WO2023020221A1 - 进气分配装置及包括该进气分配装置的压缩机 - Google Patents

进气分配装置及包括该进气分配装置的压缩机 Download PDF

Info

Publication number
WO2023020221A1
WO2023020221A1 PCT/CN2022/108209 CN2022108209W WO2023020221A1 WO 2023020221 A1 WO2023020221 A1 WO 2023020221A1 CN 2022108209 W CN2022108209 W CN 2022108209W WO 2023020221 A1 WO2023020221 A1 WO 2023020221A1
Authority
WO
WIPO (PCT)
Prior art keywords
distribution device
fluid
channel
compressor
unit
Prior art date
Application number
PCT/CN2022/108209
Other languages
English (en)
French (fr)
Inventor
范忆文
肖丽
缪仲威
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202121917161.9U external-priority patent/CN215521276U/zh
Priority claimed from CN202110937279.6A external-priority patent/CN115704392A/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2023020221A1 publication Critical patent/WO2023020221A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present disclosure relates to an air intake distribution device arranged horizontally along its longitudinal axis.
  • the compressor includes a compression mechanism for compressing the working fluid, a main bearing seat for supporting the compression mechanism, a motor for driving the compression mechanism, a housing for accommodating the compression mechanism and the motor, and a casing for introducing Inlet connection for working fluid.
  • the working fluid enters the housing of the compressor through the inlet connection, flows in the housing and enters the compression mechanism through the suction chamber of the compression mechanism to be compressed.
  • the compressed working fluid is discharged from the compressor.
  • the purpose of this application is to provide an air intake distribution device, which can effectively guide the fluid to the required area to cool the high temperature components in the required area, and at the same time prevent the working fluid from Contact with lubricating oil.
  • Another object of the present application is to provide a compressor comprising the above air intake distribution device, which can have an improved oil circulation rate and can effectively improve its working efficiency.
  • an air intake distribution device includes a drainage unit.
  • the drainage unit is configured to guide a part of the fluid entering the compressor housing to flow along a predetermined route.
  • the drainage unit includes a body in which an inlet channel and an outlet channel are arranged.
  • the inlet channel is configured to introduce a portion of the fluid in the compressor housing into the drainage unit, and the outlet channel is configured to cause a portion of the fluid to flow out in a predetermined orientation.
  • the drainage unit by providing the drainage unit, a part of the fluid can be guided more accurately and efficiently to the desired area, for example, the area where some high-temperature components need to be cooled.
  • the drainage unit can guide the fluid to flow along a predetermined route, which can prevent the fluid from contacting the lubricating oil, thereby controlling the oil circulation rate.
  • the air intake distribution device further includes a splitter unit.
  • the flow splitting unit is configured to split fluid introduced into the compressor housing into a first fluid portion and a second fluid portion.
  • the splitter unit includes a base and a partition that divides the base into a first base and a second base, the partition and the first base defining a first base for the first fluid portion.
  • a channel, the partition and the second base define a second channel for the second fluid portion.
  • the inlet channel of the drainage unit is located on the downstream side of the second channel to guide the second fluid part to flow along a predetermined route.
  • the air intake distribution device can reasonably distribute fluid through the partition, thereby better controlling fluid flow and oil circulation rate, etc.
  • the flow distribution unit and the drainage unit are formed in one piece, or the flow distribution unit and the drainage unit are formed separately.
  • the base of the distribution unit includes a back plate, side plates extending from both sides of the back plate, and a bottom plate extending from a lower side of the back plate.
  • the divider extends transversely to the back plate and the side plates, the second channel is defined between the divider and the bottom plate, and the outlet of the second channel is provided on the back plate .
  • the base of the flow distribution unit is in the shape of a hollow cylinder.
  • the first base and the second base in which the bases are separated by the partition have arcuate cross-sections.
  • the first channel and the second channel have the same input.
  • the axial length of the first base extending from the input end is smaller than the axial length of the second base extending from the input end.
  • the body is annular, and a plurality of the outlet passages are arranged along a circumferential direction.
  • the body includes inner and outer circumferential sidewalls.
  • a plurality of said outlet passages are defined in an annular space between said inner circumferential sidewall and said outer circumferential sidewall.
  • the inlet channel extends through the outer circumferential sidewall.
  • the drainage unit further includes a connecting portion extending radially outward from the outer peripheral sidewall.
  • the inlet channel extends through the connecting portion.
  • the drainage unit further includes a flange extending radially outward from the outer peripheral sidewall.
  • the drainage unit further includes a protrusion extending radially inward from the inner peripheral sidewall.
  • the drainage unit further includes a cylindrical cover radially outward of the outer peripheral sidewall.
  • a plurality of ribs are disposed along the circumferential direction between the inner circumferential sidewall and the outer circumferential sidewall.
  • a plurality of the outlet channels are defined by the plurality of ribs, the inner circumferential sidewall and the outer circumferential sidewall.
  • annular bottom wall is disposed between the inner circumferential sidewall and the outer circumferential sidewall.
  • the outlet channel has a discharge opening provided on the annular bottom wall or the outer peripheral side wall.
  • outlet passages closer to the inlet passage in the circumferential direction have a smaller discharge flow area.
  • a compressor including the above-mentioned intake air distribution device.
  • the compressor also includes: a casing, on which an air inlet is provided, and an air inlet joint is installed at the air inlet; a compression mechanism, which is located in the casing, and is configured to pair the fluid sucked by the air chamber is compressed; the motor is configured to drive the compression mechanism and includes a stator fixed to the casing and a rotor located radially inward of the stator; and a bearing housing, the The bearing housing is located between the compression mechanism and the motor, and is used to support the compression mechanism.
  • the intake air distribution device is provided at the intake port to guide a part of the fluid introduced into the housing to above the motor.
  • the partition of the flow splitting unit of the air inlet distribution device is at least partially projected in the flow area of the air inlet joint to introduce The fluid inside is divided into a first fluid portion and a second fluid portion.
  • the drainage unit is located between the bearing housing and the motor, and is configured to guide the second fluid portion above the windings of the stator.
  • the outlet of the outlet channel of the drainage unit is located radially outside of the rotor.
  • the cylindrical cover of the drainage unit is located radially outside of the outlet channel and radially outside of the winding in the radial direction.
