WO2023020023A9 - 终端天线及移动终端设备 - Google Patents

终端天线及移动终端设备 Download PDF

Info

Publication number
WO2023020023A9
WO2023020023A9 PCT/CN2022/091301 CN2022091301W WO2023020023A9 WO 2023020023 A9 WO2023020023 A9 WO 2023020023A9 CN 2022091301 W CN2022091301 W CN 2022091301W WO 2023020023 A9 WO2023020023 A9 WO 2023020023A9
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
radiator
circuit
switching circuit
terminal antenna
Prior art date
Application number
PCT/CN2022/091301
Other languages
English (en)
French (fr)
Other versions
WO2023020023A1 (zh
Inventor
董凯明
熊伟
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22857341.6A priority Critical patent/EP4280375A1/en
Publication of WO2023020023A1 publication Critical patent/WO2023020023A1/zh
Publication of WO2023020023A9 publication Critical patent/WO2023020023A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • the present application relates to the field of antenna technology, and in particular, to a terminal antenna and a mobile terminal device.
  • Mobile cellular communication technology establishes a wireless connection between mobile terminals and base station systems. After long-term evolution and development, this technology has now developed into the fifth generation mobile communication technology (5G).
  • 5G fifth generation mobile communication technology
  • the low-frequency band of mobile cellular communication technology is widely used in every generation of mobile communication technology due to its low loss and long transmission distance.
  • the present application provides a terminal antenna and a mobile terminal device having multiple low-frequency antennas.
  • a first aspect of this application provides a terminal antenna, including a frame, a first feed source and a second feed source.
  • the frame is provided with a first slit and a second slit that separate the frame to form a first conductor, a second conductor and a third conductor on the frame. At least part of the frame on the side of the first slit away from the second slit forms the first conductor. , at least part of the frame on the side of the second slit away from the first slit forms a second conductor, and the frame between the first slit and the second slit forms a third conductor.
  • the first feed source is electrically connected to the first conductor such that the first conductor radiates the signal.
  • the second feed source is electrically connected to the second conductor, so that the second conductor radiates a signal in the low frequency band.
  • the terminal antenna also includes a control circuit, one end of the control circuit is grounded, and the other end is electrically connected to the first conductor for controlling the first conductor to radiate signals in the mid-to-high frequency band or to radiate signals in the low-frequency band.
  • the terminal antenna is also provided with a control circuit for controlling the first conductor to radiate signals in the mid-to-high frequency band or the radiation signal in the low-frequency band to achieve multiplexing of the first conductor in the mid-to-high frequency band and the low-frequency band, effectively improving the movement of the terminal antenna. Communication performance.
  • the control circuit includes a first passive component, a second passive component, a first switch and a second switch.
  • One end of the first switch and the second switch are respectively connected to ground, the other end of the first switch is connected to one end of the first passive component, the other end of the second switch is connected to one end of the second passive component, the first passive component and the second
  • the other ends of the passive components are both electrically connected to the first conductor.
  • the first passive component is a capacitor, and the capacitance value of the first passive component ranges from 0 picofarads to 2 picofarads;
  • the second passive component is an inductor, and the second passive component The inductor values range from 0 nanohenry to 5 nanohenry.
  • a control circuit is provided, and when the first control element in the control circuit is turned on, the equivalent electrical length of the first conductor is shortened, so that the first conductor radiates signals in the mid-to-high frequency band.
  • the terminal antenna also includes a tuning circuit.
  • the tuning circuit includes a third passive component and a third switch. One end of the third switch is grounded, the other end of the third switch is electrically connected to one end of the third passive component, and the other end of the third passive component is connected to the third conductor. , by controlling the closing or opening of the third switch, the isolation between the first conductor and the second conductor is adjusted when the two conductors work in the low frequency band.
  • the third passive component is an inductor, and the inductance value of the third passive component ranges from 1 nanohenry to 68 nanohenry.
  • a tuning circuit is provided on the third conductor to improve the isolation when both the first conductor and the second conductor radiate signals in the low-frequency band, effectively improving the mobile communication performance of the terminal antenna.
  • the tuning circuit further includes a fourth passive component.
  • One end of the fourth passive component is grounded, and the other end is electrically connected to the third conductor.
  • the tuning bypass element is provided to maintain the connection state between the tuning circuit and the third conductor.
  • the third switch in the tuning circuit when the first switch in the control circuit is closed, the third switch in the tuning circuit is open. When the second switch in the control circuit is closed, the third switch in the tuning circuit is closed.
  • the terminal antenna further includes a first switching circuit and a second switching circuit.
  • Both the first switching circuit and the second switching circuit include a plurality of passive components and a corresponding plurality of switches. One end of the plurality of switches in the first switching circuit is grounded, and the other end is connected to a plurality of passive components in the first switching circuit one by one. One end of the first switching circuit and the other end of the plurality of passive components in the first switching circuit are connected between the first feed source and the first conductor.
  • One end of the switches in the second switching circuit is grounded, the other ends of the switches in the second switching circuit are connected to one end of the passive components in the second switching circuit one by one, and the passive components in the second switching circuit are The other end of the element is connected between the second feed source and the second conductor.
  • the first switching circuit and the second switching circuit are provided to provide impedance matching for the terminal antenna, so as to expand the bandwidth of the terminal antenna and optimize the radiation performance of the terminal antenna.
  • the first feed source is electrically connected to an end of the first conductor close to the first gap.
  • the frame includes an end part, a first side part and a second side part.
  • the first side part and the second side part are arranged oppositely and are respectively provided at both ends of the end part.
  • the first gap and the second side part are respectively arranged at both ends of the end part.
  • Two slits are spaced apart on the end part, the first slit is set close to the first side part, the second slit is set close to the second side part, and the first feed source is electrically connected to the second side part and the end part of the first conductor. Junction.
  • the control circuit includes a number of passive components and a number of corresponding switches. One end of a plurality of switches in the control circuit is grounded, and the other end is connected to one end of a plurality of passive components in the control circuit in a one-to-one correspondence. The other end of a plurality of passive components in the control circuit is connected to the first conductor and the first feed source. When at least one switch in the control circuit is closed, the first conductor radiates a signal in the mid- to high-frequency band; when all switches in the control circuit are turned off, the first conductor radiates a signal in the low-frequency band.
  • the passive components are inductors, and the equivalent inductance values of the several passive components range from 1 nanohenry to 10 nanohenry.
  • control circuit is provided, and one end of the control circuit is grounded, and the other end is electrically connected between the first feed source and the first conductor.
  • the terminal antenna also includes a tuning circuit.
  • the tuning circuit includes a number of tuning elements and a number of switches. One end of the switches in the tuning circuit is grounded, and the other end is connected to a number of passive components of the tuning circuit in one-to-one correspondence. One end, the other end of several passive components of the tuning circuit is connected to the third conductor, and by controlling the closing or opening of several switches of the tuning circuit, the relationship between the first conductor and the second conductor is adjusted when the two conductors work in the low frequency band. Isolation.
  • the plurality of passive components of the tuning circuit include a first passive component and a second passive component.
  • the first passive component and the second passive component are both inductors, and the inductance value of the first passive component ranges from 1 nanohenry to 5 nanohenry.
  • the inductance value of the second passive component ranges from 60 nanohenries to 68 nanohenries in the tuned circuit.
  • the tuning circuit can adjust the isolation degree of the first conductor and the second conductor when radiating signals in the corresponding low-frequency band according to the selected tuning elements.
  • the terminal antenna further includes at least one set of a first switching circuit, a second switching circuit, and a third switching circuit.
  • the first switching circuit, the second switching circuit and the third switching circuit each include a number of passive components and a number of switches. One end of the switches of the first switching circuit is grounded, and the other end is connected to one end of a plurality of passive components in the first switching circuit in one-to-one correspondence. The other end of the plurality of passive components in the first switching circuit is connected to the first conductor. One end of a plurality of switches in the second switching circuit is grounded, and the other end is connected to one end of a plurality of passive components in the second switching circuit in a one-to-one correspondence.
  • the other end of a plurality of passive components in the second switching circuit is connected to the second feed. between source and second conductor.
  • One end of the switches of the third switching circuit is grounded, and the other end is connected to one end of a plurality of passive components in the third switching circuit in one-to-one correspondence.
  • the other end of the several passive components in the third switching circuit is connected to the second conductor.
  • the terminal antenna also includes three switching circuits, which can provide impedance matching for the terminal antenna, effectively expand the bandwidth of the terminal antenna, thereby improving the mobile communication performance of the terminal antenna.
  • a second aspect of this application provides a mobile terminal device, including the above terminal antenna.
  • Figure 1 is a schematic diagram of a terminal antenna provided by an embodiment of the present application applied to a mobile terminal device
  • FIG. 2 is a disassembly diagram of the mobile terminal device shown in Figure 1;
  • Figure 3 is a schematic diagram of the terminal antenna in Figure 1;
  • Figure 4 is a partial current path diagram of the terminal antenna shown in Figure 3;
  • Figure 5 is a circuit block diagram of the first switching circuit and the control circuit in the terminal antenna shown in Figure 3;
  • Figure 6 is a circuit block diagram of the second switching circuit and the tuning circuit in the terminal antenna shown in Figure 4;
  • Figure 7 is a circuit schematic diagram of the first switching circuit and the control circuit in an embodiment of the present application.
  • Figure 8 is a circuit schematic diagram of the second switching circuit and the tuning circuit in an embodiment of the present application.
  • Figure 9 is a graph of S parameters (scattering parameters) of the terminal antenna shown in Figure 1;
  • Figure 10A is a schematic diagram of the current coupled from the second radiator to the first radiator when no tuning circuit is provided;
  • Figure 10B is a schematic diagram of the current coupled from the second radiator to the first radiator when a tuning circuit is set;
  • Figure 11A is a schematic diagram of the current coupled from the first radiator to the second radiator when no tuning circuit is provided;
  • Figure 11B is a schematic diagram of the current coupled from the first radiator to the second radiator when a tuning circuit is set;
  • Figure 12 is a schematic diagram of a terminal antenna provided by another embodiment of the present application.
  • Figure 13 is a schematic diagram of a terminal antenna provided by another embodiment of the present application.
  • Figure 14 is a circuit block diagram of the control circuit in the terminal antenna shown in Figure 13;
  • FIG. 15 is a circuit block diagram of the first switching circuit in the terminal antenna shown in FIG. 13 .
  • Mobile terminal device 200 display unit 201; terminal antennas 100, 100a;
  • Housing 11 middle frame 111; frame 112; back cover 113; accommodation space 114;
  • second slit 119 slots 120, 125, 120a; third slits 121, 121a;
  • Isolation part 122 first radiators 123, 123a; second radiators 124, 124a;
  • first feed source 13 first switching circuits 14, 15a;
  • Switching element 152a first switching element 142; second switching element 143;
  • second feed source 16 second switching circuits 17, 17a; third switching element 172;
  • the technical solution provided by this application is suitable for mobile terminal equipment using one or more of the following communication technologies: Bluetooth (BT) communication technology, Global Positioning System (GPS) communication technology, Wireless Fidelity (Wireless Fidelity) , Wi-Fi) communication technology, Global System For_mobile Communications (GSM) communication technology, Wideband Code Division multiple Access (WCDMA) communication technology, Long Term Evolution (LTE) communication technology, 5G communication technology, SUB-6G communication technology and other future communication technologies, etc.
  • Bluetooth Bluetooth
  • GPS Global Positioning System
  • WFDMA Wideband Code Division multiple Access
  • LTE Long Term Evolution
  • the mobile terminal device can be a mobile phone, a tablet computer, a wearable device, a personal digital assistant (PDA), a base station, a vehicle radar, a customer premise equipment (CPE), etc., which can send and receive electromagnetic wave signals. equipment, etc.
  • PDA personal digital assistant
  • CPE customer premise equipment
  • FIG. 1 illustrates a terminal antenna 100 , which can be applied to mobile terminal devices 200 such as mobile phones and personal digital assistants.
  • the terminal antenna 100 at least includes a housing 11 , a first feed source 13 , a first switching circuit 14 , a control circuit 15 , a second feed source 16 , a second switching circuit 17 and a tuning circuit 18 .
