradiale A3, sur la face inférieure 102. Dans cet exemple, le maintien longitudinal de la dent 200 est ainsi principalement assuré par l’extrémité 211 .
[0092] Une fois le relief 210 inséré dans la rainure 110, l’extrémité 211 est déformée vers la périphérie du plateau 100 de façon analogue à l’exemple illustré en figure 6 et 7. L’extrémité 211 déformée participe donc à la fois au maintien radial et au maintien longitudinal.
[0093] Le plateau pourrait présenter une forme d’étoile dont chaque branche serait séparée des deux branches voisines par les rainures.
[0094] Toutefois, ici, comme cela apparait bien sur la figure 5, le plateau 100 présente préférentiellement une forme spécifique qui permet à la fois une insertion radiale du relief 210 et qui lui confère en même temps une rigidité élevée. En effet, bien que débouchant sur la périphérie du plateau 100, les rainures 100 ne scindent pas le plateau 100 en une pluralité de branches.
[0095] Ainsi, le plateau 100 comprend :
- une portion principale 120 sensiblement plane et perpendiculaire à l’axe longitudinal A1 ; et
- une portion périphérique 130 située à la périphérie 106 du plateau 100.
[0096] La portion principale 120 est une portion centrale formant la majeure partie du plateau 100. La portion principale est ici délimitée par la face supérieure 101 et la face inférieure 102, l’ouverture centrale 105 et un bord périphérique extérieur 121. [0097] La portion périphérique 130 borde la portion principale 120 sur son bord périphérique extérieur 121. Elle forme un rebord dont une partie est inclinée vers l’arrière de façon à former un tube cylindrique ou tronconique (ouvert vers le bas). Une autre partie de ce rebord est incliné vers l’extérieur de façon à former une collerette plane qui borde l’extrémité inférieure du tube.
[0098] Ainsi, la portion périphérique 130 s’étend sur une hauteur non nulle selon l’axe longitudinal A1. La portion périphérique 130 s’étend par exemple sur une hauteur comprise entre 2 et 4 fois la hauteur de la portion principale 120.
[0099] Comme le montre bien la figure 5, la rainure 110 s’étendant sur la portion principale 120 et sur une partie seulement de la hauteur de la portion périphérique 130. Ici, la rainure 110 s’étend en effet uniquement sur la partie tubulaire de la portion périphérique 130 mais pas sur sa collerette plane. Ainsi, la rainure 110 débouche vers la périphérie 106 du plateau 100 sans toutefois former dans ce plateau une encoche ouverte vers l’extérieur.
[0100] La forme de la portion périphérique 130 assure ainsi une rigidité élevée du plateau 100, tout en permettant de réaliser l’étape d’insertion en faisant coulisser, ici selon la direction radiale A2, le relief 210 par l’extérieur du plateau 100 dans la rainure 110.
[0101] Pour réaliser de façon efficace un tel plateau 100, l’étape e1 de fabrication du plateau 100 comprend ici les sous-étapes suivantes :
- fourniture d’un disque annulaire ;
- poinçonnage des rainures 110 ;
- emboutissage du disque annulaire de façon à former le plateau 100.
[0102] Le disque annulaire est donc ici un disque plan dont la forme globale est proche de celle du plateau 100. Le disque annulaire présente initialement un unique évidement central correspondant à l’ouverture centrale du plateau 100.
[0103] L’avantage de cette méthode de fabrication du plateau 100 est ici de réaliser les rainures 110 par poinçonnage, qui plus est sur une pièce plane (le disque annulaire), plutôt que de devoir usiner les rainures 110 sur une pièce complexe s’étendant dans plusieurs directions telles que la portion périphérique 130 du plateau 100. L’emboutissage permet ensuite de mettre en forme la portion périphérique 130. La partie du disque annulaire restant plane forme alors quant à elle la portion principale 120 du plateau 100.
[0104] L’emboutissage est réalisé après le poinçonnage. Il consiste ici à déformer la périphérie du disque pour former la portion périphérique 130. Il est prévu que chaque rainure 110 s’étende sur une portion du disque qui est déformée par l’emboutissage. Ainsi, après emboutissage, chaque rainure 110 s’étend sur une partie de la hauteur de la portion périphérique 130.
[0105] Ici, le plateau 100 est réalisé dans un matériau amagnétique. Le plateau 100 est par exemple réalisé acier inoxydable ou en aluminium.
[0106] En variante, la fabrication du plateau pourrait être réalisé par moulage et/ou par usinage.
[0107] Quel que soit le mode de réalisation, la fixation du relief 210 dans la rainure 110 peut être complétée par collage ou par soudure. La colle peut être disposée sur le relief et/ou sur la rainure 110 avant l’étape e3 d’insertion. La colle peut aussi est appliquée après l’étape e3 d’insertion, avant ou après l’étape e4 de déformation. La colle utilisée est ici une colle thermodurcissable. La soudure est de préférence réalisée après l’étape e4 de déformation. La colle et la soudure permettent de combler des interstices entre le plateau 100 et les dents 200 et ainsi d’améliorer la conductivité thermique. De façon générale, l’étape e4 de déformation permet une meilleure fixation de la dent 200 sur le plateau 100 qu’un simple collage ou une simple soudure.
[0108] Une bobine de fils conducteur (non représentée) est ici bobinée autour de chaque dent 200 avant son installation. En variante, les bobines peuvent être installées après l’insertion des dents mais leur bobinage est alors plus complexe. [0109] Selon d’autres variantes de réalisation de l’invention, l’étape de déformation des reliefs des dents pourrait être réalisée autrement, par exemple par frettage, par ceintrage ou encore en procédant à un chauffage pour rendre le relief plus ductile,