  • the flow distribution unit is fixed to the bearing housing, the housing or the intake joint; and/or the drainage unit is fixed to the bearing housing, the housing or the stator.
  • the gap is less than one-fifth of the smallest inner diameter of the air intake joint .
  • FIG. 1 is a schematic longitudinal sectional view of a scroll compressor with an intake air distribution device according to an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of the airflow direction of the air intake distribution device of Fig. 1;
  • Fig. 3A to Fig. 3E are respectively the three-dimensional schematic diagram, the plane top view, the schematic diagram of the rotary section along the line L1-L1 of Fig. 3C and the partial installation schematic diagram of the air intake distribution device of Fig. 1 and Fig. 2;
  • FIGS. 4A to 4D are schematic diagrams of various examples of outlet channels of an air intake distribution device
  • 5A to 5E are respectively a three-dimensional schematic diagram, a planar top view, a schematic diagram cut along the line G-G of FIG. 5B , a partially enlarged schematic diagram, and a partial installation schematic diagram of an air intake distribution device according to another embodiment of the present disclosure;
  • 6A to 6C are respectively a three-dimensional schematic view, a longitudinal sectional view and an installation schematic view of an air intake distribution device according to another embodiment of the present disclosure
  • Fig. 7A is a schematic longitudinal sectional view of a scroll compressor with an intake distribution device according to another embodiment of the present disclosure.
  • Fig. 7B and Fig. 7C are respectively a three-dimensional schematic view and a top plan view of the splitter unit of the air intake distribution device in Fig. 7A;
  • 7D to 7F are respectively a three-dimensional schematic view, a top plan view and a schematic view of a rotary section along the line A-A of FIG. 7E of the drainage unit of the air intake distribution device of FIG. 7A;
  • FIG. 8A is a schematic longitudinal sectional view of a scroll compressor with an intake distribution device according to another embodiment of the present disclosure.
  • FIG. 8B and FIG. 8C are a schematic perspective view and a schematic side view of the splitter unit of the air intake distribution device in FIG. 8A , respectively.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth, such as examples of specific components, devices and methods, to provide a thorough understanding of various embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
  • FIG. 1 is a schematic longitudinal cross-sectional view of a scroll compressor 10 having an intake air distribution device 100 according to an embodiment of the present disclosure.
  • the scroll compressor 10 includes a generally cylindrical housing 11 , a top cover 12 and a bottom cover 13 respectively located at two ends of the housing 11 .
  • the casing 11, the top cover 12 and the bottom cover 13 define a sealed interior space, and thereby form the outer shell of the scroll compressor 10.
  • An air inlet 15 is provided on the casing (specifically, the housing 11 in the example of FIG. 1 ), and an air inlet joint 17 is installed in the air inlet 15 to introduce a low-temperature and low-pressure working fluid (for example, refrigerant) into the vortex.
  • a low-temperature and low-pressure working fluid for example, refrigerant
  • the scroll compressor 10 also includes a scroll compression mechanism CM accommodated in the housing.
  • the scroll compression mechanism CM has a suction chamber into which the low-temperature and low-pressure working fluid entering the housing is sucked into, and then becomes a high-temperature and high-pressure working fluid through compression in a series of compression chambers. Finally, the high temperature and high pressure working fluid is discharged from the scroll compressor 10 .
  • the scroll compression mechanism CM is a conventional scroll compression mechanism, so it will not be described in detail here.
  • the scroll compressor 10 also includes a motor 31 housed in the housing.
  • the motor 31 is configured to drive the scroll compression mechanism CM.
  • the motor 31 includes a stator 34 fixed to a housing (specifically, the housing 11 in the example of FIG. 1 ), and a rotor 32 located radially inside of the stator 34 .
  • the rotor 32 is fixedly mounted to the drive shaft 41 so as to drive the drive shaft 41 to rotate together, and then the drive shaft 41 drives the movable scroll of the scroll compression mechanism CM to rotate.
  • various components of the motor particularly windings 36 on stator 34 , generate heat.
  • the scroll compressor 10 also includes a bearing housing 21 .
  • the bearing housing 21 is located between the scroll compression mechanism CM and the motor 31 .
  • a bearing 51 is provided between the bearing housing 21 and the drive shaft 41 .
  • the drive shaft 41 and the scroll compression mechanism CM are rotatably supported by the bearing housing 21 .
  • the scroll compressor 10 also includes an intake air distribution device 100 .
  • the intake distribution device 100 is arranged at the intake port 15 for dividing the fluid introduced through the intake joint 17 into a first fluid part and a second fluid part in an appropriate ratio.
  • the first fluid portion flows into the suction chamber of the scroll compression mechanism CM through the shortest path.
  • the second fluid portion is directed over the motor 31 to cool it.
  • Fig. 2 is a schematic diagram of the air flow direction of the air intake distribution device in Fig. 1;
  • the shaft 41 flows radially inwards, then along the annular passage, and finally down towards the motor 31 .
  • 3A to 3E are respectively a three-dimensional schematic view, a top plan view, a rotated sectional view and a partial installation schematic view of the air intake distribution device 100 shown in FIG. 1 and FIG. 2 .
  • the air intake distribution device 100 includes a diversion unit 110 and a drainage unit 120 .
  • the flow dividing unit 110 is configured to divide the introduced fluid into a first fluid portion F1 and a second fluid portion F2.
  • the drainage unit 120 is configured to guide the second fluid portion F2 to flow in a predetermined route, specifically, to above the winding 36 of the motor 31 in the example of FIG. 1 .
  • the diversion unit 110 and the drainage unit 120 are formed in one piece.
  • the air distribution device 100 can be produced by injection molding.
  • the distribution unit 110 includes a base 111 and a partition 112 .
  • the base 111 of the distribution unit 110 includes a back plate 101 , side plates 103 , 104 respectively extending from two sides of the back plate 101 , and a bottom plate 102 extending from the lower side of the back plate 101 .
  • the partition 112 extends transversely to the back panel 101 and the side panels 103, 104, and separates the back panel 101 and the side panels 103, 104 into an upper part and a lower part.
  • the upper part of the back plate 101 and the side plates 103, 104 is formed as a first base, the partition 112 and the first base define a first channel C1 for the first fluid part F1 which is open at the top.
  • the back plate 101 and the lower parts of the side plates 103, 104 and the bottom plate 102 form a second base with which the bulkhead 112 defines a second channel C2 for the second fluid portion F2.
  • the outlet 106 of the second channel C2 is disposed on the backplane 101 .
  • the drainage unit 120 is located on the downstream side of the second channel C2. In this way, the second fluid portion F2 can flow into the drainage unit 120 located on the downstream side through the outlet 106 .