  • the housing 11 may be a part of the housing of the mobile terminal device 200 .
  • the housing 11 at least includes a middle frame 111 , a border 112 and a back cover 113 .
  • the middle frame 111 is generally a rectangular piece. In some embodiments, the middle frame 111 is made of metal material and is grounded.
  • the frame 112 is made of metal material and has a generally ring-shaped structure, and the frame 112 is arranged around the edge of the middle frame 111 .
  • the frame 112 and the middle frame 111 are integrally formed.
  • the frame 112 and the middle frame 111 may be an integrally formed die-cast aluminum structure, profiled aluminum structure, or the like.
  • the frame 112 and the middle frame 111 can also be a combination of two independent structures.
  • the middle frame 111 can be made of plastic material.
  • the frame 112 may be a die-cast aluminum structural member, a profiled aluminum structural member, a flexible printed circuit (FPC) antenna radiator, or a laser direct forming (LDS) antenna radiator.
  • FPC flexible printed circuit
  • LDS laser direct forming
  • an opening (not labeled) is provided on the side of the frame 112 away from the middle frame 111 for accommodating the display unit 201 of the mobile terminal device 200 .
  • the display unit 201 has a display plane, the display plane is exposed to the opening, and the display plane is substantially parallel to the middle frame 111 .
  • the middle frame 111 is located between the display unit 201 and the back cover 113 and is used to support the display unit 201, provide electromagnetic shielding, and improve the mechanical strength of the mobile terminal device 200.
  • the back cover 113 is also generally a rectangular piece.
  • the back cover 113 is disposed on the edge of the frame 112 and is substantially parallel to the display plane of the display unit 201 and the middle frame 111 . It can be understood that the back cover 113 also forms a receiving space 114 together with the frame 112 and the middle frame 111 .
  • the accommodation space 114 is used to accommodate electronic components or circuit modules such as circuit boards, processing units, speakers, and camera modules of the mobile terminal device 200 therein.
  • the frame 112 at least includes an end portion 115 , a first side portion 116 and a second side portion 117 .
  • the end portion 115 is the bottom end of the mobile terminal device 200 .
  • the first side portion 116 and the second side portion 117 are disposed opposite to each other. They are respectively disposed at both ends of the end portion 115 and are substantially perpendicular to each other.
  • the end portion 115 , the first side portion 116 and the second side portion 117 are all vertically connected to the middle frame 111 .
  • the housing 11 is provided with at least a slot 120 , a first gap 118 and a second gap 119 .
  • the slot 120 is generally L-shaped and is opened between the middle frame 111 and the end portion 115 of the frame 112 . And extend a certain distance in the direction of the first side part 116 and the second side part 117 respectively, so that the end part 115, part of the first side part 116 and part of the second side part 117 are spaced apart from the middle frame 111.
  • the slot 120 extends approximately to the middle position of the second side part 117 , and the slot 120 extends approximately to a side of the first side part 116 close to the end part 115 .
  • the first slit 118 and the second slit 119 are both opened at the end portion 115 of the frame 112 and separate the frame 112 .
  • the first slit 118 and the second slit 119 are arranged at intervals, and the first slit 118 is arranged close to the first side 116 , and the second slit 119 is arranged close to the second side 117 .
  • the first slit 118 and the second slit 119 are connected to each other through the slot 120 . In this way, the slot 120 , the first slit 118 and the second slit 119 jointly define at least the first conductor, the second conductor and the third conductor on the frame 112 .
  • a third slit 121 is also opened on the frame 112 of the terminal antenna 100 .
  • the third slit 121 is opened at an end of the slot 120 away from the second slit 119 .
  • the frame 112 between the first gap 118 and the second gap 119 forms the third conductor, that is, the isolation portion 122 .
  • the frame 112 on the side of the first gap 118 away from the second gap 119 forms a first conductor, that is, the first radiator 123 .
  • the frame 112 between the second gap 119 and the third gap 121 forms a second conductor, that is, a second radiator 124 .
  • the isolation portion 122 is formed on the end portion 115 .
  • the first radiator 123 is formed on the end portion 115 and the first side portion 116 .
  • the second radiator 124 is formed on the end portion 115 and the second side portion 117 .
  • the length of the isolation part 122 is smaller than the length of the first radiator 123 and the second radiator 124 .
  • an end of the first radiator 123 away from the first gap 118 is grounded through the middle frame 111 , thereby providing grounding for the first radiator 123 . That is to say, the slot 120 is used to separate the frame 112 (the first radiator 123, the second radiator 124 and the isolation portion 122) and the middle frame 111. In parts other than the slot 120, the border frame 112 and the middle frame 111 are connected.
  • the terminal antenna 100 further includes a ground portion 19 .
  • One end of the ground portion 19 is connected to a substantially middle position of the second radiator 124 , that is, an end of the second side portion 117 close to the end portion 115 , and the other end of the ground portion 19 is connected to the ground. In this way, the ground portion 19 is used to provide ground for the second radiator 124 .
  • the slot 120, the first gap 118 and the second gap 119 are all filled with insulating materials (such as plastic, rubber, glass, wood, ceramics, etc., but are not limited thereto).
  • the first feed source 13 is disposed in the accommodation space 114 .
  • the first feeding source 13 is electrically connected to the first radiator 123 and is used to feed the current signal to the first radiator 123 .
  • One end of the first switching circuit 14 is grounded, and the other end is electrically connected between the first feed source 13 and the first radiator 123 for switching the radiation frequency band.
  • One end of the control circuit 15 is grounded, and the other end is electrically connected to the frame 112 on the side of the first radiator 123 away from the first gap 118 to control the first radiator 123 to radiate signals in the low frequency band or radiate signals in the mid-to-high frequency band. Signal.
  • the low-frequency band includes 700MHz-960MHz, and the mid- and high-frequency band includes 1710MHz-2700MHz.
  • the second feed source 16 is disposed in the accommodation space 114 .
  • the second feeding source 16 is electrically connected to the second radiator 124 for feeding the current signal to the second radiator 124 .
  • One end of the second switching circuit 17 is grounded, and the other end is electrically connected between the second feed source 16 and the second radiator 124 for switching the radiation frequency band.
  • one end of the tuning circuit 18 is grounded, and the other end is electrically connected to an end of the isolation portion 122 close to the second gap 119 .
  • the tuning circuit 18 is used to adjust the isolation degree when both the first radiator 123 and the second radiator 124 radiate signals in the low-frequency band; on the other hand, the currents of the first radiator 123 and the second radiator 124 respectively pass through
  • the first gap 118 and the second gap 119 are coupled to the isolation part 122 to cause the isolation part 122 to resonate.
  • the tuning circuit 18 is used to adjust the resonant frequency of the isolation part 122 to expand the bandwidth of the terminal antenna 100 .
  • the current will flow through the first radiator 123 and be grounded through the end of the first radiator 123 connected to the grounded middle frame 111 (refer to the path P1), thereby stimulating The first working mode and the second working mode are used to radiate signals in the first radiation frequency band and the second radiation frequency band.
  • the current will flow through the first radiator 123 and be connected to the ground through the control circuit 15 (refer to path P2), thereby stimulating the third operating mode and radiating the third radiation frequency band. signal of.
  • the current flowing through the first radiator 123 is also coupled to the isolation part 122 through the first gap 118, so that the isolation part 122 radiates a radiation signal in the resonant frequency band.
  • the current when the current is fed from the second feeding source 16, the current will flow through the second radiator 124 and be grounded through the grounding portion 19 (refer to path P3), thereby stimulating the fourth operating mode to radiate the fourth signals in the radiated frequency band. It can be understood that the current flowing through the second radiator 124 continues to flow to the second side 117 , thereby radiating the signal in the resonant frequency band of the second radiator 124 to improve the radiation performance of the second radiator 124 . It can be understood that when the current is fed from the second feeding source 16 , the current is also coupled to the isolation part 122 through the second gap 119 , causing the isolation part 122 to generate parasitic resonance, effectively expanding the bandwidth of the terminal antenna 100 .
  • the first operating mode is the Long Term Evolution Advanced (LTE-A) Band20 operating mode.
  • the first operating frequency band includes 791MHz-821MHz.
  • the first working mode is the Long Term Evolution Advanced (LTE-A) Band20 downlink working mode.
  • the second working mode is a downlink working mode of 5th Generation Mobile Communication Technology (5th Generation Mobile Communication Technology, 5G) New Radio (NR) N28.
  • the second operating frequency band includes 758MHz-803MHz, so, further, the second operating mode is the fifth generation mobile communication technology (5th Generation Mobile Communication Technology, 5G) New Radio (NR) N28 downward working mode.
  • the third operating mode is a Long Term Evolution Advanced (LTE-A) mid-to-high frequency mode
  • the third operating frequency band includes 1710MHz-2700MHz.
  • the fourth working mode is the uplink and downlink working modes of the 5th Generation Mobile Communication Technology (5G) New Radio (NR) N28, and the fourth working frequency band includes 703MHz -803MHz (UL:703MHz-748MHz; DL:758MHz-803MHz).
  • 5G 5th Generation Mobile Communication Technology
  • NR New Radio
  • the terminal antenna 100 extends the slot 120 from the end portion 115 to the first side portion 116, thereby extending the length of the first radiator 123, and disposing the control circuit 15 on the first radiator 123, thereby multiplexing the first radiator 123.
  • a radiator 123 enables the first radiator 123 to simultaneously excite the first working mode, the second working mode and the third working mode.
  • the length of the first radiator 123 ranges from 24mm (millimeters) to 35mm (millimeters).
  • the length of the first radiator 123 is not limited to the above range.
  • the first radiator 123 can radiate signals in the mid-to-high frequency band by receiving the current fed from the first feeding source 13 .
  • the first radiator 123 can extend the equivalent current path on the first radiator 123 through the grounding of the control circuit 15, thereby radiating signals in the low-frequency radiation band.
  • the present application also provides a second radiator 124 on the frame, and the second radiator 124 is also a low-frequency antenna.
  • the second radiator 124 is also a low-frequency antenna.
  • at least two independently working low-frequency antennas are formed on the terminal antenna 100.
  • the second radiator 124 can work in the 4G low-frequency band and the 5G low-frequency band at the same time, which greatly enriches the use scenarios of the terminal antenna 100 and improves the mobile communication performance of the mobile terminal device 200.
  • the first switching circuit 14 includes a switching unit 141 and at least one switching element.
  • the switch unit 141 includes a plurality of switches, and one end of each switch is grounded. The other end of each switch is connected to one end of each switching element in a one-to-one correspondence. Each switching element is connected in parallel with each other, and the other end of each switching element is electrically connected between the first feed source 13 and the first radiator 123 .
  • the at least one switching element includes a first switching element 142 and a second switching element 143 .
  • the first switching circuit 14 also includes a first bypass element 144 .
  • One end of the first bypass element 144 is grounded, and the other end is electrically connected between the first feed source 13 and the first radiator 123 for maintaining the connection between the first switching circuit 14 and the first radiator 123 when all the switches in the switching unit 141 are turned off.
  • the connection state between a radiator 123 and the first feed source 13 is not limited to, but not limited to, but not limited to, a radiator 123 .
  • the control circuit 15 includes a switch unit 151 and at least one control element.
  • the switch unit 151 includes a plurality of switches, and one end of each switch is grounded. The other end of each switch is connected to one end of each control element in a one-to-one correspondence.
  • Each control element is connected in parallel with each other, and the other end of each control element is electrically connected to the first radiator 123 .
  • the at least one control element includes a first control element 152 and a second control element 153 .
  • the second switching circuit 17 includes a switching unit 171 and at least one switching element.
  • the switch unit 171 includes a plurality of switches, and one end of each switch is connected to ground. The other end of each switch is connected to one end of each switching element in a one-to-one correspondence. Each switching element is connected in parallel, and the other end of each switching element is electrically connected between the second feed source 16 and the second radiator 124 .
  • the at least one switching element includes a third switching element 172 , a fourth switching element 173 and a fifth switching element 174 .
  • the second switching circuit 17 further includes a second bypass element 175 .
  • One end of the second bypass element 175 is grounded, and the other end is electrically connected between the second feed source 16 and the second radiator 124 for maintaining the second switching circuit 17 when all the switches in the third switch unit 171 are turned off. The connection state with the second radiator 124 and the second feed source 16 .
  • the tuning circuit 18 includes a switch unit 181 and at least one tuning element.
  • the switch unit 181 includes a plurality of switches, and one end of each switch is connected to ground. The other end of each switch is connected to one end of each tuning element in a one-to-one correspondence.
  • Each tuning element is connected in parallel with each other, and the other end of each tuning element is electrically connected to the isolation portion 122 .
  • at least one tuning element includes tuning element 182 .
  • the tuning circuit 18 also includes a third bypass element 183 .