Claims

REVENDICATIONS
[Revendication 1] Procédé d’assemblage d’un corps (1 ) de stator pour machine électrique à flux axial, le corps (1 ) de stator comprenant un plateau (100) en forme de disque centré sur un axe longitudinal (A1 ) et des dents (200) réparties sur une face supérieure (101 ) du plateau (100) autour de l’axe longitudinal (A1 ), le plateau (100) comprenant au moins une rainure (110), et au moins une desdites dents (200) comprenant un relief (210) en saillie, ledit procédé comprenant une étape d’insertion (e3) du relief (210) dans la rainure (110), caractérisé en ce qu’il comprend une étape de déformation (e4) mécanique du relief (210) de manière à immobiliser le relief (210) dans la rainure (110).
[Revendication 2] Procédé d’assemblage selon la revendication 1 , dans lequel la déformation (e4) du relief (210) est réalisée lors de l’étape d’insertion (e3) par une mise en place en force du relief (210) dans la rainure (110) ou postérieurement à l’étape d’insertion (e3) depuis une face inférieure (102) du plateau (100) opposée à la face supérieure (102).
[Revendication 3] Procédé d’assemblage selon l’une des revendications 1 à 2, dans lequel le relief (210) et la rainure (110) s’étendent selon une direction radiale (A2) perpendiculaire à l’axe longitudinal (A1 ), et dans lequel l’insertion du relief (210) dans la rainure (110) est réalisée par coulissement selon la direction radiale (A2).
[Revendication 4] Procédé d’assemblage selon l’une des revendications 1 à 3, dans lequel, le plateau (100) présente une ouverture centrale (105), la rainure (110) s’étendant sur toute l’épaisseur du plateau (100) et à distance de l’ouverture centrale (105).
[Revendication 5] Procédé d’assemblage selon l’une des revendications 1 à 4, dans lequel le plateau (100) comprenant :
- une portion principale (120) sensiblement plane et perpendiculaire à l’axe longitudinal (A1 ) ; et
- une portion périphérique (130) bordant la portion principale (120) sur son bord périphérique extérieur (121 ), du côté de la face inférieure (102) du plateau (100), sur une hauteur non nulle, la rainure (110) s’étendant sur la portion principale (120), sur une partie seulement de la hauteur de la portion périphérique (130), de sorte qu’elle débouche vers l’extérieur du plateau (100), et l’étape d’insertion (e3) est réalisée en faisant coulisser le relief (210) par l’extérieur du plateau (100) dans la rainure (110).
[Revendication 6] Procédé d’assemblage selon la revendication 5, comprenant, avant l’étape d’insertion (e3), une étape de fabrication (e1 ) du plateau (100) comprenant les sous-étapes suivantes :
- fourniture d’un disque plan ;
- poinçonnage des rainures (110) ;
- emboutissage du disque plan de façon à former le plateau (100).
[Revendication 7] Procédé d’assemblage selon l’une des revendications 1 à 6, dans lequel une partie du relief (210) présente une forme correspondant, en négatif, à une forme de la rainure (110) de manière à maintenir la dent (200) par rapport au plateau (100) selon l’axe longitudinal (A1 ).
[Revendication 8] Procédé d’assemblage selon l’une des revendications 1 à 7, dans lequel le relief (210) et la rainure (110) forment un assemblage de type queue- d’aronde dans lequel le relief (210) constitue un tenon et dans lequel la rainure (110) constitue une mortaise.
[Revendication 9] Procédé d’assemblage selon l’une des revendications 1 à 8, comprenant, avant l’étape d’insertion (e3), une étape de fabrication (e2) de la dent (200) et du relief (210), au cours de laquelle la dent (200) et le relief (210) sont réalisés d’un seul tenant par un empilement de tôles (230) métalliques, le relief (210) étant formé par une partie seulement desdites tôles (230).
[Revendication 10] Procédé d’assemblage selon l’une des revendications 1 à 9, comprenant, avant l’étape d’insertion (e3), une étape de fabrication (e2) de la dent (200) et du relief (210), au cours de laquelle la dent (200) et le relief (210) sont réalisés d’un seul tenant par un empilement de tôles (230) métalliques planes, dans lequel le relief (210) d’une première tôle (231 ) est incliné dans une première direction (D1 ) du plan de cette première tôle (231 ), et dans lequel le relief (210) d’une seconde tôle (232), adjacente à la première tôle (231 ), est incliné dans une seconde direction (D2) du plan de cette seconde tôle (232), inclinée ou opposée à la première direction (D1).
PCT/EP2022/072091 2021-08-19 2022-08-05 Procédé d'assemblage d'un corps de stator pour machine électrique à flux axial WO2023020863A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2108767 2021-08-19
FR2108767A FR3126192B1 (fr) 2021-08-19 2021-08-19 Procédé d’assemblage d’un corps de stator pour machine électrique à flux axial