  • the partition 112 is at least partially projected in the flow area of the intake joint 17 .
  • both the first passage C1 and the second passage C2 have a portion overlapping the internal flow area of the air inlet joint 17 .
  • the ratio of the first fluid portion F1 and the second fluid portion F2 can be changed accordingly. If the overlapping portion of the first channel C1 with the inner flow area of the inlet connection 17 increases, the first fluid fraction F1 increases.
  • the position or configuration of the partition 112 can be set according to the desired ratio of the first fluid portion F1 and the second fluid portion F2.
  • the drainage unit 120 is located between the bearing housing 21 and the motor 31 so as to introduce fluid above the motor 31 .
  • the drainage unit includes a body 121 .
  • An inlet channel 150 and an outlet channel 125 are provided in the body 121 .
  • the inlet channel 150 is configured to communicate with the second channel C2 to introduce the second fluid portion F2.
  • the outlet channel 125 is configured to flow out the second fluid portion F2 in a predetermined orientation, eg towards the winding 36 of the motor 31 in the example shown in the figures.
  • the body 121 is generally annular and includes an inner circumferential sidewall 124 and an outer circumferential sidewall 122 .
  • An annular gas flow passage is defined between the inner circumferential sidewall 124 and the outer circumferential sidewall 122 .
  • a plurality of ribs 123 may be provided in the circumferential direction between the inner circumferential sidewall 124 and the outer circumferential sidewall 122 .
  • a plurality of outlet channels 125 are defined by the inner circumferential sidewall 124 , the outer circumferential sidewall 122 and the rib 123 .
  • connection part 151 may be provided between the branching unit 110 and the drainage unit 120 .
  • the connecting portion 151 extends radially outward from the outer peripheral sidewall 122 to communicate with the second channel C2.
  • the inlet channel 150 extends through the connection portion 151 and the outer circumferential side wall 122 .
  • the second fluid portion F2 from the second channel C2 enters the annular gas flow channel defined between the inner circumferential side wall 124 and the outer circumferential side wall 122 via the inlet channel 150, and then passes through a plurality of outlet channels arranged in the circumferential direction. 125 is sprayed over the motor 31 to cool the motor 31 .
  • the outer peripheral sidewall 122 is generally straight and cylindrical, while the inner peripheral sidewall 124 has a plurality of segments with different diameters, thereby controlling the outlet of the outlet passage 125. Size and orientation, whereby the amount and orientation of the discharge of the second fluid portion F2 can be controlled.
  • the outlet of the outlet channel 125 of the drainage unit 120 may be located radially outside of the rotor 32 . In this way, the fluid discharged through the outlet passage 125 can be separated from the lubricating oil flung from the drive shaft 41 , and the fluid can be directed to the windings 36 of the stator 34 to cool the windings 36 .
  • the drainage unit 120 may further include a flange 131 extending radially outward from the outer peripheral sidewall 122 . Holes 132 may be provided on the flange 131 for inserting fasteners to install or fix the drainage unit 120 .
  • the bearing seat 21 is provided with a threaded hole 22 . The screw 90 can be inserted into the hole 132 of the drainage unit 120 and threadedly engaged with the threaded hole 22 of the bearing housing 21 , thereby fixing the drainage unit 120 (air intake distribution device 100 ) to the bearing housing 21 .
  • the intake air distribution device 100 is installed to the bearing housing 21, it is advantageous that there is a gap between the splitter unit 110 of the intake air distribution device 100 and the intake joint 17 along the direction of the central axis of the air intake port 15, so as to avoid Installation interference.
  • the gap is less than one-fifth of the smallest inner diameter of the inlet connection 17 . In this way, not only installation interference can be avoided, but also excessive fluid can be prevented from flowing through the gap from the radially outer side of the motor 31 to disturb or carry more lubricating oil.
  • a scroll compressor without an air distribution device according to the present disclosure was running at a low RPM with a motor temperature of 310F (degrees Fahrenheit), compared to a scroll compressor 10 of the present disclosure running at the same low RPM
  • the temperature of the motor can be lowered to 220F.
  • the scroll compressor of the present disclosure can significantly improve its working efficiency, for example, the IEER (Integrated Energy Efficiency Ratio) can reach 29.9.
  • the oil circulation rate can be reduced to within 3.0% at a rotating speed of 6000 RPM (revolution per minute).
  • FIGS. 4A-4D illustrate various examples of outlet passages of an air intake distribution device.
  • both the inner peripheral sidewall 124 and the outer peripheral sidewall 122 are in the shape of a straight cylinder.
  • An annular bottom wall 171 is provided between the inner circumferential side wall 124 and the outer circumferential side wall 122 , and the rib 123 in FIGS. 3A to 3D is omitted.
  • a plurality of discharge ports 125a are provided in the annular bottom wall 171 .
  • the plurality of discharge ports 125a may be arranged at equal intervals along the circumferential direction, and may have the same size and shape.
  • FIG. 4B differs from the example of FIG. 4A in that the plurality of discharge ports 125 b are provided on the outer circumferential side wall 122 instead of being provided in the annular bottom wall 171 .
  • FIG. 4C is similar to the examples of FIGS. 3A-3D .
  • a plurality of outlet passages 125c are defined by the inner circumferential sidewall 124 , the outer circumferential sidewall 122 , and the rib 123 disposed between the inner circumferential sidewall 124 and the outer circumferential sidewall 122 .
  • the difference between the example of FIG. 4C and the example of FIGS. 3A to 3D is that the inner circumferential sidewall 124 and the outer circumferential sidewall 122 have a straight cylindrical shape, therefore, the outlet channel 125c has a substantially constant flow area, and the fluid Downflow from outlet channel 125c.
  • the example of FIG. 4D differs from the example of FIG. 4A in that the discharge openings 125d1 to 125d4 of the outlet channels have different discharge flow areas.
  • the discharge ports 125d1 to 125d4 are sequentially separated from the connection part 151 (ie, the inlet passage 150).
  • the discharge port 125d1 is adjacent to the inlet channel 150 .
  • the discharge port 125d2 is farther from the inlet channel 150 than the discharge port 125d1.
  • the discharge port 125d3 is farther from the inlet channel 150 than the discharge port 125d2.
  • the discharge port 125d4 is opposite to the discharge port 125d1 and furthest from the inlet channel 150 .
  • the discharge flow areas of the discharge ports 125d1 to 125d4 are also gradually increased. In other words, the discharge flow area of the outlet channel that is closer to the inlet channel 150 in the circumferential direction is smaller.
  • 5A to 5E are respectively a three-dimensional schematic view, a planar top view, a schematic cross-sectional view along line G-G of FIG. 5B , a partial enlarged schematic view and a partial installation schematic view of an air intake distribution device 200 according to another embodiment of the present disclosure.
  • the air intake distribution device 200 in FIGS. 5A to 5E is different from the intake air distribution device 100 in FIGS. 3A to 3E in that it has a different installation structure.