  • One end of the third bypass element 183 is grounded, and the other end is electrically connected to the isolation part 122 for maintaining the connection state between the tuning circuit 18 and the isolation part 122 when all the switches in the switch unit 181 are turned off.
  • each control element, switching element and bypass element can be at least one passive element, or a combination of several passive elements.
  • passive components are, for example, inductors, capacitors or resistors.
  • the first radiator 123 or the second radiator 124 is switched to different switching elements or control elements by controlling the switches in each switch unit to be opened or closed. Since each switching element or control element has a corresponding impedance, by opening or closing the switch in each switch unit, the radiation frequency of the first radiator 123 or the second radiator 124 can be effectively adjusted, and/or the The resonant frequency of isolation part 122.
  • the terminal antenna 100 further includes a control unit (not shown) for controlling the opening and closing of the switches in each switch unit, so that the first radiator 123 and the second radiator 124 excite The corresponding working mode and the signal in the radiation frequency band corresponding to the radiation. It can be understood that the control unit can individually control the closing or opening of each switch in the above-mentioned switch unit.
  • the first control element 152 is a capacitor, and the capacitance value of the first control element 152 ranges from 0-2 pF (picofarads). For example, in one embodiment, the capacitance value of the first control element 152 is 1 pF.
  • the second control element 153 is a 0 ohm resistor or inductor.
  • the inductance value of the second control element 153 ranges from 0 to 5 nH (naHenry).
  • the impedance tuning of the first radiator 123 is performed to achieve frequency band switching in the mid-to-high frequency band.
  • both the first switching element 142 and the second switching element 143 may be inductance elements, and the inductance values of the equivalent inductances of both the first switching element 142 and the second switching element 143 range from 1- 10nH.
  • the resonant frequency of the second radiator 124 can be adjusted to assist in improving the radiation performance of the first radiator 123 in the mid-to-high frequency band.
  • fifth switching element 174 is a capacitor. And the capacitance value of the fifth switching element 174 ranges from 0.5 to 4.7 pF.
  • first bypass element 144 can be used to adjust the resonant frequency of the first radiator 123, thereby improving the radiation performance of the first radiator 123.
  • first bypass element 144 is an inductor.
  • the inductance value of the first bypass element 144 is in the range of 30-68nH.
  • the switch corresponding to the third switching element 172 and/or the fourth switching element 173 in the second switching circuit 17 is closed, and when the second switching circuit 17 is disconnected from other switches in the tuning circuit 18, the second radiation
  • the body 124 excites the fourth working mode, and can perform frequency band switching according to the impedance value of the gated switching element.
  • both the third switching element 172 and the fourth switching element 173 are inductors, and the equivalent inductance values of both the third switching element 172 and the fourth switching element 173 range from 10 to 82 nH, it is possible to Low-frequency band switching is performed by strobing the third switching element 172 and/or the fourth switching element 173 in the second switching circuit 17 .
  • the equivalent inductance value of the third switching element 172 and the fourth switching element 173 is 82nH
  • the second radiator 124 can switch to the operating frequency band of 700MHz; when the third switching element 172 and the fourth switching element 173 When the equivalent inductance value of the two is 10nH, the second radiator 124 can switch to the operating frequency band of 900MHz.
  • the second bypass element 175 in the second switching circuit 17 is an inductor.
  • the inductance value of the second bypass element 175 is 68 nH.
  • the third bypass element 183 in the tuning circuit 18 is an inductor, and the inductance value of the third bypass element 183 ranges from 15 to 20 nH.
  • the isolation part 122 is grounded through the third bypass element 183 for radiating signals in the low-frequency resonant frequency band of the second radiator 124 , thereby improving the radiation performance of the second radiator 124 .
  • the switch corresponding to the first control element 152 in the control circuit 15 when the switch corresponding to the first control element 152 in the control circuit 15 is closed, the first radiator 123 excites the third operating mode (ie, radiates signals in the mid-to-high frequency band), and the switch corresponding to the tuning element 182 in the tuning circuit 18 The switch is open; when the switch corresponding to the second control element 153 in the control circuit 15 is closed, the first radiator 123 excites the first working mode and the second working mode (ie, radiates signals in the low-frequency band), and the tuning circuit 18 The switch corresponding to the tuning element 182 is closed to adjust the isolation degree between the first radiator 123 and the second radiator 124 .
  • tuning element 182 is an inductor. And the inductance value of the tuning element 182 ranges from 1 to 68 nH.
  • the tuning element 182 may be an inductor with an inductance value of 5.1 nH.
  • each switching element, each control element and each bypass element mentioned above refers to an equivalent inductance value and an equivalent capacitance value. That is, each of the switching elements, each control element and each bypass element mentioned above can be formed by a plurality of inductors or capacitors connected in series and parallel, and is not limited to the form of a single element mentioned above.
  • the equivalent electrical length of the first radiator 123 is shortened, thereby causing the first radiator 123 to excite the third working mode; at the same time, by strobing the third A first switching element 142 and/or a second switching element 143 in a switching circuit 14 to achieve mid-to-high frequency band switching.
  • the fifth switching element 174 of the second switching circuit 17 can also be gated at the same time to adjust the resonant frequency of the second radiator 124 to assist in improving the radiation performance in the mid-to-high frequency band.
  • the first radiator 123 can be adjusted by the first switching circuit 14, the control circuit 15, the second switching circuit 17, etc., to excite the first working mode and the second working mode, or to excite the third working mode,
  • the multiplexing of the first radiator 123 in the low frequency band and the mid-to-high frequency band is realized.
  • the third switching element 172 and/or the fourth switching element 173 on the second switching circuit 17 is also gated, so that the second radiator 124 excites the fourth operating mode and switches to a different Low frequency band. Furthermore, the second radiator 124 is also grounded through the third bypass element 183 on the tuning circuit 18, so that the isolation part 122 radiates signals in the low-frequency resonant frequency band, thereby improving the radiation efficiency of the second radiator 124.
  • the terminal antenna 100 has at least two low-frequency antennas.
  • the isolation part 122 reduces the mutual coupling of currents between the first radiator 123 and the second radiator 124 by strobing the tuning element 182 of the tuning circuit 18, thereby improving the first radiator 123 and the second radiator 124. degree of isolation between them.
  • FIG. 9 is a schematic diagram of the S-parameter curve of the terminal antenna 100 .
  • Curve Q1 in FIG. 9 indicates that both the first radiator 123 and the second radiator 124 radiate signals in the low-frequency band, and when the switch corresponding to the tuning element 182 is turned off, the gap between the first radiator 123 and the second radiator 124 degree of isolation.
  • Curve Q2 in FIG. 9 indicates that both the first radiator 123 and the second radiator 124 radiate signals in the low-frequency band, and when the switch corresponding to the tuning element 182 is closed, the distance between the first radiator 123 and the second radiator 124 Isolation.
  • FIG. 10A is a schematic diagram of the current coupled to the first radiator 123 by the second radiator 124 when the first radiator 123 excites the first operating mode and the second operating mode, and the isolation part 122 is not provided with a tuning circuit
  • FIG. 10B is When the first radiator 123 excites the first operating mode and the second operating mode, and the tuning element 182 in the tuning circuit 18 on the isolation part 122 is turned on, the second radiator 124 couples the current to the first radiator 123 Schematic diagram
  • Figure 11A is a schematic diagram of the current coupled from the first radiator 123 to the second radiator 124 when the first radiator 123 excites the first operating mode and the second operating mode, and the isolation part 122 is not provided with the tuning circuit 18
  • FIG. 11B shows that the first radiator 123 excites the first operating mode and the second operating mode, and when the tuning element 182 in the tuning circuit 18 on the isolation part 122 is turned on, the first radiator 123 is coupled to the second radiator.
  • 124 current diagram is a schematic diagram of the current coupled to the
  • the coupling current between the first radiator 123 and the second radiator 124 is effectively reduced, thereby effectively improving the coupling current between the first radiator 123 and the second radiator 124.
  • the isolation allows the first radiator 123 and the second radiator 124 to work in the low frequency band at the same time.
  • the terminal antenna 100a at least has a medium-high frequency antenna and a low-frequency antenna.
  • the second radiator 124 radiates signals in the mid-to-high frequency resonance band, thereby improving the radiation efficiency when the first radiator 123 excites the mid-to-high frequency band; the isolation part 122 passes through the third bypass
  • the element 183 is grounded, radiates the signal in the low-frequency resonant frequency band of the second radiator 124, and improves the radiation efficiency of the second radiator 124.
  • the terminal antenna 100 provided in the first embodiment of the present application, by setting the control circuit 15, allows the first radiator 123 to achieve low-frequency band and mid-high frequency band with only one feed source (for example, the first feed source 13). Reuse. In this way, the terminal antenna 100 can support the dual connectivity (E-UTRA-NR Dual Connectivity, EN-DC) mode of the 4G LTE frequency band and the 5G NR frequency band under the 5G non-standalone networking standard (Non-StandAlone, NSA), and Realize ultra-wideband carrier aggregation (Carrier Aggregation, CA).
  • E-UTRA-NR Dual Connectivity, EN-DC EN-DC
  • EN-DC dual connectivity
  • Non-StandAlone, NSA Non-StandAlone
  • CA Ultra-wideband carrier aggregation
  • the frame 112 also includes a top portion 129 .
  • the housing 11 is also provided with a slot 125 and a fourth slit 126 .
  • the slot 125 is opened between the top portion 129 and the middle frame 111 .
  • the fourth slit 126 is located at an end of the first side portion 116 close to the top portion 129 and is connected to the slot 125 . In this way, the slot 125 and the fourth gap 126 jointly form the third radiator 127 on the frame 112 .
  • terminal antenna 100 also includes a third feed source 128.
  • the third feeding source 128 is electrically connected to the third radiator 127 for feeding current to excite the fifth operating mode and radiate signals in the fifth operating frequency band.
  • the fifth operating mode is the uplink and downlink operating mode of Long Term Evolution Advanced (LTE-A) Band20, and the fifth operating frequency band includes 791MHz-862MHz.
  • LTE-A Long Term Evolution Advanced
  • the terminal antenna 100 has at least three low-frequency antennas. It can be understood that the three-low-frequency antenna system formed by the terminal antenna 100 can meet the antenna specifications of 1 transmit and 2 receive in the respective frequency bands of 4G and 5G.
  • curves Q3, Q4, and Q5 respectively represent the S-parameter curves of the first radiator 123, the second radiator 124, and the third radiator 127 when they operate in the low-frequency band.
  • the first radiator 123, the second radiator 124 and the third radiator 127 of the terminal antenna 100 have a wide radiation bandwidth when working in the low frequency band.
  • curve Q3 roughly indicates that the first radiator 123 can operate at 758MHz-821MHz;
  • curve Q4 generally indicates that the second radiator 124 can operate at 703MHz-803MHz;
  • curve Q5 generally indicates that the third radiator 127 can operate at 791MHz-862MHz.
  • the slot 125 is opened between the first side part 116 and the middle frame 111 , and is opened at approximately the middle position of the first side part 116 .
  • the fourth slit 126 is opened at an end of the slot 125 on the first side portion 116 away from the end portion 115 .
  • the slot 125 is connected with the fourth slit 126 .
  • the slot 125 and the fourth slit 126 jointly divide the frame 112 to form a third radiator 127 .
  • the third feeding source 128 is electrically connected to the third radiator 127, so that a current is fed into the third radiator 127, so that the third radiator 127 excites the fifth operating mode and radiates signals in the fifth radiation frequency band.
  • the third radiator 127 can also be used for multiplexing low-frequency bands and mid- and high-frequency bands. This application does not limit the third radiator 127 to only radiate signals in the low-frequency band.
  • radiators can also be formed at other positions on the frame 112, and the radiators can radiate signals in low-frequency and/or mid-to-high frequency radiation bands.
  • the present invention does not limit the number of radiators on the terminal antenna 100 and the excitation working frequency band.
  • the switch unit 141 in the first switching circuit 14 can be replaced by a four-way single-pole single-throw switching device.
  • the switching unit 171 of the second switching circuit 17 and the switching unit 181 of the tuning circuit 18 can be replaced by a four-way single-pole single-throw switching device. In this way, the use of electronic components of the terminal antenna 100 is reduced and costs are saved.
  • the isolation part 122, the first radiator 123 and the second radiator 124 may also be formed on the top part 129, the first side part 116 and/or the second side part 117 of the mobile terminal device 200. superior.
  • the first feed source 13 and its corresponding first switching circuit 14 and control circuit 15 can be electrically connected to other positions of the first radiator 123, and are not limited to the above-mentioned positions.
  • the second feed source 16 and its corresponding second switching circuit 17 and tuning circuit 18 can be connected to other positions of the second radiator 124, and are not limited to the above-mentioned positions.
  • the equivalent electrical lengths of the radiators formed are also different.
  • control circuit 15 and the tuning circuit 18 it is necessary to select appropriate control elements and tuning elements for the control circuit 15 and the tuning circuit 18 according to different equivalent electrical lengths.
  • This application does not limit the specific parameters of the control elements and tuning elements in the control circuit 15 and the tuning circuit 18 .