Publications (1)

Publication Number Publication Date
WO2023020863A1 true WO2023020863A1 (fr) 2023-02-23

Family

ID=77821932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/072091 WO2023020863A1 (fr) 2021-08-19 2022-08-05 Procédé d'assemblage d'un corps de stator pour machine électrique à flux axial

Country Status (2)

Country Link
FR (1) FR3126192B1 (fr)
WO (1) WO2023020863A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1536542A1 (fr) * 2002-08-16 2005-06-01 Yamaha Hatsudoki Kabushiki Kaisha Machine electrique rotative
EP2224577A1 (fr) * 2007-12-17 2010-09-01 Daikin Industries, Ltd. Noyau magnétique d'induit, induit, machine électrique rotative et compresseur
DE102015213908A1 (de) * 2015-07-23 2017-01-26 Robert Bosch Gmbh Geometrisch optimierter Stator für eine elektrische Maschine sowie elektrische Maschine
WO2017121941A1 (fr) 2016-01-14 2017-07-20 Whylot Sas Stator pour une machine a flux axial avec une couronne de stator formee des modules

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1536542A1 (fr) * 2002-08-16 2005-06-01 Yamaha Hatsudoki Kabushiki Kaisha Machine electrique rotative
EP2224577A1 (fr) * 2007-12-17 2010-09-01 Daikin Industries, Ltd. Noyau magnétique d'induit, induit, machine électrique rotative et compresseur
DE102015213908A1 (de) * 2015-07-23 2017-01-26 Robert Bosch Gmbh Geometrisch optimierter Stator für eine elektrische Maschine sowie elektrische Maschine
WO2017121941A1 (fr) 2016-01-14 2017-07-20 Whylot Sas Stator pour une machine a flux axial avec une couronne de stator formee des modules

Also Published As

Publication number Publication date
FR3126192B1 (fr) 2024-05-10
FR3126192A1 (fr) 2023-02-24

Similar Documents

Publication Publication Date Title
EP3280034B1 (fr) Machine electrique tournante munie d'un interconnecteur dote de bequilles d'appui
EP3729609B1 (fr) Stator de moteur ou generatrice electromagnetique avec support individuel de bobinage encliquete sur une dent associee
WO2014096640A2 (fr) Rotor a griffes dote d'un isolant d'un bobinage d'excitation et une machine electrique tournante equipee d'un tel rotor
EP3142226B1 (fr) Machine electrique tournante comportant un arbre a diametres etages et procede d'assemblage d'une telle machine
EP2160815B1 (fr) Ensemble interpolaire pour machine electrique tournante
FR3054745A1 (fr) Machine electrique tournante munie d'un interconnecteur a crochets d'ecrouissage
WO2020025405A1 (fr) Machine électrique tournante
WO2023020863A1 (fr) Procédé d'assemblage d'un corps de stator pour machine électrique à flux axial
EP3170246A1 (fr) Procede de realisation d'un stator bobine de machine electrique tournante
EP3280033A1 (fr) Machine electrique tournante munie d'un interconnecteur auto-denudant
FR2986388A1 (fr) Procede d'assemblage d'un stator segmente et stator segmente correspondant
FR3053543A1 (fr) Machine electrique tournante munie d'un interconnecteur fixe sur le corps du stator
WO2022238570A1 (fr) Corps de stator pour machine électrique à flux axial
FR3072517A1 (fr) Machine electrique toroidale polyphasee
FR3132803A1 (fr) Procédé de fabrication d’un rotor pour machine électrique
FR3081631A1 (fr) Procede de fabrication d'un stator bobine de machine electrique tournante
EP3214734A1 (fr) Stator de machine electrique tournante muni d'un bobinage à au moins un enroulement de phase masqué
FR3056350A1 (fr) Segment de stator pour machine electrique tournante et procede de realisation d'un stator bobine correspondant
WO2021249864A1 (fr) Ensemble de stator pour moteur electrique a commutation electronique
WO2022128449A1 (fr) Corps de stator pour machine electrique a flux axial et procede de fabrication d'un tel corps de stator
WO2019025193A1 (fr) Rotor de machine électrique tournante muni d'une pièce de maintien d'aimants permanents suivant trois dimensions
FR3133108A1 (fr) Procédé de fabrication d’un corps de stator
FR3111484A1 (fr) Ensemble de stator pour moteur electrique a commutation electronique
WO2023094747A1 (fr) Rotor de machine électrique tournante
FR3083651A1 (fr) Stator bobine pour une machine electrique tournante

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762016

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022762016

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022762016

Country of ref document: EP

Effective date: 20240319