  • the drainage unit 220 includes a protruding portion (or may be called a hook portion) 241 extending radially inward from the inner peripheral sidewall 224 .
  • the plurality of protrusions 241 may be distributed at equal intervals along the circumferential direction.
  • the bearing seat 21 is provided with a groove 24 for receiving the protrusion 241 .
  • the air distribution device 200 When installing the air distribution device 200 , it is pushed towards the bearing housing 21 . When the protrusion 241 engages into the groove 24, then the air distribution device 200 is installed in place.
  • the flow splitting unit 210 , the connecting portion 251 , the rib 223 and the outlet channel 225 shown in FIGS. 5A to 5E are similar to the corresponding parts shown in FIGS. 3A to 3E , so detailed descriptions are omitted here.
  • 6A to 6C are respectively a three-dimensional schematic view, a longitudinal sectional view and an installation schematic view of an air intake distribution device 300 according to another embodiment of the present disclosure.
  • the air intake distribution device 300 in FIGS. 6A to 6C is different from the intake air distribution device 100 in FIGS. 3A to 3E in that the drainage unit 320 further includes a cover 381 extending downward from the flange 382 .
  • the cover 381 is substantially cylindrical.
  • the cover 381 surrounds the outlet passage 325 on the radially outer side of the outer circumferential side wall 322 and is located radially outer of the winding 36 to prevent the The fluid flows to an area radially outside of the motor 31 .
  • the cover 381 may be fixed to the stator 34, thereby installing the intake air distribution device 300.
  • the flow splitting unit 310 , the connecting portion 351 and the outlet channel 325 shown in FIGS. 6A to 6C are similar to the corresponding parts shown in FIGS. 3A to 3E , so detailed descriptions are omitted here.
  • Fig. 7A is a schematic longitudinal sectional view of a scroll compressor with an intake distribution device 400 according to another embodiment of the present disclosure.
  • the air intake distribution device 400 shown in FIG. 7A is different from the above-mentioned intake air distribution devices 100 to 300 in that the diversion unit 410 and the drainage unit 420 are of separate structure.
  • the flow diversion unit 410 and the flow introduction unit 420 are separately formed and installed to different parts of the scroll compressor, respectively.
  • FIG. 7B and FIG. 7C are respectively a three-dimensional schematic diagram and a top plan view of the flow splitting unit 410 of the air intake distribution device 400 in FIG. 7A .
  • the shunt unit 410 of FIGS. 7B and 7C is similar to the shunt unit 110 of FIGS. 3A-3D .
  • the distribution unit 410 includes a base 411 and a partition 412 .
  • the base 411 of the distribution unit 410 includes a back plate 401 , side plates 403 , 404 respectively extending from two sides of the back plate 401 , and a bottom plate 402 extending from the lower side of the back plate 401 .
  • the partition 412 extends transversely to the back panel 401 and the side panels 403, 404, dividing them into an upper part and a lower part, thereby forming a first channel and a second channel.
  • the outlet 406 of the second channel is disposed on the backplane 401 .
  • the distribution unit 410 in FIG. 7B and FIG. 7C is different from the distribution unit 110 in FIGS. 3A to 3D in that the back plate 401 is curved and the end surface of the partition 412 is correspondingly curved. It should be understood that the structure of the branching unit can be changed according to needs, and should not be limited to the specific examples shown.
  • the drainage unit 420 is similar to the drainage unit 320 shown in FIGS. 6A-6C .
  • the drainage unit 420 has a cover 481 extending downward from a flange 482 .
  • the cover 481 is located radially outward of the outer circumferential side wall 422 .
  • the inner circumferential side wall 424 is located radially inward of the outer circumferential side wall 422 and defines with the outer circumferential side wall 422 an outlet channel 425 for discharging fluid.
  • the difference between the drainage unit 420 and the drainage unit 320 lies in the structure of the inlet channel 450 .
  • the inlet channel 450 is in the form of an upwardly facing recess rather than a closed channel.
  • the flange 482 together with the bearing housing 21 defines the inlet passage 450 when the air distribution device 400 is in place. Therefore, the structure of the entrance channel may vary according to actual conditions, and is not necessarily limited to the specific examples shown.
  • the air intake distribution device can have only drainage units.
  • a part of the fluid entering into the shell of the compressor is effectively guided to the upper side of the motor by the flow guiding unit, so as to cool the motor.
  • the drainage unit guides a part of the fluid at the air inlet directly above the motor, this part of the fluid can be prevented from contacting the lubricating oil.
  • some of the fluid entering the compressor casing usually travels down the casing, contacts the lubricating oil in the oil sump at the bottom of the casing, and then carries more lubricating oil to the compressor. in the institution. Therefore, the lubricating oil in the conventional compressor is gradually reduced, allowing more lubricating oil to enter other components than the compressor, thereby affecting the efficiency of other components and thus reducing the efficiency of the entire compressor system.
  • Fig. 8A is a schematic longitudinal cross-sectional view of a scroll compressor with an intake distribution device 500 according to another embodiment of the present disclosure.
  • the air intake distribution device 500 shown in FIG. 8A is similar to the intake air distribution device 400 shown in FIG. 7A in that it also has a split flow distribution unit 510 and a drainage unit 520 .
  • the structure of the water drainage unit 520 is similar to that of the water drainage unit 420, so it will not be described in detail.
  • FIG. 8B and FIG. 8C are a schematic perspective view and a schematic side view of the splitter unit 510 of the air distribution device 500 in FIG. 8A , respectively.
  • the flow distribution unit 510 has a base 511 that is generally hollow and cylindrical.
  • the partition 512 is located in the hollow space of the base 511 and divides the base 511 into an upper arc-shaped base (first base with an arc-shaped cross section) 501 and a lower arc-shaped base (second base with an arc-shaped cross-section) 502 .
  • the partition 512 and the upper curved base (first base) 501 define a first channel C1.
  • the partition 512 and the lower curved base (second base) 502 define a second channel C2.
  • the first channel C1 and the second channel C2 have the same input terminal 515 but different output terminals 516 and 517 respectively.
  • the axial length of the upper arc-shaped base (first base) 501 extending from the input end 515 to the output end 516 is smaller than the axial length of the lower arc-shaped base (second base) 502 extending from the input end 515 to the output end 517. Therefore, the second channel C2 is longer than the first channel C1 , which facilitates introducing fluid into the drainage unit 520 .
  • the splitter unit 510 is fixed into the inlet fitting 17 .
  • the flow splitting unit 510 may be fixed to the bearing seat 21 or the housing 11 , and is not necessarily limited to the specific example shown in FIG. 7A .
  • the drainage unit 520 can be fixed to the bearing housing 21 , the stator 34 or the casing 11 as long as it can realize the functions described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