  • Those skilled in the art can select control elements and tuning elements with appropriate parameters based on the ideas of this application and combined with specific structures.
  • the ground portion 19 can be made of conductive material.
  • the grounding part 19 may be an electrical connection device such as a spring pin, a screw, a spring piece, conductive cloth, conductive foam, or conductive glue.
  • the grounding portion 19 can be connected to the frame 112 through integrated molding technology, riveting, screw locking, and elastic spring connection.
  • first feed source 13 , the first switching circuit 14 , the control circuit 15 , the second feed source 16 , the second switching circuit 17 and the tuning circuit 18 can also be connected by riveting, screw locking, elastic springs, etc. way to realize the connection with the frame 112.
  • switches mentioned in this application include, but are not limited to, single-pole single-throw switches, transistor switches, or other switch circuits that can achieve on or off functions. Those skilled in the art can select corresponding switching devices or switching circuits according to the actual needs of the product.
  • This application also provides a terminal antenna 100a.
  • the structure of the terminal antenna 100a is substantially the same as that of the terminal antenna 100, and both include a housing 11, a first feed source 13, a second feed source 16 and a ground portion 19.
  • the difference between the terminal antenna 100a and the terminal antenna 100 is that the structure of the frame 112 in the terminal antenna 100a is substantially mirror-symmetrical to the structure of the frame 112 in the terminal antenna 100.
  • the first gap 118 and the first side portion 116 are located on the right side of the housing 11
  • the second gap 119 and the second side portion 117 are located on the left side of the housing 11 .
  • the first gap 118 and the first side portion 116 are located on the left side of the housing 11
  • the second gap 119 and the second side portion 117 are located on the right side of the housing 11
  • the slot 120a of the terminal antenna 100a extends to approximately the middle position of the second side portion 117
  • the slot 120a extends to an end of the first side portion 116 close to the end portion 115.
  • the third slit 121a of the terminal antenna 100a is opened substantially at the middle position of the second side 117 of the frame 112. In this way, on the terminal antenna 100a, the frame 112 between the first slit 118 and the second slit 119 forms the isolation portion 122.
  • the frame 112 on the side of the first gap 118 away from the second gap 119 forms a first radiator 123a.
  • the frame 112 between the second gap 119 and the third gap 121a forms a second radiator 124a.
  • One end of the ground portion 19 is grounded, and the other end is electrically connected to an end of the second side portion 117 of the second radiator 124 a close to the end portion 115 .
  • the terminal antenna 100a also includes a control circuit 14a, a first switching circuit 15a, a second switching circuit 17a, a third switching circuit 18a and a tuning circuit 19a. By adjusting each switching circuit, each control circuit and the tuning circuit, thereby Full coverage of the terminal antenna 100a in the low-frequency band is achieved.
  • the first feeding source 13 is electrically connected to the junction of the first side portion 116 and the end portion 115 of the first radiator 123a for feeding the current signal to the first radiator 123a.
  • One end of the control circuit 14a is grounded, and the other end is connected between the first feed source 13 and the first radiator 123a, for controlling the first radiator 123a to radiate a radiation signal in a low frequency band or a signal in a mid-to-high frequency band.
  • One end of the first switching circuit 15a is grounded, and the other end is connected to an end of the first radiator 123a close to the second gap 119 to provide impedance matching between the first feed source 13 and the first radiator 123a to improve radiation efficiency.
  • the second feed source 16 is electrically connected to a side of the ground portion 19 on the second radiator 124 a away from the end portion 115 .
  • One end of the second switching circuit 17a is grounded, and the other end is electrically connected between the second feed source 16 and the second radiator 124a for switching the radiation frequency band.
  • One end of the third switching circuit 18a is grounded, and the other end is electrically connected to the second radiator 124a to provide impedance matching between the second feed source 16 and the second radiator 124a to improve radiation efficiency.
  • One end of the tuning circuit 19a is grounded, and the other end is electrically connected to the isolation part 122 for adjusting the resonant frequency of the isolation part 122.
  • the control circuit 14a When the control circuit 14a is turned off, after the current is fed from the first feeding source 13, the current will flow through the first radiator 123a and be grounded by the first switching circuit 15a and the middle frame 111 (refer to path P 1' ) to radiate signals in the low-frequency band.
  • the control circuit 14a When the control circuit 14a is turned on, after the current is fed from the first feeding source 13, the current will flow through the first radiator 123a and be grounded by the first switching circuit 15a (refer to path P2') to radiate the mid-to-high frequency band. signal of. In this way, the first radiator 123a can radiate signals in the low frequency band or the mid-to-high frequency band by turning off or on the control circuit 14a. It can be understood that after the current is fed from the first feeding source 13 , the current also flows to the side of the first radiator 123 a where the second gap 119 is located, and is coupled to the isolation portion 122 through the second gap 119 .
  • the current when the current is fed from the second feeding source 16, the current will flow through the second radiator 124a and be grounded through the grounding portion 19 and the third switching circuit 18a (refer to the path P3'). In this way, the second radiator 124a radiates the signal in the low frequency band. It can be understood that after the current is fed from the second feeding source 16, the current also flows to the side of the second radiator 124a where the third gap 121a is located to radiate the signal in the parasitic resonance frequency band of the second radiator 124a, thereby improving the Radiation performance of the second radiator 124. It can be understood that after the current is fed from the second feeding source 16 , the current also flows to the side of the second radiator 124 a where the first gap 118 is located, and is coupled to the isolation portion 122 through the first gap 118 .
  • the control circuit 14a includes a switch unit 141a and at least one control element 142a.
  • the switch unit 141a includes a plurality of switches, and one end of each switch is grounded. The other end of each switch is connected to one end of each control element 142a in a one-to-one correspondence.
  • Each control element 142a is connected in parallel, and the other end of each control element 142a is electrically connected between the first feed source 13 and the first radiator 123a.
  • the circuit structure of the second switching circuit 17a is substantially the same as that of the control circuit 14a.
  • the second switching circuit 17a further includes a first bypass element 171a.
  • One end of the first bypass element 171a is grounded, and the other end is electrically connected between the second feed source 16 and the second radiator 124a for maintaining the second switching circuit 17a, the second radiator 124a and the second feed source 16 connection status between.
  • the first switching circuit 15a includes a switching unit 151a and at least one switching element 152a.
  • the switch unit 151a includes a plurality of switches, and one end of each switch is grounded. The other end of each switch is connected to one end of each switching element 152a in a one-to-one correspondence.
  • Each switching element 152a is connected in parallel with each other, and the other end of each switching element 152a is electrically connected to the first radiator 123a.
  • the first switching circuit 15a also includes a second bypass element 156a. One end of the second bypass element 156a is grounded, and the other end is electrically connected to the first radiator 123a. It is used to maintain the connection between the first switching circuit 15a and the first radiator 123a when all the switches in the second switch unit 151a are turned off. Connection Status.
  • the circuit structure of the third switching circuit 18a and the tuning circuit 19a is substantially the same as the circuit structure of the first switching circuit 15a.
  • the first radiator 123a or the second radiator 124a is switched to different switching elements or control elements by controlling the switches in each switch unit to be opened or closed. Since each switching element or control element has a corresponding impedance, by opening or closing each switch, the frequency of the first radiator 123a or the second radiator 124a can be effectively adjusted, and/or the frequency of the isolation portion 122 can be adjusted. Resonant frequency.
  • each control element, switching element and bypass element can be at least one passive element or a combination of several passive elements.
  • Passive components can be inductors, capacitors or resistors.
  • control element 142a in the control circuit 14a may be an inductor, and the equivalent inductance value of several control elements 142a ranges from 1 to 10 nH.
  • the switch corresponding to at least one switching element 152a in the first switching circuit 15a When the switch corresponding to at least one switching element 152a in the first switching circuit 15a is closed, the resonant frequency of the first radiator 123a can be adjusted.
  • the first radiator 123a radiates signals in the mid-to-high frequency band
  • several switching elements of the third switching circuit 18a can also be controlled and gated at the same time, so that the second radiator 124a generates mid-to-high frequency resonance to assist in improving the first Radiation performance of the radiator 123a in the mid-to-high frequency band.
  • the switching element 152a in the first switching circuit 15a may be a capacitor, and the capacitance value of the equivalent capacitance of the switching element 152a ranges from 0 to 6.8 pF.
  • the switching element in the third switching circuit 18a can be equivalent to a grounded capacitor, and the equivalent capacitance value ranges from 0.5 to 4.7 pF.
  • control circuit 14a is used to control the first radiator 123a to radiate signals in the low frequency band or signals in the mid-to-high frequency band.
  • the first switching circuit 15a can be used to switch the specific frequency band range when the first radiator 123a operates in the low-frequency band.
  • the first radiator 123a can also radiate signals in different low-frequency radiation frequency bands.
  • the switching element 152a of the first switching circuit 15a is a capacitor, and the capacitance value of the equivalent capacitance of the switching element 152a ranges from 0-3 pF.
  • the first radiator 123a can cover 900MHz.
  • the first radiator 123 when the equivalent capacitance of the gated switching element 152a is a capacitance of 2-3 pF, the first radiator 123 can cover 700 MHz. In this way, frequency band switching of the first radiator 123a in the entire low-frequency band is achieved. And the first radiator 123a and the second radiator 124a can jointly implement a dual uplink and dual downlink low-frequency antenna system.
  • the second radiator 124a can be caused to radiate signals in different low-frequency radiation frequency bands. Further, the isolation part 122 is grounded through the bypass element in the tuning circuit 19a, and radiates the signal in the low-frequency resonant frequency band of the second radiator 124a, so as to expand the bandwidth of the second radiator 124a.
  • the second radiator 124a can be configured according to different equivalent inductances. value or equivalent capacitance value to switch to a different low frequency band.
  • the bypass element of the tuning circuit 19a is an inductor, and the inductance value of the equivalent inductance of the bypass element ranges from 15 to 20 nH.
  • the isolation degree of the first radiator 123a and the second radiator 124a can be adjusted by adjusting the tuning element of the tuning circuit 19a.
  • the circuit structure of the tuning circuit 19a is substantially the same as that of the first switching circuit 15a, except that the tuning circuit 19a replaces the switching elements in the first switching circuit 15a with tuning elements.
  • the tuning elements in the tuning circuit 19a may be collectively equivalent to an inductor, and the inductance value of the equivalent inductance of the tuning elements in the tuning circuit 19a ranges from 1 to 68 nH.
  • the tuning element of the tuning circuit 19a includes a first tuning element and a second tuning element.
  • the inductance value of the equivalent inductance of the first tuning element ranges from 1 nanohenry to 5 nanohenry, and the inductance value of the equivalent inductance of the second tuning element ranges from 60 nanohenry to 68 nanohenry.
  • the tuning circuit 19a When the switch corresponding to the first tuning element is closed and the switch corresponding to the second tuning element is open, the tuning circuit 19a is used to adjust the isolation degree of the first radiator 123a and the second radiator 124a when both work at 900MHz; When the switch corresponding to the first tuning element is turned off and the switch corresponding to the second tuning element is turned on, the tuning circuit 19a is used to adjust the isolation degree of the first radiator 123a and the second radiator 124a when both operate at 700 MHz.
  • the first radiator 123a can radiate the radiation signal in the low frequency band or the mid-to-high frequency band through the control circuit 14a, thereby realizing the multiplexing of the first radiator 123a in the low-frequency band and the mid-to-high frequency band.
  • the terminal antenna 100a also controls the switching elements in the first switching circuit 15a, the second switching circuit 17a and the third switching circuit 18a to adjust the first radiator 123a and the second radiator 124a to work in the low frequency band. frequency range to achieve frequency band switching of the terminal antenna 100a in the entire low-frequency band (ie, 700MHz to 960MHz).
  • the terminal antenna 100a also uses the tuning circuit 19a to adjust the isolation of the first radiator 123a and the second radiator 124a when both work in the low frequency band, so that the terminal antenna 100a has good antenna performance.
  • the second radiator 124a is switched to a different low frequency band by selecting and switching to at least one switching element on the second switching circuit 17a. Furthermore, the second radiator 124a is also used to radiate signals in the low-frequency resonant frequency band through the conduction of the bypass element on the tuning circuit 19a, thereby improving the radiation efficiency of the second radiator 124a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供一种终端天线及移动终端设备。终端天线包括边框、第一馈入源及第二馈入源。边框上开设有隔断边框的第一缝隙及第二缝隙,以形成第一导体、第二导体及第三导体。第一缝隙远离第二缝隙的一侧的部分边框形成第一导体,第二缝隙远离第一缝隙的一侧的部分边框形成第二导体,第一缝隙与第二缝隙之间的边框形成第三导体。第一馈入源电连接至第一导体,以使第一导体辐射信号,第二馈入源电连接至第二导体,以使第二导体辐射低频频段的信号,终端天线还包括控制电路,控制电路一端接地,另一端电连接至第一导体,用于控制第一导体辐射中高频频段的信号或辐射低频频段的信号。该终端天线可工作在4G及5G的低频频段,具有良好的移动通信性能。

Description

终端天线及移动终端设备
相关申请的交叉引用
本申请要求在2021年08月17日提交中国专利局、申请号为202110945168.X、申请名称为“终端天线及移动终端设备”的专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,尤其涉及一种终端天线及移动终端设备。
背景技术
移动蜂窝通信技术将移动终端与基站系统建立无线连接,该技术经过长期演进发展,目前已经发展到第五代移动通信技术(5G)。移动蜂窝通信技术的低频频段由于低损耗、长传输距离的特点,在每一代移动通信技术中都有广泛的应用。
然而,由于移动终端设备的小型化趋势,如何在空间严重受限的移动终端设备上部署多个低频天线,成为需要解决的技术问题。
发明内容
有鉴于此,本申请提供一种具有多个低频天线的终端天线及移动终端设备。
本申请第一方面提供一种终端天线,包括边框、第一馈入源及第二馈入源。边框上开设有隔断边框的第一缝隙及第二缝隙,以在边框上形成第一导体、第二导体及第三导体,第一缝隙远离第二缝隙的一侧的至少部分边框形成第一导体,第二缝隙远离第一缝隙的一侧的至少部分边框形成第二导体,第一缝隙与第二缝隙之间的边框形成第三导体。第一馈入源电连接至第一导体,以使第一导体辐射信号。第二馈入源电连接至第二导体,以使第二导体辐射低频频段的信号。终端天线还包括控制电路,控制电路一端接地,另一端电连接至第一导体,用于控制第一导体辐射中高频频段的信号或辐射低频频段的信号。
上述设计中,通过第一馈入源及第二馈入源馈入电流信号至第一辐射体及第二辐射体,以使第一辐射体及第二辐射体分别辐射低频频段的信号。终端天线上还设置有控制电路,用于控制第一导体辐射中高频频段的信号或低频频段的辐射信号,以实现第一导体在中高频频段及低频频段的复用,有效提高终端天线的移动通信性能。
在一种可能的设计中,控制电路包括第一无源元件、第二无源元件、第一开关及第二开关。第一开关及第二开关的一端分别接地,第一开关的另一端连接第一无源元件的一端,第二开关的另一端连接第二无源元件的一端, 第一无源元件及第二无源元件的另一端均电连接至第一导体。当与第一无源元件对应的第一开关闭合时,第一导体辐射中高频频段的信号;当与第二无源元件对应的第二开关闭合时,第二导体辐射低频频段的信号。
在一种可能的设计中,第一无源元件为电容,且第一无源元件的电容值的范围为0皮法至2皮法;第二无源元件为电感,且第二无源元件的电感值的范围为0纳亨至5纳亨。
上述设计中,通过设置控制电路,且当控制电路中的第一控制元件导通时,缩短第一导体的等效电长度,从而使第一导体辐射中高频频段的信号。
在一种可能的设计中,终端天线还包括调谐电路。调谐电路包括第三无源元件及第三开关,第三开关的一端接地,第三开关的另一端电连接至第三无源元件的一端,第三无源元件的另一端连接至第三导体,通过控制第三开关的闭合或断开,调节第一导体与第二导体工作在低频频段时,二者之间的隔离度。
在一种可能的设计中,第三无源元件为电感,第三无源元件的电感值的范围为1纳亨至68纳亨。
上述设计中,通过在第三导体上设置调谐电路,以提高第一导体及第二导体均辐射低频频段的信号时的隔离度,有效提升终端天线的移动通信性能。
在一种可能的设计中,调谐电路还包括第四无源元件。第四无源元件一端接地,另一端电连接至第三导体。
上述设计中,通过设置调谐旁路元件,用于维持调谐电路与第三导体之间的连接状态。
在一种可能的设计中,当控制电路中的第一开关闭合时,调谐电路中的第三开关断开。当控制电路中的第二开关闭合时,调谐电路中的第三开关闭合。
[根据细则91更正 16.10.2023]
上述设计中,通过控制第一开关与第二开关的断开或闭合,以实现当第一辐射体辐射中高频频段的信号时,调谐元件断开;当第一导体辐射低频频段的信号时,调谐元件导通,从而调节第一导体及第二导体均辐射低频频段的信号时的隔离度。
在一种可能的设计中,终端天线还包括第一切换电路及第二切换电路。第一切换电路及第二切换电路均包括若干无源元件及对应的若干开关,第一切换电路中的若干开关的一端接地,另一端一一对应连接至第一切换电路中的若干无源元件的一端,第一切换电路中的若干无源元件的另一端连接至第一馈入源与第一导体之间。第二切换电路中的若干开关的一端接地,第二切换电路中的若干开关的另一端一一对应连接至第二切换电路中的若干无源元件的一端,第二切换电路中的若干无源元件的另一端连接至第二馈入源与第二导体之间。
上述设计中,通过设置第一切换电路及第二切换电路,为终端天线提供阻抗匹配,以扩展终端天线的频宽,及优化终端天线的辐射性能。
在一种可能的设计中,第一馈入源电连接至第一导体靠近第一缝隙的一 端。
在一种可能的设计中,边框包括末端部、第一侧部及第二侧部,第一侧部及第二侧部相对设置,且分别设置于末端部的两端,第一缝隙及第二缝隙间隔开设于末端部上,第一缝隙靠近第一侧部设置,第二缝隙靠近第二侧部设置,第一馈入源电连接至第一导体上的第二侧部与末端部的交界处。
上述设计中,提供了两种第一馈入源电连接至边框的位置方案,如此,本领域技术人员可根据实际产品,选择不同的第一馈入源的位置连接方案。
在一种可能的设计中,控制电路包括若干无源元件及对应的若干开关。控制电路中的若干开关的一端接地,另一端一一对应连接至控制电路中的若干无源元件的一端,控制电路中的若干无源元件的另一端连接至第一导体与第一馈入源之间,当控制电路中的至少一开关闭合时,第一导体辐射中高频频段的信号;当控制电路中的所有开关断开时,第一导体辐射低频频段的信号。
在一种可能的设计中,无源元件为电感,若干无源元件的等效电感值的范围为1纳亨至10纳亨。
上述设计中,提供了另一种控制电路,且该控制电路一端接地,另一端电连接至第一馈入源与第一导体之间。
在一种可能的设计中,终端天线还包括调谐电路,调谐电路包括若干调谐元件及若干开关,调谐电路中的若干开关的一端接地,另一端一一对应连接至调谐电路的若干无源元件的一端,调谐电路的若干无源元件的另一端连接至第三导体,通过控制调谐电路的若干开关的闭合或断开,调节第一导体与第二导体工作在低频频段时,二者之间的隔离度。
在一种可能的设计中,调谐电路的若干无源元件包括第一无源元件及第二无源元件。第一无源元件及第二无源元件均为电感,且第一无源元件的电感值的范围为1纳亨至5纳亨。第二无源元件的电感值的范围为60纳亨至68纳亨,在调谐电路中。当与第一无源元件对应的开关闭合,且与第二无源元件对应的开关断开时,调谐电路用于调节第一导体与第二导体均工作在900MHz时的隔离度。在调谐电路中,当与第一无源元件对应的开关断开,且与第二无源元件对应的开关闭合时,调谐电路用于调节第一导体与第二导体均工作在700MHz时的隔离度。
上述设计中,提供了另一种调谐电路,且该调谐电路可根据选择的调谐元件的不同,调节第一导体与第二导体辐射对应的低频频段的信号时的隔离度。
在一种可能的设计中,终端天线还包括第一切换电路、第二切换电路及第三切换电路中的至少一组电路。第一切换电路、第二切换电路及第三切换电路均包括若干无源元件及若干开关。第一切换电路的若干开关的一端接地,另一端一一对应连接至第一切换电路中的若干无源元件的一端,第一切换电路中的若干无源元件的另一端连接至第一导体。第二切换电路的若干开关的一端接地,另一端一一对应连接至第二切换电路中的若干无源元件的一端, 第二切换电路中的若干无源元件的另一端连接至第二馈入源与第二导体之间。第三切换电路的若干开关的一端接地,另一端一一对应连接至第三切换电路中的若干无源元件的一端,第三切换电路中的若干无源元件的另一端连接至第二导体。
上述设计中,终端天线还包括三种切换电路,如此,可为终端天线提供阻抗匹配,有效扩展终端天线的频宽,从而提高终端天线的移动通信性能。
本申请第二方面提供一种移动终端设备,包括如上的终端天线。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可根据这些附图获得其他的附图。
图1为本申请一实施例提供的终端天线应用至移动终端设备的示意图;
图2为图1所示移动终端设备的拆解示意图;
图3为图1中的终端天线的示意图;
图4为图3所示终端天线的部分电流路径图;
图5为图3所示终端天线中的第一切换电路及控制电路的电路框图;
图6为图4所示终端天线中的第二切换电路及调谐电路的电路框图;
图7为本申请一实施例中的第一切换电路及控制电路的电路示意图;
图8为本申请一实施例中的第二切换电路及调谐电路的电路示意图;
图9为图1所示终端天线的S参数(散射参数)曲线图;
图10A为未设置调谐电路时,第二辐射体耦合至第一辐射体的电流示意图;
图10B为设置调谐电路时,第二辐射体耦合至第一辐射体的电流示意图;
图11A为未设置调谐电路时,第一辐射体耦合至第二辐射体的电流示意图;
图11B为设置调谐电路时,第一辐射体耦合至第二辐射体的电流示意图;
图12为本申请另一实施例提供的终端天线的示意图;
图13为本申请另一实施例提供的终端天线的示意图;
图14为图13所示终端天线中的控制电路的电路框图;
图15为图13所示终端天线中的第一切换电路的电路框图。
主要元件符号说明
移动终端设备200;显示单元201;终端天线100、100a;
壳体11;中框111;边框112;后盖113;容置空间114;
末端部115;第一侧部116;第二侧部117;第一缝隙118;
第二缝隙119;开槽120、125、120a;第三缝隙121、121a;
隔离部122;第一辐射体123、123a;第二辐射体124、124a;
第四缝隙126;第三辐射体127;第三馈入源128;顶端部129;
第一馈入源13;第一切换电路14、15a;
开关单元141、141a、151、151a、181;控制元件142a;
切换元件152a;第一切换元件142;第二切换元件143;
第一旁路元件144、171a;第三切换元件144a;第四切换元件145a;
控制电路15、14a;第一控制元件152;第二控制元件153;
第二馈入源16;第二切换电路17、17a;第三切换元件172;
[根据细则91更正 16.10.2023]
第四切换元件173;第五切换元件174;第二旁路元件175、156a;
第三切换电路18a;调谐元件182;第三旁路元件183;
调谐电路18、19a;接地部19
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
为能进一步阐述本申请达成预定申请目的所采取的技术手段及功效,以下结合附图及实施方式,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
[根据细则91更正 16.10.2023]
本申请提供的技术方案适用于采用以下一种或多种通信技术的移动终端设备:蓝牙(Bluetooth,BT)通信技术、全球定位系统(Global Positioning System,GPS)通信技术、无线保真(Wireless Fidelity,Wi-Fi)通信技术、全球移动通讯系统(Global System For_mobile Communications,GSM)通信技术、宽频码分多址(Wideband Code Division multiple Access,WCDMA)通信技术、长期演进(Long Term Evolution,LTE)通信技术、5G通信技术、SUB-6G通信技术以及未来其他通信技术等。本申请中,移动终端设备可以是手机、平板电脑、可穿戴设备、个人数码助理(Personal Digital Assistant,PDA)、基站、车载雷达、客户前置设备(Customer Premise Equipment,CPE)等能够收发电磁波信号的设备等等。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
实施例一
请一并参阅图1至图3,图1示例性示出了一种终端天线100,其可应用于移动电话、个人数码助理等移动终端设备200中。终端天线100至少包括壳体11、第一馈入源13、第一切换电路14、控制电路15、第二馈入源16、第二切换电路17及调谐电路18。
其中,壳体11可以为移动终端设备200的部分外壳。壳体11至少包括中框111、边框112及后盖113。
在一些实施例中,中框111大致为一矩形片体,在一些实施例中,中框 111由金属材料制成,且其接地设置。
[根据细则91更正 16.10.2023]
在一些实施例中,边框112由金属材料制成,大致呈环状结构,且边框112环绕中框111的边缘设置。在一些实施例中,边框112与中框111一体成型设置。例如,边框112与中框111可以是一体成型的压铸铝结构、型材铝结构等。在另外一些实施例中,边框112与中框111亦可以是两独立结构的组合,如此,中框111可以由塑胶材料等制成。边框112可以是压铸铝结构件、型材铝结构件、柔性印制电路(FPC)天线辐射体或激光直接成型(LDS)天线辐射体。
在一些实施例中,边框112远离中框111的一侧设置有一开口(图未标),用于容置移动终端设备200的显示单元201。可以理解,显示单元201具有一显示平面,该显示平面裸露于该开口,且该显示平面与中框111大致平行设置。中框111位于显示单元201与后盖113之间,用于支撑显示单元201、提供电磁屏蔽及提高移动终端设备200的机构强度。
在一些实施例中,后盖113亦大致为一矩形片体。后盖113设置于边框112的边缘,且与显示单元201的显示平面及中框111大致间隔平行设置。可以理解,后盖113还与边框112以及中框111共同围成一容置空间114。容置空间114用以容置移动终端设备200的电路板、处理单元、扬声器及相机模组等电子元件或电路模块于其内。
边框112至少包括末端部115、第一侧部116以及第二侧部117。在一些实施例中,末端部115为移动终端设备200的底端。第一侧部116及第二侧部117相对设置,两者分别设置于末端部115的两端,且与末端部115大致互相垂直设置。末端部115、第一侧部116及第二侧部117均垂直连接中框111。
在一些实施例中,壳体11上至少开设有开槽120、第一缝隙118及第二缝隙119。
在一些实施例中,开槽120大致呈L型,其开设于中框111与边框112的末端部115之间。且分别朝第一侧部116及第二侧部117所在方向延伸一段距离,以使末端部115、部分第一侧部116及部分第二侧部117与中框111间隔设置。其中,开槽120大致延伸至第二侧部117的中间位置,开槽120大致延伸至第一侧部116靠近末端部115的一侧。
在一些实施例中,第一缝隙118及第二缝隙119均开设于边框112的末端部115,且隔断边框112。第一缝隙118与第二缝隙119间隔设置,且第一缝隙118靠近第一侧部116设置,第二缝隙119靠近第二侧部117设置。第一缝隙118及第二缝隙119通过开槽120互相连通。如此,开槽120、第一缝隙118及第二缝隙119共同在边框112上至少划分出第一导体、第二导体及第三导体。
在一些实施例中,终端天线100的边框112上还开设有第三缝隙121。第三缝隙121开设于开槽120远离第二缝隙119的一端。如此,第一缝隙118及第二缝隙119之间的边框112形成第三导体,即隔离部122。第一缝隙118 远离第二缝隙119一侧的边框112形成第一导体,即第一辐射体123。第二缝隙119与第三缝隙121之间的边框112形成第二导体,即第二辐射体124。如此,隔离部122形成于末端部115上。第一辐射体123形成于末端部115及第一侧部116上。第二辐射体124形成于末端部115及第二侧部117上。且隔离部122的长度均小于第一辐射体123及第二辐射体124的长度。
在一些实施例中,第一辐射体123远离第一缝隙118的一端通过中框111接地,从而为第一辐射体123提供接地。也就是说,开槽120用于分隔边框112(第一辐射体123、第二辐射体124及隔离部122)及中框111。在开槽120的以外的部分,边框112与中框111是相连的。