一种进气分配装置及包括该进气分配装置的压缩机,该进气分配装置(100)包括引流单元(120),引流单元(120)构造成用于引导进入压缩机(10)外壳内的流体的一部分以预定路线流动,引流单元(120)包括本体(121),在本体(121)中设置有入口通道(150)、出口通道(125),入口通道(150)构造成用于将压缩机(10)外壳内的流体的一部分引入引流单元(120)中,出口通道(125)构造成使流体的一部分以预定方位流出。该进气分配装置通过引流单元(120)可以将流体有效地引入到所需区域中,从而控制油循环率且能够对所需区域中的部件进行冷却。

Description

进气分配装置及包括该进气分配装置的压缩机
本申请要求以下中国专利申请的优先权:于2021年8月16日提交中国专利局的申请号为202110937279.6、发明创造名称为“进气分配装置及包括该进气分配装置的压缩机”的中国专利申请;于2021年8月16日提交中国专利局的申请号为202121917161.9、发明创造名称为“进气分配装置及包括该进气分配装置的压缩机”的中国专利申请。这些专利申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及一种进气分配装置,所述进气分配装置沿其纵向轴向水平地布置。
背景技术
本部分的内容仅提供了与本公开相关的背景信息,其可能并不构成现有技术。
压缩机包括用于压缩工作流体的压缩机构、用于支承压缩机构的主轴承座、用于驱动压缩机构的马达、用于容置压缩机构和马达的壳体以及设置在壳体上用于引入工作流体的进气接头。工作流体经由进气接头进入压缩机的壳体内,在壳体内流动并经由压缩机构的吸气室进入压缩机构以便对其进行压缩。经过压缩的工作流体从压缩机排出。
在压缩机的运行过程中,当工作流体在压缩机的壳体内流动时,润滑油随随着工作流体从压缩机中排出,这通常是不期望的。此外,压缩机的各个部件的温度会随着运行时间而逐渐升高,这会影响部件的寿命,也是不期望的。
因此,本领域中期望的是提供一种能够良好地分配和/或引导工作流体的进气分配装置。
发明内容
鉴于上述问题,本申请的目的在于提供一种进气分配装置,其能够有效地将流体引导至所需区域,以对所需区域中的高温部件进行冷却,同时 在一定程度上可以防止工作流体与润滑油的接触。
本申请的另一目的在于提供一种包括上述进气分配装置的压缩机,其能够具有改善的油循环率,且能够有效提高其工作效率。
根据本公开的一个方面,提供一种进气分配装置。该进气分配装置包括引流单元。所述引流单元构造成用于引导进入压缩机外壳内的流体的一部分以预定路线流动。所述引流单元包括本体,在所述本体中设置有入口通道和出口通道。所述入口通道构造成用于将所述压缩机外壳内的流体的一部分引入所述引流单元中,所述出口通道构造成使所述流体的一部分以预定方位流出。
根据本公开的进气分配装置,通过设置引流单元,可以更准确地、更有效地将一部分流体引导至所需的区域,例如需要冷却某些高温部件的区域。此外,引流单元可以引导流体沿预定路线流动,可以防止该流体与润滑油的接触,由此控制油循环率。
在一些示例中,进气分配装置还包括分流单元。所述分流单元构造成将引入压缩机外壳内的流体分成第一流体部分和第二流体部分。所述分流单元包括基部和隔板,所述隔板将所述基部分成第一基部和第二基部,所述隔板与所述第一基部限定用于所述第一流体部分的第一通道,所述隔板与所述第二基部限定用于所述第二流体部分的第二通道。所述引流单元的入口通道位于所述第二通道的下游侧以引导所述第二流体部分沿预定路线流动。该进气分配装置通过隔板可以合理地分配流体,由此更好地控制流体流动和油循环率等。
在一些示例中,所述分流单元和所述引流单元形成为一体件,或者所述分流单元和所述引流单元单独地形成。
在一些示例中,所述分流单元的基部包括背板、从所述背板的两侧延伸的侧板以及从所述背板的下侧延伸的底板。所述隔板横向于所述背板和所述侧板延伸,所述第二通道限定在所述隔板与所述底板之间,并且所述第二通道的出口设置在所述背板上。
在一些示例中,所述分流单元的基部呈中空筒状。所述基部被所述隔板分隔的所述第一基部和所述第二基部具有弧形截面。
在一些示例中,所述第一通道和所述第二通道具有同一输入端。所述 第一基部的从输入端延伸的轴向长度小于所述第二基部的从所述输入端延伸的轴向长度。
在一些示例中,所述本体呈环形,多个所述出口通道沿周向方向设置。
在一些示例中,所述本体包括内周向侧壁和外周向侧壁。多个所述出口通道限定在所述内周向侧壁与所述外周向侧壁之间的环形空间中。所述入口通道延伸穿过所述外周向侧壁。
在一些示例中,所述引流单元还包括从所述外周向侧壁径向向外延伸的连接部。所述入口通道延伸穿过所述连接部。
在一些示例中,所述引流单元还包括从所述外周向侧壁沿径向向外延伸的凸缘。
在一些示例中,所述引流单元还包括从所述内周向侧壁沿径向向内延伸的突出部。
在一些示例中,所述引流单元还包括在所述外周向侧壁的径向外侧的筒形罩。
在一些示例中,在所述内周向侧壁与所述外周向侧壁之间沿所述周向方向设置有多个肋。多个所述出口通道由所述多个肋、所述内周向侧壁与所述外周向侧壁限定。
在一些示例中,在所述内周向侧壁与所述外周向侧壁之间设置有环形底壁。所述出口通道具有排出口,所述排出口设置在所述环形底壁或所述外周向侧壁上。
在一些示例中,沿所述周向方向距离所述入口通道越近的出口通道的排出流通面积越小。
根据本公开的另一方面,提供一种包括上述进气分配装置的压缩机。该压缩机还包括:外壳,所述外壳上设置有进气口,在所述进气口处安装有进气接头;压缩机构,所述压缩机构位于所述外壳内,并且构造成对经由吸气室吸入的流体进行压缩;马达,所述马达构造成用于驱动所述压缩机构,并且包括固定至所述外壳的定子和位于所述定子的径向内侧的转子;以及轴承座,所述轴承座位于所述压缩机构与所述马达之间,并且用于支承所述压缩机构。所述进气分配装置设置在所述进气口处,以将引入所述外壳内的流体的一部分引导至所述马达的上方。
在一些示例中,沿着所述进气口的中心轴线的方向,所述进气分配装置的分流单元的隔板至少部分地投影在所述进气接头的流通区域中以将引入所述外壳内的流体分成第一流体部分和第二流体部分。
在一些示例中,所述引流单元位于所述轴承座与所述马达之间,并且构造成将所述第二流体部分引导至所述定子的绕组的上方。
在一些示例中,在径向方向上,所述引流单元的出口通道的排出口位于所述转子的径向外侧。
在一些示例中,所述引流单元的筒形罩位于所述出口通道的径向外侧并且在所述径向方向上位于所述绕组的径向外侧。
在一些示例中,所述分流单元固定至所述轴承座、所述外壳或所述进气接头;并且/或者所述引流单元固定至所述轴承座、所述外壳或所述定子。
在一些示例中,沿着所述进气口的中心轴线的方向,所述分流单元与所述进气接头之间存在间隙,所述间隙小于所述进气接头的最小内径的五分之一。
从下文的详细描述中,本公开的其它应用领域将变得更为明显。应该理解的是,这些详细描述和具体示例,虽然示出了本公开的优选实施例,但是它们旨在为了示例性说明的目的,而非试图限制本公开。
附图说明
通过以下参照附图的描述,本公开的一个或多个实施方式的特征和优点将变得更加容易理解,在附图中:
图1为具有根据本公开实施方式的进气分配装置的涡旋压缩机的纵向剖视示意图;
图2为图1的进气分配装置的气流流向的示意图;
图3A至图3E分别为图1和图2的进气分配装置的立体示意图、平面俯视图、沿图3C的线L1-L1旋转剖切的示意图和局部安装示意图;
图4A至图4D为进气分配装置的出口通道的各种示例的示意图;
图5A至图5E分别为根据本公开另一实施方式的进气分配装置的立体示意图、平面俯视图、沿图5B的线G-G剖切的示意图、局部放大示意图和局部 安装示意图;
图6A至图6C分别为根据本公开又一实施方式的进气分配装置的立体示意图、纵向剖视图和安装示意图;
图7A为具有根据本公开另一实施方式的进气分配装置的涡旋压缩机的纵向剖视示意图;
图7B和图7C分别为图7A的进气分配装置的分流单元的立体示意图和平面俯视图;
图7D至图7F分别为图7A的进气分配装置的引流单元的立体示意图、平面俯视图和沿图7E的线A-A旋转剖切的示意图;
图8A为具有根据本公开另一实施方式的进气分配装置的涡旋压缩机的纵向剖视示意图;以及
图8B和图8C分别为图8A的进气分配装置的分流单元的立体示意图和侧视示意图。
应当理解,在所有这些附图中,相应的附图标记指示相似的或相应的部分及特征。
具体实施方式
现在将参照附图更全面地描述示例性实施方式。
提供示例性实施方式以使得本公开将是详尽的并且将向本领域技术人员更全面地传达范围。阐述了许多具体细节比如具体部件、装置和方法的示例,以提供对本公开的各实施方式的透彻理解。对本领域技术人员而言将清楚的是,不需要采用具体细节,示例性实施方式可以以许多不同的形式实施,并且也不应当理解为限制本公开的范围。在一些示例性实施方式中,不对公知的过程、公知的装置结构和公知的技术进行详细的描述。
下面将参照图1来描述根据本公开实施方式的涡旋压缩机。图1为具有根据本公开实施方式的进气分配装置100的涡旋压缩机10的纵向剖视示意图。
如图1所示,涡旋压缩机10包括大体筒形的壳体11、分别位于壳体11的两端的顶盖12和底盖13。壳体11、顶盖12和底盖13限定了密封的 内部空间,并由此形成涡旋压缩机10的外壳。在外壳(图1的示例中具体为壳体11)上设置有进气口15,进气接头17安装在进气口15中,以便将低温低压的工作流体(例如,制冷剂)引入涡旋压缩机10的封闭的内部空间中。
涡旋压缩机10还包括容置在外壳中的涡旋压缩机构CM。涡旋压缩机构CM具有吸气室,进入外壳中的低温低压工作流体被吸入该吸气室中,然后经由一系列压缩室的压缩而成为高温高压工作流体。最终,高温高压工作流体被排出涡旋压缩机10。涡旋压缩机构CM为常规涡旋压缩机构,因而此处不再详细描述。
涡旋压缩机10还包括容置在外壳中的马达31。马达31构造成用于驱动涡旋压缩机构CM。马达31包括固定至外壳(图1的示例中具体为壳体11)的定子34和位于定子34的径向内侧的转子32。转子32固定地安装至驱动轴41,以便带动驱动轴41一起旋转,进而驱动轴41带动涡旋压缩机构CM的动涡旋件旋转。在涡旋压缩机10的运行期间,马达的各个部件产生热量,特别是定子34上的绕组36。
涡旋压缩机10还包括轴承座21。轴承座21位于涡旋压缩机构CM与马达31之间。在轴承座21与驱动轴41之间设置有轴承51。如此,驱动轴41和涡旋压缩机构CM旋转地支承在轴承座21上。
涡旋压缩机10还包括进气分配装置100。进气分配装置100设置在进气口15处,用于将经由进气接头17引入的流体以适当比例分成第一流体部分和第二流体部分。第一流体部分以最短路径流入涡旋压缩机构CM的吸气室。第二流体部分被引导至马达31的上方以对其进行冷却。
图2为图1的进气分配装置的气流流向的示意图;如图2所示,第一流体部分F1被分流后向上朝着涡旋压缩机构CM流动,而第二流体部分F2先朝着驱动轴41径向向内流动,然后沿着环形通道流动,最后向下朝着马达31流动。
下面将参见图3A至图3E对图1和图2所示的进气分配装置100进行详细描述。图3A至图3E分别为图1和图2的进气分配装置100的立体示意图、平面俯视图、旋转剖视图和局部安装示意图。
进气分配装置100包括分流单元110和引流单元120。分流单元110构造成将引入的流体分成第一流体部分F1和第二流体部分F2。引流单元 120构造成用于引导第二流体部分F2以预定路线流动,具体地,在图1的示例中引导至马达31的绕组36的上方。在图3A至图3E所示的示例中,分流单元110和引流单元120形成为一体件。例如,进气分配装置100可以通过注塑模制的方式制成。
分流单元110包括基部111和隔板112。分流单元110的基部111包括背板101、分别从背板101的两侧延伸的侧板103、104以及从背板101的下侧延伸的底板102。隔板112横向于背板101和侧板103、104延伸,将背板101和侧板103、104分隔为上部和下部。背板101和侧板103、104的上部形成为第一基部,隔板112与第一基部限定顶部敞开的用于第一流体部分F1的第一通道C1。背板101和侧板103、104的下部以及底板102形成第二基部,隔板112与第二基部限定用于第二流体部分F2的第二通道C2。第二通道C2的出口106设置在背板101上。引流单元120位于第二通道C2的下游侧。如此,第二流体部分F2经由出口106可以流入位于下游侧的引流单元120。
参见图1,当进气分配装置100安装在涡旋压缩机10中时,沿着进气口15的中心轴线的方向,隔板112至少部分地投影在进气接头17的流通区域中。换言之,在进气口15的中心轴线的方向上,第一通道C1和第二通道C2均具有与进气接头17的内部流通区域重叠的部分。通过改变隔板112的位置或形状,可以相应地改变第一流体部分F1和第二流体部分F2的比例。如果第一通道C1与进气接头17的内部流通区域重叠的部分增大,则第一流体部分F1增大。如果第二通道C2与进气接头17的内部流通区域重叠的部分增大,则第二流体部分F2增大。因此,可以根据第一流体部分F1和第二流体部分F2的所需比例来设置隔板112的位置或结构。
引流单元120位于轴承座21与马达31之间,以便将流体引入马达31的上方。引流单元包括本体121。在本体121中设置有入口通道150和出口通道125。入口通道150构造成与第二通道C2连通以引入第二流体部分F2。出口通道125构造成使第二流体部分F2以预定方位流出,例如,在图中所示的示例中朝向马达31的绕组36流出。
本体121大体呈环形,并且包括内周向侧壁124和外周向侧壁122。在内周向侧壁124和外周向侧壁122之间限定了环形气流通道。在内周向侧壁124与外周向侧壁122之间沿周向方向可以设置有多个肋123。如此,通过内周向侧壁124、外周向侧壁122和肋123限定了多个出口通道125。
在分流单元110与引流单元120之间可以设置有连接部151。连接部151从外周向侧壁122径向向外延伸,以与第二通道C2连通。入口通道150延伸穿过连接部151和外周向侧壁122。
来自第二通道C2的第二流体部分F2经由入口通道150进入限定在内周向侧壁124与外周向侧壁122之间的环形气流通道中,再经由沿周向方向布置的多个出口通道125喷射到马达31上方,以对马达31进行冷却。
在图3A至图3D所示的示例中,外周向侧壁122大体呈直的筒状,而内周向侧壁124具有直径不同的多个分段,由此可以控制出口通道125的出口的大小和取向,由此可以控制第二流体部分F2排出的量和取向。
在径向方向上,引流单元120的出口通道125的排出口可以位于转子32的径向外侧。如此,可以将经由出口通道125排出的流体与从驱动轴41甩出的润滑油分隔开,而且可以将流体引导至定子34的绕组36以便冷却绕组36。
引流单元120还可以包括从外周向侧壁122沿径向向外延伸的凸缘131。凸缘131上可以设置孔132,以便插入紧固件,从而安装或固定引流单元120。参见图3E,轴承座21上设置有螺纹孔22。可以将螺钉90插入引流单元120的孔132并与轴承座21的螺纹孔22螺纹接合,由此将引流单元120(进气分配装置100)固定地安装至轴承座21。
由于进气分配装置100安装至轴承座21,因此有利的是,沿着进气口15的中心轴线的方向,进气分配装置100的分流单元110与进气接头17之间存在间隙,以避免安装干涉。优选地,所述间隙小于进气接头17的最小内径的五分之一。这样,不仅可以避免安装干涉,还可以防止过多的流体经由该间隙从马达31的径向外侧流过以扰动或携带更多的润滑油。
发明人对安装有根据本公开的进气分配装置100的涡旋压缩机10进行了测试。没有安装根据本公开的进气分配装置的涡旋压缩机在低转速运行时,马达的温度为310F(华氏度),相比之下,本公开的涡旋压缩机10以相同的低转速运行时可以将马达的温度降低至220F。此外,本公开的涡旋压缩机可以显著提高其工作效率,例如IEER(综合能效比)可以达到29.9。本公开的涡旋压缩机在6000RPM(转每分)的转速下,油循环率可以降低至3.0%以内。