在一些实施例中,终端天线100还包括接地部19。接地部19一端连接至第二辐射体124的大致中间位置,即第二侧部117靠近末端部115的一端,接地部19另一端接地。如此,接地部19用于为第二辐射体124提供接地。
可以理解,在本实施例中,开槽120、第一缝隙118及第二缝隙119均填充有绝缘材料(例如塑胶、橡胶、玻璃、木材、陶瓷等,但不以此为限)。
请一并参阅图4至图6,在一些实施例中,第一馈入源13设置于容置空间114内。第一馈入源13电连接至第一辐射体123,用于馈入电流信号至第一辐射体123。第一切换电路14一端接地,另一端电连接至第一馈入源13与第一辐射体123之间,用于切换辐射频段。控制电路15一端接地,另一端电连接至第一辐射体123远离第一缝隙118的一侧的边框112上,用以控制所述第一辐射体123辐射低频频段的信号或辐射中高频频段的信号。
在一些实施例中,低频频段包括700MHz-960MHz,中高频频段包括1710MHz-2700MHz。
在一些实施例中,第二馈入源16设置于容置空间114内。第二馈入源16电连接至第二辐射体124,用于馈入电流信号至第二辐射体124。第二切换电路17一端接地,另一端电连接至第二馈入源16与第二辐射体124之间,用于切换辐射频段。
在一些实施例中,调谐电路18一端接地,另一端电连接至隔离部122靠近第二缝隙119的一端。一方面,调谐电路18用于调整第一辐射体123与第二辐射体124均辐射低频频段的信号时的隔离度;另一方面,第一辐射体123及第二辐射体124的电流分别通过第一缝隙118及第二缝隙119耦合至隔离部122,以使隔离部122产生谐振,调谐电路18用于调整隔离部122的谐振频率,从而扩展终端天线100的频宽。
可以理解,电流自第一馈入源13馈入后,电流将流经第一辐射体123,并经由第一辐射体123与接地中框111连接的一端接地(参路径P1),从而激发出第一工作模态及第二工作模态,以辐射第一辐射频段及第二辐射频段的信号。当电流自第一馈入源13馈入后,电流将流经第一辐射体123,并经由控制电路15导通接地(参路径P2),从而激发第三工作模态及辐射第三辐射频段的信号。可以理解,流经第一辐射体123的电流还通过第一缝隙118耦合至隔离部122,以使隔离部122上辐射谐振频段的辐射信号。
可以理解,当电流自第二馈入源16馈入后,电流将流经第二辐射体124,并通过接地部19接地(参路径P3),从而激发出第四工作模态以辐射第四辐射频段的信号。可以理解,流经第二辐射体124的电流还继续流向第二侧部117,从而辐射第二辐射体124的谐振频段的信号,以提升第二辐射体124的辐射性能。可以理解,当电流自第二馈入源16馈入后,电流还通过第二缝隙119耦合至隔离部122,从而使隔离部122产生寄生谐振,有效扩展终端天线100的频宽。
[根据细则91更正 16.10.2023]
在一些实施例中,第一工作模态为长期演进技术升级版(Long Term Evolution Advanced,LTE-A)Band20工作模态,在一些实施例中,第一工作频段包括791MHz-821MHz。如此,进一步地,第一工作模态为长期演进技术升级版(Long Term Evolution Advanced,LTE-A)Band20下行工作模态。
[根据细则91更正 16.10.2023]
在一些实施例中,第二工作模态为第五代移动通信技术(5th Generation Mobile Communication Technology,5G)新无线电(New Radio,NR)N28的下行工作模态。在一些实施例中,第二工作频段包括758MHz-803MHz,如此,进一步地,第二工作模态为第五代移动通信技术(5th Generation Mobile Communication Technology,5G)新无线电(New Radio,NR)N28的下行工作模态。
[根据细则91更正 16.10.2023]
在一些实施例中,第三工作模态为长期演进技术升级版(Long Term Evolution Advanced,LTE-A)中高频模态,第三工作频段包括1710MHz-2700MHz。
[根据细则91更正 16.10.2023]
在一些实施例中,第四工作模态为第五代移动通信技术(5th Generation Mobile Communication Technology,5G)新无线电(New Radio,NR)N28的上行及下行工作模态,第四工作频段包括703MHz-803MHz(UL:703MHz-748MHz;DL:758MHz-803MHz)。
可以理解,终端天线100通过将开槽120由末端部115延伸至第一侧部116,从而延长第一辐射体123的长度,并在第一辐射体123上设置控制电路15,从而复用第一辐射体123,使得第一辐射体123可同时激发第一工作模态、第二工作模态及第三工作模态。
在一些实施例中,第一辐射体123的长度范围包括24mm(毫米)-35mm(毫米)。
[根据细则91更正 16.10.2023]
可以理解,在其他实施例中,所述第一辐射体123的长度不局限于上述范围。例如,当第一辐射体123的长度小于24mm时,第一辐射体123可通过接收第一馈入源13馈入的电流以辐射中高频频段的信号。如此,第一辐射体123可通过控制电路15的接地,延长第一辐射体123上的等效电流路径,从而辐射低频辐射频段的信号。
进一步地,本申请还通过在边框上设置第二辐射体124,且第二辐射体124亦为低频天线,如此,使得终端天线100上形成至少两个独立工作的低频天线(例如第一辐射体123及第二辐射体124),并且可同时工作于4G的低频频段及5G的低频频段,极大地丰富了终端天线100的使用场景,提高了移动终端设备200的移动通信性能。
请继续参阅图5及图6,在一些实施例中,第一切换电路14包括开关单元141及至少一切换元件。开关单元141包括若干开关,且每一开关的一端接地。每一开关的另一端与每一切换元件的一端一一对应连接。每一切换元件互相并联,且每一切换元件的另一端均电连接至第一馈入源13与第一辐射体123之间。在一些实施例中,至少一切换元件包括第一切换元件142及第二切换元件143。
在一些实施例中,第一切换电路14还包括第一旁路元件144。第一旁路元件144一端接地,另一端电连接至第一馈入源13与第一辐射体123之间,用于维持开关单元141内的开关全部断开时,第一切换电路14与第一辐射体123及第一馈入源13之间的连接状态。
在一些实施例中,控制电路15包括开关单元151及至少一控制元件。开关单元151包括若干开关,且每一开关的一端接地。每一开关的另一端与每一控制元件的一端一一对应连接。每一控制元件互相并联,且每一控制元件的另一端电连接至第一辐射体123。在一些实施例中,至少一控制元件包括第一控制元件152及第二控制元件153。
在一些实施例中,第二切换电路17包括开关单元171及至少一切换元件。开关单元171包括若干开关,且每一开关的一端接地。每一开关的另一端与每一切换元件的一端一一对应连接。每一切换元件互相并联,且每一切换元件的另一端均电连接至第二馈入源16与第二辐射体124之间。在一些实施例中,至少一切换元件包括第三切换元件172、第四切换元件173及第五切换元件174。
在一些实施例中,第二切换电路17还包括第二旁路元件175。第二旁路元件175一端接地,另一端电连接至第二馈入源16与第二辐射体124之间,用于维持第三开关单元171内的开关全部断开时,第二切换电路17与第二辐射体124及第二馈入源16之间的连接状态。
在一些实施例中,调谐电路18包括开关单元181及至少一调谐元件。开关单元181包括若干开关,且每一开关的一端接地。每一开关的另一端与每一调谐元件的一端一一对应连接。每一调谐元件互相并联,且每一调谐元件的另一端电连接至隔离部122。在一些实施例中,至少一调谐元件包括调谐元件182。
[根据细则91更正 16.10.2023]
在一些实施例中,调谐电路18还包括第三旁路元件183。第三旁路元件183一端接地,另一端电连接至隔离部122,用于维持开关单元181内的开关全部断开时,调谐电路18与隔离部122之间的连接状态。
可以理解,每一控制元件、切换元件及旁路元件可以为至少一无源元件,或若干无源元件的组合。可以理解,无源元件例如为电感、电容或电阻等。
可以理解,通过控制各开关单元内的开关断开或闭合,以使第一辐射体123或第二辐射体124切换至不同的切换元件或控制元件。由于每一切换元件或控制元件具有对应的阻抗,如此,通过每一开关单元内开关的断开或闭合,可有效调整第一辐射体123或第二辐射体124的辐射频率,及/或调整隔 离部122的谐振频率。
在一些实施例中,终端天线100还包括一控制单元(图未示),用于控制各开关单元中的开关的断开与闭合,以使第一辐射体123及第二辐射体124激发出对应的工作模态及辐射对应的辐射频段的信号。可以理解,控制单元可单控制上述开关单元中的每一开关的闭合或断开。
其中,当控制电路15中与第一控制元件152对应的开关闭合,控制电路15及第一切换电路14中的其他开关断开,第一辐射体123激发出第三工作模态。
在一些实施例中,第一控制元件152为电容,且第一控制元件152的电容值的范围为0-2pF(皮法)。例如,在一实施例中,第一控制元件152的电容值为1pF。
其中,当控制电路15中与第二控制元件153对应的开关闭合,控制电路15中的其他开关断开时,使第一辐射体123的等效辐射枝节变短,从而第一辐射体123激发出第一工作模态及第二工作模态。
在一些实施例中,第二控制元件153为0欧姆电阻或电感。当第二控制元件153为电感时,第二控制元件153的电感值范围为0-5nH(纳亨)。
进一步地,通过第一切换电路14中与第一切换元件142,及/或与第二切换元件143对应的开关闭合,以对第一辐射体123进行阻抗调谐,实现中高频频段的频段切换。
在一些实施例中,第一切换元件142与第二切换元件143两者可为电感元件,且第一切换元件142与第二切换元件143两者的等效电感的电感值的范围为1-10nH。
当第二切换电路17中与第五切换元件174对应的开关闭合时,可调整第二辐射体124的谐振频率,以辅助提升第一辐射体123的中高频频段的辐射性能。
在一些实施例中,第五切换元件174为电容。且第五切换元件174的电容值的范围为0.5-4.7pF。
可以理解,第一旁路元件144可用以调整第一辐射体123的谐振频率,从而提高第一辐射体123的辐射性能。在一些实施例中,第一旁路元件144为电感。且第一旁路元件144的电感值的范围均为30-68nH。
其中,当第二切换电路17中与第三切换元件172,及/或与第四切换元件173对应的开关闭合,第二切换电路17与调谐电路18中的其他开关断开时,第二辐射体124激发出第四工作模态,并可根据选通的切换元件的阻抗值进行频段切换。
在一些实施例中,当第三切换元件172与第四切换元件173均为电感,且第三切换元件172与第四切换元件173两者的等效电感值的范围为10-82nH时,可通过在第二切换电路17中选通第三切换元件172及/或第四切换元件173进行低频频段切换。例如,当第三切换元件172与第四切换元件173两者的等效电感值为82nH时,第二辐射体124可切换至700MHz的 工作频段;当第三切换元件172与第四切换元件173两者的等效电感值为10nH时,第二辐射体124可切换至900MHz的工作频段。
同时,第二切换电路17中的第二旁路元件175为电感。在一实施例中,第二旁路元件175的电感值为68nH。
同时,调谐电路18中的第三旁路元件183为电感,且第三旁路元件183的电感值的范围为15-20nH。如此,隔离部122通过第三旁路元件183接地,用于辐射第二辐射体124的低频谐振频段的信号,从而提升第二辐射体124的辐射性能。
其中,当第一辐射体123激发第一工作模态及第二工作模态时,第二辐射体124激发第四工作模态时,通过控制调谐电路18中与调谐元件182对应的开关的闭合或断开,以调整第一辐射体123与第二辐射体124之间的隔离度。
即,当控制电路15中与第一控制元件152对应的开关闭合时,第一辐射体123激发第三工作模态(即辐射中高频频段的信号),调谐电路18中与调谐元件182对应的开关断开;当控制电路15中与第二控制元件153对应的开关闭合时,第一辐射体123激发第一工作模态及第二工作模态(即辐射低频频段的信号),调谐电路18中与调谐元件182对应的开关闭合,以调整第一辐射体123与第二辐射体124的隔离度。
在一些实施例中,调谐元件182为电感。且调谐元件182的电感值的范围为1-68nH。例如,在一实施例中,调谐元件182可以是电感值为5.1nH的电感。
可以理解,上述各切换元件、各控制元件及各旁路元件的电感值或电容值,指的是等效电感值及等效电容值。即上述提及的各切换元件、各控制元件及各旁路元件可由若干电感或电容通过串并联形成,而不局限于上述的单个元件的形式。
可以理解,通过选通控制电路15中的第二控制元件153,使第一辐射体123的等效电长度缩短,进而使第一辐射体123激发出第三工作模态;同时通过选通第一切换电路14中的第一切换元件142及/或第二切换元件143,从而实现中高频频段切换。进一步地,还可以同时选通第二切换电路17的第五切换元件174,以调整第二辐射体124的谐振频率,辅助提升中高频频段的辐射性能。
如此,第一辐射体123可通过第一切换电路14、控制电路15及第二切换电路17等的调节,以激发第一工作模态及第二工作模态,或激发第三工作模态,实现了第一辐射体123在低频频段及中高频频段的复用。
在一些实施例中,还通过选通第二切换电路17上的第三切换元件172及/或第四切换元件173,以使第二辐射体124激发第四工作模态,并切换至不同的低频频段。进一步地,第二辐射体124还通过调谐电路18上的第三旁路元件183接地,使隔离部122辐射低频谐振频段的信号,提升第二辐射体124的辐射效率。
可以理解,当第一辐射体123激发第一工作模态及第二工作模态,第二辐射体124激发第四工作模态时,终端天线100至少具有两低频天线。此时,隔离部122通过选通调谐电路18的调谐元件182,减少第一辐射体123与第二辐射体124之间的电流的互相耦合,从而改善第一辐射体123与第二辐射体124之间的隔离度。
请一并参阅图9至图11B,其中,图9为终端天线100的S参数曲线示意图。图9中的曲线Q1表示第一辐射体123及第二辐射体124均辐射低频频段的信号,且与调谐元件182对应的开关断开时,第一辐射体123与第二辐射体124之间的隔离度。图9中的曲线Q2表示第一辐射体123及第二辐射体124均辐射低频频段的信号,且与调谐元件182对应的开关闭合时,第一辐射体123与第二辐射体124之间的隔离度。图10A为第一辐射体123激发第一工作模态及第二工作模态,且隔离部122未设置调谐电路时,第二辐射体124耦合至第一辐射体123的电流示意图;图10B为第一辐射体123激发第一工作模态及第二工作模态,且隔离部122上的调谐电路18中的调谐元件182导通时,第二辐射体124耦合至第一辐射体123的电流示意图;图11A为第一辐射体123激发第一工作模态及第二工作模态,且隔离部122未设置调谐电路18时,第一辐射体123耦合至第二辐射体124的电流示意图;图11B为第一辐射体123激发第一工作模态及第二工作模态,且隔离部122上的调谐电路18中的调谐元件182导通时,第一辐射体123耦合至第二辐射体124的电流示意图。
显然,通过调谐电路18调整隔离部122的谐振频段,有效降低第一辐射体123及第二辐射体124之间的耦合电流,从而有效改善第一辐射体123与第二辐射体124之间的隔离度,使第一辐射体123及第二辐射体124可同时工作在低频频段。
可以理解,当第一辐射体123激发第三工作模态,及第二辐射体激发第四工作模态时,终端天线100a至少具有一中高频天线及一低频天线。此时,通过选通第五切换元件174,使第二辐射体124辐射中高频谐振频段的信号,从而提升第一辐射体123激发中高频频段时的辐射效率;隔离部122通过第三旁路元件183接地,辐射第二辐射体124的低频谐振频段的信号,提升第二辐射体124的辐射效率。
可以理解,本申请实施例一提供的终端天线100,通过设置控制电路15,使第一辐射体123只需一馈源(例如第一馈入源13)即可实现低频频段与中高频频段的复用。如此,使得终端天线100可支持5G的非独立组网标准(Non-StandAlone,NSA)下的4G LTE频段和5G NR频段的双连接(E-UTRA-NR Dual Connectivity,EN-DC)模式,及实现超宽带载波聚合(Carrier Aggregation,CA)。
请再次参阅图3,在一些实施例中,边框112还包括顶端部129。壳体11上还开设有开槽125及第四缝隙126。且开槽125开设于顶端部129与中框111之间。第四缝隙126于第一侧部116靠近顶端部129的一端,且与开 槽125连通。如此,开槽125与第四缝隙126共同在边框112上形成第三辐射体127。
在一些实施例中,终端天线100还包括第三馈入源128。如此,第三馈入源128电连接至第三辐射体127,用以馈入电流,以激发第五工作模态并辐射第五工作频段的信号。
在一些实施例中,第五工作模态为长期演进技术升级版(Long Term Evolution Advanced,LTE-A)Band20的上下行工作模态,第五工作频段包括791MHz-862MHz。如此,终端天线100至少具有三个低频天线。可以理解,终端天线100形成的三低频天线系统可以满足在4G和5G各自的频段上1发2收的天线规格。
[根据细则91更正 16.10.2023]
请再次参阅图9,其中曲线Q3、Q4及Q5分别表示第一辐射体123、第二辐射体124及第三辐射体127工作于低频频段时的S参数曲线图。从图9可以看出,终端天线100的第一辐射体123、第二辐射体124及第三辐射体127工作于低频频段时具有较宽的辐射带宽。其中,曲线Q3大致表示第一辐射体123可工作于758MHz-821MHz;曲线Q4大致表示第二辐射体124可工作于703MHz-803MHz;曲线Q5大致表示第三辐射体127可工作于791MHz-862MHz。
请继续参阅图12,在一些实施例中,开槽125开设于第一侧部116与中框111之间,且开设于第一侧部116的大致中间位置。第四缝隙126开设于第一侧部116上的开槽125远离末端部115的一端。开槽125与第四缝隙126连通,如此,开槽125与第四缝隙126共同在边框112上分割形成第三辐射体127。第三馈入源128电连接至第三辐射体127,如此,以为第三辐射体127馈入电流,以使第三辐射体127激发第五工作模态并辐射第五辐射频段的信号。
可以理解,在其他实施例中,第三辐射体127亦可用于低频频段及中高频频段的复用。本申请并不局限第三辐射体127仅用于辐射低频频段的信号。
可以理解,在其他实施例中,边框112上的其他位置亦可形成其他辐射体,且该辐射体可辐射低频及/或中高频辐射频段的信号。本发明不对终端天线100上的辐射体的数量及激发的工作频段进行限制。
可以理解,在一些实施例中,由于第一切换电路14与控制电路15的位置较近,第二切换电路17与调谐电路18的位置较近,因此,第一切换电路14中的开关单元141及控制电路15中的开关单元151可共同由一四路单刀单掷开关器件代替。第二切换电路17的开关单元171及调谐电路18的开关单元181可共同由一四路单刀单掷开关器件代替。如此,减少终端天线100的电子器件的使用,节省成本。
可以理解,在其他实施例中,隔离部122、第一辐射体123及第二辐射体124亦可形成于移动终端设备200的顶端部129、第一侧部116及/或第二侧部117上。且第一馈入源13及其对应的第一切换电路14、控制电路15可电连接至第一辐射体123的其他位置,不局限于上述记载位置。第二馈入源 16及其对应的第二切换电路17、调谐电路18可连接至第二辐射体124的其他位置,亦不局限于上述记载位置。其中,在其他实施例中,由于馈入源与边框112连接的位置不同,如此,形成的辐射体的等效电长度亦不同。因此,需根据不同的等效电长度,为控制电路15及调谐电路18选择合适的控制元件及调谐元件。本申请不对所述控制电路15及调谐电路18中的控制元件及调谐元件的具体参数做限制。本领域技术人员可基于本申请的思想,结合具体结构,选择具有合适的参数的控制元件及调谐元件。
可以理解,接地部19可由导电材料制成。例如,接地部19可为弹脚、螺钉、弹片、导电布、导电泡棉或者导电胶等电连接器件。接地部19可通过一体成型技术、铆接、螺钉锁接及弹片弹接等方式实现与边框112的连接。
可以理解,第一馈入源13、第一切换电路14、控制电路15、第二馈入源16、第二切换电路17及调谐电路18等亦可通过铆接、螺钉锁接及弹片弹接等方式实现与边框112的连接。
可以理解,本申请提及的开关,包括但不限于单刀单掷开关、晶体管开关或其他可以实现导通或断开功能的开关电路。本领域技术人员可根据产品的实际需求选择相应的开关器件或开关电路。
实施例二
请一并参阅图13-图15,本申请还提供一种终端天线100a。终端天线100a的结构与终端天线100的结构大致相同,均包括壳体11、第一馈入源13、第二馈入源16及接地部19。终端天线100a与终端天线100的区别在于,终端天线100a中的边框112的结构与终端天线100中的边框112的结构大致镜面对称。例如,在实施例一中,第一缝隙118与第一侧部116位于壳体11中的右侧,第二缝隙119与第二侧部117位于壳体11中的左侧。而在实施例二中,第一缝隙118及第一侧部116位于壳体11中的左侧,所述第二缝隙119及所述第二侧部117位于壳体11中的右侧。且终端天线100a的开槽120a延伸至第二侧部117的大致中间位置,开槽120a延伸至第一侧部116靠近末端部115的一端。终端天线100a的第三缝隙121a开设于边框112的第二侧部117的大致中间位置。如此,在终端天线100a上,第一缝隙118及第二缝隙119之间的边框112形成隔离部122。第一缝隙118远离第二缝隙119一侧的边框112形成第一辐射体123a。第二缝隙119与第三缝隙121a之间的边框112形成第二辐射体124a。接地部19一端接地,另一端电连接至第二辐射体124a的第二侧部117靠近末端部115的一端。除此之外,终端天线100a还包括控制电路14a、第一切换电路15a、第二切换电路17a、第三切换电路18a及调谐电路19a,通过调节各切换电路、各控制电路及调谐电路,从而实现终端天线100a在低频频段的全覆盖。
在一些实施例中,第一馈入源13电连接至第一辐射体123a上第一侧部116与末端部115的交界处,用于馈入电流信号至第一辐射体123a。控制电路14a一端接地,另一端连接至第一馈入源13与第一辐射体123a之间,用于控制所述第一辐射体123a辐射低频频段的辐射信号或中高频频段的信号。 第一切换电路15a一端接地,另一端连接至第一辐射体123a靠近第二缝隙119的一端,用以提供第一馈入源13与第一辐射体123a之间的阻抗匹配,提升辐射效率。
在一些实施例中,第二馈入源16电连接至第二辐射体124a上的接地部19远离末端部115的一侧。第二切换电路17a一端接地,另一端电连接至第二馈入源16与第二辐射体124a之间,用于切换辐射频段。第三切换电路18a一端接地,另一端电连接至第二辐射体124a,用以提供第二馈入源16与第二辐射体124a之间的阻抗匹配,提升辐射效率。调谐电路19a一端接地,另一端电连接至隔离部122,用于调整隔离部122的谐振频率。其中,当控制电路14a断开时,电流自第一馈入源13馈入后,电流将流经第一辐射体123a,并由第一切换电路15a及中框111接地(参路径P 1’),以辐射低频频段的信号。当控制电路14a导通时,电流自第一馈入源13馈入后,电流将流经第一辐射体123a,并由第一切换电路15a接地(参路径P2’),以辐射中高频频段的信号。如此,第一辐射体123a通过控制电路14a的断开或导通,可辐射低频频段或中高频频段的信号。可以理解,当电流自第一馈入源13馈入后,电流还流向第一辐射体123a上第二缝隙119所在的一侧,并通过第二缝隙119耦合至隔离部122。
可以理解,当电流自第二馈入源16馈入后,电流将流经第二辐射体124a,并通过接地部19及第三切换电路18a接地(参路径P3’)。如此,第二辐射体124a辐射低频频段的信号。可以理解,当电流自第二馈入源16馈入后,电流还流向第二辐射体124a上第三缝隙121a所在的一侧,以辐射第二辐射体124a的寄生谐振频段的信号,从而提升第二辐射体124的辐射性能。可以理解,当电流自第二馈入源16馈入后,电流还流向第二辐射体124a上第一缝隙118所在的一侧,并通过第一缝隙118耦合至隔离部122。
请继续参阅图14,在一些实施例中,控制电路14a包括开关单元141a及至少一控制元件142a。开关单元141a包括若干开关,且每一开关的一端接地。每一开关的另一端与每一控制元件142a的一端一一对应连接。每一控制元件142a互相并联,且每一控制元件142a的另一端均电连接至第一馈入源13与第一辐射体123a之间。在一些实施例中,第二切换电路17a的电路结构与控制电路14a的电路结构大致相同。
在一些实施例中,第二切换电路17a还包括第一旁路元件171a。第一旁路元件171a一端接地,另一端电连接至第二馈入源16与第二辐射体124a之间,用于维持第二切换电路17a与第二辐射体124a及第二馈入源16之间的连接状态。
在一些实施例中,第一切换电路15a包括开关单元151a及至少一切换元件152a。开关单元151a包括若干开关,且每一开关的一端接地。每一开关的另一端与每一切换元件152a的一端一一对应连接。每一切换元件152a互相并联,且每一切换元件152a的另一端电连接至第一辐射体123a。
[根据细则91更正 16.10.2023]
在一些实施例中,第一切换电路15a还包括第二旁路元件156a。第二旁 路元件156a一端接地,另一端电连接至第一辐射体123a,用于维持第二开关单元151a内的开关全部断开时,第一切换电路15a与第一辐射体123a之间的连接状态。
在一些实施例中,第三切换电路18a及调谐电路19a的电路结构与第一切换电路15a的电路结构大致相同。
可以理解,通过控制各开关单元内的开关断开或闭合,以使第一辐射体123a或第二辐射体124a切换至不同的切换元件或控制元件。由于每一切换元件或控制元件具有对应的阻抗,如此,通过每一开关的断开或闭合,可有效调整第一辐射体123a或第二辐射体124a的频率,及/或调整隔离部122的谐振频率。
可以理解,每一控制元件、切换元件及旁路元件可以为至少一无源元件或若干无源元件的组合。无源元件可以为电感、电容或电阻等。
请一并参阅图14及图15,其中,当控制电路14a中与至少一控制元件142a对应的开关闭合,第一辐射体123a辐射中高频频段的辐射信号;当控制电路14a中与所有控制元件142a对应的开关断开,第一辐射体123a辐射低频频段的辐射信号。
在一些实施例中,控制电路14a中的控制元件142a可为电感,且若干控制元件142a的等效电感值的范围为1-10nH。
第一切换电路15a中与至少一切换元件152a对应的开关闭合时,可调整第一辐射体123a的谐振频率。
进一步地,当第一辐射体123a辐射中高频频段的信号时,还可以同时通过控制选通第三切换电路18a的若干切换元件,以使第二辐射体124a产生中高频谐振,辅助提升第一辐射体123a在中高频频段的辐射性能。
在一些实施例中,第一切换电路15a中的切换元件152a可为电容,且切换元件152a的等效电容的电容值的范围为0-6.8pF。
在一些实施例中,第三切换电路18a中的切换元件可等效为一接地电容,且等效电容值的范围为0.5-4.7pF。
即控制电路14a用于控制第一辐射体123a辐射低频频段的信号或中高频频段的信号。当第一辐射体123a辐射低频频段的信号时,第一切换电路15a可用于切换第一辐射体123a工作在低频频段时的具体频带范围。
[根据细则91更正 16.10.2023]
可以理解,当切换元件152a的等效电容的电容值不同时,第一辐射体123a亦可辐射不同的低频辐射频段的信号。例如,在一些实施例中,第一切换电路15a的切换元件152a为电容,且切换元件152a的等效电容的电容值的范围为0-3pF。在一实施例中,当选通的切换元件152a的等效电容的电容值为0-0.5pF时,第一辐射体123a可覆盖900MHz。在一实施例中,当选通的切换元件152a的等效电容的电容值为2-3pF的电容时,第一辐射体123可覆盖700MHz。如此,实现了第一辐射体123a在全低频频段的频段切换。且第一辐射体123a与第二辐射体124a可共同实现双上行双下行的低频天线系统。
其中,当控制选通第二切换电路17a与第三切换电路18a中的不同切换 元件,可使第二辐射体124a辐射不同的低频辐射频段的信号。进一步地,隔离部122通过调谐电路19a中的旁路元件接地,辐射第二辐射体124a的低频谐振频段的信号,以扩展第二辐射体124a的频宽。
在一些实施例中,当第二切换电路17a的等效电感的电感值的范围为0-4.7nH或第二切换电路17a的等效电容的电容值的范围为6-12pF时,且第三切换电路18a的等效电感的电感值的范围为0-22nH或第三切换电路18a的等效电容的电容值的范围为0.5-2.2pF时,第二辐射体124a可根据不同的等效电感值或等效电容值切换至不同的低频频段。
在一些实施例中,调谐电路19a的旁路元件为电感,且该旁路元件的等效电感的电感值的范围为15-20nH。
其中,当第一辐射体123a及第二辐射体124a均工作于低频频段时,可通过调整调谐电路19a的调谐元件,以调节第一辐射体123a与第二辐射体124a的隔离度。
可以理解,在一些实施例中,调谐电路19a的电路结构与第一切换电路15a的结构大致相同,区别在于调谐电路19a将第一切换电路15a中的切换元件替换为调谐元件。
在一些实施例中,调谐电路19a中的调谐元件可共同等效为一电感,且调谐电路19a中的调谐元件的等效电感的电感值的范围为1-68nH。
在一些实施例中,调谐电路19a的调谐元件包括第一调谐元件及第二调谐元件。其中,第一调谐元件的等效电感的电感值的范围为1纳亨至5纳亨,第二调谐元件的等效电感的电感值的范围为60纳亨至68纳亨。当与第一调谐元件对应的开关闭合,且与第二调谐元件对应的开关断开时,调谐电路19a用于调节第一辐射体123a与第二辐射体124a均工作在900MHz时的隔离度;当与第一调谐元件对应的开关断开,且与第二调谐元件对应的开关闭合时,调谐电路19a用于调节第一辐射体123a与第二辐射体124a均工作在700MHz时的隔离度。
[根据细则91更正 16.10.2023]
如此,第一辐射体123a可通过控制电路14a以辐射低频频段或中高频频段的辐射信号,实现了第一辐射体123a在低频频段及中高频频段的复用。进一步地,终端天线100a还通过控制选通第一切换电路15a、第二切换电路17a及第三切换电路18a中的切换元件,以调节第一辐射体123a及第二辐射体124a工作在低频频段时的频率范围,以实现终端天线100a在全低频频段(即700MHz至960MHz)的频段切换。
可以理解,终端天线100a还通过调谐电路19a调整第一辐射体123a及第二辐射体124a均工作在低频频段时的隔离度,以使终端天线100a具有良好的天线性能。
在一些实施例中,还通过选择切换至第二切换电路17a上的至少一切换元件,以使第二辐射体124a切换至不同的低频频段。进一步地,第二辐射体124a还通过调谐电路19a上的旁路元件的导通,用于辐射低频谐振频段的信号,提升第二辐射体124a的辐射效率。
以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和实质。