应理解的是,进气分配装置100的各个部分的结构不局限于图示的具 体示例,而是可以根据需要发生变化,只要实现本文中描述的功能即可。例如,图4A至图4D示出了进气分配装置的出口通道的各种示例。
在图4A中,内周向侧壁124与外周向侧壁122均呈直筒的形状。在内周向侧壁124与外周向侧壁122之间设置有环形底壁171,省去了图3A至图3D中的肋123。在环形底壁171中设置有多个排出口125a。多个排出口125a沿着周向方向可以等间距地布置,并且可以具有相同的尺寸和形状。
图4B的示例与图4A的示例的不同之处在于,多个排出口125b设置在外周向侧壁上122上,而不是设置在环形底壁171中。
图4C的示例类似于图3A至图3D的示例。多个出口通道125c由内周向侧壁124、外周向侧壁122以及设置在内周向侧壁124和外周向侧壁122之间的肋123限定。图4C的示例与图3A至图3D的示例的不同之处在于,内周向侧壁124、外周向侧壁122均具有直筒的形状,因此,出口通道125c具有基本恒定的流通面积,并且流体从出口通道125c向下流出。
图4D的示例与图4A的示例的不同之处在于,出口通道的排出口125d1至125d4具有不同的排出流通面积。排出口125d1至125d4依次远离连接部151(即,入口通道150)。排出口125d1邻近入口通道150。排出口125d2相比排出口125d1远离入口通道150。排出口125d3相比排出口125d2更远离入口通道150。排出口125d4与排出口125d1相对并且最远离入口通道150。排出口125d1至125d4的排出流通面积也逐渐增加。换言之,沿周向方向距离入口通道150越近的出口通道的排出流通面积越小。
图5A至图5E分别为根据本公开另一实施方式的进气分配装置200的立体示意图、平面俯视图、沿图5B的线G-G剖切的示意图、局部放大示意图和局部安装示意图。
图5A至图5E的进气分配装置200与图3A至图3E的进气分配装置100的不同之处在于具有不同的安装结构。如图5A至图5E所示,引流单元220包括从内周向侧壁224沿径向向内延伸的突出部(或者可以称为钩状部)241。多个突出部241可以沿着周向方向等间隔地分布。引流单元220的外周向侧壁222上没有如图3A至图3E所示地设置的凸缘。
参见图5E,轴承座21上设置有凹槽24,用于接收突出部241。在安装进气分配装置200时,将其朝向轴承座21推动。当突出部241接合到凹槽24中时,则进气分配装置200安装就位。
图5A至图5E所示的分流单元210、连接部251、肋223和出口通道225与图3A至图3E所示的相应部分类似,因此此处省去详细描述。
图6A至图6C分别为根据本公开又一实施方式的进气分配装置300的立体示意图、纵向剖视图和安装示意图。
图6A至图6C的进气分配装置300与图3A至图3E的进气分配装置100的不同之处在于,引流单元320还包括从凸缘382向下延伸的罩381。罩381大体呈筒形。罩381位于外周向侧壁322的径向外侧环绕出口通道325,并且位于绕组36的径向外侧,以防止从位于外周向侧壁322和内周向侧壁324之间的出口通道325排出的流体流动到马达31的径向外侧的区域。此外,罩381可以固定至定子34上,由此安装进气分配装置300。
图6A至图6C所示的分流单元310、连接部351和出口通道325与图3A至图3E所示的相应部分类似,因此此处省去详细描述。
图7A为具有根据本公开另一实施方式的进气分配装置400的涡旋压缩机的纵向剖视示意图。图7A所示的进气分配装置400与上述进气分配装置100至300的不同之处在于,分流单元410与引流单元420为分体式结构。分流单元410和引流单元420单独地形成并分别安装至涡旋压缩机的不同部分处。
图7B和图7C分别为图7A的进气分配装置400的分流单元410的立体示意图和平面俯视图。
图7B和图7C的分流单元410类似于图3A至图3D的分流单元110。具体地,分流单元410包括基部411和隔板412。分流单元410的基部411包括背板401、分别从背板401的两侧延伸的侧板403、404以及从背板401的下侧延伸的底板402。隔板412横向于背板401和侧板403、404延伸,将其分隔为上部和下部,从而形成第一通道和第二通道。第二通道的出口406设置在背板401上。
图7B和图7C的分流单元410与图3A至图3D的分流单元110的不同之处在于,背板401呈弧形并且隔板412的端面相应地呈弧形。应理解的是分流单元的结构可以根据需要而改变,不应局限于图示的具体示例。
图7D至图7F分别为图7A的进气分配装置400的引流单元420的立体示意图、平面俯视图和沿图7E的线A-A旋转剖切的示意图。如图所示, 引流单元420类似于图6A至图6C所示的引流单元320。具体地,引流单元420具有从凸缘482向下延伸的罩481。罩481位于外周向侧壁422的径向外侧。内周向侧壁424位于外周向侧壁422的径向内侧并且与外周向侧壁422限定用于排出流体的出口通道425。
引流单元420与引流单元320的不同之处在于入口通道450的结构不同。入口通道450为开口朝上的凹口的形式,而非封闭的通道的形式。当进气分配装置400安装就位时,凸缘482与轴承座21一起限定了入口通道450。因此,入口通道的结构可以根据实际情况而变化,不一定局限于图示的具体示例。
应理解的是,根据本公开的进气分配装置不局限于图中所述的具体示例。例如,进气分配装置可以仅具有引流单元。通过引流单元,将进入压缩机的外壳内的流体的一部分有效地引导至马达的上方,以对马达进行冷却。此外,由于引流单元将进气口处的一部分流体直接引导至马达上方,因此可以防止该部分流体与润滑油接触。在没有引流单元的常规压缩机中,进入压缩机外壳内的流体的一部分通常沿着外壳向下流动,会与外壳底部的油池中的润滑油接触,然后携带更多的润滑油流动至压缩机构中。因此,常规压缩机中的润滑油会逐渐减小,而使更多的润滑油进入压缩机之外的其他部件中,由此影响其他部件的效率并因此使得整个压缩机系统的效率降低。
图8A为具有根据本公开另一实施方式的进气分配装置500的涡旋压缩机的纵向剖视示意图。图8A所示的进气分配装置500与图7A所示的进气分配装置400的类似之处在于,也具有分体式的分流单元510和引流单元520。引流单元520的结构与引流单元420的结构类似,因而不再详细描述。
图8B和图8C分别为图8A的进气分配装置500的分流单元510的立体示意图和侧视示意图。如图8B和图8C所示,分流单元510具有大体呈中空筒状的基部511。隔板512位于基部511的中空空间中,将基部511分成上弧形基部(具有弧形截面的第一基部)501和下弧形基部(具有弧形截面的第二基部)502。隔板512与上弧形基部(第一基部)501限定了第一通道C1。隔板512与下弧形基部(第二基部)502限定了第二通道C2。
第一通道C1和第二通道C2具有同一输入端515,但分别具有不同的输出端516和517。上弧形基部(第一基部)501从输入端515延伸至输出 端516的轴向长度小于下弧形基部(第二基部)502从输入端515延伸至输出端517的轴向长度。因此,第二通道C2比第一通道C1长,这有利于将流体引入引流单元520中。
在图7A所示的示例中,分流单元510固定至进气接头17中。然而,应理解的是,分流单元510可以固定至轴承座21或壳体11,不一定局限于图7A所示的具体示例。类似地,引流单元520可以固定至轴承座21、定子34或壳体11上,只要其能够实现本文中所述的功能即可。
本文以涡旋压缩机为例进行描述。然而,应理解的是,本公开可以应用于任何其他合适类型的压缩机。
虽然已经参照示例性实施方式对本公开进行了描述,但是应当理解,本公开并不局限于文中详细描述和示出的具体实施方式。在不偏离权利要求书所限定的范围的情况下,本领域技术人员可以对示例性实施方式做出各种改变。还应理解的是,在技术方案不矛盾的情况下,各个实施方式的特征可以相互结合或者可以省去。