Claims (17)

  1. 一种终端天线,包括边框、第一馈入源及第二馈入源,其特征在于,所述边框上开设有隔断所述边框的第一缝隙及第二缝隙,以在所述边框上形成第一导体、第二导体及第三导体,所述第一缝隙远离所述第二缝隙的一侧的至少部分所述边框形成所述第一导体,所述第二缝隙远离所述第一缝隙的一侧的至少部分所述边框形成所述第二导体,所述第一缝隙与所述第二缝隙之间的所述边框形成所述第三导体,所述第一馈入源电连接至所述第一导体,以使所述第一导体辐射信号,所述第二馈入源电连接至所述第二导体,以使所述第二导体辐射低频频段的信号,所述终端天线还包括控制电路,所述控制电路一端接地,另一端电连接至所述第一导体,用于控制所述第一导体辐射中高频频段的信号或辐射所述低频频段的信号。
  2. 如权利要求1所述的终端天线,其特征在于:所述控制电路包括第一无源元件、第二无源元件、第一开关及第二开关,所述第一开关及所述第二开关的一端分别接地,所述第一开关的另一端连接所述第一无源元件的一端,所述第二开关的另一端连接所述第二无源元件的一端,所述第一无源元件及所述第二无源元件的另一端均电连接至所述第一导体,当与所述第一无源元件对应的所述第一开关闭合时,所述第一导体辐射所述中高频频段的信号;当与所述第二无源元件对应的所述第二开关闭合时,所述第二导体辐射所述低频频段的信号。
  3. 如权利要求2所述的终端天线,其特征在于:所述第一无源元件为电容,且所述第一无源元件的电容值的范围为0皮法至2皮法;所述第二无源元件为电感,且所述第二无源元件的电感值的范围为0纳亨至5纳亨。
  4. 如权利要求2所述的终端天线,其特征在于:所述终端天线还包括调谐电路,所述调谐电路包括第三无源元件及第三开关,所述第三开关的一端接地,所述第三开关的另一端电连接至所述第三无源元件的一端,所述第三无源元件的另一端连接至所述第三导体,通过控制所述第三开关的闭合或断开,调节所述第一导体与所述第二导体工作在所述低频频段时,二者之间的隔离度。
  5. 如权利要求4所述的终端天线,其特征在于:所述第三无源元件为电感,所述第三无源元件的电感值的范围为1纳亨至68纳亨。
  6. 如权利要求4所述的终端天线,其特征在于:所述调谐电路还包括第四无源元件,所述第四无源元件一端接地,另一端电连接至所述第三导体。
  7. 如权利要求4所述的终端天线,其特征在于:当所述控制电路中的所述第一开关闭合时,所述调谐电路中的所述第三开关断开。
  8. 如权利要求4所述的终端天线,其特征在于:当所述控制电路中的所述第二开关闭合时,所述调谐电路中的所述第三开关闭合。
  9. 如权利要求4所述的终端天线,其特征在于:所述终端天线还包括第一切换电路及第二切换电路,所述第一切换电路及所述第二切换电路均包括 若干无源元件及对应的若干开关,所述第一切换电路中的若干开关的一端接地,另一端一一对应连接至所述第一切换电路中的若干无源元件的一端,所述第一切换电路中的若干无源元件的另一端连接至所述第一馈入源与所述第一导体之间;所述第二切换电路中的若干开关的一端接地,所述第二切换电路中的若干开关的另一端一一对应连接至所述第二切换电路中的若干无源元件的一端,所述第二切换电路中的若干无源元件的另一端连接至所述第二馈入源与所述第二导体之间。
  10. 如权利要求1所述的终端天线,其特征在于:所述第一馈入源电连接至所述第一导体靠近所述第一缝隙的一端。
  11. 如权利要求1所述的终端天线,其特征在于:所述边框包括末端部、第一侧部及第二侧部,所述第一侧部及所述第二侧部相对设置,且分别设置于所述末端部的两端,所述第一缝隙及所述第二缝隙间隔开设于所述末端部上,所述第一缝隙靠近所述第一侧部设置,所述第二缝隙靠近所述第二侧部设置,所述第一馈入源电连接至所述第一导体上的所述第二侧部与所述末端部的交界处。
  12. 如权利要求11所述的终端天线,其特征在于:所述控制电路包括若干无源元件及对应的若干开关,所述控制电路中的若干开关的一端接地,另一端一一对应连接至所述控制电路中的若干无源元件的一端,所述控制电路中的若干无源元件的另一端连接至所述第一导体与所述第一馈入源之间,当所述控制电路中的至少一开关闭合时,所述第一导体辐射所述中高频频段的信号;当所述控制电路中的所有开关断开时,所述第一导体辐射所述低频频段的信号。
  13. 如权利要求12所述的终端天线,其特征在于:所述无源元件为电感,所述若干无源元件的等效电感值的范围为1纳亨至10纳亨。
  14. 如权利要求11所述的终端天线,其特征在于:所述终端天线还包括调谐电路,所述调谐电路包括若干调谐元件及若干开关,所述调谐电路中的若干开关的一端接地,另一端一一对应连接至所述调谐电路的若干无源元件的一端,所述调谐电路的若干无源元件的另一端连接至所述第三导体,通过控制所述调谐电路的若干开关的闭合或断开,调节所述第一导体与所述第二导体工作在所述低频频段时,二者之间的隔离度。
  15. 如权利要求14所述的终端天线,其特征在于:所述调谐电路的若干无源元件包括第一无源元件及第二无源元件,所述第一无源元件及所述第二无源元件均为电感,且所述第一无源元件的电感值的范围为1纳亨至5纳亨,所述第二无源元件的电感值的范围为60纳亨至68纳亨,在所述调谐电路中,当与所述第一无源元件对应的开关闭合,且与所述第二无源元件对应的开关断开时,所述调谐电路用于调节所述第一导体与所述第二导体均工作在900MHz时的隔离度;在所述调谐电路中,当与所述第一无源元件对应的开关断开,且与所述第二无源元件对应的开关闭合时,所述调谐电路用于调节所述第一导体与所述第二导体均工作在700MHz时的隔离度。
  16. 如权利要求11所述的终端天线,其特征在于:所述终端天线还包括第一切换电路、第二切换电路及第三切换电路中的至少一组电路,所述第一切换电路、所述第二切换电路及所述第三切换电路均包括若干无源元件及若干开关,所述第一切换电路的若干开关的一端接地,另一端一一对应连接至所述第一切换电路中的若干无源元件的一端,所述第一切换电路中的若干无源元件的另一端连接至所述第一导体;所述第二切换电路的若干开关的一端接地,另一端一一对应连接至所述第二切换电路中的若干无源元件的一端,所述第二切换电路中的若干无源元件的另一端连接至所述第二馈入源与所述第二导体之间;所述第三切换电路的若干开关的一端接地,另一端一一对应连接至所述第三切换电路中的若干无源元件的一端,所述第三切换电路中的若干无源元件的另一端连接至所述第二导体。
  17. 一种移动终端设备,其特征在于:所述移动终端设备包括如权利要求1至16中的任一项所述的终端天线。
PCT/CN2022/091301 2021-08-17 2022-05-06 终端天线及移动终端设备 WO2023020023A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22857341.6A EP4280375A1 (en) 2021-08-17 2022-05-06 Terminal antenna and mobile terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110945168.X 2021-08-16
CN202110945168.XA CN113851821B (zh) 2021-08-17 2021-08-17 终端天线及移动终端设备

Publications (2)

Publication Number Publication Date
WO2023020023A1 WO2023020023A1 (zh) 2023-02-23
WO2023020023A9 true WO2023020023A9 (zh) 2023-11-16

Family

ID=78975863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091301 WO2023020023A1 (zh) 2021-08-17 2022-05-06 终端天线及移动终端设备

Country Status (3)

Country Link
EP (1) EP4280375A1 (zh)
CN (2) CN113851821B (zh)
WO (1) WO2023020023A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113851821B (zh) * 2021-08-17 2023-01-10 荣耀终端有限公司 终端天线及移动终端设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201011986A (en) * 2008-09-05 2010-03-16 Advanced Connectek Inc Dual-band antenna
US10186752B2 (en) * 2016-07-21 2019-01-22 Chiun Mai Communication Systems, Inc. Antenna structure and wireless communication device using same
TWI661606B (zh) * 2017-02-24 2019-06-01 群邁通訊股份有限公司 天線結構及具有該天線結構之無線通訊裝置
CN107437661B (zh) * 2017-04-21 2021-07-09 瑞声科技(新加坡)有限公司 天线及移动终端
CN107394347B (zh) * 2017-04-21 2020-05-29 瑞声科技(新加坡)有限公司 天线及移动终端
CN109390693B (zh) * 2017-08-05 2021-12-07 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
TWI661609B (zh) * 2017-09-27 2019-06-01 群邁通訊股份有限公司 天線結構及具有該天線結構之無線通訊裝置
CN109560364A (zh) * 2017-09-27 2019-04-02 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
WO2019090690A1 (zh) * 2017-11-10 2019-05-16 华为技术有限公司 一种移动终端的天线及移动终端
CN110459856A (zh) * 2018-05-08 2019-11-15 深圳富泰宏精密工业有限公司 天线结构及具有该天线结构的无线通信装置
TWI674701B (zh) * 2018-05-08 2019-10-11 群邁通訊股份有限公司 天線結構及具有該天線結構之無線通訊裝置
CN116706536A (zh) * 2020-01-17 2023-09-05 荣耀终端有限公司 天线结构及具有该天线结构的电子设备
CN212136686U (zh) * 2020-03-12 2020-12-11 Oppo广东移动通信有限公司 天线组件和电子设备
CN112838351A (zh) * 2020-12-22 2021-05-25 深圳酷派技术有限公司 一种射频装置和电子设备
CN113851821B (zh) * 2021-08-17 2023-01-10 荣耀终端有限公司 终端天线及移动终端设备

Also Published As

Publication number Publication date
CN113851821A (zh) 2021-12-28
WO2023020023A1 (zh) 2023-02-23
CN115939738A (zh) 2023-04-07
CN113851821B (zh) 2023-01-10
EP4280375A1 (en) 2023-11-22

Similar Documents

Publication Publication Date Title
CN109687111B (zh) 一种天线结构及通信终端
US11018433B2 (en) Triple wideband hybrid LTE slot antenna
CN112928456B (zh) 天线组件及电子设备
US7187338B2 (en) Antenna arrangement and module including the arrangement
EP1969671B1 (en) Quad-band couple element antenna structure
US7411554B2 (en) MIMO antenna operable in multiband
US7760150B2 (en) Antenna assembly and wireless unit employing it
EP3469656A1 (en) An antenna system for a portable device
US20130057443A1 (en) Antenna device, and wireless communication device
CN202759016U (zh) 可调谐耦合馈电天线系统
JP4709898B2 (ja) インピーダンス整合及びユーザ干渉低減化を図るrf通信装置用の平面アンテナアセンブリ
US8648763B2 (en) Ground radiator using capacitor
US11923599B2 (en) Antenna structure and wireless communication device using same
EP2727181A1 (en) Multiple input multiple output (mimo) antennas having polarization and angle diversity and related wireless communications devices
CN112751174A (zh) 天线组件和电子设备
WO2024027258A1 (zh) 天线结构及电子设备
CN113471665B (zh) 一种天线及终端
WO2023020023A9 (zh) 终端天线及移动终端设备
CN113140892B (zh) 天线结构及具有该天线结构的无线通信装置
CN112838371A (zh) 一种天线复用系统和终端
WO2022199307A1 (zh) 天线组件及电子设备
US20240136736A1 (en) Terminal antenna and mobile terminal device
KR101708570B1 (ko) 삼중 대역 그라운드 방사 안테나
JP2004519158A (ja) 無線端末
CN106972272B (zh) 天线系统以及移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857341

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18277285

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022857341

Country of ref document: EP

Effective date: 20230814

NENP Non-entry into the national phase

Ref country code: DE