Claims (21)

  1. 一种进气分配装置,包括:
    引流单元,所述引流单元构造成用于引导进入压缩机外壳内的流体的一部分以预定路线流动,
    其中,所述引流单元包括本体,在所述本体中设置有入口通道和出口通道,所述入口通道构造成用于将所述压缩机外壳内的流体的一部分引入所述引流单元中,所述出口通道构造成使所述流体的一部分以预定方位流出。
  2. 根据权利要求1所述的进气分配装置,还包括:
    分流单元,所述分流单元构造成将引入所述压缩机外壳内的流体分成第一流体部分和第二流体部分;
    其中,所述分流单元包括基部和隔板,所述隔板将所述基部分成第一基部和第二基部,所述隔板与所述第一基部限定用于所述第一流体部分的第一通道,所述隔板与所述第二基部限定用于所述第二流体部分的第二通道,
    所述引流单元的入口通道位于所述第二通道的下游侧以引导所述第二流体部分沿所述预定路线流动。
  3. 根据权利要求2所述的进气分配装置,其中,所述分流单元和所述引流单元形成为一体件,或者
    所述分流单元和所述引流单元单独地形成。
  4. 根据权利要求2所述的进气分配装置,其中,所述分流单元的基部包括背板、从所述背板的两侧延伸的侧板以及从所述背板的下侧延伸的底板,
    所述隔板横向于所述背板和所述侧板延伸,
    所述第二通道限定在所述隔板与所述底板之间,并且所述第二通道的出口设置在所述背板上。
  5. 根据权利要求2所述的进气分配装置,其中,所述分流单元的基部呈中空筒状,
    所述基部被所述隔板分隔的所述第一基部和所述第二基部具有弧形截面。
  6. 根据权利要求5所述的进气分配装置,其中,所述第一通道和所述第二通道具有同一输入端,
    所述第一基部的从所述输入端延伸的轴向长度小于所述第二基部的从所述输入端延伸的轴向长度。
  7. 根据权利要求1至6中任一项所述的进气分配装置,其中,所述本体呈环形,
    多个所述出口通道沿周向方向设置。
  8. 根据权利要求7所述的进气分配装置,其中,所述本体包括内周向侧壁和外周向侧壁,
    多个所述出口通道限定在所述内周向侧壁与所述外周向侧壁之间的环形空间中,
    所述入口通道延伸穿过所述外周向侧壁。
  9. 根据权利要求8所述的进气分配装置,其中,所述引流单元还包括从所述外周向侧壁径向向外延伸的连接部,
    所述入口通道延伸穿过所述连接部。
  10. 根据权利要求8所述的进气分配装置,其中,所述引流单元还包括从所述外周向侧壁沿径向向外延伸的凸缘。
  11. 根据权利要求8所述的进气分配装置,其中,所述引流单元还包括从所述内周向侧壁沿径向向内延伸的突出部。
  12. 根据权利要求8所述的进气分配装置,其中,所述引流单元还包括在所述外周向侧壁的径向外侧的筒形罩。
  13. 根据权利要求8至12中任一项所述的进气分配装置,其中,在所述内周向侧壁与所述外周向侧壁之间沿所述周向方向设置有多个肋,
    多个所述出口通道由所述多个肋、所述内周向侧壁与所述外周向侧壁限定。
  14. 根据权利要求8至12中任一项所述的进气分配装置,其中,在所述内周向侧壁与所述外周向侧壁之间设置有环形底壁,
    所述出口通道具有排出口,所述排出口设置在所述环形底壁或所述外周向侧壁上。
  15. 一种包括根据权利要求1至14中任一项所述的进气分配装置的压缩机,其中,所述压缩机还包括:
    外壳,所述外壳上设置有进气口,在所述进气口处安装有进气接头;
    压缩机构,所述压缩机构位于所述外壳内,并且构造成对经由吸气室吸入的流体进行压缩;
    马达,所述马达构造成用于驱动所述压缩机构,并且包括固定至所述外壳的定子和位于所述定子的径向内侧的转子;以及
    轴承座,所述轴承座位于所述压缩机构与所述马达之间,并且用于支承所述压缩机构,
    其中,所述进气分配装置设置在所述进气口处以将引入所述外壳内的流体的一部分引导至所述马达的上方。
  16. 根据权利要求15所述的压缩机,其中,沿着所述进气口的中心轴线的方向,所述进气分配装置的分流单元的隔板至少部分地投影在所述进气接头 的流通区域中以将引入所述外壳内的流体分成第一流体部分和第二流体部分。
  17. 根据权利要求16所述的压缩机,其中,所述引流单元位于所述轴承座与所述马达之间,并且构造成将所述第二流体部分引导至所述定子的绕组的上方。
  18. 根据权利要求17所述的压缩机,其中,在径向方向上,所述引流单元的出口通道的排出口位于所述转子的径向外侧。
  19. 根据权利要求18所述的压缩机,其中,所述引流单元的筒形罩位于所述出口通道的径向外侧并且在所述径向方向上位于所述绕组的径向外侧。
  20. 根据权利要求16至19中任一项所述的压缩机,其中,所述分流单元固定至所述轴承座、所述外壳或所述进气接头;并且/或者
    所述引流单元固定至所述轴承座、所述外壳或所述定子。
  21. 根据权利要求16至19中任一项所述的压缩机,其中,沿着所述进气口的中心轴线的方向,所述分流单元与所述进气接头之间存在间隙,所述间隙小于所述进气接头的最小内径的五分之一。
PCT/CN2022/108209 2021-08-16 2022-07-27 进气分配装置及包括该进气分配装置的压缩机 WO2023020221A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202121917161.9 2021-08-16
CN202121917161.9U CN215521276U (zh) 2021-08-16 2021-08-16 进气分配装置及包括该进气分配装置的压缩机
CN202110937279.6A CN115704392A (zh) 2021-08-16 2021-08-16 进气分配装置及包括该进气分配装置的压缩机
CN202110937279.6 2021-08-16

Publications (1)

Publication Number Publication Date
WO2023020221A1 true WO2023020221A1 (zh) 2023-02-23

Family

ID=85239472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108209 WO2023020221A1 (zh) 2021-08-16 2022-07-27 进气分配装置及包括该进气分配装置的压缩机

Country Status (1)

Country Link
WO (1) WO2023020221A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007809A (en) * 1988-12-07 1991-04-16 Mitsubishi Denki Kabushiki Kaisha Scroll compressor with dividing chamber for suction fluid
US6131406A (en) * 1997-06-25 2000-10-17 Bitzer Kuehlmaschinenbau Gmbh Refrigerant compressor
CN1321836A (zh) * 2000-04-27 2001-11-14 丹福斯曼纽罗普公司 带有导向板的螺旋压缩机
US20070237664A1 (en) * 2006-04-06 2007-10-11 Lg Electronics Inc. Backflow preventing apparatus for compressor
CN103032322A (zh) * 2011-09-30 2013-04-10 艾默生环境优化技术有限公司 直吸式压缩机
CN203201809U (zh) * 2012-03-30 2013-09-18 大金工业株式会社 压缩机
CN215521276U (zh) * 2021-08-16 2022-01-14 艾默生环境优化技术(苏州)有限公司 进气分配装置及包括该进气分配装置的压缩机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5007809A (en) * 1988-12-07 1991-04-16 Mitsubishi Denki Kabushiki Kaisha Scroll compressor with dividing chamber for suction fluid
US6131406A (en) * 1997-06-25 2000-10-17 Bitzer Kuehlmaschinenbau Gmbh Refrigerant compressor
CN1321836A (zh) * 2000-04-27 2001-11-14 丹福斯曼纽罗普公司 带有导向板的螺旋压缩机
US20070237664A1 (en) * 2006-04-06 2007-10-11 Lg Electronics Inc. Backflow preventing apparatus for compressor
CN103032322A (zh) * 2011-09-30 2013-04-10 艾默生环境优化技术有限公司 直吸式压缩机
CN203201809U (zh) * 2012-03-30 2013-09-18 大金工业株式会社 压缩机
CN215521276U (zh) * 2021-08-16 2022-01-14 艾默生环境优化技术(苏州)有限公司 进气分配装置及包括该进气分配装置的压缩机

Similar Documents

Publication Publication Date Title
US8641392B2 (en) Scroll compressor bodies with scroll tip seals and extended thrust region
US9651044B2 (en) Electric compressor
KR101531861B1 (ko) 전동 압축기
US11286944B2 (en) Centrifugal compressor and method for manufacturing centrifugal compressor
EP2224136A2 (en) Air-cooled scroll compressor
KR100547376B1 (ko) 고저압 돔형 압축기
EP2960514A2 (en) Compressor
CN215521276U (zh) 进气分配装置及包括该进气分配装置的压缩机
WO2023020221A1 (zh) 进气分配装置及包括该进气分配装置的压缩机
KR20150037589A (ko) 원심 임펠러 및 원심 송풍기
CN210239995U (zh) 涡旋盘组件、涡旋压缩机及制冷系统
CN115704392A (zh) 进气分配装置及包括该进气分配装置的压缩机
EP4067657A2 (en) Scroll compressor and air conditioner having same
KR20130102357A (ko) 횡형 스크롤 압축기
CN111365254A (zh) 用于优化内部空间的压缩机
CN205908466U (zh) 供油调节装置、压缩机、涡旋压缩机及空调系统
EP3608543A1 (en) Screw compressor
US20010048885A1 (en) Lubrication structure in a scroll type compressor
KR102314323B1 (ko) 엔진 구동 장치
CN217898187U (zh) 压缩机转子、压缩机泵体、压缩机及温度调节系统
CN217898186U (zh) 压缩机泵体、压缩机及温度调节系统
CN115126696B (zh) 压缩机泵体、压缩机及温度调节系统
CN110617216B (zh) 涡旋式压缩机
JPH0311193A (ja) 真空ポンプ
EP3985256A1 (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857534

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022857534

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022857534

Country of ref document: EP

Effective date: 20240318